Λογότυπο αποθετηρίου
 

A data mining-based framework to identify shoppers’ missions

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Informaticsel
dc.contributor.opponentΠραματάρη, Αικατερίνηel
dc.contributor.opponentΜπαρδάκη, Κλεοπάτραel
dc.contributor.thesisadvisorΜηλιώτης, Παναγιώτηςel
dc.creatorGriva, Anastasiaen
dc.creatorΓρίβα, Αναστασίαel
dc.date.accessioned2014-02-01*
dc.date.available2025-03-26T19:39:17Z
dc.date.issued2014-02*
dc.date.issuedoriginal02-2014*
dc.description.abstractConsumers' behavior and expectations for service have changed dramatically in recent years, as they have become more demanding. Many organizations have identified the need to become more customer centric, facing increased global competition (Bull, 2003; Phan & Vogel, 2010). Therefore, in order to respond to the ever increasing demands of consumers, they are trying to develop innovative methods for managing their customers (Anderson et al., 2007). At the same time computers have become far more powerful, and new technological trends have been developed, such as Big Data, Business Intelligence (BI), Data Mining (DM) (Provost & Fawcett, 2013). These new trends give us the opportunity to process large volumes of data and extract valuable information. Like any other business, so do retailers have realized the importance of applying these new technological trends to support decision making and satisfy their customers (Bertino, 2011). However, there is only sparse research in the context of retailing in order to discover patterns in customers' behavior, to empower decision making, and to satisfy the demanding consumers (Wang & Zhou, 2013).en
dc.format.extent80p.
dc.identifier.citationΒιβλιογραφία : σ. 73-76
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/6436
dc.identifier.urihttps://doi.org/10.26219/heal.aueb.4786
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectData miningen
dc.subjectConsumer behaviouren
dc.subjectElectronic data processingen
dc.subjectConsumer motivesen
dc.subjectConsumer spendingen
dc.subjectΕξόρυξη δεδομένωνel
dc.subjectΣυμπεριφορά καταναλωτήel
dc.subjectΕπεξεργασία δεδομένωνel
dc.subjectΚαταναλωτικά κίνητραel
dc.subjectΚαταναλωτική δαπάνηel
dc.titleA data mining-based framework to identify shoppers’ missionsen
dc.title.alternativeΕφαρμογή τεχνικών εξόρυξης γνώσης για την αναγνώριση των αγοραστικών αποστολών των καταναλωτώνel
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Griva_2014.pdf
Μέγεθος:
2.3 MB
Μορφότυπο:
Adobe Portable Document Format