Λογότυπο αποθετηρίου
 

Prediction of stock market index movement using machine learning techniques

dc.contributor.degreegrantinginstitutionAthens University of Economics and Business, Department of Economicsel
dc.contributor.opponentDimelis, Sophiael
dc.contributor.opponentSakellaris, Plutarchosel
dc.contributor.thesisadvisorKyriazidou, Ekateriniel
dc.creatorImpraimakis, Filipposen
dc.date.accessioned2025-03-26T19:50:44Z
dc.date.available2025-03-26T19:50:44Z
dc.date.issued28-02-2019
dc.date.submitted08-06-2019
dc.description.abstractIt goes without saying that the ability to predict the direction of stock/index is of paramount importance for the viability of the companies and individual investors. An accurate prediction of the sign of a stock index is an effective hedging strategy that can mitigate the risk level of companies. In essence, setting the risk is a mean that can yield a more efficient allocation of the companies' capital. In this study, eight different classification techniques were employed for the determination of the direction of the S&P 500. Two different approaches were used as inputs, first for the acquired principal components generated from PCA and second for our existing dataset. This comparison showed that Principal Component Analysis (PCA) negatively affect our results, except the KNN algorithm. Our experimental results verified the superiority of Support Vector Machines (SVM) in predicting financial time series.en
dc.embargo.ruleOpen access
dc.format.extent57 p.
dc.identifier.urihttps://pyxida.aueb.gr/handle/123456789/8424
dc.languageen
dc.rightsCC BY: Attribution alone 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectPrincipal Component Analysis (PCA)en
dc.subjectRidge & Lasso regressionen
dc.subjectRandom forestsen
dc.subjectNested cross-validationen
dc.subjectTradingen
dc.subjectMachine learningen
dc.subjectPrediction of stock market index movementen
dc.subjectFinancial forecastingen
dc.subjectNeural networksen
dc.subjectSupport Vector Machines (SVM)en
dc.titlePrediction of stock market index movement using machine learning techniquesen
dc.typeText

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Impraimakis_2019.pdf
Μέγεθος:
2.26 MB
Μορφότυπο:
Adobe Portable Document Format