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εξωτερικό. Η εργασία αυτή έχοντας εκπονηθεί από εμένα, αντιπροσωπεύει τις 

προσωπικές μου απόψεις επί του θέματος. Οι πηγές στις οποίες ανέτρεξα για την 

εκπόνηση της συγκεκριμένης διπλωματικής αναφέρονται στο σύνολό τους, δίνοντας 

πλήρεις αναφορές στους συγγραφείς, συμπεριλαμβανομένων και των πηγών που 

ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο». 

 

 

 

[ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ/ΤΡΙΑΣ]               

[ΥΠΟΓΡΑΦΗ] 

ΒΕΛΛΗ ΑΝΑΣΤΑΣΙΑ 

 

 

 

 

 

 

 

 

 



 
2 

TABLE OF CONTENTS 

 

ABSTRACT………………………………………………………………………….6 

Chapter 1 – Introduction……………………………………………………………7 

1.1 Dissertation’s theme and motivation…………………………………………….  7 

1.2 Dissertation Overview……………………………………………………………..8 

Chapter 2 – Theoretical Framework……………………………………………….10 

2.1 Illustration of general concepts…………………………………………………11 

2.1.1 Expected Return………………………………………………………………..11 

2.1.2 Portfolio Return………………………………………………………………..11 

2.1.3 Portfolio Beta…………………………………………………………………..11 

2.1.4 Portfolio Variance and Standard Deviation………………………………........12 

2.2 Illustration of research concepts………………………………………………13 

2.2.1 Sharpe Ratio……………………………………………………………………13 

2.2.2 Sortino Ratio……………………………………………………………………14 

2.2.3 Maximum Drawdown…………………………………………………..............15 

2.3 Portfolio Construction Theory …………………………………………………15 

2.3.1 History of portfolio construction theory………………………………............15 

2.3.2 General framework of portfolio construction…………………………...........16 

2.3.3 Criteria for portfolio construction…………………………………………….17 

2.3.4 Traditional Approach…………………………………………………………18 

2.3.5 Modern Portfolio Theory Approach………………………………….............20 

2.3.6 Approach using Programming……………………………………..................21 

2.3.7 Portfolio Selection using PCA………………………………………..............22 

2.4 Portfolio Management…………………………………………………………..22 

2.4.1 Portfolio optimization / Rebalancing…………………………………………...23 

2.4.2 Sharpe Ratio Portfolio………………………………………………………….24 

2.4.3 Global Minimum Variance Portfolio…………………………………………...24 



 
3 

Chapter 3 – Research Methodology………………………………………………..25 

3.1 Research Objective……………………………………………………………...26 

3.1.1 Information Needed and Variables Under Study……………………………….26 

3.2 Data Collection Plan…………………………………………………………….28 

3.2.1 Types and sources of data collection……………………………………………28 

3.2.2 Tolls of data collection…………………………………………………………28 

3.3 Sampling Plan…………………………………………………………………...28 

3.3.1 Sample Population and size……………………………………………………28 

3.4 Benefits of the Study…………………………………………………………….29 

3.4.1 Benefits to the researcher and to third parties…………………………………..29 

3.5 Study’s Limitation………………………………………………………………29 

3.6 Research Design…………………………………………………………………30 

Chapter 4 – Data Analysis and Interpretation…………………………………….34 

Chapter 5 – Major Findings………………………………………………………...49 

Chapter 6 – Conclusion……………………………………………………………..51 

Chapter 7 – Suggestion for further Research……………………………………..52 

Reference List………………………………………………………………………53 

Appendix…………………………………………………………………………..56 

 

LIST OF TABLES 

Table 2.1 Traditional Portfolio Construction Approach…………………………….19 

Table 2.2 Portfolio Diversification………………………………………………….20 

Table 3.1 ETF’s classes...............................................................................................27 

Table 3.2 Research Sample…………………………………………………………..29 

Table 3.3 Scenarios Combinations’ PCA factors/Rolling Windows………………...31 



 
4 

Table 4.1 Optimal Portfolios with 2 PCA factors and with non-optimized standalone 

ETF categories for 1st scenario………………………………………………………..35 

Table 4.2 Optimal Portfolios with 3 PCA factors and with non-optimized standalone 

ETF categories for 1st scenario………………………………………………………..35 

Table 4.3 Optimal Portfolios with 4 PCA factors and with non-optimized standalone 

ETF categories for 1st scenario……………………………………………………….36 

Table 4.4 Optimal combinations of optimal portfolios per PCA factor for non-optimized 

standalone ETF categories for 1st scenario……………………………………………37 

Table 4.5 Optimal Portfolios with 2 PCA factors and with optimized standalone ETF 

categories for 1st scenario…………………………………………………………….38 

Table 4.6 Optimal Portfolios with 3 PCA factors and with optimized standalone ETF 

categories for 1st scenario…………………………………………………………….38 

Table 4.7 Optimal Portfolios with 4 PCA factors and with optimized standalone ETF 

categories for 1st scenario……………………………………………………………39 

Table 4.8 Optimal combinations of optimal portfolios per PCA factor for optimized 

standalone ETF categories for 1st scenario…………………………………………..40 

Table 4.9 Optimal Portfolios with 2 PCA factors and with non-optimized standalone 

ETF categories for 2nd scenario………………………………………………………41 

Table 4.10 Optimal Portfolios with 3 PCA factors and with non-optimized standalone 

ETF categories for 2nd scenario………………………………………………………41 

Table 4.11 Optimal Portfolios with 4 PCA factors and with non-optimized standalone 

ETF categories for 2nd scenario………………………………………………………42 

Table 4.12 Optimal combinations of optimal portfolios per PCA factor for non-

optimized standalone ETF categories for 2nd scenario………………………………43 

Table 4.13 Optimal Portfolios with 2 PCA factors and with optimized standalone ETF 

categories for 2nd scenario……………………………………………………………44 

Table 4.14 Optimal Portfolios with 3 PCA factors and with optimized standalone ETF 

categories for 2nd scenario…………………………………………………………….44 



 
5 

Table 4.15 Optimal Portfolios with 4 PCA factors and with optimized standalone ETF 

categories for 2nd scenario…………………………………………………………….45 

Table 4.16 Optimal combinations of optimal portfolios per PCA factor for optimized 

standalone ETF categories for 2nd scenario…………………………………………..46 

Table 4.17 The optimal combination of all optimal combinations for non-optimized 

standalone ETF categories for 1st scenario…………………………………………..46 

Table 4.18 The optimal combination of all optimal combinations for optimized 

standalone ETF categories for 1st scenario…………………………………………..47 

Table 4.19 The optimal combination of all optimal combinations for non-optimized 

standalone ETF categories for 2nd  scenario…………………………………………47 

Table 4.20 The optimal combination of all optimal combinations for optimized 

standalone ETF categories for 2nd  scenario…………………………………………47 

Table 4.21 The optimal combination of all optimal combinations for 1st  scenario…48 

Table 4.22 The optimal combination of all optimal combinations for 2nd  scenario...48 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
6 

 

 

Abstract 

Portfolio Optimization saw a huge flood of interest in recent years, because of the 

rapidly growing ability of modern computers. 

The financial community continually seeks outstanding techniques from other fields to 

enhance financial market modelling. 

In this thesis, we propose a programming language approach to the portfolio 

optimization problem, which calls for optimizing the allocation of capital across ETF’s 

maximizing a preferred performance metric, such as expected returns or total return. 

We used coding language Python, which offers innovative methods of learning good 

decision-making policies that maximize an autonomous agent’s performance in an 

unknown and uncertain environment. 

Using the aforementioned, we developed and implemented a portfolio trading system. 

Subsequently, we assessed the success of our portfolio management approach and 

evaluated its performance using real data from the ETF Database. 

An exchange-traded fund (ETF) is a type of security that involves a collection of 

securities—such as stocks—that often tracks an underlying index, although they can 

invest in any number of industry sectors or use various strategies. 

We selected a diverse selection of assets classes (ETFs) that allow us to participate in 

dynamic industries – Technology, Real Estate, US corporate, International corporate, 

Emerging Markets – and mix it with ETFs designed to protect us during downturns – 

Corporate Bonds, Treasuries, Inflation-Protected Securities, and Municipal Bonds. 
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Chapter 1 – Introduction 

1.1 Dissertation’s theme and motivation 

1.2 Dissertation Overview 

 

1.1 Dissertation’s theme and motivation 

Asset managers target to choose investment portfolios, whose returns are the maximum 

possible, ensuring though that the risk exposure is at acceptable levels given the risk 

preferences per investor. 

The very first theory for optimal portfolios’ selection was introduced by Markowitz in 

1950’s. Through his paper, formalized the portfolio selection principles, winning thus 

the 1990 Noble Prize in the field of economics. 

It is worth mention though, that 1950 and onwards mathematical programming 

techniques have been broadly used and have become essential tools in financial 

management, resulting though in their increasingly application in practice. The most 

important element that mainly boosted the adoption of more sophisticated methods in 

financial management procedure, which focus on portfolio optimization, is fully 

aligned with the continuously increasing diversity of complex financial instruments and 

the multiple factors in need of capturing the effect of risk and performance measures. 

Financial management studies the economic resources allocation and deployment 

across time throughout an uncertain environment. To capture and influence the various 

risk factors in an effective manner, the implication of the said, sophisticated analytical 

ways, is required. 

Mathematical programming techniques as the Principal Component Analysis combined 

with the Python coding language. Over the past years, the use of mathematical 

programming techniques has proven able to reduce financial risks, which affect the 

portfolios’ performance, by diversifying away the non-systematic risk of these 

portfolios. 
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The diversification principle of Principal Component Analysis stated that an investment 

should be distributed across various assets, to limit the risk exposure of any particular 

asset in the number of principal that the asset manager has selected. 

The goal of this thesis is the optimal portfolios constructions using the concepts of 

Principal Component Analysis based on paper “Directed Principal Component 

Analysis” (2017) by Yi-Hao Kao, Benjamin Van Roy and their rebalancing using 

different windows of twelve, eighteen and twenty-four months as introduced by Meihua 

Wang, Fengmin Xu and Yu-Hong Dai in their research paper “An index tracking model 

with stratified sampling andoptimal allocation”. Our aim was the construction of two 

different portfolios, the Sharpe Ratio portfolio, as proposed by Taras Bodnar and Taras 

Zaboloskyy (2017) in their paper “How risky is the optimal portfolio which maximizes 

the Sharpe ratio?” and the Global Minimum Variance portfolio, as proposed by 

Alexander Kempf and Christoph Memmel (2006) in their paper “Estimating the Global 

Minimum Variance Portfolio”. We formulated two scenarios based on these portfolios, 

using different rebalancing participation percentages per portfolio. 

The financial instruments used to attain our said goal are the Exchange Traded Funds 

(ETFs), “The sidedness and informativeness of ETF trading and the market 

efficiency of their underlying indexes” (2019) by Liao Xua, Xiangkang Yinb, Jing Zhao 

The whole procedure was implemented in Python programming language. 

Finally, to compare and conclude with the performance of our portfolios, we conducted 

the evaluation of these portfolios with the calculation of various performance measures 

such as the total return, the standard deviation, the Sharpe ratio, the Sortino ratio and 

the Maximum drawdown. Given these measures and specific thresholds for each of 

them we made our final choices given our optimal portfolios. 

 

1.2 Dissertation Overview 

The next chapters of our research are structured in the following context: 

In Chapter 2 we presented in detail the theoretical framework of our research by 

illustrating general concepts such as expected return, portfolio return, beta, variance, 

and standard deviation. Also, some more specific concepts used in our research as the 

Sharpe Ratio, Sortino ration and the Maximum Drawdown. We discussed about the 
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portfolio construction theory, its history and its evolution from Traditional Approach 

and onwards until the programming-oriented ways of construction. Finally we captured 

the portfolio management concept and presented some ways of optimizing and 

rebalancing. 

In chapter 3, we introduced and analyzed the research methodology we followed in this 

dissertation, our research objective, data collection plan, sampling plan, benefits of the 

whole research as well as its limitations. In the end we sketched step by step the design 

of our research. 

In chapter 4, we presented our data analysis results and interpretation, in chapter 5 we 

highlighted our major findings and finally in chapter 6 and 7 we conclude our research 

and made some suggestions for further research. 
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Chapter 2 – Theoretical Framework 

2.1 Illustration of general concepts 

2.1.1 Expected Return 

2.1.2 Portfolio Return 

2.1.3 Portfolio Beta 

2.1.4 Portfolio Variance and Standard Deviation 

2.2 Illustration of research concepts 

2.2.1 Sharpe Ratio 

2.2.2 Sortino Ratio 

2.2.3 Maximum Drawdown 

2.3 Portfolio Construction Theory 

2.3.1 Criteria for portfolio construction 

2.3.2 Traditional Approach 

2.3.3 Modern Portfolio Theory Approach 

2.3.4 Approach using Programming 

2.3.5 Portfolio Selection using PCA 

2.4 Portfolio Management 

2.4.1 Portfolio optimization / Rebalancing 

2.4.2 Sharpe Ratio Portfolio 

2.4.3 Global Minimum Variance Portfolio 
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Where: 

 

σ = standard deviation of portfolio 

N = portfolio size 

Xi = values of each instrument within portfolio 

m = portfolio mean 

 

Standard deviation measures the portfolio variation amount or its values dispersion. 

Portfolio standard deviation now, measures the standard deviation of portfolio’s rate of 

return, the total investment’s risk, both systematic and unsystematic and offers a tool to 

analyze the returns stability and match the risk level of portfolio with the desired risk 

appetite of each investor. A relatively low value for standard deviation indicates that 

the values of each within the portfolio tend to be closer to the mean, while a high values 

for standard deviation indicates the opposite one, that the values are spread out over a 

wider range. 

 

2.2 Illustration of research concepts 

Through the research, besides the classical key statistics that measure the portfolio 

performance, we introduced a few more statistics to attain a closer and more persistent 

of the portfolios performance we are about to construct and optimize. 

 

2.2.1Sharpe Ratio 

Sharpe ration was created back in 1966 by William Sharpe and took its name by him. 

Since then, is one of the most referenced/ famous risk and return measures have been 

used in the field of Finance. Its popularity is attributed by many in its simplicity. The 

ratio describes how much excess return you receive for the extra volatility you endure 

for holding a riskier asset. 

Equation 4 

https://www.investopedia.com/terms/v/volatility.asp
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Table 2.1 Traditional Portfolio Construction Approach 

 

1. Constraints Analysis 

As a first step all the investment-relevant constraints should be analyzed as income 

needs, liquidity, time horizon of the investment, tax preferences and risk appetite of 

the investors. 

2. Objectives determination 

The second step should be done is the determination of certain objectives as the 

current income of the investor, the growth of the income, the capital appreciation as 

well as the preservation of the capital. 

3. Portfolio Selection 

The third step indicates the portfolio selection, which depends on various objectives 

of the second step, which have been set by investors as growth of income and asset 

mix, safety of initial principal and asset mix and capital appreciation and asset mix. 

4. Analysis of risk and return 

Through the traditional portfolio construction, it is important to mention that the 

whole process assumes some basic consideration. First and foremost, assumes that 

investors as individuals are risk-averse and they prefer higher to lower returns from 

their investments. This desire by them is coupled with their judgement of each 
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investment’s risk and the ability of them to take over it during a specific time-horizon. 

These risks might be interest-rate risks, market risks, financial risks etc. 

5. Diversification 

After the determination of assets’ mix and the analysis of risk and return, the fifth and 

final step is the portfolio diversification. Investors should choose industries having 

the best match with their investments objectives. Each industry serves specific goals 

for each investor and as a result, two or more companies should be selected from each 

industry to attain a better portfolio diversification. 

 

 

 

 

 

 

Table 2.2 Portfolio Diversification 

 

2.3.5 Modern Portfolio Theory Approach 

Modern portfolio theory or portfolio theory approach was introduced in 1952 by Harry 

Markowitz, within his paper “Portfolio Selection” as its published in Journal of 

Finance. This paper constituted the base, so that thirty-eight years later Markowitz 

along with Merton Miller and William Sharpe won a Nobel Prize for their portfolio 

selection theory. 

It is worth keeping in mind that prior to Markowitz’s paper and as we have already seen 

through traditional approach, investors’ focus was on the assessment of individuals 

instruments risk and rewards to construct their portfolio. A general rule of thumb was 

the selection of those securities offered the highest return with the lowest risk, gather 

them, and construct a portfolio based on them. Several contradictions have been stated 

through years though for this rule. Markowitz with his paper formalized this initial 

intuition. 

The modern approach to portfolio construction is all about risk and return. The goal in 

constructing a financial portfolio using the modern approach by maximizing returns on 









 
24 

This final process is considered essential for improvement of profit generation in an 

investment portfolio. Provides the tools to assist investors through the rebalancing 

of portfolio ratio to yield higher returns with a minimal loss. 

Optimal portfolios are constructed either by minimizing the variance of a portfolio for 

a given level of expected return or by maximizing the expected return of a portfolio for 

a given level of variance. However, in this thesis we will walk through two certain ways 

of portfolio optimization, which are examined hereunder. 

 

2.4.2 Sharpe Ratio Portfolio 

A way of portfolio optimization is the maximization of Sharpe Ratio, which can be 

defined as the ratio of the expected return of portfolio to its standard deviation 

(Sharpe 1966, 1994). We should mention that the notion of Sharpe ratio maximization 

belongs to the efficient frontier in the case without a risk-free asset. It can be approached 

as a solution of Markowitz’s optimization framework. 

 

2.4.3 Global Minimum Variance Portfolio 

Global minimum variance portfolio is an optimal portfolio through which, can be 

obtained the lowest possible variance among all other portfolios on the efficient 

frontier. This optimization approach corresponds to the risk-averse investor who targets 

to minimize the variance of its portfolio (risk) without taking into consideration the 

expected return. 

Global minimum variance portfolio’s importance was very first elaborated by Merton 

(1980), who claimed that assets’ returns variances and covariances estimates are by far 

more accurate than the means’ estimates. It was just some years later when Best and 

Grauer (1991) showcased that efficient portfolio experiences great sensitiveness in 

asset means’ changes. However, in 1993 Chopra & Ziemba concluded that in a real 

data-set mean errors have a greater damaging magnitude as variances’ and covariances’ 

errors. 

 

 

https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s10182-016-0270-3#ref-CR34
https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s10182-016-0270-3#ref-CR35
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Chapter 3 – Research Methodology 

 

3.1 Research Objective 

3.1.1 Information Needed and Variables Under Study 

3.2 Data Collection Plan 

3.2.1 Types and sources of data collection 

3.2.2 Tolls of data collection 

3.3 Sampling Plan 

3.3.1 Sample Population and size 

3.4 Benefits of the Study 

3.4.1 Benefits to the researcher and to third parties 

3.5 Study’s Limitation 

3.6 Research Design 
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3.1 Research Objective 

The objective of this research is double and concentrates on the construction of 

portfolios constituted of different categories’ ETF’S, using Principal Components 

Analysis and their optimization through rebalancing. The constructed portfolios 

through PCA are the Global Minimum Variance Portfolio or the Sharpe Ratio Portfolio. 

The whole research conducted with the programming language of Python. 

 

3.1.1 Information Needed and Variables Under Study 

Over the last twenty-five years, ETFs have become one of the most popular passive 

investments among investors. Important factors of their popularity are their low 

transaction costs and high liquidity. By the end of 2016, on the US exchanges ETFs 

were representing more than 30% of the overall trading volume, while their market 

share topped over 10% in terms of total market capitalization. ETFs took market share 

from traditional instruments such as mutual funds and index futures. 

 

ETFs are investments, which issue continuously trading securities on public exchanges. 

Most of them, is legally constructed as open-ended investments and aim to track a 

securities index. They combine both characteristics of open-end and close-end funds. 

We separate ETFs into two categories with major difference the replication way of the 

underlying index, Physical and Synthetic ETFs. Physical ETFs closely follow the 

benchmark index return, while the Synthetic ETFs track an index by entering 

derivatives contracts. The synthetic ETFs are more popular in Europe than in the United 

States, while both types are subject to different sources of counterparty risk. 
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Actively managed ETFs recently launched worldwide. The first were launched in 

March of 2008 in the USA. These types of ETFs are fully transparent and make publicly 

available their daily current securities portfolios on their web pages. They have grown 

substantially the recent years and they constitute a significant competitor to the actively 

managed mutual funds. 

Real estate ETFs are ETFs investing most of their assets in Real Estate Investment Trust 

securities and related derivatives. They are passively managed of publicly traded real 

estate owners. 

 

3.2 Data Collection Plan 

 

3.2.1 Types and sources of data collection 

In our research we used some of the ETFs categories mentioned above and more 

specifically the Equity ETFs, Bond ETFs, Commodity ETFs, Currency ETFs, and Real 

Estate ETFs. We chose the ten ETFs from each of these categories with the highest 

amount of Assets Under Management and as a result we collected observations of five 

different ETFs categories during a wide range of years. 

We picked nine to ten ETFs per category, given the data availability in an 

approximately twenty-five years’ time-horizon from 01/01/1998 to 15/07/2020. 

3.2.2 Tolls of data collection 

We chose which data we will use through ETF.db and we downloaded our data through 

Yahoo finance, using the relevant command in Python. 

 

3.3 Sampling Plan 

 

3.3.1 Sample Population and size 
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Table 3.2 Research Sample 

Our sample population is constituted by 48 Etfs derived from five ETFs asset classes. 

3.4 Benefits of the Study 

 

3.4.1 Benefits to the researcher and to third parties 

Through this study we had the opportunity to explore and learn may things for the 

ETF’s. 

During our research we found many ways through which, etf’s can create optimal 

combinations of portfolio construction and to be honest this was kind of unexpected 

thus they are not the most popular instruments among the others, but they finally denied 

us. 

Third parties and specifically active investors, through our code and its interpretation 

will realize that with some basic knowledge of programming languages, not 

neccesairely python, are able to create different combinations of optimal portfolios and 

finally attain profits with their own efforts. 

 

3.5 Study’s Limitation 

We faced some limitations during our research. First and foremost, the data were not 

broadly available as they are for example for other instruments, due to the fact that most 

of ETF’s begun their active trading the most recent years. Secondly, the portfolio 

constructed from the standalone optimal category portfolios is not comparable with the 

non-standalone optimized ones due to the aforementioned lack of observations. Last 

but not least, the reason we used nine or ten etfs from each category was that the vast 
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Chapter 4 – Data Analysis and Interpretation 

 

For each of our scenario’s combination we computed summary statistics to locate the 

combination through which we will attain the desired values of them. 

We created two tables per bounds’ scenario, one for Global Minimum Variance & 

Sharpe Ratio portfolios constructed using ETF’s without having been optimized 

separately and one with being standalone optimized. 

First things first though, is useful to make crystal clear which values of our statistics 

we are expecting to see to choose each combination. 

 

Mean Value – The highest the expected return the best for our portfolio. 

Standard Deviation – The lowest the SD the best for our portfolio. 

Sharpe Ration – Sharpe ratio greater than 1.0 is considered acceptable. 

Sortino Ratio – Sharpe ratio greater than 2.0 is considered acceptable. 

Total Return - The highest the total return the best for our portfolio. 

Maximum Drawdown – Between 5% and 30%. 

 

Now, we hereby present the total combinations arise for our two portfolios, the GMV 

and the SR, by proceeding with different PCA factors and rolling’s period of 

rebalancing. 

We will examine two scenarios, in the first scenario the bounds for GMV portfolio are 

0.35 and for SR portfolio 0.75. 

 

First scenario 

Our optimal combinations without having optimize each ETF category separately are 

the following: 
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2 PCA factors: 

Table 4.1 Optimal Portfolios with 2 PCA factors and with non-optimized standalone 

ETF categories for 1st scenario. 

 

3 PCA factors: 

Table 4.2 Optimal Portfolios with 3 PCA factors and with non-optimized standalone 

ETF categories for 1st scenario. 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 2% 8% 0.28 1.42 20% 14% 

SR Portfolio 2 12 5% 13% 0.35 1.88 43% 27% 

GMV 

Portfolio 
2 18 2% 8% 0.3 1.48 19% 12% 

SR Portfolio 2 18 6% 13% 0.5 2.94 65% 25% 

GMV 

Portfolio 
2 24 2% 8% 0.3 1.46 18% 12% 

SR Portfolio 2 24 9% 13% 0.72 4.35 99% 23% 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 2% 7% 0.36 1.79 22% 14% 

SR Portfolio 3 12 41% 13% 0.33 1.81 37% 25% 

GMV 

Portfolio 
3 18 3% 6% 0.45 2.22 25% 91% 

SR Portfolio 3 18 7% 13% 0.54 3.41 72% 20% 

GMV 

Portfolio 
3 24 2% 6% 0.36 1.78 19% 91% 

SR Portfolio 3 24 11% 13% 0.84 6.62 132% 18% 
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4 PCA factors: 

Table 4.3 Optimal Portfolios with 4 PCA factors and with non-optimized standalone 

ETF categories for 1st scenario. 

 

The three above tables indicate for each of the three combinations of PCA factors and 

rolling periods, the optimal combinations. From each table, we choose the combination, 

which fits the best our constraints and gives us the desired statistics value as we defined 

them above. Finally, we ended up with one combination per table and we consolidate 

them to end up with our final choice. 

 

 

 

 

 

 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
4 12 3% 5% 0.57 2.92 31% 97% 

SR Portfolio 4 12 3% 12% 0.26 1.42 26% 25% 

GMV 

Portfolio 
4 18 3% 4% 0.71 3.64 31% 67% 

SR Portfolio 4 18 5% 12% 0.39 2.29 43% 21% 

GMV 

Portfolio 
4 24 3% 5% 0.65 3.36 28% 72% 

SR Portfolio 4 24 9% 12% 0.77 6 107% 19% 
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Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
4 24 3% 5% 0.65 3.36 28% 72% 

SR Portfolio 4 24 9% 12% 0.77 6 107% 19% 

GMV 

Portfolio 
3 12 2% 7% 0.36 1.79 22% 14% 

SR Portfolio 3 12 41% 13% 0.33 1.81 37% 25% 

GMV 

Portfolio 
2 24 2% 8% 0.3 1.46 18% 12% 

SR Portfolio 2 24 9% 13% 0.72 4.35 99% 23% 

Table 4.4 Optimal combinations of optimal portfolios per PCA factor for non-optimized 

standalone ETF categories for 1st scenario. 

 

Our final choice is this with three factors, which means three ETFs per category and 

monthly rebalancing with 12 months rolling period. 

We will conduct the exact same process to derive the best combinations with the only 

difference being the fact that the standalone ETFs categories have now firstly been 

optimized and then consolidated into one. 

 

2 PCA factors: 
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Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 3% 5% 0.6 3.88 53% 73% 

SR Portfolio 2 12 3% 9% 0.4 1.93 47% 21% 

GMV 

Portfolio 
2 18 3% 5% 0.6 3.69 48% 71% 

SR Portfolio 2 18 5% 9% 0.6 4.68 93% 12% 

GMV 

Portfolio 
2 24 2% 6% 0.4 1.7 25% 15% 

SR Portfolio 2 24 3% 6% 0.6 2.96 48% 18% 

Table 4.5 Optimal Portfolios with 2 PCA factors and with optimized standalone ETF 

categories for 1st scenario. 

 

3 PCA factors: 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 3% 6% 0.6 3.61 58% 11% 

SR Portfolio 3 12 3% 9% 0.4 2.13 51% 15% 

GMV 

Portfolio 
3 18 2% 6% 0.4 2.23 30% 12% 

SR Portfolio 3 18 5% 9% 0.6 3.25 82% 15% 

GMV 

Portfolio 
3 24 2% 5% 0.4 1.75 25% 100% 

SR Portfolio 3 24 5% 8% 0.6 3.4 85% 15% 

Table 4.6 Optimal Portfolios with 3 PCA factors and with optimized standalone ETF 

categories for 1st scenario 
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4 PCA factors: 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
4 12 4% 5% 0.7 4.23 61% 90% 

SR Portfolio 4 12 4% 10% 0.4 2.08 62% 26% 

GMV 

Portfolio 
4 18 2% 6% 0.3 1.97 26% 11% 

SR Portfolio 4 18 5% 9% 0.5 3.29 80% 17% 

GMV 

Portfolio 
4 24 2% 5% 0.3 1.51 22% 12% 

SR Portfolio 4 24 40% 73% 0.6 2.73 57% 15% 

Table 4.7 Optimal Portfolios with 4 PCA factors and with optimized standalone ETF 

categories for 1st scenario. 

 

The three above tables indicate for each of the three combinations of PCA factors and 

rolling periods, the optimal combinations. From each table, we choose the combination, 

which fits the best our constraints and gives us the desired statistics value as we defined 

them above. Finally, we ended up with one combination per table and we consolidate 

them to end up with our final choice. 
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Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 18 3% 5% 0.6 3.69 48% 71% 

SR Portfolio 2 18 5% 9% 0.6 4.68 93% 12% 

GMV 

Portfolio 
3 12 3% 6% 0.6 3.61 58% 11% 

SR Portfolio 3 12 3% 9% 0.4 2.13 51% 15% 

GMV 

Portfolio 
4 18 2% 6% 0.3 1.97 26% 11% 

SR Portfolio 4 18 5% 9% 0.5 3.29 80% 17% 

Table 4.8 Optimal combinations of optimal portfolios per PCA factor for optimized 

standalone ETF categories for 1st scenario. 

 

Our final optimal choice is this with three factors, which means three ETFs per 

category, with monthly rebalancing of 12 months rolling period. 

 

Second Scenario 

In the second and last scenario the bounds for GMV portfolio are 0.75 and for SR 

portfolio 1.00. 

Our optimal combinations without having optimize each ETF category separately are 

the following: 

2 PCA factors: 



 
41 

Table 4.9 Optimal Portfolios with 2 PCA factors and with non-optimized standalone 

ETF categories for 2nd scenario. 

 

3 PCA factors: 

Table 4.10 Optimal Portfolios with 3 PCA factors and with non-optimized standalone 

ETF categories for 2nd scenario. 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 2% 9% 0.19 0.97 13% 19% 

SR Portfolio 2 12 49% 15% 0.33 1.94 44% 30% 

GMV 

Portfolio 
2 18 2% 9% 0.23 1.17 16% 14% 

SR Portfolio 2 18 7% 14% 0.46 2.98 65% 29% 

GMV 

Portfolio 
2 24 1% 9% 0.14 0.7 8% 15% 

SR Portfolio 2 24 9% 14% 0.64 4.37 99% 27% 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 2% 6% 0.34 1.58 19% 14% 

SR Portfolio 3 12 5% 14% 0.34 2.08 44% 26% 

GMV 

Portfolio 
3 18 3% 5% 0.54 2.61 28% 91% 

SR Portfolio 3 18 7% 14% 0.54 3.67 79% 20% 

GMV 

Portfolio 
3 24 3% 6% 0.48 2.34 24% 92% 

SR Portfolio 3 24 11% 13% 0.84 6.62 131% 17% 
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4 PCA factors: 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
4 12 3% 5% 0.57 2.99 31% 97% 

SR Portfolio 4 12 4% 14% 0.28 1.7 32% 26% 

GMV 

Portfolio 
4 18 3% 5% 0.64 3.36 28% 67% 

SR Portfolio 4 18 53% 13% 0.4 2.55 49% 21% 

GMV 

Portfolio 
4 24 3% 5% 0.63 3.3 27% 75% 

SR Portfolio 4 24 10% 12% 0.77 6.12 110% 19% 

Table 4.11 Optimal Portfolios with 4 PCA factors and with non-optimized standalone 

ETF categories for 2nd scenario. 

 

The three above tables indicate for each of the three combinations of PCA factors and 

rolling periods, the optimal combinations. From each table, we choose the combination, 

which fits the best our constraints and gives us the desired statistics value as we defined 

them above. Finally, we ended up with one combination per table and we consolidate 

them to end up with our final choice. 
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Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 18 2% 9% 0.23 1.17 16% 14% 

SR Portfolio 2 18 7% 14% 0.46 2.98 65% 29% 

GMV 

Portfolio 
3 12 2% 6% 0.34 1.58 19% 14% 

SR Portfolio 3 12 5% 14% 0.34 2.08 44% 26% 

GMV 

Portfolio 
4 18 3% 5% 0.64 3.36 28% 67% 

SR Portfolio 4 18 53% 13% 0.4 2.55 49% 21% 

Table 4.12 Optimal combinations of optimal portfolios per PCA factor for non-

optimized standalone ETF categories for 2nd scenario. 

 

Our final optimal choice is this with four factors, which means three ETFs per category, 

with monthly rebalancing of 12 months rolling period. 

We will conduct the exact same process to derive the best combinations with the only 

difference being the fact that the standalone ETFs categories have now firstly been 

optimized and then consolidated into one. 

 

2 PCA factors: 
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Table 4.13 Optimal Portfolios with 2 PCA factors and with optimized standalone ETF 

categories for 2nd scenario. 

 

3 PCA factors: 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 3% 5% 0.65 4.19 56% 75% 

SR Portfolio 3 12 4% 9% 0.43 2.68 61% 11% 

GMV 

Portfolio 
3 18 3% 5% 0.59 3.71 47% 91% 

SR Portfolio 3 18 5% 11% 0.43 2.73 70% 17% 

GMV 

Portfolio 
3 24 2% 6% 0.38 1.78 26% 10% 

SR Portfolio 3 24 5% 8% 0.62 3.22 72% 13% 

Table 4.14 Optimal Portfolios with 3 PCA factors and with optimized standalone ETF 

categories for 2nd scenario. 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 2% 6% 0.38 2.15 37% 13% 

SR Portfolio 2 12 5% 12% 0.45 2.9 89% 18% 

GMV 

Portfolio 
2 18 2% 6% 0.3 1.77 25% 12% 

SR Portfolio 2 18 5% 11% 0.48 3.27 87% 17% 

GMV 

Portfolio 
2 24 1% 7% 0.14 0.72 9% 17% 

SR Portfolio 2 24 4% 7% 0.58 2.95 62% 17% 
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4 PCA factors: 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
4 12 30% 4% 0.77 4.43 51% 72% 

SR Portfolio 4 12 31% 11% 0.28 1.37 42% 29% 

GMV 

Portfolio 
4 18 3% 4% 0.67 3.9 40% 86% 

SR Portfolio 4 18 4% 11% 0.38 2.28 61% 20% 

GMV 

Portfolio 
4 24 2% 5% 0.44 2.1 27% 99% 

SR Portfolio 4 24 4% 7% 0.6 3.05 62% 14% 

Table 4.15 Optimal Portfolios with 4 PCA factors and with optimized standalone ETF 

categories for 2nd scenario. 

 

The three above tables indicate for each of the three combinations of PCA factors and 

rolling periods, the optimal combinations. From each table, we choose the combination, 

which fits the best our constraints and gives us the desired statistics value as we defined 

them above. Finally, we ended up with one combination per table and we consolidate 

them to end up with our final choice. 
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Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 2% 6% 0.38 2.15 37% 13% 

SR Portfolio 2 12 5% 12% 0.45 2.90 89% 18% 

GMV 

Portfolio 
3 12 3% 5% 0.65 4.19 56% 76% 

SR Portfolio 3 12 4% 9% 0.43 2.68 61% 10% 

GMV 

Portfolio 
4 12 30% 4% 0.77 4.43 51% 72% 

SR Portfolio 4 12 31% 11% 0.28 1.37 42% 29% 

Table 4.16 Optimal combinations of optimal portfolios per PCA factor for optimized 

standalone ETF categories for 2nd scenario 

 

Our final optimal choice is this with three factors, which means two ETFs per category, 

with monthly rebalancing and12 months rolling period. 

 

 

Finally, given our two scenarios the optimal combinations are: 

 

1st scenario GMV 0.35 and SR 0.75 for the non-standalone optimized categories. 

Table 4.17 The optimal combination of all optimal combinations for non-optimized 

standalone ETF categories for 1st scenario. 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 3% 6% 0.6 3.61 58% 11% 

SR Portfolio 3 12 3% 9% 0.4 2.13 51% 15% 
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1st scenario GMV 0.35 & SR 0.75 for the standalone optimized categories. 

Table 4.18 The optimal combination of all optimal combinations for optimized 

standalone ETF categories for 1st scenario. 

 

2nd scenario GMV 0.75 & SR 1.00 for the non-standalone optimized categories. 

Table 4.19 The optimal combination of all optimal combinations for non-optimized 

standalone ETF categories for 2nd  scenario. 

 

2nd scenario GMV 0.75 & SR 1.00 for the standalone optimized categories. 

 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 2% 7% 0.36 1.79 22% 14% 

SR Portfolio 3 12 41% 13% 0.33 1.81 37% 25% 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 2% 6% 0.34 1.58 19% 14% 

SR Portfolio 3 12 5% 14% 0.34 2.08 44% 26% 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 2% 6% 0.38 2.15 37% 13% 

SR Portfolio 2 12 5% 12% 0.45 2.9 89% 18% 
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Table 4.20 The optimal combination of all optimal combinations for optimized 

standalone ETF categories for 2nd  scenario. 

 

After having conclude with our four optimum choices, we will try to move one step 

further by selecting which of the two optimal combinations we ended up is the best 

given our scenarios, in order to find the optimal of the optimal combinations. 

 

 

1st scenario GMV 0.35 & SR 0.75 for the standalone optimized categories. 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
3 12 3% 6% 0.6 3.61 58% 11% 

SR Portfolio 3 12 3% 9% 0.4 2.13 51% 15% 

Table 4.21 The optimal combination of all optimal combinations for 1st  scenario 

 

 

2nd scenario GMV 0.75 & SR 1.00 for the standalone optimized categories. 

Portfolio PCA 

Rolling 

Period 

(months) 

Expected 

Return 

Standard 

Deviation 

Sharpe 

Ratio 

Sortino 

Ratio 

Total 

Return 

Maximum 

DrawDown 

GMV 

Portfolio 
2 12 2% 6% 0.38 2.15 37% 13% 

SR Portfolio 2 12 5% 12% 0.45 2.9 89% 18% 

Table 4.22 The optimal combination of all optimal combinations for 2nd  scenario. 
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Chapter 5 – Major Findings 

Well, after having concluded our research and having present our results from each 

possible combination, we should walk through the major findings arise to led us draw 

conclusions. 

Our choices from the tables were such that all the constraints we placed through the 

statistics should be satisfied. But let us examine it in detail. 

We wanted acquire the highest possible values in expected return and total return, the 

lowest possible value in standard deviation, a value above 1 in Sharpe ratio or at least 

close to 1, a value above 2 in Sortino ratio or at least above 1 and as for the MDD we 

wanted a range between 5% and 30%. 

In the first scenario where the rebalancing percentage participation for GMV portfolio 

is 0.35 and for SR is 0.75 we chose two final optimal combinations, one with no 

optimized standalone portfolios in our final optimized portfolio and one with optimized 

portfolios in our final optimal of oprtimals’ portfolio. 

The same exactly conceptual thinking we followed and in the choice of optimal 

combinations regarding the second scenario where the rebalancing percentage 

participation for GMV portfolio is 0.75 and for SR is 1.00. 

Having stated the above then, we took into consideration all the constraints and tried to 

find the combination, which satisfied simultaneously all of them under each scenario. 

In our first scenario the interesting thing is that in both cases we ended up with the same 

combination, PCA with three factors and rolling period of 12 months in the monthly 

rebalancing, which is really important to keep in mind. Finally, after having compared 

them we preferred the one choice with the standalone optimized asset classes for each 

ETF. We considered more important our combination having a more balanced 

performance between two portfolios, because in that way profits would be higher in the 

long-run. We chose the combination with same expected return for both portfolios, 

almost the same Sharpe ratios and the lowest possible MDDs. Total return stands at 

approximately 50% and Sortinos’ are highest compared to the non-optimized 

portfolios. 

In the second scenario, where the rebalancing percentage participation for GMV 

portfolio is 0.75 and for SR is 1.00 we tried once again to satisfy the total of constraints 
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placed through our statistics for our both portfolios. We ended up with two choices, 

once again one with non-optimized the stand-alone asset classes and one with optimized 

the asset classes. 

Once again, the rolling window for the rebalancing period we notice that is in 12 

months. However, we have two options in the second scenario, one with two factors to 

conduct the PCA and one with three. For the same reasons as before we will choose the 

combination with which our constraints are satisfied with the best way possible. The 2-

factors case does it. Although, their expected returns, standard deviations and Sharpe 

ratio are almost the same, we highlight that the second way with the optimized 

standalone portfolios enjoys higher total return for both portfolios with lower MDDs 

and as a result we chose the second one. 

Finally, our final choices for each scenario having in mind the above and a quite 

defensive portfolio management strategic was for both scenarios, a rebalancing period 

of 12 months, and a tradeoff between 2 and 3 factors for conducting the PCA analysis. 

The interesting part though concentrates not only in the fact that the rebalancing period 

was common for both scenarios but also that as the percentage’s participation increase 

the PCA factors decrease. 
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Chapter 6 – Conclusion 

To conclude, the whole research of this thesis concentrates in the construction of 

optimal portfolios using the programming language Python. 

The process took place under two possible scenarios to maximize our combinations and 

findings due to the limited data available for ETFs instruments. 

Base on our scenarios we calculated key statistics through which, we made our decision 

regarding the adequacy of each combination. Two optimal combinations arise for each 

scenario. One that includes the chosen one’s ETFs from each asset class category and 

then their consolidation and optimization into two optimal portfolios, one GMV 

portfolio and one SR portfolio. We should keep in mind that the chosen one’s ETFs 

were varying based on the factors we were choosing to use. In the other combination 

we were conducting the same procedure but with having preceded optimize the stand 

alone chosen ones ETFs and the consolidated them in the optimal of optimals’ portfolio. 

As a result, we ended up with four final choices, two from each scenario which gave us 

the same rebalancing period each time (12 months) and a trade-off between two and 

three PCA factors. Two PCA for the second scenario and three for the first scenario. 

Finally, ETFs are quite complex and recent instruments with lots of characteristics we 

should take into consideration so as to succeed in their portfolio management, but 

through this research we approved that with some lines of code, nine or ten ETFs per 

category and two scenarios regarding their bounds, one investor can manage a lot. He 

can attain not only the construction of a customized portfolio based on his preferences 

on asset classes but also the generation of high revenues with minimum risk and 

drawdowns. 
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Chapter 7 – Suggestion for further Research 

One very interesting topic for further research, which unfortunately is not covered by 

this thesis, is the further examination of combinations we presented. Further 

examination regarding each portfolio’s optimal combination based on the PCA factors 

and rolling rebalancing period. 

One should examine for example, what would be the perfect combination only for 

GMV portfolio or only for SR portfolio and not as a combination that we examined in 

our research. 
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APPENDIX 

 

# Import packages 

 

from __future__ import division 

import numpy as np 

# import scipy as sp 

import pandas as pd 

import yfinance as yf 

from sklearn.decomposition import PCA 

import scipy.optimize as so 

# from matplotlib import pyplot as plt 

# from numpy.linalg import inv,pinv 

# from scipy.optimize import minimize 

# from pypfopt.efficient_frontier import EfficientFrontier  

 

# First we define our function for PCA  

def get_max_cor_pca(rets, ng=2): 

 

# From these data we will apply PCA 

pca_mod = PCA(n_components=rets.shape[1]) 

pca_fit = pca_mod.fit(rets) 

pca_pev = pca_fit.explained_variance_ratio_.cumsum() 

factors = pca_mod.fit_transform(rets) 

 

# convert into a data-frame 

f_names = ['C' + str(item) for item in np.arange(0, rets.shape[1])] 

factors_df = pd.DataFrame(factors, index=rets.index, columns=f_names) 

 

# Find the correlation with the data 

all_data = pd.concat([rets, factors_df], axis=1) 

cor_data = all_data.corr() 

cor_data = cor_data.iloc[0:rets.shape[1]][f_names] 

 

# OK, lets suppose that you know that you want from each group n assets so 

# we will pick the assets with the highest correlation with the first two 

# factors 

ag_names = cor_data.apply(lambda x: abs(x).idxmax())[:ng] 

 

# Done, return the names as a list!!! 

return ag_names.to_list() 

 

def max_dd(crets): 

maxcret = (crets+1).cummax(axis=0) 

drawdowns = ((crets + 1) / maxcret) - 1 

return drawdowns.min(axis=0) 
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def performance_measures(rets, f_factor, target_r=0): 

mu = rets.mean() * f_factor 

sd = rets.std() * np.sqrt(f_factor) 

sr = mu / sd 

er = target_r - rets 

er = er.clip(lower=0) 

l2 = (er ** 2).mean(axis=0) 

st = mu/np.sqrt(l2) 

cr = (rets+1).cumprod(axis=0) - 1 

md = max_dd(cr) 

stats = pd.DataFrame([mu, sd, sr, st, cr.iloc[-1], md]) 

stats.index = ['Mean', 'Std. Dev.', 'Sharpe', 'Sortino', 'TR', 'MaxDD'] 

return stats.transpose(), cr 

 

 

def get_pmoments(weights, returns, risk_free, f_factor): 

# Weights as array 

weights = np.asarray(weights) 

# Compute moments 

mu = returns.mean(axis=0) * f_factor 

er = np.sum(mu * weights) 

cov = returns.cov() 

vol = np.sqrt(np.dot(weights.T, np.dot(cov, weights))) * np.sqrt(f_factor) 

return er, cov, vol, weights 

 

 

def max_sharpe_ratio(weights, returns, risk_free, f_factor): 

er, cov, vol, weights = get_pmoments(weights, returns, risk_free, f_factor) 

return -(er - risk_free) / vol 

 

 

def sr_portfolio(returns, risk_free, f_factor, n_assets=None): 

if n_assets is None: 

num_assets = returns.shape[1] 

else: 

num_assets = n_assets 

args = (returns, risk_free, f_factor) 

constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) 

bound = (0.0, 1.0) 

bounds = tuple(bound for asset in range(num_assets)) 

x0 = np.repeat(1./num_assets, num_assets) 

result = so.minimize(max_sharpe_ratio, x0, args=args, method='SLSQP', 

bounds=bounds, constraints=constraints) 

weights = result.x 

er, cov, vol, weights = get_pmoments(weights, returns, risk_free, f_factor) 

return er, cov, vol, weights 

 

 

def min_volatility(weights, returns, risk_free, f_factor): 

er, cov, vol, weights = get_pmoments(weights, returns, risk_free, f_factor) 
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return vol 

 

 

def gmv_portfolio(returns, risk_free, f_factor, n_assets=None): 

if n_assets is None: 

num_assets = returns.shape[1] 

else: 

num_assets = n_assets 

args = (returns, risk_free, f_factor) 

constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) 

bound = (0.0, 0.75) 

bounds = tuple(bound for asset in range(num_assets)) 

x0 = np.repeat(1. / num_assets, num_assets) 

result = so.minimize(min_volatility, x0, args=args, method='SLSQP', 

bounds=bounds, constraints=constraints) 

weights = result.x 

er, cov, vol, weights = get_pmoments(weights, returns, risk_free, f_factor) 

return er, cov, vol, weights 

 

 

def data_clean(xdata): 

xdata = xdata['Adj Close'] 

xdata = xdata.loc[xdata.index.dayofweek <= 4] 

xdata = xdata.loc[xdata.index.day == 1].dropna(axis=1, how='all') 

xrets = xdata.pct_change().fillna(value=0) 

return xrets 

 

def rebalance_portfolio(data_use, roll, track=False): 

# For our loop we need to set the indices correctly 

loop_index = data_use.index[roll:] 

nvar = data_use.shape[1]  

# Then, based on this window and the indices above we will prepare a dataframe to 

hold our portfolio returns  

store_port_rets = pd.DataFrame(data=None, index=loop_index, columns = ['GMV-

Plain', 'SR-Plain']) 

# and 4 additional dataframes to hold the weights for each of these portfolios 

store_weights_gmv_plain = pd.DataFrame(data=None, index=loop_index, columns = 

data_use.columns) 

store_weights_sr_plain = pd.DataFrame(data=None, index=loop_index, columns = 

data_use.columns) 

 

# Now, we can do our computations in a loop 

for i in loop_index: 

# Print something if tracking is on 

if track: 

print('Now doing '+str(i)+' of '+str(len(loop_index))) 

# First, extract what we need 

 

# 

# The monthly returns 
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i_rets = data_use.iloc[data_use.index <= i] 

i_rets = i_rets.iloc[-roll:] 

 

# Given these we can easily compute everything we want 

# 

# First, we will get the weights 

[er_0, cov_0, vol_0, weights_0] = gmv_portfolio(i_rets, risk_free=0, f_factor=12, 

n_assets=None) 

[er_1, cov_1, vol_1, weights_1] = sr_portfolio(i_rets, risk_free=0, f_factor=12, 

n_assets=None) 

 

# Store the weights - careful, weights are arrays but have to be stored as part of a 

dataframe!!! 

weights_0_pd = pd.DataFrame(weights_0.reshape([1,nvar]), index=[i], 

columns=data_use.columns) 

store_weights_gmv_plain.iloc[store_weights_gmv_plain.index == i] = weights_0_pd 

# 

weights_1_pd = pd.DataFrame(weights_1.reshape([1,nvar]), index=[i], 

columns=data_use.columns) 

store_weights_sr_plain.iloc[store_weights_sr_plain.index == i] = weights_1_pd 

 

# Then we will get the portfolio returns - here note the trick with the time index! 

if i < loop_index[-1]: 

index_next = data_use.iloc[data_use.index > i].index[0] 

rets_next = data_use.iloc[data_use.index > i].iloc[0] 

port_rets_0 = np.dot(rets_next, weights_0) 

port_rets_1 = np.dot(rets_next, weights_1) 

 

# and store them 

port_rets_all = np.hstack([port_rets_0, port_rets_1]).reshape([1, 2]) 

port_rets_all = pd.DataFrame(port_rets_all, index=[index_next], columns = 

store_port_rets.columns) 

store_port_rets.iloc[store_port_rets.index == index_next] = port_rets_all  

#Perfomance measures for SR & GMV 

store_port_rets = store_port_rets.fillna(value=0) 

[stats, cum_rets] = performance_measures(store_port_rets, 12, 0) 

 

# Done, return portfolio returns and statistics 

return store_port_rets, stats, cum_rets 

 

############################ 

# Main program starts here # 

############################ 

 

# Lets get some data...let this be data-set #1 

 

data1 = yf.download("SPY IVV VOO QQQ VEA VWO IWF VUG VTV", 

start="1998-01-01", 

end="2020-07-15", interval="1mo") 
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# Clean the data 

rets1 = data_clean(data1) 

# Call the function above 

n1 = get_max_cor_pca(rets1, ng=2) 

 

# next, another data-set -Bonds 

data2 = yf.download("AGG LQD SHY IEF TLT TIP BND VCIT BSV", start="1998-

01-01", 

end="2020-07-15", interval="1mo") 

 

# Clean the data 

rets2 = data_clean(data2) 

# Call the function above 

n2 = get_max_cor_pca(rets2, ng=2) 

 

#next , data-set 3 - Commodities 

data3 = yf.download("GLD IAU SLV USO SGOL UCO DBC UNG GSG DBO", 

start="1998-01-01", 

end="2020-07-15", interval="1mo") 

 

# Clean the data 

rets3 = data_clean(data3) 

# Call the function above 

n3 = get_max_cor_pca(rets3, ng=2) 

 

#next , data-set 4 - Currencies 

data4 = yf.download("UUP FXE FXY FXB FXF FXC EUO FXA YCS UDN", 

start="1998-01-01", 

end="2020-07-15", interval="1mo") 

 

# Clean the data 

rets4 = data_clean(data4) 

# Call the function above 

n4 = get_max_cor_pca(rets4, ng=2) 

 

#next , data-set 5 - Real Estate 

data5 = yf.download("VNQ IYR ICF RWO RWR USRT RWX REM REZ IFGL", 

start="1998-01-01", 

end="2020-07-15", interval="1mo") 

 

# Clean the data 

rets5 = data_clean(data5) 

# Call the function above 

n5 = get_max_cor_pca(rets5, ng=2) 

 

# Now you can join the lists and the data - careful to check your data after the 

merging below!!! 

data_all = pd.concat([rets1, rets2, rets3, rets4, rets5], axis=1).dropna() 

n_all = n1+n2+n3+n4+n5 

 



 
62 

# and from these you can extract the data that you want 

data_use = data_all[n_all] 

 

# Now, you will have to write a loop to do the following month by month... 

# Suppose that we take the first xx months and compute our weights... 

# Sharpe Ratio Portfolio 

# Rolling window 

roll = 12 

 

# Optimize the PCA-based portfolio 

prt_rets, stats, cprt_rets = rebalance_portfolio(data_use, roll) 

print(stats) 

cprt_rets.plot() 

stats.to_csv("pca_portfolio.csv", sep=";", decimal=",") 

 

# But we can optimize each group separately 

rr1 = rets1.loc['1998-01-01':] 

rr1 = rr1[n1] 

prt_rets1, stats1, cprt_rets1 = rebalance_portfolio(rr1, roll) 

print(stats1) 

cprt_rets1.plot() 

stats1.to_csv("pca_equity_portfolio.csv", sep=";", decimal=",") 

 

rr2 = rets2.loc['1998-01-01':] 

rr2 = rr2[n2] 

prt_rets2, stats2, cprt_rets2 = rebalance_portfolio(rr2, roll) 

print(stats2) 

cprt_rets2.plot() 

stats2.to_csv("pca_bonds_portfolio.csv", sep=";", decimal=",") 

 

rr3 = rets3.loc['1998-01-01':] 

rr3 = rr3[n3] 

prt_rets3, stats3, cprt_rets3 = rebalance_portfolio(rr3, roll) 

print(stats3) 

cprt_rets3.plot() 

stats3.to_csv("pca_commodity_portfolio.csv", sep=";", decimal=",") 

 

rr4 = rets4.loc['1998-01-01':] 

rr4 = rr4[n4] 

prt_rets4, stats4, cprt_rets4 = rebalance_portfolio(rr4, roll) 

print(stats4) 

cprt_rets4.plot() 

stats4.to_csv("pca_currencies_portfolio.csv", sep=";", decimal=",") 

 

rr5 = rets5.loc['1998-01-01':] 

rr5 = rr5[n5] 

prt_rets5, stats5, cprt_rets5 = rebalance_portfolio(rr5, roll) 

print(stats5) 

cprt_rets5.plot() 

stats5.to_csv("pca_realestate_portfolio.csv", sep=";", decimal=",") 
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# 

rr_all = pd.concat([prt_rets1, prt_rets2,prt_rets3, prt_rets4,prt_rets5], axis=1) 

prt_rr, stats_rr, cprt_rr = rebalance_portfolio(rr_all, roll) 

print(stats_rr) 

cprt_rr.plot() 

stats_rr.to_csv("portfolio_of_portfolios.csv", sep=";", decimal=",") 

 

 

 

 


