

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΜΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Διπλωματική Εργασία

Μεταπτυχιακού Διπλώματος Ειδίκευσης

«Improving accuracy and personalization in Federated Learning»

Ελευθέριος Χαρτερός

F3321920

Επιβλέπων: Ιορδάνης Κουτσόπουλος

Αθήνα, Νοέμβριος 2020

Improving accuracy and personalization in Federated Learning

Eleftherios Charteros
November 2020

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Master Thesis

in

Computer Science

Improving accuracy and personalization in Federated

Learning

Eleftherios Charteros

Committee: Associate Professor Iordanis Koutsopoulos (Supervisor)

Professor Georgios Polyzos

Professor Vana Kalogeraki

November 2020

Eleftherios Charteros

Improving accuracy and personalization in Federated Learning

November 2020

Supervisor: Prof. Iordanis Koutsopoulos

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Mobile Multimedia Laboratory

Athens, Greece

I would like to dedicate this thesis to my loving parents for their endless support and encouragement.

Declaration

I hereby declare that the present master’s thesis was composed by myself and that the work contained

herein is my own except where speci�c reference is made to the work of others.

Eleftherios Charteros

Athens, Greece, November 2020

Acknowledgement

I would like to express my gratitude to Associate Professor Iordanis Koutsopoulos, my thesis supervisor,

for his patience and guidance as well as for the constructive dialogues and useful critiques of this thesis.

vi

Abstract

Federated Learning is a machine learning technique that aims to train a central neural network model on

decentralized data located on edge devices, by training local instances of the global model on edge devices,

and then combining their local solutions. There have been several algorithms proposed in the literature

to successfully solve the task. Federated Averaging (FedAvg) is such an algorithm that learns the global

model by averaging the local model parameters received from the edge devices. FedAvg is proven to work

well on use cases where the data are identically distributed (IID) amongst devices, but it struggles when

data are non-identically distributed (Non-IID). Another algorithm is Federated Proximation (FedProx)

which introduces a regularization term in the local training loss function that measures the distance

between the global and local parameters in the edge devices to tackle the e�ects of Non-IID data, but

it lacks the convergence speed of FedAvg. Another typical scenario where Federated Learning can be

used is when there is a need to personalize the global model to the edge devices’ needs and data. In

this thesis, we propose a new approach by introducing a layer-wise regularization to the local loss

function of the edge devices. This loss regularizes the local parameters by measuring the dissimilarity

as well as the numerical distance between the local and global parameters. We further propose a

personalization approach that takes advantage of the layer-wise local training to create a personalized

model for each client by mixing the purely local and global models. We provide promising results that

demonstrate the e�ectiveness of our approach both in settings of Non-IID data, personalization as well

as for heterogeneous systems in terms of network bandwidth and computational power. Speci�cally,

our proposed method achieves 3-5% higher accuracy in the �rst 20 communication rounds compared to

FedAvg and FedProx and creates a personalized model that converges at the same number of rounds.

Finally, in highly heterogeneous systems our proposed method achieves up to 8% higher accuracy

compared to FedAvg and FedProx with the personalized model not being a�ected by the heterogeneity

of the system.

vii

Contents

Acknowledgements vi

Abstract viii

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Contributions . 3

1.3 Thesis Structure . 3

2 Background and Related Work 5

2.1 Deep Learning . 5

2.2 Federated Learning . 7

2.2.1 Federated Optimization . 9

2.3 Federated Learning Algorithms . 10

2.3.1 Federated SGD . 10

2.3.2 Federated Averaging (FedAvg) . 11

2.3.2.1 Federated Learning and Non-IID data 12

2.3.3 Federated Proximation . 13

2.4 Federated Learning and Personalization . 14

2.5 Related Work . 16

3 FedLap: Our proposed Federated Learning approach 17

3.1 Layer Statistics vs Batch Statistics . 17

3.2 Framework Components . 19

3.2.1 Layer Similarity . 19

3.2.2 Adaptive Layer-Aware Regularization . 21

3.2.3 Layer-Wise Regularization . 22

3.3 Self-Adaptive Layer-Wise Federated Learning . 23

3.4 Self-Adaptive Personalization . 27

4 Performance Evaluation 33

4.1 Datasets . 33

viii

4.2 Experimental Setup . 33

4.3 E�ects of hyperparameters . 35

4.4 E�ect of Layer-Wise Regularization . 36

4.5 Performance Comparison of FedLap to FedProx and FedAvg 37

4.6 Performance Comparison in Heterogeneous Systems 39

5 Conclusions and Future Work 43

5.1 Conclusions . 43

5.2 Future Work . 44

Bibliography 45

List of Figures 47

List of Tables 49

List of Algorithms 50

A Framework PyTorch Code 51

ix

1Introduction

Machine learning (ML) has made tremendous progress in recent years. This advancement has made it

possible to create neural network models that can be trained to solve di�cult problems to facilitate and

provide smart solutions to users and enterprises. Smart cities, self-driving cars, AI-powered recommender

systems, and advertisement prediction systems are just a few examples that show the extent of these

advancements. However, training these models requires large volumes of data that are di�cult to

produce or �nd on servers as the data are now dynamically generated by the end-users. Medical analysis

applications, smart keyboards, even self-driving car technologies are just a few examples where large

volumes of data are needed to train accurate models. The di�culty of �nding this data volume in

combination with the need for end-user privacy necessitates the creation of a new method that will

allow the training of ML models without accessing sensitive user data. Federated learning (FL) is such a

technique, that enables the training of such models with the users’ data without that ever leaving the

users’ device.

1.1 Motivation and Problem Statement

The huge increase in the use of edge devices like mobile phones, wearables, and generally IoT devices

has pushed data production from servers down to users’ devices. A natural question that arises with

this data increase is how we can exploit it so that we can create smarter systems both to provide a

personalized user experience and to create more robust ML systems in terms of generalization and

prediction accuracy. Automated text completion, smart content recommendation based on device usage

are just a few examples of the personalized experience modern systems aim for. One solution to this

question would be for users to upload their data to servers so that companies and organizations can

exploit that data and then provide better models to users. This solution, however, is not desirable as users’

data are largely private and can be used to target them by using it for targeted advertising, discrimination,

or even behavioral analysis for voting or monetary purposes something that is undesirable.

Based on these requirements, a solution for both exploiting the data generated and for maintaining the

privacy of users is to train a local model on users’ devices on their data and then send the model weights

learned on each device to the server. There, they are combined, and the updated weights are sent back

to the users. This weight exchange process is repeated for multiple communication rounds between the

1

server and the users until the global model converges. This technique is called Federated Learning (FL)

which, as described, aims to train a global model by exploiting decentralized data generated by users in

compliance with privacy requirements. Automated text completion systems, that can train a model on

multiple mobile device users with di�erent texts to provide better next-word predictions to everyone, as

well as healthcare systems that can leverage the data from di�erent hospitals, with respect to privacy, to

train a model to provide accurate predictions for the disease of a patient, are just a few examples that

show the capabilities of FL.

Contrary to traditional ML training, training models through FL gives rise to new challenges that must

be addressed. The �rst and most important challenge is that of achieving a fast convergence of the

training algorithm, which means training an accurate global model by combining the local solutions of

users in a small number of communication rounds. This issue is highly correlated with the statistical

heterogeneity of data of the users that are involved in the training process. As each user generates

his local data, it is common for that data to be non-identically distributed (Non-IID) meaning that the

local data samples have di�erent statistics i.e. they are generated with di�erent underlying probability

distributions. These di�erent probability distributions may refer either to the feature vectors, or to the

class labels, or both. As an example of the case where there are di�erent class label statistics, we could

have 2 users where one has images that are labeled as cats, and the other has images that are labeled as

dogs. Similarly, in the case of automatic text �lling, we could have 2 users where for a sentence "I’m �ne

� � � " one writes "too" for the next word, and the other writes "thanks" for the next word. This property

of the local data makes it hard for FL systems to combine e�ectively the local solutions and can increase

the number of communication rounds needed for the global model to converge.

The second problem that appears in FL is that of personalizing the global model to each user. The global

model is the combination of the local models of all the users participating in the FL training. That

means, considering the statistical heterogeneity of each user’s data, that the global model learned may

not generalize properly for all users as it will have learned parameters that can respond correctly to

di�erent distributions of data. On the contrary, using only the local model that each user trained on

their data might not su�ce for their needs. That is because the local model can memorize the user’s data

distribution something that would make it unable to respond correctly if the user creates new data with

di�erent distributions. The question hence arises as to what is the appropriate combination between a

global model that o�ers greater accuracy on data from di�erent distributions, and a local model that

o�ers greater accuracy on local data to achieve the ideal accuracy-generalization trade-o� for each user.

Therefore the purpose of personalization is to take advantage of both the generalized global model and

the user-speci�c local model and combine them to create a personalized model that can both generalize

on unseen data as well as perform accurately on the users’ data.

1.1 Motivation and Problem Statement 2

1.2 Contributions

In this thesis, we will be addressing the challenges of data heterogeneity as well as the personalization

of the global model to each user. It turns out that by tackling the divergence created in the local models

of the users, we can accelerate the convergence of the global model as well as adapt it more easily to

each user.

With this research we contribute the following to the current state-of-the-art:

� We propose a novel method for regularization in the training of local user models which is

applied on each layer of the neural network on each neuron and prevents local weights from

deviating much from the global weights, thus combating the e�ects of heterogeneity of user data,

accelerating the convergence speed as well as increasing the accuracy of the global model, and

reducing performance disparities in each round of communication.

� We present two novel approaches for creating a personalized model for each user which gradually

integrates the global model into the personalized models of the users without forgetting their

previous knowledge in case they do not participate in a certain training round. Each of these

two methods achieves fast convergence and provides a personalized experience where the degree

of personalization (better accuracy, conditioned on a speci�c user) can be selected based on the

needs of the user. We can either aim for better personalization which sacri�ces generalization

accuracy, or for better generalization which sacri�ces personalization performance i.e. accuracy

measured in individual datasets.

� We verify the superior performance of our proposed methods by presenting results on three

datasets; MNIST, FashionMNIST, and CIFAR-10. We demonstrate promising performance improve-

ment results in terms of accuracy, convergence speed, and personalization.

1.3 Thesis Structure

The overview of the thesis is as follows:

In Chapter 2, we present an overview of related work in FL in terms of addressing data heterogeneity

and personalization. We explain in detail how FL works together with the initial Federated Stochastic

Gradient Descent (FedSGD) algorithm. We then analyze algorithms such as Federated Averaging

(FedAvg) which is the �rst successful attempt in accelerating convergence speed, Federated Proximation

1.2 Contributions 3

(FedProx) which aims to deal with statistical heterogeneity of users data, as well as other algorithms

that aim to address the personalization aspect of FL. In Chapter 3, we provide our proposed method’s

algorithm. We explain how it works both in terms of training the local models as well as for creating

the personalized models. In Chapter 4, we provide results from our experiments that support our claim

concerning our proposed solution. Finally, in Chapter 5, we conclude our work and propose directions

for future work.

1.3 Thesis Structure 4

2Background and Related Work

2.1 Deep Learning

�/�D�\�H�U���� �/�D�\�H�U���� �/�D�\�H�U���Q�/�D�\�H�U���Q����

�,�Q�S�X�W �2�X�W�S�X�W

Fig. 2.1.: A Neural Network architecture with n layers and 3 neurons per layer. The �rst layer is the input layer
which receives as input a vector of four values. The second one is the �rst hidden layer which receives
as input the output of the input layer multiplied by the weight matrix W1 of the edges and transforms it
using an activation function to create an output. This procedure continues until the �nal layer n which
receives as input the output of the n� 1-th hidden layer multiplied by the weight matrix Wn�1 of the
edges and transforms it using an activation function to output the prediction of the model. This Neural
Network has two outputs where each one corresponds to one class for a 2-class classi�cation task.

Deep Learning is a sub-�eld of ML methods based on arti�cial Neural Networks (NN) which aims to

leverage existing algorithms as well as large volumes of data with the purpose of modeling and �nding

patterns in them to predict some target output or response. These algorithms rely heavily on statistics

and mathematical optimization to achieve their goal. Optimization is the process of maximizing or

minimizing a mathematical function with respect to some variables. Neural Networks as can be seen in

Figure 2.1 consist of multiple layers where each one of them consists of several nodes called neurons

that constitute the computational units of the network. The neurons receive inputs through edges that

5

correspond to the connections between the neurons and transfer signals between them. Each edge has a

real number called weight which is multiplied by the inputs and their purpose is to adjust the strength

of the signal transferred between di�erent neurons. After receiving the inputs, that the neurons of the

previous layer multiplied by the weights, the neurons of the next layer sum them and transform them

using some non-linear function, also called activation function, to create an output. Depending on the

task to perform, the NN output can be either a discrete number, in the case of classi�cation tasks, or a

real number, in the case of regression/prediction tasks. Thus, the goal of the NN is to predict that output

based on the input data by learning the weights of the network. That is achieved through optimization

of a de�ned training loss function which is the sum, over dataset entries, of the error between the

predicted output and the true output for each entry. The predicted output is a complex function of the

weights of the NN, and the objective is to �nd the set of weights that minimize the loss function. The

most well-known optimization algorithm is called Gradient Descent which tries to �nd a local minimum

of a di�erentiable function.

Fig. 2.2.: Training pipeline in Deep Learning1

In Deep Learning the training of a NN model works as follows and can be seen in Figure 2.2:

1. A training dataset is given to the NN model.

2. The model is trained on the dataset using an optimization algorithm such as Gradient Descent

where the parameters of the network are learned through multiple iterations.

1h�ps://www.run.ai/guides/gpu-deep-learning/nvidia-deep-learning-gpu/

2.1 Deep Learning 6

https://www.run.ai/guides/gpu-deep-learning/nvidia-deep-learning-gpu/

3. The training stops after a �xed amount of iterations or when a halting criterion is achieved.

We will now explain how Gradient Descent works. Let us assume a training dataset withN input-output

pairs (xi; yi), 8 i 2 [1; � � � ; N] where xi is a vector of features given as input to the function we try to

learn and yi is the output which we would like the function to predict based on the input. The goal of

the NN model training is to �nd the set w of weights which will minimize the value of the loss function,

let’s call it f(w), and hence maximize the probability of predicting correctly the output based on the

input. That is achieved by updating the weights of the function through multiple iterations of the form

wt+1 = wt � �r f(wt), where t is the iteration round, and � is a �xed learning rate which indicates

the size of the step towards minimizing the loss function. Gradient Descent stops when the di�erence

between weight updates, kwt+1 �wtk � � , is smaller than a small value �, which shows that the model

has converged. In most cases, due to a large number of training samples, a variation of Gradient Descent

is used which is called Stochastic Gradient Descent (SGD). The di�erence here is that at each step of

SGD, instead of computing the gradients for all the training samples and then updating the weights,

a smaller subset of the training data is used, also called mini-batch. The weight update rule for SGD

becomes wt+1 = wt � �r f(wt ; xk; yk), where k indicates the subset of data used in that weight

update. The entire dataset is again parsed through successive min-batches.

2.2 Federated Learning

Fig. 2.3.: Federated Learning pipeline2. The server sends the global model parameters to a number of clients
that train their local models or their local datasets. After �nishing training, the clients send back to the
server their trained local parameters where they are aggregated to produce the next-iteration global
model. This procedure is repeated until convergence of the global model.

2h�ps://mc.ai/instilling-responsible-and-reliable-ai-development-with-federated-learning/

2.2 Federated Learning 7

https://mc.ai/instilling-responsible-and-reliable-ai-development-with-federated-learning/

Federated Learning (FL), as de�ned in Wikipedia3 is an ML technique that trains a global NN model

on many decentralized devices that have local data samples, without them leaving the device. Unlike

traditional ML techniques, where all data are uploaded to a server, FL allows the creation of powerful

ML models without data sharing, thus addressing issues such as personal data protection, user privacy,

and enabling training in the presence of heterogeneous data on devices.

We �rst need to describe the main components of such a framework. In FL we have a NN model that

resides in a server, called the global model (GM), which we want to train on decentralized data. Each

user/client that participates in FL has also a NN model, with the same architecture as the GM one, which

we call the local model (LM), his local data samples, as well as a loss function that he tries to optimize

locally. This is the same for all the participants. Similarly to traditional ML, where we have a �xed

number of training epochs, in FL we have communication rounds or global epochs which represent

the number of times that the server and the clients will communicate with each other to exchange

parameters. We further need to de�ne the term of local epochs which represents the number of iterations

that each client performs on his local data before communicating with the server at each round. Finally,

we need to mention that in FL not all clients participate in a global epoch but only a small fraction of

them. The reason behind that is that in real-world scenarios it is almost impossible to use all clients

in a communication round as all participants may not be active, or they may use more resources than

those needed to perform the training, or they may even have unstable or costly connections in terms of

wireless bandwidth.

Let us consider that we want to train a GM model that resides in a server. Let’s also consider a number

of clients that participate in this process as well as a �xed number of global epochs. The process for

training the GM can be seen in Figure 2.3 and follows the steps described below:

1. The server selects a fraction of the edge devices that will participate in a communication round.

2. The server sends the current GM parameters to each of the participating clients so that they

update their LM parameters with the current global ones.

3. The clients that participate in the current round train their LM on their local data for the number

of local epochs speci�ed.

4. The clients send back their trained parameters to the server.

5. The server collects the trained parameters from the participating clients, aggregates them, and

updates the GM based on the update policy used.
3h�ps://en.wikipedia.org/wiki/Federated_learning

2.2 Federated Learning 8

https://en.wikipedia.org/wiki/Federated_learning

Mobile devices, as well as many IoT devices that are becoming more powerful and smart nowadays,

can bene�t from this new technique. In the sequel, we provide an example from supervised learning.

Assume that we want to train a NN model for the recognition and classi�cation of images of speci�c

categories which we then want to share with the users of these devices. Let us also assume that each

user has his local data of images of those categories that they want to classify. If we were to train a

central model, we would not have access to user data and therefore the model would only be trained on

server data. On the contrary, with FL, in addition to the larger volume of data on which the model is

trained, the output would be more accurate as the model would have learned on real and not arti�cial

data. Similarly, the data on a server can not simulate correctly the distributions and the heterogeneity of

real-world data. That is because di�erent users have datasets with di�erent labels e.g. a user has photos

of cats and dogs, another has photos of other categories, etc. something that can not be simulated when

training a NN model with server data.

2.2.1 Federated Optimization

In traditional ML the optimization task consists of learning the model parameters through iterations to

minimize the loss function so as to �t, as much as possible, the training data. In FL although the purpose

of optimization is the same there also new challenges that need to be addressed as described by the

authors in [17]. Those are:

1. Non-IID data. User data are heavily dependent on their device usage and hence di�erent users

will generate data that di�er signi�cantly in terms of statistics and probability distribution from

those of the entire set of users.

2. Di�erent sizes of local datasets. Heavy users that use more their devices are more likely to generate

more data than users who use less their devices.

3. Massively distributed data. There are more devices in an optimization round than the average

number of data per client.

4. Limited communication with the server. The users are expected to have slow, or unstable, or

expensive network connections.

Apart from those challenges, with the progress made in FL, new challenges arise such as to which extend

we can use the GM that we trained to provide a personalized experience to each of the clients.

2.2 Federated Learning 9

There are multiple attempts for training a GM in a federated fashion. The �rst one is a simple adaptation

of the widely used SGD algorithm to the FL domain, called federated SGD.

2.3 Federated Learning Algorithms

2.3.1 Federated SGD

Algorithm 1 Federated SGD (FedSGD). T represents the total global epochs. C represents the client
fraction participating in each training round. N represents the total number of clients. nk represents
the number of local data samples at client k. n represents the number of total training samples.

1: procedure FedSGDServer

2: initialize w0

3: for each global round t = 1; 2; � � � ; T do

4: m maxfC �N; 1g . the number of clients participating in this round

5: St random set of m clients

6: for each client k 2 St in parallel do

7: gk
t ClientUpdate(k; wt) . the gradients returned by client k

8: wt+1 wt � �
P

k2St

nk

n
gk

t . perform SGD step based on gradients received

9:

10: procedure ClientUpdate(k; w) . run on client k

11: g r f(w) . calculate the gradients

12: send g back to server

For a traditional ML problem we aim to learn a combination of weights in order to minimize an

empirical loss function lets say f(w) by performing multiple steps of SGD and updating the weights

as wt+1 wt � �r f(wt) for mini-batches of the training data. The same weight update rule would

apply in FL where the role of the mini-batch is played by the fraction of clients C , as each of them holds

only a part of the total amount of data. In federated SGD (FedSGD) [20], each client k 2 C performs

one step of SGD on their local data samples and returns the gradients gk = rfk(wt) they computed

to the server, where t the communication round and wt the weights sent by the server. The server

collects the gradients from the clients who participate in that round and updates the GM weights as

wt+1 = wt � �
CP

k=1

nk

n
gk since

CP

k=1

nk

n
gk = r f(wt), where nk the number of local samples of each

client k, and n the total number of samples of all the clients. This process of updating the weights is the

FedSGD algorithm which can also be seen in Algorithm 1.

2.3 Federated Learning Algorithms 10

FedSGD manages to learn a GM but it requires a large number of communication rounds to achieve

that, due to the need of communicating with clients after each SGD step. The solution to that problem

of FedSGD was given by the Federated Averaging (FedAvg) algorithm.

2.3.2 Federated Averaging (FedAvg)

The Federated Averaging (FedAvg) algorithm is the �rst successful attempt to combat the problem of

communication overhead. It was shown by the authors in [17] that, instead of performing SGD steps at

the server at each communication round between the server and the users in order to update the GM

weights, it is signi�cantly better to average the participating clients’ weights and set them as the new

GM weights which are then sent back to the clients. Algorithm 2 shows in detail the steps performed by

both the server and the clients. By simply averaging the weights from the clients, a signi�cant speedup

was achieved compared to performing SGD updates at the server.

Algorithm 2 Federated Averaging (FedAvg). T represents the total global epochs. C represents the client
fraction participating in each training round. N represents the total number of clients. E represents the
local epochs at each training round. Dk represents the local data of each client k. B represents the local
minibatch size.

1: procedure FedAvgServer

2: initialize w0

3: for each global round t = 1; 2; � � � ; T do

4: m maxfC �N; 1g . the number of clients participating in this round

5: St random set of m clients

6: for each client k 2 St in parallel do

7: wk
t+1 ClientUpdate(k; wt) . receive local weights of client k

8: wt+1
1
jStj

P

k
wk

t+1 . weight aggregation, combining local solutions

9:

10: procedure ClientUpdate(k; w) . run on client k

11: for each local epoch i from 1 to E do

12: for each batch b 2 Dk of size B do

13: w w � �r f(w) . update local weights using SGD

14: send w back to server

The authors also note that this naive averaging of weights works when both the server and the clients’

models are initialized with the same weights. That is caused since, if the models are initialized with

di�erent weights, they will likely converge to di�erent local minima, and thus averaging them would

create a bad model. On the contrary, if the models are initialized with the same random weights, they

2.3 Federated Learning Algorithms 11

Fig. 2.4.: The loss by averaging two models[17]. The left image shows the loss when the two models were trained
with di�erent weight initialization. The right image shows the loss when the two models were trained
with same weight initialization.

will move towards the same directions, even if they are trained on di�erent data, and thus averaging

them would produce signi�cantly better results. This can also be seen in Figure 2.4.

Despite the signi�cant improvements in convergence speed, those improvements were manifested

mostly for IID data. In a real-world scenario, that is not usually the case. In those cases FedAvg, although

faster than FedSGD, struggles to converge due to the di�erence in data distributions. Furthermore,

in cases of system heterogeneity when clients have slow network or hardware and do not manage to

send back weights, the server drops them and uses only the weights of the clients who managed to

successfully complete their local training. These factors further create a large variation in performance

in each communication round and slow down convergence.

2.3.2.1 Federated Learning and Non-IID data

In most real-world scenarios the data distribution of clients in Non-IID. That means that the clients

participating in FL do not have either the same number of data samples or the same classes of data

samples. The authors in [23], as can be seen in Figure 2.5, show that when the data of clients are IID

then the weights learned from each client after the local training do not diverge largely from the weights

of other clients who also participated in that training round. That means that when the server collects

the weights and aggregates them, the combined weights follow the same direction as the clients’ models,

and thus the updated model will converge and will follow the direction of the weights of all the clients.

2.3 Federated Learning Algorithms 12

Fig. 2.5.: Weight divergence in IID and Non-IID data settings[23]. w(c) represent the weights of a NN when it is
trained centrally with SGD. w(f) represent the weights of the global NN when it is trained with FedAvg
by combining the local weights w(1); � � � ; w(K).

On the other hand, when the data of the clients is Non-IID, then each client will update their weights

corresponding to their data and will start diverging from the initial weights passed to them from the

server. This means that when the server collects the weights from the clients, due to the di�erent

directions that the clients follow, the averaged model created from FedAvg will be the mean of those

weights. Thus, due to the large divergence in directionality, the GM will either degrade or will follow the

weights of the clients with the most data samples, with visible drawbacks being the slow convergence as

well as the over�tting to clients with many data and under�tting to clients with fewer data samples.

2.3.3 Federated Proximation

In order to alleviate the e�ects of statistical as well as system heterogeneity and Non-IID datasets, the

authors of [15] proposed a new framework called FedProx. In their work, they extend the FedAvg

algorithm by adding a proximal term to the loss function of clients. The new loss function of the clients

in FedProx, becomes h(w) = f(w) +
�
2
kw � wgk2 where f(w) is the local loss function, � is the

proximal term introduced and wg the global weights sent at that communication round to the client. We

need to note that, contrary to FedAvg, the loss function of each client changes at each communication

round, as it depends on the current wg . Algorithm 3 show how FedProx works.

With FedProx, the proximal term � tries to address the issue of statistical heterogeneity since the second

term of the new loss function
�
2
kw � wgk2 regularizes the local weights when they diverge largely

from the weights of the GM that were passed to the client at that communication round. Furthermore,

FedProx tries to tackle system heterogeneity, by allowing clients to perform partial work. That means

that, in contrast to FedAvg where clients that are unable to complete their local epochs are dropped

and their weights are not taken into account in the weight averaging, in FedProx clients that haven’t

completed their local epochs can still contribute to the GM by sending their local weights up until the

point when the server requested the weights, as can be seen in line 12 of Algorithm 3.

2.3 Federated Learning Algorithms 13

Algorithm 3 FedProx. T represents the total global epochs. C represents the client fraction participating
in each training round. N represents the total number of clients. E represents the local epochs at each
training round. Dk represents the local data of each client k. B represents the local minibatch size. �
represents the proximal term.

1: procedure FedProxServer

2: initialize w0

3: for each global round t = 1; 2; � � � ; T do

4: m maxfC �N; 1g . the number of clients participating in this round

5: St random set of m clients

6: for each client k 2 St in parallel do

7: wk
t+1 ClientUpdate(k, wt, �) . receive local weights of client k

8: wt+1
1
jStj

P

k
wk

t+1 . weight aggregation, combining local solutions

9:

10: procedure ClientUpdate(k, w, �) . run on client k

11: wg w

12: for each local epoch i from 1 to min {E, epochs done till communication with server} do

13: for each batch b 2 Dk of size B do

14: w w � �r (f(w) +
�
2
kw � wgk2) . update local weights using SGD

15: send w back to server

Although FedProx addresses the issue of Non-IID data, when clients have di�erent local data distributions,

there are a few issues with this method. First, in IID settings where the weights follow similar directions,

the regularization applied by the proximal term � can have a negative e�ect as it can slow down

convergence by discouraging weights from performing larger SGD steps and thus pushing the server

and the clients to perform more communications to achieve the desired performance. Second, by

applying the same proximal term � to all the weights and not to just the ones that diverge from the GM,

it can cause the currently correctly calibrated weights to change as well, and thus further slow down

convergence. With our proposed solution, which we will describe later in section 3.3 we aim to solve

the issues above.

2.4 Federated Learning and Personalization

Apart from taking advantage of the large volumes of data on edge devices, a more recent thread in the

FL literature is to improve personalization and provide users with a personalized experience, namely

the feeling that the device is created just for them. Training a model with FL can create a GM that

2.4 Federated Learning and Personalization 14

