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this event and try to deal with it, by imposing some kind of structure to the covariance 

matrix by shrinking it towards a target. 

 

2.3 Efficient frontier  

The efficient frontier constitutes a set of optimal portfolios for different targets of 

expected return, or more precisely it is the root locus of the optimal portfolios. In the 

previous section we solved the optimization problem for an investor with specified 

target as the minimum of the expected return. However, individuals often vary to their 

preferences as well as to their risk tolerance, for example, an investor may be willing 

to undertake much more risk with a view to gaining much more return on his 

investment, or another may be more sensitive to risk and follow more conservative 

strategy. So, if we repeat the optimization process for different targets each time the 

outcome will be different portfolios with different combination of risk and reward, but 

all of them optimal. 

By substituting the optimal weights obtained by (8) into portfolio variance (2) we get 

the following equation:  

2
2 1 1

2 2 2

2
1 ...p N

rc b rb cr br a
w w w

ac b ac b ac b
      (9) 

and then by taking the square root of (9) we eventually result in : 

2

2

2
p

cr br a
ac b

     (10) 

which is a function of , and r and provides the minimum standard deviation for 

different target of r (or equivalently the highest expected portfolio return or any level 

of risk). In particular, (10) implies, a parabola function between 2
p  and r, which can 

be depicted in the following diagram with X-axis representing the portfolio standard 

deviation and Y-axis the portfolio expected return.  
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                            figure 1  

                            Efficient frontier 

 

 

Based on the above graphical presentation each portfolio (for different combination of 

- p ) can be categorized in the following five portfolios groups: 

1. Portfolios that lie inside the parabola are considered, feasible but not efficient 

(N). 

2. Portfolios that lie outside the parabola are not feasible. 

3. Portfolio in point Z has the minimum variance of all feasible and efficient 

portfolios, called Global Minimum Variance Portfolio. 

4. The parabola is called Minimum Variance Frontier, because for each desired 

return it provides the minimum variance. However, investors prefer the highest 

return for specific amount of risk, that is to say that despite that portfolio M and 

L has the same level of risk, investors will always prefer portfolio L to M. 

5. Given that investors prefer higher returns to lower returns for a given level of 

risk, the efficient frontier is the above part of the parabola, starting from GMVP. 

Note that for the derivation of the efficient frontier in our analysis we consider a market 

with N risky stocks, without risk-free asset. When there is a risk-free asset in the market, 
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                  figure 2 

                   Efficient frontier of two assets 

 

 

By taking the first derivative of (10) with respect to r, which equals to zero at the point 

Z in figure (2), we can obtain the expected return of GMVP as following: 

1
2 2 2

2 2 2
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2
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    (11) 

since 2 0p and 2 0ac b . Now if we substitute the expected return of GMVP 

GMVP

b
r

c
 into the equation of optimal weights (8) we can obtain the weights of GMVP,                         

1 1 1
2 2

1
1 1GMVP N N
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c cw
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and by substituting GMVP

b
r

c
 into the equation of the efficient frontier (10) we get the 

GMVP standard deviation. 
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3. Shrinkage of the Sample Covariance Matrix 

3.1 Introduction  

As discussed in the previous section Mean Variance framework exploit the information 

of the stock returns (expected returns, variances, covariances) and forms portfolios in a 

way that either have the minimum variance for a predetermined expected return or the 

higher expected return for specific amount of risk. The critical point here is that, indeed 

Markowitz theory seems brilliant and exactly right provided that we know exactly the 

inputs required by the model. However, true parameters of these inputs are unknow, 

because, if we knew the prices that the stocks would have tomorrow, we would estimate 

both covariances and correlations and we would become rich. As a result, we can only 

make some assumptions and expectations for the uncertain future. For example, MV 

implies that stock returns are identically and independently normally distributed 

variables, so the expectation of the return is the mean of the return, which is usually 

obtained as the Maximum Likelihood Estimator of sample of T observations. However, 

this indicates that the possibility of getting a return that equals to the return of the 

previous day is exactly the same as the possibility of getting a return of the first day of 

the dataset.  

Let us give the following example, consider that we have a portfolio with only two 

assets A and B. Suppose that both assets have the same true mean 8% and the same true 

variance 20% and that the assets are almost perfectly correlated, say r=99%. In this 

case, owing to the fact that the assets are identical the mean variance portfolio should 

place 50% weight on A and 50% on B, which is logical. On the other hand, if the true 

mean of asset A is unknow an estimated as 9% rather than 8% then the model would 

place 645% weight in asset A and -535% in asset B. The fact is that MV model aims to 

exploit even the smallest difference in two assets and then place its bets by taking 

extreme positions long or short, without considering that any difference in the returns 

may be on account of estimation error. This is the reason for which we constraint our 

interest to the GMVP. 

The same stands for the covariance matrix. When the number of historical returns T is 

relatively small then the sample covariance matrix is not accurate estimator of the true 

covariance matrix. The reason is that the sample covariance matrix has the property of 

being asymptotically unbiased estimator but when the number of observations per 
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its consistency and simplicity, or the inverse covariance matrix resulting from the 1-

factor model of Sharpe (1963) F , where the factor is the market considered, or a linear 

combination of I  and F . Specifically, for the last case, the final estimator is obtained 

as: 

1
1 2 3invS c S c I c F  (2) 

We recall from the mean-variance framework that the weights for the GMVP are 

obtained as following: 

1

1

1
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N N
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S
 

So, if we use invS obtained by (1) instead of the inverse of the sample covariance matrix 

to estimate the weights for the GMVP, the outcome is: 

1
1

min 1 2
1

1
1 2

1 1
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N N N N

c S c
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c S c
     (3) 

We can rewrite the above equation in a simpler form as following: 

min
min min

0 0( ) (1 ) ( )invw S d w d w     (4) 

where 
1

1
0 1

1 2

1 1
1 1 1 1

N N

N N N N

c S
d

c S c
     (5) 

From the above equation (5) we can see that when using  invS  instead of the sample 

covariance matrix, we result in a two-fund portfolio strategy. Specifically, the resulting 

portfolio is a convex combination of the standard GMVP 
min

w and the minimum 

variance portfolio by employing  instead of 1S . The contribution of the target 

portfolio min ( )w  is to eliminate as much as possible the part of the estimation risk that 

GMVP contains and to improve its out-of-sample performance. The reason is that the 

target considered is less sensitive to estimation error than sample covariance matrix. As 

mentioned previously when the identity matrix represents the outcome is the equal 

weighted portfolio min 1 /Nw Nstudied by DeMiguel (2009), while when the target is 

the covariance matrix estimated by the 1-factor model of Sharpe the corresponding 
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The application of the cross-validation method is as follows. Firstly, for each historical 

return that is known to the investor Xt, we estimate the portfolio weights that correspond 

to each strategy 
min

tw and min ( ) ( , )tw I F  by using the remaining returns in the 

sample that is known to the investor ( )tX X . Since we have find the optimal weights 

we apply them to the excluded tX returns, 
min

min
tt tR w X , 

min
( )tt tR w X  in order to 

produce the out-of-sample return of the portfolio Rt for the period t. If we repeat this 

process for all the known returns, the outcome is a time series of out-of-sample returns 

for each combination strategy.  

min minmin
11 11 11 1

min

min min min
11

N N

T TNT T TN

R w w X X

R

X XR w w

 

min min
( ) ( )11 11 11 1

min min
1( ) ( )1

N

T TNT

R w w X X

R

X XR w w

 

If we consider the portfolio implied by the following equation  

min min
min

0 0( ) (1 ) ( )invw S d w d w  

 

its out of sample returns is obtained as: 

min
min min

0 0( ) (1 ) ( )t inv t t tw S X d w X d w X 

Note that all the quantities in the above equation are known exempt from the parameter 

0d According to our primary goal we have to find the parameter 0d  that minimizes the 

variance of the returns of the above portfolio.  

    (7) 

After few computations we can show that the optimal parameter 0d  is obtained as  
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Sharpe ratio 

Given the times series of monthly out-of-sample returns of each strategy we compute 

the Sharpe ratio of each strategy for each dataset. In particular, Sharpe ratio is defined 

as  

,
,

.

k i
k i

k i

SR  

where ,k i  denotes the sample mean of the out-of-sample returns of strategy k and 

dataset I, while .k i  denotes their sample standard deviation. Moreover, in order to 

capture the effect of the estimation error on the performance we additionally compute 

the in-sample Sharpe ratio of GMVP. The computation is quite simple, instead of using 

an estimation window which is a part of the dataset, we use the entire data, that is, T=M. 

Formally, the in-sample ratio is obtained as  

ISIS IS
IS

IS ISIS IS

mean w
SR

Std w w
 

where IS  and IS  are the in-sample estimates of portfolio mean and variance by using 

the entire dataset, while ISw are the optimal weights obtained by these estimates. Even 

though, we are absolutely concerned with the risk of the portfolio we use this metric 

because the mean variance framework implies a trade off between risk and return. So, 

any reduction in risk is translated into an increase of the return. 

Turnover 

The third metric considered is the turnover of the portfolio. In particular, this metric 

allows us to get a sense of the amount of trading required in order to implement each 

strategy. Note, that in our analysis we rebalance our portfolio each month by adding the 

last the return of the stocks and drop the first one. Portfolio turnover is defined as the 

average sum of the absolute value of the trades across the N asset consider: 
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Our third observation is that the estimators that impose a lot structure to the data, 1f and 

CC, do not perform as well as the sample GMVP especially when the number of assets 

is small. Specifically, the estimator that corresponds to the covariance matrix obtained 

by Sharpe 1factor model, seems to outperform the sample GMVP in the 30Ind dataset 

and in the 80S&P dataset where the difference is significant. Similarly, the estimator 

that corresponds to the constant correlation strategy seems to outperform the sample 

based GMVP only in the last dataset S&P80. These findings suggest that when the 

number of assets considered is small, these estimators are not suitable in explaining the 

variance, since it contains a lot of bias. However, they are still better than the equal 

weighted portfolio since they generate lower out-of-sample variance in all datasets 

except from the 25ff. 

The fourth observation is that, the rest of the estimators which are the estimators 

implementing the shrinkage of the sample covariance (LW(1f), LW(cc)) and the 

shrinkage of the inverse of the sample covariance (ICVAR(I), ICVAR(1f), 

ICVAR(1f,I) generate portfolios with significantly lower out-of-sample variance than 

the equal weighted portfolio 1/N and the sample based GMVP, except from the case of 

LW(cc) which produce higher out-of-sample variance than the GMVP for the 6ff 

dataset and higher out-of-sample variance than the GMVP and 1/N for the 25ff dataset. 

So, we could say that when combing the information of two or more different matrices 

it is possible to achieve a considerable reduction in the estimation error and the 

variability. 
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Table 4 

Sharpe ratio 

Sharpe ratio 

 6ff 10Ind 25ff 30Ind 80S&P 

      

1/N 0.2514 0.2958 0.2092 0.2471 0.4195 

GMVP(in) 0.3891 0.3826 0.4281 0.4191 0.4491 

GMVP 0.3827 0.3523 0.4103 0.3468 0.3062 

1f 0.3377 0.3486 0.2747 0.3834 0.3373 

cc 0.3573 0.3795 0.3314 0.3887 0.2684 

LW(1f) 0.3841 0.3573 0.4081 0.3770 0.4065 

LW(cc) 0.3549 0.3788 0.3551 0.4172 0.3535 

ICVAR(I) 0.3808 0.3566 0.3945 0.3639 0.4366 

ICVAR(1f) 0.3837 0.3564 0.3991 0.3956 0.3818 

ICVAR(1f,I) 0.3829 0.3722 0.3866 0.4161 0.4479 

      

 

6.3 Turnover 

Table 5 reports the results for the portfolio turnover of each strategy which is our third 

metric. Looking at the first row of the table we can see that the equal weighted portfolio 

provides the lowest turnover across all strategies considered and the differences are 

significant. For example, in the first dataset (6ff) 1/N provides 0.037 turnover while, 

the second lowest turnover is obtained by LW(cc) and equals to 0.106. Similarly, in the 

third dataset (25ff) 1/N strategy provides 0.042 turnover and the second lowest turnover 

is obtained by LW(cc) again and equals to 0.20. Note that our results for the 1/N strategy 

come in accordance both with DeMiguel(2009) and Kourtis, Dotsis, Markellos (2012). 

So, our first conclusion is that the equal weighted portfolio provides the minimum 

turnover across all strategies considered. This indicates that if we consider additional 

transaction cost for the rebalance of the weights each month, 1/N strategy will be the 

less costly strategy.  

Our second observation is that the sample GMVP provides the highest turnover across 

all strategies under consideration. According to these results, the sample GMVP 

constitutes the most expensive strategy since it requires many transactions each month 
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Our first observation is of course that in the first, second and fourth dataset (6ff, 10Ind, 

30Ind) the GMVP has negatives weights. These results indicate that, the model 

proposes a portfolio where the GMVP has been shorted and additional weights has been 

placed to the other two strategies. Note that, short selling is often forbidden for many 

managers, however, within our framework these results seem compatible.  

                  figure 5 

                     ICVAR(1f,I) weights 

In the first dataset, the final portfolio consists mostly of the GMVP and the 1-factor 

portfolio, since it assigns too small weight to the equal weighted portfolio. However, at 

the end of the period (around 2019), the model shorts the GMVP and increases the 

weights assigned to 1/N and 1-factor portfolio. In the second dataset, the results are 

quite similar to those from the first dataset, however the contribution of the equal 

weighted portfolio has been increased. Again, we have the short sale of the GMVP and 

the additional weight assigned to the other portfolios. In the third dataset, we can see 

that our portfolio consists mostly of the GMVP, while the contribution of equal weight 
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portfolio seems to be exactly as the contribution of the 1-factor portfolio. Moreover, 

note that in this dataset the model does not impose short sales and the weights has much 

more stability. In the fourth dataset, the weight assigned to the 1-factor portfolio has 

been increased, while the contribution of the GMVP has been significantly decreased. 

Additionally, we can see that the model imposes a minor short sale of the GMVP around 

2015 and increase the weight of the 1-factor portfolio. The results from the last one 

dataset are quite different from those of the remaining datasets since our portfolio 

consists mostly of the equal weighted portfolio and the 1-factor portfolio. The weight 

assigned to the GMVP is too small which indicates the absence of the GMVP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 







https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
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9.2 R code 

In the following pictures we provide the R code developed for the application of the 
strategies. Part of our code is obtained from Ledoit and Wolf website and it is free 
public source.  
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