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Chapter 1

Introduction

1.1 Foreword

Over the last years, Internet of Things and artificial intelligence applications have
transformed the way we live and perceive the world around us. Our comforts have
enhanced through automation. Various industry sectors have started leveraging the
benefits of such technologies improving their production in both quantity and qual-
ity terms. In the case of this thesis, the task to be studied originates from the agricul-
ture sector, which is a sector making its first steps into being “smart”.

1.2 Problem Statement

The purpose of this thesis is to create a system and experiment with various neu-
ral network architectures that are able to detect instances of crop (sugar beets) and
weed in field images. The system will be trained with images that have been pre-
viously tagged with the coordinates of each crop and weed appearing in the image.
It will be able to locate and draw bounding boxes around them with the exact coor-
dinates of each instance. A full end-to-end pipeline which includes image prepro-
cessing/augmentation, training and evaluation of accuracy of each neural network
architecture will be implemented.

1.3 Object Detection

Object detection is a general term for computer techniques closely related to com-
puter vision and image recognition. These techniques come to deal with a twofold
problem, identifying the location of an object in an image (localization) and labelling
this object into a certain category (classification). In general, the aim is to correctly
locate and label every object that appears in a given image.

Object detection applications appear in a variety of domains, including security,
statistics, robotics and others. Face detection [1], crowd statistics [2], self driving
cars [3], object tracking and video surveillance [4] can be indicatively mentioned as
popular among them.

1.4 Deep Learning

With recent research and advancements many difficulties have been tackled lead-
ing to efficient and accurate techniques. The increasing volume of available data
has helped Deep Learning based computer vision models make the next step, star-
ring in the winning submissions of most image analysis challenges. The beginning



2 Chapter 1. Introduction

was made by AlexNet [5] in 2012, when a deep convolutional neural network man-
aged to drop the ImageNet Challenge classification error record from 26% to 15%
(Figure 1.1).

FIGURE 1.1: Deep Learning era [6].

Deep learning models are more effective and faster than previous approaches.
They also minimize the prior knowledge and human effort involved in feature de-
sign, as they can learn features themselves by looking into data, while in a tradi-
tional image analysis algorithm this would be hand-engineered (Figure 1.2). Besides
significant performance improvements, these techniques have also been leveraging
massive image datasets to reduce the need for huge case-specific datasets.

FIGURE 1.2: Machine Learning vs Deep Learning frameworks.

1.5 Tensorflow Object Detection API

The Tensorflow Object Detection API [7], [8] consists of the object detection research
code developed at Google. It is an open source framework built on top of Tensorflow
capable of developing, training and deploying object detection models. By making
this code public, they democratized object detection making its applications avail-
able to everyone and a great place for further research. This API was chosen over



1.5. Tensorflow Object Detection API 3

other available alternatives as it provides a common ground in order to fairly com-
pare and experiment with a number of different models.

The API comes with a bundle of ready to use but also highly customizable object
detection models. These models can be modified in terms of both their architecture
as well as their training and evaluation configuration and tools to easily perform
such operations are provided. Moreover, the API takes advantage of all the default
Tensorflow utilities like GPU-support, Tensorboard etc. These specifications make
the Tensorflow Object Detection API a great framework in order to develop, train,
evaluate and finally compare the pros and cons of a list of state-of-art object detection
models.

FIGURE 1.3: Tensorflow Object Detection API logo.
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Chapter 2

Theoretical Background

2.1 Convolutional Neural Network Architecture

Convolutional Neural Networks are a category of deep neural networks, proven to be
very efficient in computer vision tasks such as image classification [9] and object
recognition. They are especially good at identifying visual patterns in an image.
Starting from their first layers, basic lines, color and texture are recognized compos-
ing more complex patterns as moving through deeper layers. A typical convolu-
tional neural network consists of the following basic components:

1. The convolutional layer

2. The pooling layer

3. The output layer

2.1.1 The convolutional layer

The convolutional layer is the main building block of a convolutional neural net-
work. This layer is about passing the input image through a set of learnable filters.
A filter starts from the top left of the input and in a sliding window manner, it “con-
volves” through the whole input. In each position, element wise multiplications are
computed between the filter weights and the corresponding input values. The prod-
ucts of these multiplications are the summed, resulting in a single number for each
possible filter position. This process is illustrated in Figure 2.1.

1x1 1x0 1x1 0 0

0x0 1x1 1x0 1 0

0x1 0x0 1x1 1 1

0 0 1 1 0

0 1 1 0 0

�!

4 3 4

2 4 3

2 3 4

FIGURE 2.1: Convolutional layer example.

The result of this process, shown as the red array above, is referred to as feature
map. In a real case scenario, each convolutional layer involves applying a number
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of such filters. Each filter outputs its own feature map and by stacking these fea-
tures maps, we get the layer’s output. As a note, both input and filter are actually
3-dimensional matrices (speaking of RGB images) but there are shown here as 2-
dimensional for simplicity.

The distance the filter moves each time it convolves is called the stride. As shown
in Figure 2.1, passing an image through a convolutional layer, its spatial dimensions
(height and width) decrease and for this reason the input array may sometimes be
padded by zeros around the border in order to maintain its dimensions after the
convolution. This is called the padding.

The weights of each filter are actually learned during the training phase of the
network. Visualizations of such real case filters, taken from the first convolutional
layer of a trained network are shown in Figure 2.2.

FIGURE 2.2: Trained filters example [9].

2.1.2 The pooling layer

Pooling layers are commonly used between successive convolutional layers in the
convolutional network architecture. The main purpose of this layer is to reduce the
dimension of its input. By doing so, the number of parameters are also reduced and
thus overfitting is prevented.

Like convolutional layers, pooling layers operate as a sliding window, applying
a fixed function on the corresponding sub-array of the input. The most common
functions are MAX and AVG. Since pooling layer performs a fixed function, it does
not add any parameters to the whole architecture. An example of a MAX pooling
layer using a window of size 2 and stride 2 is illustrated in Figure 2.3.
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

�!
6 8

3 4

FIGURE 2.3: Pooling layer example.

2.1.3 The output layer

After applying a series of convolutional and pooling layers combination, the archi-
tecture has hopefully detect some high level visual features. This is where the output
layer shines. It is actually a fully connected layer as those appearing in traditional
neural networks. This layer takes as input the output of the previous layer and trans-
forms it into a N-sized vector, where N is the number of the classes that the model
should recognize. The fully connected layer processes the high level features in its
input, as a classifier, trying to find out to which class they are most correlated. Then,
each value i of the N-sized output would refer to the probability that the initial input
image actually shows an instance of class i.

2.2 Feature Extractor

Object detection models start by utilizing such convolutional neural networks, namely
image classification models, cut just before their fully connected layers, in order to
extract visual features. In this context, this first part is referred to as the feature ex-
tractor of the whole object detector. Typically, the goal of the feature extractor is to
transform the input image into a set of fixed sized features.

Table 2.1 shows some of the well known image classification models that can be
utilized as feature extractors in a object detection system.

TABLE 2.1: Some well known image classification models.

Model Top-1 accuracy Num. Parameters

VGG-16 71.0 14 714 688
MobileNet 71.1 3 191 072

Inception_v2 73.9 10 173 112
ResNet101 76.4 42 605 504

Inception_v3 78.0 21 802 784
Inception Resnet_v2 80.4 54 336 736

ResNet and Inception are designed for high performance when inference speed
is not the main goal. On the contrary, the lightweight Mobilenet is preferred for
real time applications. The choice of feature extractor is of a great importance as its
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architecture and the number of parameters affect both performance and inference
time of the resulting object detector.

2.3 Evaluation Metrics

The most frequently used metric to measure the performance of an object detection
model is mean Average Precision (mAP). Along with its variations, it sets the task of
object detection evaluation on a common ground, while being the official evaluation
metric for the best-known competitions.

Before presenting mAP, some basic concepts and how they adapt to object detec-
tion context are described first.

2.3.1 Intersection Over Union (IoU)

Intersection over Union (IoU) is a measure based on Jaccard Index that quantifies
how much two bounding boxes overlap. Given a predicted bounding box BBpred
and a ground truth bounding box BBgt, IoU is the ratio between the intersection and
the union of BBpred and BBgt.

IoU =
area o f overlap (BBpred \ BBgt)

area o f union (BBpred [ BBgt)

This measure helps evaluate whether BBpred is a successful detection or not,
based on a chosen threshold. This threshold is usually set to 50% but can also be
75% or 95%.

Figure 2.4 visualizes the IoU between a predicted bounding box and a ground
truth bounding box.

IoU =
area o f overlap
area o f union

=

Ground truth

Prediction

intersection

Ground truth

Prediction

FIGURE 2.4: IoU between predicted and ground truth bounding
boxes.

2.3.2 True Positives, False Positives, False Negatives and True Negatives

� True Positives (TP): Valid detections with IoU � threshold.

� False Positives (FP): Invalid detections with IoU < threshold.



2.3. Evaluation Metrics 9

� False Negatives (FN): Ground truths that are not detected.

� True Negatives (TN): These would refer to the correct misdetections in the im-
age. Every part of the image where there is no predicted bounding box is
considered a negative. In that way, there are too many such correctly not pre-
dicted bounding boxes and for this reason measuring that quantity makes no
sense. Thus, true negatives are not used in the object detection concept.

2.3.3 Precision

Precision indicates the ability of the model to correctly detect bounding boxes. It
quantifies the confidence that a predicted bounding box is indeed a valid detection.
Precision is defined as the ratio of valid detections to the number of total detections.

Precision =
TP

TP + FP
=

TP
total detections

2.3.4 Recall

Recall measures the ability of the model to detect every single ground truth. A high
recall score suggests that almost all ground truths will be successfully detected by
the model. Recall is defined as the ratio of valid detections to the number of total
ground truths.

Recall =
TP

TP + FN
=

TP
total ground truths

2.3.5 Precision - Recall Relationship

Precision and recall have an inverse relationship between them. They also depend
on what threshold is used. More specifically, lowering threshold, will increase the
recall (more ground truths will be detected) but also decrease the precision (there
will be more invalid detections) and vice versa. Of course, these metrics depend
also on the quality of each model under discussion.

2.3.6 Average Precision (AP)

Average Precision (AP) was introduced in the PASCAL VOC challenge [10] in order
to unify the evaluation of both classification and detection tasks. Answering to the
need for a single number metric, AP makes it easy, not only to evaluate the perfor-
mance of a single object detection model, but also to compare different methods and
approaches.

As described in the PASCAL VOC 2012 challenge [11], AP is computed as fol-
lows:

1. Compute a version of the measured precision/recall curve with precision mono-
tonically decreasing, by setting the precision for recall r to the maximum pre-
cision obtained for any r0 � r.

2. Compute the AP as the area under the curve by numerical integration. No
approximation is involved since the curve is piecewise constant.

As a note, prior to 2010 the AP was computed by sampling the monotonically de-
creasing curve at a fixed set of uniformly-spaced recall values 0, 0.1, 0.2, . . . , 1 (method
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known as 11-point interpolation). By contrast, VOC2010-2012 effectively samples the
curve at all unique recall values. This have been done in order to improve precision
and ability to measure differences between methods with low AP.

To make AP computation more clear, the following example is supposed:

� A dataset of images is given.

� There are 8 objects (of the same class) to be detected in the images.

� A model has made 15 detections.

� Every detection comes with a confidence score, showing how confident the
model was that there is indeed an object in the predicted bounding box.

Using the IoU criterion described in Section 3.1.1 along with a threshold, each of
the 15 detections is labelled as valid (true positive) or invalid (false positive). The
detections are then sorted based on their confidence score and Table 2.2 is formed.

TABLE 2.2: Example detections (1/2).

Rank TP/FP total TP total FP

1 TP 1 0
2 FP 1 1
3 FP 1 2
4 FP 1 3
5 FP 1 4
6 TP 2 4
7 TP 3 4
8 FP 3 5
9 FP 3 6
10 TP 4 6
11 FP 4 7
12 TP 5 7
13 FP 5 8
14 FP 5 9
15 FP 5 10

where total TP and total FP are accumulative columns, counting the number of
TP and FP accordingly.

Utilizing the formulas presented in Sections 2.3.3 and 2.3.4 along with the ac-
cumulative TP and FP columns, the columns Precision and Recall are computed as
shown in Table 2.3
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TABLE 2.3: Example detections (2/2).

Rank TP/FP total TP total FP Precision Recall

1 TP 1 0 1 0.125
2 FP 1 1 0.5 0.125
3 FP 1 2 0.333 0.125
4 FP 1 3 0.25 0.125
5 FP 1 4 0.2 0.125
6 TP 2 4 0.333 0.25
7 TP 3 4 0.428 0.375
8 FP 3 5 0.375 0.375
9 FP 3 6 0.333 0.375

10 TP 4 6 0.4 0.5
11 FP 4 7 0.363 0.5
12 TP 5 7 0.416 0.625
13 FP 5 8 0.384 0.625
14 FP 5 9 0.357 0.625
15 FP 5 10 0.333 0.625

Plotting Precision against Recall is shown in Figure 2.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Recall

Pr
ec

is
io

n

Precision x Recall plot

FIGURE 2.5: Precision x Recall plot.

It can be noticed that Recall increases, while Precision goes up and down, creat-
ing this zigzag pattern. Interpolating the precision, as described in the AP computa-
tion above, results in Figure 2.6. Interpolation is done here to reduce the impact of
small variations in the ranking of detections.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Recall

Pr
ec

is
io

n

Precision x Recall (interpolated) plot

Precision
interpolated Precision

FIGURE 2.6: Precision x Recall (interpolated) plot.

AP is the area under the interpolated curve and can be computed as:

AP = (0.125� 0) � 1 + (0.375� 0.125) � 0.428 + (0.625� 0.375) � 0.416
AP = 0.125 + 0.107 + 0.104
AP = 0.336

So, the model evaluated in the example achieves AP = 33.6%.

Some further notes on AP:

� mAP is AP averaged over all object classes.

� In order to achieve a high AP score, a model should have precision at all recall
levels. Thus, models which perform well only in a specific subset of a dataset
are penalised.

� There are variations in the computation of mAP. The most frequent among
them involves the choice of IoU threshold. In PASCAL VOC challenge an
IoU threshold value of 0.5 (mAP@.5) is used, while in COCO competition [12],
mAP is averaged over different IoU thresholds, from 0.5 to 0.95 with step 0.05
(mAP@[.5:.95]). Averaging over multiple IoU thresholds tends to reward pre-
cise localization.

� In a multiclass scenario, the observation of each class individual AP score is
highly advised. The mAP score should be used as a single number metric,
roughly describing performance of the model but monitoring each class per-
formance is the way to address the model’s strengths and weaknesses.
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Chapter 3

Related Work

3.1 Object Detection Model Map

FIGURE 3.1: Object detection model map [7].

Figure 3.1 shows how some state-of-art object detectors perform in terms of mAP
and inference speed. Even though this figure illustrates only detectors based on
Faster R-CNN, R-FCN and SSD meta architectures, it provides a glance at the whole
picture of object detection models. As the plot suggests, variations on the model
design like choices about the meta architecture, the feature extractor, the input image
resolution, etc. lead to different results. Due to all these possible variations, it is
not easy to present a strict comparison and ranking among all the object detectors
proposed in the relevant bibliography.

3.2 Object Detection Framework

The main components involved in the object detection task are usually the following:

1. Feature Extraction: Utilizing an image classification convolutional neural net-
work, input image is turned into a set of high level visual features.
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2. Regions of Interest: The model has to decide the image areas in which it should
search for objects. More specifically, it has to generate a set of candidate bound-
ing boxes, that will be evaluated whether they contain valid detections or not.

3. Localization and Classification: For each of these candidate bounding boxes, the
model has to determine whether there is an object there or not, as well as clas-
sify it in one of the classes it should recognize. Moreover, in this step, the spa-
tial coordinates of each of these bounding boxes are refined in order to enclose
the object as accurately as possible.

4. Non Maximum Suppression: At this point, there may be many valid bounding
boxes. There may also be multiple detections of a single object. Non Maximum
Suppression reduces the number of such multiple detections by replacing them
with the one among them which has the greatest IoU with the specific ground
truth.

3.3 Single Shot Multibox Detector (SSD)

Single Shot Multibox Detector (SSD) paper [13] was originally published in Decem-
ber 2015. While competing with state of art approaches in terms of performance
and accuracy, SSD claims to be much faster, taking much less time during prediction
phase.

3.3.1 Key Concepts

SSD is a feed forward convolutional network model. It belongs to the Single Shot
model family, indicating that both localization and classification tasks are performed
in a single forward pass of the model’s network.

While not being the first approach towards real time detection, SSD, unlike pre-
vious efforts, manages to maintain high detection precision. Its core idea consists
of eliminating bounding box proposals and the subsequent pixel or feature resam-
pling stage while adding a series of improvements and tweaks in order to increase
accuracy. More specifically, the following ideas are implemented:

� Object classes and bounding box location offsets are predicted using a small
convolutional filter.

� A set of separate filters, varying in size, is used in order to detect different
aspect ratio objects.

� These filters are applied to multiple feature maps from the later layers of the
network to handle varying in scale objects.

3.3.2 Model

Figure 3.2 illustrates the default SSD model architecture.
The very first layers of the network are based on a standard image classification

architecture (here VGG-16, but it could be another as well), truncated before its last
fully-connected layers.

Extra convolutional layers are added to the end of this part. These layers ac-
tually constitute the structure that performs the detections. These feature layers,
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FIGURE 3.2: SSD model architecture [13].

progressively decrease in size, allowing detection of objects among multiple scales.
More precisely, the first layers of this structure (those corresponding to larger feature
maps) are responsible for detecting smaller objects in the image, while larger objects
will hopefully be detected by the subsequent ones.

Finally, a non maximum suppression step is applied to reduce the detections
made until this point and combine them into the final detections.

3.3.3 Default Bounding Boxes Framework

SSD defines a set of (4 or 6 by default) manually and carefully specified, default
bounding boxes of varying aspect ratio. These bounding boxes are evaluated, in a
convolutional way, at each cell of several feature maps of different dimensions. For
each such box, both location offsets (loc) and confidence of each object class (conf )
are predicted.

Figure 3.3 illustrates the method described above, in an example using a set of 4
default bounding boxes in each feature map location.

FIGURE 3.3: SSD default bounding boxes framework [13].

That being said, for a m � n feature map, evaluating b default bounding boxes
at each feature map location results in m � n � b outputs. For each default bounding
box both loc (involving 4 offsets) and conf (involving p confidence values in a p-class
scenario) are computed, resulting in m � n � b � (4 + p) final outputs to be computed.



16 Chapter 3. Related Work

3.3.4 Additional Notes

� A key difference between SSD and detectors using regional proposals, is that
ground truths should be matched to a specific bounding boxes fixed set.

� By applying multiple bounding boxes of varying scale and aspect ratio, in mul-
tiple feature maps of varying scale, the space of possible ground truth bound-
ing boxes shapes are emulated.

� Utilizing more default bounding boxes improves detection results in terms of
precision, but adds up computations, making the model slower.

� While performing well on large objects, SSD may have trouble in detecting
smaller objects, as they may not have any information at the top extra layers.
This may be overcome by increasing the input image resolution.

3.4 Faster R-CNN

Faster R-CNN [14] was firstly introduced in June 2015 by Microsoft researchers. It
was released as an improvement over its Fast R-CNN predecessor, making efforts to
reduce the running time of the latter.

3.4.1 Key Concepts

Faster R-CNN is a Region-Based Convolutional Neural Network. Models following this
approach were restricted due to their need of an external region proposal mecha-
nism. These region proposal methods were a computational bottleneck for these
models, being responsible for most of their running time.

The idea introduced in Faster R-CNN is to implement a region proposal mech-
anism that can share convolutional layers with the actual object detection network.
On top of the convolutional features maps from the base image classification net-
work, a few additional convolutional layers were added, referred to as Region Pro-
posal Network (RPN), simultaneously regressing region bounds and objectness scores
at each location on a regular grid, resulting in almost cost-free proposals. In this
way, the system can be trained end-to-end, without the need to train multiple inde-
pendent structures.

3.4.2 Model

Faster R-CNN model flow is illustrated in Figure 3.4.

Firstly, an input image is passed through a standard, image classification con-
volutional network, in order to generate its feature maps. RPN module, which is a
deep fully convolutional network, takes as input these feature maps and proposes
regions of interest, along with a objectness score for each of them. A RoI Pooling
layer is applied on these proposals to convert them to a fixed size. Proposals are
then passed to a fully connected layer with a softmax and a regression layer to be
classified and to output the objects bounding boxes.
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FIGURE 3.4: Faster R-CNN model architecture [14].

3.4.3 Region Proposal Network (RPN)

The Region Proposal Network (RPN) is the component that generates regions of
interest for the system. As stated above, the goal in Faster R-CNN is to share com-
putation through a common set of convolutional layers between the RPN and the
Fast R-CNN object detection network. RPN uses a sliding window method over the
output feature maps of the last shared convolutional layer. At each window loca-
tion, RPN generates at most k bounding boxes of different scale and aspect ratio, aka
Anchors. Each of these windows is mapped to a lower dimension feature (256-d for
the paper [14] setup) and then passed through a classification (cls) and a regression
layer (reg). The cls layer computes the probability of an anchor being an object or
background -a binary class scenario- resulting in a 2k output. The reg layer outputs
4k encoding the coordinates of the bounding boxes. These reg outputs are utilized to
adjust and refine the corresponding default anchor so that it better fits the object.

The RPN workflow is shown in Figure 3.5.

3.4.4 Regions of Interest (RoI) Pooling

RPN module generates regions of interest that may differ in size. On the other hand,
the fully connected layers for classification and localization, following after RPN, de-
mand a specific input size. Regions of Interest (RoI) Pooling helps in this case. Given
a feature map (generated by the base convolutional layers) and a matrix representing
the regions of interest location (generated by the RPN), it splits each region proposed
into a predefined number of roughly equal sized parts and then applies Max Pooling
on each of these parts. In this way, a list of rectangles of different sizes is turned into
a list of equal sized feature maps.
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FIGURE 3.5: The Region Proposal Network workflow [14].

3.4.5 Additional Notes

� The whole Faster R-CNN system is a single unified network, where the RPN
serves as the ’attention’ of the Fast R-CNN module. In other words, it tells the
latter where to focus.

� By replacing the Selective Search method used in Fast R-CNN with the RPN,
Faster R-CNN reduced its running time from 2 seconds to 0.2 seconds per im-
age.

� The number of regions proposals generated by the RPN affects the inference
speed of the whole Faster R-CNN model.

� Training may be done either in an alternating way (firstly training RPN, then
tuning Fast R-CNN and finally re-initializing RPN before starting over again),
or approximately jointly (treating the system as merged). The joint version is
an approximate one, but reduces training time by up to 25% compared to the
alternating one.
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Chapter 4

The Dataset

4.1 Data Source

The dataset used in this thesis is The 2016 Sugar Beets Dataset Recorded at Campus Klein
Altendorf in Bonn, Germany [15]. An agricultural field robot was used to record this
dataset by taking images of the field underneath itself as it was moving along the
sugar beet farm. The collected data include a variety of information like RGB and
NIR images, timestamps, 3D point-clouds, etc. In our case we make use only of the
RGB images, as it is the most reasonable input type for the object detection task. As a
note, it would be interesting to repeat the experiments described in Chapter 4 using
the NIR images instead of the RGB ones, as this could result in useful remarks.

The full dataset consists of about 13 000 RGB images but a sample of 300 among
them was actually used taking into account the available computer setup, as the
involved models are computationally expensive. The specific sample was selected
with respect to the record date, preferring the season during which both crop and
weed are as visible as possible.

FIGURE 4.1: Sample of images used.

4.2 Bounding Box Annotation

In order to compose a useful dataset, these 300 images should first be annotated.
That means that for each crop or weed appearing in these images, a bounding box
should be drawn enclosing it as precisely as possible and labelling it with its class
(sugar beet or weed).

This was achieved using LabelImg [16], a graphical image annotation tool de-
signed to enable drawing and labelling object bounding boxes in images. LabelImg
provides a graphical user interface (GUI) making the whole process very straightfor-
ward. In Figure 4.2 the LabelImg GUI is used to annotate an image from the dataset.

For each bounding box drawn there has to be a label given, referring to a cor-
responding object class. In this project, there are two classes, sugar beet and weed.
The classes that should be detected by the model are described in a label_map.pbtxt
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FIGURE 4.2: Annotating an image using the LabelImg GUI.

file, where each of the classes is encoded as an id number starting from 1, as the zero
id is reserved for the background (meaning no object) class.

Annotations made for each of the images, were saved as XML files (a single XML
file per image, containing its bounding boxes) in PASCAL VOC format, the format
used by ImageNet. In these XML files, each bounding box is described by its object
label and its coordinates inside the image in xmin, ymin, xman, ymax format.

At this point the dataset has the following structure:

1. A directory containing 300 RGB images encoded as jpg format.

2. A directory containing 300 annotations as XML files. Each of these file contains
a list of the bounding boxes of the corresponding jpg image. Each bounding
box should contain:

(a) Its coordinates (with origin in top left corner) defined by 4 floating point
numbers [ymin, xmin, ymax, xmax].

(b) The class of the object in the bounding box.

4.3 Train and Test Split

The dataset was split to train and test subsets using a ratio of 80%-20% ratio. The
first 240 images were used during the training phase of the models and the rest 60
images were utilized in evaluating them.

4.4 TFRecord conversion

The TensorFlow Object Detection API requires all the labeled data to be in TFRecord
file format. The dataset described in this section is in PASCAL VOC format (annota-
tions/labels are stored in individual XML files). For this format, the API provides the
script create_pascal_tf_record.py which converts the dataset to TFRecord format. So,
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after some minor changes in this script, both train and test subsets were converted
to TFRecord format by using it.

4.5 Data Augmentation

It is true that most popular image datasets consist of images in the order of hundreds
of thousands or even more. Object detection models are relatively complex neural
networks in the sense that they have a lot of parameters to be tuned (in order of
millions). To achieve good performance, the number of train examples shown to the
model should be proportional to these parameters. So, these 300 images may be not
enough in order to effectively train any object detection model.

This is a common problem when experimenting with deep learning applications.
Fortunately, this can be tackled by augmenting the available dataset with synthetic
data. Applying image operations like flipping, rotating, mirroring, etc. to the train
images helps generate a number of synthetic images that are variations of the origi-
nal train set. Then both the original and the synthetic images can be utilized during
training phase, as the model will perceive all these images as distinct and unique
examples and thus it will effectively learn from each of them.

Data augmentation can be achieved through a variety of approaches and soft-
ware [17]. In our case there was no external augmentation done, as some augment-
ing operations are by default defined during the training phase of each model used
in Chapter 4.





23

Chapter 5

Experiments

5.1 Setup

The following experiments were carried out on a machine belonging to the Informa-
tion Systems and Databases Laboratory (ISLab) of Athens University of Economics
and Business, running Ubuntu 16.04 LTS on a Intel Core i7-7700 CPU @ 3.60GHz x 8
and 16GB memory. In order to benefit from the installed NVidia Quadro P400 graph-
ics card, tensorflow-gpu 1.11.0, Cuda 9.0 and cuDNN 7.3.1 were installed.

5.2 Working with the API

The Tensorflow Object Detection API provides a large list of available models, ready
to be customized and utilized for the needs of any object detection task. After choos-
ing a model, the next step is to pick and experiment on its parameters, in order to
fine tune it for the specific scenario.

The API uses protobuf files in order to configure a model. These configuration
files define the pipeline of the workflow that will take place in order to train and then
evaluate the model. Precisely, a config file consists of the following components:

� model: The meta-architecture (SSD, Faster R-CNN, etc.) and the feature extrac-
tor constituting the actual model are defined here. A number of parameters
specifying clearly and definitely these structures are also set in this part. More-
over, the number of classes to be detected along with preprocess steps applied
to the input images (e.g. resizing them to a specific size) are determined here.

� train_config: This part has information about the way the model will be trained.
Batch size, optimizer, and training steps are defined here. The API provides
training models either from scratch or using some pretrained weights. If the
latter is the case, then the path to the weights file should be given in this
part. Some data augmentation techniques, as proposed in the corresponding
model’s paper, are also defined here.

� train_input_reader: Paths to the TFRecord formatted train set and the file defin-
ing the classes to be detected (label_map.pbtxt), as referred in Section 3.2.3), are
set here.

� eval_config: The evaluation metrics set to be used is defined here (e.g. PASCAL
VOC metrics, COCO metrics).

� eval_input_reader: Paths to the TFRecord formatted test set and the file defining
the classes to be detected are set here.

https://www.aueb.gr/
https://www.aueb.gr/
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After setting the above configuration, the API provides the model_main.py script,
which conducts both training and evaluation of the described model.

Fine tuning a model to achieve maximum performance on a specific dataset is
not trivial, as it is more of a trial and error approach. A number of different model
setups and train configurations should be evaluated in order to find out the best
solution.

5.3 Selected Models

In this thesis scenario, four models were selected to be utilized in order to face the
specific dataset. These models were the following:

� SSD meta-architechture with Mobilenet_v2 feature extractor

� SSD meta-architechture with Inception_v2 feature extractor

� Faster R-CNN meta-architechture with Inception_v2 feature extractor

� Faster R-CNN meta-architechture with ResNet101 feature extractor

These models were selected from the Tensorflow object detection model zoo,
where each available model is listed along with its recorded inference speed and
performance. The SSD models were selected due to their good speed/performance
tradeoff, while the Faster R-CNN models were selected due to their high perfor-
mance. For each model, a number of different configurations were evaluated until
the corresponding result was satisfying.

Both SSD models used 300x300 input images, while Faster R-CNN models used
300x400 input images. Attempting to use images of higher resolution as input to the
Faster R-CNN with ResNet101 resulted in GPU running out of memory. A way that
may help to avoid this situation is to reduce the batch size. On the other hand, a
lower batch size may lead to training phase taking longer to complete.

The models were trained for 20000 steps and then were evaluated based on the
PASCAL VOC Challenge 2010-2012 metrics set, recording the commonly used mAP
at 0.5 IoU to compute the quality of the detections.

5.4 Experiments Results

5.4.1 Training with pretrained weights

Models were trained utilizing pretrained weights. These pretrained weights are ac-
quired by firstly training the corresponding models on some massive object detec-
tion datasets publicly available. Basic statistics for some of the most popular among
them are shown in Table 5.1.

By firstly training on a generic dataset, like COCO, the models learn well to iden-
tify basic patterns and textures that tend also to appear in each dataset, resulting in
good generalization. Thus, the idea in this approach is to build a robust model that
will be able to adapt easily and quickly to any case-specific dataset.

Training on such a large dataset requires much computational time and power,
but fortunately, these pretrained weights are already available and ready to be used.
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TABLE 5.1: Some well known object detection datasets. Records refer
to the train sets of the datasets.

Dataset Classes Images Bounding Boxes

PASCAL VOC 2012 20 5 717 13 609
COCO 2017 80 � 120 000 -

Open Images v4 [18] 600 1 743 042 14 610 229
ILSVRC 2017 [19] 200 456 567 478 807

iNat 2017 [20] 5 089 579 184 -

In this case, the models instead of starting the training phase from scratch, hav-
ing initial random weights and trying to tune them directly on the specific dataset,
they are initialized with these pretrained weights. Then the models are retrained on
the specific dataset (here the crop and weed dataset) in order to be fine tuned and
achieve maximum performance on it.

The mAP@.5, the train loss and the validation loss resulting from training the
models utilizing the corresponding COCO pretrained weights are shown in Fig-
ure 5.1.

Figure 5.1 suggests the following:

� Faster R-CNN models perform undoubtedly better than SSDs, achieving 76.5%�
76.9% and 49.9%� 59.5% mAP@.5 scores respectively.

� mAP@.5 of Faster R-CNN models converges relatively fast, reaching its max
score after about 600 training steps.

� mAP@.5 of SSD models converges with a slower rate, needing about double
training steps compared to Faster R-CNNs.

� The best-performing model is the Faster R-CNN with ResNet101 feature ex-
tractor, resulting in 76.9% mAP@.5. The Faster R-CNN with Inception_v2 per-
forms about equally well.

� Train loss of the models converges almost immediately, suggesting that due to
the pretrained weights, it is easy for the models to adapt to the specific dataset.

� The SSD models end up with train and validation losses greater than that of
the Faster R-CNN models. That indicates that the Faster R-CNN models not
only learn better the specific dataset, but also that they generalize in a better
way.

� Faster R-CNN models result in very low train and validation losses, close to
zero.

� Validation loss of SSD models seems to be relatively high, possibly resulting
in poor generalization. As a note, after a series of different train/test data
splitting and training processes, the corresponding validation loss does not
converge, suggesting that more train data are required in order to make this
plot reliable for inference.
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FIGURE 5.1: mAP@.5, Train loss and Validation loss for the pretrained
models.

5.4.2 Training time

Figure 5.2 illustrates the time needed in order to train the selected models for 20 000
steps. As the Figure shows:

� Training requires a lot of time, as it is a computationally expensive procedure.

� Moreover, the Faster R-CNN with ResNet101 needs approximately 12 hours to
be trained, making it the most time consuming among the selected models.

� It is interesting that the Faster R-CNN with Inception_v2 is trained in 4 only
hours. Faster R-CNN models usually demand more training time than their
SSD counterparts but here this is not the case.



5.4. Experiments Results 27

0

10

20
Tr

ai
n

lo
ss

ssd_mobilenet_v2

0

10

20

30

Tr
ai

n
lo

ss

ssd_inception_v2

0

2

4

Tr
ai

n
lo

ss

faster_rcnn_inception_v2

0 2 4 6 8 10 12
0

1

2

3

Training time (in hours)

Tr
ai

n
lo

ss

faster_rcnn_resnet101

FIGURE 5.2: Train loss against absolute training time (in hours) plot.

5.4.3 Detection of large, medium and small sized objects

A criterion to be considered when selecting the most suitable model for a specific
dataset is its performance detecting objects of different sizes. Figure 5.3 illustrates
how the models perform on detecting large, medium and small sized objects. As
a note, the mAP used in this Figure, is not the PASCAL VOC version computed at
0.5 IoU. It is the one used in the COCO metrics set instead, averaging over all mAP
scores from 0.5 to 0.95 IoU and with step 0.05.

From Figure 5.3 the following can be observed:

� All models detect larger objects more easily than smaller ones.

� Faster R-CNN with ResNet101 shows the best overall performance. It outper-
forms the rest of the models for each object size.
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FIGURE 5.3: Performance of models on detecting large, medium and
small sized objects.

� Faster R-CNN with Inception_v2 is almost as good as the one with ResNet101
but it is outperformed by the latter in small objects detection.

� The Faster R-CNN models clearly outperform the SSD models on detecting
objects of any size.

� SSD with Inception_v2 model seems to struggle in any object size, but as sug-
gested in Figure 5.1, the SSD results should not be strictly interpreted due to
their instability.

5.4.4 Input size impact

This section explores the impact of the input image size on a model’s accuracy. Tak-
ing advantage of the Faster R-CNN with Inception_v2 relatively fast training, we
retrain it by using the same train images but in a higher resolution, namely 480x640
(instead of 300x400). Figure 5.4 illustrates the result. It is clear that the high resolu-
tion images helps the model to achieve better accuracy. The mAP@.5 score increased
in this way from 76.5% to 84.3%. In other words, by increasing the input by 60%,
there was an 10.2% improvement in the accuracy of the model. On the other hand,
this increase comes with extra computational weight (training time was increased
from 4 to 6.5 hours -62.5% more time needed- for the same number of training steps).

5.4.5 Performance and Inference speed

Table 5.2 shows the achieved mAP@.5 and the inference time of the models after
training for 20000 steps. In the above results, the models are mainly reviewed with
respect to their accuracy but there is also value in researching the time needed for
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FIGURE 5.4: mAP@.5 for faster_rcnn_inception_v2 with respect to in-
put size.

each model to detect objects appearing in an image. As the Table 5.2 shows, the
SSD models are faster than the Faster R-CNN models. The SSD with Mobilenet_v2
feature extractor has an inference speed of 0.624 seconds, being the faster, while the
Faster R-CNN with ResNet101 needs over four times this time to perform detections
(76.17% percentage decrease).

TABLE 5.2: Performance and Speed of models.

Model mAP@.5 Inference time
(in seconds)

ssd_mobilenet_v2 0.595 0.624
ssd_inception_v2 0.499 0.975

faster_rcnn_inception_v2 0.765 1.229
faster_rcnn_resnet101 0.769 2.618

5.4.6 Detections

Figures 5.5 and 5.6 provide a visualization of the actual detections done by the
models. Performance of the models seems to be clustered according to their meta-
architecture, so detections by the most (Faster R-CNN with ResNet101) and the least
(SSD with Inception_v2) accurate models are presented, while the rest are omitted.

These visualizations actually suggest the same with the mAP@.5 metric com-
puted above, as the detections done by the Faster R-CNN are clearly more accurate
than that done by the SSD model.
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FIGURE 5.5: Predictions by faster_rcnn_resnet101.

FIGURE 5.6: Predictions by ssd_inception_v2.



31

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We reviewed a set of state-of-art object detectors and utilize them in order to perform
detections on a specific real world dataset. From the experiments carried out and the
research done in the object detection field the following conclusions are drawn:

� Faster R-CNN models tend to achieve higher accuracy in terms of raw mAP,
compared to SSD based models.

� If inference speed is the main concern, then the SSD models should be pre-
ferred over the slower Faster R-CNN models.

� Thus, there is no one-size-fits-all model. The approach is more about selecting
the most suitable model according to the specific characteristics and the needs
of each case scenario. Choices about meta-architecture, feature extractor, input
image size, software and hardware play a crucial role in the object detection
results.

� It is highly recommended to use pretrained weights to initialize a model and
then fine tune it by continuing training on the specific dataset. In this way, the
convergence rate is much faster than that in the training from scratch approach.

� The SSD models, due to their architecture design, may perform poorly in de-
tecting small sized objects. Small sized objects are mainly detected in the first
convolutional layers and there may be not enough information of them in the
last layers. The dataset used in the above experiments comes with a great
number of small objects, as most of the weed instances are particularly small.

� This problem can be overcome by increasing the input image size. Of course,
there is a tradeoff here, as high resolution input adds up computational weight.

� Apart from the small object issue, the SSD models may need more training
data in order to improve and be more reliable.

� Even though the recorded inference time presented in Table 5.2 may be not
capable of real time detections, it is highly expected that a better GPU would
enable the same model configurations, especially the SSD ones, to detect ob-
jects in real time. For benchmarking, the NVidia Titan X is commonly used.

� The choice of feature extractor is a significant one, as it affects both perfor-
mance and inference time of the resulting model. There are feature extractors
designed for either maximum performance (e.g. ResNet101), or high inference
speed (e.g. Mobilenet_v2).
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� Higher resolution image input can help improve accuracy of the models but it
comes with extra computational weight.

6.2 Future Work

As future work, different configurations of the same -or other- models could be re-
viewed in order to further improve detections in the specific dataset.

Furthermore, a more comprehensive research could be done, experimenting with
each model architecture and observing how each convolutional layer’s existence af-
fects the performance and speed of the model.

Finally, repeating some of the above experiments, using the NIR images instead
of the RGB ones could produce results worth reviewing.
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