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Περίληψη 

 

Σκοπός της διατριβής αυτής είναι να εξετάσει εφαρμογές του robustcontrol, 

ως εργαλείο μοντελοποίησης της αβεβαιότητας  (uncertainty) – όπως αυτή 

διαφοροποιείται από τον κίνδυνο (risk) –σε ορισμένες πτυχές της οικονομικής 

επιστήμης. Η πρώτη σαφής διάκριση της αβεβαιότητας από τον κίνδυνο οφείλεται 

στον Knight (1921), ο οποίος διαχώρισε τις περιπτώσεις όπου αποφάσεις 

λαμβάνονται υπό την πλήρη και σαφή γνώση των πιθανοτήτων, από τις 

καταστάσεις όπου οι πιθανότητες δεν είναι γνωστές ή είναι αμφισβητήσιμες.Όπως 

απέδειξε ο Ellsberg (1961),η αποστροφή στην αβεβαιότητα οδηγεί σε τελείως 

διαφορετικές συνέπειες από την αποστροφή στον κίνδυνο, ενώ έρχεται σε αντίθεση 

με την παραδοσιακή θεωρία χρησιμότητας. Ενώ η επίδραση του κινδύνου στην 

λήψη αποφάσεων στην οικονομική επιστήμη έχει μοντελοποιηθεί και μελετηθεί 

εκτενέστατα στο παρελθόν,η επίδραση της αβεβαιότητας ξεκίνησε να εξετάζεται 

μόλις πρόσφατα. Ένα πολύ μεγάλο μέρος της βιβλιογραφίας βασίζεται στις 

μεθοδολογίες του RobustControlTheory– κλάδος της μηχανικής και των 

εφαρμοσμένων μαθηματικών – προκειμένου να μοντελοποιήσει την λήψη 

αποφάσεων κάτω από συνθήκες αβεβαιότητας.Στην διατριβή αυτή εξετάζονται 

εφαρμογές στην αποτίμηση αξιογράφων(assetpricing) καθώς και στην σύνθεση 

χαρτοφυλακίων. Η αβεβαιότητα φαίνεται να δημιουργεί μια πιο επιφυλακτική 

συμπεριφορά, η οποία ενσωματώνεται στις τιμές των αξιογράφων. Βασιζόμενοι 

στον συγκεκριμένο τρόπο μοντελοποίησης της αβεβαιότητας, διάφοροι συγγραφείς 

υποστηρίζουν ότι το επασφάλιστρο κινδύνου που παρατηρείται στην αγορά 

(marketpriceofrisk), στην πραγματικότητα αποζημιώνει τόσο για τον κίνδυνο όσο 

και για την αβεβαιότητα. Τέλος, παρουσιάζεται η συμβολή του RobustControlστην 

δημιουργία χαρτοφυλακίων με μειωμένη ευαισθησία σε τυχόν αποκλίσεις των 

παραμέτρων των συστατικών αξιογράφων. Η απόδοση τέτοιων χαρτοφυλακίων 

επηρεάζεται πολύ λιγότερο από λανθασμένες εκτιμήσεις των στατιστικών 

χαρακτηριστικών των αξιογράφων. 
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Chapter 1: Introduction 

1.1 Risk and Uncertaintyin Financial Economics 

 

The first clear distinction of uncertainty versus risk in finance is attributed to Knight (1921) 

who in his classic work “Risk, Uncertainty, and Profit”, characterizes risk as “randomness 

that can be measured precisely” by assigning numerical probabilities. On the other hand, in 

situations where: 

 

• the decision maker is ignorant of the statistical frequencies of events relevant to his  

 decisions, or 

• a priori calculations are impossible, or 

• the relevant events are in some sense unique, or 

• an important once and for all decision was concerned,  

 

numerical probabilities are inapplicable and the decision maker faces “uncertainty”. 

According to Knight, this difference is very important to markets, since risk is insurable 

through exchange, while uncertainty is not: well-organized institutions are able to price and 

market insurance contracts that only depend on risky phenomena; uncertainty, however, 

creates frictions that institutions may not be able to accommodate.  

 

In his book, “The Foundations of Economics” (1954), Savage proposed the subjective 

expected utility model, a theory of decision making under uncertainty, which until now 

remains the standard model of choice in financial economics. Based on Bayesian probability 

theory and by combining two subjective concepts, the personal utility function and the 

personal probability distribution, Savage proposes seven axioms of choice that a rational 

individualought to follow. According to that, individuals assign a priori probabilities 

expressing their personal beliefs, to possible outcomes of an uncertain event and given the 

personal utility of each outcome they formulate the subjective expected utility of the event. 

Which decision an individual would actually prefer, depends on which subjective probability 

is higher. Different people make different decisions because they might have different utility 

functions or different beliefs about the probabilities of different outcomes. However, it has 

repeatedly been shown in experimental settings that decision makers do not exhibit this 

kind of behavior. 
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Ellsberg (1961) challenges the Savage Bayesian model and argues that individuals display 

choice patterns that are inconsistent with the existence of beliefs representable by a 

probability measure. Using simple though experiments, he demonstrated that decision-

makers prefer environments with known odds to those with uncertain probabilities. He 

suggested the following mind experiment that is known as the Ellsberg Paradox: Subject is 

presented with two urns, each containing 100 balls, either red or black. Urn A contains 50 

red balls and 50 black ones, while the composition of urn B is unknown. Before drawing a 

ball from each urn, subject is asked to place a bet on the color of the ball drawn from one 

urn. It has been observed empirically that people prefer to bet on color of the ball drawn 

from urn A rather than placing a bet on the color of the ball drawn from urn B. Such 

behavior, verified by empirical observations, is inconsistent with the subjective expected 

utility model, which predicts either indifference between urns, or a preference for Urn B 

depending on the prior probability assignment.  

 

Gilbert and Schmeidler (1989) offer the following conceivable explanation to the 

experiment: subject has too little information to form a prior probability distribution over 

the composition of the urn B. She considers the worst case scenario where urn B doesn’t 

contain any balls of the color of her choice and since she has no chances of winning, her 

expected utility is zero. Comparing with urn A, where the probability distribution is known 

and the chance of winning is 1/2, betting on urn A has a positive expected utility. Subject 

maximizes her utility by betting on urn A. This behavior is consistent with Ellsberg axioms.  

 

During the past two decades, a considerable amount of literature in financial economicshas 

been devoted on modeling Knightian uncertainty and extending the existing workon 

intertemporal preferences, decision-making (portfolio and consumption rules) and asset 

pricing. There are several good reasons for this: 

 

• Ellsberg paradox demonstrated that risk and uncertainty are distinct characteristics 

that imply very different behavior in random environments. The expected utility theory that 

was until recently the cornerstone of financial modelingdoes not take uncertainty into 

account, and therefore does not induce uncertainty related preferences. Furthermore, 

expected utility fails to explain behavior demonstrated by individuals in stylized 

experiments. On the other hand, Ellsberg’s axioms are holding up in experimental settings. 
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• Decision makers often doubt the model at hand and consider it only as an 

approximation of the “real one”. They believe that actual data will come from an unknown 

member of a set of unspecified models near the approximating one and therefore adjust the 

decision rules as to protect themselves against modeling and specification errors. 

Econometricians also usually face a model detection problem; having at their disposal only 

finite observational data, they cannot distinguish between alternative models, as data would 

fit any of them. This behavior is in sharp contrast with rational expectations, where agents 

simply know the true model and trust it.  

 

• Finally, many topics in financials economics remain open and cannot be explained 

with existing theory. One such famous example is the equity premium puzzle, a term first 

introduced by Mehra and Prescott (1985). Asset returns observed in financial markets bear a 

premium (compared to the risk-free rate) that is an order of magnitude greater than what 

theory would predict for compensating for bearing risk alone. Modifying the assumed 

preferences of investors as to incorporate uncertainty aversion would offer a possible 

explanation to this and other puzzles. 

 

There are two prominent approachesforincorporating uncertainty into financial economics. 

A large part of literature is inspired from the robust control literature, a branch of control 

theory in engineering and applied mathematics. The second approach is based on the work 

of Gilboa and Schmeidler (1989) whoaxiomatized preferences under uncertainty and 

proposed max-min expected utility decision making. Other promising methods of modeling 

preferences under uncertainty include the “smooth ambiguity” model of Klibanoff et al. 

(2005) and scale invariant ambiguity-averse preferences, Skiadas (2011). 

 

1.2 Modeling Uncertainty and Robust Control 

 

Many of the ideas and inspiration in economics come from the control theory, an 

interdisciplinary field of science originating from engineering and mathematics. Optimal 

control theory, a mathematical method for solving dynamic optimization problems, remains 

widely used even today in the intertemporal allocation of scarce resources and decision 

making in financial economics, macroeconomics and resource economics.Optimal control 

deals with the problem of finding a control law for a given system, such that an 
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intertemporal objective is optimized (or a certain optimality criterion is achieved). The 

system is described by a mathematical model, usually a set of differential equations which 

specify how the state of the system evolves, influenced also by the control of the decision 

maker. Althoughoptimal control gained a significant foothold in engineering mainly due to 

the work of Kalman in linear quadratic control and filtering in the 1970s, it was not long 

before it showed its limitations under model misspecification: the model assumed to 

describe the system is not correct or un-modeled disturbances show up. Minor differences 

in model parameters or system disturbances can lead to sub-optimal decision rules or even 

system instability, which in engineering problems can be catastrophic. Robust control theory 

emerged in the 1980s (and is still active today) to explicitly deal with model uncertainty and 

address a major concern in engineering, the desire for system stability. Robust control rules 

are designed to guarantee a given level of performance as long as the uncertain parameters 

of the model and the disturbances remain within agiven set. The worst case philosophy was 

adopted out of concerns for stability; the decision rule has to meet and maintain specific 

performance criteria in all cases, and especially under the worst case scenario. Thus, a lower 

bound on performance is achieved. One of the most important techniques that was 

employed to achieve this, is the min-max approach.  

 

The designer of the robust rules starts with a nominal model of the system, a objective 

function that is the subject of maximization (in general optimization) and a set of 

performance criteria that have to be achieved. He considers the size of model 

misspecification he wants to guard against by formulating a set of alternative models; the 

robust rule must meet the performance criteria under all the models of this set. The set of 

alternative models is usually obtained by bounding the size of perturbations that the 

designer considers. Then the solution to the control problem is obtained by a two player 

dynamic game implementation: the designer maximizes the objective function, while a 

fictional malevolent second agent is minimizing it by his choice of control. The control of the 

malevolent agent is constrained by the set of alternative models (the size of perturbations). 

Since the objective function is maximized  under the worst case alternative model (worst 

case control of the malevolent agent) a lower bound on performance is achieved. Positing a 

malevolent agent is just a device that the decision maker uses to perform a systematic 

analysis of the fragility of alternative decision rules and to construct a lower bound on the 

performance it can be attained by using them. A designer who is concerned about 
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robustness naturally seeks to construct bounds on the performance of potential decision 

rules and then malevolent agent helps the decision maker do that. 

 

In most applications in economics, choices are modeled through a decision maker. This 

typically involves a utility function (expressing the objective) that is maximized subject to a 

model that describes the environment. Concerns about uncertainty can be represented by 

altering the utility function in a specific way and/or distorting the decision maker’s 

expectations relative to the model at hand in a context specific way. Robust control is used 

to model preferences under uncertainty by distorting how expectations for future periods 

are formed and thereby by altering decisions. 

 

The most influential approach to robust control in economics is owed to Hansen and Sargent 

and their co-authors, summarized in their monograph (2007), where they provide a 

framework for setting up and solving robust control problems with applications in finance 

and macroeconomics. Hansen and Sargent explicitly deal with the issue of defining the class 

of alternative models that the decision makers guards against by introducing the concept of 

relative entropy (or Kullback-Liebler distance) to measure and bound the distance of the 

model uncertainty set from the nominal model. This is based on the difficulty to distinguish 

between two models, given a finite number of data. Statistical model detection theory is 

used to calculate the entropy penalty, representing the strength of the decision maker’s 

preference for robustness. This approach is applied to three different types of economic 

environments, expanding the concept of equilibrium under rational expectations: a 

competitive equilibrium with complete markets in history-contingent claims and a 

representative agent who fears model misspecification; a Markov perfect equilibrium of a 

dynamic game with multiple decision makers who fear model misspecification; and a 

Stackelberg or Ramsey problem in which the leader fears model misspecification.Some other 

contributions include the formulation of discounted problems (robust literature treats 

undiscounted problems) and the multiple-agent setting. 

 

Hansen and Sargent (1999) derive equilibrium asset prices and define the market price of 

uncertainty by considering an investor who faces uncertainty about the state of the 

economy in a permanent income model. Uncertainty aversion generates a premium 

additional to the risk premium that is priced. Anderson et al (2003) extend the above 

framework in continuous time and link the market price of uncertainty with the difficulty the 
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agent faces to distinguish between possible models.  However, uncertainty alone cannot 

explain the equity premium puzzle. Maenhout (2004) extends the framework of Anderson et 

al. (2003) by including homothetic preferences and clearly distinguishing three different 

kinds of preferences: risk aversion, uncertainty aversion and intertemporal substitution. One 

key conclusion is that uncertainty aversion cannot be captured by stylized experiments with 

known probabilities and is only present in specific context environments. Vardas and 

Xepapadeas (2004) derive robust portfolio choices when the investor faces uncertainty 

about the statistics of the risky asset(s) in aiCAPM setting. Maccheroni et al. (2006) 

introduce and axiomatize dynamic variational preferences by generalizing the multiple priors 

model of Gilboa& Schmeidler (1989) by including the robust control approach and the mean 

variance preferences of Markowitz & Tobin. Barillas, et al. (2007) show that market prices of 

model uncertainty contain information about compensation for removing model uncertainty 

and not consumption. Kleshchelskiand Vincent (2008) show that uncertainty aversion greatly 

amplifies the effect of stochastic volatility in consumption growth and therefore can explain 

asset prices in an empirically plausible way. Hansen & Sargent (2011) develop statistical 

measures to calibrate the decision maker’s uncertainty aversion. Statistical model detection 

calculations are used to calculate entropy penalties, representing preferences expressing 

model ambiguity and concerns about statistical robustness. Finally, Epstein & Schneider 

(2010) provide a unifying framework for considering the multiple priors model, the robust-

control inspired models and the smooth ambiguity model. It is shown that all three models 

imply very different behavior from the subjective utility theory leading to different results in 

asset pricing and portfolio choice. A common theme is that ambiguity averse agents choose 

more conservative positions, and, in equilibrium command additional “ambiguity premia” on 

uncertain events. 

 

Max-min approach has been accused of being “too cautious”, because the decision maker 

puts too much weight on a “very unlikely” scenario. However, most approaches in the 

robust control inspired literature (like in Hansen and Sargent) consists of carefully calibrating 

the model perturbations that are considered so that the model uncertainty set is difficult to 

distinguish from the approximating model. This way, the worst case model fits the available 

data almost as well as the approximating model. Moreover, by inspecting the implied worst-

case model, it can easily be evaluated whether the decision maker is focusing on scenarios 

that appear to be too extreme. There are some approaches which seek a middle ground 
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between the average case and the worst case (Tornell, 2003), however they have been less 

prominent. 

 

The approach discussed above uses unstructured uncertainty model sets – the perturbations 

of the model are bounded but have no particular form, however there are good reasons for 

the decision maker to want put structure in the uncertainty set. The decision maker may be 

more confident for some aspects of the model relative to others or have a discrete set of 

models in mind. Not taking into account the particular structure may give a misleading 

impression of the actual uncertainty the decision maker faces. Some applications of robust 

control theory mainly in macroeconomics attempts to put structure to the uncertainty set. 

Levin and J. Williams (2003), Cogley and Sargent (2005) and Svensson and Williams (2006) 

focus on uncertainty sets with discrete possible models. Onatski& Stock (2002) and Onatski& 

Williams (2003) focus on different parametric model specifications, including uncertainty 

about dynamics (lags and leads), variables which may enter, uncertainty about data quality, 

and other futures which are built into parametric extensions of the nominal model. Most 

importantly, Onatski& Williams (2003) develop an example showing that the Hansen & 

Sargent approach may lead to the design of robust policy rules that can be destabilized by 

small parametric perturbations. While the robust rule may resist shocks of a certain size, 

small variations in the underlying model can result in disastrous policy performance. Thus, 

the particular structure and measurement of uncertainty can have important applications 

for decisions. Although there are important stability and performance criteria, constructing 

control rules for structured uncertainty is a more demanding task and the theory is not as 

fully developed as in the unstructured case. 

 

Finally, another approach in modeling uncertainty aversion is owed to Gilboa and 

Schmeidler (1989) who proposed max-min expected utility decision rules using multiple 

priors, and axiomatized preferences under uncertainty. Under this model, an individual is 

considering the set of all possible probability distributions over the possible outcomes of the 

uncertain event. Being uncertainty averse,she maximizes her utility with respect to the least 

favorable set. Some applications of max-min expected utility include Epstein and Wang 

(1994) who explore equilibrium asset prices, Rigotti and Shannon (2004) who argue that 

under uncertainty some assets are not traded, Gagliardini et al. (2007) who discuss the 

uncertainty premium and term structure of interest rates and many others. More recently, 

Epstein and Schneider (2003) have extended the atemporal, static environment of Gilboaand 
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Schmeidler to an intertemporal dynamic context. Although the models based on multiple 

prior expected utility have been criticized of implying extreme behavior, it is widely used in 

the relevant literature. 

 

1.3 Robust Control and Asset Pricing 

Hansen et al. (1999) study consumption and saving profiles and market prices in the 

presence of model uncertainty. Their framework consists of a permanent income model 

with habit persistence as in Hall (1978). Agents are facing a planning problem –in the context 

of a discrete time, linear quadratic optimal control problem, they derive decision rules 

bymaximizing their expected lifetime utility.Expectations of future states lies in the model 

assumed. However, being uncertainty averse,they fear that future states will not evolve 

according to the model they used to form their expectations, but rather according to a 

model indistinguishably close to the one they have at hand. In other words, they suspect 

specification errors and want decisions to be insensitive to them. As in textbook robust 

control, Hansen et al. pose this as a max-min optimal control problem.Preference for 

robustness is introduced through a malevolent agent who is trying to minimize the lifetime 

utility of the agent through shifts in the conditional mean of the state vector. The control of 

the malevolent agent is bounded by the size of misspecification t agent wants to guard 

against. Decision rules are derivedunder the worst-case scenario, as to achieve a minimum 

level of performance. A very important result is then obtained. Formulas for consumption 

and assumptions rules are identical to ones coming from the usual permanent income 

models. Quantity allocations (consumption and saving plans) are observationally equivalent 

to preferences without robustness. To deduce asset prices, Hansen et al. consider an 

exchange economy in the style of Lucas (1978) and Epstein (1988). A large number of 

identical agents trade in security markets. Consumption and investment processes are 

equilibrium allocations for a competitive equilibrium; asset prices are obtained by finding 

shadow prices that clear security markets in equilibrium. Hansen et al. propose an extension 

to the Consumption Based Asset Pricing Model that is used in their setting. The stochastic 

discount factor is adjusted as to include a multiplicative component that reflects the 

representative agent’s aversion to model uncertainty. It is a measure of “doubt” about the 

approximating model that the agent uses to evaluate future expectations. Hansen et al. 

heuristically define this multiplicative factor as the market price of Knightian uncertainty. 

There is a tight relationship between the market price of uncertainty and the probability of 
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distinguishing the representative agent’s approximating model from the worst case model. 

Mathematically, the multiplicative component is equivalent to the expected likelihood ratio 

of the “worst case model” relative to the “approximating model”. For empirically plausible 

parameterizations of model uncertainty, the multiplicative component poses substantial 

variability, raising the theoretical value of equity premium and putting model uncertainty 

premia into market prices. The equity premium of asset returns compensates for bearing 

risk and model uncertainty, helping explain the equity premium puzzle.  

 

Anderson et al. (2003) extend the discrete time linear control setting of Hansen et al. (1999) 

to a more general class of continuous time control problems in which the stochastic 

evolution of the state of the economy is a Markov diffusion process.Uncertainty aversionis 

introduced through concerns of model misspecification. The agent suspects that the 

diffusion process is not “true” and wants decision rules that work well when data conform to 

models that are statistically difficult to distinguish from the approximating model. The 

diffusion process is distorted by including a shift in the mean of the state process, leaving 

volatility unchanged.The size of the drift is bounded by robustness parameter�, measuring 

the preference of robustness by defining the size of potential model misspecifications and 

indexing the set of alternative models considered. Decision rules are derived by maximizing 

the lifetimeutility of the decision maker (posed as a two period problem through a value 

function) under the worst case diffusion process.By adjusting robustness parameter �, the 

worst case model can be designed to be close to the approximating model in the sense that 

is difficult to discriminate it from the original approximating model. To compute equilibrium 

prices, Anderson et al. follow Lucas (1978) and propose a similar modification to the 

consumption based asset pricing model as in Hansen et al. (1999). The stochastic discount 

factor generatingthe return premium is adjusted as to include a multiplicative component 

that generates model uncertainty premia in asset returns, reflectingthe representative 

agent’s aversion to model uncertainty.A precise link is established between the uncertainty 

component of risk prices and the probability of distinguishing the decision maker’s 

approximating and worst-case models(formalized by detection error probabilities); model 

uncertainty premium is bounded by robustness parameter � that was used to define the 

worst case model. As a final step, the preference for robustness and model uncertainty 

premiumis calibrated to plausible values of detection error probabilities. The main 

conclusion is that aversion to model misspecification can account for a substantial but not all 
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of estimated equity premium. The remaining fraction is impervious to details of model 

specification and is subject to alternative explanations (for example market frictions). 

 

Maenhout (2004) considers an investor who is trying to decide how much to consume and 

how to allocate his savings between a risky and a riskless asset in a dynamic environment. 

For various good reasons, the investor worries about the expected return of the risky asset; 

although point estimates for asset return parameters are known and fixed, the investor has 

reasons to believe that the expected returnof the risky asset will notmaterialize. In other 

words, the investor faces uncertainty about the return process of the risky asset and wants 

decision rules that work reasonably well under the worst case scenario. The preference for 

robustness is modeled as a max-min robust control problem; the investor is trying to 

maximize his expected lifetime utility, while a malevolent agent, through a distortion in the 

mean of the asset’s return process is minimizing it. The malevolent agent’s control is 

constrained by an entropy penalty denoting the strength of the preference for robustness. 

Maenhout extents Anderson et al. (2003) by modifying the entropy penalty as to induce 

homothetic preferences. Robustness parameter �still bounds the worst case considered and 

is calibrated using detection error probabilities. Decision rules are then obtained in closed 

form. Comparing with Merton’s iCAPM (1971), consumption is not affected by the 

introduction of robustness, however, the optimal share of wealth allocated to the risky asset 

is greatly reduced.The results bear close resemblance to stochastic differential utility (SDU) – 

the continuous time analogous of recursive utility. An investor with a homothetic preference 

for robustness and coefficient of risk aversion � is observationally equivalent to an investor 

with SDU with effective risk aversion � + �.  What robustness does is to make the agent less 

willing to substitute across states as “effective” risk aversion increases, without changing the 

willingness to substitute intertemporally. To distinguish between three different types of 

behavior, risk aversion, uncertainty aversion and intertemporal substitution, Maenhout 

considers a decision maker with stochastic differential utility and robust homothetic 

preferences. Asset prices and the risk free rate in equilibrium are obtained in a Lucas style 

(1978) endowment economy. The equilibrium equity premium is given by a C-CAPM result 

where the price of risk is given by � + �. Both market risk and model uncertainty are priced 

in equilibrium. Robustness also drives down the risk free rate through precautionary savings. 

Maenhout then makes a very important observation. By trying to measure “risk aversion” 

from empirical data, one would simply obtain the combined effect of risk aversion � and 

uncertainty aversion � or simply � + �. Stylized experiments that try to estimate “risk 
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aversion” of individuals, usually report relative small values of � because they involve 

situations where events are well specified and usually this environment-specific preference 

for robustness is not exhibited.Uncertainty aversion is environment specific, and although 

risk aversion � might be constant across environments, difficult situations might generate a 

higher perceived � + �.As a final step, Maenhout calibrates the equilibrium model by using 

data from the US economy. Given the observed risk free rate and excess return of the risky 

asset from two different time periods, the preference parameters (time, risk, uncertainty 

and intertemporal substitution) are adjusted as to satisfy the equilibrium model. Robustness 

parameter � is also calibrated using error detection probabilities. Robustness helps resolve 

both the risk-free rate and the equity premium puzzle, as relatively reasonable parameter 

values reconcile the observational data. 

 

Hansen et al. (2006) formally establish the link between robust control and the max-min 

expected utility of Gilboa and Schmeidler (1989). The cloud of models considered in robust 

control can be thought (and regarded) as a particular specification of Gilboa and 

Schmeidler’s set of priors. However, none of the priors has the special status that the 

approximating model has in robust control theory. This poses a practical inconvenience, 

since an applied economist modeling with max-min expected utility would have to impute a 

set of models to the decision makers. On the other hand, an economist employing robust 

control would take a single approximating model and from it manufacture a set of models 

that express the decision maker’s ambiguity. The link between these two lines of modeling is 

also discussed in Maccheroni et al. (2006a,b), Cerreia et al. (2008), and Strzalecki (2008). 

 

1.4 Robust Control and Mean Variance Efficient Frontiers 

Another prominent area of application of robust control in financial economics is the 

formulation of robust mean variance frontiers. Portfolio selection (originally formulated by 

Markowitz (1952)) is the problem of allocating capital over a number of available assets as to 

maximize return on the investment while minimizing risk.The “return” on a portfolio is 

measured by the expected value of the random portfolio return, and “risk” is quantified by 

the variance of the portfolio return. As there is in general a positive relationship between 

expected return and risk, both objectives cannot be achieved simultaneously. Given the 

maximum risk that an investor is willing to tolerate, the optimal allocation can be 
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obtainedby solving an optimization problem. The set of all such Pareto optimal portfolios (in 

terms of return and risk) derived by this process is called the mean variance frontier.  

 

Despite its theoretical success, the Markowitz Portfolio Theory has received a lot of criticism 

from practitioners. One of the key reasons for this is the model’s susceptibility to parameter 

estimation errors. Market parameters, (like the mean return of an asset), are notoriously 

hard to estimate and subject to statistical errors. However, the optimization problem in the 

heart of the mean variance efficient frontier is very sensitive to perturbations in the 

parameters of the model. The results of the optimization are not very reliable as the 

performance of the portfolio could greatly vary for small parameter perturbations. The 

following quote of Michaud (1998) is indicative: “Although Markowitz efficiency is a 

convenient and useful theoretical framework for portfolio optimality, in practice it is an 

error-prone procedure that often results in error-maximized and investment-irrelevant 

portfolios”. 

 

A large part of the literature related to the problem of reducing the sensitivity to parameter 

fluctuations and designing robust mean variance efficient frontiers is inspired from robust 

control as it can explicitly deal with uncertain parameters and model misspecification. A 

common setting is that the investor worries and wants to guard against the worst case 

scenario, therefore, he seeks to formulate a portfolio that performs relatively well under all 

circumstances, as long as the uncertain parameters remain within specific bounds. This can 

be posed as a textbook robust control problem where the investor is trying to maximize the 

performance of the portfolio while a second malevolent agent is working on the opposite 

direction. The control of the malevolent agent is bounded by the set of uncertainty the 

investor considers and wants to guard against.   

 

Kim and Boyd (2007) and (2008) define portfolio preferences under uncertainty as in Gilboa 

and Schmeidler (1989); an investorworrying about parameter uncertainty would consider all 

possible outcomes. Being uncertainty averse, he would choose the portfolio that performs 

best under the worst-case scenario. Under this formulation, the robust efficient frontieris 

defined as the set of all Pareto optimal portfolios under the worst-case scenario. The robust 

efficient frontier is derived by the robust control formulation discussed above. Kim and Boyd 
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also present a numerical example to make some interesting observations: Robust efficient 

frontier portfolios do not perform as well as the nominal ones under the baseline scenario, 

i.e. if the point estimates of mean and variance hold exactly. However,they are less sensitive 

to variations in the parameters and achieve better performance than the nominal ones 

under the worst-case scenario. By choosing a portfolio of the robust efficient frontier, the 

investor is willing to trade a little part of baseline optimality to make sure that the 

performance of his portfolio is less sensitive to parameter variations and performs relatively 

better under the worst-case scenario.Finally,it appears that robust efficient portfolios are 

much more diversified than nominal ones (at the same risk levels), and therefore less likely 

to produce extreme results. 

 

1.5 Outline  

 

In chapters 2 and 3, two pivotal papers owed to Hansen and Sargent (1999) and Maenhout 

(2004) are summarized and discussed. Aquick introduction to the consumption based asset 

pricing model is also provided. In chapter 4 explores the application of robust control to 

mean variance efficient frontiers. Finally, chapter 5 summarizes. 
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Chapter 2: Consumption Based Asset Pricing Model with Uncertainty 

2.1 The Consumption-Based Asset Pricing Model 

 

A decision maker is faced with a simple dilemma: how much to consume today, how much 

to save for tomorrow, and what portfolio of assets to hold. Choice is driven by the 

fundamental desire for more consumption (rather than an intermediate objective such as 

the mean and variance of portfolio returns) and is modeled by Standard Expected Utility 

Theory, i.e. Von Neumann-Morgestern utility function: 

 ���� , ��	
� = ���� + �������	
��   (2.1) 

 

where�� denotes consumption at time t, �� is the conditional expectation on information 

available at time t, and � is the subjective discount factor that captures the decision maker’s 

impatience. Utility function is increasing as to reflect desire for more consumption, and 

concave, reflecting the decreasing added value of each unit of additional consumption.  

 

Consider an asset that has a price  �� at time t and pays a dividend	��	
 at time t+1. Its 

payoff next period is the new price plus the dividend: ��	
 = ��	
 + ��	
. Note that ��	
 is 

a random variable. The investor cannot evaluate the exact value in a deterministic way, but 

can assess the probability distribution of various possible outcomes. The basic objective is to 

figure out the present value of the payoff by asking what is worth to the decision maker. 

Assume that the asset is freely traded and the investor can buy or sell a small quantity. His 

objective then is to maximize his utility: 

 max� 	���� + �������	
�� �. �.   (2.2) �� = �� − ��� ��	
 = ��	
 +  �	
� 

 

whereξ is the amount he chooses to buy and ��the consumption level if he bought none of 

the asset.  Solving for an optimal consumption and portfolio choice, the first order condition 

is obtained: ��′���� = ����′���	
���	
�    (2.3) 

 

The first terms expresses the marginal utility loss of consuming a little less today and buying 

a little more of the asset while the second term the expected utility gain from the asset’s 
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payoff in the future. Equation simply expresses that the decision maker simply wants to buy 

or sell the asset until the marginal loss equal the marginal gain. Re-arranging we obtain: 

 

�� = �� "� ′���	
�′���� ��	
#																																																	�2.4� 
     

Using the investor’s marginal utility to discount the payoff, the asset’s price is simply the 

expected discounted value of the asset’s payoff. Let us define by &�	
 the stochastic 

discount factor: 

&�	
 ≡ � ′���	
�′���� 																																																							�2.5� 
     &�	
is stochastic because it is not known with certainty at time t. It is often called the 

marginal rate of substitution, because it expresses the rate at which the decision maker is 

willing to substitute consumption at time t+1 for consumption at time t. The pricing formula 

then becomes: �� = ���&�	
��	
�																																																						�2.6� 
 

This is by far the most important equation in modern asset pricing theory. It provides a most 

useful and insightful separation: one can incorporate all risk corrections by defining a single 

discount factor. Although we derived equation (2.6) using a utility function, it is still valid if 

we define the stochastic discount factor as: 

 

&�	
 = �*�	
+*�+ 																																																									�2.7� 
 

where*�	
+  is the marginal utility gain from consumption. The discount factor can be 

thought as a random variable that generates prices from payoffs. Using the law of one price 

and the absence of arbitrage theorems, and without implicitly assuming all the structure of 

the investors, utility functions, complete markets and so forth, it can be proven that one 

such discount factor always exists (Cochrane, 2005). Indeed, by writing �� = ���&�	
��	
� 
none of the below is assumed: 

 

• Market completeness or a representative investor 

• Market is in equilibrium or investors have bought all the securities they want to 
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• Normal distribution of asset returns and independence over time 

• Two-period setting, quadratic utility or separable utility 

• Absence of human capital or labor income. 

 

Indeed, the only assumption that was made is that the investor can buy or sell a small 

quantity of the asset. Equation �� = ���&�	
��	
� expresses a private valuation of the asset 

to the investor. If the private valuation of the asset is higher than the market value of the 

asset, the investor will continue to buy the asset as long as he can, and as long his personal 

valuation is higher than the market price. Some of above the assumption come only later, to 

derive market behavior.  

 

All asset pricing models (CAPM, APT, iCAPM, etc.) are specializations of the basic pricing 

equation, simply using alternative ways of connecting the discount factor &�	
 to data. 

Marginal utility growth is not the easiest thing to measure from real life data; therefore, 

factor pricing models look for variables that are good proxies, like return on stock market 

indices, GDP growth, interest rates, or other macroeconomic variables, usually imposing 

additional assumptions: &�	
 = -��.�.�    (2.8) 

 

CAPM can be derived as a specialization of the basic pricing equation. By imposing additional 

assumptions (like normal asset return distribution or quadratic utility function, no labor 

income etc.), the discount factor &�	
is tied to the return on the “wealth” portfolio, which is 

usually proxied by the return on a broad-based stock portfolio such as the value-weighted 

NYSE, S&P500 etc.: &�	
 = . + /0�	
1     (2.9) 

 

The most important special case of the basic asset price equation is the return equation. The 

decision maker pays one consumption unit today to get R consumption units tomorrow. The 

pricing equation then becomes: 

 1 = ���&�	
0�	
�    (2.10) 

 

Consider the case where a risk-free security is traded and the risk-free rate 03 is known 

ahead of time. In that case: 
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1 = ��4&�	
035 ⇒ 03 = 1���&�	
�																																								�2.11� 
 

If a risk-free security is not traded, then 03 is simply the “shadow” risk-free rate. Using the 

definition of covariance	�78�&�	
, ��	
� = ���&�	
��	
� − ���&�	
������	
�, the pricing 

equation (2.6) is transformed: 

 

�� = �����	
�03 + �78�&�	
, ��	
�																																								�2.12� 
 

The price of an asset consists of two terms. The first term expresses the present value of the 

expected payoff discounted with the risk-free rate - this would be the price of the asset in a 

risk-neutral world. The second term is an adjustment for the risk. Without losing generality, 

we substitute  &�	
 in terms of consumption, as to better interpret the risk adjustment: 

 

�� = �����	
�03 + �78��′���	
�, ��	
�′���� 																																		�2.13� 
 

When the covariance is negative, consumption varies positively with payoff, meaning that 

the asset pays off well when the consumption is already high; and pays off badly when the 

consumption is already low. This makes the consumption stream more volatile, and since 

investors do not like uncertainty about consumption, the asset’s price must be lowered for 

the investors to hold it. On the other hand the price of the asset is raised when the 

covariance is positive: the asset pays offs well when consumption is low, and pays off badly 

when consumption is already high. Such assets smooth consumption and are more valuable 

than the expected payoff might indicate.  

 

From the analysis above, it should be obvious that under the consumption-based asset 

pricing model, it is the covariance of the payoff with the discount factor that determines an 

asset’s riskiness and price - rather than its volatility. Decision makers do not care about 

intermediate goals such as the volatility of individual assets or portfolios, as long as they 

manage to keep a steady consumption. Furthermore, only the component of the payoff that 

is perfectly correlated with the discount factor generates an extra return. Idiosyncratic risk, 
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uncorrelated with the discount factor generates no premium (Cochrane, 2005).Applying the 

covariance decomposition into the return equation (2.9) we obtain: 

 1 = ���&�	
���:0�	
; < + �78:&�	
, 0�	
; <																														�2.14� 
 

where0�	
;  is the return of an individual asset. The superscript iis used to denote this. 

Rearranging the above equation and using 03 = 1 ���&�	
�=  we obtain: 

 

��:0�	
; < − 03 = −�78:&�	
, 0�	
; <���&�	
� 																																				�2.15� 
 

The above equation leads to exactly the same conclusions as the basic price equation (2.13). 

Assets whose returns co-vary negatively with the stochastic discount factor make 

consumption more volatile, therefore must promise an excess return over the risk free rate 

to induce investors to hold them. On the other hand, assets that co-vary positively with the 

discount factor, smooth consumption stream, and offer expected rate of return than can be 

lower than the risk-free rate or even negative! 

 

Using the definition of covariance	�78:&�	
, 0�	
; < = >?,@AB�&�	
�B:0�	
; <, we obtain: 

 

��:0�	
; < − 03 = −>?,@A B�&�	
����&�	
� B:0�	
; <�2.16� 
 

Slope σ(&�	
)/Ε(&�	
)is commonly referred to as the market price of risk. All assets have an 

expected return equal to the risk-free rate plus a risk adjustment, which is simply the 

product of the market price of risk and the amount of risk the asset bears. Term −>?,@AB:0�	
; <is interpreted as the quantity of risk in each asset. Since −1 ≤ >?,@A ≤ 1	the 

maximum available risk adjustment is limited: 

 

D��:0�	
; < − 03D ≤ B�&�	
����&�	
� B:0�	
; <																																	�2.17� 
 

Figure 2.1 is the graphical representation of equation (2.17). All assets’ returns must lie 

within the wedged section that is defined by the slope σ(&�	
)/Ε(&�	
). Assets whose 
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return is perfectly correlated with the discount factor have the maximum available risk 

correction and lie on the mean-variance frontier.  

 

 

Figure 2.1: The Mean-Variance Frontier 

 

The ratio of an asset’s the excess return to its standard deviation is known as the Sharpe 

Ratio and is limited by the market price of risk: 

 B�&�	
����&�	
� ≥ D��:0�	
; < − 03DB:0�	
; < 																																													�2.18� 
 

The above formula is also known as the Hansen-Jagannathan bounds and can be read twice 

fold. Given a set of returns, the above equation poses a limit on the set of discount factors 

that can price them. Again, given a set of discount factors, there is a limit on set of returns 

that can emerge. Using the risk free rate definition, we obtain: 

 

B�&�	
�03 ≥ D��:0�	
; < − 03DB:0�	
; < 																																									�2.19� 
 

Comparing with historical data from the U.S. economy, stock returns averaged about 9% 

with a standard deviation of about 16% during the past 50 years. At the same time, real 

annual return on treasury bills was 1%. Applying these numbers on the above equation we 

obtain a market price of risk 0.5, implying a highly volatile discount factor, too high to be 

reconciled with any model that connects the discount factor with macroeconomic variables. 
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This also implies that a representative consumer with power utility function would have a 

risk aversion parameter γ of 50! This is also known as the equity premium puzzle.   

 

 

2.2 Robust Permanent Income and Pricing 

 

In the work “Robust Permanent Income and Pricing” (1999), Hansen, et al. (henceforth HST) 

adjust the stochastic discount factor as to include a component accounting for the decision 

maker’ preference for “robustness”. Decision makers evaluate the value of an asset based 

on their expectation about marginal utility growth and the asset’s future payoff, conditional 

on the information set available at that moment. Although not explicitly stated, behind this 

behavior lies a “model”, a specification of how to transform the information available into 

the expected value. Agents treat their model as a good approximation to an unknown “true” 

model; however, they often doubt it, fearing that data will come from an unknown model 

close to the approximating one. Fears about model uncertainty make agents want decision 

rules that work well for a set of models close to their approximating model. This 

precautionary behavior is incorporated into the stochastic discount factor. According to 

HST’s proposal, the stochastic discount factor consists of two multiplicative components, the 

“ordinary” intertemporal rate of substitution adjusting for risk as discussed in the previous 

section, and the robustness premium that reflects agent’s aversion to model uncertainty. 

Under this approach, the market price of risk is brought much closer to empirical 

observations, helping explain the equity premium puzzle. 

 

HST laboratory consists of a permanent income model of the economy, originating from the 

work of Hall (1978). According to the permanent income hypothesis, consumers form 

expectations about their ability to consume in the future, and based on that, adjust their 

current consumption. The decision rules are formed as a planning problem – consumers use 

a model of the economy to derive expectations about the future and then solve a recursive 

linear quadratic problem.  The state transition equation is: 

 ��	
 = H�� +IJ� + KL�	
																																																																		�2.20� 
 

where�� is the state vector, J� is the control vector, and L�	
 is an i.i.d. Gaussian random 

variable with �L�	
 = 0 and �L�	
L�	
N = O. The decision maker has full visibility of the 

state vector, which includes variables of consumption with habit persistence, capital stock 
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and preference shocks, as derived under the permanent income model. Under a rational 

expectations perspective, preferences are modeled as a risk sensitive control problem: the 

agent fully trusts his model and maximizes his intertemporal utility index: 

 �� = �J� , ��� + �0����	
�																																															�2.21� 
where: 

0����	
� ≡ 2B log �� S�TUVWXY Z �2.22� 
 

and[� is conditional on the state equation (2.20). Utility function (2.21) denotes risk sensitive 

preferences, and is fully discussed in the work of Epstein and Zin (1989), Weil (1993) and 

Hansen and Sargent (1995). Risk sensitivity parameter σis introduced as to impose an 

additional risk adjustment to future states, over and above the on that induced by the shape 

of the standard utility function u(·). Values of σ<0 correspond to a risk averse behavior, while 

σ=0 leads to the usual von Neumann-Morgenstern form of state additivity. The recursive 

formulation with a penalty on future states cancels the indifference in timing and implies a 

preference for early benefits.  

 

The decision maker is maximizing the utility index ��  by choosing a control process J� 
adapted to the state transition equation (2.20). Let ��\ denote the optimal utility index. 

Hansen and Sargent (1995) provide formulas for Ωand ρsuch that: 

 ��\ = ��N]�� + >																																																								�2.23� 
 

Glover and Doyle (1988) linked the stochastic risk-sensitive control problem to robust 

control. Inspired by this, HST consider the robust control problem. A decision maker with 

ordinary preferences fears that his model as expressed by state transition dynamics (2.20) 

has specification errors. He seeks a decision rule for J�that does better when the miss-

specifications materialize, willing to sacrifice optimality when these are absent.  

 

Following the robust control theory, robustness is introduced through a zero-sum two player 

game. The first player is the decision maker who is trying to maximize his regular utility 

function while the second player is a malevolent agent, who through his choice of shocks 

minimizes the utility function. Positing a malevolent agent is just a device that the decision 

maker uses to perform a systematic analysis of the fragility of his decision rules and to 
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construct a lower bound on the performance it can be attained by using them. The 

transitory dynamics are defined as: 

 ��	
 = H�� +IJ� + K�L�	
 + ��																																						�2.24� 
 

where� is the potential model misspecification, and is also the malevolent agent’s control. 

The decision maker maximizes a “regular” utility function with no risk-adjustment: 

 

�^ = �^_���J� , ���`
�a^ 																																															�2.25� 

 

The expectation is conditional on (2.24). The set of misspecifications the decision maker 

wants to guard against can be defined by imposing a constraint on the size of�: 
 

��_�b�	b · �	b ≤ d�`
ba^ 																																												�2.26� 
� · � = d� − �d�	
																																																	�2.27� 

 

The above specification allows � to feedback on ��, including its endogenous components. 

Note that no structure is imposed on �, just a constrain on its size, allowing for a wide class 

of misspecifications. Decision maker’s problem is then: 

 max;V mingV �^ �2.28� �. �. �2.25� − �2.27� 
 

Hansen and Sargent (1998) formulate this problem recursively and link the risk sensitive and 

robust formulations by letting -1/σbe the Lagrange multiplier of the constraint (2.26) to the 

optimization problem. They prove that the optimal utility index is: 

 �h�\ = ��N]�� + >i																																																								�2.29� 
 

Optimal utility index under risk sensitivity��\ and under robust preferences �h�\share the 

same matrix ]but have different constants >and >i.This relationship implies that the risk-

sensitive preferences are exactly the same as the robust control preferences, leading to the 
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sameJ�, and bearing the same implications for consumption and savings. The solution fori�, 
the optimal control of the malevolent agent is given by: 

 i� = B�O − BKN]K�j
KN]�k − lm��� 																																				�2.30� 
 

whereJ� = −m�� denotes the optimal decision rule, common in both formulations. Note 

that malevolent agent’s control i�is linked to the risk sensitive problem through the risk 

sensitivity parameter σ. 

 

Based on this equivalence, HST formulate a risk-sensitive version of the permanent income 

model with habit persistence and estimate it using time series data for consumption and 

investment from the US economy. In order to obtain asset prices, the optimal resource 

allocation problem is considered, and the solution is obtained from the robust permanent 

income problem. A large number of identical agents trade in competitive security markets 

where quantities are equilibrium allocations for a competitive equilibrium. Since agents are 

identical, equilibrium prices become “shadow prices” that clear the market. HST 

demonstrate that the risk-sensitivity parameter σand the subjective discount factor	� are 

not separately identifiable. Pairs of �B, �� are observationally equivalent for quantities, 

however  they bear different implications on the pricing of risky assets and on the amount of 

model misspecification that is required to justify the equivalence to risk sensitivity. For every 

variation in σthere is an offsetting change in �that leaves decision rule F and consumption, 

investment and all quantities unaltered. 

 

HST consider the consumption based model to price assets with an multiplicative 

adjustment to the stochastic discount factor that reflects agents’ aversion to model 

uncertainty. Specifically, they define: 

 &�	
 = &�	
3 &�	
g 																																																			�2.31� 
 

Where &�	
g  is the Radon-Nikodym derivative (or likelihood ratio) of the distorted 

conditional probability of ��	
 with respect to the approximating conditional probability: 

 

&�	
g = �njXY�oVWXjgpV�q�oVWXjgpV�r
�njXYoVWXqoVWXr �2.32� 
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It simply denotes the density ratio of the “distorted” probability distribution relative to the 

“true” one. Note that the likelihood ration &�	
g  depends on the risk sensitivity parameter 

through equation (2.30).  &�	
3
is the familiar intertemporal rate of substitution: 

 

&�	
3 = �s�	
+s�+ �2.33� 
 

wheres�	
+ is the marginal utility of consumption. The basic pricing equation becomes: 

 �� = ��4&�	
3 &�	
g ��	
5																																											�2.34� 
 

while the expectation is conditional on the robust problem formulation. Recall the Hansen-

Jagannathan bounds: B�&�	
����&�	
� ≥ D��:0�	
; < − 03DB:0�	
; < 																																				�2.35� 
 

By a straightforward calculation of (2.32), it follows that: 

 ����&�	
g �t� = �gpVqgpV 																																														�2.36� 
 

Because ���&�	
g � = 1 by construction, it follows that the conditional standard deviation of &�	
g  is: 

B��&�	
g � = u�gpVqgpV − 1 ≈	 Di� D																																				�2.37� 
 

HST callB��&�	
g � the market price of uncertainty, and is measured by the size of distortion 

the representative investor considers. The fact that a preference for guarding against the 

worst case model could lead to a direct enhancement of the market price of risk is not 

surprising. Concern for robustness directs the associated pessimism to the mean-standard 

deviation frontier, amplifying what is usually interpreted as the market price of risk. 

 

Recall that empirical data applied on the Hansen-Jagannathanbounds implied a highly 

volatile discount factor that under the standard consumption based model lead to a risk 

aversion parameterγ of 50. The above formulation helps explain the equity premium puzzle 
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by compensating for the low theoretical value of the “ordinary” discount factor&�	
3
. Given 

the “pessimistic” construction of � , someone might expect the two components &�	
3
 and &�	
g to be positively correlated, increasing the total effect on the discount factor. 

 

In their later work, Barillas, Hansen and Sargent (2007) go as far as to suggest that the 

market price of risk is largely compensating the representative consumer for bearing model 

uncertainty and not risk. Modest amount of model uncertainty can substitute for large 

amounts of risk aversion in terms of its effects on asset prices. Asset prices cannot provide 

useful information about consumer’s attitude toward risk. 
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Chapter 3: Robust Portfolio Rules and Asset Pricing 

 

In this chapter,the recent work of P. J. Maenhout “Robust Portfolio Rules and Asset Pricing” 

(2004) is summarized and discussed. The focus of this paper is asset pricing and portfolio 

and consumption rules when the decision maker worries about the return process of the 

risky asset. There are many good reasons for the investors to doubt the expected equity 

return and want to take decisions that work well under this kind of uncertainty. As a first 

step, Maenhout considers and extends the framework of Anderson et al. (2003) (henceforth 

AHS) on robust preferences and introduces homothetic robust preferences. An analytical 

solution in closed form indicates that robustness decreases the ratio of wealth invested in 

the risky asset. This kind of behavior and overall results bear close resemblance to Stochastic 

Differential Utility (henceforth SDU) – the continuous-time version of recursive utility, 

separating intertemporal substitution and risk aversion - as introduced by Epstein and Zin 

(1989) and Weil (1990), with different implications however on the risk aversion coefficient 

required to reconcile the excess return premium. As Maenhout wants to distinguish these 

three distinct behaviors, risk aversion, intertemporal substitution and uncertainty aversion, 

he considers a decision maker with SDU and robust preferences.  Robustness can be 

interpreted as increasing the “effective risk aversion” as to include the uncertainty aversion, 

without changing the will to substitute intertemporally. An  endowment economy is also 

considered in the Style of Lucas (1978) as to derive asset prices in equilibrium. His main 

conclusion is that both market risk and model uncertainty are priced in equilibrium. 

Robustness also drives down the risk free rate through precautionary savings. By trying to 

measure “risk aversion” from empirical data, one would obtain the combined effect of risk 

aversion �and uncertainty aversion �or simply � + �. Stylized experiments that try to 

estimate “risk aversion” of individuals, usually report relative small values of � because they 

involve situations where events are well specified and usually this environment-specific 

preference for robustness is not exhibited.Finally, empirical data from the US economy are 

used to calibrate the equilibrium model. Given the observed risk free rate and excess return 

of the risky asset from two different time periods, the preference parameters (time, risk, 

uncertainty and intertemporal substitution) are adjusted as to satisfy the equilibrium model. 

Robustness helps resolve both the risk-free rate and the equity premium puzzle, as relatively 

reasonable parameter values reconcile the observational data.  
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Until recently, the bulk of work on dynamic portfolio choice assumes that point estimates for 

the asset return parameters are known and fixed. However, first moments are notoriously 

hard to estimate (Merton (1980), Cochrane (1998), Blanchard (1993)) while some authors 

express skepticism about the reliability of historical estimates (Heaton and Lucas (1999) and 

Campbell and Shiller (1998)). It is only natural to seek decision rules that work reasonably 

well if there is some misspecification about the return process.  

 

Consider an agent who faces a simple dilemma: how much to save and how much to 

consume. He is having at his disposal two financial assets - a riskless paying a risk-free rate w3 

and a risky one paying an excess return	x − w3. His objective is to maximize the expected life 

time utility over consumption: 

�� "y �jz� K�
j{1 − � ��|
^ #,																																																			�3.1� 

 

Preferences are modeled with the help of the power utility function, with �being the relative 

risk aversion co-efficient, K�  the consumption at time t and } > 0the discount factor 

indicating time preference. Expectation is conditional on information at time t. The price of 

the risky asset evolves according to the standard Brownian motion: 

 ��� = x���� + B���I� 																																																		�3.2� 
 

The agent simply decides how much to consume and how much to invest in the risky asset. 

The state equation for wealth is: 

 ��� = 4��:w + .��x − w�< − K�5�� + .�B���I��3.3� 
 

where .� denotes the fraction of wealth invested in the risky asset at time t. Merton (1971) 

considered a value function ���, �� to pose the above multi-period problem as a two period 

problem linking it to optimal control theory and showing that the solution can be obtained 

by solving the Hamilton-Jacobi-Bellman (henceforth HJB) equation for optimality: 

 

0 = sup�V,�V "K�

j{1 − � − }���, �� + ���,�����, ��#																											�3.4� 
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with boundary conditions���, �� = 0 at terminal time T.  ���,�����, ��can be thought as 

the differential expectations operator 

������� and is provided by: 

 

���,�����, �� = ���� n�� �w + .�:x − w3<� − K�r + �1 + 12�11.�tBt��t							�3.5� 
 

where�1 is the partial derivative of the value function with respect to wealth, i.e. 
���1. The 

HJB equation incorporates the assumption that wealth evolves according to (3.3), reflecting 

a particular underlying model. However, for the reasons discussed before, the decision 

maker wants to take uncertainty about the return process into account when formulating 

portfolio rules. He suspects that the model is misspecified and considers alternative models 

that are relative close to the reference model. Following robust control literature, this 

preference for robustness is modeled through a malevolent agent who through his control is 

minimizing the expected life-time utility of the decision maker. The malevolent agent’s 

control is constrained by an entropy penalty denoting the strength of the preference for 

robustness. 

 

Inspired by AHS, the transition law of wealth is modified as to include an endogenous drift to 

the Brownian motion: 	��� = 4��:w + .��x − w�< − K�5�� + ��������������� + .�B���I��3.6� 
 

where���� is the control of the malevolent agent, through which the preference for 

robustness is introduced. The HJB equation then becomes: 

 

0 = sup�V,�V infg�1V� "K�
j{1 − � − }���, �� + ���,�����, �� + �1.�tBt��t����
+ + 12Ψ��, �� .�tBt��tt����# �3.7� 

 

The first three terms are exactly the same as in the original HJB equation, while the fourth is 

the adjustment to the differential operator (3.5) reflecting the additional drift to the 

transitional law of wealth as in (3.6). The last term 

t��1,��.�tBt��tt���� > 0 is called 

entropy penalty and is used to constrain the disparity between the reference model and the 
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worst case alternative model that is considered, by imposing a penalty on alternative models 

that are too far away from the reference model. The distance of two models is measured by 

the derivative of relative entropy and in the above formulation is introduced by term .�tBt��tt����. Intuitively it can be though as a log-likelihood ratio. The parameter Ψ�W,t�>0 measures the strength of the preference for robustness - with higher values 

corresponding to a stronger preference. The entropy penalty - the distance between models 

weighted by the preference for robustness - is always positive or zero; large drift distortions 

work in the opposite direction of the malevolent agent’s strategy for expected utility 

minimization. A stronger preference for robustness (Ψ�W,t�>>0�, would imply a reduced 

impact of the entropy penalty, allowing the decision maker to consider and guard against 

larger drift distortions (alternative models with larger distance). Finally, note that Ψ�W,t�=0	
corresponds to expected utility maximization. Solving for the minimization part of the HJB 

equation yields: ∗���� = −Ψ��, ���1																																																				�3.8� 
 

In case the decision maker has no preference for robustness (Ψ��, �� = 0), then there are 

no perturbations to guard against (∗���� = 0). Substituting (3.8) into the HJB we obtain: 

 

0 = sup�V,�V "K�

j{1 − � − }���, �� + ���,�����, �� − Ψ2 �1t.�tBt��t# �3.9� 

 

with boundary conditions ���, �� = 0 at terminal time T. The necessary optimality 

conditions for consumption and portfolio choice are: 

 �K�∗�j{ = �1																																																													�3.10� 
.�∗ = −�1��11 −Ψ�1t �� x − wBt 																																														�3.11� 

 

Under the original Merton’s formulation (with no preference for robustness), the optimality 

condition for the fraction of wealth invested in the risky asset is: 

 

.�∗ = −�1�11�x − wBt 																																																								�3.12� 
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where
�j��Y  is the mean variance frontier and 

j���1��  adjusts for risk aversion. The preference 

for robustness simply introduces the additional term Ψ�1� > 0 to the “risk aversion” 

adjustment. On the other hand, the optimality condition for consumption is not affected by 

the introduction of robustness. By substituting the optimality conditions in the HJB equation 

(3.9), it becomes clear that no analytical solution exists for the value function, unless further 

assumptions are made. Without knowledge of the value function (or at least its partial 

derivatives), the impact of introducing robustness on portfolio choice cannot be quantified. 

AHS consider a fixed value � > 0 for parameterΨ, independent of wealth and constant 

across time. However, Maenhout proves that preferences induced in that case are not 

homothetic, since the portfolio weight is not independent of wealth (at least not for general 

CRRA preferences) and robustness wears off as wealth rises. Homothetic preferences are 

desired not only out of the modeling convenience, but for a number of reasons; they imply 

stationary rate of returns, wealth invariance of optimal decisions and finally facilitate 

aggregation and the construction of a representative agent. In order to impose the desired 

homotheticity, Maenhout proposes the following modification, scaling � by the value 

function: 

Ψ��, �� = ��1 − �����, �� > 0																																												�3.13� 
 

The HJB equation (3.9) then becomes: 

 

0 = sup�V,�V S��K�� − }���, �� + ���,�����, �� − �2�1 − �����, �� �1t.�tBt��tZ �3.14� 
 

Solving the above equation for ��K�� = �VX ¡
j{ , one obtains: 

 

���, �� = ":1 − �j¢�|j��</ #{�
j{1 − � 																																								�3.15� 
where 

/ ≡ 1� S} − �1 − ��w − 1 − �2�� + �� nx − wB rtZ �3.16� 
 

The optimal consumption rule has the same structure as the one obtained from the original 

problem posed by Merton, reflecting however a different portfolio weight: 
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K�∗ = /1 − �j¢�|j���� 																																																				�3.17� 
 

The optimal portfolio rule is provided by: 

 

.∗ = 1� + � x − wBt 																																																								�3.18� 
 

Again, the above has exactly the same form as the portfolio rule derived from Merton 

solution. However, the risk aversion adjustment term

{	£ also reflects the preference for 

robustness. Since � + � > �the proportion of wealth invested in the risky asset is smaller 

than the one provided from the Merton solution.  

 

Financial markets are environments where decision makers are faced with uncertainty. 

Probabilities may not always be known or can be estimated, while when there is data 

available, decision makers often doubt them. By trying to measure “risk aversion” from 

empirical data, one would obtain the combined effect of risk aversion �and uncertainty 

aversion �or simply � + �. Although stylized experiments have been designed to estimate 

“risk aversion” of individuals, they usually involve situations where events are well specified 

and usually this preference for robustness is not exhibited. Therefore, the “risk aversion” 

parameter captured from such experiments is simply �. The combined effect of risk and 

uncertainty aversion present in financial markets cannot be measured through such 

experiments. Uncertainty aversion is environment specific, and although risk aversion �might be constant across environments, difficult situations might generate a higher 

perceived� + �. 

 

Although not explicitly specified until now, a possible range for “empirical” values of the 

parameter of risk aversion �under this model can be obtained by solving for the worst case 

expected excess return of the risky asset the investor worries about. Consider the state 

equation for wealth where the investor optimally allocates his wealth between the riskless 

asset and the risky assetby choosing .∗ under the worst case scenario (malevolent agent 

employs his optimal control∗): 

 ��� = 4��:w + .�∗�x − w�< − K�5�� + �.�∗�tBt��t∗������ + .�∗B���I� 					�3.19� 
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The above can be interpreted as if the decision maker would expect the price of the risky 

asset to evolve (assuming no dividends) according to: 

 ����� = �x + ¤∗�Bt∗��� + B�I� 																																										�3.20� 
 

And by substituting the values of ¤∗ and ∗: 
 ����� = Sx − �x − w� �� + �Z�� + B�I� 																																							�3.21� 
 

The above equation implies that the decision maker worries that the return premium of the 

risky asset in not �x − w� and is guarding against a worst case expected excess return equal 

to: 

�¦§ ≡ ��g∗ S����� − w��Z = �� + � �x − w���																																	�3.22� 
 

where��g∗ is the conditional expectation under the worst case alternative model the decision 

maker considers. By re-arranging the above equation, a range for the possible values of �can 

be obtained: 

 

� = � �¦| − �¦§�¦§ 																																																								�3.23� 
 

where�¦| = �x − w� is the equity premium in the absence of uncertainty. To better 

understand the above results, consider the case where the investor is moderately risk averse 

with γ=5. By using historical data from the US economy, the stock returns averaged about 

9% with a standard deviation of about 16% during the past 50 years. At the same time, real 

annual return on treasury bills was 1%, meaning that the observed equity premium is 8%. 

Table 1 summarizes implications for portfolio rules and expected equity premium when the 

decision maker is uncertainty averse. 
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Uncertainty aversion 
proportion of wealth 

invested in risky asset ¨∗ 
expected excess return 

of risky asset �©ªª� 
θ=0 62.5% 8.0% 

θ=0.1 61.3% 7.8% 

θ=0.5 56.8% 7.3% 

θ=1 52.1% 6.7% 

θ=2.5 41.7% 5.3% 

θ=5 31.3% 4.0% 

 

Table 1: Proportion of wealth invested in risky asset and expected excess return under 

homothetic robustness when risk aversion parameter γ=5 and observed excess return �x − w� = 8%. 

 

The first line of the above table - where the parameter of uncertainty aversion θ=0 - simply 

denotes the expected utility case without any preference for robustness. The decision maker 

trusts the data available, expecting an excess return of the risky asset equal to (μ-r), and 

invests a significant proportion of his wealth to the risky asset. However, in the cases where 

the investor is more uncertainty averse, he considers perturbations in the model, leading to 

a smaller expected excess return of the risky asset. He guards against it by investing a 

smaller proportion of his wealth to the risky asset. The more uncertainty averse the decision 

maker is, the less proportion of his wealth is willing to invest in the risky asset. 

 

As a next step, Maenhout demonstrates that the investor with a homothetic preference for 

robustness is closely related to an investor with stochastic differential utility form (SDU) as 

described by Duffie and Epstein (1992a). As also noted by AHS, the HJB equation (3.14) 

describing the preferences of the uncertainty averse agent has exactly the same form as a 

Duffie-Epstein agent with elasticity of intertemporal substitution �j
and coefficient of 

relative risk aversion	� + �, leading to the same consumption rule. However, there is a 

crucial difference between SDU and a preference for robustness. Stochastic Differential 

Utility reconciles empirical observations by simply predicting a very high value of �, which is 

in contrast to low estimates based on stylized experiments. Furthermore, in the non-robust 

stochastic differential utility framework, a power utility function implies equal willingness for 

substitution over time as across states, since the coefficient of relative risk aversion	�is also 

the inverse of elasticity of intertemporal substitution. On the other hand, robust preferences 
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generate environment specific “risk (uncertainty) aversion”, increasing the total “effective 

risk aversion�� + ��”, predicting an agent less willing to substitute across states - as the co-

efficient of relative risk aversion becomes � + � > � -without changing the willingness to 

substitute intertemporally. Having intertemporal substitution decoupled from risk aversion 

will prove important later on.  

 

In order to distinguish between these three distinct behaviors – risk aversion, intertemporal 

substitution and uncertainty aversion – Maenhout extends the SDU framework by 

considering a Duffie-Epstein agent who also worries about model uncertainty. This can be 

done by replacing ��K�� − }���, �� using the normalized Duffie Epstein aggregator in the 

HJB equation (3.14): 

 

0 = sup�V,�V ¬ 11 − ® �
j¯
:�1 − �����, ��<¡ °X ¡ − }�1 − �����, ��± + ���,�����, ��

− �2�1 − �����, �� �1t.�tBt��t² �3.24� 
 

Where � is the robustness parameter, � is the risk aversion parameter and j
denotes the 

elasticity of intertemporal substitution. The optimal portfolio and consumption rules are 

given by: 

K�∗ = �1 − �j��|j���� 																																																				�3.25� 
.∗ = 1� + � x − wBt 																																																								�3.26� 

 

where � ≡ 
̄ S} − �1 − �w − 
j¯t�{	£� n�j�� rtZ. The above decision rules allow Maenhout to 

formalize the link between stochastic differential utility and robust preferences: An investor 

with a homothetic preference for robustness Ψ��, �� = £�
j{���1,�� and Duffie-Epstein 

utility function with risk aversion � and elasticity of intertemporal substitution j
 is 

observationally equivalent to a Duffie-Epstein investor with the same elasticity of 

intertemporal substitution j
 and coefficient of relative risk aversion � + �.  
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In order to derive the equity premium and the risk free rate in equilibrium, an endowment 

economy as described by Lucas (1978) is then considered. The representative agent receives 

an endowment, which he has to fully consume in equilibrium, and can trade a riskless-free 

asset and a risky one, entitling the owner to a dividend (the endowment). Both risk free rate 

and equity premium adjust as to support a no-trade equilibrium. The dividend is modeled by 

a geometric Brownian motion: 

 ��� = x³���� + B³���I� 																																																�3.27� 
 

with x³ , B³ > 0. The total return of the risky asset, consisting of both the dividend yield and 

the capital gain evolves again according to a Brownian motion: 

 ��� + ������ = x´�� + B´�I� 																																														�3.28� 
 

where coefficients x´ and B´ > 0 are obtained by equilibrium condition. Denoting the risk-

free rate by w3 and .� the fraction of wealth allocated to the risky asset, the representative 

agent’s wealth evolves according to: 

 ��� = n�� �w3 + .��x´ − w�� − K�r �� + .�B´���I� 																									�3.29� 
 

The HJB equation then for a robust investor with Duffie-Epstein utility, intertemporal 

substitution of risk aversion j
, risk aversion �, and preference for robustness � is: 

 

0 = sup�V,�V ¬ 11 − ® �
j¯
:�1 − �����, ��<¡ °X ¡ − }�1 − �����, ��± + �o n�� �w3 + .��x´ − w�� − K�r
+ 12 µ�oo − ��1 − �����, �� �1t ¶ .�tBt��t² �3.30� 

 

The robust equilibrium is then defined as a set of rules over consumptionK�, investment.�, 
prices �� and risk free rate w3 such that simultaneously: 

 

• Markets clear continuously: K∗ = � and .∗ = 1 
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• The HJB equation (3.30) is solved subject to boundary condition lim�→` �4�jz������5 = 0 

 

The optimality conditions are: 

.∗ = 1� + � x´ − w3Bt́ 																																																							�3.31� 
K�∗ = �´�� 																																																															�3.32� 

 

 

where �´ ≡ 
̄ S} − �1 − �w − 
j¯t�{	£� n�¸j�¹�¸ rtZ. From the clearing of market �.∗ = 1� and 

(3.31), the CCAPM result is easily obtained: 

 

x´ − w3 = �� + ��Bt́																																																							�3.33� 
 

It follows that the excess return on the risky asset evolves according to: 

 

��� + ���� − w3�� = �� + ��B�º�� + B³�I� 																																			�3.34� 
 

where B�º ≡ �78 ���� , �ºº �. Both market risk and model uncertainty are priced in equilibrium 

with the combined price of risk given by � + �, higher than what would be expected by 

genuine risk aversion alone. The equilibrium risk free rate is given by: 

 

w3 = } + x³ − 12 �1 + ��� + ��B³t�3.35� 
 

The risk-free rate is determined by three fundamental factors of savings in the economy: 
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• Time preference }. When people are impatient (high }) it takes a high real interest 

rate to convince them to save. 

• Intertemporal substitution and consumption growth. When people expect 

consumption growth in the future, it takes a higher risk free rate to convince them to save. 

• Volatility of consumption. People do not like uncertainty about consumption and 

want to save more, driving down the equilibrium risk free rate through precautionary 

savings.  

Decoupling intertemporal substitution from risk aversion is very important since it allows 

high values of � without implicitly producing a high risk free rate. This will become particular 

useful in the empirical calibration later on. In order to derive the worst case expected equity 

premium in under equilibrium, Maenhout considers the least favorable excess return. This is 

obtained whenall the agents in the model  do not exhibit a preference for uncertainty 

aversion, i.e. � = 0. In that case, the worst case expected equity premium supporting the 

equilibrium is given by: 

 

�¦§∗ = �B+´�3.36� 
 

Although the endogenous equity premium depends on uncertainty aversion, the pessimistic 

equity premium in the economy equilibrium does not depend on �. What � does is to index 

the distance between the pessimistic equity premium and the true equity premium.  

 

The equilibrium model is then calibrated using empirical data from the US economy. Given 

the observed risk free rate and excess return of the risky asset from two different time 

periods, the preference parameters }, �, , �	are adjusted as to satisfy the equilibrium 

equations (3.34) and (3.35). Consumption growth x³, volatility B³t and covariance B+´ are 

also calculated from empirical data. Discount rate }must be strictly positive while rate of 

intertemporal substitution j
 is constrained to less than one, following the recent research 

of Weber (1995) and Vissing-Jorgensen (2002). Only values of �less than 10 are considered 

and �is set to match the historical equity premium. The table below summarizes the 

preference parameters as derived by Maenhout, based on data taken from Campbell (1999). 
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Estimated consumption and return parameters 

Sample: 1891-1994 1947-1996 x+ 1.74% 1.91% B�  3.26% 1.08% Bº 18.53% 15.21% >�º 0.497 0.193 w3 1.96% 0.79% xº − w3 6.26% 7.85% 

 

Table 2: Estimated consumption and return parameters based on two sets of historical data. 

 

Required Preference Parameters 

Sample: 1891-1994 1947-1996 

 Standard 

Expected Utility  

SDU with 

robustness 

Standard 

Expected Utility 

SDU with 

robustness } -0.101 0.02 -1.10 0.015 				j
 �j
 0.6 �j
 0.6 � 21 7 247 10 � 0 14 0 237 �¦§∗ - 2.1% - 0.32% 

 

Table 3: Preference Parameters reconciling historical data for standard expected utility 

model (without a preference for robustness) and SDU with a preference for robustness. 

 

Standard expected utility cannot reconcile either set of historical data since time preference } turns negative and the risk free rate puzzle shows up. Furthermore, in the case of post war 

data, the equity puzzle is also present as only a very high risk aversion value would fit the 

data. Introduction of robustness under the SDU framework (decoupling of risk aversion from 

intertemporal substitution) allows for plausible values of }, �and . The century long sample 

is easier to match and risk aversion is maintained at the relatively low value of 7. The 
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“effective price of risk “ is � + � = 21while values of  and } are also considered plausible, 

helping explain the low risk free rate despite the precautionary savings imposed by values of � + �. The worst case expected equity premium is 2.1%, and coincides with the average 

pessimistic answer in a survey conducted by Welch (2000) among financials economists. On 

the other hand, in the post war data, the excess return can only be reconciled by a very high 

“effective price of risk” � + � = 247. Risk aversion � takes the maximum value allowed and 

uncertainty aversion needs to be as high as 237. Despite the large valued of �, the 

pessimistic expected equity premium is 0.32% mainly due to the small value of the 

covariance of consumption and asset prices B�º . Finally, both } and take reasonable 

values. 

 

The final step of calibration is to explore whether the values 14 and 237 of uncertainty 

aversion �are plausible. As discussed before, � is used to index the set of alternative models 

the agent considers by constraining the distance between the reference model and the 

worst case alternative model. As a consequence, � would also dictate the gap between the 

reference expected equity premium x´ − w3 and the and the pessimistic expected equity 

return �¦§∗ = �B+´. The decision maker would try to determine whether data are coming 

from the reference or an alternative model and to this end he can perform likelihood ratios 

tests based on observations available. The models are difficult to distinguish if the 

probability of rejecting one in favor of the other is high. Using a Bayesian model selection 

problem, the difference of 4.16% between the reference equity premium and the 

pessimistic premium would imply that in the century long data, the decision maker would 

find it hard to distinguish between the two models so it would be natural to be uncertainty 

averse. The value of uncertainty aversion � = 14is considered plausible. In contrast, in the 

post war data, the gap between the equity premium of two models is as high as  7.53%. This 

implies that the decision maker should be able to distinguish between these two models 

that generate so different results, therefore, the high value of uncertainty aversion �� = 237� does not seems plausible. 

 

As a final note, Brown, Goetzman, Ross (1995) and Jorion and Goetzman (1999) argue that 

the calibration of models using historical data from the US economy, the world’s most 

successful, suffers from severe ex-post survival bias. The real observed equity return in the 
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US stock market is 4.3%, far above the median of the world’s stock markets of only 0.8% 

(Jorion and Goetzman (1999)). Investors are uncertain whether the generous equity 

premium of the US stock market will materialize again, leading to a more cautious behavior. 

The equilibrium model that is described above formalizes exactly this idea. 
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Chapter 4: Robust Efficient Frontiers 

This chapter briefly presents applications of robust control in mean variance frontier analysis 

and portfolio selection problems. The first mathematical formulation of allocating capital 

over a number of available assets with the objective of maximizing the “return” of the 

investment while minimizing the “risk” is owed to Markowitz (1952, 1959). In the Markowitz 

portfolio selection problem, the “return” on a portfolio is measured by the expected value of 

the random portfolio return, and “risk” is quantified by the variance of the portfolio return. 

The investor is said to have mean-variance preferences if his portfolio preference is based 

only on the mean return and the volatility of return. A risk averse investor would desire a 

portfolio with the highest possible return and the lowest possible risk at the same time. 

However, as there is in general a positive relationship between expected return and risk, 

both objectives cannot be achieved simultaneously. Given the maximum risk that an 

investor is willing to tolerate, the optimal allocation can be obtained by solving an 

optimization problem.  

 

Markowitz also demonstrated that a portfolio of investment assets can have collectively 

lower risk than any of the individual components, a concept that is known as diversification. 

Intuitively, this can be explained behind the fact that asset prices move inversely, or at 

different times, in relation to each other, therefore reducing the total variance of the 

portfolio return. The strength of this relationship between the assets’ price changes is 

measured by the correlation of the mean returns and defines the benefits of diversification. 

A key contribution of Markowitz Portfolio Theory is a way to find the best possible 

diversification strategy so that for a given return, the minimum variance is achieved. This set 

of all such portfolios is known as the “mean variance efficient frontier; a risk averse rational 

investor would choose a portfolio from this set based on his risk aversion preferences, 

trading off between expected return and risk. 

 

Despite the theoretical success of the mean-variance model (Markowitz and Sharpe shared 

the Nobel Memorial Prize in Economic Sciences for their work on portfolio allocation and 

asset pricing), practitioners often challenge some of the basics assumptions, doubt its 

applicability and mistrust the results. One of the key reasons for this is the model’s 

susceptibility to parameter estimation errors. Market parameters, (like the mean return of 
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an asset), are notoriously hard to estimate and subject to statistical errors. However, the 

optimization problem in the heart of the mean variance efficient frontier is very sensitive to 

perturbations in the parameters of the model. The following quote of Michaud (1998) is 

indicative: “Although Markowitz efficiency is a convenient and useful theoretical framework 

for portfolio optimality, in practice it is an error-prone procedure that often results in error-

maximized and investment-irrelevant portfolios”. Various authors has examined the 

sensitivity of mean variance efficient portfolios to errors in parameters (see for example 

Klein and Bawa (1976), Best and Grauer (1991), Chopra (1993) and many others). Several 

techniques have been suggested to reduce the sensitivity of portfolios to input uncertainty, 

with most common the Bayesian approaches (see for example Bawa et al (1979), Pastor 

(2000), and many others).  

 

Another branch of the parameter sensitivity related literature is inspired from the robust 

control theory. Robust control theory emerged to explicitly deal with model uncertainty and 

guarantee a given level of performance as long as the uncertain parameters remain within 

specific bounds. This chapter  briefly discusses the application of robust control in alleviating 

the sensitivity problem and designing robust mean variance efficient frontiers. The key idea 

is to incorporate a model of data uncertainty in the formulation of the optimization problem 

and optimize for the worst case scenario. A recent survey can be found in Fabozzi  et al. 

(2007), while this chapter summarizes Kim and Boyd (2007). 

 

Consider an investor who wants to allocate his savings among » available risky assets. 

Assets’ returns are modeled as random variables, with known point estimates for the first 

and second moments. Considerthemeanvector: 

 

x = ¼�w̃� = ¼�w̃
 w̃t … w̃¿� = �x
 xt … xÀ��4.1� 
 

 

wherew̃; denotes the random variable describing the return of the J�Á asset,¼is the 

expectation operation, and x; = ¼�w̃;�the expected return. Covariance matrix is provided by: 
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Â = Ã�w̃ − x��w̃ − x�Ä = ÅB

Bt
 B
tBt
 …… B
ÀBtÀ…	 …	 …BÀ
 BÀt … BÀÀÆ �4.2� 
 

Where B;bis the covariance of the J�Á asset with the Ç�Á asset and B;; = B;t the variance of 

the J�Á asset. It is assumed thatÂ is positive definite, a property that will prove useful later 

on in the optimization. For a brief overview of the implications of this property of the 

correlation matrix in the portfolio variance see Ong and Ranasinghe (2000). Let L; denote 

the portion of wealth invested in the J�Á asset. Obviously ∑ L;¿;a
 = 1or É|L = 1, where É 

is the vector of all ones. Theexpectedreturnoftheportfolioisthen: 

 

¼:0Ê§< = L|x																																																																										�4.3� 
 

The risk of the portfolio is measured by the standard deviation of the return: 

 

���:0Ê§< = �L|ÂL�XY																																																																		�4.4� 
 

Given the maximum amount of risk the investor is willing to take (the maximum acceptable 

volatility level B�ËÌ), the objective of finding portfolio weights that maximize the portfolio’s 

expected return can be posed as an optimization problem: 

 

maximizeÏ wÑμ																																																																								�4.5� 
s. t. ÓwÑΣw ≤ σÖ×Ø 

1Ñw = 1 
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For every possible level of risk tolerance (value of B ∈ Ú	), the optimal return defines the 

curve: 

 

-�,Û�B� = maximize
ÜÏa
,				ÓÏÜÝÏÞ�wÑμ �4.6� 
 

The concave and increasing part of -�,Û�B�is called the mean variance efficient frontier, and 

any portfolio w is called mean variance efficient if its risk and mean return are on the 

efficient frontier. The efficient frontier is the set of all Pareto optimal portfolios; any 

portfolio with the same return as the mean variance efficient portfolio, would  simply have a 

higher risk. Figure 4.1 show a typical mean variance frontier when there is no risk free asset. 

The ratio of excess expected return of a portfolio L (relative to the risk free return w3) to the 

return volatility is known as the Sharpe Ratio and denotes the reward for taking risk: 

��¹�L, x, Â� = wÑμ − w3√wÑΣw 																																																														�4.7� 
 

The problem of finding an admissible portfolio that maximizes the reward of taking risk can 

be posed as the optimization problem: 

 

maxo ��¹�L, x, Â�																																																																						�4.8� 
�. �.					1Ñw = 1 

 

The optimal value is known as the market price of risk.  When the risk free asset is available, 

the efficient frontier is a line of the form: 

 

w = w3 + � max
ÜÏa
��¹�L, x, Â�� B																																																									�4.9� 
 



 

Figure 4.1: Mean Variance 

 

When a risk free asset is introduced and combined with any other portfolio of assets, the 

change in return is linearly related to the change in risk as the weights in the combination 

vary. The efficient frontier is obtained by maximizing the Sharpe ratio and is shown as a blue 

line in Figure 4.1 that passes through the risk free asset and is tangent to the efficient 

frontier of risky assets. In that case, the efficient frontier is known as the Capital Mark

Line. 

 

The above formulation assumes that the model parameters, (i.e. the assets mean returns 

and the variability of returns) are known and correct. However, this is hardly the case as in 

practice the parameters are difficult to estimate, or, are estima

(2007) propose the following application of robust control to mean variance analysis and 

optimization as a mean of finding portfolio weights that perform reasonably well despite 

estimation error or model uncertainty. Consider t

mean return vector and the covariance are independent of each other. Let Theàádenote the set of all possible expected return vectors and 

covariances where â		á  is the set of all 

Theseparableuncertaintysetcanbewrittenas:

Mean Variance Efficient Frontier with and without a risky asset.

When a risk free asset is introduced and combined with any other portfolio of assets, the 

change in return is linearly related to the change in risk as the weights in the combination 

rontier is obtained by maximizing the Sharpe ratio and is shown as a blue 

line in Figure 4.1 that passes through the risk free asset and is tangent to the efficient 

frontier of risky assets. In that case, the efficient frontier is known as the Capital Mark

The above formulation assumes that the model parameters, (i.e. the assets mean returns 

and the variability of returns) are known and correct. However, this is hardly the case as in 

practice the parameters are difficult to estimate, or, are estimated with error. Kim and Boyd 

(2007) propose the following application of robust control to mean variance analysis and 

optimization as a mean of finding portfolio weights that perform reasonably well despite 

estimation error or model uncertainty. Consider the case where the uncertainties in the 

mean return vector and the covariance are independent of each other. Let The

denote the set of all possible expected return vectors and ã ⊆ â		á  the set of all possible 

is the set of all å	 æ 	å symmetric positive definite matrices. 

Theseparableuncertaintysetcanbewrittenas: 
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Efficient Frontier with and without a risky asset. 

When a risk free asset is introduced and combined with any other portfolio of assets, the 

change in return is linearly related to the change in risk as the weights in the combination 

rontier is obtained by maximizing the Sharpe ratio and is shown as a blue 

line in Figure 4.1 that passes through the risk free asset and is tangent to the efficient 

frontier of risky assets. In that case, the efficient frontier is known as the Capital Market 

The above formulation assumes that the model parameters, (i.e. the assets mean returns 

and the variability of returns) are known and correct. However, this is hardly the case as in 

ted with error. Kim and Boyd 

(2007) propose the following application of robust control to mean variance analysis and 

optimization as a mean of finding portfolio weights that perform reasonably well despite 

he case where the uncertainties in the 

mean return vector and the covariance are independent of each other. Let Theç ⊆
the set of all possible 

symmetric positive definite matrices. 
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è =ç æ ã ⊆ àá æ â		á 																																																												�4.10� 
 

In the above formulation the uncertainties in the mean return and covariance are 

independent of each other. Furthermore, it is assumed that ç  and ãare compact (bounded 

and closed). For a given portfolio w, the expected mean return under parameter uncertainty 

would lie within bounds: 

 

min�∈çwÑμ ≤ w ≤ max�∈çwÑμ																																																											�4.11� 
 

The worst case (smallest possible) return is then wo+�w� = min�∈çwÑμ. The variance lies 

within: 

 

minÛ∈ã ÓwÑΣw ≤ B ≤ maxÛ∈ã ÓwÑΣw																																																				�4.12� 
 

Similarly the worst case (maximum possible) risk is Bo+�w� = maxÛ∈ã √wÑΣw. Assuming 

that the model uncertainty set è is connected, the performance of the portfolio lies within a 

box in the mean variance space, denoting the set of all possible combinations of risk and 

return the investor might end up with when investing on the portfolio w. Figure 4.2 shows 

an example of this. The worst-case scenario is the lower right corner (the blue dot) as it has 

the lowest return with the highest risk.  

In the traditional Markowitz formulation, an investor with mean variance preferences who 

knows the true parameters of his model with certainty and trusts them, would prefer a 

portfolio w
 to a portfolio wt if w
 has a higher (or equal) return and a lower (or equal) risk.  



 

Figure 4.2:Return-risk space for three portfolios under separable model uncertainty. 

 

Inspired by the max-min exp

Boyd extent the notion of portfolio preference to 

separable model uncertainty; when a

he is considering the set of all possible outcomes. Being uncertainty averse, the decision is 

made with respect to the least favorable (worst case) outcome. 

portfolio w
 to portfoliowt 

equal) worst case risk. In Figure 4.2, portfolio 

however no clear preference relation can be made between any other two pairs. Under this 

formulation, the investor would seek portfolio weights that maximize the worst

return as long as the worst

counterpart of the portfolio optimization problem can be posed as:

 

risk space for three portfolios under separable model uncertainty. 

min expected utility theory of Gilboa and Schmeidler (1989), Kim and 

Boyd extent the notion of portfolio preference to robust mean-variance analysis

separable model uncertainty; when an individual is considering a specific portfolio (weights) 

ng the set of all possible outcomes. Being uncertainty averse, the decision is 

made with respect to the least favorable (worst case) outcome. An investor would prefer 

 if w
 has a higher (or equal) worst-case return and a lower (or 

equal) worst case risk. In Figure 4.2, portfolio Lt is preferred to Lé in the worst

however no clear preference relation can be made between any other two pairs. Under this 

n, the investor would seek portfolio weights that maximize the worst

return as long as the worst-case risk remains within a level of tolerance. The robust 

counterpart of the portfolio optimization problem can be posed as: 

maximizeÏ wo+�w�																																																			
s. t. Bo+�w� ≤ σÖ×Ø 

1Ñw = 1 
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risk space for three portfolios under separable model uncertainty.  

ected utility theory of Gilboa and Schmeidler (1989), Kim and 

variance analysis with 

n individual is considering a specific portfolio (weights) 

ng the set of all possible outcomes. Being uncertainty averse, the decision is 

An investor would prefer 

case return and a lower (or 

in the worst-case sense, 

however no clear preference relation can be made between any other two pairs. Under this 

n, the investor would seek portfolio weights that maximize the worst-case mean 

case risk remains within a level of tolerance. The robust 

																			�4.13� 



 

Figure 4.3: Robust mean variance frontier. Portfolios 

efficient while Léis not. 

wherewo+�w� and Bo+�w� denote the worst case mean return and volatility respectively and σÖ×Ø is the maximum level of risk that the investor is willing to undertake. For every possible 

level of risk toleranceσÖ×Ø ∈
 

-�Ë¢
 

The above curve is defined as the 

of Pareto optimal worst-case performance that can be achieved

mean variance efficient if its worst

caseSharperatioisalsodefinedas:

 

�o+:w
In the traditional Markowitz formulation, the investor has  mean

his portfolio choice is based only on the mean return and risk of the resulting portfolio.  

Robust mean variance frontier. Portfolios L
 and Léare robust mean variance 

� � denote the worst case mean return and volatility respectively and 

is the maximum level of risk that the investor is willing to undertake. For every possible �0,∞� the optimal solution of the problem defines the curve:

¢�B� = maximize
ÜÏa
,				�ëì�Ï�Þíîïð wo+�w�																										

The above curve is defined as the robust mean variance efficient frontier and denotes the set 

case performance that can be achieved. A portfolio is called

if its worst-case risk and return lie on the above curve. 

caseSharperatioisalsodefinedas: 

:w, w3< = min�∈ç,Û∈ã ��¹�L, x, Â�																																			
In the traditional Markowitz formulation, the investor has  mean-variance preferences, i.e. 

his portfolio choice is based only on the mean return and risk of the resulting portfolio.  
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are robust mean variance 

denote the worst case mean return and volatility respectively and 

is the maximum level of risk that the investor is willing to undertake. For every possible 

the optimal solution of the problem defines the curve: 

																			�4.14� 

and denotes the set 

rtfolio is calledrobust 

case risk and return lie on the above curve. Theworst-

																			�4.15� 
variance preferences, i.e. 

his portfolio choice is based only on the mean return and risk of the resulting portfolio.  
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Furthermore, it is assumed that he is risk averse, i.e. between two portfolios with equal 

expected mean return, he would choose the one with the less risk. Such a behavior can be 

modeled with the help of a utility function: 

 

 �wÑμ,ÓwÑΣw� �4.16� 
 

Since the investor is risk averse, :wÑμ, √wÑΣw< is strictly increasing in wÑμ (for fixed √wÑΣw) and strictly decreasing in √wÑΣw (for fixed wÑμ). A commonly used function is the 

expected quadratic utility function: 

 = wÑμ − �2wÑΣw																																																																		�4.17� 
 

whereγ > 0 is the risk aversion coefficient, denoting the strength of preference towards 

risk. When the investor trusts the parameters of his model, the portfolio selection problem 

reduces to maximizing his utility: 

 

maxÏ �wÑμ − γ2wÑΣw�																																																																�4.18� 
	s. t. 1Ñw = 1																																																																																											 

 

In the robust portfolio formulation of Kim and Boyd (2007), investor’s preferences towards 

parameter uncertainty are modeled as a text-book robust control max - min optimization 

problem. The investor is trying to maximize his utility while a malevolent agent is trying to 

minimize it through his control on the uncertain parameters. The control of the malevolent 

agent is constrained by the uncertainty set, denoting the investor’s strength towards 

uncertainty aversion. Theproblemisposedas:  

 

maxÏ min�∈ç,Û∈ã �wÑμ − γ2wÑΣw� �4.19� 



 

 

orequivalentlyas: 

				
 

Denote by w∗ the solution to the above problem and 

case scenario. In the risk-return space, the quadratic curve 

to the robust efficient frontier at portfolio

Figure 4.4: Robust efficient frontier and quadratic utility maximization under model 

uncertainty (without the risk free asset). 

 

Kim and Boyd (2008) extend the two

investor with a quadratic utility function as above and uncertainty aversion can separate the 

investment problem into two steps; first, find the portfolio of risky assets that maximizes 

maxÏ òwo+�w� − γ2
		s. t. 1Ñw = 1																																																																	

the solution to the above problem and �∗ the optimal utility under the worst

return space, the quadratic curve w = �∗ + �γ/2�
to the robust efficient frontier at portfolio-point w∗. ThisisillustratedatFigure 4.4. 

Robust efficient frontier and quadratic utility maximization under model 

uncertainty (without the risk free asset).  

d (2008) extend the two-fund separation theorem demonstrating that an 

investor with a quadratic utility function as above and uncertainty aversion can separate the 

investment problem into two steps; first, find the portfolio of risky assets that maximizes 
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s. t. 1Ñw = 1 

γ2Bo+�w�ô �4.20� 
																															 

the optimal utility under the worst-� �Bt is tangential 

ThisisillustratedatFigure 4.4.  

 

Robust efficient frontier and quadratic utility maximization under model 

fund separation theorem demonstrating that an 

investor with a quadratic utility function as above and uncertainty aversion can separate the 

investment problem into two steps; first, find the portfolio of risky assets that maximizes the 
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worst case Sharpe ratio over all possible asset return statistics. Then decide on the mix of 

the risky portfolio and the risk free asset, depending on the investor’s attitude towards risk. 

Thiscanbewrittenas: 

 

maxo min�∈ç,Û∈ãwÑμ − w3√wÑΣw 																																																														�4.21� 
s. t. 1Ñw = 1																																																																																										 

 

or, equivalently: 

maxÏ �o+:w, w3<																																																																					�4.22� 
							s. t. 1Ñw = 1																													 

 

Once the portfolio w∗ that maximizes the worst case is obtained, the problem then reduces 

on deciding the mix between the risk-free asset and w∗, based on the risk preferences of the 

investor. As the risk-free asset has zero variance, the change in return is linearly related to 

the change in risk as the mix changes. In the mean-risk space, the investing portfolio w|would lie in the line that connects the risk-free asset and the portfolio  w∗ and is tangent 

to w = �∗ + �γ/2�Bt where �∗is the optimal utility under the worst case scenario. This can 

be seen in Figure 4.5.  

 

Finally, Kim and Boyd (2007) present a numerical example with 8 risky assets when short 

selling is prohibited. They consider the case where the possible variation in the expected 

return of each asset is at most 20% and the possible variation in the expected return of a 

uniformly weighted portfolio is at most 10%. Figures 4.6 and 4.7 are obtained from their 

work and demonstrate the performance of the nominal and robust efficient frontier under 

the baseline and worst case scenario.  



 

Figure 4.5: Robust efficient frontier and quadratic utility maximization under model 

uncertainty when the risk free asset is available. 

Figure 4.6: Nominal Efficient Frontier and Robust Efficient Frontier under the baseline 

model. 

Source: KimandBoyd (2007) 

Robust efficient frontier and quadratic utility maximization under model 

uncertainty when the risk free asset is available.  

Nominal Efficient Frontier and Robust Efficient Frontier under the baseline 
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Robust efficient frontier and quadratic utility maximization under model 

 

Nominal Efficient Frontier and Robust Efficient Frontier under the baseline 
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Figure 4.7: Nominal Efficient Frontier and Robust Efficient Frontier under the worst case 

scenario. 

Source: Kim and Boyd (2007) 

 

Figure 4.6 demonstrates that robust efficient frontier portfolios do not perform as well as 

the nominal ones under the baseline scenario, i.e. if the point estimates of mean and 

variance hold exactly. However, as can be seen in Figure 4.7, robust efficient frontier 

portfolios achieve better performance than the nominal ones under the worst case scenario 

as they are less sensitive to variations in the parameters. By choosing a portfolio of the 

robust efficient frontier, the investor is willing to trade a little part of baseline optimality to 

make sure that the performance of his portfolio is less sensitive to parameter variations and 

performs relatively better under the worst-case scenario. Finally, Figure 4.8 shows the 

optimal weight allocations for possible values of volatility. In this example, the most 

noticeable difference is that robust efficient portfolios are more diversified than nominal 

ones with the same risk levels, and therefore less likely to produce extreme results.  
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Figure 4.8: Optimal portfolio weights for possible values of risk. Top: nominal efficient 

portfolios.Bottom: robust efficient portfolios. Robust efficient portfolios are much more 

diversified that the nominal ones for the same amount of risk. 

Source: Kim and Boyd (2007) 
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Chapter 5: Conclusions 

 

Uncertainty aversion is a distinct behavior that can have very different implications than risk 

aversion. Ellsberg (1961) demonstrated through his famous paradox that expected utility 

theory cannot predict uncertainty related preferences and behavior. Despite this, 

uncertainty related preferences were not modeled in economics until recently. The most 

common approaches are owed to Gilboa and Schmeidler (1989) who axiomatized 

preferences under uncertainty by proposing the max-min expected utility and Hansen, 

Sargent and other co-authors (1999,2003, 2007) who were inspired by the robust control 

theory. This dissertation mainly focused on applications of robust control in modeling 

uncertainty in financial economics and specifically in asset pricing. A common observation is 

that the market price of risk compensates for both bearing risk as well as bearing 

uncertainty. Hansen et al. (1999) extend the consumption-based asset-pricing model as to 

include a parameter that indicates the strength of the decision maker’s uncertainty aversion 

and generates an “uncertainty premium”. Maenhout (2004) moves along the same lines 

clearly distinguishing between risk aversion, uncertainty aversion and intertemporal 

substitution, and further suggests that uncertainty aversion is environment specific and 

cannot be measured by stylized experiments with known probabilities.Finally, other 

applications of robust control can be found in the formulation of robust efficient frontiers. 

Portfolios that are generated under this approach are less sensitive to estimation errors in 

the mean and variance of the assets’ returns. Although robust efficient frontier portfolios do 

not perform as well as the nominal ones under the baseline scenario, i.e. if the point 

estimates of mean and variance hold exactly, their performance is superior under the worst-

case scenario.  
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