Πλοήγηση ανά Συγγραφέα "Mamakas, Dimitrios"
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω
Τώρα δείχνει 1 - 1 από 1
- Αποτελέσματα ανά σελίδα
- Επιλογές ταξινόμησης
Τεκμήριο Deep learning models for corporate event prediction: using text and financial indicators(2023-12-21) Μαμάκας, Δημήτριος; Mamakas, Dimitrios; Athens University of Economics and Business, Department of Informatics; Leledakis, Georgios; Galanis, Dimitrios; Androutsopoulos, IonΤις τελευταίες δεκαετίες, οι Αρχικές Δημόσιες Εγγραφές (Initial Public Offerings) εξελίχθηκαν σε ένα αναντικατάστατο εργαλείο για την άντληση μετοχικών κεφαλαίων. Γενικά, τα IPO περιγράφουν τη διαδικασία προσφοράς ιδιωτικών εταιρικών μετοχών στην πρωτογενή αγορά, προσελκύοντας επενδυτές για την αγορά τους. Στη συνέχεια, οι τίτλοι καθίστανται διαθέσιμοι στη δευτερογενή αγορά, όπου γίνονται εύκολα αντικείμενο διαπραγμάτευσης από ιδιώτες. Συνήθως, όταν οι αμερικανικές επιχειρήσεις εισέρχονται στο χρηματιστήριο, ακολουθούν μια ρητή προκαθορισμένη διαδικασία. Συγκεκριμένα, η Επιτροπή Κεφαλαιαγοράς (SEC) απαιτεί την υποβολή του εγγράφου κατάθεσης S-1 στο σύστημα EDGAR (Electronic Data Gathering, Analysis, and Retrieval), διασφαλίζοντας πως οι επενδυτές έχουν εκ των προτέρων γνώση της αποτίμησης, των πιθανών κινδύνων ή των μελλοντικών επιχειρηματικών σχεδίων της εκδότριας εταιρείας. Ως εκ τούτου, η υποτιμολόγηση (underpricing) των IPO τυγχάνει σημαντικής προσοχής, προκαλώντας το ενδιαφέρον οικονομολόγων και χρηματοοικονομικών εμπειρογνωμόνων. Υποτιμολόγηση έχουμε όταν η προσφερόμενη τιμή είναι μικρότερη από την τιμή κλεισίματος της μετοχής κατά την πρώτη ημέρα διαπραγμάτευσης. Το αντίθετο σενάριο υποδηλώνει υπερτιμολόγηση (overpricing). Για τη διερεύνηση αυτών των φαινομένων, προηγούμενη βιβλιογραφία εφάρμοζε βασικές τεχνικές Μηχανικής Μάθησης οι οποίες χρησιμοποιούσαν χαρακτηριστικά που ανακτώνται από τα ίδια τα S-1, ή συγκεκριμένες χρηματοοικονομικές μεταβλητές για την ταξινόμηση των IPO. Ωστόσο, η μέτρηση της ικανότητας των S-1 στης πρόβλεψη φαινομένων υποτιμολόγησης καθίσταται μία περίπλοκη διαδικασία, καθώς τίθενται περιορισμοί στην επεξεργασία των κειμένων λόγω του μεγάλου μεγέθους τους, γεγονός που καθιστά δύσκολη την επεξεργασία και την ανάλυσή τους. Ως εκ τούτου, στην παρούσα μελέτη, υπερβαίνουμε τις προηγούμενες προσεγγίσεις Μηχανικής Μάθησης, και διερευνούμε την προγνωστική δύναμη των IPO εφαρμόζοντας προ-εκπαιδευμένους Transformers. Για να ανιχνεύσουμε την υποτιμολόγηση, χρησιμοποιούμε πληροφορίες κειμένου που ανακτώνται από τα ίδια τα S-1 μαζί με ειδικές γνώσεις που προέρχονται από ορισμένους χρηματοοικονομικούς δείκτες, παρουσιάζοντας μια συλλογή μοντέλων που επεξεργάζονται κείμενα μήκους έως και 20.480 λέξεων. Τέλος, αποδεικνύουμε την ανωτερότητα των μεθόδων μας έναντι των προηγούμενων προσεγγίσεων στα περισσότερα πειράματα.
