Πλοήγηση ανά Συγγραφέα "Basharis, Jorgos"
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω
Τώρα δείχνει 1 - 1 από 1
- Αποτελέσματα ανά σελίδα
- Επιλογές ταξινόμησης
Τεκμήριο Big Data Bootstrap(2024-02-12) Μπασάρης, Γιώργος; Basharis, Jorgos; Athens University of Economics and Business, Department of Statistics; Yannacopoulos, Athanasios; Vrontos, Ioannis; Besbeas, PanagiotisΤο Bag of Little Bootstraps (BLB) είναι μια τεχνική που συνδικάζει τις δυνατότητες της bootstrap μεθόδου και της υπό-δειγματοληψίας. Στις μέρες μας όπου τα δεδομένα είναι μεγάλων διαστάσεων η παραδοσιακή μέθοδος του Bootstrap υστερεί στο να κάνει υπολογισμούς. Η επιτυχία της BLB έγκειται στο να συγκρατεί τα μικρά σακουλάκια από τα δεδομένα, επιτρέποντάς μας να αναλύουμε χωρίς να κολλάμε από το τεράστιο μέγεθος. Η παρούσα έρευνα παρουσιάζει μια σχολαστική συγκριτική ανάλυση μεταξύ της παραδοσιακής μεθοδολογίας Bootstrap και της μεθοδολογίας Bag of Little Bootstraps (BLB), δίνοντας έμφαση στην ακρίβεια και την υπολογιστική αποδοτικότητα. Ξεκινώντας με μια εμπεριστατωμένη βιβλιογραφική ανασκόπηση, η μελέτη θέτει μια στέρεη θεωρητική βάση και για τις δύο προσεγγίσεις και διερευνά περίπλοκα τις αλγοριθμικές αποχρώσεις της BLB. Χρησιμοποιώντας μια προσομοιωμένη μελέτη που αναπαράγει ποικίλες συνθήκες του πραγματικού κόσμου, ορίζουμε μετρικές απόδοσης για τη συστηματική αξιολόγηση κάθε μεθοδολογίας. Τα ευρήματά μας αναδεικνύουν την υπεροχή της BLB, αποδίδοντας σταθερά στενότερα διαστήματα εμπιστοσύνης, ενδεικτικά αυξημένης ακρίβειας. Η έρευνα υπογραμμίζει τα μετασχηματιστικά κέρδη της BLB στην υπολογιστική αποδοτικότητα, ιδιαίτερα αξιοσημείωτα με μεγαλύτερες τιμές γ. Τοποθετημένο ως παράδειγμα λήψης αποφάσεων, το BLB εξισορροπεί την ακρίβεια με την υπολογιστική αποδοτικότητα, συμβάλλοντας σε μεθοδολογικές εξελίξεις στις τεχνικές Bootstrap. Η μελέτη αυτή σηματοδοτεί ένα κομβικό ορόσημο, προσφέροντας πολύτιμες γνώσεις για τους επαγγελματίες και εμπνέοντας μελλοντικές εξερευνήσεις.
