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ABSTRACT

Methodological Issues with Proportional Hazard Models
by Maria-Tereza Dellaporta

February 2022

A big part of survival data analysis is mainly based on two well-known methods:
the log-rank test for the comparison of survival curves and the Cox proportional
hazard model for the estimation of the effect corresponding to numerous variables
of interest. Both methods are based on the assumption of proportional hazards. Due
to the popularity, usefulness, and computational simplicity of these approaches, a
potential violation of the proportional hazards assumption, which is an essential
property for the validation of their findings, is oftentimes overlooked. In recent
years, non-proportional data are frequently encountered, especially in the field of
Biostatistics, where clinical trial data exhibit irregular patterns as a result of the
administration of novel medicinal products and the implementation of innovative
therapeutic procedures with unprecedented mechanisms of action.

To safeguard the validity and the generalizability of the results occurring from
the analysis of such data, an in-depth literature review regarding various tests for
the proportional hazards assumption and numerous testing procedures for the signif-
icance of treatment effect, in the two-sample case, is presented in this dissertation.
Alternative modeling approaches and summary measures for the treatment effect are
also discussed briefly, and an intuitive interpretation of the constant hazard ratio
estimated via Cox’s partial likelihood is given when the proportionality assumption
is invalid. Two simulation studies, one for each group of tests, are conducted un-
der proportionality and four non-proportional hazard patterns usually reported in
contemporary publications.

Amongst the eighteen tests for proportionality examined, three of them display
stable behavior under dissimilar types of departure from the null hypothesis: Gramb-
sch & Therneau’s suggestion (1994) using as functions of time either the ranks of
the failure times or the Kaplan—Meier estimate of the pooled survivor function, and
a modification of the goodness-of-fit test proposed by Lin (1991) using as weighted
parameter estimators the ones introduced by Schemper et al. (2009). On the other
hand, the comparison of twenty tests for treatment effect shows the superiority and
flexibility of a newly developed method, which also provides piecewise hazard ratio
estimates, called the Cauchy combination of change-point Cox regressions (Zhang et
al., 2021). At the same time, various versatile weighted log-rank tests achieve good
power under all hypothetical scenarios, except for the case of crossing hazards, where
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the joint test by Royston & Parmar (2014) and a combination testing procedure by
Breslow et al. (1984) noticeably surpass the other choices, in terms of performance.

In conclusion, the pattern of non-proportionality is definitive for the statistical
analysis plan of time-to-event data. The optimal method, both for testing the
assumption of proportional hazards and the significance of the treatment effect, is
trial-specific. Nevertheless, when no a-priori knowledge exists about the anticipated
type of non-proportionality, the aforesaid approaches seem to have good properties
and are suggested for future analyses, until better methods arise.
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‘Eva peydho pépog tng avdhuong dedopévewy emBinong otnpiletar oe 500 TOAD yv-
0o Tég pedodoug: otov €heyyo log-rank yia 0 olyxplon dVo xoumuioyv emBlowong,
X0l OTO HOVTEAO avOhOYXOY %VOUVWY Tou Cox Yo Ty extiunon tne enidpoong oid-
POopWV UETABANTOY eVOLapEROVTOC. AdY® TNS x0T TOUG amodoy g, TNG XPNOHOTNTOS
%o TG euxollag eQopuoyYYic Toug, pla mav tapaflacn Tng UTGVESTC TV AVIAOYIXGDY
XVO0VLY, 1 omtola amotehel Bacuxr tpolnddeor yio TNy EYXVEOTNTA TV ATOTEAECUATODVY
Toug, ouyva TapuPAénetan. H ouyvotnta eugpdvione tétowwy dedopévev €yel auvgniet
caydola. ISadtepa, otov Topéa Tne BlootatioTixrg, 1 Yop\YNoT VEWY QupUdxmy %o 1)
EQUOUOY T XOUVOTOUWY VEQUTELDY 00y Noay Tar TEAELTALN YPOVIa OF amPOBAETTES DOUES
OEDOUEVWY AOYW TWV TEWTOPAVMY UNYUVIOUMY CAANAETIOEACTC TOUG UE TOV avUp®TVO
OPYOVIOUO.

o vor e€aoQoAoTEL 1) EYXUEOTNTA XOL 1) YEVIXEUCWIOTNTA TV EVPNUATWY TOU
TEOXUTTOLY amd TNV AVAAUCT] TETOLWY BEBOUEVLY, WL AETTOUEQHC OVIOXOTNOT TNG
umdpyoucac BiBMoypapioc, 660V agopd eAEYYOUS Yol TNV UTOUEST TV AVOAOYIXOY
XVOUVOY X0 T1) OTATIC T CUAVTIXOTNTA TNE eNidpaong wlag Yepaneiog, napouotdle-
T 0TV Topolou dimhwpatixd| epyacio. Emmhiéoyv, yivetan plo odvtoun ewoaywyn o
EVOAOXTIXES TIPOGEYYIOEIC LoVTEAOTOINOTG %o CUVOTTIXG PETEOL YLl TNV ETOPAOT TNG
Yepameiog UTO YEAETT), xan TowTdypova diveton Wio SroucUnTnr epunvela otny extiunon
TOU AOYOU %vBUVOU oL TROXUTTEL amtd To povTéro Tou Cox dtay dev toylel 1) utddeon
TWV aVOAOYIXOY XxvOUVLY. Alo ueiétec mpocopoiwong, o yio xdde ouddo eréyywy,
olegdyoviar LG TNV LTOVEST) TNG AVOROYIXOTNTOC OAAG o YLl TECCEQLS TEPLTTWOELS
U1 avohOY XY XVO0OVGLY Tou GLY VA avapépovton 6T olYyeovn PiSAoypaplo.

Avdueca 6Toug BEXAOXT® EAEYYOUSC TTOU EYIVOY YIoL TNV UTOUVEST) TV AVIAOYIXOY
XVOUVLY, TEELS amd auTolg Tapouatdlouvy otaldepr) cuuneptpopd avelapTHT®S Tou Po-
Yol amopdxpuvone and T uNdeVIXr) UTOVEST 1 TO EVOAAOXTIXG OEVApLO: BUO amd ou-
T00¢ ovrixouv 6Ty owoyéveta eléyywy twv Grambsch & Therneau (1994) xou yenot-
HOTIOLOVY ¢ GUVIPTACELS TOU YeOVou Elte Tov ouVOhxS exTyunty| xatd Kaplan-Meier
¢ ouvdpTnone emBinone 1 TNV Taln TV Yeovwy anotuylag, evod 1 Teitn yédodog
omotehel plo tpomonoinom tou ehéyyou xahhc Tpooupuoyhc tou Lin (1991), ye oto-
YULOPEVES EXTIUACELS TUEOUETEMY AUTEC TTOU TOPOUCLACTNXAY GTY) OYETIXT ONUoClEuo
twv Schemper, Wakounig xouw Heinze (2009). Ané tnv dhn yepld, n obyxplon eixoot
EAEY YWV YL TN OTATIO T ONUAVTIXOTNTA TNG eTidpaong plag Yepameiog, delyver tnv

v



avwTEROTNTA Xt TNY gueht&io Lo véag uedo80u, Tou GUYYEOVLC TOREYEL XAUTE TUAUATA
otadepolc eEXTWUNTES YLot TOV AOYO0 xtvd0vou, xou efvat YVeo Ty, ev cuvTtoula, wg Cauchy
CP (Zhang x.4., 2021). Xuyypdvee, o Totxihior eVEMXTOV OTOVUOUEVODY ENEY YOV
log-rank mopouctdlouy xoAd eninedo toyLog Yo GAo T TPOCOUOLWUEVY GEVAPLYL, EXTOC
a6 EXELVO TWV BLAC TAUROUEVKY CUVIPTACEWY eTPBlwaong, 6Tou TNy xaAlTERT enidooT),
epgavilouv duo pédodot mou cuvbudlouy Tov ékeyyo log-rank ue évav éAeyyo yio Ty
umodeon TG avahoyIXOTNTUC.

Yuunepaouatixd, 1 @OoT TNS U ovaAoYxoTNTAS Etvar auTh Tou xodopllel To TAdvo
NG OTUTIOTIXAG avdhuong Twv dedopévwy emBinong. H Bértiotn puédodog, elte ya
TOV EAEY Y0 TNG UTOUESTC TWV OVIAOYIX®Y XVOUVKY, ELTE Yio TN ONUOVTIXOTNTA TNG
enidpaone tne Vepanelag oty emPBinon Twv acdevay, e€upTdton amd TNV EXACTOTE
x| doxaur). ot6c0, dTay BeV UTHPYEL XdTol TANEOPOE(0 OYETIXA UE T CUUTER-
LpoEd TNG CLVAETNOTNS TOU AOYOUL XIVOLVOU, Ol ToEUTAVE PEYodOoL polvetal Vo €Youy
XAAEC WOLOTNTES ot TEoTElVOVTAL Yiot MEANOVTIXT| YPNOT), HEYPLS OTOU VoL OV TIXOTAO Ta-
Vo0V amd VEES, XUNDTEPES TPOTATELS.
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Chapter 1

Introduction

1.1 Motivation of the thesis

Throughout the years, the cornerstone of the statistical analysis of survival data is
the assumption of proportional hazards. This becomes apparent when one realizes
that the two most popular techniques in the discipline of Biostatistics are the log-
rank test for hypothesis testing and the Cox Proportional Hazards (PH) Model for
treatment effect estimation. Both of them gained momentum due to their simplicity
and the interpretability of their results. They achieve maximum power under the
proportionality assumption, but when that is not the case, biased results may occur,
distorting the findings of a clinical trial and jeopardizing its success. The majority
of the clinical trials are designed according to these techniques, with a target hazard
ratio (HR) in mind. When the data are collected, firstly, the log-rank test is used
for a preliminary analysis. For instance, it is used to test if there is a significant
treatment effect between two patient groups: the ones taking the placebo and the
ones receiving a new therapy. Since it is impossible to simultaneously adjust for
many covariates using only the log-rank test, the Cox model is implemented to
carry out a multivariate analysis. It was not until recent years that statisticians
started noticing patterns of non-proportional hazards more and more frequently,
leading them to the realization that they must change their — design and analysis
— approach. But, why now? Why are there so many instances of non-proportional
hazards? And how was this problem tackled in the past?

A substantial departure from the PH assumption has been a common observa-
tion in the development of oncology drugs in recent years, with the emergence of
targeted therapies and cancer immunotherapies. The corresponding trials, where
patterns of either a delayed improvement in the intervention group or reverse of

treatment effect throughout follow-up often occur, made clear the urgent need for a
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different methodology, one whose credibility is not entirely based on the proportion-
ality assumption. Of course, the biological revolution does not uniquely account for
the increasing amount of non-proportional hazards patterns. It is known that we
have entered the big data era and as a consequence, larger trials are being carried
out in the last decade or so. It is easier to detect a departure from proportionality

as more data result in increased power of the corresponding tests.

Nevertheless, non-proportionality is not something new. Various methods have
been formed and applied ever since the introduction of the aforementioned ap-
proaches. Weighted log-rank tests, stratification, and time-varying coefficients are
only a few examples of such methods. However, each alternative has a downside,
especially when it is inappropriately implemented. Biostatisticians must be aware
of the dangers and the traps that each approach has in store. At the same time,
they need to keep in mind the research question. For example, is a clinical study
conducted with the aim of determining which treatment is better or to get more in-
depth knowledge on how a new intervention works? Is interpretability of the results
important and if so, which factors must be carefully considered? Is the objective
of the study a clear-cut answer or just a prediction? All these questions and many
more should be taken into account not only in the analysis but also during the design

of a clinical trial.

Unfortunately, even though many papers have been written regarding the prob-
lem of non-proportionality, there is not a well-structured methodology. Some at-
tempts have been made towards this cause: in recent papers, especially in the ones
written after 2000, many researchers overexerted themselves running numerous sim-
ulations of possible non-proportional hazards patterns, with various sample sizes so
as to compare old and new tests for proportionality and treatment effect. Notwith-
standing the large number of interesting and useful conclusions drawn till now, the
relevant information is in disarray. It is crystal-clear that there is not a panacea and
each problem should be tackled according to its special characteristics, but a good
statistician must be aware of the possible solutions, their advantages and disadvan-
tages, along with their superiority compared to other methods. It is impossible to do
so considering the number of suggested methodologies, especially when it is evident

that some of them are in disagreement with others.

This thesis attempts to offer both the theoretical background needed and a va-
riety of simulation results from several hypothetical non-proportionality patterns,
frequently encountered in clinical trials. The objective here is to provide a reviewed

collection of analysis methods, focusing on statistical tests, under different types
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of departure from the proportionality assumption. The theory and mathematical
justification of each test along with its performance under numerous scenarios will
help the readers obtain a critical perspective and be able to settle on a plan of ac-
tion when they face similar problems. Although the ideal ultimate goal would be to
lay the foundation for a proposed “common approach”, this thesis emphasizes more
on equipping the interested parties with skills and knowledge that will ensure the

quality and correctness of future research findings.

1.2 Brief structure of the thesis

A plethora of techniques related to the statistical analysis of time-to-event (TTE)
data, where a violation of the PH assumption is speculated, is to be presented in
the current document to achieve the abovementioned objectives.

The main body of the thesis begins in Chapter 2, which is introductory and spec-
ifies the notation and the fundamental terminology used in Survival Analysis. Terms
frequently encountered in this field are being clarified and a handful of some rather
enlightening examples are being presented. The key elements here are concepts such
as censoring, survival function, Kaplan—Meier estimator, the log-rank test, as well
as the Cox PH model and its famous partial likelihood.

After the short introduction to Survival Analysis, Chapter 3 starts with the
presentation of the four most common non-proportional hazards patterns found in
the literature: early/diminishing effect, late/delayed effect, crossing hazards, and
long-term survivors. The purpose of this presentation is to offer the readers a less
vague perception of what non-proportionality is. It also prepares them for the
subsequent sections of this chapter, which consist of several testing procedures,
both statistical and graphical, regarding the PH assumption. Graphical tests are
presented briefly, while formal statistical tests are thoroughly explored and justified
by — an outline of — their proof.

Chapter 4 includes a simulation study based on numerous scenarios of non-
PH. The objective of this chapter is to compare a considerable amount of tests for
proportionality under different types of departure from this hypothesis. Only the
two-sample case (for instance, intervention versus placebo group) is examined as it
is the basis of any further analysis and usually, it is the most important issue we
need to deal with in practice.

Next, another essential group of techniques is being presented: a great variety

of tests for treatment effect. Approaches related to the Restricted Mean Survival



4 CHAPTER 1. INTRODUCTION

Time (RMST) difference, weighted Cox regression, and variants or combinations
of weighted log-rank tests, are only a few of the methods reported and clarified in
Chapter 5. Moreover, an intriguing interpretation of the hazard ratio and other
measures of treatment effect linked to the previously mentioned tests is given here.

Once again, Chapter 6 includes a simulation study similar to the one conducted
in Chapter 4. Nonetheless, it refers to the tests of treatment effect mentioned in
Chapter 5. Comparisons of power and type I error are performed under a plethora
of non-PH scenarios.

Finally, Chapter 7 summarizes the most notable findings of Chapters 3 to 6. It
also paves the way for discussion and direct proposals for further research, sharing

both concerns and benefits of the current thesis.



Chapter 2

Survival Analysis 101

2.1 Fundamental definitions and notation

2.1.1 What is survival analysis?

Statistical analysis takes many forms depending on the nature of the problem of
interest. In medicine, economics, engineering, and other disciplines the focus is
usually on the expected duration of time until an event occurs (time-to-event data).
Specific techniques of analysis have been formed to optimize the information being
utilized in cases like these, especially due to their particularities. The domain of
statistics involving these techniques, which examine and model the anticipated time
until the occurrence of an event of interest, is called survival analysis.

Due to the widespread usage of methods employed by survival analysis across
various scientific areas, there are several synonyms used. For instance, in engineer-
ing, survival analysis is usually referred to as “reliability theory”, in economics as
“duration modeling” and in sociology as “event history analysis”. Even though the
tools implemented are based on the same fundamental principles of survival anal-
ysis, the term differs depending on the type of event under the microscope. Some

examples of events are:

death (medicine),

relapse/recurrence of a disease (medicine),

infection (medicine),

divorce (sociology), and

malfunctioning of a device (engineering).

bt
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The definition of the event is crucial for the analysis and must be explicit. On
many occasions, clarifications and specific instructions should be given. For instance,
biological death is definite and thus, there is no need for further elucidation when it
is defined as the event of interest. On the other hand, the malfunctioning of a device
is not well-defined. Machines consist of many parts, but if one of them is missing
or broken, it does not necessarily mean that the device will not function efficiently.
Frequently, some parts are only decorative or they offer a rarely used extra capability.
Is the malfunction referred to as a practical problem or a difference between the
device and its original design? Undoubtedly, if the definition of the event of interest
is ambiguous, the findings of the analysis will lack consistency.

Despite the concerns mentioned above, survival analysis is widely applicable
because the definition of an event can be manifold and so, not only can we handle
data from various fields of science, but we can also perform multiple analyses within
the same data set using different definitions for the event under consideration. More

specifically, survival analysis is normally used to:

e describe survival data (via Kaplan—-Meier curves or measures such as median

survival time, for instance),

e compare survival times among several groups of interest (typically via the

log-rank test or its variants), and

e construct statistical models which help determine the magnitude of the effect
of each variable, whether it is qualitative or quantitative, on survival. Models

may be parametric or semi-parametric.

2.1.2 Survival time and censoring

Survival (or failure) time is defined as the duration of time from the beginning of
the monitoring period until an event (failure) occurs. In the field of Biostatistics,
survival time is defined as the duration of time from the beginning of follow-up until
the outcome of interest occurs, which is usually death or relapse of disease. When
the outcome is death, statisticians are interested in the overall survival time (OS) of
the patients, who are called subjects of the study. In this case, time can be measured
in years, months, weeks, or even days.

In a mathematical context, survival time is just a non-negative random variable
denoted by T. T can either be discrete or continuous, but the notation and proofs

provided in the following sections will only refer to the continuous case for reasons of
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simplification. It should be noted that the proofs are similar when 7' is considered
a discrete random variable.

When one has only partial information about the time to event, but the exact
survival time is unknown, a key analytical problem occurs called censoring. There

are three basic types of censoring:

1. Right censoring: a subject is right-censored when the outcome of interest
happens at some time point after the end of its follow-up period. This kind of
censoring is the most frequent, especially in clinical trials, where, for instance,
some patients drop out before the study ends and the events of others occur

after the follow-up’s termination.

2. Left censoring: a subject is left-censored when the outcome of interest happens
at some time point before the start of its follow-up period. A brief example is
a study in which the interest is focused on the age at which children learn a
specific task. When the study begins some of them may already know how to
perform this task (left censoring), while others may have not yet learned it by

the end of their follow-up (right censoring).

3. Interval censoring: a subject is interval-censored if it is known that the event
occurs between two times, but the exact time of failure is unknown. Here, an
example is the detection of breast cancer via mammography, in women over
the age of 40. Doctors recommend an annual examination and so, if cancer
is detected, that means cancer cells started developing at some time point

between two consecutive screenings.

When the mechanism determining the censoring distribution is out of the control
of the researcher, the censoring is called random (e.g. lost to follow-up patients).
Otherwise, it is called fized (e.g. when the event of interest is death and a patient
dies after the study ends). In particular, the right-censored observations that occur
from the termination of the study period are the result of administrative censoring.

Finally, censoring is also divided into two subcategories according to its depen-
dence on survival time. When there is no association between them, censoring is
independent. For instance, in a clinical trial with a primary outcome of interest the
OS of subjects in two treatment groups, with a predefined study period of three
years, patients who die after the end of the study are considered as censored obser-
vations. However, this censoring appears because the researchers chose to monitor

the subjects for three years and it has nothing to do with their health status. On
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the other hand, patients who dropped out because they got sicker display a cen-
soring status which is undoubtedly connected with their condition, and therefore
their survival time. In that case, censoring is called informative because it contains
information about the parameters characterizing the distribution of 7.

When one analyzes survival data there is only information about the time each
subject has been monitored before the occurrence of an event and an indicator
that specifies whether this time represents the entire survival time T or its censored
counterpart. If C'is the censoring time, then the aforementioned indicator is defined

as

0, otherwise.

5:{L ifT< C

The observed time of follow-up is always equal to or less than the actual time to

event. It is in fact equal to the minimum of 7" and C.

2.1.3 Probability distribution of a survival random variable

There are several equivalent ways to characterize the probability distribution of a

survival random variable. This can be done by using:

e The density function f(t) if T is a continuous variable, which is defined as

Pt <T <t+At)
At—0 At

and the probability mass function p(t) = P(T =t) if T is a discrete one.

e The cumulative distribution function F(t) which corresponds to the proportion

of individuals whose event occurred as a function of ¢, and is defined as
F(t)=P(T < t).
For the continuous case F'(t) = fot f(u)du.

e The survivor function S(t) = 1-F(t) = P(T > t) which gives the probability
that a person survives longer than some specified time ¢. All survivor functions

share the following theoretical properties:
1. They are non-increasing. As time passes, the value of S(t) remains the
same or becomes smaller.

2. Since time 0 is the starting point of the follow-up no one has gotten the
event yet, and therefore S(0) = 1.
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3. As t tends to infinity, the probability that a person survives longer than
t tends to 0, or lim; o, S(t) = 0.

e The hazard function \(t) (or conditional failure rate) which is mathematically

defined as

Pt<T<t+At|T >t
A(t) = lim (t=< + AT 2 )
At—0 At
Intuitively, the hazard function gives the instantaneous potential per unit time

for the event to occur, given that the individual has survived up to time ¢. It

is always a non-negative function with no upper bound.

While the relationship among density, cumulative distribution and survivor
function is obvious, their connection with the hazard function is not. Using
the definition of conditional probability, the connection becomes apparent,

because

N P(t<T <t+AtT > 1)
At—0 At
Pt <T <t+At)
A0 At-P(T > t)
1 Pt <T <t+At)

= BT A At

and therefore,

A(t) = % (2.1)

e The cumulative (or integrated) hazard function A(t) which is defined as

The cumulative hazard at time ¢ equals the area under the hazard curve up
to time t. A cumulative hazard curve shows the (cumulative) probability that

the event of interest has occurred up to any point in time.
By employing (2.1), it appears that

At) = —% InS(t) =

A(t) = —InS(¢)

and thus,
S(t) = e M, (2.2)



10 CHAPTER 2. SURVIVAL ANALYSIS 101

If one of the previous functions is known, so are all the others. These rela-
tionships led to the definition of several models which can be fitted to the data
under examination. For instance, some models assume a particular form of the
hazard function or the cumulative hazard function (e.g. flexible parametric models
suggested by Royston & Parmar (2002)), while others suggest that survival time
follows a certain distribution (e.g. Accelerated Failure Time models). There are also
various non-parametric methods, such as the Kaplan—Meier estimator, which pro-
vide a specific formula for the calculation of the survival function. Whether someone
delineates the hazard or the survivor function directly via a model, the rest of the

functions described above can be estimated too.

2.1.4 The assumption of proportional hazards

Now that the hazard function is defined, a formal definition for the proportionality

assumption must be given as well:

The assumption of proportional hazards holds when the hazard ratio com-
paring any two specifications of predictors is constant over time. FEquiv-
alently, this means that the hazard for one observation is proportional to
the hazard for any other observation in the data, where the proportion-

ality constant is independent of time.

In a clinical trial context, for instance, there are usually two groups of patients:
the control and the intervention group. If, after the analysis, the estimated hazard
ratio of death for the control compared with the intervention group is equal to 2.8,
that means that the hazard for a person in the control group is approximately three
times the hazard for a person who received treatment. Of course, this assumption
is not always met and in the last few years, it seems to be rather unrealistic. For
example, it is sensible to think that if the intervention group underwent surgery for
tumor removal, the risk of death will be higher at the beginning of their follow-up,
but as time passes, the survivors are anticipated to show substantial improvement
in comparison to cancer patients at the control group. As a result, the hazard ratio
of two individuals belonging to different treatment groups is not constant over time.
In fact, according to what was said above, the hazard ratio of death for the control
compared with the intervention group should increase as the study progresses (since
the hazard for the patients who underwent surgery diminishes over time and the

hazard for the control group remains constant). Fortunately, cases like this led to
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the invention of many statistical tests that properly assess the validity of the PH

assumption. These tests will be extensively studied in Chapters 3 and 4.

2.1.5 Widely used distributions in survival analysis

When it to comes to modeling or simulating survival data, numerous probability
distributions for the survival time, as well as the censoring time, can be considered
as suitable candidates. Time is always positive and thus, the distribution under
consideration must correspond to a non-negative random variable which is usually

assumed to be continuous. Examples of such distributions are the following:
e cxponential distribution,

e gamma distribution,

Weibull distribution,

log-normal distribution,

log-logistic distribution,

and many more, including their mixtures.

Since a burning issue of this thesis is the assumption of proportional hazards,
further insight into the exponential and the Weibull distribution will be offered. Pro-
vided certain conditions are met, these two distributions ensure that proportionality
of hazards holds for two or more groups of observations sharing the same covariate
values. Additionally, the piecewise exponential distribution will be studied as well,
as it is considered to mimic observed trial results quite closely (Lin et al., 2020) and

will be used for the simulation studies in Chapters 4 and 6.
Exponential distribution
If survival time T~ Exp(\), then for any ¢ > 0,
f(#) = e,

Ft)=1—e",
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A(t) = /Ot Au)du = /Ot = M.

It should be noted that A is a positive number, often called the rate parameter.
This rate is essentially the hazard rate, the potential for failing at time ¢, given that
the event has not occurred until then. Since the hazard rate equals a constant A,
the risk of failing does not change over time.

In this case, the PH assumption always holds. Indeed, for two groups of obser-
vations where 77 ~ Exp()\;) for the first group and T ~ Exp()\y) for the second,

the hazard ratio for any two individuals is:

)\Q(t) . /\2
M) N

which is independent of time.
Weibull distribution

If survival time T' ~ Weibull(A, p), with A and p being positive numbers, then

according to the usual parameterization reported in medical statistics, for any ¢ > 0,
ft) = Aptr~te™

Ft)y=1—e",

S(t)=1—F(t)=e,

t)  Aptrlte M

t) B e— AP - )‘ptpia

(
(

t t
A(t) :/ AMu)du :/ ApuP~tdu = Mt
0

0
The numbers X and p are called the scale and the shape parameter of the distribution,

respectively. Typically, properties and special characteristics of this distribution are

displayed via the following categorization:

1. When p = 1, Weibull reduces to an exponential distribution. This means the

hazard rate remains constant over time.

2. When p > 1, the hazard function is increasing over time (increasing Weibull
model). An instance here could be a group of patients who do not respond to
treatment and as their disease progresses, the instantaneous potential of dying

becomes higher.
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3. When 0 < p < 1, the hazard function is decreasing over time (decreasing
Weibull model). Decreasing hazard rates are often for patients who underwent

surgery.

In this case, the PH assumption holds only when p is the same across all groups of
interest. If T} ~ Weibull(\y, p1) for one group and Ty ~ Weibull( A, p2) for another,
the hazard ratio for the second group compared with the first is:

Aa(t)  Aopot??™!
M) Aprtet

which is independent of time if and only if p; = py. Otherwise, the HR is either an

increasing (py > p;) or a decreasing function (py < py).
Piecewise exponential distribution

When examining the exponential distribution, it was stressed that the hazard
rate does not change over time. Unfortunately, this is rarely the case. Frequently,
the hazard rate differs from one time period to another, and in real-life applications
it does not necessarily have a particular smooth curve. A problem might be more
complex than one a simple distribution, such as Weibull, can describe. It is note-
worthy, considering the three possible situations outlined above, that the Weibull
distribution allows for either a constant or a monotonic hazard function. What will
happen if the hazard rate is increasing at the beginning of a study and decreasing
at the end or vice versa?

The piecewise exponential distribution provides a more flexible approach. It
assumes that the hazard rate remains constant within some specified time intervals.
But how does this offer greater flexibility? Well, let’s think about it: if time intervals
are narrow enough, the hazard rate at the beginning and the end of each will not
show a substantial difference. Therefore, it is sensible to assume that it is constant
over each small time period. It will be shown later that similar reasoning was used
by Andersen (1982) to create a statistical test for the validity of the PH assumption.

A general form of the hazard function of a piecewise exponential distribution

with k& change points is given below:

()\0, Zf0<tS7'1
Al ifm <t<m

M1, U o1 <tT <7
\)‘kﬂ ift>7'k
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where \; > 0,Vi € {0,1,2,...,k}. When there is only one change point 71, and

consequently, two rates, \g before 7 and Ay after, it holds that
A f0<t<
Ay, ift >y

Thus,if 0 <t <mn

t
A(t) = / )\odu = )\0t,
0

whereas if t > 7

T1 t
A(t) —/ )\0dU+/ )xldu:)\07'1+)\1(t—7'1)
0

T1

and consequently,

A(t . )\Ot, Zf0<tSTl
N )\07’1—|—/\1(t—7'1), th>’7'1.

From the formula 77,

—ot '
S(t):efA(t): e )\07 Z'f0<t§7'1
e~ ()7'1+)\1(t_7'1)7 th > Tl'
Therefore
1 s 1— e ot if0<t<mn
(t)=1-S(t) = 1 e_’\071+)‘1(t_T1)> if t > 1.
and
d )\06—)\075’ Zfo <t< T1
f(t) = F(t) = Do+ (b7 '
7 Ae {MoT1+A1( 1)}’ if t > 1.

For two groups of observations with hazard functions corresponding to a piece-
wise exponential distribution with k& change points, the proportionality assumption
is valid if and only if the change points are the same for the two groups and the HRs
are equal across all time intervals. Thus, here the PH assumption holds under some
strict conditions which are hardly met in practice. Notwithstanding this realization,
piecewise exponential models are extremely useful for simulation studies and further

investigation of statistical tools currently available.
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2.2 Kaplan-Meier estimator

Probably the most popular approach for estimating a survivor function without
resorting to parametric methods is the Kaplan—-Meier (KM) estimator, frequently
mentioned as the product limit estimator. Recalling that the survivor function S(¢)
is just the probability an individual survives longer than or at least for a specified
time ¢, results in a rather obvious empirical survival function, under the condition

there is no censoring;:

B # of individuals with T" > ¢
B total sample size '

S()

However, survival data are data often occurring from a long period of subjects’
monitoring. It is not unusual for information regarding the event of interest to
get lost due to various reasons, examples for which have been given throughout
the preceding sections. Thankfully, Kaplan & Meier (1958) proposed a way to
non-parametrically estimate S(t), even in the presence of censoring. The method
is based on the fundamental concept of conditional probability and a well-known
relevant law, the multiplication law of probability. According to this, for m events
Ay, Ag, ..., A, it holds that

P(AiNAsN...NAp) = P(A)P(As|Ay) ... P(Ap| AL, Ag, . At). (2.3)

When a survival analysis is being conducted, the available data include infor-
mation regarding the time of event or censoring and also, an event or censoring
indicator to distinguish the observations providing a complete profile from those
who offer a partial one. Let’s consider the following notation: tq,%s,...,t,, are the
exact ordered times at which one or more events occurred, r; is the number of in-
dividuals at risk at time ¢;, meaning that they at least survived until then and it
is possible to “fail” at t; or in the future, while d; is the number of failures at ¢;.
Then for ¢ € [0,¢,] it is reasonable to estimate S(t) as the proportion of individuals

who survived at least until ¢;, and thus,

A

S(t) = P(T Z tl) = 1,f01" t e [O,tl]
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In general, for t € (tx, tgpr1],

S(t) = P(T >tp)
= PT>t,....T >, T > tpy1)

k
= P(T>t)[[P(T>t;4T > 1))
j=1

— H{l — P(T =4|T > t;)}

since P(T" > t;) = 1. It is rational to estimate P(T" = t;|T" > t;) as %,‘v’j €
J
{1,2,...,m}. Consequently,

St =] (1 - @) for t € (tp, tep], k€ {1,2,...,m} (2.4)

-
j=1 J

The estimate is a left continuous step function whose value changes only shortly
after an event occurs. Nevertheless, it should be noted that slight deviations in the
notation and the definition of the survivor function can lead to a similar, but right
continuous Kaplan—Meier estimator, meaning that the change in its value happens
exactly when an event takes place. Finally, it should also be noted that the KM
method assumes censoring is independent of survival time, or put in simple words,

the reason an observation is censored is unrelated to the cause of failure.

2.3 Log-rank test

The comparison of two or more survival curves has always been an important prob-
lem in survival analysis. Numerous parametric and non-parametric methods have
been developed, some for censored and others for uncensored observations. Focus-
ing on non-parametric approaches, the log-rank test is widely accepted as the most
famous amongst the available options, especially for censored data.

For only two populations, the null hypothesis is
H() . Sl(t) = SQ(t)7

meaning that the burning issue is whether the distributions of survival times in the

two groups are identical or not. The anticipated alternative would be:

HA . Sl(t) 7£ Sg(t)
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However, the log-rank test achieves maximum power under the alternative of pro-
portional hazards, i.e., A;(t) = 6Ay(t) for some positive constant 6§ # 1. Using
(2.2), it is easy to conclude that the respective alternative hypothesis in terms of

the survivor function is:

Hai: Si(t) = [Sa(t)).

Now that the statistical context is well-defined, it is time to present how the
log-rank test works. The idea behind this test is based on the construction and
combination of a sequence of 2 x 2 contingency tables displaying group versus sur-
vival status for each time t at which a failure occurs. The equivalent null hypothesis
to the one mentioned before is that the survival profile is independent of the group.
Once the entire sequence of 2 x 2 tables has been generated, the information con-
tained in the tables is accumulated using one single statistic. This statistic compares
the observed number of failures at each time to the expected number of failures given
that the distributions of survival times for the two groups are identical. If the null
hypothesis is true, the test statistic has an approximate chi-square distribution.

More specifically, at time t; a contingency table similar to Table 2.1 can be
constructed. If d;, r; and ry; are regarded as fixed values, and the null hypothesis
is true, d;; can be considered as a random variable that follows the hypergeometric
distribution, since when one subject in the first group fails it is impossible to fail
again in the future! (sampling without replacement). The probability mass function
for d;; in this case is
(o) (2 =17)

T

with dy;’s possible values ranging from 0 to min(d;, r1;).

p(dyjldj,rj,my) =

’ Group H No. of events \ No. of survivors beyond ¢; H Total ‘

I dyj ri; — dij Y,
11 dgj T2; — d2j 25
[Total | d, | ry—d; [ ]

Table 2.1: Log-rank test’s contingency table at time point ¢;.

It is easy to find that the mean of d;; and thus, the expected number of failures
at t; is given by the formula

15
€15 = dj—.

T

'We do not consider recurrent event survival analysis.
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Similarly, the variance of d;; is

b= dirirey(ry — dj)
K ri(r; —1)

All m contingency tables corresponding to failure times tq,ts,...,t,, can be com-
bined via the following statistic which depends on the difference between the ob-

served and expected number of events:
(2.5)

where U; = Z;nzl(dlj —ey5) and Vi = Var(Uy) = Z;n:l v1;. Under Hy, the test
statistic asymptotically follows a x? distribution with 1 degree of freedom (d.f.).2
Despite the fact that the log-rank test is essentially testing the equivalence of two
survival functions versus the alternative of proportional hazards, this does not mean
its results are invalid when another alternative relationship holds. Unfortunately,
however, there are some special cases (e.g. when the survivor functions cross each
other) where the test lacks a great amount of power. In Chapters 5 and 6 more
insight and ways to tackle this problem will be given both in a theoretical and a

practical context.

2.4 Cox PH model

Fifty years ago, Sir David Cox (1972) made a groundbreaking proposal, that of a
new statistical model, specially created for survival data. The proportional hazards
regression model of Cox has since become the most known semi-parametric model
for the analysis of failure time regression data. Today, the Cox model is used in
countless applications, not only in survival analysis but also in related fields, such as
reliability analysis, epidemiology, and biomedical studies. Apart from Statistics and
Biostatistics, many other disciplines have also benefited, including Biology, Actuarial
Science, and Finance.

But why is Cox’s model so popular? What is the characteristic or the property
that makes it remarkable? The following sections present the basic qualities of the
Cox PH model, mainly from a mathematical point of view. Hopefully, by the end

of this chapter, the reasons for the Cox model’s popularity will become apparent.

?Interestingly, an approximation to the log-rank statistic can be calculated using observed and
expected values for each time ¢; without having to compute the variance formula. The approximate
formula is of the classic chi-square form that sums the square of the observed minus expected value
divided by the expected value over all failure times. Nevertheless, this approximation is not
frequently used but employs the same rationale as the log-rank test (Kleinbaum et al., 2012).
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2.4.1 Formula and partial likelihood of the model

Starting from a mathematical perspective, the formula of the Cox PH model says
that the hazard for the i-th individual at time ¢ is the product of two quantities.
The first of these, \(t), is called the baseline hazard and it is an unspecified func-
tion. No parametric assumption is made for A\g(¢) and that is why the model is
semi-parametric, in comparison to parametric models with similar forms, such as
the Weibull or the exponential where the baseline hazard is specified (according to
Section 2.1.5). The second quantity is an exponential expression, independent of
time t.

Let n be the number of individuals in the analysis with censoring or failure
times tq,1s,...,t,, respectively. If p characteristics of the population are being
under consideration, then denote by x; the p x 1 vector of predictor variables for
subject 7,7 = 1,2,...,n, and § a p X 1 vector of unknown regression parameters.
Then, the hazard function for the failure time of the i-th individual is given by the

following formula:
N(t) = Aolt) exp(A'z;). (2.6

In order to fit a Cox model to a data set, one must estimate the parameter vector
B. The elements of the aforementioned vector can be estimated after maximizing the
partial likelihood (PL) function of the Cox model. Interestingly, the PL was initially
referred to as conditional likelihood by Cox (1972), but one year later, Kalbfleisch
and Prentice’s comments on his paper, led to the realization that this function was in
fact a partial likelihood (Kalbfleisch & Prentice, 1973; Cox, 1975). Without further
delay, let R; be the set of individuals who have not failed or been censored by t;
(risk set at time ¢;), and §; be the event indicator for subject 7, meaning that J; = 1
if subject 7 failed at t;, and 0 otherwise. Under the condition there are no ties, i.e.,

at most one event occurred at each time ¢;, the PL of the previous model is

exp(8'z;) } "
ZZeRi exp(8'wy)

1) =1] [ (2.7)

Of note, censoring times are effectively excluded from the likelihood because for

these observations the exponent §; equals 0. Also notable is that the ratio

exp(f'z;)
ZéeRi exp(8'ze)

has an intuitive interpretation: according to the proportional hazards model, the

hazard for subject i, for whom the event was actually observed to occur at time
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t;, is proportional to exp(f'z;). Consequently, this ratio expresses the hazard for
subject ¢ in relation to the cumulative hazard for the subjects at risk at time ¢;.
This explains why someone would choose to estimate § via finding the maximum
point of L(/3). Each time ¢;, for which ¢; = 1, corresponds to the time of failure for
a subject with label . The probability of failure for this subject at that exact time
should be higher than the respective probability for any other subject included in

R;. Therefore, the ratio
exp(f'x;)

ZéeRi exp(B'xy)
should be as high as possible. Since L(f) is essentially the product of all these

ratios, maximizing L(f) will, in a sense, maximize each factor, while adjusting for
the others, simultaneously.

Unfortunately, this maximization is not feasible by hand and there is not a closed-
form solution. A usual method to deal with this issue is the root-finding algorithm
Newton—Raphson. This algorithm has been developed to solve difficult equations,
i.e., equations for which there is not a specific methodology, to begin with. However,
here, no equation has been written. So, first of all, the partial log-likelihood must
be defined: .

((B) =W L(B) = Y 6i{f'zi —In Y _ exp(F'z)}. (2.8)
i=1 (ER;
After differentiating the above function with respect to 3, it occurs that

D> [x - Suten, T eXp(/ﬁlm)] . (2.9)
9p Py e, exp(B'e)
Frequently, the derivative of ¢(3) is denoted by U(3), and the equation
Up)=0 (2.10)

is called the partial likelihood score equation. Intuitively, U(f) expresses the sum
of the differences between observed and expected covariate values over the subjects
who failed, since the term Y xyexp(8'x,)/ > exp(f'zy) is a weighted average of x;
over all individuals at risk at time t;. The maximum partial likelihood estimators
(MPLE) can be found by solving U(/3) = 0, employing a computer program and of
course, a root-finding algorithm. These estimators share the general properties of

the maximum likelihood estimates.

2.4.2 Approximation methods for tied survival times

Luckily, a similar procedure can be followed when there are ties, i.e., there is at

least one time point at which two or more events take place. Nevertheless, the
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computation of the MPLE, in this case, is time-consuming. Several proposals have
been made to circumvent this obstacle, with the most popular being Efron’s and

Breslow’s adjustments for ties.
Breslow’s modified partial likelihood

Breslow (1974) proposed an approximation of the exact PL when ties are present.
Let t; <ty < ... <ty be the ordered failure times, d; be the number of events at ¢;,
R; the risk set at t;, and finally, S; the sum of the covariate values over all subjects

who failed at ¢;. Then, Breslow’s modified PL is given by the formula

L) =11 exp(8'S;) - (2.11)
1 [Seen, exp(Bz0)

This formula is just an approximation of Cox’s discrete method for ties.
Efron’s modified partial likelthood

Efron (1977) suggested a different method for the approximation of the PL. Using
the same notation as before, and denoting by D; the set of individuals who fail at

t;, the formula

L@ =11 e | xp(5'5;) (2.12)

re ZzeRj exp(fB'zy) — dLj ZkeDj eXp(ﬂlﬂfk’)]

is quite close to the real PL.

When there are no ties, both methods give the same results as the initial PL
presented in this section. However, under the presence of ties, other factors must
also be considered regarding which approach should be implemented. Again, when
there are few ties the results do not differ substantially. When their number is large,
Breslow’s approximation performs poorly, as it underestimates the regression pa-
rameters (the elements of § are biased towards 0), while Efron’s method performs
far better, even though estimators are biased too. Of course, other options are avail-
able, such as the discrete method by Cox (1972) or the exact method by Kalbfleisch
& Prentice (1973). Exact methods yield more accurate results, but they are com-
putationally demanding and time-consuming. Thus, in practice, either Breslow’s or
Efron’s approximation is used. Although the Breslow approximation is the default
in many standard software packages, the Efron method for handling ties is to be
preferred, particularly when the sample size is small either from the outset or due
to heavy censoring (Hertz-Picciotto & Rockhill, 1997).
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2.4.3 PH assumption in Cox regression

Proportional hazards assumption is inseparably connected with the Cox model, at
the extend that the latter is oftentimes referred to as Cox PH model or proportional
hazards model. Indeed, along with its particular form, it’s the only assumption a
statistician should test to evaluate the validity and goodness of fit of the model.
The definition of the Cox model makes evident that, for any two individuals ¢; and
1o their hazard ratio

Aip(t) _ Ao(t) exp(B'zy,)  exp(B'zs,)

i, (1) Xo(t)exp(Blz;,)  exp(flay,)
is independent of time. When the PH assumption is invalid, the estimates of the

Cox model are biased and unstable. If a statistical analysis depends entirely on a
Cox model, but hazards are not proportional, the findings are incorrect and mis-
leading. Especially, in the field of Biostatistics where human lives are at stake, these
mistakes should be avoided at all costs. In the next chapter, a variety of tests for

proportionality will be presented with this issue in mind.

2.4.4 Association between the log-rank test and the Cox PH
model

In the introduction of this thesis, it was mentioned that the log-rank test and Cox
model are connected. Both statistical methods achieve their greatest performance
under the PH assumption. However, this is not the only link between them: it can
be proved that the log-rank statistic arises as a score test from the partial likelihood
function.

The log-rank test is implemented for the comparison of groups into the data set.
In the two-sample case, i.e., when there are only two groups the log-rank statistic
is given by the formula described in section 2.3. Returning to the Cox model, let
x be an indicator variable which is equal to 1 for the individuals belonging to the
first group and 0 for the individuals belonging to the second group. Using only
this covariate and the same notation as before, assuming that there are no ties for
simplicity, the partial likelihood is

B ~ exp(fz;) 5
v =11 {z (]

The corresponding partial log-likelihood and its first and second derivatives are given

below:

UB) =D di{Bri —In Y exp(Bro)},

lER;
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iy N R > eer, Teexp(Bry)
'(B) = ; 0 |:l'z > exp(570) and

(B) = — i Iy zfeRi . exp(fBay) - ZeeRi exp(Bxy) — [ZZGRZ, Ty exp(ﬁmz)f'
i=1

2
[ZéeRi eXP(ﬁxé)]
At this point, it is important to recall the null hypothesis of the log-rank test: the

distributions of survival times in the two groups are identical. If this is the case,
then the hazards for individuals of different groups will also be identical. This is
equivalent to testing the hypothesis Hy : § = 0 versus Hy : § # 0, because under
H, the HR of the two groups is equal to 1. The score test here is conducted using

the statistic )
U(fo)

1(6o)
where U(f3y) is the partial likelihood score and I(y) is the Fisher information, both
evaluated at By = 0. It is known that

' ~ [ Der weexp(0-x)
V)= £18) > VO = D20 |- demexpm-w)}
= i&' —xi——ZéeRi xé}
i=1 L |7
— [ | Rl
= ;51- _:ci— |Rz|:|
> {‘ ’@ﬂ
i:6;=1 ’

where | R;| is the number of subjects at risk at ¢;, and | Ry;| is the number of subjects
belonging to the first group at risk at ¢;. It is obvious that U(0) = U; for the special
case of no ties, where U; is the sum of observed minus expected number of events
over all failure times.

Fisher information can be estimated via the negative of the second derivative of

the partial likelihood (observed Fisher information), and thus

ig) = —t'8)=
J(0) =1(0) = Xn: 5; Drer, T exp(0 - x0) - Yoyep, exp(0 - w¢) — [3,cp, weexp(0 - z)]

i=1 [Zeem exp(0 - xé’ﬂ i

_ Z E@ER«; ill'@2 ) |Rl| B [ZEER«; xe}z
a | Ril?

7,51:1
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but z’s possible values are 1 and 0, so x,2 = z, V¢, and therefore,

Z D ier, Ve |Ril — [Zéem ng

10 = e

16121

_ Z |Ry| - |Ri| — |Rysl?
12

i:0;=1 |Rl|

B Z |Ryi| - (| Ri| — |Rug)
| Ri|?

7,61:1

which is equivalent to V7 when there are no ties.

Consequently, the score test statistic takes the form of the log-rank statistic, and
like the latter, it follows a x? distribution with 1 d.f. under Hy. This proves that
the Cox model is just a generalization of the log-rank test for the multivariate case
(Cox, 1972; Harrington, 2014).

2.4.5 Estimation of the baseline hazard

A frequent downside of the Cox model is that it only determines HRs, i.e., it gives
answers regarding the relative risk between individuals with dissimilar characteris-
tics, but not about their absolute hazards. This stems from the fact that the baseline
hazard is unspecified. Fortunately, having estimated the parameters of a Cox model,
it is possible to recover a non-parametric estimate of the baseline hazard function.

Of course, it is not necessary to fit a Cox model to gain a non-parametric estimate
of the hazard or the cumulative hazard function. For instance, there is the well-

known Nelson—Aalen estimator which is defined as

Apy=Y = :
0=y 213)
‘]Zt]'ft
where t,ts,...,t, are the failure times only, while d; and r; define the number

of failures and subjects at risk at ¢;, respectively. Another way to estimate the
cumulative hazard is by obtaining the KM estimate of the corresponding survivor
function and using (2.2) to estimate A(t).

Nevertheless, none of the aforementioned approaches utilizes the findings of a
fitted Cox model. Luckily, Breslow (1972) suggested estimating 3 and the baseline
cumulative hazard Ag(¢) in the maximum likelihood framework. By treating A (¢)
as piecewise constant between uncensored failure times, one can show that the joint

likelihood for 8 and Ag is maximized simultaneously at B, the maximum partial
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likelihood estimator, and

N R (P
Ao(t) = ; Z[eRi exp(@’xg)'

This is the well-known Breslow estimator. Like any other MLE;, it is asymptotically

(2.14)

normal and consistent. Its worth is apparent when one considers that all major
statistical software packages, such as SAS and R, implement this formula for the
estimation of the baseline cumulative hazard. At the same time, its strong presence
in numerous scientific papers reflects the importance of using a non-parametric, Cox

model-based estimator of the hazard function (see Chapter 3 for more).
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Chapter 3

Tests for proportional hazards

The typical analysis procedure for survival data starts with non-parametric methods,
such as Kaplan-Meier estimates for the groups of interest, followed by the log-rank
test (or some variant) for the comparison of the survival curves, and finally, the
Cox model is fitted to provide an estimate of the magnitude of their difference.
Under the assumption of proportional hazards, the results from the log-rank test
and the Cox model are valid and informative of the nature of the data. However,
nowadays non-proportionality of hazards is more and more frequently encountered,
although it is ignored in many cases. For instance, most randomized clinical trials
with a time-to-event outcome are designed assuming proportional hazards of the
treatment effect, even though recent breakthroughs in the field of medicine showed
that, depending on the mechanism of action, a therapy can display great effect in
a non-conventional way, rather than in a consistent one. As a consequence, various
patterns of non-PH are observed.

Patterns of non-PH may be obvious in the KM plots in the initial analysis. Nev-
ertheless, when the number of groups under consideration is large or the variable
of interest is continuous, these patterns are easily missed. For that reason, it is
of great importance to check the PH assumption via strict statistical criteria. Nu-
merous graphical and statistical tests have been developed throughout the years,
mainly based on the Cox model. Usually, the graphical tests complement the sta-
tistical ones. The interpretation of graphs is subjective and thus, cannot be used
alone to define whether the PH assumption is met or not. Instead, it is preferable
to use statistical tests to offer a clear-cut answer regarding the validity of the pro-
portionality of hazards, and then give a more intuitive interpretation of the result
employing a relative plot, if possible. Towards this cause, this chapter begins with a
small presentation of the most famous patterns of non-PH and continues with a wide

variety of tests for the proportionality assumption, both statistical and graphical.

27
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3.1 Frequent patterns of non-PH

Due to recent advancements in medical research, and specifically in oncology ther-
apy, the proportionality assumption seems to be oftentimes violated. Several types
of non-proportionality patterns usually occur either as a consequence of different
treatment effects in subgroups or due to the treatment itself. Also, in recent years,
the accumulation of data is larger, resulting in faster detection of existing non-PH
patterns. While it is hard to specify every possible non-PH scenario, four types are

repeatedly mentioned in the literature:

1. Early/Diminishing effect: With an early effect, the HR is significantly different
from 1 in the early follow-up and approaches it as time passes. An early effect
may, for example, be provoked by ‘wearing off” of the effectiveness of a therapy

that is administered for a limited period and then stopped.

2. Late/Delayed effect: This is the exact opposite of an early effect. At the
beginning, the HR is close to 1 and as time passes their difference becomes
larger and larger. Late effect can be observed when a treatment does not
immediately improve the health status of the corresponding group but proves
beneficial after some period of time. This is usually the case for immuno-
oncology drugs, possibly due to their mechanism of action or due to the design
of the trial (Ananthakrishnan et al., 2021). A delayed effect may also occur in
screening! or prevention? trials, in which the treatment effect is expected to

take time to manifest.

3. Crossing hazards: Sometimes, a short-term or a delayed benefit can also cause
the hazard functions to cross each other. Another reason for crossing hazards
stems from the fact that the treatment may be harmful in a subgroup but
helpful in its complement. This phenomenon demands special consideration
as the comparison of the treatment arms is not straightforward and a clear-cut

answer for the superiority or inferiority of a remedy is not easily provided.

4. Long-term survivors: Finally, a fourth non-proportional hazards pattern ob-

served in recent years is the one produced by long-term survivors. It is known

!Screening trials evaluate new tests for detecting cancer and other health conditions in people
before symptoms are present. The goal is to determine whether the screening test saves lives and
at what cost.

2Prevention trials involve tests to find ways to prevent particular medical conditions or if people
have them already, to prevent them from reoccurring. The emphasis of these studies might be on
medicines, vitamins, minerals, or lifestyle changes.
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that therapies for certain cancer types are believed to induce a subset of long-
term survivors, and in some diseases, normally a proportion of patients are
expected to be cured (or non-susceptible), that is to remain alive or disease-

free even after long follow-ups (Chen, 2013).

To have a better insight, Figure 3.1 displays the survivor functions for two groups
in each scenario. It is vital to remember that these are only indicative and more com-
plicated scenarios are encountered in real clinical data. Furthermore, we should keep
in mind that when the Cox PH model is used to provide a hazard ratio estimation
on these occasions, the resulting summary statistic may be under-or overestimated,
while the traditional log-rank test lacks power. That is why it is crucial to test

the PH assumption before reporting findings based on the Cox regression and the

log-rank test.
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Figure 3.1: Patterns of non-proportionality.
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3.2 Formal statistical tests

Since the introduction of the Cox model, its dependence on the proportionality
assumption led to a series of statistical tests, with Cox (1972) being the first who
suggested one via an extended version of the model. Almost a decade later, other
statisticians started proposing tests for detecting different patterns of departure from
proportionality, with many of them focusing on the alternative of monotonous hazard
ratio or other specific time functions of the HR. Of course, many tests are considered
omnibus, as they perform equally well for a wide range of alternatives. Notably,
most of them employ similar techniques and ideas. For instance, the difference
between observed and expected values arising from the Cox model is a repeatedly
encountered quantity in tests for PH. As more and more methods were suggested,
several generalizations, connecting comparable tests, were created (see for instance
Grambsch and Therneau’s general framework in section 3.2.5) setting the stage for
more powerful testing procedures. At the same time, technology evolution allowed
for the development of new approaches and the comparison of the existing ones
through large simulation studies.

Even though it is difficult to define a clear classification since tests for detecting
non-PH patterns oftentimes share similar characteristics, an attempt to do so can

result in the following categorization:
1. Interval-dependent tests,
2. Tests based on weighting functions,
3. Score tests based on alternative models, and
4. Score process-based tests.

In the next sections, the most popular tests from each category, from 1972 till now,
will be presented, and special attention will be paid to the two-sample case as the

comparison of two groups is usually of great interest.

3.2.1 Interval-dependent tests

Interval-dependent tests require some arbitrary definition of time and/or covariate
space partitions. The oldest of these tests was proposed by Schoenfeld (1980) and
considers both time and covariate space partition. Two years later, Andersen (1982)
brainstormed a rather innovative method to check the PH assumption, but it was still

based on partitioning the space of the covariate whose proportionality is suspected.
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Finally, the suggestion of Anderson & Senthilselvan (1982) and its generalizations
by Moreau, O’Quigley & Mesbah (1985) and O’Quigley & Pessione (1989) combined
the rationale behind the interval-dependent tests with proposed candidate forms of
alternative models under the assumption that proportionality is invalid. Further

insight on the aforementioned tests is given below.
Schoenfeld’s test (1980)

Schoenfeld’s proposal is an omnibus chi-square goodness of fit (GOF) test cal-
culated for a proportional hazards model by obtaining the observed and expected
numbers of deaths within each cell Cy;,7 =1,2,...,r,s =1,2,..., k. Here a cell is
defined as the combination of a time interval [b;_1, b; ) with a group A, of particular
characteristics (typically, by = 0 and b, = 0o0). For instance, when two variables
are under examination, e.g. gender (male or female) and smoking status (current
smoker, former smoker, non-smoker), then it is reasonable to form six groups A,
ie.,

A; — men who are smokers,

Ay — men who are former smokers,

As — men who are non-smokers,

A, — women who are smokers,

As — women who are former smokers, and,

Ag — women who are non-smokers.

Each of these groups is further divided into follow-up periods according to the
specified time intervals [b;_1,b;),j = 1,2,...,7r and the cell Cy; is subsequently
created. The corresponding conditional mean of deaths ey; and its variance vg;
in this cell, (and also covariances) are computed based on the partial likelihood
arguments of Cox, given the risk set R; at each failure time ¢; of the i-th individual.
Let D; be the set of individuals who failed during the time interval [b;_;,b;) and B
the MPLE of the Cox model. Then,

by = Z ZEeR eXP(BIW)

i€D; ZéeR eXp(ﬂ/W)

and

i =3 Sien (O exp(@er) [ Fen, 1(0) exp(Fz)
SJ ieD; ZEeR exp(ﬁ’xg) ZzeR,- exp(B’xg)

where z; is the covariate vector of the i-th subject and I4(.) is an indicator function
with
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0, otherwise.

L0 = {1, ifl € A,

In the formula of é,;, z, denotes all the covariates considered in the model,
including the one whose proportionality is to be tested. After the calculation of the
variance-covariance matrix V', and if the observed number of deaths is dy; in the cell

Cs;, then the suitable statistic for the PH assumption test is
Q= (d—e)Vd-—e) (3.1)

where d is the vector of the observed number of events within each cell, and e is the
vector of the expected number of events within each cell. Under the proportionality
assumption, @ is asymptotically chi-square distributed with (r—1) x (k—1) degrees
of freedom. For the two-sample case, the relative statistic is given by Moreau et al.
(1985) below.

Clearly, the choice of partition here is of great importance. When the variables
whose proportionality is tested are qualitative, it comes naturally to determine the
partition of the covariate space based on their categories. For continuous variables,
a common suggestion is to split their whole range into smaller intervals, usually in a
meaningful way. Of course, depending on the sequence of these decisions, different
results may occur. In any case, however, Schoenfeld (1980) stressed that if the
partitions are defined so as to ensure that a similar number of events is contained
in the cells, dissimilar choices will not result in substantially different outcomes.
Finally, he suggested partitioning using all covariates involved in the PH model,

even the ones whose proportionality is not in question (Song & Lee, 2000).
Andersen’s test (1982)

In contrast to Schoenfeld’s test, Andersen (1982) proposed partitioning of inter-
vals based only on the covariate whose proportionality is suspected. Suppose that
the PH assumption is not in question for the first p variables but may be invalid for
the (p+ 1)-th covariate. Using the same notation as before, for a subject with label
i, the covariate vector for the first p variables is x; = (21, Tj0, . .., Zip). To examine
the proportionality of the (p + 1)-th covariate, one must define k strata, according
to the value of this variable, and r time intervals as before. Then, the s-th stratum

has a hazard function

Nis(t) = Xos(t) exp(B'wy), s = 1,2,... k.
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The baseline hazard function Ags(t) in each stratum s = 1,2,...,k can be approxi-
mated by a constant function \y; within each time interval [b;_1,b;),7 =1,2,... 7.
These newly introduced r x k additional parameters can be computed using Bres-
low’s maximum likelihood estimator on the condition that 3 is known. According

to Andersen (1982), the following formula is used:

. d..
Asi = —=n a2l s=1,2,...k,j=1,2,...,m
! Ziil exp(ﬁ’xf) - Tis; ’ / '

where d,; is the observed number of events during the j-th time interval in the s-th

stratum, n, is the number of subjects in the s-th group, z;

2 is the p x 1 covariate

vector for the i-th individual in statum s and finally, T}, is the time spent in the
j-th interval by the i-th individual from group s. Of course, when there is only one
variable whose proportionality is going to be tested, the term exp(f'x{) is removed
from the previous formula, leaving only the total time spent in the j-th interval by
the subjects in group s in the denominator.

Under the PH assumption, it is expected that A\s11); = Asj exp(as+1),Vs, j. Ret-
rospectively, this is equivalent to In A1), = InAy; + le;l a;,Vs,j. If InXy; is
denoted by §;, then

> i [In Asr1); — In S‘Sj]/[d(;}s-l)j +d]
> aldiin, +dg] ™

which is a weighted average of the difference In A(;41); —In A,; with weights depending

T s=1,2,... k—1,

on the number of deaths in the s-th stratum, and

£ = Sohy dy(In g = >0 @)
J k 9
Zs:l dsj

jg=12...,r

where a; = 0.

Subsequently, the PH assumption can be tested via the statistic?

k

Q=YY dyllnd; — &+ a) (3:2)
j=1 s=1 =1

which asymptotically follows a chi-square distribution with (r — 1) x (k — 1) degrees
of freedom. Small values indicate that In S\Sj and é’j + >, @ are in general close.
On the contrary, the PH assumption is rejected when significant differences between

these two quantities are observed. Once again, the choice of partition plays a major

3Andersen also proposed another statistic for the PH assumption test which is proved to be
asymptotically equivalent to the one presented here.
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role in the outcome, but Andersen has pointed out that different partitions give the
same results if each interval contains a reasonable number of failures.

Despite Andersen’s ingenuity, many claim that this test is not suitable for the
assessment of the validity of the PH assumption. When approximating the baseline
hazard within each stratum and time interval via a constant function, Andersen
initiates a GOF testing procedure which does not examine the fit of the Cox model.
Nevertheless, others embrace his approach because they believe these two models

are equivalent in practice.
Anderson and Senthilselvan’s model (1982)

The violation of the proportionality of hazards led to the proposal of a new model
which assumes that coefficients are different amongst non-overlapping time intervals.
When only two time intervals are considered, the two-step model (Anderson &

Senthilselvan, 1982), as they called it, has the following form:

) Xo(t) exp(a/z;), ift < by
Alt) = {)\1(15) exp(v'z;), ift > by.

This two-step model can also be regarded as a model with constant coefficients
but time-varying covariates. Here, a,~ and b; should be estimated along with the
baseline hazard function. The typical procedure is to start by fixing b; and use the
conditional likelihood to compute v and ~. Ideally, b; should be chosen in a way
that ensures that enough events happen in the second time interval. If this condition
is not met, v will be poorly estimated and infinite estimates of some of its elements
can arise with binary covariates (Senthilselvan, 1980). Finally, the baseline hazard
function is estimated conditional on the estimates &,% and by, using a penalized
maximum likelihood®.

Anderson and Senthilselvan’s model can be generalized for more than two inter-
vals. Nevertheless, the authors pointed out the difficulties of extending their method
to several intervals, as the simultaneous estimation of several parameters is compu-
tationally demanding and the introduction of further censoring results in increased
imprecision. Despite this issue, this model paved the way for a novel approach to
survival data analysis and the creation of two PH assumption tests, which will be

discussed below.

“Method proposed by Good & Gaskins (1971). It provides a smooth estimate of \(t).
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Moreau, O’Quigley € Mesbah (1985)

Based on Anderson and Senthilselvan’s model (1982), Moreau, O’Quigley, and
Mesbah (1985) brainstormed the idea of testing the PH assumption by performing
a score test on the coefficients of an alternative model. Quite similar to the previous

one, this new model has the form

Ai(t) = Ao(t) exp{(8 +;)"xi}, (3-3)

where 5 and v; are 741, px 1 vectors and ¢ € [bj_1,b;),j = 2,...,r. This means that
depending on the time interval of interest the coefficients differ. Of course, without
loss of generality, 7, can be assumed equal to zero, since there are only r intervals

but r 4+ 1 coefficients of unknown parameters. Therefore,

Ao(t) exp{ 'z}, ift €[0,b)
M(t) = Xo(t) exp{(B +v2)x:}, ift € [br,by)

/\0<t> exp{(ﬁ + fYT)/xi}v th S [br—la OO)

After simplifying the formula a little, the null hypothesis of the test for propor-
tionality is

Hy:v=...=7v%=0

versus the alternative
H, :7; # 0 for at least one j € {2,...,7}.

A score test can be performed to test this hypothesis. The first and the second
derivatives of the partial log-likelihood are needed since a score test statistic is given
by the formula

S=U1T"U,

where U is the rp x 1 vector of first derivatives and I is the rp x rp Fisher information
matrix, i.e., the negative of the matrix of the second derivatives, calculated under
the null hypothesis, using the MPLE of the simple Cox model B as 8 and v =
0, for j=2,...,r.

According to (2.8), and assuming that t;;,1 = 1,2,...,k;,j = 1,2,...,r are the
distinct survival times in the j-th interval, the partial log-likelihood for (3.3) is

e B) = 303 B4 e -0 S el (Bt (3.4)

Jj=1 =1 KERI'J'
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where R;; is the risk set at time ¢;;. The rp x 1 vector of first derivatives U can be
split into 7 parts of p x 1 vectors U;, where each one has p values V;;. Vj; is the first

derivative of (3.4) with respect to vs;,s =1,...,p,j = 2,...,r calculated under Hy:

k;
Vsj = Z (-Tis*Aisj)
i=1
where .
o Zuen, meesp(Fm)
i8] — ~
ZEGRZ']' eXp(ﬁ/xe)
So,

U]I:(‘/l]’ "/an)’ forj:2,...,r,

and U can be written as

U = (Uy,--,U.0)
due to the fact that the p elements corresponding to 0¢/9 are equal to zero when
B = . Notice that U; is not defined, but a natural way to do so is by replacing j

with 1 in the formula of V;;. Then, interestingly,

(DA Ol Y
;UJ—<3—5I(0, 0.8) 550, ,o,ﬁ)>_o. (3.5)

Regarding the second derivatives, it holds that under Hy,

020 U N [Crer,, westeq exp(B'z)
S S S - — AjsjAigj (3.6)
for j=2,...,r, and s,q € {1,2,...,p}, and
B 0?0 B
878]'87(1]"
when j #£ j'.
Let I;,7 = 2,...,r be a p x p matrix with elements the second derivatives

corresponding to (3.6). Again, I; is not defined but it can occur by replacing j with

1 in the same equation. Then, it can be shown that

02¢ -
3505, Z I;.

Having defined all the above formulas, the form of the observed information

(5 o)

matrix I can be easily written as
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where D = diag(ly,---,I,), B' = (Iy,--- ,I,) and C' = 37", I;. Fortunately, after
implementing Rao’s method (Rao et al., 1973), this matrix is inverted, and after

calculations, it occurs that the score statistic for the test of proportionality is
T
—1
S=> Ui 'U;. (3.7)
j=1

Since the null hypothesis assumes that (r — 1)p values are equal to zero, the
asymptotic distribution of S is a chi-square with (r —1)p degrees of freedom. Notice
that the calculation of S requires only the inversion of I;, making the procedure
simpler than it seemed initially. As for the occasion where more than one death
may occur in a single time point ¢;;, i.e., when there are ties, small adjustments
should be made in the formulas of first and second derivatives of the partial log-
likelihood. More specifically, if d;; is the number of deaths at ¢;;,

k;
Vi = Z(%s - diinsj)a
i=1

and

o 00 i deRij TpsTig GXP(BIW)

001 080 S| Tien, exp(Ba)

1=

— Aisj Aigj

To gain more insight into Moreau, O’Quigley, and Mesbah’s proposed test, the
two-sample case will be examined theoretically and via simulations (see Chapter 4
for more). First of all, when the model includes one single variable, the score statistic

has the following form:

S=> 2 (3.8)

since p = 1. Suppose two groups and thus, a variable x with two possible values,

with the usual notation being

_J 1, if the subject belongs to the 1** group
B 0, otherwise.

In the absence of tied data and according to what was previously presented, U;
is just the difference between observed and expected number of deaths in group 1,
ie.,

U; = Oy By, (3.9)
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where

J B
. T'145€ .
Ey; = eij, with e;; = ————, 7 =1,2,...,7.
Z r1ij€7 + Tai
The quantities ry;; and ry;; represent the number of individuals at risk at time ¢;;

in group 1 and group 2, respectively. Moreover,

[y

eij(1 — eqy). (3.10)
i=1
Replacing U;’s and I;’s with their equivalent quantities from (3.9) and (3.10) in
(3.8), the score statistic for the two-sample case is ready to be used. Here, it follows
a chi-square distribution with » — 1 degrees of freedom. Notice that it is identical
to the one given by Schoenfeld (1980). For that reason, the same paper suggested a

more conservative version that takes the form of a typical chi-square test, i.e.,

i {(Ou — Ey)? N (Oy; — Esj)?
Elj E2]

j=1
Of course, the expected number of deaths in group 2 is

k;

EQ]:Z(1_€U>7 j:1,2,...,7’,

i=1

because the total number of deaths in the j-th interval is constant and F,; + Eo; =
kj,¥j € {1,2,--- ,r}. The reason why this statistic is more conservative than the

one presented before stems from the Cauchy-Schwarz inequality: it holds that
2
k.
i 2 <Zz 1 el])
> s =
— k;
Consequently, Vj € {1,2,...,r}

(O1j — Eyj)? 4+ (Og) — E2j)* _ kj(O15 — Elj)2 _ (04 = By < Ui

Ey; By LBy, S e — Ze”) I

Finally, it is important to stress that the aforementioned statistics must be mod-
ified in the presence of tied data. Once again, the number of deaths at each time

point ¢;; is required and the formulas of F;, Es; and I; change as follows:

k;
INVES E dijeij,
i=1
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k;

Ey = dy(l—ey),

i=1

and

k;
Ij = Zdijeij(l — eij)-
i=1

O’Quigley € Pessione’s test (1989)

Introducing a time axis division, O’Quigley and Pessione (1989) suggested a test

for the PH assumption based on the model
)\Z(t) = )\o(t) exp{(ﬁ + \Ifﬂ)'mi}, t e [bjfl, bj), j = 1, 2, Lo,y (311)

where 5 and ¢ are p x 1 unknown vectors and ¥; is a p X p diagonal matrix with
diagonal elements 11, ¥a;, ..., 1,;. When 6 = 0, the model in (3.11) reduces to the
simple Cox PH model. Therefore, the null hypothesis

HQ 10 = 0,
versus the alternative
HA 0 7é 0

may be tested by using a score statistic. Its formula is derived from the first and
second derivatives of the partial log-likelihood of the model in (3.11), in a similar
manner to the previous test by Moreau et al. (1985). For the two-sample case, which

will be implemented in Chapter 4, the score statistic S is equal to U?/I, where

r r K
U= Z \Ilj(Olj — Elj) = Z \Ijj(Olj - Zeij>
j=1 i=1

Jj=1

and

A . k; 2
r b |:Zj:1 >iz1 Vel — %‘)}

[=)% Wey(l—ey) - W
j=1 i=1 ’ Do 2im €if(1 —eij)

Here, Oy, E1; and e;; are defined as before. As for the scalar® values W, these are

chosen by the researcher performing the test. Some suggestions from O’Quigley and

Pessione (1989) for the general case of p covariates are:

5Here p = 1, and thus ¥ is considered to be a real number, not a matrix.
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1. Linear trend alternative:
Yyj=g—1, forj=1,2,...)r
Yy =0, for ¢ #qand j=1,2,....r
2. Ezxponential decay:
Yy =1+ —j+1)7" forj=1,2,...,r
Yy; =0, for ¢ #qand j=1,2,...,r

3. Inversion of regression effect for the two-sample case with two time intervals:

When inversion of effect is suspected, a proposal is to use ¥, = 1 and ¥y = —1.
This suggestion is suitable for the case of crossing hazards. In general, one
may choose any pair of ¥; and W, for which ¥y = —W,. If effects do go in
opposite directions but are not of comparable magnitude, then the formulation
used here may not be very efficient. However, if the differences in magnitude
are large enough, even a model with an inappropriate assumption such as

proportional hazards will detect differential effects.

The choice of the matrix W; is important since the interpretation of a non-zero value
for 6 will depend on it.

Last but not least, one should keep in mind that the statistic given above is only
appropriate when there are no ties. Once again, a modification is needed if that is

not the case. For the two-sample problem, U and I become

r k;
U=> U;(01; =Y dies)
j=1 i=1

and

. r k; 2

ro b , |:Zj:1 >iz1 dij¥Viei(1 — ev:j)]

I = Z dZ]\Ifjew(l — eij) — . k; .
=1 =1 > i1 2oit1 dijeij (1 — eij)

3.2.2 Tests based on weighting functions

This group of tests employs weighting functions, particularly from Fleming & Har-
rington’s original or extended family, and has been proved to be powerful when
the alternative hypothesis is that of increasing or decreasing (monotonous) hazard
ratio over time. In this category, three tests are worthwhile to mention: Gill &
Schumacher’s (1987), Lin’s (1991), and Sengupta, Bhattacharjee & Rajeev’s (1998).
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Gill and Schumacher’s test (1987)

This test is based on the comparison of different generalized rank estimators of
the proportionality constant € and in its original form, it is appropriate only for the
two-sample problem, i.e., when the interest is focused on two subgroups of the data.
To begin with, let N;(t) denote the number of failures in group j before or at t,
Y;(t) the number at risk in group j at ¢, A;(¢) the hazard and A;(¢) the cumulative

hazard rate at ¢, for j = 1,2. Here the test problem is given by Hy versus H 4 where

Aot
Hy: 2(t) =6, for some positive number 6,
Ai(t)
and ot
A ﬂ = @, for any positive number 6.
A1(t)

Under Hy, 6 can be estimated by the generalized rank estimator

0 — foT K(t)dA2<t)
T KA (1)

where 7 is the upper limit of observable survival times, and K () is a weighting func-
tion, typically chosen from the Fleming-Harrington (FH) family, the initial version

of which is given by

Kpn(t) = %{S@)}”, p 0. (3.12)
So, in practice, in order to estimate 6, one needs to compute Y;(t), S(t), and
Aj(t). Gill & Schumacher (1987) proposed to estimate S(¢) using the right con-
tinuous version of the Kaplan-Meier estimator and A;(t),7 = 1,2, implementing
Nelson—Aalen’s approach (see sections 2.2 and 2.4.5). Under Hy, 0 converges in
probability to 6 as the sample size increases. Consequently, for large sample sizes,
the difference between 0, and 0k, for two different weight functions is expected
to be small. On the other hand, when H,4 holds, one anticipates gaining quite dis-
similar estimates of the hazard ratio, since two weight functions will yield estimates
emphasizing on and representing better different follow-up periods. Having said all
that, it is reasonable to base the test on the difference between two rank estimators
of the aforementioned form.
Let K;(t) and K5(t) be two weighting functions of the form presented in (3.12),
ie.,
Y (t)Ya(t)

K = S+ v

{53
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for i € {1,2}, with p; # po. Then for the j-th group and the i-th weighting function,

the quantities Kij are defined as

[A(z'j(t) :/ Ki(t)dAj(t)vi’j €{1,2}
0
and thus,

i
Instead of using the difference Oy, (t) — O, (t) = Koo/ Koy — K15/ K11, a symmetrized

version is considered as a test statistic:
Qr ik, = Koo K11- Ko Kz
The asymptotic variance of Qk, g, can be estimated by

312 = K21K22‘7117K21K12‘712 - K11K22‘721 + K11K12‘722

QK Ko

where " KO (1)
o Yi(t)Ya(t)

Of course, when K; and K; are chosen from the FH family, the denominator inside

Vi = d{N1(t) + Na(t)}.

the interval is erased. Since the standard procedure involves employing the log-rank
and Prentice’s Wilcoxon weight function, which are given by replacing p with 0 and
1 in (3.12), respectively, this is usually the case. In general, a fascinating fact is

. . Ka(t)
that if the ratio 10
alternatives with a monotone hazard ratio. The latter is always fulfilled when FH

is monotonous, then the test achieves maximum power under

weights are selected.
That being said, the following standardized statistic can be used for the imple-

mentation of the test for proportional hazards:

Thogy = 282 (3.13)
QK Ky

Under Hj and as the sample size increases, Tk, , has a standard normal distribution.
Despite its simplicity, Gill and Schumacher’s test has two major disadvantages.
The first is that the variance estimator of Q) k, x, may be negative, especially far from
the null hypothesis. The second is that the test cannot be implemented for continu-
ous covariates or qualitative variables with more than two categories. Nevertheless,
some comments were made by the authors in the relative paper regarding the lat-

ter occasion: when there are k groups in the data, a global test can be performed
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combining all possible pairwise comparisons. The resulting statistic will then have,
asymptotically, and under the null hypothesis, a chi-square distribution with &£ — 1
degrees of freedom. While feasible, such a procedure is usually avoided due to its

computational complexity and other tests are preferred for this cause.
Lin’s test (1991)

Lin’s (1991) proposal has a similar spirit to the previous test, but it allows for
simultaneous testing of the PH assumption for many covariates. It is based on
the difference between the Cox PH model’s MPLE B and a weighted counterpart
Bw. The latter occurs when a weighting function w(t) is introduced into the partial

likelihood score equation, i.e.,

B ZeeRi g exp(0'wy)
ZéeRi exp(8'wy)

where 9; is the event indicator, z; is the covariate vector, R; is the risk set for subject

Uy(B) = Z Sw(t;) [x

i and finally, w(t;) is a weighting function evaluated over t = t;, i.e., the time of
event or censoring for an individual with label ¢ € {1,2,... ,n}.

After solving the equation U, (8) = 0, B, occurs, a p x 1 vector which should
be close to B under the null hypothesis of proportionality. With that in mind, Lin
suggested performing the test utilizing the statistic

Qu = (B B)[Cu(B)-C(BN (B B)

which asymptotically follows a chi-square distribution with p degrees of freedom.
The quantities Cy,(3), C(B) are the variance-covariance matrices of n/2(f, — Bo)
and n'/ 2(3 — Bo), respectively, under the null hypothesis and the assumption that
the real hazard ratio is equal to a constant value 3. Therefore, one can replace the
Cw (B)—C (B) with the difference between 3,’s and 3’s covariance matrices multiplied
by n.

In the two-sample case, the test does not reduce to Gill and Schumacher’s (1987)

test for proportionality, despite their similarity. Also, the variance estimator here is

always non-negative.
Sengupta, Bhattacharjee € Rajeev’s test (1998)

Sengupta et al. (1998) proposed a two-sample test against the alternative of

increasing cumulative hazard ratio. More specifically, here,
Ao(t
HO . 2( )
A (1)

= 6 for some positive number 6,
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versus

S Aa(t)
A m

It is easy to see that if the cumulative hazard rates of two groups are proportional,

is an increasing function of time.

the same holds for their hazard functions and vice versa, but a monotonous hazard
ratio is a special case of a monotonous cumulative hazard ratio. So, in a sense, this
is a generalization of the test proposed by Gill & Schumacher (1987).

Again, let N;(t) denote the number of failures in group j before or at ¢, Y;(¢) the
number at risk in group j at ¢, and A;(¢) the cumulative hazard rate for j = 1, 2.

Now, define K;; as follows:
K, :/ Ki(O)A, (#)dt, with i, j € {1,2}.
0

Then,
QK K, = Koo K11~ K1 Koy

and its estimated variance is given by the formula
ngKlKQ = Ko KopVii— Ko K12Vi2 — K11 Ko Vay + K11 Ki2Voo

where o
Vi — / / Ki(t) K (s)V (s A t)dsdt
0 0

and

o t le(S) + dNQ(S)
vi= | V()7 (5)

As expected, the statistic

Tk Ky = Orarcy (3.14)

QK Ky
asymptotically follows a standard normal distribution. However, careful considera-
tion should be given to the fact that, according to the relative paper, Qg, g, is zero
under Hy and positive under H 4. Consequently, it is preferable to use the normal-
ized statistic Tk, k, to perform a one-sided test, in contrast to the previous cases

where two-sided tests are suggested.

3.2.3 Score tests based on alternative models

This is a rather broad category. Some of the tests already described are score tests
(see for example: Moreau et al., 1985; O’Quigley & Pessione, 1989). Nevertheless,

other characteristics seem to be dominant and definitive for their classification (e.g.
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their dependence on the choice of time intervals). Here, methods suggested by Bres-
low et al. (1984), Quantin et al. (1996), Bagdonavicius et al. (2004), Bagdonavicius
& Levuliené (2019), Kraus (2007), and Hafdi (2021) are briefly presented.

Breslow et al. (1984)

Breslow, Elder and Berger’s (1984) proposal, also known as the acceleration test,
is a two-sample testing procedure for the assumption of proportional hazards. Its
rationale is inspired by the extended Cox model, according to which, one or more
covariates may be time dependent. To be more specific, the extended Cox model is

usually presented in the form
i(t) = Xo(t) exp(B'w; + v 2(1))

where x; is a p X 1 vector of fixed covariates and z;(t) is a ¢ x 1 vector of time-
dependent variables. For the two-sample case, i.e., when there is only one dichoto-
mous variable taking the value 1 for subjects who belong to the first group and 0

for those who belong to the second, the aforementioned equation can be written as

M (t) = Mo(t) exp(B + v2(1)). (3.15)

Of course, A;(t) corresponds to the hazard function of a subject in the first group,
while the hazard for the second group is the baseline function \g(¢). Breslow et al.
(1984) suggested testing the PH assumption via a score test on the previous model.

Thus, one must test the null hypothesis
Hy:~v=0,

versus the alternative
H ALY 7é 0.

The procedure for the calculation of the test statistic here is simple (see for
instance Moreau et al. (1985) above), and thus the related steps will be omitted.
Let tj,7 =1,2,...,m denote the m distinct ordered failure times (there are no ties),
dy; = 1-dy; an indicator variable which is equal to 1 if the event at ¢; occurred for
an individual in the first group, and finally, r1; and ry; the number of subjects at
risk at ¢; in group 1 and group 2, respectively. Then, the conditional probability

that the event at ¢; is from sample 1, is given by

exp{f +yz(t;)}r1;
exp{ B + vz(t) }r1j + 72

pj =p;i(B,7) = (3.16)



46 CHAPTER 3. TESTS FOR PROPORTIONAL HAZARDS

and therefore, ¢; = 1—p; is the conditional probability that the failure at ¢; happened
to a subject from sample 2. Under Hy, v = 0 and the conditional probabilities for

the two groups are

p
A 5 €Ty
Dj :p](ﬂ70) = B :
€°T1j + T2
and
A . 725
€”’ry; + Toj

where B is the MPLE under the null hypothesis. According to Breslow et al. (1984),
based on the partial likelihood of the model in (3.15), the score test statistic is

v o
where N
U=)_ z(dy—i)
j=1
and

2
7 Yo Pidy

As expected, under H, it asymptotically follows a y? distribution with 1 degree
of freedom. While this is exactly the test that Cox (1972) proposed, the authors
managed to take his idea one step forward. Notice that in the final formula of the
statistic, the quantities z;, 7 = 1,2, ..., m play a major role. A well-known practice,
originally suggested by Cox, is to use the failure times ¢; or their logarithms as
z;. However, this choice will cause the acceleration test to fail to be invariant under
monotone transformations of the survival times. A better approach will be to use the
rank scores z; = j or the cumulative hazard scores z; = Y77, 1/r, (Nelson-Aalen
estimator of the cumulative hazard when there are no ties). Both sets have the
desired feature that they are monotone increasing in j and depend only on rank
information. Of course, other choices are possible but these two seem to be quite
powerful, especially in the case of crossing hazards. Nevertheless, every method
has its drawbacks. For instance, the rank score test is heavily influenced by the
censoring distribution, while the cumulative hazards scores are not a good choice
when the sample size is small. Further work is needed to determine the optimal

assignment of values to the z;.
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Once more, an alteration is required when more than one events may happen at

the same time point. More specifically, U and I from (3.17) become

and

where y;(a) and 07 () denote the mean and the variance of the noncentral (Fisher’s)
hypergeometric distribution which, the number of failures in group 1, d;; follows un-
der Hy, given the total number of deaths d; at t;, and the number of individuals at
risk r1; and 75; in groups 1 and 2, respectively. Here, a is determined as the solution
of the equation Zj dij = Zj pi(a). Due to the complexity of this procedure, an
easier approach is to substitute a binomial distribution for the hypergeometric one.
The quantities d;p;(a) and d;p;(a)q;(a) replace p;(a) and o7 (a), respectively, both
for determination of @ and in the calculation of the test statistic. This approximate
version is quite accurate when most of the d; are small in comparison to the corre-
sponding numbers of subjects at risk in each group. Since this is the most common
scenario, and also, due to the fact that the approximate statistic agrees precisely
with the original version when d; = 1, it is preferable. As for the value a another
approximation can be used in order to avoid the iterative calculations: Breslow et
al. (1984) suggested to calculate a from the Mantel-Haenszel estimator. Last but
not least, it is important to stress that in the presence of ties the cumulative hazard

scores are also somewhat different, and they are given by the formula

Quantin et al. (1996)

The approach that is to be presented in this section is simply a generalization of

the previous test. The proposed model in terms of cumulative hazards is
Ai(t) = eXp(B/Ii){Ao(t)}eXP(V’ﬂCi)’

which means that the usual presentation in terms of hazard function takes the form
of

Ni(t) = Xo(t) exp[B'z; + '@ + {exp(v'x;) — 1} In Ag(t)]. (3.18)
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It is obvious that for v = 0 the model in (3.18) is identical to the simple Cox PH
model. This is the null hypothesis Hy that should be tested versus the alternative
H, v # 0, via a score statistic that will eventually follow a chi-square distribution
with p degrees of freedom. Consequently, Quantin et al. (1996) offer potential for
a global test, which assesses the validity of the PH assumption for two or more
covariates simultaneously.

A fascinating fact about the current method is that (3.18) resembles the model
in (3.15) in the two-sample case, as -y approaches 0. Indeed, the Maclaurin series of

the exponential function e” is

= x? a3
dom=l4at o+ —+
jzoj. 2 6

and thus, as v = 0= vz — 0,

x)? x)3

As a result, one can consider that €7 — 1 &~ vz and thus, (3.18) can be written as
A (t) = () expld + 2 (1)), (3.19)

where z(t) = 1+ InAg(t). In contrast to Breslow et al. (1984), Quantin et al.
(1996) suggest estimating the baseline cumulative hazard from Breslow’s method
(see section 2.4.5). Omnce again, and according to simulations conducted by the

authors, the suggested test seems to perform well under crossing hazards.
Bagdonavicius et al. (2004)
The alternative model here has the form
Ai(t) = No(t) exp(B'z;) [1 + exp{(B + )z } Ao (1)) P71 (3.20)

Therefore, a global (score) test is performed based on the model in (3.20) with the
null hypothesis being
Hy:~v=0,

(Cox PH model)

versus the alternative

Hy:v#0.

(Cross-effect model/Crossing hazards)
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Bagdonavicius € Levuliene (2019)

When the proportionality of some variables is already established and the in-
clusion of one more, whose proportionality is suspected, is under consideration, a
covariate-specific test should be performed. For this purpose, Bagdonavicius & Le-

vuliené (2019) suggested conducting a score test for the null hypothesis
HO LY = 0

versus the alternative
HA B 7é 07
where v is a scalar parameter involved in the model

B witAo(t) exp(yzis)

Ai(t) = Ao(t) (3.21)

1 + eveii[efo®) exp(yzs) — 1]

while g is a p x 1 vector of unknown parameters. Note that the resulting statistic

follows a chi-square distribution with 1 d.f. (Bagdonavicius & Levuliené, 2019).
Kraus (2007)

Kraus (2007) checks the proportionality of a specified variable z; using d smooth

functions. It is a score test based on the alternative model

where 5 is a p x 1 vector, v is a d x 1 vector of unknown parameters and 1 (t) =
(1(t), ..., 14(t)) is the vector of the smoothing functions. Again, Hy: v =0, Hy :
~v # 0, and the final test statistic follows asymptotically a chi-square distribution
with d d.f., under the assumption of proportional hazards. According to Kraus
(2007), Yx(t),k =1,2,...,d, have the form

)= [305
)= [y

where Ay and Fj are the baseline hazard and the baseline survival time distribution,
and 7 is the total time period of follow-up. The functions ¢,k =1,2,...,d, should
be bounded and linearly independent. Most popular examples are the orthonormal

Legendre polynomials on [0,1] and the cosine basis ¢y (1) = v/2 cos (mku). There are
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many other possibilities, such as various spline bases or o (u) = u* (Kraus, 2007;
Pena, 1998a, 1998b).

Hafdi (2021)

Finally, another alternative model for the PH assumption, testing on a single
covariate while adjusting for others, is the following:

1

Ailt) = Ag(t)e? ™ [1 4 efomiag] *P L (3.23)

Under Hj : v = 0 the score test statistic follows a chi-square distribution with 1
degree of freedom. Hafdi (2021) showed via simulations that the suggested test is
more powerful than other similar score tests when the effect of the covariate under

the microscope is not linear.

3.2.4 Score process-based tests

Score process-based tests have been extensively studied and compared by Kvalgy
& Neef (2004). Some of them are Anderson-Darling’s & Cramer-von Mises’ test
and the Kolmogorov-Smirnov type-based test suggested by Therneau et al. (1990)
and Lin et al. (1993). The definition and theoretical justification of these testing
procedures are based on an alternative presentation of the data, that of a counting
process.

In order to have a better understanding of these approaches, let z; be the covari-
ate vector for a subject with label i € {1,2,...,n}, whose failure or censoring time

is ¢;, and define the counting process N;(t) and the risk indicator Y;(t) as follows:
Nl<t) - ]{ti§t7 d;i=1}>

Yi(t) = Lizoy,
where §; is the failure indicator for the ¢-th individual. Notice that the counting
process for each subject only takes the values 0 and 1, since recurrent event analysis
is not under consideration in this thesis.
After having defined N;(t) and Y;(t), the p partial likelihood score functions that

utilize the information accumulated until time ¢ can be written as
n t
Ui(5.0) = 3 [ oy = 38,0} w) (3.24)
i=1

where . /
_ Zk:l Yk(“)$kj exp(f'zy)

7;(B,u) = > e Yi(u) exp(fay,)
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Despite the fact that (3.24) is different from (2.9) at first glance, it holds that
U;(B,00) = 00(B)/05 = U;(B) (Therneau et al., 1990; Kvalgy & Neef, 2004; Hafdi,
2021). As for the second derivatives of the partial likelihood, one can define the

information matrix for the available information until time ¢ as

15.0=3" /0 V(8 u)dNi(u)

where S0 Vi) exp(Be)los — 38, )l — (B )
Vv _ i=1 YilU) €xXp Ti)| iy — TP, U)||T; — TP, U ‘
) S0, Vi) exp(r,) 529
is the weighted covariance matrix of z at time u, and (8, u) = (z1(8, u), . .., T,(5, u)).

Once again, I(3,00) = I(B), i.e., I(f,00) is equal to the well-known Fisher infor-
mation matrix for the data at hand. Finally, one last quantity needed for the
comprehension of the score process-based tests, is a sequence of p values given by
the formula (6.0

q;(t) = JIJ—’

i (B)

where [;; denotes the j-th diagonal element of matrix /. All the aforementioned
quantities should be calculated after substituting g with the MPLE B of the Cox

PH model so as to implement any of the tests below.
Kolmogorov-Smirnov type statistic

Therneau, Grambsch & Fleming (1990) and Lin, Wei & Ying (1993) proposed to

use this statistic. It tests deviations from proportionality for the j-th variable via

K8 =/ Var(8) sup |U(53,1)|

On a 5% level of significance the null hypothesis is rejected when KS > 1.36. Kvaloy
& Neef (2004), as well as Hafdi (2021), showed via simulations that the Kolmogorov-

Smirnov type test is quite conservative, especially in comparison to the other two

the formula

presented in the current section and some tests from the Grambsch & Therneau
family (see section 3.2.5 for more). It also requires orthogonality to provide valid
results, meaning that the covariates should be independent. In practice, this is not

always the case but small departures from this assumption do not cause great harm.
Cramer-von Mises type statistic

The statistic used here is

OV = Var(3) / UL (B, di (1)
0
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On a 5% level of significance the null hypothesis of proportional hazards is re-
ject for the j-th variable when C'V > 0.461. Cramér-von Mises type statistic is
considered to have quite good proporties against any type of deviation from propor-

tionality, so, it is in a sense, an omnibus test.
Anderson-Darling type statistic

Anderson-Darling score process-based test is believed to be the most powerful
amongst other tests in this category, against many types of departure from propor-

tionality. It is in fact a variant of Cramér-von Mises type statistic, given by

U;(B,t)?
)1 = g;(t)]

Simulation results presented in several papers (Kvalpy & Neef, 2004; Kraus, 2007;

AD = Var(®) /0°° - g (1)

Hafdi, 2021) indicated that AD achieves great power when PH assumption does
not hold, even under the alternative scenario of non-monotonic HR. Nevertheless, a
drawback of this approach is that AD places more weight than C'V on regions with
possibly few observations. On a 5% level of significance, the null hypothesis is reject
when AD > 2.492.

3.2.5 Grambsch & Therneau’s general framework

Undoubtedly, Grambsch and Therneau’s (GT) approach for testing the PH assump-
tion is the most popular amongst the aforesaid methods. Major statistical software
packages, such as R and Stata, implement this method. In fact, Grambsch and
Therneau’s approach can be considered as a family of tests for the assumption of
proportionality: a wide range of tests already presented are equivalent to some of
its forms under specific conditions. At the same time, related plots can be used to
offer an intuitive aspect of the outcome, making the GT family of tests even more
appealing (Grambsch & Therneau, 1994; Therneau & Grambsch, 2000).

To gain more insight into the GT family, one must firstly recall the form of the

extended Cox model, which generally can be expressed as
Ai(t) = Xo(t) exp{B(t) x;}, (3.26)

where (t) = (B1(t), Ba(t), ..., Bp(t)) is a p x 1 vector of time-varying coefficients
and x; is the vector of covariates for the i-th individual, as always. Of course, under
proportional hazards, 3(t) must be equal to a vector S consisting of constant, time-

invariant values. If this is the case, a plot of §(t) versus a function of time or time
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itself will reveal a straight line with zero slope, i.e, a horizontal line parallel to x-axis.
However, to do the aforesaid plot, one must estimate 3(t). Grambsch & Therneau
(1994) showed that if A is the coefficient from a typical fit of the Cox PH model,
then

B;(tx) =~ B+ E(s}y), (3.27)

for j =1,2,...;pand k = 1,2,...,m. Here, t; <ty < ... < t,,, are the ordered
failure times and s}, are the scaled Schoenfeld residuals.

To fully comprehend the nature of sj;’s, one must firstly become familiar with the
definition of the (unscaled) Schoenfeld residuals. Schoenfeld (1982) introduced these
quantities so as to allow the implementation of a GOF test of the Cox PH model
in an easily interpretable manner and without the need of complex calculations.
The famous Schoenfeld residuals are defined for each variable in the model and for
every individual with an observed event during the follow-up period. So, using the
previous notation, if m events have been recorded and there are p covariates involved

in the assumed model, then the quantities

s . ZéeRk ze; exp(B'xe)

i = Thi —

’ ’ ZZeRk exp(f'xy)

for k =1,2,...,m, and j = 1,2,...,p, are known as Schoenfeld residuals. Notice

that sj;’s are in fact the elements of the sum that appears in the partial likelihood
score equations and in order to be calculated, [ should be substituted with the
corresponding MPLE B . This is why Schoenfeld initially referred to them as partial
residuals. He proposed testing the PH assumption by plotting them against time, for
each covariate. Under Hy it holds that E[sy;] = 0 and a plot of §;; versus time should
be centered around the horizontal line y = 0. Under Hy, the alternative of non-
PH, one should expect to observe a trend on the values of residuals as time passes.
Four years later, a similar, but formal, statistical test was developed by Harrell &
Lee (1986), who suggested examining whether the correlation between Schoenfeld
residuals and ranked failure time is statistically significant. Under proportionality, it
is expected that these quantities are uncorrelated. This is also, a rather popular test
and the fact that it is based on the Schoenfeld residuals showcases their importance
and usefulness.

Going back to the GT family of tests, it is noticeable that instead of the partial
residuals, (3.27) employs a weighted/scaled version of them. The scaled version is
given by

x _ Y1,
Skj = Vi Skj»
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where V; = V(B ,tr) occurs by substituting  with 3 and ¢ with #; in the weighted
covariance matrix of x at a specific time point (see (3.25)). Having calculated these
residuals, the researcher is ready to perform a test of zero slope on the plot of
Bj + sj; versus a function g;(t) of time. The visualization alone often provides
great understanding of the nature and the extend of non-PH and of course if the
test yields in favor of a non-zero slope, it is evidence against PH. Nevertheless, the
results should be carefully interpreted as the described test is not omnibus: a specific
alternative is being under consideration depending on the choice of g;(t).

What has been presented as a graphical approach up to now, can be translated
into a formal equivalent test, if the elements of the coefficient vector 3(t) in (3.26)

are expressed in the following form:

pi(t) = Bj + 0;(9;(t) — 9;) (3.28)

for j = 1,2,...,p. Here g;(t) is a specified function of time corresponding to the
j-th coefficient and g, is equal to ), g;(tx)/m, i.e., the mean of g;(t) values over all
failure times. The quantities 3; and 6, are the unknown parameters of the assumed

model, and naturally the null hypothesis of PH can be written as
Hy:0;,=0,Y5€{1,2,...,p},
while the alternative is
Hy:6; #0, for at least one j € {1,2,--- ,p}.

Of course under Hy, §; is estimated as the MPLE of the Cox PH model. Conse-
quently, combining (3.27) and (3.28), an interesting approximate relationship for

the mean of the scaled Schoenfeld residuals occurs:
Els;] = G0 (3.29)

where G is a p x p diagonal matrix whose (j,j) element is g;(tx) — g;, and 0 =
(01,02, ...,0,). Also, it holds that their variance is

-1

Var[si] = Vit = | DV (3.30)
=1
for k =1,2,...,m. Therefore, under Hy, vector 6 can be estimated via (3.29) and

(3.30), implementing the multivariate generalized least squares (GLS) technique. At

last,

0=Q ") Giéx
k=1
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where

-1 /

Q=> GGy —
K=1

> GV
k=1

and the test statistic for the null hypothesis is

m m
g G5 E G5k
k=1 k=1

T'(G) has an asymptotic chi-square distribution with p d.f. when the PH assumption

>
k=1

> GV
k=1

!/

T(G)=0'Qf = Q! (3.31)

holds and it can be used for a global test which also has a graphical interpretation
for each covariate.

Notice that the value of the statistic in (3.31) depends on the choice of the time
function. Undoubtedly, different choices of G result in different tests for model
misspecification. What is intriguing, though, is that depending on the form of g(t),
equivalent tests to the ones presented in previous sections occur®. More specifically,
according to Grambsch & Therneau (1994), if

1. g(t) is a specified function of time, such as ¢ or Int, then 7'(G) is a score test
for the addition of the time-varying covariate g(t)4 to the model. This test
was initially suggested by Cox (see section 3.2.3). It also seems to have a con-
nection with Gill & Schumacher’s proposal (see section 3.2.2), since according
to Chappell (1992) the latter approach is a variant of Cox’s which, however,

imposes unnecessary limitations”.

2. ¢(t) is a piecewise constant function on non-overlapping time intervals, T'(G)
is the score test suggested by O’Quigley & Pessione (see section 3.2.1). Since
the latter generalizes and extends the tests proposed by Schoenfeld (1980) and
Moreau et al. (1985), it can be assumed that all three of them belong to the
GT family. Time intervals should be determined before the analysis in order to
obtain valid and unbiased results. Some suggestions about the choice of time
partition are given in previous sections and are mostly based on the papers
published by Andersen (1982) and Schoenfeld (1980).

3. g(t) is the number of events until time point ¢, then 7'(G) is the covariance

between the scaled Schoenfeld residuals and the ranked failure times. This is

6Tn everything mentioned afterwards, G is a diagonal matrix and its non-zero elements are equal
to the same value g(t).

"Gill & Schumacher’s method is appropriate only for the two-sample case, whereas Cox’s pro-
posal is easily extendable to the multi-sample case.
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almost the description of Harrell & Lee’s test®. It is also equivalent to the test

of Breslow et al. (see section 3.2.3) since it uses rank scores in (3.26).

4. g(t) is a weighting function from the FH family (or any other family of weights),
then T'(G) mimics, in a sense, the test suggested by Lin (see section 3.2.2).
In fact, if the weighted estimate Bw provided by Lin’s approach occurred from
a one-step Newton-Raphson algorithm starting from B, then these two tests

would be identical.

5. g(t) is equal to the lagged residuals, ie., g;(t1) = 0 and g;(tpr1) = a8
for j =1,2,...,p, then T(G) gives a test suggested by Nagelkerke, Oosting &
Hart (1984). Essentially, it is a proportionality test using the serial correlation
of the Schoenfeld residuals for a univariate predictor, or the correlation of a
weighted sum ad's;, for the multivariate case. Usually a = B No further
information will be given about this approach, since it has been proved to
lack power and perform poorly in comparison to other tests presented in the
current thesis (Quantin et al., 1996).

It is evident that a wide variety of tests proposed in the literature can be expressed
as a T'(G) test from the GT family, and that explains its popularity.

Summarizing this section, Grambsch & Therneau (1994) derived a test for pro-
portionality which can be roughly thought of as a test of zero slope in a regression
line fit to a plot of the scaled Schoenfeld residuals against a time function g;(¢). Both
a global test of proportionality and separate tests for each covariate are provided (if
the functions g;(t) are selected accordingly). Different choices of g;(¢) correspond
to different tests, i.e., tests with different alternatives, and several earlier proposed
tests of proportionality are special cases of this family, corresponding to particular
choices of the time function. A limitation with the GT family of tests is that only one
specific alternative to proportional intensity, namely time-dependent coefficients, is
checked. Other kinds of deviations can possibly be wrongly interpreted or not de-
tected at all. Another limitation is the need to choose specific time functions. This
may lead to low power against deviations of a kind not described by this function,
for instance, a non-monotonic deviation when a monotonic g;(¢) function has been

chosen.

8Despite the fact that the original test includes the unscaled Schoenfeld residuals, numerous
papers support that the results should be similar whether someone uses the weighted or the unscaled
version.
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To complete the section of formal statistical tests for the proportionality assump-
tion, Table 3.1 provides an enlightening categorization of them into three groups:
global, univariate, and two-sample tests. Of course, global tests can be modified to
test the proportionality for a single covariate and thus, become univariate, and at
the same time, all univariate tests can be implemented for a dichotomous covariate
becoming two-sample tests. Nevertheless, Table 3.1 helps the reader understand

better the capabilities of each test described in this section.

‘ Global ‘ Univariate ‘ Two-sample ‘
Schoenfeld (1980) Andersen (1982) Gill & Schumacher (1987)
Moreau et al. (1985) Bagdovanicius & Levuliené (2019) | Sengupta et al. (1998)
O’Quigley & Pessione (1989) Hafdi (2021) Breslow et al. (1984)
Lin (1991) Kraus (2007)
Cox (1972) Cramér-von Mises (2004)
Bagdonavicius et al. (2004) Anderson-Darling (2004)
Nagelkerke et al. (1984) Kolmogorov-Smirnov (1990)

Table 3.1: Classification of tests for proportional hazards.

3.3 Graphical tests

An extremely large number of graphical approaches for testing the PH assumption
has been developed since the introduction of the Cox model in 1972. Graphical tests
are really helpful when the number of covariates is small and quite informative in
the presence of qualitative variables with few categories. However, today is the era
of Big Data and thus, the occasions on which such simple problems occur are rare.
That is the main reason why graphical tests are not frequently used, along with the
fact that their interpretation is rather subjective. The examination of graphs is not
an easy task and requires knowledge and experience. Unfortunately, even when a
statistician acquires these skills it is possible to misinterpret them.

To achieve consensus among results from analyses conducted by different statis-
ticians, it is suggested that findings are based on formal tests rather than arbitrary
interpretations of graphs. Consequently, many papers report p-values and avoid
displaying figures to justify some of the results or the choice of methodology. In any
case, it is crucial to remember that this general agreement does not downplay the
importance of graphical tests. On many occasions, graphical tests complement the
formal ones, verify their results, and provide some sort of guidelines, facilitating the
subsequent steps of analysis. Therefore, even if their role is mostly complementary;,

statisticians must acclimatize to the most commonly used in practice. Some of them
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are presented in the following sections.

3.3.1 Based on residuals

Residual plots have been extremely helpful throughout the years, not only in Survival
Analysis but also in the general field of Statistics. Think, for instance, all the tests
performed to evaluate the fit of the simplest and most popular statistical model:
the simple linear regression. Residual plots give great insight into the nature of
the data and the relationships between covariates and response. It would be out
of the ordinary not to use an analogous approach for the evaluation of the fit of
the Cox model and consequently, for the examination of the validity of the PH
assumption. Already, in section 3.2.5, during the presentation of the GT family of
tests, a graphical equivalent approach based on the Schoenfeld residuals has been
described. However, since there are also other methods based on residuals, this will

be presented briefly here, and it will be followed by two new graphical tests.
Schoenfeld residuals versus time

As mentioned before, after calculating the scaled or unscaled Schoenfeld residuals
for each variable z;, a statistician can create a plot of 8;; (or 8;;) versus a function of
time or time itself. Under the PH assumption, there should not be a trend, meaning
that if a line is fitted to the graph it should roughly have zero slope. This means,
that under proportionality, the residuals should form a random “cloud” around the
time axis (z-axis). On the other hand, under the alternative of non-PH, the choice
of time function will determine the shape of the residuals in the plot. However,
an incorrectly specified function g(f) may result in a plot where no trend appears.
Usual choices for g are the (ranked) time itself, the natural logarithm of time and

the KM estimator of the survival function based on the whole dataset.
Cumulative sums of Schoenfeld residuals versus time

Another graphical approach is to use the cumulative sums of Schoenfeld residuals
against scaled time to (0,1), for each covariate. Under PH, each curve should be a

Brownian bridge, i.e., a random walk starting and ending at 0.
Kay’s residuals

Last but not least, another type of residuals can be used for the assessment of
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the PH assumption. Kay (1977) defined the residuals

g = /Oti o(u) exp(f'x;)du,

where t; are the failure or censoring time of the ¢-th individual. For the calculation
of g;, B and Ay are substituted with their estimates. Under Hy, these quantities
should exhibit approximately the properties of a random sample of size n from a
unit exponential distribution. Therefore, the model fit can be checked via a plot of
the estimated cumulative hazard of the observed residuals ¢;. If PH holds, the plot
should show a straight line passing through the origin with slope unity.

3.3.2 Based on cumulative hazard plots

Apart from the residual plots, cumulative hazard graphs are also particularly helpful,
not only for testing the PH assumption but also for selecting a parametric model
which may have the potential of describing the data in a better way than a semi-
parametric model. Notwithstanding this advantage, cumulative hazard plots are
mostly used for the two-sample case, since a generalization for more covariates (or
levels of a qualitative variable) is somewhat complex to be visualized. Therefore, if
there are two groups of interest in the data with corresponding cumulative hazard

functions A; and Ay, usually one of the following five graphs is created?:

1. InAy(t) and In Ag(t) versus time: Under the PH assumption it holds that

Ao(t) 0 Ay (t)

NN

for some positive constant 6. Therefore, taking the natural logarithms in the

=0

two parts of the last equation, it occurs that In Ao(t) —InAy(t) = Inf. Since
the difference of the logarithms of the cumulative hazards is constant, the plot
of In Ay(t) and In Ay(t) versus time should display two parallel lines under Hy.
If that is not the case, e.g. if the curves cross each other, then proportionality

is rejected.

An interesting fact here is that this plot is identical to a rather famous one,
called log-minus-log plot which is based on the survival curves of the two
groups. According to this approach, the curves In [—In Sy (¢)] and In [— In Sy (?)]
should be plotted against time. However, from (2.2) it is obvious that the two

curves are exactly the same with In A (¢) and In Ay (t), respectively.

9For all the plots, the Nelson-Aalen estimator of the cumulative hazards is preferred.
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. InAy(t) —InAy(t) versus time: according to what was mentioned above, this

difference should be constant as time passes when PH holds. Consequently,
under proportionality, a straight horizontal line is expected. Naturally, this
plot is called log cumulative hazard difference plot or LCHD plot (Dabrowska
et al., 1992).

A versus time: This is the relative cumulative hazard difference plot or

RCHD plot. Under proportionality, it holds that

Ao(t) = Ai(t)  As(2)
A (t) AL

—1=60-1,

for a positive constant #. Consequently, if the PH assumption is valid, a
horizontal line is expected to appear in the corresponding plot (Dabrowska et
al., 1989).

. Ao(t) versus Ay (t): Under the assumption of proportional hazards it holds that

As(t)
Ay (1)

for a positive constant 6 and V¢ € [0, 7], where 7 is the maximum observed

=0 = Ay(t) = OA,(2)

failure or censoring time. Thus, when proportionality holds, someone would

anticipate to see a straight line through origin with slope 6.

- Ao[AT ()] versus u,0 < u < Ay(7): this method was initially proposed by

Lee & Perie (1981) and the function used is called the trend function. This
plot is in fact identical to the previous one but for different values of ¢. This
means that under the PH assumption, a straight line through the origin with
slope equal to the real HR should appear in the plot. Under the alternative of
monotonic HR, one should expect to see a convex or concave curve, when the
HR is increasing or decreasing over time, respectively, due to the fact that the
first derivative of the trend function is equal to the HR. In the literature, this

plot is referred to as relative trend function plot or RTF plot.

Despite their simplicity and usefulness, most of these plots have been character-

ized as unstable especially for small samples, since they tend to have wild fluctuations

at the beginning of time or may lack precision for large values of ¢ (Sengupta et al.,

1998; Sahoo & Sengupta, 2016). To overcome this problem, it was proposed to use

their weighted counterparts, replacing A;(t), 7 = 1,2, with Tj(¢), where

70) = [ KA (s)ds
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and K(s) is a weighting function from the FH family. Sengupta et al. (1998) have
stressed that the relative plots are smoother and more stable even for small sample
sizes. At the same time, Sahoo & Sengupta (2016) pointed out that a monotone
decreasing function can bring more stability.

Finally, some attempts have been made throughout the years, to combine the
interpretability of the graphical tests with the formality of the analytical ones. With
this aim, some approaches relied on confidence bands. For instance, in the litera-
ture, it is sometimes suggested to create an RTF or LCHD or RCHD plot (or their
weighted counterparts) and check if the band contains a straight line through origin
for the first plot and if an horizontal line fits in the asymptotic confidence bands for
the other two graphs (Dabrowska et al., 1989, 1992). Nevertheless, these tests have
low power and therefore, other methods have been developed in a similar spirit. The
most famous amongst them is a test proposed by Sahoo & Sengupta (2016) and it is
based on acceptance bands. Despite the fact that it is a rather complex procedure,
it combines the good power of analytical tests with a graphical visualization. It also

captures various types of departure from proportionality.
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Chapter 4

Simulation study: Tests for
proportional hazards

4.1 Previous simulation studies

In Chapter 3 a great variety of tests for proportional hazards has been presented.
A considerable number of papers comparing these tests has been published, yet
there is not a generally proposed approach, or a test that is robust against various
deviations from proportionality. The main reason for this issue is that it is impossible
to check all potential scenarios of non-PH, while at the same time, most of the tests
are disregarded due to nonexistence of relevant statistical software packages. In R,
Stata, and SAS, the user can apply either the GT family of tests or Cox’s suggestion
of creating a time-varying variable and checking its significance in the model. Despite
the fact that the first method is quite flexible allowing for a simultaneous test of
multiple covariates, and the second produces an extended model for the data at
hand, the research on this particular problem is so rich that it would be naive to
conclude that GT family and Cox’s test are the optimal choices against every pattern
of non-PH.

Some attempts for comparison of different testing procedures have been made
already: Song & Lee (2000) have shown that Gill and Schumacher’s (1987) test
performs well when the HR is monotone, whereas Schoenfeld’s (1980) and Andersen’s
(1982) interval dependent tests seem to be more appropriate under non-monotonic
and irregular patterns of non-PH. Quantin et al. (1996) compared a great variety of
tests for the two-sample case, using increasing and decreasing hazard ratio functions
and simulating data from the Weibull distribution. Again, Gill & Schumacher’s
test achieved great power along with the proposed test, while Breslow, Elder &

Berger’s (1984) proposal using the cumulative hazards score was very close in terms
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of performance (Quantin et al., 1996). On the other hand, Sahoo & Sengupta (2016)
examined the performance of Gill & Schumacher’s test versus Wei’s (1984) proposal,
which is essentially a score process-based test similar in spirit to Lin’s (1991) in
section 3.2.2, and came to the conclusion that the first has poor power in comparison
to the second when the HR is a bathtub-shaped function, despite their equally good
performance for large samples under monotonous deviations from proportionality.
Lastly, the performance of various score process based tests, such as Anderson-
Darling, Cramér-von Mises and Kolmogorov-Smirnov was investigated along with
other tests either from the GT family or alternative model specifications, from Hafdi
(2021) and Kvalgy & Neef (2004). The Kolmogorov-Smirnov type test seemed to be
the most conservative, while the Anderson-Darling type test had somewhat inflated
type I error when the variables under consideration were highly correlated. However,
the latter achieved great power when the HR was a non-monotonous function of time,
and under monotonous patterns as well. At the same time the performance of GT
tests using the rank of the failure times or the natural logarithm of time as g(t), has
been questioned, at least in comparison to the score process-based tests.
Unfortunately, it has been acknowledged that there is not a general consen-
sus about which test is better under different types of non-proportionality, partly
because the possibilities are endless. A single test cannot be powerful against all sit-
uations, and so, practical consideration should be taken into account when deciding
which procedure to use. Since a-priori knowledge of the probable type of non-PH
pattern is rare, some claim that applying several tests simultaneously will give some

protection against misspecified alternatives (Song & Lee, 2000).

4.2 Data simulation: Special scenarios

Numerous alternatives for the nature of the data and the non-proportionality pat-
terns can be considered. In the current thesis, the simulation study will focus on
the two-sample problem, which is of great concern when it comes to the analysis of
survival data from clinical trials. The comparison of two treatments is oftentimes
the main subject of such an analysis and questions about the superiority of one
over the other should be addressed based on valid results. If the Cox PH model is
fitted to the data in order to obtain a summary measure for the relative risk, or
the log-rank test is implemented, the PH assumption must be tested, otherwise the
conclusions might be misleading.

For the simulation of the data, the piecewise exponential distribution is used,
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since, according to Lin et al. (2020), this particular distribution tends to mimic
the behavior of the data collected in real-life applications. The null hypothesis of
proportionality is examined along with the four basic scenarios of non-PH presented
at the beginning of Chapter 3: early /diminishing effect, late/delayed effect, crossing
hazards and long-term survivors. In all these cases, the hazard function of the
control group, i.e., the baseline function Ay(t), is constant and equal to 1. This
means that the distribution of the survival time for the placebo group is exponential
with rate equal to 1. As for the hazard function A\;(t) of the intervention group, it

changes according to each scenario. More specifically,

e For the null hypothesis of proportional hazards, three cases are investigated
corresponding to HRs equal to 0.65, 0.80 and 0.90, i.e., A1 (¢) = 0.65 or A\ (t) =
0.80 or A;(t) = 0.90 (see Figure C.1 in Appendix C).

e For the diminishing effect, three different scenarios are considered:

0.65, ift<t
MO =] 0
0.99, ift>tcp

. if t <t
iy {0 T <ter
0.99, ift>tep

900, ift<t
M=o =
0.99, ift >tep

where top is chosen as the time point at which 30%, 50% and 70% of events
are expected to happen in the treatment group (3 cases per hazard function,

and thus 9 in total; see Figure C.2 in Appendix C).

e For the late effect, data with the following hazard functions are simulated:
0.99, ift<t
)\1 (t) _ ) 1 >~ lop
0.65, if ¢t > top

. if t <t
iy {00 Tt <ter
0.80, ift >tep

0.99, ift<t
MO =300
0.90, ift>tep
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and again, tcp is chosen as the time point at which 30%, 50% and 70% of
events are expected to happen in the treatment group (9 scenarios in total;

see Figure C.3 in Appendix C).

e For the crossing hazards pattern, four different scenarios are being investigated:

0.65, ift<t
Al(t) _ ) 1 >~ lopP
1.10, ift>tep

1.10, ift<t
M(t) = ’ 1 - r
0.65, ift>tep

0.80, ift<t
MO =3 o0 g g
1.20, ift>tep

0.80, ift>top

where tcp = 0.7. This specific time point is chosen because by t = 0.7 almost

1.20, ift<t
)\1(75):{ y 1 >~ CP

half of the events in the whole dataset are anticipated. For each scenario of
the above, the study is assumed to end at Te(i()j = 2 and Te(fé = 4 and thus, an
approximate additional 30% and 45% of events are expected, respectively (8

scenarios in total; see Figure C.4 in Appendix C).

e Finally, for the case of long term survivors, only two scenarios are considered:

0.65 if t <t
M (t) = Lo T=ter
0.652, ift > tep

0.802, ift > top

and again tcp = 0.7. In each case, the study is assumed to end at two different

time points Téi()i = 2 and 7'6(3()1 = 4, resulting in 4 approaches in total (see Figure

C.5 in Appendix C).

0.80 ift <t
)\1(15):{ ) 1 >~ CP

Apart from the administrative censoring in the crossing hazards and long-term sur-
vivors scenarios, random censoring is also assumed. The censoring time for each
subject is independent of the group it belongs to and follows an exponential distri-
bution with a rate which will result in a 5% of censored observations in the absence
of fixed censoring. Moreover, the sample size is set equal to n = 200 and n = 1000
with half of the patients in group 1 and the rest in group 2, leading to 66 types of

simulated data! The number of repetitions used is equal to 1000 for each scenario.
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4.3 Results

Eighteen of the tests presented in Chapter 3 are compared in this section:

1.

10.

11.

12.

13.

14.

15.

16.

Cox’s (1972) test, adding the interaction of the treatment indicator with time
in the PH model,

. Cox’s (1972) test, adding the interaction of the treatment indicator with the

natural logarithm of time in the PH model,

Cox’s (1972) test, adding the interaction of the treatment indicator with a
step function of time in the PH model (the function is equal to zero before a

certain time point and equal to 1 afterwards),

. Grambsch & Therneau’s (1994) test, using g(t) = t,

Grambsch & Therneau’s (1994) test, using ¢(t) = Int,

Grambsch & Therneau’s (1994) test, using as g(t) the step function described
in the third test,

Grambsch & Therneau’s (1994) test, using as ¢(t) the ranks of the failure

times,

. Grambsch & Therneau’s (1994) test, using g(t) = S(1), i.e., the KM estimate,

. Gill & Schumacher’s (1987) test with weights corresponding to the log-rank

and Peto-Prentice statistics,

Lin’s (1991) test using the weights proposed by Schemper et al. (2009),
Lin’s (1991) test using the weights proposed by Xu & O’Quigley (2000),
Schoenfeld’s (1980) interval-dependent test with one change point,

Moreau, O’Quigley & Mesbah’s (1985) proposal for a conservative counterpart

of the previous test,
Andersen’s (1982) test with two intervals,
O’Quigley & Pessione’s (1989) test with two intervals and ¥y = 1, ¥y = —1,

Breslow, Elder & Berger’s (1984) approach with rank scores,
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17. Breslow, Elder & Berger’s (1984) approach with cumulative hazards scores,
and lastly,

18. an approximation of the test suggested by Quantin et al. (1996) using the
previous test with scores equal to 1 + InAy(t;) for each event time t;,i =
1,2,...,m.

The results per each special scenario are discussed below. Additional tables and
figures for a better understanding and justification of the findings can be found in
the Appendix Section A.

Proportional Hazards

Table 4.1 displays the results for the 18 aforementioned tests under three possible
values for the HR of the intervention versus the control group when the sample
size is either small (n = 200) or large (n = 1000). According to this, when the
proportionality assumption is valid, the empirical significance level appears to be

close to the nominal level 5% in most of the situations studied for every test.

Hazard Ratio
0.65 0.8 0.9
Test | n =200 n =1000 | n=200 n=1000|n=200 n = 1000
1 8.6 6.3 7.3 6.3 6.6 5.4
2 4.9 5.0 4.9 4.8 5.4 5.4
3 5.9 4.8 5.7 4.5 6.3 4.5
4 6.4 5.6 5.6 5.5 5.3 5.1
5 4.7 4.9 4.9 5.0 5.0 5.3
6 5.9 4.7 5.8 4.3 6.0 4.8
7 5.2 5.1 5.4 4.8 5.5 4.8
8 5.1 5.1 5.4 4.7 5.4 4.8
9 4.8 4.7 4.8 3.8 4.9 4.0
10 5.3 5.1 5.2 5.1 5.4 5.2
11 2.8 4.5 3.7 5.0 4.1 5.3
12 5.6 4.5 6.0 4.5 6.3 4.4
13 5.6 4.3 5.5 4.4 6.0 4.3
14 5.1 4.5 6.2 4.3 5.7 4.9
15 5.6 4.5 6.0 4.5 6.3 4.4
16 5.2 5.2 5.4 4.7 5.6 4.8
17 6.3 5.3 5.8 5.3 5.6 5.3
18 4.6 4.4 4.8 4.9 4.9 5.1

Table 4.1: Type I error (size in %) of 18 tests for proportional hazards in the two-
sample case, using three constant HR functions and two different sample sizes n.
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Test 1 has somewhat inflated type I error, especially for small samples. This is a
Wald test for the significance of the interaction of time with the treatment indicator.
Even though Test 4 is an equivalent procedure from the GT family (score test for
the same interaction term), it is evident that the latter is more conservative and
thus, more valid under proportional hazards, but the empirical significance level is
still inflated. As for the tests based on weighting functions, Gill & Schumacher’s
suggestion (Test 9) is quite conservative, especially for large samples, and the same
holds for Lin’s test (Test 11) with weights from Xu & O’Quigley (2000), but for small
samples. Finally, another interesting finding which confirms a statement about the
relationship of Schoenfeld’s and Moreau, O’Quigley & Mesbah’s proposal, is that
the latter (Test 13) is indeed more conservative than the first (Test 12). Figure 4.1
complements these results and comments, offering a graphical justification of what

was reported up to now.
Early/Diminishing Effect

Table 4.2 and Figure 4.2 offer great insight into the performance of the 18 afore-
mentioned tests for different sample sizes and change points, when an early effect
with initial HR = 0.65 is observed. More specifically, if the HR changes when 30% of
events have been occurred, rank and KM tests from the GT family seem to perform
better, along with Breslow’s test using the rank scores. Their performance remains
comparable with other tests if the change happens at 50% of events. On the other
hand, the GT test with ¢g(¢) = ¢ and the equivalent Cox test, along with Breslow’s
cumulative hazards score test and Lin’s with Xu & O’Quigley’s weights, lack power
in both situations regardless the sample size. Interestingly, they exhibit the highest
power when the change takes place after the occurrence of an approximate 70% of
the events in the treatment group. In general, the interval-dependent tests (Tests
3, 6, and 12 to 15) display mediocre performance which reaches its crescendo when
x = 50%. This is rather reasonable and anticipated since these tests compare the
behavior of the data before a certain time point with their behavior after that. This
time point is chosen so as to split the times axis into two intervals containing similar
numbers of events. Nevertheless, even in this case, interval-dependent tests do not
perform better than GT rank, GT KM and Breslow’s rank score test. A general
comment on Table 4.2 is that almost all tests perform better when the change in
the HR happens at the beginning or in the middle of the follow-up.

Tables A.1 & A.2, and Figures A.1 & A.2 in the Appendix A show the relative

results from the other two scenarios of early treatment effect (initial HR = 0.8 and
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0.9). The findings are quite similar, but the power of all tests is severely diminished

since the deviation from proportionality is not so evident.

Change point at % of events
x = 30 x =50 x =70
Test | n =200 n=1000 | n=200 n =1000|n =200 n = 1000
1 17.2 50.4 21.2 69.3 15.5 52.3
2 17.7 66.6 14.5 57.3 8.1 27.0
3 18.5 66.9 20.0 70.4 8.9 23.3
4 154 47.7 19.6 65.3 14.6 49.7
> 18.7 67.2 16.1 58.7 9.1 28.5
6 17.9 67.0 19.8 70.8 9.3 23.3
7 20.7 73.4 21.1 75.0 11.5 40.7
8 20.3 73.1 21.3 75.1 11.6 41.5
9 19.3 71.2 20.0 72.9 11.0 39.4
10 19.7 71.5 20.8 73.1 11.5 40.9
11 13.5 45.2 17.1 61.4 10.9 48.8
12 17.9 67.0 20.3 70.9 8.9 24.2
13 17.1 66.7 19.7 70.5 8.6 23.9
14 17.7 66.0 20.3 72.0 8.8 28.8
15 17.9 67.0 20.3 70.9 8.9 24.2
16 20.6 73.4 21.2 74.9 11.6 40.5
17 15.0 45.6 18.7 62.5 14.8 48.4
18 18.6 67.8 16.0 61.0 9.4 30.0

Table 4.2: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the early effect case with initial HR = 0.65 and subsequent HR = 1 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.



7T2CHAPTER 4. SIMULATION STUDY: TESTS FOR PROPORTIONAL HAZARDS

Late/Delayed Effect

Again, in this case, only the results for the first scenario of final HR = 0.65 are
presented in the main body of this thesis, but relative tables and graphs for the other
two scenarios can be found on the Appendix Section A (Tables A.3 & A.4, Figures
A3 & A.4). To begin with, when the effect changes at the beginning of the follow-
up, GT test with ¢g(¢) = Int and the equivalent Cox, along with GT rank, GT KM,
Gill & Schumacher’s and Lin’s test with weights proposed by Schemper et al. (2009)
seem to exhibit the highest power. When the change happens after the occurrence
of 50% of events in the treatment group, interval-dependent tests (Tests 3, 6 and 12
to 15) reach their peak in terms of power, outperforming the aforementioned group.
Nevertheless, the power of GT rank, GT KM, Gill & Schumacher’s and Lin’s test is
rather close to the power of the interval dependent tests. An interesting observation
is that tests such as GT with ¢(t) = ¢, the equivalent test by Cox, Breslow’s test
with cumulative hazard scores and Lin’s test using the weights introduced by Xu
& O’Quigley (2000) display the worst performance except from the case where the
change in HR takes place at the end of the study. In fact, the latter test is not at
all reliable when the sample size is small or the effect increases at the beginning
of the study. Finally, even in the last scenario (CP = 70%) Tests 7 to 10 achieve
power levels close to the best ones (Table 4.3, Figure 4.3). The same holds for the
cases when final HR = 0.8 or 0.9 but the power of all tests is severely decreased
(approximately 10% for n = 200 and mainly 25-35% for n = 1000 when HR = 0.8,
and 6-7% for n = 200 and at most 12.2% for n = 1000 when HR = 0.9).

Looking closely, one can notice that the results for the early and late effect
scenarios are similar. Consequently, it is safe to say that good options, if such non-
PH patterns are excepted, are Tests 7, 8, 9 and 10. They may not outperform all
the others under all alternatives, but even when they don’t, their performance is

comparable to the best choice.
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Figure 4.2: Power of 18 tests for proportional hazards, for two sample sizes and three change points (CP) at 30%, 50% and 70%
of events in the treatment group, when an early effect with initial HR = 0.65 is observed.
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Change point at ©% of events
x =30 x =50 x =170
Test | n =200 n=1000 | n=200 n =1000|n =200 n = 1000
1 20.5 45.0 27.3 62.4 25.3 63.7
2 20.1 67.8 20.0 69.5 13.5 46.6
3 16.4 51.9 27.6 85.6 13.3 42.6
4 18.5 46.9 25.9 66.4 23.5 67.2
5 20.4 68.2 20.1 69.3 13.4 46.3
6 16.2 52.0 27.3 85.7 12.7 42.2
7 22.2 68.4 26.0 80.2 17.6 59.8
8 22.0 68.1 26.6 80.0 17.7 60.7
9 21.6 66.7 25.3 78.6 16.9 58.6
10 22.3 66.8 26.9 78.7 18.3 61.0
11 8.3 42.1 13.2 62.0 14.3 63.6
12 16.0 51.5 27.1 85.5 12.8 42.3
13 14.9 51.0 26.0 85.4 12.1 41.9
14 16.2 52.0 27.3 87.0 15.4 49.6
15 16.0 51.5 27.1 85.5 12.8 42.3
16 22.2 68.6 26.3 79.9 17.6 59.6
17 19.8 49.7 26.3 69.6 23.4 68.8
18 20.0 68.4 20.0 68.3 13.8 44.3

Table 4.3: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the late effect case with initial HR ~ 1 and subsequent HR = 0.65 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.
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Figure 4.3: Power of 18 tests for proportional hazards, for two sample sizes and three change points (CP) at 30%, 50% and 70%
of events in the treatment group, when a late effect with final HR = 0.65 is observed.
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Cut point
2 4
Test | n =200 n=1000 | n=200 n = 1000
1 28.4 88.5 25.7 83.1
2 20.5 76.0 24.0 83.9
3 35.6 95.2 35.6 95.2
4 28.6 88.5 24.9 82.8
5 23.2 7.7 26.0 84.6
6 35.2 95.1 36.1 95.8
7 31.1 90.0 32.0 91.9
8 31.1 90.2 31.5 91.8
9 11.3 71.3 29.8 89.4
10 29.7 89.5 31.1 90.8
11 26.9 89.2 21.4 80.7
12 35.4 95.2 35.3 95.2
13 35.4 95.2 34.8 95.2
14 34.9 95.2 34.5 95.4
15 35.4 95.2 35.3 95.2
16 31.1 90.2 31.9 91.8
17 28.3 88.1 23.5 80.3
18 24.2 80.4 26.3 85.9

Table 4.4: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 0.65 and subsequent HR =
1.10, for different sample sizes n and cut points 2 and 4.

Crossing Hazards

Table 4.4 presents the related outcome for the case where the initial HR is equal
to 0.65 and then an inversion of effect is observed, with a new HR = 1.10. It is
evident that Gill & Schumacher’s and Lin’s test (with Xu & O’Quigley’s weights)
display the worst performance. The interval-dependent tests have the greatest power
(Tests 3, 6 and 12 to 15) which is roughly equal to 35% when the sample size is 200,
and 95% when n = 1000. GT rank, GT KM, Breslow’s (rank score) and Lin’s tests
with weights by Schemper et al. (2009), exhibit similar performance with a loss of
power of about 5% in each case. In general, the extension of the follow-up period by
2 time units does not seem to offer much gain (Figure 4.4). Analogous conclusions

are drawn about the third case of crossing hazards examined (see Table A.5, Figure
A5).
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Figure 4.4: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 0.65 and subsequent
HR = 1.10.
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Cut point
2 4
Test | n =200 n=1000 | n=200 n = 1000
1 27.4 85.1 32.4 87.0
2 17.2 67.0 26.6 83.7
3 22.9 7.7 35.8 95.1
4 27.4 85.1 32.3 87.5
5 19.9 68.4 28.4 83.9
6 22.4 78.1 33.3 95.1
7 24.7 82.8 34.5 92.3
8 24.6 82.9 34.6 92.3
9 7.4 53.8 32.1 90.4
10 25.4 82.7 35.8 92.2
11 10.0 78.9 19.7 84.9
12 23.1 77.8 35.3 95.1
13 22.9 77.8 34.6 95.0
14 23.7 79.3 36.3 95.8
15 23.1 77.8 35.3 95.1
16 24.1 82.6 34.6 92.3
17 27.6 85.1 33.8 88.9
18 18.7 66.5 26.7 82.8

Table 4.5: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 1.10 and subsequent HR =
0.65, for different sample sizes n and cut points 2 and 4.

When the initial HR is equal to 1.10 and the subsequent is 0.65, the results
are somewhat different. Once again, Gill & Schumacher’s and Lin’s test (with
Xu & O’'Quigley’s weights) display the worst performance in general. When the
top = 2, GT test with g(t) = ¢, the equivalent test by Cox, and Breslow’s cumulative
hazards score test are considered the optimal choices. Nevertheless, when top = 4,
the interval-dependent tests reach their crescendo, outperforming all the others.
Engagingly, Tests 7,8, 10 and 16 are close in terms of power to the best choices,
whether tcp = 2 or top = 4 (Table 4.5, Figure 4.5). The same holds for the fourth
case of crossing hazards investigated in this thesis (see Table A.6, Figure A.6).

Long-term Survivors

Finally, the findings for the long-term survivors with initial HR = 0.65 and final
HR = 0.65% are presented in Table 4.6 and Figure 4.6. The interval dependent tests
along with Lin’s proposal with weights by Schemper et al. (2009) are empirically

the most promising options, while the other choice of weights for Lin’s test and Gill
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Figure 4.5: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 1.10 and subsequent
HR = 0.65.
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Cut point
2 4
Test | n =200 n=1000 | n=200 n = 1000
1 18.9 65.6 24.9 66.1
2 12.9 51.2 20.5 66.2
3 18.3 64.8 27.5 85.5
4 18.9 65.4 23.2 68.1
5 14.2 51.3 20.8 66.4
6 17.6 65.7 26.5 85.3
7 18.8 66.4 27.5 77.6
8 18.8 66.6 27.5 77.6
9 1.7 11.9 22.6 71.1
10 22.8 67.6 29.1 78.1
11 1.4 11.7 1.7 49.0
12 18.4 65.0 26.6 85.2
13 18.2 64.8 25.6 84.8
14 19.7 68.1 27.5 85.9
15 18.4 65.0 26.6 85.2
16 18.9 66.7 27.5 77.6
17 19.7 67.5 25.0 71.8
18 14.4 50.6 20.6 64.4

Table 4.6: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of long-term survivors with initial HR = 0.65 and subsequent HR
= 0.652, for different sample sizes n and cut points 2 and 4.

& Schumacher’s approach display a severe lack of power. Once again, Tests 7,8 and
16 approximate the performance of the optimal tests in each case. Similar patterns
are observed for the second scenario of long-terms survivors (see Table A.7, Figure
AT).

Despite the fact that there is not a unique test which outperforms the others
under all non-PH patterns and special scenarios examined in this thesis, it has been
shown that three out of the 18 are close to the optimal option with a usual loss
of power of about 5%. These are the rank and KM tests from the GT family (the
second is the default transformation in the function cox.zph from the well-known
package survival in R), along with Lin’s proposal using the weights of Schemper et
al. (2009). While the GT tests are famous amongst statisticians, Lin’s test is an
innovative method for checking the proportionality assumption, which also provides
weighted HR estimates, suitable for subsequent analysis and interpretation of the

nature of the data (see Chapter 5 for more).
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Figure 4.6: Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of long-term survivors with initial HR = 0.65 and
subsequent HR = 0.652.
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Chapter 5

Tests for treatment effect

5.1 Estimating treatment effect under non-PH

The traditional log-rank test and the conventional Cox PH model are habitually used
for the analysis of trials with time-to-event endpoints. As previously indicated, both
methods achieve maximum power and estimation accuracy under the condition of
proportional hazards. When a non-PH pattern is observed their power is reduced
and the Cox model’s HR estimate is severely biased. For instance, if a delayed
treatment benefit is detected, the estimated effect will be diluted, as the PH model
produces an average HR across the total follow-up time, misleading the investigators
involved in the trial. At the same time, even if the above HR is reported as an
average, this estimate has been proved to be dependent on the censoring distribution
and thus, the estimated effect turns out to be trial-specific (Boyd et al., 2012; Nguyen
& Gillen, 2012).

Numerous alternative summary measures have been proposed in the literature,
with weighted Cox HRs and median or Restricted Mean Survival time (RMST) dif-
ference between arms being the most prevalent. Weighted HRs can be estimated
after implementing the max-combo test or any other variant of the log-rank test
(see sections 5.2 and 5.3). Further appealing methods have also been suggested,
such as the weighted HR estimates proposed by Xu & O’Quigley (2000) or Boyd et
al. (2012). These approaches have been praised in a relatively recent paper by Ru-
fibach (2019), as they provide robust estimators against the censoring distribution,
which at the same time, are equal to the unweighted HR when the proportionality
assumption is valid. Usually, difficulties in clinical interpretation of a unique treat-
ment effect measure when in fact the effect is time-dependent, resulted in reporting
the RMST difference along with the corresponding confidence interval (see section

5.4). Other choices involve the estimation of a time-varying treatment effect or the
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combined reporting of the Cox model’s estimates and some weighted counterparts.
The latter approaches give a detailed knowledge of the history of the trial but are
more complicated in terms of interpretation. In a similar spirit, one can also report
piecewise HRs, if there is evidence that there is a point in time where the treatment
effect displays a different pattern than before. Of course, the choice of the summary
measure affects both the analysis and the design of the clinical trial and should be
carefully considered.

In clinical trials, most of the time, the interest is focused on comparing two
treatments, i.e., two groups of patients who follow different therapeutic approaches.
So before even a measure for treatment effect is reported, it is important to test if the
two therapies differ significantly. In the next sections, the theoretical basis of several
testing methods for this cause will be presented, along with their corresponding
measures, if there are any. These methods will also be examined and compared via

simulations in the next chapter.

5.2 Weighted log-rank tests and variants

5.2.1 The Fleming-Harrington family

In Chapter 2, section 2.3, the traditional log-rank test for the comparison of two
survival curves was thoroughly explored. In a study where m events have been
observed, one can briefly say that the log-rank test arises from the combination of
m 2 x 2 contingency tables which display group versus survival status at each failure
time. Considering also that, under the null hypothesis of no difference between
the survival profiles of the populations of interest, the number of events in the first

group follows a hypergeometric distribution, a statistic of the form presented in (2.5)

occurs, or
2
, [Z}n:l(dlj — e1j)
Xir = S djrijre;(ri—d;) (5-1)
]21 T‘]Z(T'j—l)
where

e d; is the number of events taking place at ¢;,
e 7, is the number of subjects at risk at t;,
e d,; is the number of events taking place at ¢; in group 1,

® ¢ = dj%j is the expected number of events at ¢; in group 1, and lastly,
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e 11, and ry; are the number of subjects at risk in groups 1 and 2, respectively.

Under Hy, X7 has an asymptotic chi-square distribution with 1 degree of freedom.

Despite the simplicity and usefulness of the log-rank test, a statistician should
always bear in mind that it is the optimal choice when the assumption of PH holds,
but its power is diminished as the hazard ratio deviates more and more from a
constant function. Of course, it is performed in almost every analysis of survival
data where the comparison of groups is under the microscope. It is valid even when
a non-PH pattern is observed and theoretically the most powerful test when the
hazards are proportional.

To increase its power under non-PH, Fleming & Harrington (1982) proposed a
variation called the weighted log-rank test. The traditional log-rank test’s incompe-
tence to detect important differences between survival curves which occur either at
the beginning or at the end of the follow-up time, motivated the two professors of
Biostatistics to think of an alternative approach for comparing two survival func-
tions. They initially introduced the G* family of statistics, where the weighting

functions are defined as follows:

w(t) ={5()}",p =0, (5.2)

and S (t) is the KM estimate! of the survival function based on the whole dataset.

More specifically, the statistic in (5.1) is modified, and is now given by

_ [Z}L wj(dij — elj)] 2

s 2d;r1,r2;(rj—d;)
j=1 J 'f']2- (rj — 1)

(5.3)

where w; = {5’ (t;)}* and the rest quantities are defined like before. Again, under the
assumption that the distributions of survival times in the two groups are identical,
X2 asymptotically follows a chi-square distribution with one degree of freedom.
This idea improved the power of the comparison test in situations where early
differences occurred. Undoubtedly, this approach turned out to be useful on occa-
sions where, for instance, a treatment reduced the hazard for some initial period,
but its effect on the hazard decreased later on. This change is justified by the fact
that the family of weights given by (5.2) consists of decreasing functions since the
survival curve is always decreasing itself. As a result, the beginning of the follow-up
period is more definitive for the outcome of the comparison than middle or the end

of the study. Of course, for p = 0, (5.3) corresponds to the traditional log-rank test,

1Usually the left continuous version of the KM estimator is used.
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while for p = 1, it seems that the class contains as a special case a test essentially
equivalent to Peto & Peto’s generalization of the Wilcoxon test (Peto & Peto, 1972).
As expected, the latter is sensitive to early differences in survival between groups,
since w; = S(t;).

Undoubtedly, this family of FH tests generalized and enhanced the power of the
simple log-rank test, however, it could not adequately detect differences between
treatment arms for which the survival curves did not separate until a certain interval
of time has elapsed?. That being the case, Fleming & Harrington (1991) extended
this definition to the G*7 family of statistics, with weights defined as

w(t) = {SM}{1-51)}, (5.4)

for p > 0, and v > 0. In contrast to the previous definition, these weighting functions
give more flexibility regarding the choice of the most influential time interval for the
test statistic. When v = 0 in equation 5.4, the G*7 class of statistics reduces to the
G? family, placing more weight on earlier events. When only p = 0, more weight is
given to later events. If p = v, the test is more powerful for differences in the middle
of the total follow-up time. Of course, when p = v = 0, the FH test is equivalent to
the unweighted log-rank test.

Apart from the FH family of tests, other types of weighted log-rank tests have
also been proposed in the literature. The most popular amongst them are the
Gehan-Wilcoxon, the Tarone-Ware and the Modified Peto-Peto test.

Gehan- Wilcoxon (or Generalized Wilcoxron) test

The Gehan-Wilcoxon test uses the number of individuals at risk r; at time ¢; as
the weight; thus, in equation 5.3, w; = r;. Since the weight is the number of indi-
viduals at risk, the Gehan-Wilcoxon test places more emphasis on the information
at the beginning of the survival curve, where the number at risk is larger, allowing
early failures to receive more weight than later events. It has been proved to be a
powerful test even when the PH assumption does not hold (Gehan, 1965; Karadeniz
& Ercan, 2017).

Tarone- Ware test

The Tarone-Ware test places more weight on hazards in the early periods, just

as the Gehan-Wilcoxon test does. More precisely, it uses the square root of the

2This is essentially the case of a delayed effect, discussed in section 3.1.
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number of individuals at risk at each failure time as weights, i.e., w; = /r; for
j=1,2,...,m (Tarone & Ware, 1977). Without a doubt, the weight used in the
Tarone-Ware test is greater than the weight used in the log-rank test (w; = 1 Vj)
but less than the weight used in the Gehan-Wilcoxon test.

Modified Peto-Peto test

Finally, the modified Peto-Peto test extends the initial test suggested by Peto
& Peto (1972). It places even greater weight on the beginning of the study since
w; = S(t;)r;/(r; + 1). Careful consideration should be given here: despite the fact
that the formula of weights includes an estimator of the survival function, in the
case of Peto-Peto’s test and its modified version, a different estimate than the one
produced by the KM method is typically preferred (Karadeniz & Ercan, 2017).

5.2.2 Versatile weighted log-rank tests

Even though an appropriate choice of p and ~ in the extended FH family can result
in a well-powered test, little is the a-priori knowledge on how and when a significant
difference between two curves and a non-proportional hazards pattern can evolve.
On many occasions, investigators are unable to predict the shape of the survival
functions and even when they approximately do, they cannot specifically define the
time point or interval where the difference will be significant, imposing difficulties
on the analysis. Thus, which choice of p and v is optimal, especially before a
clinical trial is conducted or even designed? To answer this crucial question, a
combination of FH tests can be implemented, including multiplicity correction, not
only to compare two survival functions, but also to track the time frame in which the
difference achieved its greatest magnitude. Throughout the years, many statisticians
have considered this option: Lee (1996), Lee (2007), Karrison (2016), and Lin et al.
(2020) to name a few. Each one of the proposed approaches employs a combination
of weighted log-rank tests mentioned in the previous section and the multiplicity
correction is based on the assumption that the vector with elements the individual
weighted test statistics follows a multivariate normal distribution (Karrison, 2016).
The individual statistics are in fact equal to the square root of the statistic given
by (5.3) for some particular choice of weighting function, and they are called the
z-statistics, since each one follows a univariate standard normal distribution. After
implementing one of these tests, it is also possible to obtain weighted parameter
estimates from the Cox model, choosing as weights the ones corresponding to the

FH test with the smallest p-value (see section 5.2).
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Lee (1996)

Lee (1996) evaluated the maximum over four z-statistics, derived from G%° G*9,
G2, and G*? tests, as well as their average. The reason why he chose this particular
combination is because it simultaneously examines four different scenarios, three of
which perform well under dissimilar non-PH patterns. Table 5.1 matches each of
the above FH weighted tests with the scenario under which it is expected to have
the highest power amongst the others. These comments stem directly from what

was discussed about the FH family in section 5.2.1.

L (p,7) | w(t) | Maximum Power |
(0,0) 1 Proportional Hazards
(2,0) [S(t)]? Early Effect
(0,2) [1—5(t)]? Late Effect
(2,2) | [S()]2[1 — S@#))? | Middle Difference

Table 5.1: FH tests involved in Lee’s (1996) proposal and expected scenarios of
optimal performance.

Lee (1996) conducted a simulation study, comparing the individual members of
the G”7 family involved in his approach and the combined statistics, under the PH
scenario and cases of early, middle and late hazard differences. As anticipated, the
individual tests performed better than the others under the assumption to which
they were matched in Table 1. Interestingly, the combined statistics, i.e., the max-
imum and their average, were nearly as sensitive as the most powerful individual
statistic for detecting a specific local alternative. It also appeared that the maxi-
mum of the individual statistics performs slightly better than the average of those

statistics.
Lee (2007)

Lee (2007) considered three combination tests based on two z-statistics corre-
sponding to G} and G°! from the FH family. If Z;, and Z, are the z-statistics,
he compared their performance with the power of their maximum max(|Z], |Zs|),
and the statistics |Z; + Z»| and (|Z1] + |Z2])/2. Simulation results confirmed that
the maximum test nearly maintains the sensitivity of the statistics Z; and Z, for
the corresponding survival differences of early and late effect, and is more versatile
than both across several scenarios which are dissimilar to the previous and/or more
complex. As for the power of the other proposed statistics, his simulation showed

that they do not perform better or at least as well as Z; and Zs.
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Karrison (2016)

Karrison (2016) generalized the optimal test suggested by Lee (2007), since he
considered max(|Z;|,|Za|, | Z3]), where Zy, Z; and Z3 are z-statistics obtained from
GYY G%' and G0 tests. This combination also covers the case of proportional
hazards, along with the early and the late effect. Karrison’s test maintains the type
I error rate and provides increased power in comparison to the log-rank test under
early and late difference alternatives; however, max(|Z1|, | Za|, | Z3]) is associated with
a small to moderate power loss relative to the more optimally chosen test. It is also

quite close to max(|Z],|Zs|) in terms of performance.
Lin et al. (2020)

Lin et al. (2020) suggested to use the maximum of the absolute values of four
FH weighted statistics: those which correspond to G%°, G*°, G%! and G*!. Con-
sequently, exactly like Lee (1996), the proposed test will provide relatively good
coverage across a range of possibilities: proportional hazards, early, middle and late
difference configurations. According to the relative paper, the MaxCombo test, as
they call it, is robust against various patterns of non-PH and it provides a strong
advantage under late effect or crossing hazards, scenarios commonly observed in
immuno-oncology. At the same, it achieves acceptable power under early effect and

proportional hazards compared to the traditional log-rank test.

5.2.3 Combinations with other tests

The extension of the traditional log-rank test to a weighted version has undoubt-
edly provided greater flexibility and better properties on occasions where non-PH
patterns are present. Nevertheless, this approach just takes into account the infor-
mation accumulated during a specific period more than other time intervals, based
on what has been observed (if the method is directly applied during the analysis) or
has been expected (if the method is chosen a priori at the design stage). Even when
versatile weighted tests are used, oftentimes the variety of alternative scenarios un-
der consideration is restricted. Of course, various combinations of weighted log-rank
tests can be constructed; the ones presented in the previous section are just the most
famous in the literature. Statisticians can choose a wide range of values for p and ~
and employ the multivariate normal distribution of the corresponding statistics to

perform a test suitable for their data. As a matter of fact, major statistical software
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packages, such as R, already include functions performing these types of versatile
tests in accordance with the user’s preference.

As mentioned in Chapter 3, section 3.1, non-proportionality takes on many forms.
It will be extremely naive to assume that the four non-PH scenarios presented in the
current thesis are enough to represent every possibility. Intuitively, each weighted
counterpart of the log-rank test corresponds to a particular non-PH pattern, and it
is difficult to predict beforehand the shape of the survival curves and the relationship
connecting them. In other words, it is hard to find the optimal (versatile) weighted
test. To overcome this problem, different approaches have been developed, combin-
ing the great power of the log-rank test when proportionality holds with some of the
tests for the PH assumption discussed in Chapter 3.

To understand better why such an approach would work, it is important to
remember that when the hazards of two groups are proportional, i.e., hy(t)/hs(t) =
0, then

Si(t) = [S2(1)]", (5.5)

for some 6 > 0. If § = 1 the survival profiles in the two populations are identical.
Consequently, the equivalence of the survival functions, and thus, the absence of
treatment effect, is a special case of the proportionality of hazards. When the PH

assumption is invalid, the same holds for equation 5.5. This means that
Si(t) # [Sa(1))’, V8 € (0, +00).

Now, imagine performing a test that utilizes both the log-rank test and a testing
procedure for the PH assumption. If there is indeed a significant treatment effect
and proportionality holds, the log-rank test has the maximum power to reject the
null hypothesis of no difference between the two arms. On the other hand, when
the PH assumption does not hold, the same is true for the null hypothesis, so
the proportionality test should be able to provide evidence against it. Based on
this rationale, several tests have been proposed in the literature. Two of them are

presented below.
Breslow combo test (Breslow et al., 1984)

Recall Breslow, Elder, and Berger’s proposal for testing the PH assumption: for
the two-sample case, they suggested an alternative model given by (3.15). The null
hypothesis of proportional hazards, i.e., v = 0, versus the alternative that v #£ 0, was

then tested by performing a score test for the unknown parameter ~, and resulted



5.2. WEIGHTED LOG-RANK TESTS AND VARIANTS 91

in a test statistic X2, which corresponds to (3.17). When the PH assumption holds,
it follows a chi-square distribution with 1 degree of freedom.

According to Breslow et al. (1984), if one wants to test another null hypothesis
Hy, i.e., that both 5 and ~ in (3.15) are equal to zero, versus the alternative that
only v = 0, then the log-rank test would be derived from the corresponding score
test. Using the same notation as the one in section 3.2.3, the score statistic for the
log-rank test would be

Doty diypi (0,001 X271, duyriy /)

X2 = == = — (5.6)
b pi(0,0)g(0,0) D i1 T1gT /17

where 7; = r1; 4+ ry; is the total number of subjects at risk at time ¢; and p;(0,0)

is calculated as in (3.16). Once again, X? follows a chi-square distribution with 1
degree of freedom. Notice that this is equivalent to the statistic in (2.5) when there
are no ties.

Therefore, in order to test the null hypothesis
HO . ﬁ == 0
versus a more generic alternative

H1357é001”’77é07

Breslow et al. (1984) suggested using both statistics X7 and X2. It was shown that
under Hy, as n — oo, the statistics X; and X have independent normal distribu-
tions. Therefore, when the log-rank test and acceleration test are simultaneously
implemented, a multiplicity correction to avoid an inflated type I error can be done
by using a maximum-modulus test based on max(|X;|,|Xz|). Another option is
to use X2 + X2, which under Hy follows a chi-square distribution with 2 d.f. as
n — oo. Lin et al. (2020), praised this particular approach since it seems to result

in a potential power gain under crossing hazards.
Joint test by Royston € Parmar (2014)

The joint test, as Royston & Parmar (2014) called it, is a combination of the
log-rank test and a test from the GT family. Despite the fact that any test can be
used, the authors presented their findings using as time function ¢(t) the ranks of
the event times, i.e., they preferred a proportionality test based on the correlation

between scaled Schoenfeld residuals and the ranks of the failure times.
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This idea was mainly developed to overcome the problem of an inflated type I
error which is the result of the following common analysis approach: In most cases,
the sample size of a trial is calculated via a log-rank test. However, due to new
therapies and breakthroughs in the field of medicine, non-PH patterns are more
frequent than ever. Naturally, the traditional log-rank test is not the optimal test
since its power is reduced under non-proportionality. At the same time, when the
data are collected, a test for PH must be performed to validate the results occurring
from usual analysis techniques such as the fit of a Cox PH model. An issue that
arises here, is that the log-rank test and a subsequent test from the famous GT
family double the probability of a type I error.

To rectify this issue, Royston & Parmar (2014) brainstormed the next idea:
Under the null hypothesis of identical survival profiles in the two groups of interest,
it holds that the log-rank and the GT test have independent corresponding statistics,
each of which follows a chi-square distribution with 1 d.f. and thus, their sum has
an asymptotic chi-square distribution with 2 degrees of freedom. Consequently, this
joint test can be utilized to simultaneously check the proportionality assumption
and find evidence in favor of a significant treatment effect.

Even though their approach is not suggested for use routinely, it has proved to
be quite powerful under increasing or decreasing HR, outperforming the log-rank
test. Of course, the latter has greater power than the joint test under PH, but they
are still close. Keep in mind that the joint test has been mainly presented, in the
literature, as an alternative approach for the calculation of the sample size during

the design of a trial, and not as an analysis procedure.

5.3 Cox regression under non-PH and related mod-
els

The conventional Cox PH model, presented in section 2.4, has proved to be one
of the main statistical tools used in survival analysis. It offers great flexibility
in comparison to parametric models which assume a specific form of the baseline
function, while simultaneously adjusting for the effect of many covariates. Its only
“restrictive” property is the assumption of proportional hazards: in section 2.4.3, it
was shown that, if Cox regression is used for modeling the data, then for any two
individuals the ratio of the corresponding hazard functions is independent of time.
In reality, however, this is rarely the case.

When hazards are indeed proportional, the Cox model yields unbiased, easily
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interpretable estimates and the power of the corresponding tests for significance is
at its highest possible level. Such good properties oftentimes lead statisticians to
ignore the problem of non-proportionality, especially when the deviation from PH
is small. Some claim that the implementation of the standard Cox model is an
acceptable approach under non-proportionality as long as there is not an inversion
of effect for the covariates, i.e., the sign of the log-HR does not change over time.
They also propose to interpret the estimates as average HRs. Nevertheless, when
the fundamental assumption of the Cox model does not hold, it is impossible to gain
good enough estimates for the treatment effect or the effect of any other covariate.
Apart from the bias, it also seems that the results obtained in this way are study-
specific since they are sensitive to the censoring pattern of the data at hand. No

reliable inference can be drawn from such an analysis.

5.3.1 An intuitive interpretation of the standard HR esti-
mate under non-PH

Before proceeding to the presentation of alternative methods, an intriguing question
here is why some investigators consider the estimate of the HR provided by Cox
model as an average? Is it truly an average value of the underlying time-varying
HR and what does that mean? To examine this statement, a simulation can be
used. For simplicity, the two-sample case is considered. The distribution of survival
time within each population has been selected to be a piecewise exponential, with
initial rate equal to Ay = A{j = 1 for both samples. After a certain time point 7
(here 7, = 0.5) both rates change: for the first group A; = 0.5, while for the second
A} = 0.3 after 7. Figure 5.1 illustrates the survival curves in the two samples. Each
group includes 1000 subjects and 1000 repetitions are implemented in total. For
each repetition, the Cox PH model is fitted to the dataset applying administrative
censoring at different time points consisting a sequence of the form ¢, = 7 + 0.1k,
k=0,1,...,55. The HR occurring as a MPLE is therefore saved for each repetition
and each choice of k. Then, the mean value of all HRs is computed for each time
point t; and the results are graphically displayed in Figure 5.2. It is evident that
the time point at which the study ends determines the value of the HR estimate
given by the Cox model. In this particular example, it ranges from roughly 0.75 to
a value a little greater than 1. Notice that as the follow-up period is extended the
estimate decreases. This comes naturally as a result of the nature of the data: up
to 7 = 0.5 the real HR is equal to one but as time passes, the survival profile of

the second group is better than that of group 1. Consequently, the HR estimate for
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the second group compared with the first becomes smaller and smaller as the study

period is prolonged.

Survival probability

Time

Figure 5.1: Survival functions of two populations for which the survival time dis-
tribution is piecewise exponential, with initial hazard rates A\g = A = 1 before
71 = 0.5, and rates A; = 0.5 and \| = 0.3 after 7y for groups 1 and 2, respectively.

This change in the HR gave rise to the idea that the Cox model’s estimate under
non-PH is, in a sense, an average of the real HR. Note that the real HR here is a

piecewise constant function, i.e.,

HR, =1 ft<0.5

HR; = 0.6, ift > 0.5
Therefore, if the interpretation of the estimate as an average HR is correct, then it
should be equal to a weighted mean of HR; and HR,. Three possible weights are

being explored, based on
1. the percentage of time spent in the internals [0,0.5] and (0.5, ],

2. the expected number of events in each of the internals [0, 0.5] and (0.5, tx], and

finally,
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Figure 5.2: Average hazard ratio in the interval [0, tx], with ¢, = 0.5+ 0.1 -k, versus
k=0,1,...,55.

3. the cumulative hazard for a randomly chosen individual.

First approach

Suppose that the follow-up period ends at a time point ¢,k = 0,1,...,55. Then,
the percentage of time spent in [0, 0.5] is given by p; = 0.5/¢;, and the percentage of
time spent in (0.5, ¢x] is given by ps = (tx — 0.5)/tx = 1-p;. These weights can be
used to calculate either a weighted arithmetic (AM) or a geometric mean (GM) of
HR; and HR», i.e.,

AM; = p; - HRy + p2 - HR»
and
GM; = HRY' - HRE?.

Of course, for k =0 =ty = 0.5 and thus p; = 1 and py = 0. This means that if the
study ends after 0.5 time units of follow-up, AM; = GM; = HR;. So, the results
up to to = 0.5 must represent the case of PH with HR = 1. Figure 5.3 shows that
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AM; and GM; are far from what is given as a MPLE from the Cox model. In other
words, these weights do not yield the desired result.

First Approach

12 — Arnthmetic mean

---- (Geometric Mean

Average HR

05 10 15 20 25 30 35 40 45 50 55 60

Time points for study termination

Figure 5.3: Arithmetic and geometric mean of HR; = 1 and HRy = 0.6 with weights
equal to the percentages of time spent in each of the time internals [0,0.5] and

(0.5, tx], for kK = 0,1,...,55. The black line corresponds to the HR estimate from
the Cox model.

Second approach

Denote by Fg, (t) and Fg,(t) the cumulative distribution functions of groups 1
and 2, respectively. It holds that

1—e, ift <05
Fault) = {1 — T0B02 fS05

and

1—et ift <0.5
Fe,(t) = {1 — 708035 iry S 05
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If F(t) is the cumulative distribution function for a random subject in the study,
then

F(t) = P(subject in group 1)Fg, (t) + P(subject in group 2)Fg,(t),

and thus,

F(t):{1—e—f, o o z:ft§0.5
0.5-[1—e 08702 4 5. [1 — e 03035 jft > 0.5

since the number of individuals belonging to group 1 is equal to the number of
individuals belonging to the second group.

The whole study includes n = 2000 subjects. The number of events up to a
specific time point #;, is a binomial random variable with probability of success® equal
to F(tg). Similarly, the number of events taking place in a time interval (t,, tg,]
is a binomial random variable with success probability equal to F(tx,) — F(tg,)-

Consequently, if the weights are defined as

_ Expected number of events within [0, 0.5]

“a= Expected number of events within [0, ¢]
and
Expected number of events within (0.5, ]
2= Expected number of events within [0, ¢;]
or
~n-F(05)  F(0.5)
DT UEW) | Flty)
and
oy — n- [F(ty) — F(0.5)] _ [F(tx) — F(0.5)]
n- F(t) F(ty) ’
for k=0,1,...,55, then an arithmetic and a geometric mean can be constructed as
follows:
AM, = e; - HRy + e5 - HR»,
and

GM, = HR¢* - HRS.

Figure 5.4 displays how these two values change in relation to the total follow-up
period. It is evident that GMs is almost identical to the average HR calculated from
the Cox PH model.

3Success = Event by the time t, for k =0,1,--- , 55.
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Second Approach

12 — Arnthmetic mean
---- (Geometric Mean

1.1

1.0 T

09

Average HR

08

0.7

| | | | | | | 1 | | 1 |
05 10 15 20 25 30 35 40 45 50 55 60

Time points for study termination

Figure 5.4: Arithmetic and geometric mean of HR; = 1 and HRy = 0.6 with weights
depending on the expected number of events within each of the time internals [0, 0.5]
and (0.5,tg], for & = 0,1,...,55. The black line corresponds to the HR estimate

from the Cox model.

Third approach

Let A(t) be the cumulative hazard for a randomly selected individual. It holds

that

t, ift <0.5
—In [05 . <€—0.5t—0.25 + 6_0'3t_0'35)], th > 0.5

M@:_mu_nm:{

Choosing as weights

A(0.5)
A )
and
o)1 e = M)~ A05)
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the following arithmetic and geometric mean occur:
AMg =C1 - HR1 + Co HRQ

and
GM; = HR{' - HR3?.

Figure 5.5 shows the relationship between each mean and the average HR. It is
obvious that this method does not approximate the average HR as well as the second
approach. In fact, all methods are compared in Figure 5.6: only the geometric mean
of HR; and HR, with weights the expected number of deaths within each time

interval is close to the Cox model’s estimate.

Third Approach

1.2 Arithmetic mean
Geometric Mean

Average HR
=
[Le]
l

0.8

0.7

06

1 | | 1 | | | | | | | 1
05 10 15 20 25 30 35 40 45 50 55 60

Time points for study termination

Figure 5.5: Arithmetic and geometric mean of HR; = 1 and HRy = 0.6 with weights
depending on the cumulative hazard of a randomly selected individual. The black
line corresponds to the HR estimate from the Cox model.

Now remember what was discussed in Chapter 2 for the piecewise exponential
distribution. It was mentioned that it is a very useful distribution, particularly for

the simulation of survival data, since it is quite flexible and an appropriate choice
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Figure 5.6: Arithmetic and geometric mean of HR; = 1 and HRy = 0.6 using three
different approaches, compared with the average HR estimator of the Cox model.

of time intervals and hazard rates could mimic the behavior of any real-life dataset.
Intuitively, any survival profile can be thought to stem from a piecewise exponential
distribution if the time intervals are narrow enough. Consequently, in combination
with the findings of the current section, one can interpret the Cox model’s HR as a
geometric mean of the individual constant HRs, using as weights the proportion of
the expected number of events within each time interval per total expected number

of events.

5.3.2 Cox model modifications and alternative estimates for
the HR under non-PH

Since, under non-proportional hazards, the Cox model’s HR estimate underesti-
mates the real HR for some periods of time, and overestimates it for others, it is
not quite efficient to base the inference on this particular approach. Alternative
methods for the analysis of non-proportional data have been proposed throughout

the years, which, in a sense, extend the conventional Cox PH model. The most
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popular amongst them, are:

1. The stratified Cox model: Suppose that the assumption of PH has been re-
jected for one or more covariates. Then, a new model can be fitted to the data,
assuming that the baseline hazard is different for each level* of the variable
violating the PH condition. For simplicity, suppose that the proportionality of
hazards is invalid only for one covariate with k categories. Then the stratified

Cox model is given by
)\i,s(t) = )\Os(t) exp(ﬁ/xi)’ S = 17 27 ce k'

As usual, § is estimated from the corresponding partial likelihood. Notice
that the estimate of § is independent of the category s of the predictor being
stratified. Therefore, the effect of any other covariate is assumed to be the same
across all strata. A drawback of this method is that the effect of the covariate
based on which the stratification was implemented, cannot be computed. If
this covariate is an indicator for the type of treatment received by a subject,
then it would be impossible to estimate the treatment effect using the stratified
Cox model. Thus, it is preferable to avoid employing this model when the
variable of interest is the one not satisfying the PH assumption. Also, it is
suggested that the number of strata should be small, otherwise the complexity

of the model would increase unnecessarily.

2. The extended Cox model: It is the model presented in (3.25). The HRs for each
covariate are given as functions of time. It is a useful approach if the investi-
gators desire to predict the survival profile of the subjects involved in a study.
Nevertheless, it does not always provide a clear-cut answer to questions, such
as “Which treatment is better?”, “Are patients with a specific characteristic

A doing better than patients with a specific characteristic B?”, etc.

3. The change-point Cox regression: It is essentially a special case of the ex-
tended Cox model. Sometimes, there may be indications that the hazard ratio
is constant within specified time intervals. Other times, this model is just
used because proportionality is invalid, but a simpler approach than the ones
mentioned above is preferable. However, such an analysis is based on the as-

sumptions of constant HRs within each period and a sudden change at the

41f the variable is not qualitative, but quantitative, its range should be split into categories.
If more than one covariates are violating the PH assumption, a combination of their categories
should be used for the determination of the model.
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cutpoint between two (or more) periods. This assumption is quite unrealis-
tic and again, piecewise constant HRs cannot always result in straightforward
answers about the superiority of a therapy over another. They, however, offer

a better insight into the history of the trial than a single summary measure.

4. The weighted Cox regression: It is similar to the simple Cox model, providing
one measure of relative risk for each covariate. It has been proved to be efficient
for small samples and also to yield more robust estimates than the traditional
Cox model under the presence of censoring. The estimates of the HRs are
computed solving the partial likelihood score equations after some weights are

introduced for each subject and/or covariate.

The burning question of this chapter is how to test the significance of the treat-
ment effect. The stratified model does not allow for the estimation of a treatment
effect when the PH assumption is violated for the corresponding variable, and the
extended Cox model is more informative of the history of the study rather than the
effect of the included covariates. Of course, the addition of a time-varying parameter
for the treatment indicator may provide interesting results but the options regard-
ing the form of the time-function for the HR are endless. Therefore, the interest in
this section is focused only on the weighted counterpart of the Cox PH model and
an interesting test for treatment effect based on the combination of multiple single

change-point regression models.

5.3.3 Weighted Cox regression

In order to gain weighted estimates for the HR, one should solve a modified version of
the partial likelihood score equations, defined by (2.9) and (2.10). More specifically,

the system of equations takes the form

9y (B) Zn { > cer, Ttj exp(B'xe)
aﬁj — J( ) J ZZERZ' eXp(ﬂll’Z) ( )
for j = 1,2,...,p, where w;(t) is a weighting function, and all other quantities

are defined as in section 2.4.1. In equation (5.7) a weighting function w,(¢;) which
permits the contributions to § at each failure time to be weighted differently has
been introduced. In the standard Cox model analysis, w;(¢;) is always 1. As for the
information matrix, it is obtained, as usually, by taking minus the second derivatives

of the partial log-likelihood introducing the appropriate weights. Thus, the (j, k)
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entry of the information matrix is given by the formula

) R o R N | Zeer, Tomer xp(B'z) [ZZeRi Ty exp(ﬁ/zg)] [ZZeRi Tok eXP(ﬂ’Zz)]
IJ (ﬁ) - Zi:l 51711] (h)wk(tz) > e, ©p(B'w0) [ZggRl cxp(ﬂ’m)}z (58)

for j,k € {1,2,...,p}. A weighted estimate for § is usually obtained by using a
root-finding algorithm, such as the Newton-Raphson method. The solution B, of
(5.7) does not place equal weight to all periods of time, but if proportionality holds
then it should be close to B , the MPLE of the original Cox PH model®. Of course, the
results of this approach depend mainly on the choice of weighting function. Accord-
ing to (5.7) and (5.8) the weighting function can differ from one covariate to another
since a mixture of variables with proportional and non-proportional hazards is typ-
ical. The choice for each covariate is made based on a preliminary analysis of the
proportionality of hazards. In the literature, various options have been mentioned.

Some of them are presented below:

e Gehan scores: The size of the risk set R; at event time ¢; is used as a weighting
function. It is not considered as a very good option since it can lead to low
power (Gehan, 1965; Schemper, 1992).

e Prentice scores: If n is the total sample size and S (t) is the KM estimate
of the survivor function based on the whole dataset, another option is to set

w(t;) = n - S(t;), irrespective of the covariate (Prentice, 1978).

o Xu & O’Quigley’s proposal: Let P(t) be the probability of still being followed-
up at t. Xu & O’Quigley (2000) suggested to use w(t) = [P(t)]! as a weight-
ing function. P(t) is estimated implementing the KM method, with inverse
meaning of the status indicator ;. This approach is considered to yield time-
averaged regression effects and it has been repeatedly praised in the literature.
Under non-PH, it has been shown that the typical Cox PH model estimate
for the HR depends on the censoring distribution (Struthers & Kalbfleisch,
1986; Nguyen & Gillen, 2012), even though without censoring it has the in-
terpretation of a time-averaged effect despite the validity of the PH assump-
tion. However, Xu & O’Quigley’s (2000) suggestion gives an estimate which
is asymptotically independent of the censoring distribution and at the same

time equal to the MPLE of the conventional Cox model under PH.

e Boyd, Kittelson € Gillen’s proposal: It is quite similar to the previous, since

ﬂAw has the same properties: it is equal to the Cox PH model’s estimate under

SRecall the proportionality test suggested by Lin (1991), discussed in section 3.2.2.
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proportionality, but it is robust against the censoring distribution when PH
assumption does not hold (Boyd et al., 2012; Rufibach, 2019). Here, the
weighting function is the inverse of the probability of still being followed-up at a
certain time point ¢ given some special characteristics, meaning that a different
censoring distribution can be assumed for each group of individuals sharing
the same covariate values. In a sense, Xu & O’Quigley’s (2000) approach is a
special case of this method, if one assumes that the censoring distributions of

all groups are identical.

o Schemper, Wakounig & Heinz’s proposal: Schemper et al. (2009) suggested
the weighting function w(t) = S(¢)[P(t)]~" which results in an average HR.
These authors have shown that in a two-sample comparison, average hazard

ratios approximate the odds of concordance very well, i.e.,

c P(T) < T3)
HR~0OC=—=—"2—-—=
l-c  P(Th<T))
where T7 and T5 are the survival times of two randomly chosen subjects of

groups 1 and 2. When 3, is estimated, ¢ can be computed by

_ eXp(ﬁAwA) |
1 + exp(Bu)

This method is suitable for decision-making since it provides a single measure

of relative risk summarizing the nature of the data (Dunkler et al., 2018).

e FH family: In section 5.2.2, a wide variety of versatile log-rank tests were
presented. Lin et al. (2020) suggested performing a combination of weighted
log-rank tests, and if the null hypothesis of identical survival functions is re-
jected based on the max-combination test, then the weighting function from
the FH family corresponding to the individual test with the lowest p-value
should be used to implement a weighted Cox regression. In this way, more im-
portance is given to time periods which seem to display the greatest difference

regarding the survival profile of the groups of interest.

Inference about the weighted estimates can be based on the corresponding co-
variance matrix, which can be computed employing several approaches according to
the literature (Schemper, 1992; Schemper et al., 2009; Boyd et al., 2012; Dunkler et
al., 2018). The most popular amongst them are the following:
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o Lin & Sasieni’s sandwich estimate: According to Lin (1991) and Sasieni (1993)

the covariance matrix of the weighted estimates can be computed by

V =A"'BA,
where ,
- —0%((B)
Ay, = )
and

& ,—0%((B
B = L lutt) aﬁ—a;)

for j,k € {1,2,...,p}. When w(t) =1 this estimate reduces to the inverse of
the Fisher information matrix of the Cox PH model. Unfortunately, it is valid

only under proportionality of hazards and without model misspecification.

o Therneau € Grambsch’s alternative approach: An alternative definition of the
covariance matrix was given by Therneau & Grambsch (2000), according to
which

V=AYUU)A.

The (i, j)-th element of U is

D ter, T exp(ﬁ’m)}
Uj = (L=06)w(ty) |z — :
( Jult) {x ZéeRi exp(8'wy)
exp(fS'z;) zéeRv/ zyj exp(08'we)
- 1=y i’ i — *
i’:;tf )w(t )ZZERZ-/ eXp(ﬁ/xf) [x ’ ZZGRZ-/ eXp(B/fW)

for i € {1,2,...,n} and j € {1,2,...,p}. This estimate is identical to the
sandwich variance estimator proposed by Lin & Wei (1989), which they have

shown to be robust against non-PH.

e Jackknife method: Finally, a variance estimator can occur by estimating the
regression coefficient leaving out each individual in turn. Let J be a n x p

matrix with ¢-th row equal to
Jz‘ - Bw - Bz(j)

where 3% is the solution of (5.7) if the i-th individual is not included in the
model. Then an estimator for the covariance matrix is

V:n—l

n (J - j)/(‘] - j)?

where J is the matrix of column means of J.
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A comparison of these three methods, led to conclusion that the robust estimate
(second approach) seems to perform better than the other two: the Jackknife esti-
mator has the smallest bias but it requires significantly more time to be calculated
than the other two, while at the same time, Lin and Sasieni’s method is consid-
ered invalid under non-PH. Thus, a good compromise between bias and efficiency,
according to Schemper et al. (2009), is the second approach.

Weighted Cox regression is easily implemented in R: the package coxphw cal-
culates the weighted estimates proposed by Xu & O’Quigley (2000) and Schemper
et al. (2009). Also, inference about the significance of the treatment effect for the
two-sample case can be made via the robust variance estimator or the Jackknife
method.

5.3.4 Cauchy combination of change-point Cox regressions

In a recent paper by Zhang, Li, Mehrotra & Shen (2021) an innovative omnibus
test for the significance of treatment effect has been proposed, using a combination
of multiple single change-point Cox regression models. A simulation study where
various non-PH patterns were considered showed that this particular approach has
robust power against various types of departure from proportionality and at the
same time, it controls the type I error at very stringent levels of significance, such
as 1071, Apart from that, it is an easily implemented and comprehensible method,
which has the ability to provide a suitable change-point Cox model for the data, if
the null hypothesis of no treatment effect is eventually rejected.

A single change-point Cox model for the two-sample case problem, is given by

Ai(t) = Xo(t) exp[B(t) ;] (5.9)

where

B, i<t <tcp
Al) = {52, if t > top.

Therefore, the null hypothesis to be tested is

Hy: By =32 =0.

In order to fully understand the CauchyCP testing procedure, its steps are pre-

sented bellow, one by one:

1. To begin with, a set of m candidate change points tq,%s,...,%,, is selected.
Usually, t; = 0 so as to include the Cox PH model in the multiple testing

procedure.
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2. For each change point ¢; a single change-point model such as the one in (5.9)
is fitted, with tcp =t;,7 =1,2,...,m.

3. A likelihood ratio test is conducted to test the null hypothesis Hy : 8j1 = B2 =
0 for each 5 € {1,2,...,m}, separately. The corresponding p-value is denoted

by p;.
4. The individual p-values are combined in a single test with final p-value

tan~! (c)
=05 19
b ™

where ¢ = » ™" | tan [7(0.5 — p;)]/m. The combination statistic has an asymp-
totic standard Cauchy distribution regardless of the correlation of the individ-

ual p-values.

If there is some a-priori knowledge about the non-PH pattern of the data the
sequence of change points must be determined accordingly. However, this is rarely
the case, and for that reason it is oftentimes suggested to choose time points covering
the whole range of the event times. For instance, one can choose four candidate
change-points t; = 0 and t9,t3,%4 as the 25-th, 50-th and 75-th percentiles of the
event times, respectively. The idea behind the proposed CauchyCP method is that,
although the majority of the candidate change points are likely misspecified, at least
one of them is close to the true value. Thus, by combining the p-values of these
change-point models, the treatment effect under non-proportional hazards can be
adequately detected with properly controlled type I error. If the null hypothesis
is rejected, then the time point corresponding to the smallest individual p-value is
chosen and a change-point Cox model is fitted to the data, providing two distinct
HR estimates, one representing the time period up to the selected tcp, and another

for the subsequent time interval.

5.4 Restricted Mean Survival Time

5.4.1 Definition and properties

The usage of weighted parameter estimations for reporting a single summary mea-
sure in cases of non-proportional hazards has provoked controversy in the statistical
community, with Royston & Parmar (2011) being the main disputants. As an al-

ternative measure of overall treatment effect, they suggested the Restricted Mean
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Survival Time (RMST), a quantity initially introduced by Irwin (1949) but over-
looked for years. Essentially, RMST is the mean of survival time up to a fixed time
cut-point 7 and can be interpreted as “r-year life expectancy”. It is inseparably
connected with the survival function as it is equal to the area under the survival
curve. Indeed, if R = min(7', 7), where T" is a random variable denoting the survival
time of an individual and 7 is a specified time point of interest, then the RMST is
defined as follows:

RMST(7) = E[R] = E[min(T, 7)]. (5.10)
R is a non-negative random variable taking values ranging from 0 to 7. Therefore,

its mean can be computed by the formula
E[R] = / [1 — Fr(u)]du (5.11)
0
where
Fr(u) = P(R <u)=Pmin(7,7) <u) = P(T <u) = Fr(u),

for u € [0, 7]. Consequently, (5.11) becomes

IR = /OT[l ~ Fp(u)]du = /OT[1 — Pr(w)]du = /0 S(u)du
and thus, according to (5.10),

RMST(7) = /T St(u)du. (5.12)

In the literature, one can identify three basic properties of the RMST:

1. It is an increasing function of the chosen time point 7,

2. the limit of the RMST(7) as 7 — oo is equal to the unrestricted mean sur-
vival time, which is difficult and in many cases impossible to estimate due to

censoring, and as a consequence,

3. the RMST is always smaller than the mean survival time.

Finally, it should be mentioned that instead of the RMST another quantity can be
used to express the survival profile of a population: the Restricted Mean Time Lost
(RMTL). This quantity is defined as the expected value of 7 — R, i.e.,

RMTL(7) = E[r — R]| = 7 — E[min(T, 7)] = /OT[l — Sr(u)]du.

Of course, if the RMST(7) is known then the RMTL(7) can be calculated directly
and vice versa. Since the RMST up to a time point 7 has a slightly easier inter-
pretation than the corresponding RMTL, it is the one most usually reported in

papers.
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5.4.2 Estimation from the data

In practice, a non-parametric estimate for RMST(7) can be obtained by combining
(5.12) and the KM estimator of the survivor function. For simplicity, RMST () will

be denoted by ¢(7). If there are m failure times before 7, then

~

o(1) = Z S(tj—1)[ti—tj—a] + S(tm) [T — ),

where ty = 0. This estimator is unbiased and its standard error is equal to

Z;‘n:l dj - de?
ZT:l d] -1 j=1 r]‘(rjidj),

o=

where d; is the number of events at ¢;, r; is the number of subjects at risk at ¢;
and A; = ft: S(t)dt. When two competing treatments are to be compared, the
difference (or the ratio) between the RMSTs of the randomized arms can be used
and a test statistic can be calculated. Generally, for K groups, the null hypothesis

of no difference can be expressed as

Hy:p1(7) = (1) = ... = 9K (7),

while the alternative is

Hiy : i, (T) # pin(7),
for some 41,49 € {1,2,..., K}. Let ¥ be the covariance matrix of the vector ¢(7) =
(p1(7),02(7), ..., 0K (7)). Then X is a diagonal matrix with diagonal elements the
quantities &?. Let also D be a (K — 1) x K matrix whose j-th row is e;—e;1, where
e; is a K-dimensional vector whose j-th element is equal to 1 and all others are

equal to zero. Then, the test statistic is
() [D(DED")” Dle(7)

and it asymptotically follows a chi-square distribution with rank(DXD’) degrees of
freedom. This homogeneity test does not identify which pairs are different and thus,
if Hy is rejected, pairwise comparisons are being performed, adjusting the p-values
to avoid falsely significant results. For instance, the statistical software SAS uses a
well-known method, called Siddk’s (1967) correction.

Of course, apart from the aforementioned non-parametric method for the cal-
culation and the comparison of the RMST amongst different groups of interest,

various parametric models have also been developed. The simplest formulation one
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can think of| is the linear model with response the RMST and the individual charac-
teristics as exploratory variables. However, RMST is non-negative and thus a linear
model might yield estimates out of bounds. It is usually preferable to fit a log-linear
model so as to avoid having an uninterpretable estimate for the RMST. Modeling
RMST via a parametric model permits the adjustment for many covariates simul-
taneously. If the linear model is implemented then the effects are interpreted as
differences in the RMST, while if the log-linear model is fitted to the data, then the
effects are interpreted in terms of RMST ratios. Due to the nature of the data in
survival analysis, i.e., due to the fact that some of the observations are censored,
modeling of RMST is accomplished using either pseudo values or Inverse Probability
Censoring Weighting (IPCW), with the first method assuming that censoring is not
informative, and the second that the censoring distribution can be properly esti-
mated. Nevertheless, other approaches have also been proposed, based on the fact
that RMST can be easily computed if the survival function of interest is estimated
(see for example Royston & Parmar’s (2002) method based on their flexible hazard

scaled family of models).

Under the two-sample problem, whether the approach used is non-parametric
or parametric, the estimate of the RMST and its standard error provide important
information about the significance of the treatment effect and an appropriate test

can be performed in a conventional manner.

5.4.3 Choice of 7

It is evident that the results obtained by any model for the RMST are dependent
on the choice of the time point 7. Usually, the selected 7 is close to the end of the
follow-up. For instance, when there are two populations in the study, 7 may be set
equal to the minimum of the largest observed event time in each of the two treatment
groups, or equal to the minimum of the largest observed event or censoring time.
Other approaches, including the choice of a time point 7 which has some clinical
relevance or a trial-specific 7, have been developed and presented in recent papers
focusing on the design stage of the study. In general, one should keep in mind
that 7 should be selected according to the problem at hand and the accumulated
information, otherwise invalid findings, such as biased or unstable estimates, will

occur.
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5.4.4 Combined test by Royston & Parmar

The RMST method is increasingly being considered as an alternative analysis ap-
proach when non-PH are apparent. However, due to the fact that the Cox PH
model exhibits maximum power under proportionality, Royston & Parmar (2016)
suggested a combination of the two methods to gain an improved statistic for the
treatment effect testing. They acknowledged the fact that the choice of 7 plays
a major role on the outcome of the RMST test, and that is why they proposed
implementing the corresponding test on a range of 7 values and use the maximum
statistic instead of the traditional square of the ratio of the RMST difference at a
pre-specified time point to its standard error. A suitable adjustment of the resulting
minimal p-value is accomplished via a permutation test and finally, it is combined
with Cox PH model’s p-value using a multiple testing correction closely related to
the one introduced by Bonferroni. More specifically, the algorithm steps in order to

obtain the final statistic are described as follows:

1. Firstly, a grid of time values for the calculation of the RMST difference statistic
must be selected: Since it is unlikely to obtain a reliable representative and
clinically meaningful estimate of the RMST difference early in follow-up, the
lower bound should not be too small. In the relative paper, the 30th centile of
the event times is considered as a reasonable choice for the lower bound (7ggar)-
For the upper bound, a logical choice is the minimum of the largest uncensored
event times in the two arms (7epq). As for the number of time points on which
the RMST difference statistic is calculated, it is somewhat arbitrary. Royston
& Parmar have shown, based on twenty non-randomly chosen trial datasets,
that 5 points usually miss the optimal 7, but 10 seem to be enough, since the
performance was not quite different from when more points were selected. So,

10 equally spaced times are being selected, i.e.,

Tio — 71

Tk:ﬁ—i— '(k’—l)

for k=1,2,...,10, where 71 = Tyart and 719 = Tend-

2. The RMST difference statistic is calculated for each 7,k = 1,2,---,10. The
maximum value amongst them is denoted by C... and the corresponding p-

value pa obtained from a chi-square distribution with 1 d.f. is the minimum.

3. A permutation test is implemented in order to gain a corrected version of

the previous p-value, since multiple tests have been performed. Firstly, the
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treatment covariate is permuted M times in order to remove any systematic
association between the treatment assignment and the outcome, preserving
the structure of the data. In each permuted dataset step 2 is applied, i.e.
the maximal chi-square statistic C; over 10 selected and equally spaced times
is calculated, resulting in a sample of M values from the null distribution of

Cmax- Then, a corrected p-value occurs as follows:

_N+05
Pperm = M—Fl’

where N = Zf\il I(C; > Chax) and 0.5 is a continuity correction. The smallest
Pperm 18 equal to 0.5/(M + 1). The definition of pperm 1S quite reasonable: the
smaller the N, the smaller the p-value, because then it is rarer to find a chi-
square statistic which is greater than Cl ... Usually, M is set equal to 999 in

simulation studies, but in definitive analysis it should be larger.

The aforementioned method exhibits three main disadvantages: it is time-
consuming, stochastic and thus not precisely reproducible and finally, the
choice of M is arbitrary. An approximation of the ppemm can occur using
its relationship with pyay given by Royston & Parmar (2016), which is based
on a Bod-Tidwell model of the form E(y) = (2P + [o2P2. Employing three

example datasets, it was shown that
E(Pperm) = 1.762(Pmax)***°~0.802(prmax) > **". (5.13)

In general, after checking the validity and accuracy of this approximation, they
came to the conclusion that it performs quite well. They proposed, however,
to implement the accurate method when the approximation in (5.13) seems to

be very close to critical values, such as 0.05.

. After the computation of ppeym, the RMST and the Cox test must be com-

bined. Nevertheless, they are positively correlated since both tests correspond
to departures from the null hypothesis of identical survival functions. As a
result, the min value pp, of the corresponding p-values pperm and poox will be
significant too often. In this case, a correction for multiple testing procedures
should be applied. Here, another empirical approach is used to approximate
the null distribution of p,;, based on the idea that it is a two parameter beta
distribution, to allow some flexibility. Notice, that another important reason

for this choice is the set of possible values for pui,. The two parameters are
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estimated via the maximum likelihood. Eventually, the final p-value denoted

bY Peomp is given by the formulaS:

Pcomb = F(pmin)

where F' is the cumulative distribution function of a Beta random variable

with parameters a =1 and b = 1.5.

When the null hypothesis is rejected, we can suspect the reason by examining
the p-values pperm and poox. The smallest will show the dominant problem, but it is
also useful to do some extra analysis such as the GT test for proportionality and/or
the smoothed scatter plots of the scaled Schoenfeld residuals.

Various modifications of the combined test can be considered, mostly replacing
the Cox (1972) test with a weighted log-rank test (see section 5.2). In this way, the
(weighted) combination places more importance on a specified time period, in order
to detect early, late or middle difference between the survival curves of the two arms
more easily. The procedure is exactly the same, except from the last step, where
Pcox Must be replaced with the p-value pwrr from a weighted log-rank test. The

parameters of the beta distribution above should be modified accordingly.

5.5 Weighted Kaplan-Meier Statistics

A natural way to perform a test for treatment effect is to directly compare the
survivor function estimates of the two populations of interest. Pepe & Fleming
(1989, 1991) presented a class of tests called Weighted Kaplan-Meier tests. The

initial idea was to conduct a test for treatment effect based on the quantity

T(r) = /0 "8ut) = So(t)]dt, (5.14)

where 7 is the length of the study period. However, in the presence of heavy cen-
soring the difference between the survivor curves can be very unstable for ¢ close 7.
Notice that, according to (5.12),

T(r) = /0 T[S’l(t) — Sy(t)]dt = RMST; (1) — RMSTy(7)

and thus, this test is equivalent to the test presented in section 5.4.2. This is the

reason why poor choices of 7 result in low power.

5Both approximations used in the combined test were shown to be adequate for practical ap-
plication.
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To overcome this problem, Pepe & Fleming (1989, 1991) proposed to base the
test on the interval of a weighted difference of the survivor functions, i.e., on the

quantity B}
Tu(7) = /0 w(t)[Sy(t) — Sy(t))dt. (5.15)

Various weighting functions w(t) can be used but the aim here is to choose one that
ensures the stability of the statistic. A famous suggestion, is to use the harmonic
mean of the probabilities C;(t), j = 1,2, of no censoring before time ¢ for the two

groups. More precisely,

Cy(t)Ca(t
0ol) = o) s
where p; is the proportion of patients in sample 1 and ps is the proportion of patients
in sample 2. In the absence of censoring, we(t) = 1.
Similar to the RMST difference, the quantity 7,,(7) devided by its standard
deviation o, (7) has an asymptotic standard normal distribution. It holds that the

variance of T,,(7) is given by

2 n /T [J; w(u)S(u)du]?

O-Tw (T) - _n1n2 SQ(t)

[we ()] dS (1),

where n is the total number of observations and n; is the number of patients in

group j, j = 1,2.



Chapter 6

Simulation study: Tests for
treatment effect

6.1 Data simulation: Special scenarios

The aim of this chapter is to compare the performance of various tests for treatment
effect presented in Chapter 5. Therefore, for two populations with survivor func-
tions S1(t) and Sa(t), the null hypothesis Hy is expressed as S1(t) = Sa(t), while
the alternative H,4 as Si(t) # Se(t). For the null hypothesis of identical survivor
functions, two sample sizes for the total number of patients are being under consid-
eration: n = 200 and n = 1000. In each case, the patients are distributed equally
between the control and the intervention group and their survival time follows an
exponential distribution with rate A = 1. For the alternative hypothesis of dissimilar
survivor profiles between the subjects of the two arms, all the scenarios discussed
in Chapter 4 are investigated. The proportion of randomly censored observations
reaches 5% in the whole data set and the number of repetitions is equal to 1000 for

each scenario.

6.2 Results

Twenty tests for treatment effect are being compared in this chapter:

1. amax combination of weighted log-rank tests, using the sequence 0,0.1,0.2,...,0.9, 1

for p and v (11 x 11 = 121 individual z-statistics),
2. the max combination test by Lin et al. (2020),

3. Karrison’s (2016) versatile weighted log-rank test,

115
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Lee’s (1996) versatile weighted log-rank test,
. Lee’s (2007) versatile weighted log-rank test,

. a weighted log-rank test from the FH family (see section 5.2.1), with p = 1

and v = 0 (Log-rank for early effects - LRE),

a weighted log-rank test from the FH family (see section 5.2.1), with p = 0
and v = 1 (Log-rank for late effects - LRL),

. the traditional log-rank test (see sections 2.3 and 5.2.1),

Cox’s (1972) test for the significance of the treatment indicator variable,
joint test by Royston & Parmar (2014),
Breslow, Elder & Berger’s (1984) combination test using rank scores,

the supremum log-rank test, which is essentially a combination of the tradi-
tional log-rank test with itself, since the log-rank statistic is calculated up
to each failure time and the maximum of all these statistics is set to be the
definitive statistic for the final test (Fleming et al., 1987),

the RMST difference using the minimum of the maximum observed failure or

censoring times in the two arm (see section 5.4),

the RMST difference using the minimum of the maximum observed failure

times in the two arms (see section 5.4),
the Combined test by Royston & Parmar (2016),

a weighted version of the aforementioned test, using the LRL instead of Cox’s
test,

the Weighted KM test (Pepe & Fleming, 1989, 1991),
the Cauchy CP testing procedure (Zhang et al., 2021),

Weighted Cox Regression employing the weights proposed by Schemper et al.
(2009), resulting in an average hazard ratio (AHR), and finally,

Weighted Cox Regression using the weights proposed by Xu & O’Quigley
(2000), giving an average regression effect (ARE).
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The results per each scenario are presented below, while additional tables and figures

for further insight on the findings are included in the Appendix Section B.
Identical Survivor Functions

The empirical significance level under the null hypothesis of identical survivor
functions is, as expected, approximately equal to 5% (Table 6.1, Figure 6.1). As the

sample size increases from 200 to 1000, type I error decreases for the majority of the

tests.

Test | n =200 n =1000 | Test | n =200 n = 1000
1 5.2 4.5 11 5.5 4.8
2 5.3 4.4 12 6.1 5.8
3 6.2 4.8 13 5.7 5.7
4 6.0 4.8 14 4.9 5.2
5 6.0 4.6 15 5.8 4.8
6 6.4 5.1 16 6.4 5.6
7 5.0 5.6 17 5.7 5.7
8 6.1 5.8 18 5.9 5.6
9 6.0 5.8 19 6.4 5.0
10 5.5 4.8 20 6.0 5.9

Table 6.1: Type I error (size in %) of 20 tests for treatment effect, for two different
sample sizes n.

Sample size = 200 Sample size = 1000
0.10 0.10
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Figure 6.1: Type I error (size) of 20 tests for treatment effect, for each sample size
n. The dashed line corresponds to type I error equal to 5%.
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Hazard Ratio
0.65 0.8 0.9
Test | n =200 n =1000 | n =200 n=1000|n=200 n = 1000
1 82.4 100 29.9 90.3 10.7 34.4
2 82.6 100 30.1 90.5 11.0 34.4
3 82.7 100 30.3 90.3 11.3 34.4
4 79.6 100 28.1 88.4 10.5 32.2
5 80.8 100 29.6 89.7 11.0 33.9
6 72.8 100 25.7 83.0 10.7 30.1
7 75.4 100 27.8 83.7 9.3 29.6
8 85.2 100 31.1 92.7 10.7 35.7
9 85.2 100 30.9 92.7 10.5 35.7
10 77.3 100 25.3 87.0 9.7 29.0
11 77.2 100 25.4 87.0 9.8 28.9
12 84.8 100 31.0 92.5 10.3 35.5
13 85.6 100 31.1 92.8 10.7 35.6
14 83.4 100 28.1 92.3 9.3 35.4
15 81.8 100 28.4 90.4 10.5 32.2
16 80.8 100 30.7 89.3 11.2 34.2
17 85.6 100 31.1 92.6 10.8 35.8
18 81.3 100 28.1 89.7 10.8 32.6
19 73.3 100 26.2 83.9 10.9 30.4
20 85.3 100 30.8 92.8 10.9 35.8

Table 6.2: Power(%) of 20 tests for treatment effect under the proportional hazards
assumption, using three constant HR functions and two different sample sizes n.

Proportional Hazards

Under the assumption of proportional hazards, as the assumed HR decreases so
does the power of the tests. Of course, the log-rank test along with Cox’s test for
significance! achieve the maximum possible power, although in same cases they are
slightly outperformed by Tests 12, 13, 17 or 20. This is only due to the fact that the
data are simulated only 1000 times. This means, however, that the supremum log-
rank test, the RMST difference using as 7 the minimum of the maximum observed
times, the weighted KM test and the weighted cox regression resulting in an ARE
have comparable power with the traditional log-rank test under PH. On the other
hand, LRE, LRL, joint test by Royston & Parmar (2014) and Breslow’s (1984) test,
along with the AHR parameters of the weighted cox regression show the greatest

lack of power in comparison to the other methods (Table 6.2, Figure 6.2).

!These tests are considered equivalent (see section 2.4.4).
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Figure 6.2: Power of 20 tests for treatment effect under the PH assumption, for each sample size and HR.
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Change point at x% of events
x =30 x = 50 =170
Test | n=200 n=1000|n =200 n=1000 | n=200 n = 1000
1 9.4 31.9 14.5 57.5 21.0 76.3
2 9.9 32.5 15.0 57.2 20.3 75.7
3 10.3 33.6 15.1 58.1 20.7 73.8
4 10.2 34.3 14.4 55.2 19.1 73.1
5) 10.7 34.3 14.8 58.0 20.2 74.0
6 12.2 40.8 19.0 64.9 23.2 79.0
7 5.9 8.3 7.3 19.3 12.8 41.5
8 8.6 26.4 14.6 51.1 21.2 74.2
9 8.6 26.2 14.6 51.0 21.2 74.1
10 11.1 36.2 14.9 57.4 18.4 71.6
11 11.1 36.2 15.1 57.3 18.3 71.6
12 8.8 26.4 14.3 51.1 21.2 73.9
13 8.0 24.8 13.8 51.1 21.5 4.7
14 7.7 24.8 13.7 50.3 20.2 74.4
15 11.6 36.9 16.2 58.2 21.4 75.4
16 12.1 34.7 16.2 59.8 20.4 72.6
17 8.7 26.0 14.3 52.2 21.5 75.6
18 10.6 34.5 15.3 57.4 19.7 74.8
19 12.0 39.9 18.9 64.7 23.1 78.9
20 8.4 24.2 13.6 49.1 21.2 72.0

Table 6.3: Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.8 and subsequent HR ~ 1 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.

Early/Diminishing Effect

When an early effect is anticipated, for instance, when the HR is initially equal
to 0.8 and subsequently equal to 1, approximately, LRE achieves maximum power
(Table 6.3, Figure 6.3). Interestingly, Tests 1 to 5 and 19 also perform quite well in
all cases (see Tables B.1 & B.2 and Figures B.1 and B.2 in the Appendix). At the
same time, when the change in the HR is at the beginning or the middle of the study,
the Combined test by Royston & Parmar (2016), the joint test (Royston & Parmar,
2014) and Breslow’s (1984) combination have also good power in comparison to the
rest of the tests. However, when the change happens after the occurrence of 70%
of the events in the treatment group, the joint and Breslow’s tests along with LRL
show a severe lack of power. Of course, this holds for all individual cases for the
LRL test, since it places more weight on the end of the study, where HR is roughly
1.
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Change point at x% of events
x =30 x = 50 =170
Test | n=200 n=1000|n =200 n=1000 | n=200 n = 1000
1 18.7 71.7 12.9 47.2 7.6 23.7
2 19.1 71.9 13.1 47.7 7.7 24.7
3 19.7 71.4 13.6 49.4 8.4 26.7
4 19.0 70.6 13.8 50.1 8.9 27.2
5) 18.9 71.1 14.0 49.8 8.9 26.4
6 11.2 33.1 7.4 13.6 7.3 6.8
7 22.8 77.6 16.6 58.9 9.5 31.6
8 16.9 64.8 11.5 38.8 7.3 18.9
9 16.9 64.7 11.2 38.7 7.3 18.9
10 18.5 67.8 13.8 49.7 9.6 28.5
11 18.3 67.8 13.9 49.9 9.4 28.7
12 16.5 64.4 10.5 38.9 7.2 18.7
13 18.2 67.4 114 43.5 7.5 21.3
14 15.0 65.4 8.6 40.3 5.6 19.3
15 14.6 59.7 9.7 33.2 7.3 16.5
16 21.1 73.6 15.2 53.1 10.0 27.8
17 17.5 65.5 10.9 41.2 7.7 20.0
18 18.0 69.2 13.5 51.7 9.3 28.8
19 11.3 33.5 7.4 14.5 74 7.4
20 17.6 65.7 11.9 41.3 7.2 19.7

Table 6.4: Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ~ 1 and subsequent HR = 0.8 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.

Late/Delayed Effect

Table 6.4 and Figure 6.4 give information about the power of the 20 tests under
a late effect scenario, where the final HR is equal to 0.8. In this case, the LRE
and the weighted Cox regression using weights from Schemper et al. (2009) have
the worst performance. As anticipated, the LRL test and the weighted Combined
test by Royston & Parmar (2016) achieve high power in comparison to the others.
Cauchy CP testing procedure and max combination tests 1 to 5 exhibit moderate
power, but they usually come immediately after LRL and weighted Combined test,
with an approximate loss of power of about 3% for small samples and 5-10% for
large samples. Similar conclusion are drawn for the cases where the final HR is
either equal to 0.65 or 0.9 (see Tables B.3 & B.4 and Figures B.3 & B.4).
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Figure 6.3: Power of 20 tests for treatment effect, for two sample sizes and three change points (CP) at 30%, 50% and 70% of

events in the treatment group, when an early effect with initial HR = 0.8 is observed.
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Figure 6.4: Power of 20 tests for treatment effect, for two sample sizes and three change points (CP) at 30%, 50% and 70% of
events in the treatment group, when a late effect with final HR = 0.8 is observed.
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Cut point
2 4
Test | n =200 n=1000 | n=200 n = 1000
1 10.1 30.8 10.2 34.3
2 9.7 31.4 10.1 35.3
3 10.2 33.0 10.8 38.1
4 12.0 44.6 12.4 48.9
5 10.8 33.9 11.2 39.4
6 11.4 33.2 10.9 32.2
7 6.1 12.8 8.5 21.1
8 6.3 10.2 6.1 6.1
9 6.2 10.2 6.0 6.1
10 16.5 63.6 17.8 66.5
11 16.5 63.7 17.7 66.4
12 6.2 10.3 6.0 6.2
13 9.2 21.4 6.9 8.2
14 9.3 21.9 5.6 8.1
15 12.2 41.2 12.0 41.1
16 14.9 48.4 14.6 53.0
17 9.2 21.8 6.6 8.0
18 14.6 59.7 14.7 64.9
19 10.7 31.0 10.4 30.2
20 6.0 8.9 5.6 5.6

Table 6.5: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 0.8 and subsequent HR = 1.2, for different sample sizes
n and cut points 2 and 4.

Crossing Hazards

For both cases of crossing hazards involving a HR equal to 0.8 and a HR equal
to 1.2, the joint test (Royston & Parmar, 2014) and Breslow’s (1984) proposal
with rank scores exhibit the best performance. After them, the Cauchy CP testing
procedure also seems a quite reasonable option, followed by the weighted Combined
test and Lee’s (1996) suggestion (Tables 6.5 & 6.6 and Figures 6.5 & 6.6). The latter
outperforms the other max combination tests (1, 2, 3 and 5), despite the fact that
it had similar behavior with them up to now.

Many conventional tests have severely diminished power, such as Cox’s test, the
log-rank test and the RMST difference along with a non-traditional one: the test
occurring from a weighted Cox regression with an ARE (Test 20). Moreover, these
and other tests (e.g. the supremum log-rank and the weighted KM test) seem to

perform even worse when the follow-up period is extended by two time units.
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Figure 6.5: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 0.8 and subsequent HR
=1.2.
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Cut point
2 4
Test | n =200 n=1000 | n=200 n = 1000
1 7.6 26.4 8.9 33.2
2 7.5 26.8 9.2 33.8
3 7.8 28.5 9.7 36.0
4 9.9 38.8 11.6 47.8
5 8.3 29.9 10.3 37.9
6 9.0 31.3 9.0 28.8
7 5.2 11.0 8.5 23.6
8 5.6 8.5 6.1 5.2
9 5.4 8.5 6.0 5.2
10 14.4 56.4 17.8 66.0
11 14.2 56.4 17.8 66.1
12 5.5 8.6 5.7 5.1
13 7.1 17.2 5.9 5.3
14 7.4 17.9 5.3 5.3
15 9.1 34.8 9.6 34.0
16 10.6 40.7 13.0 49.5
17 7.1 18.4 5.7 5.7
18 11.6 47.1 14.1 59.2
19 9.3 30.6 8.4 27.8
20 5.3 8.0 5.9 5.9

Table 6.6: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 1.2 and subsequent HR = 0.8, for different sample sizes
n and cut points 2 and 4.

Similar results can be drawn for the other two cases of crossing hazards, leaving
out of the equation the previous statement when the initial HR is 1.10 and subse-
quently becomes equal to 0.65 (Table B.6, Figure B.6). In general, the power of
the 20 tests is higher for the latter scenario and the one where HR = 0.65 at the
beginning and equal to 1.10 afterwards (see also Table B.5, Figure B.5).

Long-term Survivors

The simulation study in this case is not so informative, but some intriguing
findings occur from the case where the initial HR is 0.8. The LRE test and the
weighted Cox regression resulting in an AHR have the lowest power. On the other
hand, the LRL and the weighted Combined test by Royston & Parmar (2016) achieve
better performance than the other 18 testing procedures, since they place more
weight at the end of the study, where the effect is greater. However, the majority of

the tests perform well, and they are quite close the optimal choices. For instance,
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Figure 6.6: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 1.2 and subsequent HR
= 0.8.
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Cut point
2 4
Test | n =200 n=1000 | n=200 n = 1000
1 48.7 99.3 61.6 100.0
2 49.0 99.3 62.0 100.0
3 48.3 99.3 61.9 100.0
4 46.2 99.2 58.3 100.0
5 47.7 99.2 60.4 100.0
6 34.8 94.5 37.4 96.2
7 51.0 99.3 65.2 100.0
8 47.1 98.9 60.9 100.0
9 46.6 98.9 60.8 100.0
10 39.8 99.0 53.8 99.9
11 40.0 99.0 53.6 99.9
12 46.6 98.9 59.9 100.0
13 40.2 97.0 60.3 99.9
14 38.6 96.9 57.3 99.9
15 41.1 98.6 54.9 99.9
16 48.1 99.2 62.9 100.0
17 39.7 96.9 59.5 99.8
18 44.5 99.0 59.7 100.0
19 35.1 94.8 38.2 96.8
20 47.0 98.9 62.2 100.0

Table 6.7: Power(%) of 20 tests for treatment effect, for the scenario of long-term
survivors with initial HR = 0.8 and subsequent HR = 0.82, for different sample sizes
n and cut points 2 and 4.

all max combination tests (Tests 1 to 5), the traditional log-rank, the supremum
log-rank, the Cauchy CP test and the weighted Cox regression giving an ARE, work
pretty well too (Table 6.7, Figure 6.7). Table B.7 and Figure B.7 in the Appendix
give also some insight into the other scenario of long-term survivors.

Generally speaking, there is not an optimal procedure for testing the significance
of the treatment effect under various non-PH patterns. However, it is obvious that
many procedures work well under different scenarios. For instance, max combination
tests perform well in all cases apart from crossing hazards. In these scenarios, their
power is quite similar. Therefore, there is no gain when a grid of values for p and 7 is
under consideration, i.e., Test 1 is unnecessary complex. Lin et al. (2020) suggested
that after a versatile weighted test is conducted, a weighted estimate for the HR
can be estimated using as weight the weighting function resulting in the smallest
p-value amongst the individual tests. Of course, a weighted Cox model can also be

fitted to the data using either weights proposed by Schemper et al. (2009) or by
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Figure 6.7: Power of 20 tests for treatment effect, for different sample sizes and cut

points for the scenario of long-term survivors with initial HR = 0.8 and subsequent
HR = 0.8%
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Xu & O’Quigley (2000). The first method is preferred for the early effect scenario,
while the latter for the diminishing effect and the long-term survivors case. Another
suggestion, is the usage of a change point Cox model based on the Cauchy CP testing
procedure, which also performs well here.

In the presence of crossing hazards, only three tests yield regularly valid results:
the joint test, Breslow’s (1984) combination and the Cauchy CP procedure. Since
neither of the first two produces an estimate for the HR or the RMST, Cauchy CP
method can be implemented both for testing the treatment effect and providing a
piecewise constant HR. Unfortunately, it was shown that even RMST based tests
were not suitable for this case, so it may be preferable to report a time dependent

HR rather than a non-precise summary measure for the whole study.



Chapter 7

Discussion and further research

This dissertation serves as a general overview of - mainly analytical - tests for pro-
portionality and tests for treatment effect. After a brief clarification of fundamental
definitions and statistical methods in survival analysis, various testing procedures,
developed since the introduction of the Cox proportional hazards model in 1972 up
to now, were presented and examined under four non-PH patterns via simulations.
The necessity of finding the most powerful test when the proportionality assumption
is violated is the result of recent advancements in oncology therapy, and specifically
in immunotherapy. Most randomized clinical trials with a time-to-event outcome
are designed assuming proportional hazards of the treatment effect. However, due
to new, innovative therapies with unique mechanisms of action, several types of non-
proportionality patterns usually occur either as a consequence of different treatment
effects in subgroups or due to the treatment itself.

The findings of this thesis are summarized in Tables 7.1 and 7.2 using the same
numbering for the tests for proportionality and treatment effect as the one in Chap-
ters 4 and 6, respectively. After investigating their performance via simulation
studies, it becomes clear that no test surpasses all the others under different alter-
natives. Amongst the eighteen tests for proportional hazards, four of them display
stable behavior under dissimilar types of departure from the null hypothesis: Gramb-
sch & Therneau’s suggestion (1994) using as functions of time either the ranks of
the failure times or the Kaplan—Meier estimate of the pooled survivor function, a
modification of the goodness-of-fit test proposed by Lin (1991) using as weighted
parameter estimators the ones introduced by Schemper et al. (2009) and one of the
tests proposed by Breslow et al. (1984). The latter, however, is only useful for the
two-sample case. As for the comparison of twenty tests for treatment effect, many
testing procedures seem to offer proper results: the versatile weighted log-rank tests,

the joint and combined tests by Royston & Parmar (2014, 2016), as well as the com-
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bination test suggested by Breslow et al. (1984). Nevertheless, a careful study of
the tables and figures presented in Chapter 6 shows the superiority and flexibility of
a newly developed method known as the Cauchy combination of change-point Cox

regressions (Zhang et al., 2021).

’ Test \ Early Effect \ Late Effect \ Crossing Hazards \ Long-term survivors ‘

1 X X X X
2 X X X X
3 X X X

4 X X X X
5! X X X X
6 X X X

7

8

9 X X
10

11 X X X X
12 X X X X
13 X X X X
14 X X X X
15 X X X X
16

17 X X X X
18 X X X X

Table 7.1: Tests for proportionality which perform poorly under each scenario.

Despite the large number of testing procedures discussed, numerous other sug-
gestions have been made throughout the years. As for the tests for proportionality
already conducted, many improvements can be made. For instance, the performance
of the interval-dependent tests was examined only for the case of two non-overlapping
time intervals. More change points and/or partitions of the covariate space can be
investigated in further studies. Also, a comparison of global tests will be useful, since
in real-life applications, a wide range of characteristics, i.e., variables, is reported
for each patient. The proportionality assumption may be violated for any covariate,
not just the treatment indicator. At the same time, more alternatives should be
simulated, in order to also assess the performance of the tests for treatment effect.
Throughout this thesis, it was stressed that the early and the late effect scenar-
ios, along with crossing hazards and long-term survivors are just indicative of what
may someone encounter during the analysis of non-proportional data. Various time

functions for the hazard ratio may be considered, implementing different distribu-
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’ Test \ PH \ Early Effect \ Late Effect \ Crossing Hazards \ Long-term survivors

1

2

3

4

5

6 X X X
7 X X

8 X

9 X

10

11

12 X

13 X

14 X

15

16

17 X

18

19 X X X
20 X

Table 7.2: Tests for treatment effect which perform poorly under each scenario.

tions for the simulation of the patients’ survival time in each arm. For instance, the
case of non-monotone hazard ratio may be investigated using a bathtub-shaped HR
function or the case of a gradually increasing HR simulating survival times from the
Weibull distribution.

After all that, real data should be used to validate the results and ensure the
validity of the findings. New observations and issues may arise, but an extremely
thorough literature review along with a wide range of simulation studies can lead
to the development of new methods or the utilization of old ones, in a new, more

efficient way.
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Appendix A

Simulation study A

Change point at ©% of events
x = 30 x =50 x =170
Test | n =200 n=1000 | n=200 n =1000|n =200 n = 1000
1 9.0 14.3 10.2 21.6 9.3 19.4
2 7.8 22.2 7.1 20.8 6.4 11.3
3 7.7 21.0 9.3 30.6 6.4 10.8
4 7.8 13.8 9.2 20.7 8.2 18.7
> 7.9 22.4 7.3 21.3 6.6 11.5
6 7.6 21.0 9.5 31.0 6.3 11.2
7 8.7 25.6 9.3 27.9 6.9 17.2
8 8.9 24.5 9.3 28.0 6.9 17.7
9 8.2 23.0 8.8 26.3 6.5 16.7
10 8.2 23.9 9.1 27.4 7.0 17.8
11 4.9 13.4 6.5 19.2 6.0 16.9
12 7.6 21.0 8.9 30.6 6.3 10.9
13 7.3 20.8 8.6 30.4 6.1 10.9
14 7.1 21.0 8.7 31.2 6.2 11.1
15 7.6 21.0 8.9 30.6 6.3 10.9
16 8.8 25.3 9.3 27.8 6.8 17.3
17 7.7 14.1 9.3 20.6 8.5 18.5
18 7.9 22.5 7.3 21.4 6.4 114

Table A.1: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the early effect case with initial HR = 0.8 and subsequent HR =~ 1 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.
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Figure A.1: Power of 18 tests for proportional hazards, for two sample sizes and three change points (CP) at 30%, 50% and 70%
of events in the treatment group, when an early effect with initial HR = 0.8 is observed.



Change point at ©% of events
x =30 x =50 x =170
Test | n =200 n=1000 | n=200 n =1000|n =200 n = 1000
1 6.7 6.5 6.7 7.8 7.2 7.3
2 5.9 7.0 5.6 6.9 5.5 5.6
3 6.9 6.7 6.7 9.9 6.2 5.7
4 5.9 6.4 6.5 7.6 6.0 7.0
5 5.8 7.1 5.5 7.0 5.3 5.4
6 5.9 6.4 6.4 9.5 5.9 5.5
7 6.1 7.4 5.9 9.0 5.9 6.8
8 6.0 7.4 6.1 8.8 5.9 6.7
9 5.1 7.1 5.3 8.0 4.9 6.0
10 6.0 7.3 6.3 8.3 5.4 6.9
11 4.5 6.2 4.5 7.3 4.4 7.3
12 6.6 6.8 6.6 9.8 6.1 5.5
13 6.4 6.6 6.4 9.8 5.9 5.5
14 5.9 6.7 6.3 9.8 6.1 5.5
15 6.6 6.8 6.6 9.8 6.1 5.5
16 6.0 7.4 6.0 9.0 6.1 6.6
17 5.6 5.9 6.0 7.3 6.0 6.7
18 5.4 7.2 5.1 7.1 4.9 5.6
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Table A.2: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the early effect case with initial HR = 0.9 and subsequent HR = 1 after 30%,
50% and 70% of events have been observed in the treatment group, for different

sample sizes n.
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Figure A.2: Power of 18 tests for proportional hazards, for two sample sizes and three change points (CP) at 30%, 50% and 70%
of events in the treatment group, when an early effect with initial HR = 0.9 is observed.



Change point at x% of events

x =30 z =50 z="70
Test | n =200 n=1000 | n=200 n=1000|n=200 n = 1000
1 11.5 17.8 13.8 26.0 13.3 25.7
2 94 23.8 94 23.9 8.1 16.3
3 9.3 18.8 11.9 36.5 8.0 15.7
4 10.0 17.9 12.1 25.8 11.6 25.6
5 9.3 24.0 9.7 24.4 8.2 16.4
6 9.0 19.3 11.2 35.4 7.3 15.3
7 9.9 24.9 10.9 31.0 8.6 21.1
8 9.9 25.0 11.1 31.1 8.7 21.0
9 9.5 24.1 10.5 29.0 8.2 20.0
10 10.2 25.3 10.9 30.8 8.8 22.3
11 5.2 16.1 6.8 23.6 7.0 23.6
12 9.3 18.4 11.5 36.2 8.0 15.3
13 8.8 18.0 10.7 36.0 7.6 15.2
14 8.6 19.1 11.3 36.8 7.7 16.8
15 9.3 18.4 11.5 36.2 8.0 15.3
16 9.8 24.9 10.9 30.9 8.6 21.0
17 10.2 18.3 12.1 27.0 11.6 25.8
18 94 24.4 9.5 24.6 7.7 16.8
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Table A.3: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the late effect case with initial HR ~ 1 and subsequent HR = 0.8 after 30%, 50%
and 70% of events have been observed in the treatment group, for different sample

sizes n.
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Figure A.3: Power of 18 tests for proportional hazards, for two sample sizes and three change points (CP) at 30%, 50% and 70%
of events in the treatment group, when a late effect with final HR = 0.8 is observed.
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Change point at x% of events
x = 30 x =50 x =170
Test | n=200 n=1000|n =200 n=1000 | n=200 n = 1000
1 8.1 9.6 8.3 11.7 8.8 11.9
2 6.6 8.5 6.4 8.5 6.2 7.0
3 7.5 8.5 7.6 11.9 6.6 7.5
4 6.7 9.3 7.0 11.4 7.8 11.5
5 6.7 8.2 6.5 8.5 5.9 7.1
6 6.4 8.5 6.9 11.8 6.2 7.8
7 5.9 10.1 6.2 10.9 5.8 9.1
8 5.9 10.0 6.2 10.9 5.8 9.3
9 5.9 9.1 6.0 10.3 5.7 8.6
10 5.9 10.8 6.3 11.1 5.9 9.5
11 4.4 9.0 5.0 10.3 5.0 10.2
12 7.3 8.5 7.4 11.7 6.4 7.5
13 7.1 8.5 7.0 114 6.1 7.4
14 6.1 8.4 6.8 12.2 5.9 8.5
15 7.3 8.5 7.4 11.7 6.4 7.5
16 5.9 10.1 6.2 10.9 5.7 9.1
17 6.9 9.5 6.9 11.5 7.3 11.2
18 7.0 8.8 6.9 8.8 6.3 6.8

Table A.4: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the late effect case with initial HR ~ 1 and subsequent HR = 0.9 after 30%, 50%
and 70% of events have been observed in the treatment group, for different sample
sizes 1.
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Figure A.4: Power of 18 tests for proportional hazards, for two sample sizes and three change points (CP) at 30%, 50% and 70%
of events in the treatment group, when a late effect with final HR = 0.9 is observed.



Clut point
2 4
Test | n =200 n=1000 | n =200 n = 1000
1 19.5 71.4 18.5 61.8
2 14.7 53.5 16.8 63.1
3 22.6 76.4 25.5 84.3
4 19.6 71.4 18.4 62.1
5 16.4 54.8 17.3 63.9
6 22.6 76.3 25.7 84.3
7 20.6 72.6 21.1 76.3
8 20.2 73.1 21.4 76.2
9 7.7 46.3 20.2 73.7
10 20.2 71.6 21.3 74.4
11 13.0 67.2 13.5 59.6
12 22.4 76.4 25.3 84.4
13 22.4 76.2 24.7 84.3
14 22.7 76.2 24.3 84.1
15 22.4 76.4 25.3 84.4
16 20.2 72.9 21.1 76.3
17 18.8 69.7 17.9 60.8
18 16.6 57.4 18.5 66.2
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Table A.5: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 0.8 and subsequent HR = 1.2,
for different sample sizes n and cut points 2 and 4.
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Figure A.5: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 0.8 and subsequent
HR = 1.2.



Clut point
2 4
Test | n =200 n=1000 | n =200 n = 1000
1 17.8 65.3 21.1 66.6
2 11.8 45.7 16.5 61.7
3 16.3 55.4 21.7 75.3
4 17.8 65.4 21.3 66.8
5 13.3 48.1 17.5 63.2
6 16.2 55.5 21.5 74.8
7 17.1 63.8 22.2 73.1
8 17.3 64.4 22.6 73.1
9 5.6 33.8 20.5 69.4
10 17.4 63.6 23.2 72.8
11 12.9 63.5 14.8 63.5
12 16.3 55.7 21.4 75.1
13 16.1 55.4 21.1 75.1
14 17.1 56.7 21.4 75.7
15 16.3 55.7 21.4 75.1
16 17.1 63.8 22.5 72.8
17 18.4 66.0 21.9 68.0
18 13.6 47.7 17.9 61.8
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Table A.6: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 1.2 and subsequent HR = 0.8,
for different sample sizes n and cut points 2 and 4.
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Figure A.6: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 1.2 and subsequent
HR = 0.8.



Clut point
2 4
Test | n =200 n=1000 | n =200 n = 1000
1 9.3 23.1 12.5 26.9
2 6.8 18.0 9.4 25.0
3 8.2 24.8 11.8 36.2
4 9.3 23.3 12.4 26.9
5 7.0 18.2 9.9 25.6
6 9.0 24.4 11.9 36.0
7 9.5 23.1 12.0 31.5
8 9.4 23.3 12.1 31.6
9 1.7 3.7 9.5 27.6
10 10.2 23.7 13.0 31.6
11 2.7 11.3 4.0 21.5
12 8.1 24.8 11.7 36.2
13 8.1 24.5 11.3 35.7
14 8.4 25.9 12.4 37.0
15 8.1 24.8 11.7 36.2
16 9.5 23.2 11.9 31.5
17 9.3 23.5 12.1 27.7
18 7.2 18.7 9.6 25.8
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Table A.7: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of long-term survivors with initial HR = 0.8 and subsequent HR =
0.82, for different sample sizes n and cut points 2 and 4.
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Figure A.7: Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of long-term survivors with initial HR = 0.8 and
subsequent HR = (.82,



Appendix B

Simulation study B

Change point at ©% of events
x = 30 x =50 x =170
Test | n =200 n=1000 | n=200 n =1000|n =200 n = 1000
1 24.8 87.8 48.3 99.5 68.8 100.0
2 24.7 88.1 47.1 99.5 68.1 100.0
3 25.6 88.8 48.3 99.5 66.6 100.0
4 25.6 90.7 45.8 99.4 65.7 100.0
> 25.9 89.2 47.8 99.6 65.0 100.0
6 32.3 92.6 56.6 99.9 68.5 100.0
7 6.9 16.6 18.0 56.1 40.3 94.7
8 20.8 72.2 42.2 97.6 67.8 100.0
9 20.7 72.2 41.8 97.6 67.4 100.0
10 27.8 91.1 45.6 99.6 59.5 100.0
11 27.8 91.1 45.6 99.6 59.5 100.0
12 20.4 71.8 41.8 97.6 67.4 100.0
13 20.8 1.7 43.9 97.9 68.8 100.0
14 20.2 71.8 44.3 98.3 69.1 100.0
15 29.5 91.2 49.1 99.6 67.6 100.0
16 28.5 90.5 46.0 99.6 64.0 100.0
17 21.6 74.5 45.6 98.3 69.8 100.0
18 26.3 89.8 46.4 99.2 66.3 100.0
19 31.2 92.7 56.7 99.9 69.0 100.0
20 19.6 69.0 39.8 97.2 65.7 99.9

Table B.1: Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.65 and subsequent HR ~ 1 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Figure B.1: Power of 20 tests for treatment effect, for two sample sizes and three change points (CP) at 30%, 50% and 70% of
events in the treatment group, when an early effect with initial HR = 0.65 is observed.
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Change point at x% of events
x =30 r = 50 x =170
Test | n =200 n=1000|n =200 n=1000 | n=200 n = 1000
1 7.1 10.3 7.6 16.9 9.2 24.9
2 6.6 104 7.7 16.9 9.0 25.1
3 7.2 10.5 8.1 17.8 9.7 25.1
4 6.4 10.3 6.9 16.4 8.9 23.6
5) 7.2 10.4 7.9 17.5 9.4 24.0
6 7.9 14.0 8.9 21.2 10.3 27.5
7 5.6 6.3 5.9 8.6 6.8 14.7
8 7.1 10.8 7.4 18.2 8.5 24.0
9 6.8 10.8 7.2 18.1 8.5 24.0
10 7.2 10.7 8.0 15.7 8.7 22.0
11 7.0 10.6 8.1 15.7 8.8 21.9
12 6.8 10.6 6.9 18.0 8.4 24.3
13 6.5 10.3 7.0 174 8.1 22.9
14 5.7 10.5 6.6 16.6 7.1 23.1
15 6.8 11.8 8.5 18.1 9.0 24.8
16 7.5 11.1 9.0 17.5 9.3 23.7
17 6.8 10.8 7.3 17.7 8.6 24.0
18 6.7 11.0 8.3 17.1 9.2 24.3
19 7.4 14.3 9.0 21.4 10.4 27.2
20 6.7 10.4 7.4 17.8 8.2 23.0

Table B.2: Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.9 and subsequent HR ~ 1 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Figure B.2: Power of 20 tests for treatment effect, for two sample sizes and three change points (CP) at 30%, 50% and 70% of
events in the treatment group, when an early effect with initial HR = 0.9 is observed.



Change point at x% of events
x =30 r = 50 x =170
Test | n =200 n=1000|n =200 n=1000 | n=200 n = 1000
1 59.0 100.0 36.2 96.8 14.6 67.4
2 59.2 100.0 36.8 96.7 15.5 68.4
3 59.3 99.8 37.1 97.1 16.5 70.5
4 56.6 100.0 39.2 96.9 19.9 78.4
5 58.8 99.8 37.7 97.1 16.5 71.7
6 23.0 78.8 11.0 32.0 7.6 9.8
7 64.5 99.9 47.5 98.6 22.2 79.5
8 50.9 99.3 26.9 88.6 11.8 45.2
9 50.7 99.3 26.9 88.5 11.6 45.2
10 54.9 99.9 39.4 97.4 18.7 75.1
11 54.9 99.9 39.2 97.4 18.7 75.1
12 49.8 99.3 25.9 88.2 11.0 44.5
13 54.0 99.3 29.8 92.7 14.1 56.8
14 46.8 99.3 23.9 90.9 9.3 50.3
15 43.9 99.1 22.8 84.4 10.2 40.4
16 61.3 99.9 41.3 97.9 19.4 4.7
17 52.5 99.3 28.9 91.7 13.2 52.5
18 54.1 100.0 37.3 97.8 194 78.1
19 24.8 80.7 11.4 34.1 7.5 9.9
20 52.1 99.5 28.3 90.4 12.7 50.2
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Table B.3: Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR & 1 and subsequent HR = 0.65 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Figure B.3: Power of 20 tests for treatment effect, for two sample sizes and three change points (CP) at 30%, 50% and 70% of
events in the treatment group, when a late effect with final HR = 0.65 is observed.



Change point at x% of events
x =30 r = 50 x =170
Test | n =200 n=1000|n =200 n=1000 | n=200 n = 1000
1 8.6 23.2 7.2 16.2 5.9 9.7
2 8.5 22.7 7.0 16.2 5.6 9.9
3 8.5 23.0 7.3 16.9 6.3 10.3
4 7.9 22.1 7.2 15.4 6.2 9.6
5 8.5 21.6 7.4 16.8 6.5 10.4
6 7.5 12.6 7.6 7.5 6.8 5.8
7 8.3 26.0 7.4 20.5 6.6 12.7
8 7.9 21.3 7.1 15.7 6.4 9.6
9 7.7 21.2 7.0 15.7 6.3 9.6
10 8.1 21.5 7.1 16.1 6.5 9.9
11 8.1 21.5 7.1 16.0 6.5 9.9
12 7.4 21.1 6.9 15.6 6.4 9.7
13 8.0 21.9 6.7 16.5 6.7 10.0
14 6.3 21.1 6.1 15.1 5.7 9.6
15 8.7 18.9 7.1 11.9 6.2 7.6
16 10.1 24.2 8.3 16.9 7.0 11.0
17 8.0 21.8 6.7 15.7 6.5 10.1
18 8.7 21.9 7.2 16.0 6.7 10.5
19 7.3 12.5 7.6 7.6 6.7 5.8
20 8.0 21.9 7.2 16.9 6.0 10.3
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Table B.4: Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ~ 1 and subsequent HR = 0.9 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Figure B.4: Power of 20 tests for treatment effect, for two sample sizes and three change points (CP) at 30%, 50% and 70% of

events in the treatment group, when a late effect with final HR = 0.9 is observed.



Cut point
2 4
Test | n =200 n=1000 | n =200 = = 1000
1 26.0 90.1 24.9 89.3
2 25.5 90.0 25.0 89.6
3 26.7 90.6 26.2 90.6
4 28.6 93.7 28.1 93.6
5 27.5 90.8 26.9 90.9
6 33.7 94.0 33.4 93.7
7 4.6 8.1 6.0 6.2
8 18.7 71.3 16.4 59.0
9 18.4 71.3 16.2 59.0
10 33.3 96.5 34.0 95.8
11 33.2 96.5 34.0 95.9
12 18.3 71.2 16.3 59.1
13 29.4 88.9 18.9 65.7
14 30.8 89.3 19.2 67.2
15 32.5 95.6 32.0 95.4
16 32.5 95.6 32.0 95.8
17 29.6 89.4 19.7 69.6
18 33.8 96.8 30.6 95.3
19 32.6 93.5 32.1 93.2
20 16.7 68.5 15.0 54.0
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Table B.5: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 0.65 and subsequent HR = 1.10, for different sample sizes

n and cut points 2 and 4.
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Figure B.5: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 0.65 and subsequent
HR = 1.10.
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Table B.6: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 1.10 and subsequent HR = 0.65, for different sample sizes

n and cut points 2 and 4.
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Figure B.6: Power of 20 tests for treatment effect, for different sample sizes and cut

points for the scenario of crossing hazards with initial HR = 1.10 and subsequent
HR = 0.65.
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Cut point
2 4
Test | n =200 n=1000 | n =200 = = 1000
1 96.1 100 99.3 100
2 96.1 100 99.3 100
3 96.1 100 99.2 100
4 95.8 100 99.2 100
5 96.1 100 99.2 100
6 87.0 100 91.0 100
7 97.0 100 99.4 100
8 95.4 100 98.8 100
9 95.4 100 98.8 100
10 94.4 100 98.8 100
11 94.4 100 98.8 100
12 95.4 100 98.7 100
13 90.2 100 98.7 100
14 88.6 100 98.1 100
15 94.2 100 98.1 100
16 96.2 100 99.4 100
17 90.0 100 98.5 100
18 95.6 100 99.1 100
19 88.1 100 91.8 100
20 95.4 100 99.1 100

Table B.7: Power(%) of 20 tests for treatment effect, for the scenario of long-term
survivors with initial HR = 0.65 and subsequent HR = 0.652, for different sample
sizes n and cut points 2 and 4.
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Figure B.7: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of long-term survivors with initial HR = 0.65 and subsequent
HR = 0.652.
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Simulated scenarios

Survival probability
Survival probability
Survival probability

Figure C.1: Simulated scenarios for the case of proportional hazards, with baseline
hazard equal to 1.
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Figure C.2: Simulated scenarios for the early effect case with baseline hazard equal
to 1, for three change points (CP) at 30%, 50% and 70% of events in the treatment

group.
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Figure C.3: Simulated scenarios for the late effect case with baseline hazard equal
to 1, for three change points (CP) at 30%, 50% and 70% of events in the treatment
group.
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Figure C.4: Simulated scenarios for the crossing hazards case with baseline hazard
equal to 1. The vertical dashed lines correspond to two pre-specified time cut points.
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Figure C.5: Simulated scenarios for the case of long-term survivors with baseline
hazard equal to 1. The vertical dashed lines correspond to two pre-specified time
cut points.
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