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ABSTRACT

Methodological Issues with Proportional Hazard Models

by Maria-Tereza Dellaporta

February 2022

A big part of survival data analysis is mainly based on two well-known methods:
the log-rank test for the comparison of survival curves and the Cox proportional
hazard model for the estimation of the effect corresponding to numerous variables
of interest. Both methods are based on the assumption of proportional hazards. Due
to the popularity, usefulness, and computational simplicity of these approaches, a
potential violation of the proportional hazards assumption, which is an essential
property for the validation of their findings, is oftentimes overlooked. In recent
years, non-proportional data are frequently encountered, especially in the field of
Biostatistics, where clinical trial data exhibit irregular patterns as a result of the
administration of novel medicinal products and the implementation of innovative
therapeutic procedures with unprecedented mechanisms of action.

To safeguard the validity and the generalizability of the results occurring from
the analysis of such data, an in-depth literature review regarding various tests for
the proportional hazards assumption and numerous testing procedures for the signif-
icance of treatment effect, in the two-sample case, is presented in this dissertation.
Alternative modeling approaches and summary measures for the treatment effect are
also discussed briefly, and an intuitive interpretation of the constant hazard ratio
estimated via Cox’s partial likelihood is given when the proportionality assumption
is invalid. Two simulation studies, one for each group of tests, are conducted un-
der proportionality and four non-proportional hazard patterns usually reported in
contemporary publications.

Amongst the eighteen tests for proportionality examined, three of them display
stable behavior under dissimilar types of departure from the null hypothesis: Gramb-
sch & Therneau’s suggestion (1994) using as functions of time either the ranks of
the failure times or the Kaplan–Meier estimate of the pooled survivor function, and
a modification of the goodness-of-fit test proposed by Lin (1991) using as weighted
parameter estimators the ones introduced by Schemper et al. (2009). On the other
hand, the comparison of twenty tests for treatment effect shows the superiority and
flexibility of a newly developed method, which also provides piecewise hazard ratio
estimates, called the Cauchy combination of change-point Cox regressions (Zhang et
al., 2021). At the same time, various versatile weighted log-rank tests achieve good
power under all hypothetical scenarios, except for the case of crossing hazards, where
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the joint test by Royston & Parmar (2014) and a combination testing procedure by
Breslow et al. (1984) noticeably surpass the other choices, in terms of performance.

In conclusion, the pattern of non-proportionality is definitive for the statistical
analysis plan of time-to-event data. The optimal method, both for testing the
assumption of proportional hazards and the significance of the treatment effect, is
trial-specific. Nevertheless, when no a-priori knowledge exists about the anticipated
type of non-proportionality, the aforesaid approaches seem to have good properties
and are suggested for future analyses, until better methods arise.
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ΠΕΡΙΛΗΨΗ

Θέματα Μεθοδολογίας σε Μοντέλα Αναλογικών Κινδύνων

Μαρία-Τερέζα Δελλαπόρτα

Φεβρουάριος 2022

΄Ενα μεγάλο μέρος της ανάλυσης δεδομένων επιβίωσης στηρίζεται σε δύο πολύ γν-

ωστές μεθόδους: στον έλεγχο log-rank για τη σύγκριση δύο καμπυλών επιβίωσης,
και στο μοντέλο αναλογικών κινδύνων του Cox για την εκτίμηση της επίδρασης διά-
φορων μεταβλητών ενδιαφέροντος. Λόγω της κοινής τους αποδοχής, της χρησιμότητας
και της ευκολίας εφαρμογής τους, μία πιθανή παραβίαση της υπόθεσης των αναλογικών
κινδύνων, η οποία αποτελεί βασική προϋπόθεση για την εγκυρότητα των αποτελεσμάτων
τους, συχνά παραβλέπεται. Η συχνότητα εμφάνισης τέτοιων δεδομένων έχει αυξηθεί
ραγδαία. Ιδιαίτερα, στον τομέα της Βιοστατιστικής, η χορήγηση νέων φαρμάκων και η
εφαρμογή καινοτόμων θεραπειών οδήγησαν τα τελευταία χρόνια σε απρόβλεπτες δομές

δεδομένων λόγω των πρωτοφανών μηχανισμών αλληλεπίδρασης τους με τον ανθρώπινο

οργανισμό.
Για να εξασφαλιστεί η εγκυρότητα και η γενικευσιμότητα των ευρημάτων που

προκύπτουν από την ανάλυση τέτοιων δεδομένων, μια λεπτομερής ανασκόπηση της
υπάρχουσας βιβλιογραφίας, όσον αφορά ελέγχους για την υπόθεση των αναλογικών
κινδύνων και τη στατιστική σημαντικότητα της επίδρασης μίας θεραπείας, παρουσιάζε-
ται στην παρούσα διπλωματική εργασία. Επιπλέον, γίνεται μία σύντομη εισαγωγή σε
εναλλακτικές προσεγγίσεις μοντελοποίησης και συνοπτικά μέτρα για την επίδραση της

θεραπείας υπό μελέτη, και ταυτόχρονα δίνεται μία διαισθητική ερμηνεία στην εκτίμηση
του λόγου κινδύνου που προκύπτει από το μοντέλο του Cox όταν δεν ισχύει η υπόθεση
των αναλογικών κινδύνων. Δύο μελέτες προσομοίωσης, μία για κάθε ομάδα ελέγχων,
διεξάγονται υπό την υπόθεση της αναλογικότητας αλλά και για τέσσερις περιπτώσεις

μη αναλογικών κινδύνων που συχνά αναφέρονται στη σύγχρονη βιβλιογραφία.
Ανάμεσα στους δεκαοκτώ ελέγχους που έγιναν για την υπόθεση των αναλογικών

κινδύνων, τρεις από αυτούς παρουσιάζουν σταθερή συμπεριφορά ανεξαρτήτως του βα-
θμού απομάκρυνσης από τη μηδενική υπόθεση ή το εναλλακτικό σενάριο: δύο από αυ-
τούς ανήκουν στην οικογένεια ελέγχων των Grambsch & Therneau (1994) και χρησι-
μοποιούν ως συναρτήσεις του χρόνου είτε τον συνολικό εκτιμητή κατά Kaplan-Meier
της συνάρτησης επιβίωσης ή την τάξη των χρόνων αποτυχίας, ενώ η τρίτη μέθοδος
αποτελεί μία τροποποίηση του ελέγχου καλής προσαρμογής του Lin (1991), με στα-
θμισμένες εκτιμήσεις παραμέτρων αυτές που παρουσιάστηκαν στη σχετική δημοσίευση

των Schemper, Wakounig και Heinze (2009). Από την άλλη μεριά, η σύγκριση είκοσι
ελέγχων για τη στατιστική σημαντικότητα της επίδρασης μίας θεραπείας, δείχνει την
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ανωτερότητα και την ευελιξία μιας νέας μεθόδου, που συγχρόνως παρέχει κατά τμήματα
σταθερούς εκτιμητές για τον λόγο κινδύνου, και είναι γνωστή, εν συντομία, ως Cauchy
CP (Zhang κ.ά., 2021). Συγχρόνως, μια ποικιλία ευέλικτων σταθμισμένων ελέγχων
log-rank παρουσιάζουν καλά επίπεδα ισχύος για όλα τα προσομοιωμένα σενάρια, εκτός
από εκείνο των διασταυρωμένων συναρτήσεων επιβίωσης, όπου την καλύτερη επίδοση,
εμφανίζουν δυο μέθοδοι που συνδυάζουν τον έλεγχο log-rank με έναν έλεγχο για την
υπόθεση της αναλογικότητας.
Συμπερασματικά, η φύση της μη αναλογικότητας είναι αυτή που καθορίζει το πλάνο

της στατιστικής ανάλυσης των δεδομένων επιβίωσης. Η βέλτιστη μέθοδος, είτε για
τον έλεγχο της υπόθεσης των αναλογικών κινδύνων, είτε για τη σημαντικότητα της
επίδρασης της θεραπείας στην επιβίωση των ασθενών, εξαρτάται από την εκάστοτε
κλινική δοκιμή. Ωστόσο, όταν δεν υπάρχει κάποια πληροφορία σχετικά με τη συμπερ-
ιφορά της συνάρτησης του λόγου κίνδυνου, οι παραπάνω μέθοδοι φαίνεται να έχουν
καλές ιδιότητες και προτείνονται για μελλοντική χρήση, μέχρις ότου να αντικαταστα-
θούν από νέες, καλύτερες προτάσεις.

v



vi



Contents

1 Introduction 1
1.1 Motivation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 3

2 Survival Analysis 101 5
2.1 Fundamental definitions and notation . . . . . . . . . . . . . . . . . . 5

2.1.1 What is survival analysis? . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Survival time and censoring . . . . . . . . . . . . . . . . . . . 6
2.1.3 Probability distribution of a survival random variable . . . . . 8
2.1.4 The assumption of proportional hazards . . . . . . . . . . . . 10
2.1.5 Widely used distributions in survival analysis . . . . . . . . . 11

2.2 Kaplan-Meier estimator . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Log-rank test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Cox PH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Formula and partial likelihood of the model . . . . . . . . . . 19
2.4.2 Approximation methods for tied survival times . . . . . . . . . 20
2.4.3 PH assumption in Cox regression . . . . . . . . . . . . . . . . 22
2.4.4 Association between the log-rank test and the Cox PH model 22
2.4.5 Estimation of the baseline hazard . . . . . . . . . . . . . . . . 24

3 Tests for proportional hazards 27
3.1 Frequent patterns of non-PH . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Formal statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Interval-dependent tests . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Tests based on weighting functions . . . . . . . . . . . . . . . 40
3.2.3 Score tests based on alternative models . . . . . . . . . . . . . 44
3.2.4 Score process-based tests . . . . . . . . . . . . . . . . . . . . . 50
3.2.5 Grambsch & Therneau’s general framework . . . . . . . . . . 52

3.3 Graphical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Based on residuals . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Based on cumulative hazard plots . . . . . . . . . . . . . . . . 59

4 Simulation study: Tests for proportional hazards 63
4.1 Previous simulation studies . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Data simulation: Special scenarios . . . . . . . . . . . . . . . . . . . . 64

vii



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Tests for treatment effect 83
5.1 Estimating treatment effect under non-PH . . . . . . . . . . . . . . . 83
5.2 Weighted log-rank tests and variants . . . . . . . . . . . . . . . . . . 84

5.2.1 The Fleming-Harrington family . . . . . . . . . . . . . . . . . 84
5.2.2 Versatile weighted log-rank tests . . . . . . . . . . . . . . . . . 87
5.2.3 Combinations with other tests . . . . . . . . . . . . . . . . . . 89

5.3 Cox regression under non-PH and related models . . . . . . . . . . . 92
5.3.1 An intuitive interpretation of the standard HR estimate under

non-PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Cox model modifications and alternative estimates for the HR

under non-PH . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 Weighted Cox regression . . . . . . . . . . . . . . . . . . . . . 102
5.3.4 Cauchy combination of change-point Cox regressions . . . . . 106

5.4 Restricted Mean Survival Time . . . . . . . . . . . . . . . . . . . . . 107
5.4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Estimation from the data . . . . . . . . . . . . . . . . . . . . 109
5.4.3 Choice of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.4 Combined test by Royston & Parmar . . . . . . . . . . . . . . 111

5.5 Weighted Kaplan-Meier Statistics . . . . . . . . . . . . . . . . . . . . 113

6 Simulation study: Tests for treatment effect 115
6.1 Data simulation: Special scenarios . . . . . . . . . . . . . . . . . . . . 115
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Discussion and further research 131

A Simulation study A 135

B Simulation study B 149

C Simulated scenarios 163

viii



List of Tables

2.1 Log-rank test’s contingency table at time point tj. . . . . . . . . . . . 17

3.1 Classification of tests for proportional hazards. . . . . . . . . . . . . . 57

4.1 Type I error (size in %) of 18 tests for proportional hazards in the
two-sample case, using three constant HR functions and two different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the early effect case with initial HR = 0.65 and subsequent
HR ≈ 1 after 30%, 50% and 70% of events have been observed in the
treatment group, for different sample sizes n. . . . . . . . . . . . . . . 71

4.3 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the late effect case with initial HR ≈ 1 and subsequent HR
= 0.65 after 30%, 50% and 70% of events have been observed in the
treatment group, for different sample sizes n. . . . . . . . . . . . . . . 74

4.4 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the scenario of crossing hazards with initial HR = 0.65 and
subsequent HR = 1.10, for different sample sizes n and cut points 2
and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the scenario of crossing hazards with initial HR = 1.10 and
subsequent HR = 0.65, for different sample sizes n and cut points 2
and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the scenario of long-term survivors with initial HR = 0.65 and
subsequent HR = 0.652, for different sample sizes n and cut points 2
and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 FH tests involved in Lee’s (1996) proposal and expected scenarios of
optimal performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Type I error (size in %) of 20 tests for treatment effect, for two dif-
ferent sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Power(%) of 20 tests for treatment effect under the proportional haz-
ards assumption, using three constant HR functions and two different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



6.3 Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.8 and subsequent HR ≈ 1 after 30%, 50% and 70%
of events have been observed in the treatment group, for different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ≈ 1 and subsequent HR = 0.8 after 30%, 50% and 70%
of events have been observed in the treatment group, for different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 0.8 and subsequent HR = 1.2, for different
sample sizes n and cut points 2 and 4. . . . . . . . . . . . . . . . . . 124

6.6 Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 1.2 and subsequent HR = 0.8, for different
sample sizes n and cut points 2 and 4. . . . . . . . . . . . . . . . . . 126

6.7 Power(%) of 20 tests for treatment effect, for the scenario of long-
term survivors with initial HR = 0.8 and subsequent HR = 0.82, for
different sample sizes n and cut points 2 and 4. . . . . . . . . . . . . 128

7.1 Tests for proportionality which perform poorly under each scenario. . 132

7.2 Tests for treatment effect which perform poorly under each scenario. . 133

A.1 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the early effect case with initial HR = 0.8 and subsequent
HR ≈ 1 after 30%, 50% and 70% of events have been observed in the
treatment group, for different sample sizes n. . . . . . . . . . . . . . . 135

A.2 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the early effect case with initial HR = 0.9 and subsequent
HR ≈ 1 after 30%, 50% and 70% of events have been observed in the
treatment group, for different sample sizes n. . . . . . . . . . . . . . . 137

A.3 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the late effect case with initial HR ≈ 1 and subsequent HR
= 0.8 after 30%, 50% and 70% of events have been observed in the
treatment group, for different sample sizes n. . . . . . . . . . . . . . . 139

A.4 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the late effect case with initial HR ≈ 1 and subsequent HR
= 0.9 after 30%, 50% and 70% of events have been observed in the
treatment group, for different sample sizes n. . . . . . . . . . . . . . . 141

A.5 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the scenario of crossing hazards with initial HR = 0.8 and
subsequent HR = 1.2, for different sample sizes n and cut points 2
and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.6 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the scenario of crossing hazards with initial HR = 1.2 and
subsequent HR = 0.8, for different sample sizes n and cut points 2
and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

x



A.7 Power(%) of 18 tests for proportional hazards in the two-sample prob-
lem, for the scenario of long-term survivors with initial HR = 0.8 and
subsequent HR = 0.82, for different sample sizes n and cut points 2
and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.1 Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.65 and subsequent HR ≈ 1 after 30%, 50% and 70%
of events have been observed in the treatment group, for different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.2 Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.9 and subsequent HR ≈ 1 after 30%, 50% and 70%
of events have been observed in the treatment group, for different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.3 Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ≈ 1 and subsequent HR = 0.65 after 30%, 50% and 70%
of events have been observed in the treatment group, for different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.4 Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ≈ 1 and subsequent HR = 0.9 after 30%, 50% and 70%
of events have been observed in the treatment group, for different
sample sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.5 Power(%) of 20 tests for treatment effect, for the scenario of cross-
ing hazards with initial HR = 0.65 and subsequent HR = 1.10, for
different sample sizes n and cut points 2 and 4. . . . . . . . . . . . . 157

B.6 Power(%) of 20 tests for treatment effect, for the scenario of cross-
ing hazards with initial HR = 1.10 and subsequent HR = 0.65, for
different sample sizes n and cut points 2 and 4. . . . . . . . . . . . . 159

B.7 Power(%) of 20 tests for treatment effect, for the scenario of long-
term survivors with initial HR = 0.65 and subsequent HR = 0.652,
for different sample sizes n and cut points 2 and 4. . . . . . . . . . . 161

xi



xii



List of Figures

3.1 Patterns of non-proportionality. . . . . . . . . . . . . . . . . . . . . . 29

4.1 Type I error (size) of 18 tests for proportional hazards, for each sample
size and HR. The dashed line corresponds to type I error equal to 5%. 70

4.2 Power of 18 tests for proportional hazards, for two sample sizes and
three change points (CP) at 30%, 50% and 70% of events in the
treatment group, when an early effect with initial HR = 0.65 is observed. 73

4.3 Power of 18 tests for proportional hazards, for two sample sizes and
three change points (CP) at 30%, 50% and 70% of events in the
treatment group, when a late effect with final HR = 0.65 is observed. 75

4.4 Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of crossing hazards with initial HR =
0.65 and subsequent HR = 1.10. . . . . . . . . . . . . . . . . . . . . . 77

4.5 Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of crossing hazards with initial HR =
1.10 and subsequent HR = 0.65. . . . . . . . . . . . . . . . . . . . . . 79

4.6 Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of long-term survivors with initial HR
= 0.65 and subsequent HR = 0.652. . . . . . . . . . . . . . . . . . . . 81

5.1 Survival functions of two populations for which the survival time dis-
tribution is piecewise exponential, with initial hazard rates λ0 = λ′0 =
1 before τ1 = 0.5, and rates λ1 = 0.5 and λ′1 = 0.3 after τ1 for groups
1 and 2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Average hazard ratio in the interval [0, tk], with tk = 0.5 + 0.1 · k,
versus k = 0, 1, . . . , 55. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 with
weights equal to the percentages of time spent in each of the time
internals [0, 0.5] and (0.5, tk], for k = 0, 1, . . . , 55. The black line
corresponds to the HR estimate from the Cox model. . . . . . . . . . 96

5.4 Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 with
weights depending on the expected number of events within each of
the time internals [0, 0.5] and (0.5, tk], for k = 0, 1, . . . , 55. The black
line corresponds to the HR estimate from the Cox model. . . . . . . . 98

xiii



5.5 Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 with
weights depending on the cumulative hazard of a randomly selected
individual. The black line corresponds to the HR estimate from the
Cox model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 using
three different approaches, compared with the average HR estimator
of the Cox model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Type I error (size) of 20 tests for treatment effect, for each sample
size n. The dashed line corresponds to type I error equal to 5%. . . . 117

6.2 Power of 20 tests for treatment effect under the PH assumption, for
each sample size and HR. . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Power of 20 tests for treatment effect, for two sample sizes and three
change points (CP) at 30%, 50% and 70% of events in the treatment
group, when an early effect with initial HR = 0.8 is observed. . . . . 122

6.4 Power of 20 tests for treatment effect, for two sample sizes and three
change points (CP) at 30%, 50% and 70% of events in the treatment
group, when a late effect with final HR = 0.8 is observed. . . . . . . . 123

6.5 Power of 20 tests for treatment effect, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 0.8
and subsequent HR = 1.2. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Power of 20 tests for treatment effect, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 1.2
and subsequent HR = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Power of 20 tests for treatment effect, for different sample sizes and
cut points for the scenario of long-term survivors with initial HR =
0.8 and subsequent HR = 0.82. . . . . . . . . . . . . . . . . . . . . . 129

A.1 Power of 18 tests for proportional hazards, for two sample sizes and
three change points (CP) at 30%, 50% and 70% of events in the
treatment group, when an early effect with initial HR = 0.8 is observed.136

A.2 Power of 18 tests for proportional hazards, for two sample sizes and
three change points (CP) at 30%, 50% and 70% of events in the
treatment group, when an early effect with initial HR = 0.9 is observed.138

A.3 Power of 18 tests for proportional hazards, for two sample sizes and
three change points (CP) at 30%, 50% and 70% of events in the
treatment group, when a late effect with final HR = 0.8 is observed. . 140

A.4 Power of 18 tests for proportional hazards, for two sample sizes and
three change points (CP) at 30%, 50% and 70% of events in the
treatment group, when a late effect with final HR = 0.9 is observed. . 142

A.5 Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of crossing hazards with initial HR =
0.8 and subsequent HR = 1.2. . . . . . . . . . . . . . . . . . . . . . . 144

xiv



xv

A.6 Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of crossing hazards with initial HR =
1.2 and subsequent HR = 0.8. . . . . . . . . . . . . . . . . . . . . . . 146

A.7 Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of long-term survivors with initial HR
= 0.8 and subsequent HR = 0.82. . . . . . . . . . . . . . . . . . . . . 148

B.1 Power of 20 tests for treatment effect, for two sample sizes and three
change points (CP) at 30%, 50% and 70% of events in the treatment
group, when an early effect with initial HR = 0.65 is observed. . . . . 150

B.2 Power of 20 tests for treatment effect, for two sample sizes and three
change points (CP) at 30%, 50% and 70% of events in the treatment
group, when an early effect with initial HR = 0.9 is observed. . . . . 152

B.3 Power of 20 tests for treatment effect, for two sample sizes and three
change points (CP) at 30%, 50% and 70% of events in the treatment
group, when a late effect with final HR = 0.65 is observed. . . . . . . 154

B.4 Power of 20 tests for treatment effect, for two sample sizes and three
change points (CP) at 30%, 50% and 70% of events in the treatment
group, when a late effect with final HR = 0.9 is observed. . . . . . . . 156

B.5 Power of 20 tests for treatment effect, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 0.65
and subsequent HR = 1.10. . . . . . . . . . . . . . . . . . . . . . . . 158

B.6 Power of 20 tests for treatment effect, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 1.10
and subsequent HR = 0.65. . . . . . . . . . . . . . . . . . . . . . . . 160

B.7 Power of 20 tests for treatment effect, for different sample sizes and
cut points for the scenario of long-term survivors with initial HR =
0.65 and subsequent HR = 0.652. . . . . . . . . . . . . . . . . . . . . 162

C.1 Simulated scenarios for the case of proportional hazards, with baseline
hazard equal to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2 Simulated scenarios for the early effect case with baseline hazard equal
to 1, for three change points (CP) at 30%, 50% and 70% of events in
the treatment group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.3 Simulated scenarios for the late effect case with baseline hazard equal
to 1, for three change points (CP) at 30%, 50% and 70% of events in
the treatment group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.4 Simulated scenarios for the crossing hazards case with baseline hazard
equal to 1. The vertical dashed lines correspond to two pre-specified
time cut points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.5 Simulated scenarios for the case of long-term survivors with baseline
hazard equal to 1. The vertical dashed lines correspond to two pre-
specified time cut points. . . . . . . . . . . . . . . . . . . . . . . . . . 167



xvi



Chapter 1

Introduction

1.1 Motivation of the thesis

Throughout the years, the cornerstone of the statistical analysis of survival data is

the assumption of proportional hazards. This becomes apparent when one realizes

that the two most popular techniques in the discipline of Biostatistics are the log-

rank test for hypothesis testing and the Cox Proportional Hazards (PH) Model for

treatment effect estimation. Both of them gained momentum due to their simplicity

and the interpretability of their results. They achieve maximum power under the

proportionality assumption, but when that is not the case, biased results may occur,

distorting the findings of a clinical trial and jeopardizing its success. The majority

of the clinical trials are designed according to these techniques, with a target hazard

ratio (HR) in mind. When the data are collected, firstly, the log-rank test is used

for a preliminary analysis. For instance, it is used to test if there is a significant

treatment effect between two patient groups: the ones taking the placebo and the

ones receiving a new therapy. Since it is impossible to simultaneously adjust for

many covariates using only the log-rank test, the Cox model is implemented to

carry out a multivariate analysis. It was not until recent years that statisticians

started noticing patterns of non-proportional hazards more and more frequently,

leading them to the realization that they must change their – design and analysis

– approach. But, why now? Why are there so many instances of non-proportional

hazards? And how was this problem tackled in the past?

A substantial departure from the PH assumption has been a common observa-

tion in the development of oncology drugs in recent years, with the emergence of

targeted therapies and cancer immunotherapies. The corresponding trials, where

patterns of either a delayed improvement in the intervention group or reverse of

treatment effect throughout follow-up often occur, made clear the urgent need for a

1
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different methodology, one whose credibility is not entirely based on the proportion-

ality assumption. Of course, the biological revolution does not uniquely account for

the increasing amount of non-proportional hazards patterns. It is known that we

have entered the big data era and as a consequence, larger trials are being carried

out in the last decade or so. It is easier to detect a departure from proportionality

as more data result in increased power of the corresponding tests.

Nevertheless, non-proportionality is not something new. Various methods have

been formed and applied ever since the introduction of the aforementioned ap-

proaches. Weighted log-rank tests, stratification, and time-varying coefficients are

only a few examples of such methods. However, each alternative has a downside,

especially when it is inappropriately implemented. Biostatisticians must be aware

of the dangers and the traps that each approach has in store. At the same time,

they need to keep in mind the research question. For example, is a clinical study

conducted with the aim of determining which treatment is better or to get more in-

depth knowledge on how a new intervention works? Is interpretability of the results

important and if so, which factors must be carefully considered? Is the objective

of the study a clear-cut answer or just a prediction? All these questions and many

more should be taken into account not only in the analysis but also during the design

of a clinical trial.

Unfortunately, even though many papers have been written regarding the prob-

lem of non-proportionality, there is not a well-structured methodology. Some at-

tempts have been made towards this cause: in recent papers, especially in the ones

written after 2000, many researchers overexerted themselves running numerous sim-

ulations of possible non-proportional hazards patterns, with various sample sizes so

as to compare old and new tests for proportionality and treatment effect. Notwith-

standing the large number of interesting and useful conclusions drawn till now, the

relevant information is in disarray. It is crystal-clear that there is not a panacea and

each problem should be tackled according to its special characteristics, but a good

statistician must be aware of the possible solutions, their advantages and disadvan-

tages, along with their superiority compared to other methods. It is impossible to do

so considering the number of suggested methodologies, especially when it is evident

that some of them are in disagreement with others.

This thesis attempts to offer both the theoretical background needed and a va-

riety of simulation results from several hypothetical non-proportionality patterns,

frequently encountered in clinical trials. The objective here is to provide a reviewed

collection of analysis methods, focusing on statistical tests, under different types
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of departure from the proportionality assumption. The theory and mathematical

justification of each test along with its performance under numerous scenarios will

help the readers obtain a critical perspective and be able to settle on a plan of ac-

tion when they face similar problems. Although the ideal ultimate goal would be to

lay the foundation for a proposed “common approach”, this thesis emphasizes more

on equipping the interested parties with skills and knowledge that will ensure the

quality and correctness of future research findings.

1.2 Brief structure of the thesis

A plethora of techniques related to the statistical analysis of time-to-event (TTE)

data, where a violation of the PH assumption is speculated, is to be presented in

the current document to achieve the abovementioned objectives.

The main body of the thesis begins in Chapter 2, which is introductory and spec-

ifies the notation and the fundamental terminology used in Survival Analysis. Terms

frequently encountered in this field are being clarified and a handful of some rather

enlightening examples are being presented. The key elements here are concepts such

as censoring, survival function, Kaplan–Meier estimator, the log-rank test, as well

as the Cox PH model and its famous partial likelihood.

After the short introduction to Survival Analysis, Chapter 3 starts with the

presentation of the four most common non-proportional hazards patterns found in

the literature: early/diminishing effect, late/delayed effect, crossing hazards, and

long-term survivors. The purpose of this presentation is to offer the readers a less

vague perception of what non-proportionality is. It also prepares them for the

subsequent sections of this chapter, which consist of several testing procedures,

both statistical and graphical, regarding the PH assumption. Graphical tests are

presented briefly, while formal statistical tests are thoroughly explored and justified

by – an outline of – their proof.

Chapter 4 includes a simulation study based on numerous scenarios of non-

PH. The objective of this chapter is to compare a considerable amount of tests for

proportionality under different types of departure from this hypothesis. Only the

two-sample case (for instance, intervention versus placebo group) is examined as it

is the basis of any further analysis and usually, it is the most important issue we

need to deal with in practice.

Next, another essential group of techniques is being presented: a great variety

of tests for treatment effect. Approaches related to the Restricted Mean Survival
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Time (RMST) difference, weighted Cox regression, and variants or combinations

of weighted log-rank tests, are only a few of the methods reported and clarified in

Chapter 5. Moreover, an intriguing interpretation of the hazard ratio and other

measures of treatment effect linked to the previously mentioned tests is given here.

Once again, Chapter 6 includes a simulation study similar to the one conducted

in Chapter 4. Nonetheless, it refers to the tests of treatment effect mentioned in

Chapter 5. Comparisons of power and type I error are performed under a plethora

of non-PH scenarios.

Finally, Chapter 7 summarizes the most notable findings of Chapters 3 to 6. It

also paves the way for discussion and direct proposals for further research, sharing

both concerns and benefits of the current thesis.



Chapter 2

Survival Analysis 101

2.1 Fundamental definitions and notation

2.1.1 What is survival analysis?

Statistical analysis takes many forms depending on the nature of the problem of

interest. In medicine, economics, engineering, and other disciplines the focus is

usually on the expected duration of time until an event occurs (time-to-event data).

Specific techniques of analysis have been formed to optimize the information being

utilized in cases like these, especially due to their particularities. The domain of

statistics involving these techniques, which examine and model the anticipated time

until the occurrence of an event of interest, is called survival analysis.

Due to the widespread usage of methods employed by survival analysis across

various scientific areas, there are several synonyms used. For instance, in engineer-

ing, survival analysis is usually referred to as “reliability theory”, in economics as

“duration modeling” and in sociology as “event history analysis”. Even though the

tools implemented are based on the same fundamental principles of survival anal-

ysis, the term differs depending on the type of event under the microscope. Some

examples of events are:

• death (medicine),

• relapse/recurrence of a disease (medicine),

• infection (medicine),

• divorce (sociology), and

• malfunctioning of a device (engineering).

5
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The definition of the event is crucial for the analysis and must be explicit. On

many occasions, clarifications and specific instructions should be given. For instance,

biological death is definite and thus, there is no need for further elucidation when it

is defined as the event of interest. On the other hand, the malfunctioning of a device

is not well-defined. Machines consist of many parts, but if one of them is missing

or broken, it does not necessarily mean that the device will not function efficiently.

Frequently, some parts are only decorative or they offer a rarely used extra capability.

Is the malfunction referred to as a practical problem or a difference between the

device and its original design? Undoubtedly, if the definition of the event of interest

is ambiguous, the findings of the analysis will lack consistency.

Despite the concerns mentioned above, survival analysis is widely applicable

because the definition of an event can be manifold and so, not only can we handle

data from various fields of science, but we can also perform multiple analyses within

the same data set using different definitions for the event under consideration. More

specifically, survival analysis is normally used to:

• describe survival data (via Kaplan–Meier curves or measures such as median

survival time, for instance),

• compare survival times among several groups of interest (typically via the

log-rank test or its variants), and

• construct statistical models which help determine the magnitude of the effect

of each variable, whether it is qualitative or quantitative, on survival. Models

may be parametric or semi-parametric.

2.1.2 Survival time and censoring

Survival (or failure) time is defined as the duration of time from the beginning of

the monitoring period until an event (failure) occurs. In the field of Biostatistics,

survival time is defined as the duration of time from the beginning of follow-up until

the outcome of interest occurs, which is usually death or relapse of disease. When

the outcome is death, statisticians are interested in the overall survival time (OS) of

the patients, who are called subjects of the study. In this case, time can be measured

in years, months, weeks, or even days.

In a mathematical context, survival time is just a non-negative random variable

denoted by T. T can either be discrete or continuous, but the notation and proofs

provided in the following sections will only refer to the continuous case for reasons of
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simplification. It should be noted that the proofs are similar when T is considered

a discrete random variable.

When one has only partial information about the time to event, but the exact

survival time is unknown, a key analytical problem occurs called censoring. There

are three basic types of censoring:

1. Right censoring : a subject is right-censored when the outcome of interest

happens at some time point after the end of its follow-up period. This kind of

censoring is the most frequent, especially in clinical trials, where, for instance,

some patients drop out before the study ends and the events of others occur

after the follow-up’s termination.

2. Left censoring : a subject is left-censored when the outcome of interest happens

at some time point before the start of its follow-up period. A brief example is

a study in which the interest is focused on the age at which children learn a

specific task. When the study begins some of them may already know how to

perform this task (left censoring), while others may have not yet learned it by

the end of their follow-up (right censoring).

3. Interval censoring : a subject is interval-censored if it is known that the event

occurs between two times, but the exact time of failure is unknown. Here, an

example is the detection of breast cancer via mammography, in women over

the age of 40. Doctors recommend an annual examination and so, if cancer

is detected, that means cancer cells started developing at some time point

between two consecutive screenings.

When the mechanism determining the censoring distribution is out of the control

of the researcher, the censoring is called random (e.g. lost to follow-up patients).

Otherwise, it is called fixed (e.g. when the event of interest is death and a patient

dies after the study ends). In particular, the right-censored observations that occur

from the termination of the study period are the result of administrative censoring.

Finally, censoring is also divided into two subcategories according to its depen-

dence on survival time. When there is no association between them, censoring is

independent. For instance, in a clinical trial with a primary outcome of interest the

OS of subjects in two treatment groups, with a predefined study period of three

years, patients who die after the end of the study are considered as censored obser-

vations. However, this censoring appears because the researchers chose to monitor

the subjects for three years and it has nothing to do with their health status. On



8 CHAPTER 2. SURVIVAL ANALYSIS 101

the other hand, patients who dropped out because they got sicker display a cen-

soring status which is undoubtedly connected with their condition, and therefore

their survival time. In that case, censoring is called informative because it contains

information about the parameters characterizing the distribution of T.

When one analyzes survival data there is only information about the time each

subject has been monitored before the occurrence of an event and an indicator

that specifies whether this time represents the entire survival time T or its censored

counterpart. If C is the censoring time, then the aforementioned indicator is defined

as

δ =

{
1, if Τ ≤ C

0, otherwise.

The observed time of follow-up is always equal to or less than the actual time to

event. It is in fact equal to the minimum of T and C.

2.1.3 Probability distribution of a survival random variable

There are several equivalent ways to characterize the probability distribution of a

survival random variable. This can be done by using:

• The density function f(t) if T is a continuous variable, which is defined as

f(t) = lim
∆t→0

P (t ≤ T < t+∆t)

∆t

and the probability mass function p(t) = P (T = t) if T is a discrete one.

• The cumulative distribution function F (t) which corresponds to the proportion

of individuals whose event occurred as a function of t, and is defined as

F (t) = P (T < t).

For the continuous case F (t) =
∫ t

0
f(u)du.

• The survivor function S(t) = 1–F (t) = P (T ≥ t) which gives the probability

that a person survives longer than some specified time t. All survivor functions

share the following theoretical properties:

1. They are non-increasing. As time passes, the value of S(t) remains the

same or becomes smaller.

2. Since time 0 is the starting point of the follow-up no one has gotten the

event yet, and therefore S(0) = 1.
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3. As t tends to infinity, the probability that a person survives longer than

t tends to 0, or limt→∞ S(t) = 0.

• The hazard function λ(t) (or conditional failure rate) which is mathematically

defined as

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
.

Intuitively, the hazard function gives the instantaneous potential per unit time

for the event to occur, given that the individual has survived up to time t. It

is always a non-negative function with no upper bound.

While the relationship among density, cumulative distribution and survivor

function is obvious, their connection with the hazard function is not. Using

the definition of conditional probability, the connection becomes apparent,

because

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t

= lim
∆t→0

P (t ≤ T < t+∆t)

∆t · P (T ≥ t)

=
1

P (T ≥ t)
lim
∆t→0

P (t ≤ T < t+∆t)

∆t

and therefore,

λ(t) =
f(t)

S(t)
. (2.1)

• The cumulative (or integrated) hazard function Λ(t) which is defined as

Λ(t) =

∫ t

0

λ(u)du.

The cumulative hazard at time t equals the area under the hazard curve up

to time t. A cumulative hazard curve shows the (cumulative) probability that

the event of interest has occurred up to any point in time.

By employing (2.1), it appears that

λ(t) = − d

dt
lnS(t) ⇒

Λ(t) = − lnS(t)

and thus,

S(t) = e−Λ(t). (2.2)
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If one of the previous functions is known, so are all the others. These rela-

tionships led to the definition of several models which can be fitted to the data

under examination. For instance, some models assume a particular form of the

hazard function or the cumulative hazard function (e.g. flexible parametric models

suggested by Royston & Parmar (2002)), while others suggest that survival time

follows a certain distribution (e.g. Accelerated Failure Time models). There are also

various non-parametric methods, such as the Kaplan–Meier estimator, which pro-

vide a specific formula for the calculation of the survival function. Whether someone

delineates the hazard or the survivor function directly via a model, the rest of the

functions described above can be estimated too.

2.1.4 The assumption of proportional hazards

Now that the hazard function is defined, a formal definition for the proportionality

assumption must be given as well:

The assumption of proportional hazards holds when the hazard ratio com-

paring any two specifications of predictors is constant over time. Equiv-

alently, this means that the hazard for one observation is proportional to

the hazard for any other observation in the data, where the proportion-

ality constant is independent of time.

In a clinical trial context, for instance, there are usually two groups of patients:

the control and the intervention group. If, after the analysis, the estimated hazard

ratio of death for the control compared with the intervention group is equal to 2.8,

that means that the hazard for a person in the control group is approximately three

times the hazard for a person who received treatment. Of course, this assumption

is not always met and in the last few years, it seems to be rather unrealistic. For

example, it is sensible to think that if the intervention group underwent surgery for

tumor removal, the risk of death will be higher at the beginning of their follow-up,

but as time passes, the survivors are anticipated to show substantial improvement

in comparison to cancer patients at the control group. As a result, the hazard ratio

of two individuals belonging to different treatment groups is not constant over time.

In fact, according to what was said above, the hazard ratio of death for the control

compared with the intervention group should increase as the study progresses (since

the hazard for the patients who underwent surgery diminishes over time and the

hazard for the control group remains constant). Fortunately, cases like this led to
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the invention of many statistical tests that properly assess the validity of the PH

assumption. These tests will be extensively studied in Chapters 3 and 4.

2.1.5 Widely used distributions in survival analysis

When it to comes to modeling or simulating survival data, numerous probability

distributions for the survival time, as well as the censoring time, can be considered

as suitable candidates. Time is always positive and thus, the distribution under

consideration must correspond to a non-negative random variable which is usually

assumed to be continuous. Examples of such distributions are the following:

• exponential distribution,

• gamma distribution,

• Weibull distribution,

• log-normal distribution,

• log-logistic distribution,

and many more, including their mixtures.

Since a burning issue of this thesis is the assumption of proportional hazards,

further insight into the exponential and the Weibull distribution will be offered. Pro-

vided certain conditions are met, these two distributions ensure that proportionality

of hazards holds for two or more groups of observations sharing the same covariate

values. Additionally, the piecewise exponential distribution will be studied as well,

as it is considered to mimic observed trial results quite closely (Lin et al., 2020) and

will be used for the simulation studies in Chapters 4 and 6.

Exponential distribution

If survival time T ∼ Exp(λ), then for any t ≥ 0,

f(t) = λe−λt,

F (t) = 1− e−λt,

S(t) = 1− F (t) = e−λt,

λ(t) =
f(t)

S(t)
=
λe−λt

e−λt
= λ,
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Λ(t) =

∫ t

0

λ(u)du =

∫ t

0

λdu = λt.

It should be noted that λ is a positive number, often called the rate parameter.

This rate is essentially the hazard rate, the potential for failing at time t, given that

the event has not occurred until then. Since the hazard rate equals a constant λ,

the risk of failing does not change over time.

In this case, the PH assumption always holds. Indeed, for two groups of obser-

vations where T1 ∼ Exp(λ1) for the first group and T2 ∼ Exp(λ2) for the second,

the hazard ratio for any two individuals is:

λ2(t)

λ1(t)
=
λ2
λ1

which is independent of time.

Weibull distribution

If survival time T ∼ Weibull(λ, p), with λ and p being positive numbers, then

according to the usual parameterization reported in medical statistics, for any t ≥ 0,

f(t) = λptp−1e−λtp ,

F (t) = 1− e−λtp ,

S(t) = 1− F (t) = e−λtp ,

λ(t) =
f(t)

S(t)
=
λptp−1e−λtp

e−λtp
= λptp−1,

Λ(t) =

∫ t

0

λ(u)du =

∫ t

0

λpup−1du = λtp.

The numbers λ and p are called the scale and the shape parameter of the distribution,

respectively. Typically, properties and special characteristics of this distribution are

displayed via the following categorization:

1. When p = 1, Weibull reduces to an exponential distribution. This means the

hazard rate remains constant over time.

2. When p > 1, the hazard function is increasing over time (increasing Weibull

model). An instance here could be a group of patients who do not respond to

treatment and as their disease progresses, the instantaneous potential of dying

becomes higher.
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3. When 0 < p < 1, the hazard function is decreasing over time (decreasing

Weibull model). Decreasing hazard rates are often for patients who underwent

surgery.

In this case, the PH assumption holds only when p is the same across all groups of

interest. If T1 ∼ Weibull(λ1, p1) for one group and T2 ∼ Weibull(λ2, p2) for another,

the hazard ratio for the second group compared with the first is:

λ2(t)

λ1(t)
=
λ2p2t

p2−1

λ1p1tp1−1

which is independent of time if and only if p1 = p2. Otherwise, the HR is either an

increasing (p2 > p1) or a decreasing function (p2 < p1).

Piecewise exponential distribution

When examining the exponential distribution, it was stressed that the hazard

rate does not change over time. Unfortunately, this is rarely the case. Frequently,

the hazard rate differs from one time period to another, and in real-life applications

it does not necessarily have a particular smooth curve. A problem might be more

complex than one a simple distribution, such as Weibull, can describe. It is note-

worthy, considering the three possible situations outlined above, that the Weibull

distribution allows for either a constant or a monotonic hazard function. What will

happen if the hazard rate is increasing at the beginning of a study and decreasing

at the end or vice versa?

The piecewise exponential distribution provides a more flexible approach. It

assumes that the hazard rate remains constant within some specified time intervals.

But how does this offer greater flexibility? Well, let’s think about it: if time intervals

are narrow enough, the hazard rate at the beginning and the end of each will not

show a substantial difference. Therefore, it is sensible to assume that it is constant

over each small time period. It will be shown later that similar reasoning was used

by Andersen (1982) to create a statistical test for the validity of the PH assumption.

A general form of the hazard function of a piecewise exponential distribution

with k change points is given below:

λ(t) =



λ0, if 0 < t ≤ τ1

λ1, if τ1 < t ≤ τ2
...

λk−1, if τk−1 < t ≤ τk

λk, if t > τk
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where λi > 0, ∀i ∈ {0, 1, 2, . . . , k}. When there is only one change point τ1, and

consequently, two rates, λ0 before τ1 and λ1 after, it holds that

λ(t) =

{
λ0, if 0 < t ≤ τ1

λ1, if t > τ1.

Thus, if 0 < t ≤ τ1

Λ(t) =

∫ t

0

λ0du = λ0t,

whereas if t > τ1

Λ(t) =

∫ τ1

0

λ0du+

∫ t

τ1

λ1du = λ0τ1 + λ1(t− τ1)

and consequently,

Λ(t) =

{
λ0t, if 0 < t ≤ τ1

λ0τ1 + λ1(t− τ1), if t > τ1.

From the formula ??,

S(t) = e−Λ(t) =

{
e−λ0t, if 0 < t ≤ τ1

e−λ0τ1+λ1(t−τ1), if t > τ1.

Therefore

F (t) = 1− S(t) =

{
1− e−λ0t, if 0 < t ≤ τ1

1− e−λ0τ1+λ1(t−τ1), if t > τ1.

and

f(t) =
d

dt
F (t) =

{
λ0e

−λ0t, if 0 < t < τ1

λ1e
−{λ0τ1+λ1(t−τ1)}, if t > τ1.

For two groups of observations with hazard functions corresponding to a piece-

wise exponential distribution with k change points, the proportionality assumption

is valid if and only if the change points are the same for the two groups and the HRs

are equal across all time intervals. Thus, here the PH assumption holds under some

strict conditions which are hardly met in practice. Notwithstanding this realization,

piecewise exponential models are extremely useful for simulation studies and further

investigation of statistical tools currently available.
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2.2 Kaplan-Meier estimator

Probably the most popular approach for estimating a survivor function without

resorting to parametric methods is the Kaplan–Meier (KM) estimator, frequently

mentioned as the product limit estimator. Recalling that the survivor function S(t)

is just the probability an individual survives longer than or at least for a specified

time t, results in a rather obvious empirical survival function, under the condition

there is no censoring:

S(t) =
# of individuals with T ≥ t

total sample size
.

However, survival data are data often occurring from a long period of subjects’

monitoring. It is not unusual for information regarding the event of interest to

get lost due to various reasons, examples for which have been given throughout

the preceding sections. Thankfully, Kaplan & Meier (1958) proposed a way to

non-parametrically estimate S(t), even in the presence of censoring. The method

is based on the fundamental concept of conditional probability and a well-known

relevant law, the multiplication law of probability. According to this, for m events

A1, A2, . . . , Am, it holds that

P (A1 ∩ A2 ∩ . . . ∩ Am) = P (A1)P (A2|A1) . . . P (Am|A1, A2, . . . , Am−1). (2.3)

When a survival analysis is being conducted, the available data include infor-

mation regarding the time of event or censoring and also, an event or censoring

indicator to distinguish the observations providing a complete profile from those

who offer a partial one. Let’s consider the following notation: t1, t2, . . . , tm are the

exact ordered times at which one or more events occurred, rj is the number of in-

dividuals at risk at time tj, meaning that they at least survived until then and it

is possible to “fail” at tj or in the future, while dj is the number of failures at tj.

Then for t ∈ [0, t1] it is reasonable to estimate S(t) as the proportion of individuals

who survived at least until t1, and thus,

Ŝ(t) = P (T ≥ t1) = 1, for t ∈ [0, t1].
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In general, for t ∈ (tk, tk+1],

Ŝ(t) = P (T ≥ tk+1)

= P (T ≥ t1, . . . , T ≥ tk, T ≥ tk+1)

(2.3)
= P (T ≥ t1)

k∏
j=1

P (T ≥ tj+1|T ≥ tj)

=
k∏

j=1

{1− P (T = tj|T ≥ tj)}

since P (T ≥ t1) = 1. It is rational to estimate P (T = tj|T ≥ tj) as
dj
rj
,∀j ∈

{1, 2, . . . ,m}. Consequently,

Ŝ(t) =
k∏

j=1

(
1− dj

rj

)
, for t ∈ (tk, tk+1], k ∈ {1, 2, . . . ,m} (2.4)

The estimate is a left continuous step function whose value changes only shortly

after an event occurs. Nevertheless, it should be noted that slight deviations in the

notation and the definition of the survivor function can lead to a similar, but right

continuous Kaplan–Meier estimator, meaning that the change in its value happens

exactly when an event takes place. Finally, it should also be noted that the KM

method assumes censoring is independent of survival time, or put in simple words,

the reason an observation is censored is unrelated to the cause of failure.

2.3 Log-rank test

The comparison of two or more survival curves has always been an important prob-

lem in survival analysis. Numerous parametric and non-parametric methods have

been developed, some for censored and others for uncensored observations. Focus-

ing on non-parametric approaches, the log-rank test is widely accepted as the most

famous amongst the available options, especially for censored data.

For only two populations, the null hypothesis is

H0 : S1(t) = S2(t),

meaning that the burning issue is whether the distributions of survival times in the

two groups are identical or not. The anticipated alternative would be:

HA : S1(t) ̸= S2(t).
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However, the log-rank test achieves maximum power under the alternative of pro-

portional hazards, i.e., λ1(t) = θλ2(t) for some positive constant θ ̸= 1. Using

(2.2), it is easy to conclude that the respective alternative hypothesis in terms of

the survivor function is:

HA : S1(t) = [S2(t)]
θ.

Now that the statistical context is well-defined, it is time to present how the

log-rank test works. The idea behind this test is based on the construction and

combination of a sequence of 2 × 2 contingency tables displaying group versus sur-

vival status for each time t at which a failure occurs. The equivalent null hypothesis

to the one mentioned before is that the survival profile is independent of the group.

Once the entire sequence of 2 × 2 tables has been generated, the information con-

tained in the tables is accumulated using one single statistic. This statistic compares

the observed number of failures at each time to the expected number of failures given

that the distributions of survival times for the two groups are identical. If the null

hypothesis is true, the test statistic has an approximate chi-square distribution.

More specifically, at time tj a contingency table similar to Table 2.1 can be

constructed. If dj, rj and r1j are regarded as fixed values, and the null hypothesis

is true, d1j can be considered as a random variable that follows the hypergeometric

distribution, since when one subject in the first group fails it is impossible to fail

again in the future1 (sampling without replacement). The probability mass function

for d1j in this case is

p(d1j|dj, rj, r1j) =

(
r1j
d1j

)(
rj−r1j
dj−d1j

)(
rj
dj

)
with d1j’s possible values ranging from 0 to min(dj, r1j).

Group No. of events No. of survivors beyond tj Total

I d1j r1j − d1j r1j
II d2j r2j − d2j r2j

Total dj rj − dj rj

Table 2.1: Log-rank test’s contingency table at time point tj.

It is easy to find that the mean of d1j and thus, the expected number of failures

at tj is given by the formula

e1j = dj
r1j
rj
.

1We do not consider recurrent event survival analysis.
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Similarly, the variance of d1j is

v1j =
djr1jr2j(rj − dj)

r2j (rj − 1)
.

All m contingency tables corresponding to failure times t1, t2, . . . , tm can be com-

bined via the following statistic which depends on the difference between the ob-

served and expected number of events:

X2
LR =

U2
1

V1
(2.5)

where U1 =
∑m

j=1(d1j − e1j) and V1 = V ar(U1) =
∑m

j=1 v1j. Under H0, the test

statistic asymptotically follows a χ2 distribution with 1 degree of freedom (d.f.).2

Despite the fact that the log-rank test is essentially testing the equivalence of two

survival functions versus the alternative of proportional hazards, this does not mean

its results are invalid when another alternative relationship holds. Unfortunately,

however, there are some special cases (e.g. when the survivor functions cross each

other) where the test lacks a great amount of power. In Chapters 5 and 6 more

insight and ways to tackle this problem will be given both in a theoretical and a

practical context.

2.4 Cox PH model

Fifty years ago, Sir David Cox (1972) made a groundbreaking proposal, that of a

new statistical model, specially created for survival data. The proportional hazards

regression model of Cox has since become the most known semi-parametric model

for the analysis of failure time regression data. Today, the Cox model is used in

countless applications, not only in survival analysis but also in related fields, such as

reliability analysis, epidemiology, and biomedical studies. Apart from Statistics and

Biostatistics, many other disciplines have also benefited, including Biology, Actuarial

Science, and Finance.

But why is Cox’s model so popular? What is the characteristic or the property

that makes it remarkable? The following sections present the basic qualities of the

Cox PH model, mainly from a mathematical point of view. Hopefully, by the end

of this chapter, the reasons for the Cox model’s popularity will become apparent.

2Interestingly, an approximation to the log-rank statistic can be calculated using observed and
expected values for each time tj without having to compute the variance formula. The approximate
formula is of the classic chi-square form that sums the square of the observed minus expected value
divided by the expected value over all failure times. Nevertheless, this approximation is not
frequently used but employs the same rationale as the log-rank test (Kleinbaum et al., 2012).
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2.4.1 Formula and partial likelihood of the model

Starting from a mathematical perspective, the formula of the Cox PH model says

that the hazard for the i-th individual at time t is the product of two quantities.

The first of these, λ0(t), is called the baseline hazard and it is an unspecified func-

tion. No parametric assumption is made for λ0(t) and that is why the model is

semi-parametric, in comparison to parametric models with similar forms, such as

the Weibull or the exponential where the baseline hazard is specified (according to

Section 2.1.5). The second quantity is an exponential expression, independent of

time t.

Let n be the number of individuals in the analysis with censoring or failure

times t1, t2, . . . , tn, respectively. If p characteristics of the population are being

under consideration, then denote by xi the p × 1 vector of predictor variables for

subject i, i = 1, 2, . . . , n, and β a p × 1 vector of unknown regression parameters.

Then, the hazard function for the failure time of the i-th individual is given by the

following formula:

λi(t) = λ0(t) exp(β
′xi). (2.6)

In order to fit a Cox model to a data set, one must estimate the parameter vector

β. The elements of the aforementioned vector can be estimated after maximizing the

partial likelihood (PL) function of the Cox model. Interestingly, the PL was initially

referred to as conditional likelihood by Cox (1972), but one year later, Kalbfleisch

and Prentice’s comments on his paper, led to the realization that this function was in

fact a partial likelihood (Kalbfleisch & Prentice, 1973; Cox, 1975). Without further

delay, let Ri be the set of individuals who have not failed or been censored by ti

(risk set at time ti), and δi be the event indicator for subject i, meaning that δi = 1

if subject i failed at ti, and 0 otherwise. Under the condition there are no ties, i.e.,

at most one event occurred at each time ti, the PL of the previous model is

L(β) =
n∏

i=1

[
exp(β′xi)∑

ℓ∈Ri
exp(β′xℓ)

]δi
(2.7)

Of note, censoring times are effectively excluded from the likelihood because for

these observations the exponent δi equals 0. Also notable is that the ratio

exp(β′xi)∑
ℓ∈Ri

exp(β′xℓ)

has an intuitive interpretation: according to the proportional hazards model, the

hazard for subject i, for whom the event was actually observed to occur at time
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ti, is proportional to exp(β′xi). Consequently, this ratio expresses the hazard for

subject i in relation to the cumulative hazard for the subjects at risk at time ti.

This explains why someone would choose to estimate β via finding the maximum

point of L(β). Each time ti, for which δi = 1, corresponds to the time of failure for

a subject with label i. The probability of failure for this subject at that exact time

should be higher than the respective probability for any other subject included in

Ri. Therefore, the ratio
exp(β′xi)∑

ℓ∈Ri
exp(β′xℓ)

should be as high as possible. Since L(β) is essentially the product of all these

ratios, maximizing L(β) will, in a sense, maximize each factor, while adjusting for

the others, simultaneously.

Unfortunately, this maximization is not feasible by hand and there is not a closed-

form solution. A usual method to deal with this issue is the root-finding algorithm

Newton–Raphson. This algorithm has been developed to solve difficult equations,

i.e., equations for which there is not a specific methodology, to begin with. However,

here, no equation has been written. So, first of all, the partial log-likelihood must

be defined:

ℓ(β) = lnL(β) =
n∑

i=1

δi{β′xi − ln
∑
ℓ∈Ri

exp(β′xℓ)}. (2.8)

After differentiating the above function with respect to β, it occurs that

∂ℓ(β)

∂β
=

n∑
i=1

δi

[
xi −

∑
ℓ∈Ri

xℓ exp(β
′xℓ)∑

ℓ∈Ri
exp(β′xℓ)

]
. (2.9)

Frequently, the derivative of ℓ(β) is denoted by U(β), and the equation

U(β) = 0 (2.10)

is called the partial likelihood score equation. Intuitively, U(β) expresses the sum

of the differences between observed and expected covariate values over the subjects

who failed, since the term
∑
xℓ exp(β

′xℓ)/
∑

exp(β′xℓ) is a weighted average of xi

over all individuals at risk at time ti. The maximum partial likelihood estimators

(MPLE) can be found by solving U(β) = 0, employing a computer program and of

course, a root-finding algorithm. These estimators share the general properties of

the maximum likelihood estimates.

2.4.2 Approximation methods for tied survival times

Luckily, a similar procedure can be followed when there are ties, i.e., there is at

least one time point at which two or more events take place. Nevertheless, the
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computation of the MPLE, in this case, is time-consuming. Several proposals have

been made to circumvent this obstacle, with the most popular being Efron’s and

Breslow’s adjustments for ties.

Breslow’s modified partial likelihood

Breslow (1974) proposed an approximation of the exact PL when ties are present.

Let t1 < t2 < . . . < tm be the ordered failure times, dj be the number of events at tj,

Rj the risk set at tj, and finally, Sj the sum of the covariate values over all subjects

who failed at tj. Then, Breslow’s modified PL is given by the formula

L(β) =
m∏
j=1

exp(β′Sj)[∑
ℓ∈Rj

exp(β′xℓ)
]dj . (2.11)

This formula is just an approximation of Cox’s discrete method for ties.

Efron’s modified partial likelihood

Efron (1977) suggested a different method for the approximation of the PL. Using

the same notation as before, and denoting by Dj the set of individuals who fail at

tj, the formula

L(β) =
m∏
j=1

exp(β′Sj)∏dj−1
r=0

[∑
ℓ∈Rj

exp(β′xℓ)− r
dj

∑
k∈Dj

exp(β′xk)
] (2.12)

is quite close to the real PL.

When there are no ties, both methods give the same results as the initial PL

presented in this section. However, under the presence of ties, other factors must

also be considered regarding which approach should be implemented. Again, when

there are few ties the results do not differ substantially. When their number is large,

Breslow’s approximation performs poorly, as it underestimates the regression pa-

rameters (the elements of β are biased towards 0), while Efron’s method performs

far better, even though estimators are biased too. Of course, other options are avail-

able, such as the discrete method by Cox (1972) or the exact method by Kalbfleisch

& Prentice (1973). Exact methods yield more accurate results, but they are com-

putationally demanding and time-consuming. Thus, in practice, either Breslow’s or

Efron’s approximation is used. Although the Breslow approximation is the default

in many standard software packages, the Efron method for handling ties is to be

preferred, particularly when the sample size is small either from the outset or due

to heavy censoring (Hertz-Picciotto & Rockhill, 1997).
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2.4.3 PH assumption in Cox regression

Proportional hazards assumption is inseparably connected with the Cox model, at

the extend that the latter is oftentimes referred to as Cox PH model or proportional

hazards model. Indeed, along with its particular form, it’s the only assumption a

statistician should test to evaluate the validity and goodness of fit of the model.

The definition of the Cox model makes evident that, for any two individuals i1 and

i2 their hazard ratio

λi2(t)

λi1(t)
=
λ0(t) exp(β

′xi2)

λ0(t) exp(β′xi1)
=

exp(β′xi2)

exp(β′xi1)

is independent of time. When the PH assumption is invalid, the estimates of the

Cox model are biased and unstable. If a statistical analysis depends entirely on a

Cox model, but hazards are not proportional, the findings are incorrect and mis-

leading. Especially, in the field of Biostatistics where human lives are at stake, these

mistakes should be avoided at all costs. In the next chapter, a variety of tests for

proportionality will be presented with this issue in mind.

2.4.4 Association between the log-rank test and the Cox PH
model

In the introduction of this thesis, it was mentioned that the log-rank test and Cox

model are connected. Both statistical methods achieve their greatest performance

under the PH assumption. However, this is not the only link between them: it can

be proved that the log-rank statistic arises as a score test from the partial likelihood

function.

The log-rank test is implemented for the comparison of groups into the data set.

In the two-sample case, i.e., when there are only two groups the log-rank statistic

is given by the formula described in section 2.3. Returning to the Cox model, let

x be an indicator variable which is equal to 1 for the individuals belonging to the

first group and 0 for the individuals belonging to the second group. Using only

this covariate and the same notation as before, assuming that there are no ties for

simplicity, the partial likelihood is

L(β) =
n∏

i=1

[
exp(βxi)∑

ℓ∈Ri
exp(βxℓ)

]δi
.

The corresponding partial log-likelihood and its first and second derivatives are given

below:

ℓ(β) =
n∑

i=1

δi{βxi − ln
∑
ℓ∈Ri

exp(βxℓ)},
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ℓ′(β) =
n∑

i=1

δi

[
xi −

∑
ℓ∈Ri

xℓ exp(βxℓ)∑
ℓ∈Ri

exp(βxℓ)

]
and

ℓ′′(β) = −
n∑

i=1

δi

∑
ℓ∈Ri

xℓ
2 exp(βxℓ) ·

∑
ℓ∈Ri

exp(βxℓ)−
[∑

ℓ∈Ri
xℓ exp(βxℓ)

]2[∑
ℓ∈Ri

exp(βxℓ)
]2 .

At this point, it is important to recall the null hypothesis of the log-rank test: the

distributions of survival times in the two groups are identical. If this is the case,

then the hazards for individuals of different groups will also be identical. This is

equivalent to testing the hypothesis H0 : β = 0 versus HA : β ̸= 0, because under

H0 the HR of the two groups is equal to 1. The score test here is conducted using

the statistic
U(β0)

2

I(β0)

where U(β0) is the partial likelihood score and I(β0) is the Fisher information, both

evaluated at β0 = 0. It is known that

U(β) = ℓ′(β) ⇒ U(0) =
n∑

i=1

δi

[
xi −

∑
ℓ∈Ri

xℓ exp(0 · xℓ)∑
ℓ∈Ri

exp(0 · xℓ)

]
=

n∑
i=1

δi

[
xi −

∑
ℓ∈Ri

xℓ

|Ri|

]
=

n∑
i=1

δi

[
xi −

|R1i|
|Ri|

]
=

∑
i:δi=1

[
xi −

|R1i|
|Ri|

]

where |Ri| is the number of subjects at risk at ti, and |R1i| is the number of subjects

belonging to the first group at risk at ti. It is obvious that U(0) = U1 for the special

case of no ties, where U1 is the sum of observed minus expected number of events

over all failure times.

Fisher information can be estimated via the negative of the second derivative of

the partial likelihood (observed Fisher information), and thus

Î(β) = −ℓ′′(β) ⇒

J(0) = Î(0) =
n∑

i=1

δi

∑
ℓ∈Ri

xℓ
2 exp(0 · xℓ) ·

∑
ℓ∈Ri

exp(0 · xℓ)−
[∑

ℓ∈Ri
xℓ exp(0 · xℓ)

]2[∑
ℓ∈Ri

exp(0 · xℓ)
]2

=
∑
i:δi=1

∑
ℓ∈Ri

xℓ
2 · |Ri| −

[∑
ℓ∈Ri

xℓ
]2

|Ri|2
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but x’s possible values are 1 and 0, so xℓ
2 = xℓ ∀ℓ, and therefore,

J(0) =
∑
i:δi=1

∑
ℓ∈Ri

xℓ · |Ri| −
[∑

ℓ∈Ri
xℓ
]2

|Ri|2

=
∑
i:δi=1

|R1i| · |Ri| − |R1i|2

|Ri|2

=
∑
i:δi=1

|R1i| · (|Ri| − |R1i|)
|Ri|2

which is equivalent to V1 when there are no ties.

Consequently, the score test statistic takes the form of the log-rank statistic, and

like the latter, it follows a χ2 distribution with 1 d.f. under H0. This proves that

the Cox model is just a generalization of the log-rank test for the multivariate case

(Cox, 1972; Harrington, 2014).

2.4.5 Estimation of the baseline hazard

A frequent downside of the Cox model is that it only determines HRs, i.e., it gives

answers regarding the relative risk between individuals with dissimilar characteris-

tics, but not about their absolute hazards. This stems from the fact that the baseline

hazard is unspecified. Fortunately, having estimated the parameters of a Cox model,

it is possible to recover a non-parametric estimate of the baseline hazard function.

Of course, it is not necessary to fit a Cox model to gain a non-parametric estimate

of the hazard or the cumulative hazard function. For instance, there is the well-

known Nelson–Aalen estimator which is defined as

Λ̂(t) =
∑
j:tj≤t

dj
rj

(2.13)

where t1, t2, . . . , tm are the failure times only, while dj and rj define the number

of failures and subjects at risk at tj, respectively. Another way to estimate the

cumulative hazard is by obtaining the KM estimate of the corresponding survivor

function and using (2.2) to estimate Λ(t).

Nevertheless, none of the aforementioned approaches utilizes the findings of a

fitted Cox model. Luckily, Breslow (1972) suggested estimating β and the baseline

cumulative hazard Λ0(t) in the maximum likelihood framework. By treating λ0(t)

as piecewise constant between uncensored failure times, one can show that the joint

likelihood for β and Λ0 is maximized simultaneously at β̂, the maximum partial
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likelihood estimator, and

Λ̂0(t) =
n∑

i=1

δi · I(ti ≤ t)∑
ℓ∈Ri

exp(β̂′xℓ)
. (2.14)

This is the well-known Breslow estimator. Like any other MLE, it is asymptotically

normal and consistent. Its worth is apparent when one considers that all major

statistical software packages, such as SAS and R, implement this formula for the

estimation of the baseline cumulative hazard. At the same time, its strong presence

in numerous scientific papers reflects the importance of using a non-parametric, Cox

model-based estimator of the hazard function (see Chapter 3 for more).
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Chapter 3

Tests for proportional hazards

The typical analysis procedure for survival data starts with non-parametric methods,

such as Kaplan-Meier estimates for the groups of interest, followed by the log-rank

test (or some variant) for the comparison of the survival curves, and finally, the

Cox model is fitted to provide an estimate of the magnitude of their difference.

Under the assumption of proportional hazards, the results from the log-rank test

and the Cox model are valid and informative of the nature of the data. However,

nowadays non-proportionality of hazards is more and more frequently encountered,

although it is ignored in many cases. For instance, most randomized clinical trials

with a time-to-event outcome are designed assuming proportional hazards of the

treatment effect, even though recent breakthroughs in the field of medicine showed

that, depending on the mechanism of action, a therapy can display great effect in

a non-conventional way, rather than in a consistent one. As a consequence, various

patterns of non-PH are observed.

Patterns of non-PH may be obvious in the KM plots in the initial analysis. Nev-

ertheless, when the number of groups under consideration is large or the variable

of interest is continuous, these patterns are easily missed. For that reason, it is

of great importance to check the PH assumption via strict statistical criteria. Nu-

merous graphical and statistical tests have been developed throughout the years,

mainly based on the Cox model. Usually, the graphical tests complement the sta-

tistical ones. The interpretation of graphs is subjective and thus, cannot be used

alone to define whether the PH assumption is met or not. Instead, it is preferable

to use statistical tests to offer a clear-cut answer regarding the validity of the pro-

portionality of hazards, and then give a more intuitive interpretation of the result

employing a relative plot, if possible. Towards this cause, this chapter begins with a

small presentation of the most famous patterns of non-PH and continues with a wide

variety of tests for the proportionality assumption, both statistical and graphical.

27
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3.1 Frequent patterns of non-PH

Due to recent advancements in medical research, and specifically in oncology ther-

apy, the proportionality assumption seems to be oftentimes violated. Several types

of non-proportionality patterns usually occur either as a consequence of different

treatment effects in subgroups or due to the treatment itself. Also, in recent years,

the accumulation of data is larger, resulting in faster detection of existing non-PH

patterns. While it is hard to specify every possible non-PH scenario, four types are

repeatedly mentioned in the literature:

1. Early/Diminishing effect : With an early effect, the HR is significantly different

from 1 in the early follow-up and approaches it as time passes. An early effect

may, for example, be provoked by ‘wearing off’ of the effectiveness of a therapy

that is administered for a limited period and then stopped.

2. Late/Delayed effect : This is the exact opposite of an early effect. At the

beginning, the HR is close to 1 and as time passes their difference becomes

larger and larger. Late effect can be observed when a treatment does not

immediately improve the health status of the corresponding group but proves

beneficial after some period of time. This is usually the case for immuno-

oncology drugs, possibly due to their mechanism of action or due to the design

of the trial (Ananthakrishnan et al., 2021). A delayed effect may also occur in

screening1 or prevention2 trials, in which the treatment effect is expected to

take time to manifest.

3. Crossing hazards : Sometimes, a short-term or a delayed benefit can also cause

the hazard functions to cross each other. Another reason for crossing hazards

stems from the fact that the treatment may be harmful in a subgroup but

helpful in its complement. This phenomenon demands special consideration

as the comparison of the treatment arms is not straightforward and a clear-cut

answer for the superiority or inferiority of a remedy is not easily provided.

4. Long-term survivors : Finally, a fourth non-proportional hazards pattern ob-

served in recent years is the one produced by long-term survivors. It is known

1Screening trials evaluate new tests for detecting cancer and other health conditions in people
before symptoms are present. The goal is to determine whether the screening test saves lives and
at what cost.

2Prevention trials involve tests to find ways to prevent particular medical conditions or if people
have them already, to prevent them from reoccurring. The emphasis of these studies might be on
medicines, vitamins, minerals, or lifestyle changes.
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that therapies for certain cancer types are believed to induce a subset of long-

term survivors, and in some diseases, normally a proportion of patients are

expected to be cured (or non-susceptible), that is to remain alive or disease-

free even after long follow-ups (Chen, 2013).

To have a better insight, Figure 3.1 displays the survivor functions for two groups

in each scenario. It is vital to remember that these are only indicative and more com-

plicated scenarios are encountered in real clinical data. Furthermore, we should keep

in mind that when the Cox PH model is used to provide a hazard ratio estimation

on these occasions, the resulting summary statistic may be under-or overestimated,

while the traditional log-rank test lacks power. That is why it is crucial to test

the PH assumption before reporting findings based on the Cox regression and the

log-rank test.

Figure 3.1: Patterns of non-proportionality.
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3.2 Formal statistical tests

Since the introduction of the Cox model, its dependence on the proportionality

assumption led to a series of statistical tests, with Cox (1972) being the first who

suggested one via an extended version of the model. Almost a decade later, other

statisticians started proposing tests for detecting different patterns of departure from

proportionality, with many of them focusing on the alternative of monotonous hazard

ratio or other specific time functions of the HR. Of course, many tests are considered

omnibus, as they perform equally well for a wide range of alternatives. Notably,

most of them employ similar techniques and ideas. For instance, the difference

between observed and expected values arising from the Cox model is a repeatedly

encountered quantity in tests for PH. As more and more methods were suggested,

several generalizations, connecting comparable tests, were created (see for instance

Grambsch and Therneau’s general framework in section 3.2.5) setting the stage for

more powerful testing procedures. At the same time, technology evolution allowed

for the development of new approaches and the comparison of the existing ones

through large simulation studies.

Even though it is difficult to define a clear classification since tests for detecting

non-PH patterns oftentimes share similar characteristics, an attempt to do so can

result in the following categorization:

1. Interval-dependent tests,

2. Tests based on weighting functions,

3. Score tests based on alternative models, and

4. Score process-based tests.

In the next sections, the most popular tests from each category, from 1972 till now,

will be presented, and special attention will be paid to the two-sample case as the

comparison of two groups is usually of great interest.

3.2.1 Interval-dependent tests

Interval-dependent tests require some arbitrary definition of time and/or covariate

space partitions. The oldest of these tests was proposed by Schoenfeld (1980) and

considers both time and covariate space partition. Two years later, Andersen (1982)

brainstormed a rather innovative method to check the PH assumption, but it was still

based on partitioning the space of the covariate whose proportionality is suspected.
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Finally, the suggestion of Anderson & Senthilselvan (1982) and its generalizations

by Moreau, O’Quigley & Mesbah (1985) and O’Quigley & Pessione (1989) combined

the rationale behind the interval-dependent tests with proposed candidate forms of

alternative models under the assumption that proportionality is invalid. Further

insight on the aforementioned tests is given below.

Schoenfeld’s test (1980)

Schoenfeld’s proposal is an omnibus chi-square goodness of fit (GOF) test cal-

culated for a proportional hazards model by obtaining the observed and expected

numbers of deaths within each cell Csj, j = 1, 2, . . . , r, s = 1, 2, . . . , k. Here a cell is

defined as the combination of a time interval [bj−1, bj) with a group As of particular

characteristics (typically, b0 = 0 and br = ∞). For instance, when two variables

are under examination, e.g. gender (male or female) and smoking status (current

smoker, former smoker, non-smoker), then it is reasonable to form six groups As,

i.e.,

A1 → men who are smokers,

A2 → men who are former smokers,

A3 → men who are non-smokers,

A4 → women who are smokers,

A5 → women who are former smokers, and,

A6 → women who are non-smokers.

Each of these groups is further divided into follow-up periods according to the

specified time intervals [bj−1, bj), j = 1, 2, . . . , r and the cell Csj is subsequently

created. The corresponding conditional mean of deaths esj and its variance vsj

in this cell, (and also covariances) are computed based on the partial likelihood

arguments of Cox, given the risk set Ri at each failure time ti of the i-th individual.

Let Dj be the set of individuals who failed during the time interval [bj−1, bj) and β̂

the MPLE of the Cox model. Then,

êsj =
∑
i∈Dj

∑
ℓ∈Ri

Is(ℓ) exp(β̂
′xℓ)∑

ℓ∈Ri
exp(β̂′xℓ)

and

v̂sj =
∑
i∈Dj

∑
ℓ∈Ri

Is(ℓ) exp(β̂
′xℓ)∑

ℓ∈Ri
exp(β̂′xℓ)

[
1−

∑
ℓ∈Ri

Is(ℓ) exp(β̂
′xℓ)∑

ℓ∈Ri
exp(β̂′xℓ)

]
where xi is the covariate vector of the i-th subject and Is(.) is an indicator function

with
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Is(ℓ) =

{
1, if ℓ ∈ As

0, otherwise.

In the formula of êsj, xℓ denotes all the covariates considered in the model,

including the one whose proportionality is to be tested. After the calculation of the

variance-covariance matrix V , and if the observed number of deaths is dsj in the cell

Csj, then the suitable statistic for the PH assumption test is

Q = (d− ê)′V −1(d− ê) (3.1)

where d is the vector of the observed number of events within each cell, and e is the

vector of the expected number of events within each cell. Under the proportionality

assumption, Q is asymptotically chi-square distributed with (r−1)× (k−1) degrees

of freedom. For the two-sample case, the relative statistic is given by Moreau et al.

(1985) below.

Clearly, the choice of partition here is of great importance. When the variables

whose proportionality is tested are qualitative, it comes naturally to determine the

partition of the covariate space based on their categories. For continuous variables,

a common suggestion is to split their whole range into smaller intervals, usually in a

meaningful way. Of course, depending on the sequence of these decisions, different

results may occur. In any case, however, Schoenfeld (1980) stressed that if the

partitions are defined so as to ensure that a similar number of events is contained

in the cells, dissimilar choices will not result in substantially different outcomes.

Finally, he suggested partitioning using all covariates involved in the PH model,

even the ones whose proportionality is not in question (Song & Lee, 2000).

Andersen’s test (1982)

In contrast to Schoenfeld’s test, Andersen (1982) proposed partitioning of inter-

vals based only on the covariate whose proportionality is suspected. Suppose that

the PH assumption is not in question for the first p variables but may be invalid for

the (p+1)-th covariate. Using the same notation as before, for a subject with label

i, the covariate vector for the first p variables is xi = (xi1, xi2, . . . , xip)
′. To examine

the proportionality of the (p + 1)-th covariate, one must define k strata, according

to the value of this variable, and r time intervals as before. Then, the s-th stratum

has a hazard function

λi,s(t) = λ0s(t) exp(β
′xi), s = 1, 2, . . . , k.
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The baseline hazard function λ0s(t) in each stratum s = 1, 2, . . . , k can be approxi-

mated by a constant function λsj within each time interval [bj−1, bj), j = 1, 2, . . . , r.

These newly introduced r × k additional parameters can be computed using Bres-

low’s maximum likelihood estimator on the condition that β is known. According

to Andersen (1982), the following formula is used:

λ̂sj =
dsj∑ns

i=1 exp(β
′xsi ) · Tisj

, s = 1, 2, . . . , k, j = 1, 2, . . . , r,

where dsj is the observed number of events during the j-th time interval in the s-th

stratum, ns is the number of subjects in the s-th group, xsi is the p × 1 covariate

vector for the i-th individual in statum s and finally, Tisj is the time spent in the

j-th interval by the i-th individual from group s. Of course, when there is only one

variable whose proportionality is going to be tested, the term exp(β′xsi ) is removed

from the previous formula, leaving only the total time spent in the j-th interval by

the subjects in group s in the denominator.

Under the PH assumption, it is expected that λ(s+1)j = λsj exp(as+1),∀s, j. Ret-
rospectively, this is equivalent to lnλ(s+1)j = lnλ1j +

∑s+1
l=2 al,∀s, j. If lnλ1j is

denoted by ξj, then

âs+1 =

∑r
j=1[ln λ̂(s+1)j − ln λ̂sj]/[d

−1
(s+1)j + d−1

sj ]∑r
j=1[d

−1
(s+1)j + d−1

sj ]
−1

, s = 1, 2, . . . , k − 1,

which is a weighted average of the difference lnλ(s+1)j−lnλsj with weights depending

on the number of deaths in the s-th stratum, and

ξ̂j =

∑k
s=1 dsj(ln λ̂sj −

∑s
l=1 âl)∑k

s=1 dsj
, j = 1, 2, . . . , r,

where â1 ≡ 0.

Subsequently, the PH assumption can be tested via the statistic3

Q =
r∑

j=1

k∑
s=1

dsj[ln λ̂sj − (ξ̂j +
s∑

l=1

âl)]
2, (3.2)

which asymptotically follows a chi-square distribution with (r− 1)× (k− 1) degrees

of freedom. Small values indicate that ln λ̂sj and ξ̂j +
∑

l âl are in general close.

On the contrary, the PH assumption is rejected when significant differences between

these two quantities are observed. Once again, the choice of partition plays a major

3Andersen also proposed another statistic for the PH assumption test which is proved to be
asymptotically equivalent to the one presented here.
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role in the outcome, but Andersen has pointed out that different partitions give the

same results if each interval contains a reasonable number of failures.

Despite Andersen’s ingenuity, many claim that this test is not suitable for the

assessment of the validity of the PH assumption. When approximating the baseline

hazard within each stratum and time interval via a constant function, Andersen

initiates a GOF testing procedure which does not examine the fit of the Cox model.

Nevertheless, others embrace his approach because they believe these two models

are equivalent in practice.

Anderson and Senthilselvan’s model (1982)

The violation of the proportionality of hazards led to the proposal of a new model

which assumes that coefficients are different amongst non-overlapping time intervals.

When only two time intervals are considered, the two-step model (Anderson &

Senthilselvan, 1982), as they called it, has the following form:

λi(t) =

{
λ0(t) exp(α

′xi), if t < b1

λ1(t) exp(γ
′xi), if t ≥ b1.

This two-step model can also be regarded as a model with constant coefficients

but time-varying covariates. Here, α, γ and b1 should be estimated along with the

baseline hazard function. The typical procedure is to start by fixing b1 and use the

conditional likelihood to compute α and γ. Ideally, b1 should be chosen in a way

that ensures that enough events happen in the second time interval. If this condition

is not met, γ will be poorly estimated and infinite estimates of some of its elements

can arise with binary covariates (Senthilselvan, 1980). Finally, the baseline hazard

function is estimated conditional on the estimates α̂, γ̂ and b1, using a penalized

maximum likelihood4.

Anderson and Senthilselvan’s model can be generalized for more than two inter-

vals. Nevertheless, the authors pointed out the difficulties of extending their method

to several intervals, as the simultaneous estimation of several parameters is compu-

tationally demanding and the introduction of further censoring results in increased

imprecision. Despite this issue, this model paved the way for a novel approach to

survival data analysis and the creation of two PH assumption tests, which will be

discussed below.

4Method proposed by Good & Gaskins (1971). It provides a smooth estimate of λ0(t).
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Moreau, O’Quigley & Mesbah (1985)

Based on Anderson and Senthilselvan’s model (1982), Moreau, O’Quigley, and

Mesbah (1985) brainstormed the idea of testing the PH assumption by performing

a score test on the coefficients of an alternative model. Quite similar to the previous

one, this new model has the form

λi(t) = λ0(t) exp{(β + γj)
′xi}, (3.3)

where β and γj are r+1, p×1 vectors and t ∈ [bj−1, bj), j = 2, ..., r. This means that

depending on the time interval of interest the coefficients differ. Of course, without

loss of generality, γ1 can be assumed equal to zero, since there are only r intervals

but r + 1 coefficients of unknown parameters. Therefore,

λi(t) =


λ0(t) exp{β′xi}, if t ∈ [0, b1)

λ0(t) exp{(β + γ2)
′xi}, if t ∈ [b1, b2)

...

λ0(t) exp{(β + γr)
′xi}, if t ∈ [br−1,∞).

After simplifying the formula a little, the null hypothesis of the test for propor-

tionality is

H0 : γ2 = . . . = γr = 0

versus the alternative

H1 : γj ̸= 0 for at least one j ∈ {2, . . . , r}.

A score test can be performed to test this hypothesis. The first and the second

derivatives of the partial log-likelihood are needed since a score test statistic is given

by the formula

S = U ′I−1U,

where U is the rp×1 vector of first derivatives and I is the rp×rp Fisher information

matrix, i.e., the negative of the matrix of the second derivatives, calculated under

the null hypothesis, using the MPLE of the simple Cox model β̂ as β and γj =

0, for j = 2, . . . , r.

According to (2.8), and assuming that tij, i = 1, 2, . . . , kj, j = 1, 2, . . . , r are the

distinct survival times in the j-th interval, the partial log-likelihood for (3.3) is

ℓ(γ2, . . . , γr, β) =
r∑

j=1

kj∑
i=1

(β + γj)
′xi − ln

∑
ℓ∈Rij

exp{(β + γj)
′xℓ}

 (3.4)
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where Rij is the risk set at time tij. The rp× 1 vector of first derivatives U can be

split into r parts of p× 1 vectors Uj, where each one has p values Vsj. Vsj is the first

derivative of (3.4) with respect to γsj, s = 1, . . . , p, j = 2, . . . , r calculated under H0:

Vsj =

kj∑
i=1

(xis–Aisj)

where

Aisj =

∑
ℓ∈Rij

xℓs exp(β̂
′xℓ)∑

ℓ∈Rij
exp(β̂′xℓ)

.

So,

U ′
j = (V1j, · · · , Vpj), for j = 2, . . . , r,

and U can be written as

U ′ = (U ′
2, · · · , U ′

r, 0)

due to the fact that the p elements corresponding to ∂ℓ/∂βs are equal to zero when

β = β̂. Notice that U1 is not defined, but a natural way to do so is by replacing j

with 1 in the formula of Vsj. Then, interestingly,

r∑
j=1

U ′
j =

(
∂ℓ

∂β1
(0, · · · , 0, β̂), · · · , ∂ℓ

∂βr
(0, · · · , 0, β̂)

)
= 0. (3.5)

Regarding the second derivatives, it holds that under H0,

− ∂2ℓ

∂γsj∂γqj
= − ∂2ℓ

∂βs∂γqj
=

kj∑
i=1

[∑
ℓ∈Rij

xℓsxℓq exp(β̂
′xℓ)∑

ℓ∈Rij
exp(β̂′xℓ)

− AisjAiqj

]
(3.6)

for j = 2, . . . , r, and s, q ∈ {1, 2, . . . , p}, and

− ∂2ℓ

∂γsj∂γqj′
= 0

when j ̸= j′.

Let Ij, j = 2, . . . , r be a p × p matrix with elements the second derivatives

corresponding to (3.6). Again, I1 is not defined but it can occur by replacing j with

1 in the same equation. Then, it can be shown that

− ∂2ℓ

∂βs∂βq
=

r∑
j=1

Ij.

Having defined all the above formulas, the form of the observed information

matrix I can be easily written as (
D B
B′ C

)
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where D = diag(I2, · · · , Ir), B′ = (I2, · · · , Ir) and C =
∑r

j=1 Ij. Fortunately, after

implementing Rao’s method (Rao et al., 1973), this matrix is inverted, and after

calculations, it occurs that the score statistic for the test of proportionality is

S =
r∑

j=1

U ′
jI

−1
j Uj. (3.7)

Since the null hypothesis assumes that (r − 1)p values are equal to zero, the

asymptotic distribution of S is a chi-square with (r−1)p degrees of freedom. Notice

that the calculation of S requires only the inversion of Ij, making the procedure

simpler than it seemed initially. As for the occasion where more than one death

may occur in a single time point tij, i.e., when there are ties, small adjustments

should be made in the formulas of first and second derivatives of the partial log-

likelihood. More specifically, if dij is the number of deaths at tij,

Vsj =

kj∑
i=1

(xis − dijAisj),

and

− ∂2ℓ

∂γsj∂γqj
= − ∂2ℓ

∂βs∂γqj
=

kj∑
i=1

dij

[∑
ℓ∈Rij

xℓsxℓq exp(β̂
′xℓ)∑

ℓ∈Rij
exp(β̂′xℓ)

− AisjAiqj

]
.

To gain more insight into Moreau, O’Quigley, and Mesbah’s proposed test, the

two-sample case will be examined theoretically and via simulations (see Chapter 4

for more). First of all, when the model includes one single variable, the score statistic

has the following form:

S =
r∑

j=1

U2
j

Ij
, (3.8)

since p = 1. Suppose two groups and thus, a variable x with two possible values,

with the usual notation being

x =

{
1, if the subject belongs to the 1st group

0, otherwise.

In the absence of tied data and according to what was previously presented, Uj

is just the difference between observed and expected number of deaths in group 1,

i.e.,

Uj = O1j–E1j, (3.9)
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where

E1j =

kj∑
i=1

eij, with eij =
r1ije

β̂

r1ijeβ̂ + r2ij
, j = 1, 2, . . . , r.

The quantities r1ij and r2ij represent the number of individuals at risk at time tij

in group 1 and group 2, respectively. Moreover,

Ij =

kj∑
i=1

eij(1− eij). (3.10)

Replacing Uj’s and Ij’s with their equivalent quantities from (3.9) and (3.10) in

(3.8), the score statistic for the two-sample case is ready to be used. Here, it follows

a chi-square distribution with r − 1 degrees of freedom. Notice that it is identical

to the one given by Schoenfeld (1980). For that reason, the same paper suggested a

more conservative version that takes the form of a typical chi-square test, i.e.,

r∑
j=1

[
(O1j − E1j)

2

E1j

+
(O2j − E2j)

2

E2j

]
.

Of course, the expected number of deaths in group 2 is

E2j =

kj∑
i=1

(1− eij), j = 1, 2, . . . , r,

because the total number of deaths in the j-th interval is constant and E1j +E2j =

kj,∀j ∈ {1, 2, · · · , r}. The reason why this statistic is more conservative than the

one presented before stems from the Cauchy-Schwarz inequality: it holds that

kj∑
i=1

e2ij ≥

(∑kj
i=1 eij

)2

kj
.

Consequently, ∀j ∈ {1, 2, . . . , r}

(O1j − E1j)
2

E1j

+
(O2j − E2j)

2

E2j

=
kj(O1j − E1j)

2

E1jE2j

=
(O1j − E1j)

2∑
eij − (

∑
eij)

2

kj

≤
U2
j

Ij
.

Finally, it is important to stress that the aforementioned statistics must be mod-

ified in the presence of tied data. Once again, the number of deaths at each time

point tij is required and the formulas of E1j, E2j and Ij change as follows:

E1j =

kj∑
i=1

dijeij,
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E2j =

kj∑
i=1

dij(1− eij),

and

Ij =

kj∑
i=1

dijeij(1− eij).

O’Quigley & Pessione’s test (1989)

Introducing a time axis division, O’Quigley and Pessione (1989) suggested a test

for the PH assumption based on the model

λi(t) = λ0(t) exp{(β +Ψjθ)
′xi}, t ∈ [bj−1, bj), j = 1, 2, . . . , r, (3.11)

where β and θ are p × 1 unknown vectors and Ψj is a p × p diagonal matrix with

diagonal elements ψ1j, ψ2j, . . . , ψpj. When θ = 0, the model in (3.11) reduces to the

simple Cox PH model. Therefore, the null hypothesis

H0 : θ = 0,

versus the alternative

HA : θ ̸= 0

may be tested by using a score statistic. Its formula is derived from the first and

second derivatives of the partial log-likelihood of the model in (3.11), in a similar

manner to the previous test by Moreau et al. (1985). For the two-sample case, which

will be implemented in Chapter 4, the score statistic S is equal to U2/I, where

U =
r∑

j=1

Ψj(O1j − E1j) =
r∑

j=1

Ψj(O1j −
kj∑
i=1

eij)

and

I =
r∑

j=1

kj∑
i=1

Ψ2
jeij(1− eij)−

[∑r
j=1

∑kj
i=1 Ψjeij(1− eij)

]2
∑r

j=1

∑kj
i=1 eij(1− eij)

.

Here, O1j, E1j and eij are defined as before. As for the scalar5 values Ψj, these are

chosen by the researcher performing the test. Some suggestions from O’Quigley and

Pessione (1989) for the general case of p covariates are:

5Here p = 1, and thus Ψj is considered to be a real number, not a matrix.
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1. Linear trend alternative:

ψqj = j − 1, for j = 1, 2, . . . , r

ψq′j = 0, for q′ ̸= q and j = 1, 2, . . . , r

2. Exponential decay :

ψqj = r−1 + · · ·+ (r − j + 1)−1, for j = 1, 2, . . . , r

ψq′j = 0, for q′ ̸= q and j = 1, 2, . . . , r

3. Inversion of regression effect for the two-sample case with two time intervals :

When inversion of effect is suspected, a proposal is to use Ψ1 = 1 and Ψ2 = −1.

This suggestion is suitable for the case of crossing hazards. In general, one

may choose any pair of Ψ1 and Ψ2 for which Ψ1 = −Ψ2. If effects do go in

opposite directions but are not of comparable magnitude, then the formulation

used here may not be very efficient. However, if the differences in magnitude

are large enough, even a model with an inappropriate assumption such as

proportional hazards will detect differential effects.

The choice of the matrix Ψj is important since the interpretation of a non-zero value

for θ will depend on it.

Last but not least, one should keep in mind that the statistic given above is only

appropriate when there are no ties. Once again, a modification is needed if that is

not the case. For the two-sample problem, U and I become

U =
r∑

j=1

Ψj(O1j −
kj∑
i=1

dijeij)

and

I =
r∑

j=1

kj∑
i=1

dijΨ
2
jeij(1− eij)−

[∑r
j=1

∑kj
i=1 dijΨjeij(1− eij)

]2
∑r

j=1

∑kj
i=1 dijeij(1− eij)

.

3.2.2 Tests based on weighting functions

This group of tests employs weighting functions, particularly from Fleming & Har-

rington’s original or extended family, and has been proved to be powerful when

the alternative hypothesis is that of increasing or decreasing (monotonous) hazard

ratio over time. In this category, three tests are worthwhile to mention: Gill &

Schumacher’s (1987), Lin’s (1991), and Sengupta, Bhattacharjee & Rajeev’s (1998).
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Gill and Schumacher’s test (1987)

This test is based on the comparison of different generalized rank estimators of

the proportionality constant θ and in its original form, it is appropriate only for the

two-sample problem, i.e., when the interest is focused on two subgroups of the data.

To begin with, let Nj(t) denote the number of failures in group j before or at t,

Yj(t) the number at risk in group j at t, λj(t) the hazard and Λj(t) the cumulative

hazard rate at t, for j = 1, 2. Here the test problem is given by H0 versus HA where

H0 :
λ2(t)

λ1(t)
= θ, for some positive number θ,

and

HA :
λ2(t)

λ1(t)
̸= θ, for any positive number θ.

Under H0, θ can be estimated by the generalized rank estimator

θK =

∫ τ

0
K(t)dΛ2(t)∫ τ

0
K(t)dΛ1(t)

,

where τ is the upper limit of observable survival times, and K(t) is a weighting func-

tion, typically chosen from the Fleming-Harrington (FH) family, the initial version

of which is given by

KFH(t) =
Y1(t)Y2(t)

Y1(t) + Y2(t)
{S(t)}ρ, ρ > 0. (3.12)

So, in practice, in order to estimate θ, one needs to compute Yj(t), S(t), and

Λj(t). Gill & Schumacher (1987) proposed to estimate S(t) using the right con-

tinuous version of the Kaplan–Meier estimator and Λj(t), j = 1, 2, implementing

Nelson–Aalen’s approach (see sections 2.2 and 2.4.5). Under H0, θK converges in

probability to θ as the sample size increases. Consequently, for large sample sizes,

the difference between θK1 and θK2 for two different weight functions is expected

to be small. On the other hand, when HA holds, one anticipates gaining quite dis-

similar estimates of the hazard ratio, since two weight functions will yield estimates

emphasizing on and representing better different follow-up periods. Having said all

that, it is reasonable to base the test on the difference between two rank estimators

of the aforementioned form.

Let K1(t) and K2(t) be two weighting functions of the form presented in (3.12),

i.e.,

Ki(t) =
Y1(t)Y2(t)

Y1(t) + Y2(t)
{S(t)}ρi
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for i ∈ {1, 2}, with ρ1 ̸= ρ2. Then for the j-th group and the i-th weighting function,

the quantities K̂ij are defined as

K̂ij(t) =

∫ τ

0

K̂i(t)dΛ̂j(t), i, j ∈ {1, 2}

and thus,

θ̂Ki
(t) =

K̂i2

K̂i1

, i = 1, 2.

Instead of using the difference θ̂K2(t)− θ̂K1(t) = K̂22/K̂21− K̂12/K̂11, a symmetrized

version is considered as a test statistic:

QK1K2 = K̂22K̂11–K̂21K̂12

The asymptotic variance of QK1K2 can be estimated by

Ŝ2
QK1K2

= K̂21K̂22V̂11–K̂21K̂12V̂12 − K̂11K̂22V̂21 + K̂11K̂12V̂22

where

Vii′ =

∫ τ

0

Ki(t)Ki′(t)

Y1(t)Y2(t)
d{N1(t) +N2(t)}.

Of course, when Ki and Ki′ are chosen from the FH family, the denominator inside

the interval is erased. Since the standard procedure involves employing the log-rank

and Prentice’s Wilcoxon weight function, which are given by replacing ρ with 0 and

1 in (3.12), respectively, this is usually the case. In general, a fascinating fact is

that if the ratio K2(t)
K1(t)

is monotonous, then the test achieves maximum power under

alternatives with a monotone hazard ratio. The latter is always fulfilled when FH

weights are selected.

That being said, the following standardized statistic can be used for the imple-

mentation of the test for proportional hazards:

TK1K2 =
QK1K2

ŜQK1K2

. (3.13)

UnderH0 and as the sample size increases, TK1K2 has a standard normal distribution.

Despite its simplicity, Gill and Schumacher’s test has two major disadvantages.

The first is that the variance estimator of QK1K2 may be negative, especially far from

the null hypothesis. The second is that the test cannot be implemented for continu-

ous covariates or qualitative variables with more than two categories. Nevertheless,

some comments were made by the authors in the relative paper regarding the lat-

ter occasion: when there are k groups in the data, a global test can be performed
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combining all possible pairwise comparisons. The resulting statistic will then have,

asymptotically, and under the null hypothesis, a chi-square distribution with k − 1

degrees of freedom. While feasible, such a procedure is usually avoided due to its

computational complexity and other tests are preferred for this cause.

Lin’s test (1991)

Lin’s (1991) proposal has a similar spirit to the previous test, but it allows for

simultaneous testing of the PH assumption for many covariates. It is based on

the difference between the Cox PH model’s MPLE β̂ and a weighted counterpart

β̂w. The latter occurs when a weighting function w(t) is introduced into the partial

likelihood score equation, i.e.,

Uw(β) =
n∑

i=1

δiw(ti)

[
xi −

∑
ℓ∈Ri

xℓ exp(β
′xℓ)∑

ℓ∈Ri
exp(β′xℓ)

]
,

where δi is the event indicator, xi is the covariate vector, Ri is the risk set for subject

i and finally, w(ti) is a weighting function evaluated over t = ti, i.e., the time of

event or censoring for an individual with label i ∈ {1, 2, . . . , n}.
After solving the equation Uw(β) = 0, β̂w occurs, a p × 1 vector which should

be close to β̂ under the null hypothesis of proportionality. With that in mind, Lin

suggested performing the test utilizing the statistic

Qw = n(β̂w–β̂)
′[Cw(β̂)–C(β̂)]

−1(β̂w–β̂)

which asymptotically follows a chi-square distribution with p degrees of freedom.

The quantities Cw(β̂), C(β̂) are the variance-covariance matrices of n1/2(β̂w − β0)

and n1/2(β̂ − β0), respectively, under the null hypothesis and the assumption that

the real hazard ratio is equal to a constant value β0. Therefore, one can replace the

Cw(β̂)–C(β̂) with the difference between β̂w’s and β̂’s covariance matrices multiplied

by n.

In the two-sample case, the test does not reduce to Gill and Schumacher’s (1987)

test for proportionality, despite their similarity. Also, the variance estimator here is

always non-negative.

Sengupta, Bhattacharjee & Rajeev’s test (1998)

Sengupta et al. (1998) proposed a two-sample test against the alternative of

increasing cumulative hazard ratio. More specifically, here,

H0 :
Λ2(t)

Λ1(t)
= θ for some positive number θ,
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versus

HA :
Λ2(t)

Λ1(t)
is an increasing function of time.

It is easy to see that if the cumulative hazard rates of two groups are proportional,

the same holds for their hazard functions and vice versa, but a monotonous hazard

ratio is a special case of a monotonous cumulative hazard ratio. So, in a sense, this

is a generalization of the test proposed by Gill & Schumacher (1987).

Again, let Nj(t) denote the number of failures in group j before or at t, Yj(t) the

number at risk in group j at t, and Λj(t) the cumulative hazard rate for j = 1, 2.

Now, define Kij as follows:

Kij =

∫ τ

0

Ki(t)Λj(t)dt, with i, j ∈ {1, 2}.

Then,

QK1K2 = K̂22K̂11–K̂21K̂12

and its estimated variance is given by the formula

Ŝ2
QK1K2

= K̂21K̂22V̂11–K̂21K̂12V̂12 − K̂11K̂22V̂21 + K̂11K̂12V̂22

where

Vii′ =

∫ τ

0

∫ τ

0

Ki(t)Ki′(s)V (s ∧ t)dsdt

and

V (t) =

∫ t

0

dN1(s) + dN2(s)

Y1(s)Y2(s)
.

As expected, the statistic

TK1K2 =
QK1K2

ŜQK1K2

(3.14)

asymptotically follows a standard normal distribution. However, careful considera-

tion should be given to the fact that, according to the relative paper, QK1K2 is zero

under H0 and positive under HA. Consequently, it is preferable to use the normal-

ized statistic TK1K2 to perform a one-sided test, in contrast to the previous cases

where two-sided tests are suggested.

3.2.3 Score tests based on alternative models

This is a rather broad category. Some of the tests already described are score tests

(see for example: Moreau et al., 1985; O’Quigley & Pessione, 1989). Nevertheless,

other characteristics seem to be dominant and definitive for their classification (e.g.
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their dependence on the choice of time intervals). Here, methods suggested by Bres-

low et al. (1984), Quantin et al. (1996), Bagdonavičius et al. (2004), Bagdonavičius

& Levulienė (2019), Kraus (2007), and Hafdi (2021) are briefly presented.

Breslow et al. (1984)

Breslow, Elder and Berger’s (1984) proposal, also known as the acceleration test,

is a two-sample testing procedure for the assumption of proportional hazards. Its

rationale is inspired by the extended Cox model, according to which, one or more

covariates may be time dependent. To be more specific, the extended Cox model is

usually presented in the form

λi(t) = λ0(t) exp(β
′xi + γ′zi(t))

where xi is a p × 1 vector of fixed covariates and zi(t) is a q × 1 vector of time-

dependent variables. For the two-sample case, i.e., when there is only one dichoto-

mous variable taking the value 1 for subjects who belong to the first group and 0

for those who belong to the second, the aforementioned equation can be written as

λ1(t) = λ0(t) exp(β + γz(t)). (3.15)

Of course, λ1(t) corresponds to the hazard function of a subject in the first group,

while the hazard for the second group is the baseline function λ0(t). Breslow et al.

(1984) suggested testing the PH assumption via a score test on the previous model.

Thus, one must test the null hypothesis

H0 : γ = 0,

versus the alternative

HA : γ ̸= 0.

The procedure for the calculation of the test statistic here is simple (see for

instance Moreau et al. (1985) above), and thus the related steps will be omitted.

Let tj, j = 1, 2, . . . ,m denote the m distinct ordered failure times (there are no ties),

d1j = 1–d2j an indicator variable which is equal to 1 if the event at tj occurred for

an individual in the first group, and finally, r1j and r2j the number of subjects at

risk at tj in group 1 and group 2, respectively. Then, the conditional probability

that the event at tj is from sample 1, is given by

pj = pj(β, γ) =
exp{β + γz(tj)}r1j

exp{β + γz(tj)}r1j + r2j
(3.16)
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and therefore, qj = 1−pj is the conditional probability that the failure at tj happened
to a subject from sample 2. Under H0, γ = 0 and the conditional probabilities for

the two groups are

p̂j = pj(β̂, 0) =
eβ̂r1j

eβ̂r1j + r2j

and

q̂j = 1–p̂j =
r2j

eβ̂r1j + r2j

where β̂ is the MPLE under the null hypothesis. According to Breslow et al. (1984),

based on the partial likelihood of the model in (3.15), the score test statistic is

U2

I
(3.17)

where

U =
m∑
j=1

zj(d1j − p̂j)

and

I =
m∑
j=1

z2j p̂j q̂j −

[∑m
j=1 zj p̂j q̂j

]2∑m
j=1 p̂j q̂j

.

As expected, under H0 it asymptotically follows a χ2 distribution with 1 degree

of freedom. While this is exactly the test that Cox (1972) proposed, the authors

managed to take his idea one step forward. Notice that in the final formula of the

statistic, the quantities zj, j = 1, 2, . . . ,m play a major role. A well-known practice,

originally suggested by Cox, is to use the failure times tj or their logarithms as

zj. However, this choice will cause the acceleration test to fail to be invariant under

monotone transformations of the survival times. A better approach will be to use the

rank scores zj = j or the cumulative hazard scores zj =
∑j

l=1 1/rl (Nelson–Aalen

estimator of the cumulative hazard when there are no ties). Both sets have the

desired feature that they are monotone increasing in j and depend only on rank

information. Of course, other choices are possible but these two seem to be quite

powerful, especially in the case of crossing hazards. Nevertheless, every method

has its drawbacks. For instance, the rank score test is heavily influenced by the

censoring distribution, while the cumulative hazards scores are not a good choice

when the sample size is small. Further work is needed to determine the optimal

assignment of values to the zj.
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Once more, an alteration is required when more than one events may happen at

the same time point. More specifically, U and I from (3.17) become

U =
m∑
j=1

zj(d1j − µj(â))

and

I =
m∑
j=1

z2jσ
2
j (â)−

[∑m
j=1 zjσ

2
j (â)

]2∑m
j=1 σ

2
j (â)

,

where µj(â) and σ
2
j (â) denote the mean and the variance of the noncentral (Fisher’s)

hypergeometric distribution which, the number of failures in group 1, d1j follows un-

der H0, given the total number of deaths dj at tj, and the number of individuals at

risk r1j and r2j in groups 1 and 2, respectively. Here, â is determined as the solution

of the equation
∑

j d1j =
∑

j µj(a). Due to the complexity of this procedure, an

easier approach is to substitute a binomial distribution for the hypergeometric one.

The quantities djpj(â) and djpj(â)qj(â) replace µj(â) and σ
2
j (â), respectively, both

for determination of â and in the calculation of the test statistic. This approximate

version is quite accurate when most of the dj are small in comparison to the corre-

sponding numbers of subjects at risk in each group. Since this is the most common

scenario, and also, due to the fact that the approximate statistic agrees precisely

with the original version when dj = 1, it is preferable. As for the value â another

approximation can be used in order to avoid the iterative calculations: Breslow et

al. (1984) suggested to calculate â from the Mantel–Haenszel estimator. Last but

not least, it is important to stress that in the presence of ties the cumulative hazard

scores are also somewhat different, and they are given by the formula

zj =

j∑
ℓ=1

dℓ
rℓ
.

Quantin et al. (1996)

The approach that is to be presented in this section is simply a generalization of

the previous test. The proposed model in terms of cumulative hazards is

Λi(t) = exp(β′xi){Λ0(t)}exp(γ
′xi),

which means that the usual presentation in terms of hazard function takes the form

of

λi(t) = λ0(t) exp[β
′xi + γ′xi + {exp(γ′xi)− 1} ln Λ0(t)]. (3.18)
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It is obvious that for γ = 0 the model in (3.18) is identical to the simple Cox PH

model. This is the null hypothesis H0 that should be tested versus the alternative

HA : γ ̸= 0, via a score statistic that will eventually follow a chi-square distribution

with p degrees of freedom. Consequently, Quantin et al. (1996) offer potential for

a global test, which assesses the validity of the PH assumption for two or more

covariates simultaneously.

A fascinating fact about the current method is that (3.18) resembles the model

in (3.15) in the two-sample case, as γ approaches 0. Indeed, the Maclaurin series of

the exponential function ex is

∞∑
j=0

xj

j!
= 1 + x+

x2

2
+
x3

6
+ · · ·

and thus, as γ → 0 ⇒ γx→ 0,

eγx = 1 + γx+
(γx)2

2
+

(γx)3

6
+ · · · ≈ 1 + γx.

As a result, one can consider that eγx − 1 ≈ γx and thus, (3.18) can be written as

λ1(t) = λ0(t) exp[β + γz(t)], (3.19)

where z(t) = 1 + lnΛ0(t). In contrast to Breslow et al. (1984), Quantin et al.

(1996) suggest estimating the baseline cumulative hazard from Breslow’s method

(see section 2.4.5). Once again, and according to simulations conducted by the

authors, the suggested test seems to perform well under crossing hazards.

Bagdonavičius et al. (2004)

The alternative model here has the form

λi(t) = λ0(t) exp(β
′xi) [1 + exp{(β + γ)′xi}Λ0(t)]

exp(−γ′xi)−1
. (3.20)

Therefore, a global (score) test is performed based on the model in (3.20) with the

null hypothesis being

H0 : γ = 0,

(Cox PH model)

versus the alternative

HA : γ ̸= 0.

(Cross-effect model/Crossing hazards)
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Bagdonavičius & Levulienė (2019)

When the proportionality of some variables is already established and the in-

clusion of one more, whose proportionality is suspected, is under consideration, a

covariate-specific test should be performed. For this purpose, Bagdonavičius & Le-

vulienė (2019) suggested conducting a score test for the null hypothesis

H0 : γ = 0

versus the alternative

HA : γ ̸= 0,

where γ is a scalar parameter involved in the model

λi(t) = λ0(t)
eβ

′xi+Λ0(t) exp(γxij)

1 + eγxij [eΛ0(t) exp(γxij) − 1]
, (3.21)

while β is a p × 1 vector of unknown parameters. Note that the resulting statistic

follows a chi-square distribution with 1 d.f. (Bagdonavičius & Levulienė, 2019).

Kraus (2007)

Kraus (2007) checks the proportionality of a specified variable xj using d smooth

functions. It is a score test based on the alternative model

λi(t) = λ0(t) exp[β
′xi + γ′ψ(t)xij] (3.22)

where β is a p × 1 vector, γ is a d × 1 vector of unknown parameters and ψ(t) =

(ψ1(t), . . . , ψd(t)) is the vector of the smoothing functions. Again, H0 : γ = 0, HA :

γ ̸= 0, and the final test statistic follows asymptotically a chi-square distribution

with d d.f., under the assumption of proportional hazards. According to Kraus

(2007), ψk(t), k = 1, 2, . . . , d, have the form

ψk(t) = φk

[
Λ0(t)

Λ0(τ)

]
or

ψk(t) = φk

[
F0(t)

F0(τ)

]
where Λ0 and F0 are the baseline hazard and the baseline survival time distribution,

and τ is the total time period of follow-up. The functions φk, k = 1, 2, . . . , d, should

be bounded and linearly independent. Most popular examples are the orthonormal

Legendre polynomials on [0,1] and the cosine basis φk(u) =
√
2 cos (πku). There are
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many other possibilities, such as various spline bases or φk(u) = uk (Kraus, 2007;

Pena, 1998a, 1998b).

Hafdi (2021)

Finally, another alternative model for the PH assumption, testing on a single

covariate while adjusting for others, is the following:

λi(t) = λ0(t)e
β′xi

[
1 + eβjxij t

]exp(−γxij)−1
. (3.23)

Under H0 : γ = 0 the score test statistic follows a chi-square distribution with 1

degree of freedom. Hafdi (2021) showed via simulations that the suggested test is

more powerful than other similar score tests when the effect of the covariate under

the microscope is not linear.

3.2.4 Score process-based tests

Score process-based tests have been extensively studied and compared by Kvaløy

& Neef (2004). Some of them are Anderson-Darling’s & Cramer-von Mises’ test

and the Kolmogorov-Smirnov type-based test suggested by Therneau et al. (1990)

and Lin et al. (1993). The definition and theoretical justification of these testing

procedures are based on an alternative presentation of the data, that of a counting

process.

In order to have a better understanding of these approaches, let xi be the covari-

ate vector for a subject with label i ∈ {1, 2, . . . , n}, whose failure or censoring time

is ti, and define the counting process Ni(t) and the risk indicator Yi(t) as follows:

Ni(t) = I{ti≤t, δi=1},

Yi(t) = I{ti≥t},

where δi is the failure indicator for the i-th individual. Notice that the counting

process for each subject only takes the values 0 and 1, since recurrent event analysis

is not under consideration in this thesis.

After having defined Ni(t) and Yi(t), the p partial likelihood score functions that

utilize the information accumulated until time t can be written as

Uj(β, t) =
n∑

i=1

∫ t

0

{xij − xj(β, u)}dNi(u), (3.24)

where

xj(β, u) =

∑n
k=1 Yk(u)xkj exp(β

′xk)∑n
k=1 Yk(u) exp(β

′xk)
.
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Despite the fact that (3.24) is different from (2.9) at first glance, it holds that

Uj(β,∞) = ∂ℓ(β)/∂β = Uj(β) (Therneau et al., 1990; Kvaløy & Neef, 2004; Hafdi,

2021). As for the second derivatives of the partial likelihood, one can define the

information matrix for the available information until time t as

I(β, t) =
n∑

i=1

∫ t

0

V (β, u)dNi(u)

where

V (β, u) =

∑n
i=1 Yi(u) exp(β

′xi)[xi − x(β, u)][xi − x(β, u)]′∑n
i=1 Yi(u) exp(β

′xi)
(3.25)

is the weighted covariance matrix of x at time u, and x(β, u) = (x1(β, u), . . . , xp(β, u)).

Once again, I(β,∞) = I(β), i.e., I(β,∞) is equal to the well-known Fisher infor-

mation matrix for the data at hand. Finally, one last quantity needed for the

comprehension of the score process-based tests, is a sequence of p values given by

the formula

qj(t) =
Ijj(β, t)

Ijj(β)

where Ijj denotes the j-th diagonal element of matrix I. All the aforementioned

quantities should be calculated after substituting β with the MPLE β̂ of the Cox

PH model so as to implement any of the tests below.

Kolmogorov-Smirnov type statistic

Therneau, Grambsch & Fleming (1990) and Lin, Wei & Ying (1993) proposed to

use this statistic. It tests deviations from proportionality for the j-th variable via

the formula

KS =

√
V̂ ar(β̂) sup

t
|Uj(β̂, t)|.

On a 5% level of significance the null hypothesis is rejected whenKS ≥ 1.36. Kvaløy

& Neef (2004), as well as Hafdi (2021), showed via simulations that the Kolmogorov-

Smirnov type test is quite conservative, especially in comparison to the other two

presented in the current section and some tests from the Grambsch & Therneau

family (see section 3.2.5 for more). It also requires orthogonality to provide valid

results, meaning that the covariates should be independent. In practice, this is not

always the case but small departures from this assumption do not cause great harm.

Cramér-von Mises type statistic

The statistic used here is

CV = V̂ ar(β̂)

∫ ∞

0

Uj(β̂, t)
2dq̂j(t)
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On a 5% level of significance the null hypothesis of proportional hazards is re-

ject for the j-th variable when CV ≥ 0.461. Cramér-von Mises type statistic is

considered to have quite good proporties against any type of deviation from propor-

tionality, so, it is in a sense, an omnibus test.

Anderson-Darling type statistic

Anderson-Darling score process-based test is believed to be the most powerful

amongst other tests in this category, against many types of departure from propor-

tionality. It is in fact a variant of Cramér-von Mises type statistic, given by

AD = V̂ ar(β̂)

∫ ∞

0

Uj(β̂, t)
2

q̂j(t)[1− q̂j(t)]
dq̂j(t).

Simulation results presented in several papers (Kvaløy & Neef, 2004; Kraus, 2007;

Hafdi, 2021) indicated that AD achieves great power when PH assumption does

not hold, even under the alternative scenario of non-monotonic HR. Nevertheless, a

drawback of this approach is that AD places more weight than CV on regions with

possibly few observations. On a 5% level of significance, the null hypothesis is reject

when AD ≥ 2.492.

3.2.5 Grambsch & Therneau’s general framework

Undoubtedly, Grambsch and Therneau’s (GT) approach for testing the PH assump-

tion is the most popular amongst the aforesaid methods. Major statistical software

packages, such as R and Stata, implement this method. In fact, Grambsch and

Therneau’s approach can be considered as a family of tests for the assumption of

proportionality: a wide range of tests already presented are equivalent to some of

its forms under specific conditions. At the same time, related plots can be used to

offer an intuitive aspect of the outcome, making the GT family of tests even more

appealing (Grambsch & Therneau, 1994; Therneau & Grambsch, 2000).

To gain more insight into the GT family, one must firstly recall the form of the

extended Cox model, which generally can be expressed as

λi(t) = λ0(t) exp{β(t)′xi}, (3.26)

where β(t) = (β1(t), β2(t), . . . , βp(t)) is a p × 1 vector of time-varying coefficients

and xi is the vector of covariates for the i-th individual, as always. Of course, under

proportional hazards, β(t) must be equal to a vector β consisting of constant, time-

invariant values. If this is the case, a plot of β(t) versus a function of time or time
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itself will reveal a straight line with zero slope, i.e, a horizontal line parallel to x-axis.

However, to do the aforesaid plot, one must estimate β(t). Grambsch & Therneau

(1994) showed that if β̂ is the coefficient from a typical fit of the Cox PH model,

then

βj(tk) ≈ β̂ + E(s⋆kj), (3.27)

for j = 1, 2, . . . , p and k = 1, 2, . . . ,m. Here, t1 < t2 < . . . < tm are the ordered

failure times and s⋆kj are the scaled Schoenfeld residuals.

To fully comprehend the nature of s⋆kj’s, one must firstly become familiar with the

definition of the (unscaled) Schoenfeld residuals. Schoenfeld (1982) introduced these

quantities so as to allow the implementation of a GOF test of the Cox PH model

in an easily interpretable manner and without the need of complex calculations.

The famous Schoenfeld residuals are defined for each variable in the model and for

every individual with an observed event during the follow-up period. So, using the

previous notation, ifm events have been recorded and there are p covariates involved

in the assumed model, then the quantities

skj = xkj −
∑

ℓ∈Rk
xℓj exp(β

′xℓ)∑
ℓ∈Rk

exp(β′xℓ)
,

for k = 1, 2, . . . ,m, and j = 1, 2, . . . , p, are known as Schoenfeld residuals. Notice

that skj’s are in fact the elements of the sum that appears in the partial likelihood

score equations and in order to be calculated, β should be substituted with the

corresponding MPLE β̂. This is why Schoenfeld initially referred to them as partial

residuals. He proposed testing the PH assumption by plotting them against time, for

each covariate. UnderH0 it holds that E[skj] = 0 and a plot of ŝkj versus time should

be centered around the horizontal line y = 0. Under HA, the alternative of non-

PH, one should expect to observe a trend on the values of residuals as time passes.

Four years later, a similar, but formal, statistical test was developed by Harrell &

Lee (1986), who suggested examining whether the correlation between Schoenfeld

residuals and ranked failure time is statistically significant. Under proportionality, it

is expected that these quantities are uncorrelated. This is also, a rather popular test

and the fact that it is based on the Schoenfeld residuals showcases their importance

and usefulness.

Going back to the GT family of tests, it is noticeable that instead of the partial

residuals, (3.27) employs a weighted/scaled version of them. The scaled version is

given by

s⋆kj = V̂ −1
k skj,
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where V̂k = V (β̂, tk) occurs by substituting β with β̂ and t with tk in the weighted

covariance matrix of x at a specific time point (see (3.25)). Having calculated these

residuals, the researcher is ready to perform a test of zero slope on the plot of

β̂j + s⋆kj versus a function gj(t) of time. The visualization alone often provides

great understanding of the nature and the extend of non-PH and of course if the

test yields in favor of a non-zero slope, it is evidence against PH. Nevertheless, the

results should be carefully interpreted as the described test is not omnibus: a specific

alternative is being under consideration depending on the choice of gj(t).

What has been presented as a graphical approach up to now, can be translated

into a formal equivalent test, if the elements of the coefficient vector β(t) in (3.26)

are expressed in the following form:

βj(t) = βj + θj(gj(t)− gj) (3.28)

for j = 1, 2, . . . , p. Here gj(t) is a specified function of time corresponding to the

j-th coefficient and gj is equal to
∑

k gj(tk)/m, i.e., the mean of gj(t) values over all

failure times. The quantities βj and θj are the unknown parameters of the assumed

model, and naturally the null hypothesis of PH can be written as

H0 : θj = 0,∀j ∈ {1, 2, . . . , p},

while the alternative is

HA : θj ̸= 0, for at least one j ∈ {1, 2, · · · , p}.

Of course under H0, βj is estimated as the MPLE of the Cox PH model. Conse-

quently, combining (3.27) and (3.28), an interesting approximate relationship for

the mean of the scaled Schoenfeld residuals occurs:

E[s⋆k] ≈ Gkθ (3.29)

where Gk is a p × p diagonal matrix whose (j, j) element is gj(tk) − gj, and θ =

(θ1, θ2, . . . , θp). Also, it holds that their variance is

V ar[s⋆k] ≈ V̂ −1
k −

[
m∑
l=1

V̂l

]−1

(3.30)

for k = 1, 2, . . . ,m. Therefore, under H0, vector θ can be estimated via (3.29) and

(3.30), implementing the multivariate generalized least squares (GLS) technique. At

last,

θ̂ = Q−1

m∑
k=1

Gkŝk
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where

Q =
m∑
k=1

GkV̂kGk −

[
m∑
k=1

GkV̂k

][
m∑
k=1

V̂k

]−1 [ m∑
k=1

GkV̂k

]′

and the test statistic for the null hypothesis is

T (G) = θ̂′Qθ̂ =

[
m∑
k=1

Gkŝk

]′

Q−1

[
m∑
k=1

Gkŝk

]
. (3.31)

T (G) has an asymptotic chi-square distribution with p d.f. when the PH assumption

holds and it can be used for a global test which also has a graphical interpretation

for each covariate.

Notice that the value of the statistic in (3.31) depends on the choice of the time

function. Undoubtedly, different choices of G result in different tests for model

misspecification. What is intriguing, though, is that depending on the form of g(t),

equivalent tests to the ones presented in previous sections occur6. More specifically,

according to Grambsch & Therneau (1994), if

1. g(t) is a specified function of time, such as t or ln t, then T (G) is a score test

for the addition of the time-varying covariate g(t)ẋ to the model. This test

was initially suggested by Cox (see section 3.2.3). It also seems to have a con-

nection with Gill & Schumacher’s proposal (see section 3.2.2), since according

to Chappell (1992) the latter approach is a variant of Cox’s which, however,

imposes unnecessary limitations7.

2. g(t) is a piecewise constant function on non-overlapping time intervals, T (G)

is the score test suggested by O’Quigley & Pessione (see section 3.2.1). Since

the latter generalizes and extends the tests proposed by Schoenfeld (1980) and

Moreau et al. (1985), it can be assumed that all three of them belong to the

GT family. Time intervals should be determined before the analysis in order to

obtain valid and unbiased results. Some suggestions about the choice of time

partition are given in previous sections and are mostly based on the papers

published by Andersen (1982) and Schoenfeld (1980).

3. g(t) is the number of events until time point t, then T (G) is the covariance

between the scaled Schoenfeld residuals and the ranked failure times. This is

6In everything mentioned afterwards, G is a diagonal matrix and its non-zero elements are equal
to the same value g(t).

7Gill & Schumacher’s method is appropriate only for the two-sample case, whereas Cox’s pro-
posal is easily extendable to the multi-sample case.
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almost the description of Harrell & Lee’s test8. It is also equivalent to the test

of Breslow et al. (see section 3.2.3) since it uses rank scores in (3.26).

4. g(t) is a weighting function from the FH family (or any other family of weights),

then T (G) mimics, in a sense, the test suggested by Lin (see section 3.2.2).

In fact, if the weighted estimate β̂w provided by Lin’s approach occurred from

a one-step Newton-Raphson algorithm starting from β̂, then these two tests

would be identical.

5. g(t) is equal to the lagged residuals, i.e., gj(t1) = 0 and gj(tk+1) = a2j ŝkj

for j = 1, 2, . . . , p, then T (G) gives a test suggested by Nagelkerke, Oosting &

Hart (1984). Essentially, it is a proportionality test using the serial correlation

of the Schoenfeld residuals for a univariate predictor, or the correlation of a

weighted sum a′ŝk for the multivariate case. Usually a = β̂. No further

information will be given about this approach, since it has been proved to

lack power and perform poorly in comparison to other tests presented in the

current thesis (Quantin et al., 1996).

It is evident that a wide variety of tests proposed in the literature can be expressed

as a T (G) test from the GT family, and that explains its popularity.

Summarizing this section, Grambsch & Therneau (1994) derived a test for pro-

portionality which can be roughly thought of as a test of zero slope in a regression

line fit to a plot of the scaled Schoenfeld residuals against a time function gj(t). Both

a global test of proportionality and separate tests for each covariate are provided (if

the functions gj(t) are selected accordingly). Different choices of gj(t) correspond

to different tests, i.e., tests with different alternatives, and several earlier proposed

tests of proportionality are special cases of this family, corresponding to particular

choices of the time function. A limitation with the GT family of tests is that only one

specific alternative to proportional intensity, namely time-dependent coefficients, is

checked. Other kinds of deviations can possibly be wrongly interpreted or not de-

tected at all. Another limitation is the need to choose specific time functions. This

may lead to low power against deviations of a kind not described by this function,

for instance, a non-monotonic deviation when a monotonic gj(t) function has been

chosen.

8Despite the fact that the original test includes the unscaled Schoenfeld residuals, numerous
papers support that the results should be similar whether someone uses the weighted or the unscaled
version.
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To complete the section of formal statistical tests for the proportionality assump-

tion, Table 3.1 provides an enlightening categorization of them into three groups:

global, univariate, and two-sample tests. Of course, global tests can be modified to

test the proportionality for a single covariate and thus, become univariate, and at

the same time, all univariate tests can be implemented for a dichotomous covariate

becoming two-sample tests. Nevertheless, Table 3.1 helps the reader understand

better the capabilities of each test described in this section.

Global Univariate Two-sample

Schoenfeld (1980) Andersen (1982) Gill & Schumacher (1987)
Moreau et al. (1985) Bagdovaničius & Levulienė (2019) Sengupta et al. (1998)

O’Quigley & Pessione (1989) Hafdi (2021) Breslow et al. (1984)
Lin (1991) Kraus (2007)
Cox (1972) Cramér-von Mises (2004)

Bagdonavičius et al. (2004) Anderson-Darling (2004)
Nagelkerke et al. (1984) Kolmogorov-Smirnov (1990)

Table 3.1: Classification of tests for proportional hazards.

3.3 Graphical tests

An extremely large number of graphical approaches for testing the PH assumption

has been developed since the introduction of the Cox model in 1972. Graphical tests

are really helpful when the number of covariates is small and quite informative in

the presence of qualitative variables with few categories. However, today is the era

of Big Data and thus, the occasions on which such simple problems occur are rare.

That is the main reason why graphical tests are not frequently used, along with the

fact that their interpretation is rather subjective. The examination of graphs is not

an easy task and requires knowledge and experience. Unfortunately, even when a

statistician acquires these skills it is possible to misinterpret them.

To achieve consensus among results from analyses conducted by different statis-

ticians, it is suggested that findings are based on formal tests rather than arbitrary

interpretations of graphs. Consequently, many papers report p-values and avoid

displaying figures to justify some of the results or the choice of methodology. In any

case, it is crucial to remember that this general agreement does not downplay the

importance of graphical tests. On many occasions, graphical tests complement the

formal ones, verify their results, and provide some sort of guidelines, facilitating the

subsequent steps of analysis. Therefore, even if their role is mostly complementary,

statisticians must acclimatize to the most commonly used in practice. Some of them
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are presented in the following sections.

3.3.1 Based on residuals

Residual plots have been extremely helpful throughout the years, not only in Survival

Analysis but also in the general field of Statistics. Think, for instance, all the tests

performed to evaluate the fit of the simplest and most popular statistical model:

the simple linear regression. Residual plots give great insight into the nature of

the data and the relationships between covariates and response. It would be out

of the ordinary not to use an analogous approach for the evaluation of the fit of

the Cox model and consequently, for the examination of the validity of the PH

assumption. Already, in section 3.2.5, during the presentation of the GT family of

tests, a graphical equivalent approach based on the Schoenfeld residuals has been

described. However, since there are also other methods based on residuals, this will

be presented briefly here, and it will be followed by two new graphical tests.

Schoenfeld residuals versus time

As mentioned before, after calculating the scaled or unscaled Schoenfeld residuals

for each variable xj, a statistician can create a plot of ŝkj (or ŝ
⋆
kj) versus a function of

time or time itself. Under the PH assumption, there should not be a trend, meaning

that if a line is fitted to the graph it should roughly have zero slope. This means,

that under proportionality, the residuals should form a random “cloud” around the

time axis (x-axis). On the other hand, under the alternative of non-PH, the choice

of time function will determine the shape of the residuals in the plot. However,

an incorrectly specified function g(t) may result in a plot where no trend appears.

Usual choices for g are the (ranked) time itself, the natural logarithm of time and

the KM estimator of the survival function based on the whole dataset.

Cumulative sums of Schoenfeld residuals versus time

Another graphical approach is to use the cumulative sums of Schoenfeld residuals

against scaled time to (0,1), for each covariate. Under PH, each curve should be a

Brownian bridge, i.e., a random walk starting and ending at 0.

Kay’s residuals

Last but not least, another type of residuals can be used for the assessment of
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the PH assumption. Kay (1977) defined the residuals

εi =

∫ ti

0

λ0(u) exp(β
′xi)du,

where ti are the failure or censoring time of the i-th individual. For the calculation

of εi, β and λ0 are substituted with their estimates. Under H0, these quantities

should exhibit approximately the properties of a random sample of size n from a

unit exponential distribution. Therefore, the model fit can be checked via a plot of

the estimated cumulative hazard of the observed residuals εi. If PH holds, the plot

should show a straight line passing through the origin with slope unity.

3.3.2 Based on cumulative hazard plots

Apart from the residual plots, cumulative hazard graphs are also particularly helpful,

not only for testing the PH assumption but also for selecting a parametric model

which may have the potential of describing the data in a better way than a semi-

parametric model. Notwithstanding this advantage, cumulative hazard plots are

mostly used for the two-sample case, since a generalization for more covariates (or

levels of a qualitative variable) is somewhat complex to be visualized. Therefore, if

there are two groups of interest in the data with corresponding cumulative hazard

functions Λ1 and Λ2, usually one of the following five graphs is created9:

1. ln Λ1(t) and lnΛ2(t) versus time: Under the PH assumption it holds that

λ2(t)

λ1(t)
= θ ⇒ Λ2(t)

Λ1(t)
= θ

for some positive constant θ. Therefore, taking the natural logarithms in the

two parts of the last equation, it occurs that lnΛ2(t) − ln Λ1(t) = ln θ. Since

the difference of the logarithms of the cumulative hazards is constant, the plot

of ln Λ1(t) and lnΛ2(t) versus time should display two parallel lines under H0.

If that is not the case, e.g. if the curves cross each other, then proportionality

is rejected.

An interesting fact here is that this plot is identical to a rather famous one,

called log-minus-log plot which is based on the survival curves of the two

groups. According to this approach, the curves ln [− lnS1(t)] and ln [− lnS2(t)]

should be plotted against time. However, from (2.2) it is obvious that the two

curves are exactly the same with lnΛ1(t) and lnΛ2(t), respectively.

9For all the plots, the Nelson-Aalen estimator of the cumulative hazards is preferred.
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2. lnΛ2(t) − ln Λ1(t) versus time: according to what was mentioned above, this

difference should be constant as time passes when PH holds. Consequently,

under proportionality, a straight horizontal line is expected. Naturally, this

plot is called log cumulative hazard difference plot or LCHD plot (Dabrowska

et al., 1992).

3. Λ2(t)−Λ1(t)
Λ1(t)

versus time: This is the relative cumulative hazard difference plot or

RCHD plot. Under proportionality, it holds that

Λ2(t)− Λ1(t)

Λ1(t)
=

Λ2(t)

Λ1(t)
− 1 = θ − 1,

for a positive constant θ. Consequently, if the PH assumption is valid, a

horizontal line is expected to appear in the corresponding plot (Dabrowska et

al., 1989).

4. Λ2(t) versus Λ1(t): Under the assumption of proportional hazards it holds that

Λ2(t)

Λ1(t)
= θ ⇒ Λ2(t) = θΛ1(t)

for a positive constant θ and ∀t ∈ [0, τ ], where τ is the maximum observed

failure or censoring time. Thus, when proportionality holds, someone would

anticipate to see a straight line through origin with slope θ.

5. Λ2[Λ
−1
1 (u)] versus u, 0 < u < Λ1(τ): this method was initially proposed by

Lee & Perie (1981) and the function used is called the trend function. This

plot is in fact identical to the previous one but for different values of t. This

means that under the PH assumption, a straight line through the origin with

slope equal to the real HR should appear in the plot. Under the alternative of

monotonic HR, one should expect to see a convex or concave curve, when the

HR is increasing or decreasing over time, respectively, due to the fact that the

first derivative of the trend function is equal to the HR. In the literature, this

plot is referred to as relative trend function plot or RTF plot.

Despite their simplicity and usefulness, most of these plots have been character-

ized as unstable especially for small samples, since they tend to have wild fluctuations

at the beginning of time or may lack precision for large values of t (Sengupta et al.,

1998; Sahoo & Sengupta, 2016). To overcome this problem, it was proposed to use

their weighted counterparts, replacing Λj(t), j = 1, 2, with Tj(t), where

Tj(t) =

∫ t

0

K(s)Λj(s)ds
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and K(s) is a weighting function from the FH family. Sengupta et al. (1998) have

stressed that the relative plots are smoother and more stable even for small sample

sizes. At the same time, Sahoo & Sengupta (2016) pointed out that a monotone

decreasing function can bring more stability.

Finally, some attempts have been made throughout the years, to combine the

interpretability of the graphical tests with the formality of the analytical ones. With

this aim, some approaches relied on confidence bands. For instance, in the litera-

ture, it is sometimes suggested to create an RTF or LCHD or RCHD plot (or their

weighted counterparts) and check if the band contains a straight line through origin

for the first plot and if an horizontal line fits in the asymptotic confidence bands for

the other two graphs (Dabrowska et al., 1989, 1992). Nevertheless, these tests have

low power and therefore, other methods have been developed in a similar spirit. The

most famous amongst them is a test proposed by Sahoo & Sengupta (2016) and it is

based on acceptance bands. Despite the fact that it is a rather complex procedure,

it combines the good power of analytical tests with a graphical visualization. It also

captures various types of departure from proportionality.
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Chapter 4

Simulation study: Tests for
proportional hazards

4.1 Previous simulation studies

In Chapter 3 a great variety of tests for proportional hazards has been presented.

A considerable number of papers comparing these tests has been published, yet

there is not a generally proposed approach, or a test that is robust against various

deviations from proportionality. The main reason for this issue is that it is impossible

to check all potential scenarios of non-PH, while at the same time, most of the tests

are disregarded due to nonexistence of relevant statistical software packages. In R,

Stata, and SAS, the user can apply either the GT family of tests or Cox’s suggestion

of creating a time-varying variable and checking its significance in the model. Despite

the fact that the first method is quite flexible allowing for a simultaneous test of

multiple covariates, and the second produces an extended model for the data at

hand, the research on this particular problem is so rich that it would be naive to

conclude that GT family and Cox’s test are the optimal choices against every pattern

of non-PH.

Some attempts for comparison of different testing procedures have been made

already: Song & Lee (2000) have shown that Gill and Schumacher’s (1987) test

performs well when the HR is monotone, whereas Schoenfeld’s (1980) and Andersen’s

(1982) interval dependent tests seem to be more appropriate under non-monotonic

and irregular patterns of non-PH. Quantin et al. (1996) compared a great variety of

tests for the two-sample case, using increasing and decreasing hazard ratio functions

and simulating data from the Weibull distribution. Again, Gill & Schumacher’s

test achieved great power along with the proposed test, while Breslow, Elder &

Berger’s (1984) proposal using the cumulative hazards score was very close in terms

63
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of performance (Quantin et al., 1996). On the other hand, Sahoo & Sengupta (2016)

examined the performance of Gill & Schumacher’s test versus Wei’s (1984) proposal,

which is essentially a score process-based test similar in spirit to Lin’s (1991) in

section 3.2.2, and came to the conclusion that the first has poor power in comparison

to the second when the HR is a bathtub-shaped function, despite their equally good

performance for large samples under monotonous deviations from proportionality.

Lastly, the performance of various score process based tests, such as Anderson-

Darling, Cramér-von Mises and Kolmogorov-Smirnov was investigated along with

other tests either from the GT family or alternative model specifications, from Hafdi

(2021) and Kvaløy & Neef (2004). The Kolmogorov-Smirnov type test seemed to be

the most conservative, while the Anderson-Darling type test had somewhat inflated

type I error when the variables under consideration were highly correlated. However,

the latter achieved great power when the HR was a non-monotonous function of time,

and under monotonous patterns as well. At the same time the performance of GT

tests using the rank of the failure times or the natural logarithm of time as g(t), has

been questioned, at least in comparison to the score process-based tests.

Unfortunately, it has been acknowledged that there is not a general consen-

sus about which test is better under different types of non-proportionality, partly

because the possibilities are endless. A single test cannot be powerful against all sit-

uations, and so, practical consideration should be taken into account when deciding

which procedure to use. Since a-priori knowledge of the probable type of non-PH

pattern is rare, some claim that applying several tests simultaneously will give some

protection against misspecified alternatives (Song & Lee, 2000).

4.2 Data simulation: Special scenarios

Numerous alternatives for the nature of the data and the non-proportionality pat-

terns can be considered. In the current thesis, the simulation study will focus on

the two-sample problem, which is of great concern when it comes to the analysis of

survival data from clinical trials. The comparison of two treatments is oftentimes

the main subject of such an analysis and questions about the superiority of one

over the other should be addressed based on valid results. If the Cox PH model is

fitted to the data in order to obtain a summary measure for the relative risk, or

the log-rank test is implemented, the PH assumption must be tested, otherwise the

conclusions might be misleading.

For the simulation of the data, the piecewise exponential distribution is used,
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since, according to Lin et al. (2020), this particular distribution tends to mimic

the behavior of the data collected in real-life applications. The null hypothesis of

proportionality is examined along with the four basic scenarios of non-PH presented

at the beginning of Chapter 3: early/diminishing effect, late/delayed effect, crossing

hazards and long-term survivors. In all these cases, the hazard function of the

control group, i.e., the baseline function λ0(t), is constant and equal to 1. This

means that the distribution of the survival time for the placebo group is exponential

with rate equal to 1. As for the hazard function λ1(t) of the intervention group, it

changes according to each scenario. More specifically,

• For the null hypothesis of proportional hazards, three cases are investigated

corresponding to HRs equal to 0.65, 0.80 and 0.90, i.e., λ1(t) = 0.65 or λ1(t) =

0.80 or λ1(t) = 0.90 (see Figure C.1 in Appendix C).

• For the diminishing effect, three different scenarios are considered:

λ1(t) =

{
0.65, if t ≤ tCP

0.99, if t > tCP

λ1(t) =

{
0.80, if t ≤ tCP

0.99, if t > tCP

λ1(t) =

{
0.90, if t ≤ tCP

0.99, if t > tCP

where tCP is chosen as the time point at which 30%, 50% and 70% of events

are expected to happen in the treatment group (3 cases per hazard function,

and thus 9 in total; see Figure C.2 in Appendix C).

• For the late effect, data with the following hazard functions are simulated:

λ1(t) =

{
0.99, if t ≤ tCP

0.65, if t > tCP

λ1(t) =

{
0.99, if t ≤ tCP

0.80, if t > tCP

λ1(t) =

{
0.99, if t ≤ tCP

0.90, if t > tCP
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and again, tCP is chosen as the time point at which 30%, 50% and 70% of

events are expected to happen in the treatment group (9 scenarios in total;

see Figure C.3 in Appendix C).

• For the crossing hazards pattern, four different scenarios are being investigated:

λ1(t) =

{
0.65, if t ≤ tCP

1.10, if t > tCP

λ1(t) =

{
1.10, if t ≤ tCP

0.65, if t > tCP

λ1(t) =

{
0.80, if t ≤ tCP

1.20, if t > tCP

λ1(t) =

{
1.20, if t ≤ tCP

0.80, if t > tCP

where tCP = 0.7. This specific time point is chosen because by t = 0.7 almost

half of the events in the whole dataset are anticipated. For each scenario of

the above, the study is assumed to end at τ
(1)
end = 2 and τ

(2)
end = 4 and thus, an

approximate additional 30% and 45% of events are expected, respectively (8

scenarios in total; see Figure C.4 in Appendix C).

• Finally, for the case of long term survivors, only two scenarios are considered:

λ1(t) =

{
0.65, if t ≤ tCP

0.652, if t > tCP

λ1(t) =

{
0.80, if t ≤ tCP

0.802, if t > tCP

and again tCP = 0.7. In each case, the study is assumed to end at two different

time points τ
(1)
end = 2 and τ

(2)
end = 4, resulting in 4 approaches in total (see Figure

C.5 in Appendix C).

Apart from the administrative censoring in the crossing hazards and long-term sur-

vivors scenarios, random censoring is also assumed. The censoring time for each

subject is independent of the group it belongs to and follows an exponential distri-

bution with a rate which will result in a 5% of censored observations in the absence

of fixed censoring. Moreover, the sample size is set equal to n = 200 and n = 1000

with half of the patients in group 1 and the rest in group 2, leading to 66 types of

simulated data! The number of repetitions used is equal to 1000 for each scenario.
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4.3 Results

Eighteen of the tests presented in Chapter 3 are compared in this section:

1. Cox’s (1972) test, adding the interaction of the treatment indicator with time

in the PH model,

2. Cox’s (1972) test, adding the interaction of the treatment indicator with the

natural logarithm of time in the PH model,

3. Cox’s (1972) test, adding the interaction of the treatment indicator with a

step function of time in the PH model (the function is equal to zero before a

certain time point and equal to 1 afterwards),

4. Grambsch & Therneau’s (1994) test, using g(t) = t,

5. Grambsch & Therneau’s (1994) test, using g(t) = ln t,

6. Grambsch & Therneau’s (1994) test, using as g(t) the step function described

in the third test,

7. Grambsch & Therneau’s (1994) test, using as g(t) the ranks of the failure

times,

8. Grambsch & Therneau’s (1994) test, using g(t) = Ŝ(t), i.e., the KM estimate,

9. Gill & Schumacher’s (1987) test with weights corresponding to the log-rank

and Peto-Prentice statistics,

10. Lin’s (1991) test using the weights proposed by Schemper et al. (2009),

11. Lin’s (1991) test using the weights proposed by Xu & O’Quigley (2000),

12. Schoenfeld’s (1980) interval-dependent test with one change point,

13. Moreau, O’Quigley & Mesbah’s (1985) proposal for a conservative counterpart

of the previous test,

14. Andersen’s (1982) test with two intervals,

15. O’Quigley & Pessione’s (1989) test with two intervals and Ψ1 = 1,Ψ2 = −1,

16. Breslow, Elder & Berger’s (1984) approach with rank scores,
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17. Breslow, Elder & Berger’s (1984) approach with cumulative hazards scores,

and lastly,

18. an approximation of the test suggested by Quantin et al. (1996) using the

previous test with scores equal to 1 + lnΛ0(ti) for each event time ti, i =

1, 2, . . . ,m.

The results per each special scenario are discussed below. Additional tables and

figures for a better understanding and justification of the findings can be found in

the Appendix Section A.

Proportional Hazards

Table 4.1 displays the results for the 18 aforementioned tests under three possible

values for the HR of the intervention versus the control group when the sample

size is either small (n = 200) or large (n = 1000). According to this, when the

proportionality assumption is valid, the empirical significance level appears to be

close to the nominal level 5% in most of the situations studied for every test.

Hazard Ratio
0.65 0.8 0.9

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 8.6 6.3 7.3 6.3 6.6 5.4
2 4.9 5.0 4.9 4.8 5.4 5.4
3 5.9 4.8 5.7 4.5 6.3 4.5
4 6.4 5.6 5.6 5.5 5.3 5.1
5 4.7 4.9 4.9 5.0 5.0 5.3
6 5.9 4.7 5.8 4.3 6.0 4.8
7 5.2 5.1 5.4 4.8 5.5 4.8
8 5.1 5.1 5.4 4.7 5.4 4.8
9 4.8 4.7 4.8 3.8 4.9 4.0
10 5.3 5.1 5.2 5.1 5.4 5.2
11 2.8 4.5 3.7 5.0 4.1 5.3
12 5.6 4.5 6.0 4.5 6.3 4.4
13 5.6 4.3 5.5 4.4 6.0 4.3
14 5.1 4.5 6.2 4.3 5.7 4.9
15 5.6 4.5 6.0 4.5 6.3 4.4
16 5.2 5.2 5.4 4.7 5.6 4.8
17 6.3 5.3 5.8 5.3 5.6 5.3
18 4.6 4.4 4.8 4.9 4.9 5.1

Table 4.1: Type I error (size in %) of 18 tests for proportional hazards in the two-
sample case, using three constant HR functions and two different sample sizes n.
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Test 1 has somewhat inflated type I error, especially for small samples. This is a

Wald test for the significance of the interaction of time with the treatment indicator.

Even though Test 4 is an equivalent procedure from the GT family (score test for

the same interaction term), it is evident that the latter is more conservative and

thus, more valid under proportional hazards, but the empirical significance level is

still inflated. As for the tests based on weighting functions, Gill & Schumacher’s

suggestion (Test 9) is quite conservative, especially for large samples, and the same

holds for Lin’s test (Test 11) with weights from Xu & O’Quigley (2000), but for small

samples. Finally, another interesting finding which confirms a statement about the

relationship of Schoenfeld’s and Moreau, O’Quigley & Mesbah’s proposal, is that

the latter (Test 13) is indeed more conservative than the first (Test 12). Figure 4.1

complements these results and comments, offering a graphical justification of what

was reported up to now.

Early/Diminishing Effect

Table 4.2 and Figure 4.2 offer great insight into the performance of the 18 afore-

mentioned tests for different sample sizes and change points, when an early effect

with initial HR = 0.65 is observed. More specifically, if the HR changes when 30% of

events have been occurred, rank and KM tests from the GT family seem to perform

better, along with Breslow’s test using the rank scores. Their performance remains

comparable with other tests if the change happens at 50% of events. On the other

hand, the GT test with g(t) = t and the equivalent Cox test, along with Breslow’s

cumulative hazards score test and Lin’s with Xu & O’Quigley’s weights, lack power

in both situations regardless the sample size. Interestingly, they exhibit the highest

power when the change takes place after the occurrence of an approximate 70% of

the events in the treatment group. In general, the interval-dependent tests (Tests

3, 6, and 12 to 15) display mediocre performance which reaches its crescendo when

x = 50%. This is rather reasonable and anticipated since these tests compare the

behavior of the data before a certain time point with their behavior after that. This

time point is chosen so as to split the times axis into two intervals containing similar

numbers of events. Nevertheless, even in this case, interval-dependent tests do not

perform better than GT rank, GT KM and Breslow’s rank score test. A general

comment on Table 4.2 is that almost all tests perform better when the change in

the HR happens at the beginning or in the middle of the follow-up.

Tables A.1 & A.2, and Figures A.1 & A.2 in the Appendix A show the relative

results from the other two scenarios of early treatment effect (initial HR = 0.8 and
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0.9). The findings are quite similar, but the power of all tests is severely diminished

since the deviation from proportionality is not so evident.

Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 17.2 50.4 21.2 69.3 15.5 52.3
2 17.7 66.6 14.5 57.3 8.1 27.0
3 18.5 66.9 20.0 70.4 8.9 23.3
4 15.4 47.7 19.6 65.3 14.6 49.7
5 18.7 67.2 16.1 58.7 9.1 28.5
6 17.9 67.0 19.8 70.8 9.3 23.3
7 20.7 73.4 21.1 75.0 11.5 40.7
8 20.3 73.1 21.3 75.1 11.6 41.5
9 19.3 71.2 20.0 72.9 11.0 39.4
10 19.7 71.5 20.8 73.1 11.5 40.9
11 13.5 45.2 17.1 61.4 10.9 48.8
12 17.9 67.0 20.3 70.9 8.9 24.2
13 17.1 66.7 19.7 70.5 8.6 23.9
14 17.7 66.0 20.3 72.0 8.8 28.8
15 17.9 67.0 20.3 70.9 8.9 24.2
16 20.6 73.4 21.2 74.9 11.6 40.5
17 15.0 45.6 18.7 62.5 14.8 48.4
18 18.6 67.8 16.0 61.0 9.4 30.0

Table 4.2: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the early effect case with initial HR = 0.65 and subsequent HR ≈ 1 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.
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Late/Delayed Effect

Again, in this case, only the results for the first scenario of final HR = 0.65 are

presented in the main body of this thesis, but relative tables and graphs for the other

two scenarios can be found on the Appendix Section A (Tables A.3 & A.4, Figures

A.3 & A.4). To begin with, when the effect changes at the beginning of the follow-

up, GT test with g(t) = ln t and the equivalent Cox, along with GT rank, GT KM,

Gill & Schumacher’s and Lin’s test with weights proposed by Schemper et al. (2009)

seem to exhibit the highest power. When the change happens after the occurrence

of 50% of events in the treatment group, interval-dependent tests (Tests 3, 6 and 12

to 15) reach their peak in terms of power, outperforming the aforementioned group.

Nevertheless, the power of GT rank, GT KM, Gill & Schumacher’s and Lin’s test is

rather close to the power of the interval dependent tests. An interesting observation

is that tests such as GT with g(t) = t, the equivalent test by Cox, Breslow’s test

with cumulative hazard scores and Lin’s test using the weights introduced by Xu

& O’Quigley (2000) display the worst performance except from the case where the

change in HR takes place at the end of the study. In fact, the latter test is not at

all reliable when the sample size is small or the effect increases at the beginning

of the study. Finally, even in the last scenario (CP = 70%) Tests 7 to 10 achieve

power levels close to the best ones (Table 4.3, Figure 4.3). The same holds for the

cases when final HR = 0.8 or 0.9 but the power of all tests is severely decreased

(approximately 10% for n = 200 and mainly 25-35% for n = 1000 when HR = 0.8,

and 6-7% for n = 200 and at most 12.2% for n = 1000 when HR = 0.9).

Looking closely, one can notice that the results for the early and late effect

scenarios are similar. Consequently, it is safe to say that good options, if such non-

PH patterns are excepted, are Tests 7, 8, 9 and 10. They may not outperform all

the others under all alternatives, but even when they don’t, their performance is

comparable to the best choice.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 20.5 45.0 27.3 62.4 25.3 63.7
2 20.1 67.8 20.0 69.5 13.5 46.6
3 16.4 51.9 27.6 85.6 13.3 42.6
4 18.5 46.9 25.9 66.4 23.5 67.2
5 20.4 68.2 20.1 69.3 13.4 46.3
6 16.2 52.0 27.3 85.7 12.7 42.2
7 22.2 68.4 26.0 80.2 17.6 59.8
8 22.0 68.1 26.6 80.0 17.7 60.7
9 21.6 66.7 25.3 78.6 16.9 58.6
10 22.3 66.8 26.9 78.7 18.3 61.0
11 8.3 42.1 13.2 62.0 14.3 63.6
12 16.0 51.5 27.1 85.5 12.8 42.3
13 14.9 51.0 26.0 85.4 12.1 41.9
14 16.2 52.0 27.3 87.0 15.4 49.6
15 16.0 51.5 27.1 85.5 12.8 42.3
16 22.2 68.6 26.3 79.9 17.6 59.6
17 19.8 49.7 26.3 69.6 23.4 68.8
18 20.0 68.4 20.0 68.3 13.8 44.3

Table 4.3: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the late effect case with initial HR ≈ 1 and subsequent HR = 0.65 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.



4.3. RESULTS 75

F
igu

re
4.3:

P
ow

er
of

18
tests

for
p
rop

ortion
al

h
azard

s,
for

tw
o
sam

p
le

sizes
an

d
th
ree

ch
an

ge
p
oin

ts
(C

P
)
at

30%
,
50%

an
d
70%

of
even

ts
in

th
e
treatm

en
t
grou

p
,
w
h
en

a
late

eff
ect

w
ith

fi
n
al

H
R

=
0.65

is
ob

served
.



76CHAPTER 4. SIMULATION STUDY: TESTS FOR PROPORTIONAL HAZARDS

Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 28.4 88.5 25.7 83.1
2 20.5 76.0 24.0 83.9
3 35.6 95.2 35.6 95.2
4 28.6 88.5 24.9 82.8
5 23.2 77.7 26.0 84.6
6 35.2 95.1 36.1 95.8
7 31.1 90.0 32.0 91.9
8 31.1 90.2 31.5 91.8
9 11.3 71.3 29.8 89.4
10 29.7 89.5 31.1 90.8
11 26.9 89.2 21.4 80.7
12 35.4 95.2 35.3 95.2
13 35.4 95.2 34.8 95.2
14 34.9 95.2 34.5 95.4
15 35.4 95.2 35.3 95.2
16 31.1 90.2 31.9 91.8
17 28.3 88.1 23.5 80.3
18 24.2 80.4 26.3 85.9

Table 4.4: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 0.65 and subsequent HR =
1.10, for different sample sizes n and cut points 2 and 4.

Crossing Hazards

Table 4.4 presents the related outcome for the case where the initial HR is equal

to 0.65 and then an inversion of effect is observed, with a new HR = 1.10. It is

evident that Gill & Schumacher’s and Lin’s test (with Xu & O’Quigley’s weights)

display the worst performance. The interval-dependent tests have the greatest power

(Tests 3, 6 and 12 to 15) which is roughly equal to 35% when the sample size is 200,

and 95% when n = 1000. GT rank, GT KM, Breslow’s (rank score) and Lin’s tests

with weights by Schemper et al. (2009), exhibit similar performance with a loss of

power of about 5% in each case. In general, the extension of the follow-up period by

2 time units does not seem to offer much gain (Figure 4.4). Analogous conclusions

are drawn about the third case of crossing hazards examined (see Table A.5, Figure

A.5).
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Figure 4.4: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 0.65 and subsequent
HR = 1.10.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 27.4 85.1 32.4 87.0
2 17.2 67.0 26.6 83.7
3 22.9 77.7 35.8 95.1
4 27.4 85.1 32.3 87.5
5 19.9 68.4 28.4 83.9
6 22.4 78.1 33.3 95.1
7 24.7 82.8 34.5 92.3
8 24.6 82.9 34.6 92.3
9 7.4 53.8 32.1 90.4
10 25.4 82.7 35.8 92.2
11 10.0 78.9 19.7 84.9
12 23.1 77.8 35.3 95.1
13 22.9 77.8 34.6 95.0
14 23.7 79.3 36.3 95.8
15 23.1 77.8 35.3 95.1
16 24.1 82.6 34.6 92.3
17 27.6 85.1 33.8 88.9
18 18.7 66.5 26.7 82.8

Table 4.5: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 1.10 and subsequent HR =
0.65, for different sample sizes n and cut points 2 and 4.

When the initial HR is equal to 1.10 and the subsequent is 0.65, the results

are somewhat different. Once again, Gill & Schumacher’s and Lin’s test (with

Xu & O’Quigley’s weights) display the worst performance in general. When the

tCP = 2, GT test with g(t) = t, the equivalent test by Cox, and Breslow’s cumulative

hazards score test are considered the optimal choices. Nevertheless, when tCP = 4,

the interval-dependent tests reach their crescendo, outperforming all the others.

Engagingly, Tests 7,8, 10 and 16 are close in terms of power to the best choices,

whether tCP = 2 or tCP = 4 (Table 4.5, Figure 4.5). The same holds for the fourth

case of crossing hazards investigated in this thesis (see Table A.6, Figure A.6).

Long-term Survivors

Finally, the findings for the long-term survivors with initial HR = 0.65 and final

HR = 0.652 are presented in Table 4.6 and Figure 4.6. The interval dependent tests

along with Lin’s proposal with weights by Schemper et al. (2009) are empirically

the most promising options, while the other choice of weights for Lin’s test and Gill
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Figure 4.5: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 1.10 and subsequent
HR = 0.65.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 18.9 65.6 24.9 66.1
2 12.9 51.2 20.5 66.2
3 18.3 64.8 27.5 85.5
4 18.9 65.4 23.2 68.1
5 14.2 51.3 20.8 66.4
6 17.6 65.7 26.5 85.3
7 18.8 66.4 27.5 77.6
8 18.8 66.6 27.5 77.6
9 1.7 11.9 22.6 71.1
10 22.8 67.6 29.1 78.1
11 1.4 11.7 1.7 49.0
12 18.4 65.0 26.6 85.2
13 18.2 64.8 25.6 84.8
14 19.7 68.1 27.5 85.9
15 18.4 65.0 26.6 85.2
16 18.9 66.7 27.5 77.6
17 19.7 67.5 25.0 71.8
18 14.4 50.6 20.6 64.4

Table 4.6: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of long-term survivors with initial HR = 0.65 and subsequent HR
= 0.652, for different sample sizes n and cut points 2 and 4.

& Schumacher’s approach display a severe lack of power. Once again, Tests 7,8 and

16 approximate the performance of the optimal tests in each case. Similar patterns

are observed for the second scenario of long-terms survivors (see Table A.7, Figure

A.7).

Despite the fact that there is not a unique test which outperforms the others

under all non-PH patterns and special scenarios examined in this thesis, it has been

shown that three out of the 18 are close to the optimal option with a usual loss

of power of about 5%. These are the rank and KM tests from the GT family (the

second is the default transformation in the function cox.zph from the well-known

package survival in R), along with Lin’s proposal using the weights of Schemper et

al. (2009). While the GT tests are famous amongst statisticians, Lin’s test is an

innovative method for checking the proportionality assumption, which also provides

weighted HR estimates, suitable for subsequent analysis and interpretation of the

nature of the data (see Chapter 5 for more).
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Figure 4.6: Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of long-term survivors with initial HR = 0.65 and
subsequent HR = 0.652.
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Chapter 5

Tests for treatment effect

5.1 Estimating treatment effect under non-PH

The traditional log-rank test and the conventional Cox PH model are habitually used

for the analysis of trials with time-to-event endpoints. As previously indicated, both

methods achieve maximum power and estimation accuracy under the condition of

proportional hazards. When a non-PH pattern is observed their power is reduced

and the Cox model’s HR estimate is severely biased. For instance, if a delayed

treatment benefit is detected, the estimated effect will be diluted, as the PH model

produces an average HR across the total follow-up time, misleading the investigators

involved in the trial. At the same time, even if the above HR is reported as an

average, this estimate has been proved to be dependent on the censoring distribution

and thus, the estimated effect turns out to be trial-specific (Boyd et al., 2012; Nguyen

& Gillen, 2012).

Numerous alternative summary measures have been proposed in the literature,

with weighted Cox HRs and median or Restricted Mean Survival time (RMST) dif-

ference between arms being the most prevalent. Weighted HRs can be estimated

after implementing the max-combo test or any other variant of the log-rank test

(see sections 5.2 and 5.3). Further appealing methods have also been suggested,

such as the weighted HR estimates proposed by Xu & O’Quigley (2000) or Boyd et

al. (2012). These approaches have been praised in a relatively recent paper by Ru-

fibach (2019), as they provide robust estimators against the censoring distribution,

which at the same time, are equal to the unweighted HR when the proportionality

assumption is valid. Usually, difficulties in clinical interpretation of a unique treat-

ment effect measure when in fact the effect is time-dependent, resulted in reporting

the RMST difference along with the corresponding confidence interval (see section

5.4). Other choices involve the estimation of a time-varying treatment effect or the

83
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combined reporting of the Cox model’s estimates and some weighted counterparts.

The latter approaches give a detailed knowledge of the history of the trial but are

more complicated in terms of interpretation. In a similar spirit, one can also report

piecewise HRs, if there is evidence that there is a point in time where the treatment

effect displays a different pattern than before. Of course, the choice of the summary

measure affects both the analysis and the design of the clinical trial and should be

carefully considered.

In clinical trials, most of the time, the interest is focused on comparing two

treatments, i.e., two groups of patients who follow different therapeutic approaches.

So before even a measure for treatment effect is reported, it is important to test if the

two therapies differ significantly. In the next sections, the theoretical basis of several

testing methods for this cause will be presented, along with their corresponding

measures, if there are any. These methods will also be examined and compared via

simulations in the next chapter.

5.2 Weighted log-rank tests and variants

5.2.1 The Fleming-Harrington family

In Chapter 2, section 2.3, the traditional log-rank test for the comparison of two

survival curves was thoroughly explored. In a study where m events have been

observed, one can briefly say that the log-rank test arises from the combination of

m 2×2 contingency tables which display group versus survival status at each failure

time. Considering also that, under the null hypothesis of no difference between

the survival profiles of the populations of interest, the number of events in the first

group follows a hypergeometric distribution, a statistic of the form presented in (2.5)

occurs, or

X2
LR =

[∑m
j=1(d1j − e1j)

]2
∑m

j=1
djr1jr2j(rj–dj)

r2j (rj−1)

(5.1)

where

• dj is the number of events taking place at tj,

• rj is the number of subjects at risk at tj,

• d1j is the number of events taking place at tj in group 1,

• e1j = dj
r1j
rj

is the expected number of events at tj in group 1, and lastly,
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• r1j and r2j are the number of subjects at risk in groups 1 and 2, respectively.

Under H0, X
2
LR has an asymptotic chi-square distribution with 1 degree of freedom.

Despite the simplicity and usefulness of the log-rank test, a statistician should

always bear in mind that it is the optimal choice when the assumption of PH holds,

but its power is diminished as the hazard ratio deviates more and more from a

constant function. Of course, it is performed in almost every analysis of survival

data where the comparison of groups is under the microscope. It is valid even when

a non-PH pattern is observed and theoretically the most powerful test when the

hazards are proportional.

To increase its power under non-PH, Fleming & Harrington (1982) proposed a

variation called the weighted log-rank test. The traditional log-rank test’s incompe-

tence to detect important differences between survival curves which occur either at

the beginning or at the end of the follow-up time, motivated the two professors of

Biostatistics to think of an alternative approach for comparing two survival func-

tions. They initially introduced the Gρ family of statistics, where the weighting

functions are defined as follows:

w(t) = {Ŝ(t)}ρ, ρ ≥ 0, (5.2)

and Ŝ(t) is the KM estimate1 of the survival function based on the whole dataset.

More specifically, the statistic in (5.1) is modified, and is now given by

X2
w =

[∑m
j=1wj(d1j − e1j)

]2
∑m

j=1w
2
j
djr1jr2j(rj–dj)

r2j (rj−1)

(5.3)

where wj = {Ŝ(tj)}ρ and the rest quantities are defined like before. Again, under the

assumption that the distributions of survival times in the two groups are identical,

X2
w asymptotically follows a chi-square distribution with one degree of freedom.

This idea improved the power of the comparison test in situations where early

differences occurred. Undoubtedly, this approach turned out to be useful on occa-

sions where, for instance, a treatment reduced the hazard for some initial period,

but its effect on the hazard decreased later on. This change is justified by the fact

that the family of weights given by (5.2) consists of decreasing functions since the

survival curve is always decreasing itself. As a result, the beginning of the follow-up

period is more definitive for the outcome of the comparison than middle or the end

of the study. Of course, for ρ = 0, (5.3) corresponds to the traditional log-rank test,

1Usually the left continuous version of the KM estimator is used.
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while for ρ = 1, it seems that the class contains as a special case a test essentially

equivalent to Peto & Peto’s generalization of the Wilcoxon test (Peto & Peto, 1972).

As expected, the latter is sensitive to early differences in survival between groups,

since wj = Ŝ(tj).

Undoubtedly, this family of FH tests generalized and enhanced the power of the

simple log-rank test, however, it could not adequately detect differences between

treatment arms for which the survival curves did not separate until a certain interval

of time has elapsed2. That being the case, Fleming & Harrington (1991) extended

this definition to the Gρ,γ family of statistics, with weights defined as

w(t) = {Ŝ(t)}ρ{1− Ŝ(t)}γ, (5.4)

for ρ ≥ 0, and γ ≥ 0. In contrast to the previous definition, these weighting functions

give more flexibility regarding the choice of the most influential time interval for the

test statistic. When γ = 0 in equation 5.4, the Gρ,γ class of statistics reduces to the

Gρ family, placing more weight on earlier events. When only ρ = 0, more weight is

given to later events. If ρ = γ, the test is more powerful for differences in the middle

of the total follow-up time. Of course, when ρ = γ = 0, the FH test is equivalent to

the unweighted log-rank test.

Apart from the FH family of tests, other types of weighted log-rank tests have

also been proposed in the literature. The most popular amongst them are the

Gehan-Wilcoxon, the Tarone-Ware and the Modified Peto-Peto test.

Gehan-Wilcoxon (or Generalized Wilcoxon) test

The Gehan-Wilcoxon test uses the number of individuals at risk rj at time tj as

the weight; thus, in equation 5.3, wj = rj. Since the weight is the number of indi-

viduals at risk, the Gehan-Wilcoxon test places more emphasis on the information

at the beginning of the survival curve, where the number at risk is larger, allowing

early failures to receive more weight than later events. It has been proved to be a

powerful test even when the PH assumption does not hold (Gehan, 1965; Karadeniz

& Ercan, 2017).

Tarone-Ware test

The Tarone-Ware test places more weight on hazards in the early periods, just

as the Gehan-Wilcoxon test does. More precisely, it uses the square root of the

2This is essentially the case of a delayed effect, discussed in section 3.1.
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number of individuals at risk at each failure time as weights, i.e., wj =
√
rj for

j = 1, 2, . . . ,m (Tarone & Ware, 1977). Without a doubt, the weight used in the

Tarone-Ware test is greater than the weight used in the log-rank test (wj = 1 ∀j)
but less than the weight used in the Gehan-Wilcoxon test.

Modified Peto-Peto test

Finally, the modified Peto-Peto test extends the initial test suggested by Peto

& Peto (1972). It places even greater weight on the beginning of the study since

wj = S̃(tj)rj/(rj + 1). Careful consideration should be given here: despite the fact

that the formula of weights includes an estimator of the survival function, in the

case of Peto-Peto’s test and its modified version, a different estimate than the one

produced by the KM method is typically preferred (Karadeniz & Ercan, 2017).

5.2.2 Versatile weighted log-rank tests

Even though an appropriate choice of ρ and γ in the extended FH family can result

in a well-powered test, little is the a-priori knowledge on how and when a significant

difference between two curves and a non-proportional hazards pattern can evolve.

On many occasions, investigators are unable to predict the shape of the survival

functions and even when they approximately do, they cannot specifically define the

time point or interval where the difference will be significant, imposing difficulties

on the analysis. Thus, which choice of ρ and γ is optimal, especially before a

clinical trial is conducted or even designed? To answer this crucial question, a

combination of FH tests can be implemented, including multiplicity correction, not

only to compare two survival functions, but also to track the time frame in which the

difference achieved its greatest magnitude. Throughout the years, many statisticians

have considered this option: Lee (1996), Lee (2007), Karrison (2016), and Lin et al.

(2020) to name a few. Each one of the proposed approaches employs a combination

of weighted log-rank tests mentioned in the previous section and the multiplicity

correction is based on the assumption that the vector with elements the individual

weighted test statistics follows a multivariate normal distribution (Karrison, 2016).

The individual statistics are in fact equal to the square root of the statistic given

by (5.3) for some particular choice of weighting function, and they are called the

z-statistics, since each one follows a univariate standard normal distribution. After

implementing one of these tests, it is also possible to obtain weighted parameter

estimates from the Cox model, choosing as weights the ones corresponding to the

FH test with the smallest p-value (see section 5.2).
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Lee (1996)

Lee (1996) evaluated the maximum over four z-statistics, derived from G0,0, G2,0,

G0,2, and G2,2 tests, as well as their average. The reason why he chose this particular

combination is because it simultaneously examines four different scenarios, three of

which perform well under dissimilar non-PH patterns. Table 5.1 matches each of

the above FH weighted tests with the scenario under which it is expected to have

the highest power amongst the others. These comments stem directly from what

was discussed about the FH family in section 5.2.1.

(ρ, γ) w(t) Maximum Power

(0, 0) 1 Proportional Hazards

(2, 0) [Ŝ(t)]2 Early Effect

(0, 2) [1− Ŝ(t)]2 Late Effect

(2, 2) [Ŝ(t)]2[1− Ŝ(t)]2 Middle Difference

Table 5.1: FH tests involved in Lee’s (1996) proposal and expected scenarios of
optimal performance.

Lee (1996) conducted a simulation study, comparing the individual members of

the Gρ,γ family involved in his approach and the combined statistics, under the PH

scenario and cases of early, middle and late hazard differences. As anticipated, the

individual tests performed better than the others under the assumption to which

they were matched in Table 1. Interestingly, the combined statistics, i.e., the max-

imum and their average, were nearly as sensitive as the most powerful individual

statistic for detecting a specific local alternative. It also appeared that the maxi-

mum of the individual statistics performs slightly better than the average of those

statistics.

Lee (2007)

Lee (2007) considered three combination tests based on two z-statistics corre-

sponding to G1,0 and G0,1 from the FH family. If Z1 and Z2 are the z-statistics,

he compared their performance with the power of their maximum max(|Z1|, |Z2|),
and the statistics |Z1 + Z2| and (|Z1| + |Z2|)/2. Simulation results confirmed that

the maximum test nearly maintains the sensitivity of the statistics Z1 and Z2 for

the corresponding survival differences of early and late effect, and is more versatile

than both across several scenarios which are dissimilar to the previous and/or more

complex. As for the power of the other proposed statistics, his simulation showed

that they do not perform better or at least as well as Z1 and Z2.
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Karrison (2016)

Karrison (2016) generalized the optimal test suggested by Lee (2007), since he

considered max(|Z1|, |Z2|, |Z3|), where Z1, Z2 and Z3 are z-statistics obtained from

G1,0, G0,1 and G0,0 tests. This combination also covers the case of proportional

hazards, along with the early and the late effect. Karrison’s test maintains the type

I error rate and provides increased power in comparison to the log-rank test under

early and late difference alternatives; however, max(|Z1|, |Z2|, |Z3|) is associated with

a small to moderate power loss relative to the more optimally chosen test. It is also

quite close to max(|Z1|, |Z2|) in terms of performance.

Lin et al. (2020)

Lin et al. (2020) suggested to use the maximum of the absolute values of four

FH weighted statistics: those which correspond to G0,0, G1,0, G0,1 and G1,1. Con-

sequently, exactly like Lee (1996), the proposed test will provide relatively good

coverage across a range of possibilities: proportional hazards, early, middle and late

difference configurations. According to the relative paper, the MaxCombo test, as

they call it, is robust against various patterns of non-PH and it provides a strong

advantage under late effect or crossing hazards, scenarios commonly observed in

immuno-oncology. At the same, it achieves acceptable power under early effect and

proportional hazards compared to the traditional log-rank test.

5.2.3 Combinations with other tests

The extension of the traditional log-rank test to a weighted version has undoubt-

edly provided greater flexibility and better properties on occasions where non-PH

patterns are present. Nevertheless, this approach just takes into account the infor-

mation accumulated during a specific period more than other time intervals, based

on what has been observed (if the method is directly applied during the analysis) or

has been expected (if the method is chosen a priori at the design stage). Even when

versatile weighted tests are used, oftentimes the variety of alternative scenarios un-

der consideration is restricted. Of course, various combinations of weighted log-rank

tests can be constructed; the ones presented in the previous section are just the most

famous in the literature. Statisticians can choose a wide range of values for ρ and γ

and employ the multivariate normal distribution of the corresponding statistics to

perform a test suitable for their data. As a matter of fact, major statistical software
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packages, such as R, already include functions performing these types of versatile

tests in accordance with the user’s preference.

As mentioned in Chapter 3, section 3.1, non-proportionality takes on many forms.

It will be extremely naive to assume that the four non-PH scenarios presented in the

current thesis are enough to represent every possibility. Intuitively, each weighted

counterpart of the log-rank test corresponds to a particular non-PH pattern, and it

is difficult to predict beforehand the shape of the survival curves and the relationship

connecting them. In other words, it is hard to find the optimal (versatile) weighted

test. To overcome this problem, different approaches have been developed, combin-

ing the great power of the log-rank test when proportionality holds with some of the

tests for the PH assumption discussed in Chapter 3.

To understand better why such an approach would work, it is important to

remember that when the hazards of two groups are proportional, i.e., h1(t)/h2(t) =

θ, then

S1(t) = [S2(t)]
θ, (5.5)

for some θ > 0. If θ = 1 the survival profiles in the two populations are identical.

Consequently, the equivalence of the survival functions, and thus, the absence of

treatment effect, is a special case of the proportionality of hazards. When the PH

assumption is invalid, the same holds for equation 5.5. This means that

S1(t) ̸= [S2(t)]
θ,∀θ ∈ (0,+∞).

Now, imagine performing a test that utilizes both the log-rank test and a testing

procedure for the PH assumption. If there is indeed a significant treatment effect

and proportionality holds, the log-rank test has the maximum power to reject the

null hypothesis of no difference between the two arms. On the other hand, when

the PH assumption does not hold, the same is true for the null hypothesis, so

the proportionality test should be able to provide evidence against it. Based on

this rationale, several tests have been proposed in the literature. Two of them are

presented below.

Breslow combo test (Breslow et al., 1984)

Recall Breslow, Elder, and Berger’s proposal for testing the PH assumption: for

the two-sample case, they suggested an alternative model given by (3.15). The null

hypothesis of proportional hazards, i.e., γ = 0, versus the alternative that γ ̸= 0, was

then tested by performing a score test for the unknown parameter γ, and resulted
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in a test statistic X2
2 , which corresponds to (3.17). When the PH assumption holds,

it follows a chi-square distribution with 1 degree of freedom.

According to Breslow et al. (1984), if one wants to test another null hypothesis

H0, i.e., that both β and γ in (3.15) are equal to zero, versus the alternative that

only γ = 0, then the log-rank test would be derived from the corresponding score

test. Using the same notation as the one in section 3.2.3, the score statistic for the

log-rank test would be

X2
1 =

[
∑m

j=1 d1j–pj(0, 0)]
2∑m

j=1 pj(0, 0)qj(0, 0)
=

[
∑m

j=1 d1j–r1j/rj]
2∑m

j=1 r1jr2j/r
2
j

(5.6)

where rj = r1j + r2j is the total number of subjects at risk at time tj and pj(0, 0)

is calculated as in (3.16). Once again, X2
1 follows a chi-square distribution with 1

degree of freedom. Notice that this is equivalent to the statistic in (2.5) when there

are no ties.

Therefore, in order to test the null hypothesis

H0 : β = γ = 0

versus a more generic alternative

H1 : β ̸= 0 or γ ̸= 0,

Breslow et al. (1984) suggested using both statistics X2
1 and X2

2 . It was shown that

under H0, as n → ∞, the statistics X1 and X2 have independent normal distribu-

tions. Therefore, when the log-rank test and acceleration test are simultaneously

implemented, a multiplicity correction to avoid an inflated type I error can be done

by using a maximum-modulus test based on max(|X1|, |X2|). Another option is

to use X2
1 + X2

2 , which under H0 follows a chi-square distribution with 2 d.f. as

n → ∞. Lin et al. (2020), praised this particular approach since it seems to result

in a potential power gain under crossing hazards.

Joint test by Royston & Parmar (2014)

The joint test, as Royston & Parmar (2014) called it, is a combination of the

log-rank test and a test from the GT family. Despite the fact that any test can be

used, the authors presented their findings using as time function g(t) the ranks of

the event times, i.e., they preferred a proportionality test based on the correlation

between scaled Schoenfeld residuals and the ranks of the failure times.
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This idea was mainly developed to overcome the problem of an inflated type I

error which is the result of the following common analysis approach: In most cases,

the sample size of a trial is calculated via a log-rank test. However, due to new

therapies and breakthroughs in the field of medicine, non-PH patterns are more

frequent than ever. Naturally, the traditional log-rank test is not the optimal test

since its power is reduced under non-proportionality. At the same time, when the

data are collected, a test for PH must be performed to validate the results occurring

from usual analysis techniques such as the fit of a Cox PH model. An issue that

arises here, is that the log-rank test and a subsequent test from the famous GT

family double the probability of a type I error.

To rectify this issue, Royston & Parmar (2014) brainstormed the next idea:

Under the null hypothesis of identical survival profiles in the two groups of interest,

it holds that the log-rank and the GT test have independent corresponding statistics,

each of which follows a chi-square distribution with 1 d.f. and thus, their sum has

an asymptotic chi-square distribution with 2 degrees of freedom. Consequently, this

joint test can be utilized to simultaneously check the proportionality assumption

and find evidence in favor of a significant treatment effect.

Even though their approach is not suggested for use routinely, it has proved to

be quite powerful under increasing or decreasing HR, outperforming the log-rank

test. Of course, the latter has greater power than the joint test under PH, but they

are still close. Keep in mind that the joint test has been mainly presented, in the

literature, as an alternative approach for the calculation of the sample size during

the design of a trial, and not as an analysis procedure.

5.3 Cox regression under non-PH and related mod-

els

The conventional Cox PH model, presented in section 2.4, has proved to be one

of the main statistical tools used in survival analysis. It offers great flexibility

in comparison to parametric models which assume a specific form of the baseline

function, while simultaneously adjusting for the effect of many covariates. Its only

“restrictive” property is the assumption of proportional hazards: in section 2.4.3, it

was shown that, if Cox regression is used for modeling the data, then for any two

individuals the ratio of the corresponding hazard functions is independent of time.

In reality, however, this is rarely the case.

When hazards are indeed proportional, the Cox model yields unbiased, easily
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interpretable estimates and the power of the corresponding tests for significance is

at its highest possible level. Such good properties oftentimes lead statisticians to

ignore the problem of non-proportionality, especially when the deviation from PH

is small. Some claim that the implementation of the standard Cox model is an

acceptable approach under non-proportionality as long as there is not an inversion

of effect for the covariates, i.e., the sign of the log-HR does not change over time.

They also propose to interpret the estimates as average HRs. Nevertheless, when

the fundamental assumption of the Cox model does not hold, it is impossible to gain

good enough estimates for the treatment effect or the effect of any other covariate.

Apart from the bias, it also seems that the results obtained in this way are study-

specific since they are sensitive to the censoring pattern of the data at hand. No

reliable inference can be drawn from such an analysis.

5.3.1 An intuitive interpretation of the standard HR esti-
mate under non-PH

Before proceeding to the presentation of alternative methods, an intriguing question

here is why some investigators consider the estimate of the HR provided by Cox

model as an average? Is it truly an average value of the underlying time-varying

HR and what does that mean? To examine this statement, a simulation can be

used. For simplicity, the two-sample case is considered. The distribution of survival

time within each population has been selected to be a piecewise exponential, with

initial rate equal to λ0 = λ′0 = 1 for both samples. After a certain time point τ1

(here τ1 = 0.5) both rates change: for the first group λ1 = 0.5, while for the second

λ′1 = 0.3 after τ1. Figure 5.1 illustrates the survival curves in the two samples. Each

group includes 1000 subjects and 1000 repetitions are implemented in total. For

each repetition, the Cox PH model is fitted to the dataset applying administrative

censoring at different time points consisting a sequence of the form tk = τ1 +0.1 · k,
k = 0, 1, . . . , 55. The HR occurring as a MPLE is therefore saved for each repetition

and each choice of k. Then, the mean value of all HRs is computed for each time

point tk and the results are graphically displayed in Figure 5.2. It is evident that

the time point at which the study ends determines the value of the HR estimate

given by the Cox model. In this particular example, it ranges from roughly 0.75 to

a value a little greater than 1. Notice that as the follow-up period is extended the

estimate decreases. This comes naturally as a result of the nature of the data: up

to τ1 = 0.5 the real HR is equal to one but as time passes, the survival profile of

the second group is better than that of group 1. Consequently, the HR estimate for
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the second group compared with the first becomes smaller and smaller as the study

period is prolonged.

Figure 5.1: Survival functions of two populations for which the survival time dis-
tribution is piecewise exponential, with initial hazard rates λ0 = λ′0 = 1 before
τ1 = 0.5, and rates λ1 = 0.5 and λ′1 = 0.3 after τ1 for groups 1 and 2, respectively.

This change in the HR gave rise to the idea that the Cox model’s estimate under

non-PH is, in a sense, an average of the real HR. Note that the real HR here is a

piecewise constant function, i.e.,

HR(t) =

{
HR1 = 1, if t ≤ 0.5

HR2 = 0.6, if t > 0.5

Therefore, if the interpretation of the estimate as an average HR is correct, then it

should be equal to a weighted mean of HR1 and HR2. Three possible weights are

being explored, based on

1. the percentage of time spent in the internals [0, 0.5] and (0.5, tk],

2. the expected number of events in each of the internals [0, 0.5] and (0.5, tk], and

finally,
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Figure 5.2: Average hazard ratio in the interval [0, tk], with tk = 0.5+0.1 · k, versus
k = 0, 1, . . . , 55.

3. the cumulative hazard for a randomly chosen individual.

First approach

Suppose that the follow-up period ends at a time point tk, k = 0, 1, . . . , 55. Then,

the percentage of time spent in [0, 0.5] is given by p1 = 0.5/tk and the percentage of

time spent in (0.5, tk] is given by p2 = (tk − 0.5)/tk = 1–p1. These weights can be

used to calculate either a weighted arithmetic (AM) or a geometric mean (GM) of

HR1 and HR2, i.e.,

AM1 = p1 · HR1 + p2 · HR2

and

GM1 = HRp1
1 · HRp2

2 .

Of course, for k = 0 ⇒ t0 = 0.5 and thus p1 = 1 and p2 = 0. This means that if the

study ends after 0.5 time units of follow-up, AM1 = GM1 = HR1. So, the results

up to t0 = 0.5 must represent the case of PH with HR = 1. Figure 5.3 shows that
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AM1 and GM1 are far from what is given as a MPLE from the Cox model. In other

words, these weights do not yield the desired result.

Figure 5.3: Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 with weights
equal to the percentages of time spent in each of the time internals [0, 0.5] and
(0.5, tk], for k = 0, 1, . . . , 55. The black line corresponds to the HR estimate from
the Cox model.

Second approach

Denote by FG1(t) and FG2(t) the cumulative distribution functions of groups 1

and 2, respectively. It holds that

FG1(t) =

{
1− e−t, if t ≤ 0.5

1− e−0.5t−0.25, if t > 0.5

and

FG2(t) =

{
1− e−t, if t ≤ 0.5

1− e−0.3t−0.35, if t > 0.5



5.3. COX REGRESSION UNDER NON-PH AND RELATED MODELS 97

If F (t) is the cumulative distribution function for a random subject in the study,

then

F (t) = P(subject in group 1)FG1(t) + P(subject in group 2)FG2(t),

and thus,

F (t) =

{
1− e−t, if t ≤ 0.5

0.5 · [1− e−0.5t−0.25] + 0.5 · [1− e−0.3t−0.35], if t > 0.5

since the number of individuals belonging to group 1 is equal to the number of

individuals belonging to the second group.

The whole study includes n = 2000 subjects. The number of events up to a

specific time point tk is a binomial random variable with probability of success3 equal

to F (tk). Similarly, the number of events taking place in a time interval (tk1 , tk2 ]

is a binomial random variable with success probability equal to F (tk2) − F (tk1).

Consequently, if the weights are defined as

e1 =
Expected number of events within [0, 0.5]

Expected number of events within [0, tk]

and

e2 =
Expected number of events within (0.5, tk]

Expected number of events within [0, tk]

or

e1 =
n · F (0.5)
n · F (tk)

=
F (0.5)

F (tk)

and

e2 =
n · [F (tk)− F (0.5)]

n · F (tk)
=

[F (tk)− F (0.5)]

F (tk)
,

for k = 0, 1, . . . , 55, then an arithmetic and a geometric mean can be constructed as

follows:

AM2 = e1 · HR1 + e2 · HR2,

and

GM2 = HRe1
1 · HRe2

2 .

Figure 5.4 displays how these two values change in relation to the total follow-up

period. It is evident that GM2 is almost identical to the average HR calculated from

the Cox PH model.

3Success = Event by the time tk, for k = 0, 1, · · · , 55.
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Figure 5.4: Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 with weights
depending on the expected number of events within each of the time internals [0, 0.5]
and (0.5, tk], for k = 0, 1, . . . , 55. The black line corresponds to the HR estimate
from the Cox model.

Third approach

Let Λ(t) be the cumulative hazard for a randomly selected individual. It holds

that

Λ(t) = − ln [1− F (t)] =

{
t, if t ≤ 0.5

− ln [0.5 · (e−0.5t−0.25 + e−0.3t−0.35)], if t > 0.5

Choosing as weights

c1 =
Λ(0.5)

Λ(tk)

and

c2 = 1− c1 =
Λ(tk)− Λ(0.5)

Λ(tk)
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the following arithmetic and geometric mean occur:

AM3 = c1 · HR1 + c2 · HR2

and

GM3 = HRc1
1 · HRc2

2 .

Figure 5.5 shows the relationship between each mean and the average HR. It is

obvious that this method does not approximate the average HR as well as the second

approach. In fact, all methods are compared in Figure 5.6: only the geometric mean

of HR1 and HR2 with weights the expected number of deaths within each time

interval is close to the Cox model’s estimate.

Figure 5.5: Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 with weights
depending on the cumulative hazard of a randomly selected individual. The black
line corresponds to the HR estimate from the Cox model.

Now remember what was discussed in Chapter 2 for the piecewise exponential

distribution. It was mentioned that it is a very useful distribution, particularly for

the simulation of survival data, since it is quite flexible and an appropriate choice
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Figure 5.6: Arithmetic and geometric mean of HR1 = 1 and HR2 = 0.6 using three
different approaches, compared with the average HR estimator of the Cox model.

of time intervals and hazard rates could mimic the behavior of any real-life dataset.

Intuitively, any survival profile can be thought to stem from a piecewise exponential

distribution if the time intervals are narrow enough. Consequently, in combination

with the findings of the current section, one can interpret the Cox model’s HR as a

geometric mean of the individual constant HRs, using as weights the proportion of

the expected number of events within each time interval per total expected number

of events.

5.3.2 Cox model modifications and alternative estimates for
the HR under non-PH

Since, under non-proportional hazards, the Cox model’s HR estimate underesti-

mates the real HR for some periods of time, and overestimates it for others, it is

not quite efficient to base the inference on this particular approach. Alternative

methods for the analysis of non-proportional data have been proposed throughout

the years, which, in a sense, extend the conventional Cox PH model. The most
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popular amongst them, are:

1. The stratified Cox model : Suppose that the assumption of PH has been re-

jected for one or more covariates. Then, a new model can be fitted to the data,

assuming that the baseline hazard is different for each level4 of the variable

violating the PH condition. For simplicity, suppose that the proportionality of

hazards is invalid only for one covariate with k categories. Then the stratified

Cox model is given by

λi,s(t) = λ0s(t) exp(β
′xi), s = 1, 2, . . . , k.

As usual, β is estimated from the corresponding partial likelihood. Notice

that the estimate of β is independent of the category s of the predictor being

stratified. Therefore, the effect of any other covariate is assumed to be the same

across all strata. A drawback of this method is that the effect of the covariate

based on which the stratification was implemented, cannot be computed. If

this covariate is an indicator for the type of treatment received by a subject,

then it would be impossible to estimate the treatment effect using the stratified

Cox model. Thus, it is preferable to avoid employing this model when the

variable of interest is the one not satisfying the PH assumption. Also, it is

suggested that the number of strata should be small, otherwise the complexity

of the model would increase unnecessarily.

2. The extended Cox model : It is the model presented in (3.25). The HRs for each

covariate are given as functions of time. It is a useful approach if the investi-

gators desire to predict the survival profile of the subjects involved in a study.

Nevertheless, it does not always provide a clear-cut answer to questions, such

as “Which treatment is better?”, “Are patients with a specific characteristic

A doing better than patients with a specific characteristic B?”, etc.

3. The change-point Cox regression: It is essentially a special case of the ex-

tended Cox model. Sometimes, there may be indications that the hazard ratio

is constant within specified time intervals. Other times, this model is just

used because proportionality is invalid, but a simpler approach than the ones

mentioned above is preferable. However, such an analysis is based on the as-

sumptions of constant HRs within each period and a sudden change at the

4If the variable is not qualitative, but quantitative, its range should be split into categories.
If more than one covariates are violating the PH assumption, a combination of their categories
should be used for the determination of the model.
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cutpoint between two (or more) periods. This assumption is quite unrealis-

tic and again, piecewise constant HRs cannot always result in straightforward

answers about the superiority of a therapy over another. They, however, offer

a better insight into the history of the trial than a single summary measure.

4. The weighted Cox regression: It is similar to the simple Cox model, providing

one measure of relative risk for each covariate. It has been proved to be efficient

for small samples and also to yield more robust estimates than the traditional

Cox model under the presence of censoring. The estimates of the HRs are

computed solving the partial likelihood score equations after some weights are

introduced for each subject and/or covariate.

The burning question of this chapter is how to test the significance of the treat-

ment effect. The stratified model does not allow for the estimation of a treatment

effect when the PH assumption is violated for the corresponding variable, and the

extended Cox model is more informative of the history of the study rather than the

effect of the included covariates. Of course, the addition of a time-varying parameter

for the treatment indicator may provide interesting results but the options regard-

ing the form of the time-function for the HR are endless. Therefore, the interest in

this section is focused only on the weighted counterpart of the Cox PH model and

an interesting test for treatment effect based on the combination of multiple single

change-point regression models.

5.3.3 Weighted Cox regression

In order to gain weighted estimates for the HR, one should solve a modified version of

the partial likelihood score equations, defined by (2.9) and (2.10). More specifically,

the system of equations takes the form

∂ℓw(β)

∂βj
=

n∑
i=1

δiwj(ti)

[
xij −

∑
ℓ∈Ri

xℓj exp(β
′xℓ)∑

ℓ∈Ri
exp(β′xℓ)

]
= 0 (5.7)

for j = 1, 2, . . . , p, where wj(t) is a weighting function, and all other quantities

are defined as in section 2.4.1. In equation (5.7) a weighting function wj(ti) which

permits the contributions to β at each failure time to be weighted differently has

been introduced. In the standard Cox model analysis, wj(ti) is always 1. As for the

information matrix, it is obtained, as usually, by taking minus the second derivatives

of the partial log-likelihood introducing the appropriate weights. Thus, the (j, k)
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entry of the information matrix is given by the formula

Ijk(β) =
∑n

i=1 δiwj(ti)wk(ti)

[∑
ℓ∈Ri

xℓjxℓk exp(β′xℓ)∑
ℓ∈Ri

exp(β′xℓ)
− [

∑
ℓ∈Ri

xℓj exp(β
′xℓ)][

∑
ℓ∈Ri

xℓk exp(β′xℓ)]

[
∑

ℓ∈Ri
exp(β′xℓ)]

2

]
(5.8)

for j, k ∈ {1, 2, . . . , p}. A weighted estimate for β is usually obtained by using a

root-finding algorithm, such as the Newton-Raphson method. The solution β̂w of

(5.7) does not place equal weight to all periods of time, but if proportionality holds

then it should be close to β̂, the MPLE of the original Cox PH model5. Of course, the

results of this approach depend mainly on the choice of weighting function. Accord-

ing to (5.7) and (5.8) the weighting function can differ from one covariate to another

since a mixture of variables with proportional and non-proportional hazards is typ-

ical. The choice for each covariate is made based on a preliminary analysis of the

proportionality of hazards. In the literature, various options have been mentioned.

Some of them are presented below:

• Gehan scores: The size of the risk set Ri at event time ti is used as a weighting

function. It is not considered as a very good option since it can lead to low

power (Gehan, 1965; Schemper, 1992).

• Prentice scores: If n is the total sample size and Ŝ(t) is the KM estimate

of the survivor function based on the whole dataset, another option is to set

w(ti) = n · Ŝ(ti), irrespective of the covariate (Prentice, 1978).

• Xu & O’Quigley’s proposal: Let P (t) be the probability of still being followed-

up at t. Xu & O’Quigley (2000) suggested to use w(t) = [P̂ (t)]−1 as a weight-

ing function. P̂ (t) is estimated implementing the KM method, with inverse

meaning of the status indicator δi. This approach is considered to yield time-

averaged regression effects and it has been repeatedly praised in the literature.

Under non-PH, it has been shown that the typical Cox PH model estimate

for the HR depends on the censoring distribution (Struthers & Kalbfleisch,

1986; Nguyen & Gillen, 2012), even though without censoring it has the in-

terpretation of a time-averaged effect despite the validity of the PH assump-

tion. However, Xu & O’Quigley’s (2000) suggestion gives an estimate which

is asymptotically independent of the censoring distribution and at the same

time equal to the MPLE of the conventional Cox model under PH.

• Boyd, Kittelson & Gillen’s proposal: It is quite similar to the previous, since

β̂w has the same properties: it is equal to the Cox PH model’s estimate under

5Recall the proportionality test suggested by Lin (1991), discussed in section 3.2.2.
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proportionality, but it is robust against the censoring distribution when PH

assumption does not hold (Boyd et al., 2012; Rufibach, 2019). Here, the

weighting function is the inverse of the probability of still being followed-up at a

certain time point t given some special characteristics, meaning that a different

censoring distribution can be assumed for each group of individuals sharing

the same covariate values. In a sense, Xu & O’Quigley’s (2000) approach is a

special case of this method, if one assumes that the censoring distributions of

all groups are identical.

• Schemper, Wakounig & Heinz’s proposal: Schemper et al. (2009) suggested

the weighting function w(t) = Ŝ(t)[P̂ (t)]−1 which results in an average HR.

These authors have shown that in a two-sample comparison, average hazard

ratios approximate the odds of concordance very well, i.e.,

HR ≈ OC =
c

1–c
=

P(T1 < T2)

P(T2 < T1)

where T1 and T2 are the survival times of two randomly chosen subjects of

groups 1 and 2. When β̂w is estimated, c can be computed by

c =
exp(β̂w)

1 + exp(β̂w)
.

This method is suitable for decision-making since it provides a single measure

of relative risk summarizing the nature of the data (Dunkler et al., 2018).

• FH family: In section 5.2.2, a wide variety of versatile log-rank tests were

presented. Lin et al. (2020) suggested performing a combination of weighted

log-rank tests, and if the null hypothesis of identical survival functions is re-

jected based on the max-combination test, then the weighting function from

the FH family corresponding to the individual test with the lowest p-value

should be used to implement a weighted Cox regression. In this way, more im-

portance is given to time periods which seem to display the greatest difference

regarding the survival profile of the groups of interest.

Inference about the weighted estimates can be based on the corresponding co-

variance matrix, which can be computed employing several approaches according to

the literature (Schemper, 1992; Schemper et al., 2009; Boyd et al., 2012; Dunkler et

al., 2018). The most popular amongst them are the following:
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• Lin & Sasieni’s sandwich estimate: According to Lin (1991) and Sasieni (1993)

the covariance matrix of the weighted estimates can be computed by

V = A−1BA−1,

where

Ajk =
n∑

i=1

w(ti)
−∂2ℓ(β)
∂βj∂βk

and

Bjk =
n∑

i=1

[w(ti)]
2−∂2ℓ(β)
∂βj∂βk

for j, k ∈ {1, 2, . . . , p}. When w(t) = 1 this estimate reduces to the inverse of

the Fisher information matrix of the Cox PH model. Unfortunately, it is valid

only under proportionality of hazards and without model misspecification.

• Therneau & Grambsch’s alternative approach: An alternative definition of the

covariance matrix was given by Therneau & Grambsch (2000), according to

which

V = A−1(U ′U)A−1.

The (i, j)-th element of U is

Uij = (1− δi)w(ti)

[
xij −

∑
ℓ∈Ri

xℓj exp(β
′xℓ)∑

ℓ∈Ri
exp(β′xℓ)

]
−

∑
i′:ti′≤ti

(1− δi′)w(ti′)
exp(β′xi)∑

ℓ∈Ri′
exp(β′xℓ)

[
xij −

∑
ℓ∈Ri′

xℓj exp(β
′xℓ)∑

ℓ∈Ri′
exp(β′xℓ)

]

for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. This estimate is identical to the

sandwich variance estimator proposed by Lin & Wei (1989), which they have

shown to be robust against non-PH.

• Jackknife method: Finally, a variance estimator can occur by estimating the

regression coefficient leaving out each individual in turn. Let J be a n × p

matrix with i-th row equal to

Ji = β̂w − β̂(i)
w

where β̂
(i)
w is the solution of (5.7) if the i-th individual is not included in the

model. Then an estimator for the covariance matrix is

V =
n− 1

n
(J − J̄)′(J − J̄),

where J̄ is the matrix of column means of J .
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A comparison of these three methods, led to conclusion that the robust estimate

(second approach) seems to perform better than the other two: the Jackknife esti-

mator has the smallest bias but it requires significantly more time to be calculated

than the other two, while at the same time, Lin and Sasieni’s method is consid-

ered invalid under non-PH. Thus, a good compromise between bias and efficiency,

according to Schemper et al. (2009), is the second approach.

Weighted Cox regression is easily implemented in R: the package coxphw cal-

culates the weighted estimates proposed by Xu & O’Quigley (2000) and Schemper

et al. (2009). Also, inference about the significance of the treatment effect for the

two-sample case can be made via the robust variance estimator or the Jackknife

method.

5.3.4 Cauchy combination of change-point Cox regressions

In a recent paper by Zhang, Li, Mehrotra & Shen (2021) an innovative omnibus

test for the significance of treatment effect has been proposed, using a combination

of multiple single change-point Cox regression models. A simulation study where

various non-PH patterns were considered showed that this particular approach has

robust power against various types of departure from proportionality and at the

same time, it controls the type I error at very stringent levels of significance, such

as 10−4. Apart from that, it is an easily implemented and comprehensible method,

which has the ability to provide a suitable change-point Cox model for the data, if

the null hypothesis of no treatment effect is eventually rejected.

A single change-point Cox model for the two-sample case problem, is given by

λi(t) = λ0(t) exp[β(t)
′xi] (5.9)

where

β(t) =

{
β1, if 0 < t < tCP

β2, if t ≥ tCP .

Therefore, the null hypothesis to be tested is

H0 : β1 = β2 = 0.

In order to fully understand the CauchyCP testing procedure, its steps are pre-

sented bellow, one by one:

1. To begin with, a set of m candidate change points t1, t2, . . . , tm is selected.

Usually, t1 = 0 so as to include the Cox PH model in the multiple testing

procedure.
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2. For each change point tj a single change-point model such as the one in (5.9)

is fitted, with tCP = tj, j = 1, 2, . . . ,m.

3. A likelihood ratio test is conducted to test the null hypothesis H0 : βj1 = βj2 =

0 for each j ∈ {1, 2, . . . ,m}, separately. The corresponding p-value is denoted
by pj.

4. The individual p-values are combined in a single test with final p-value

pc = 0.5− tan−1 (c)

π
,

where c =
∑m

j=1 tan [π(0.5− pj)]/m. The combination statistic has an asymp-

totic standard Cauchy distribution regardless of the correlation of the individ-

ual p-values.

If there is some a-priori knowledge about the non-PH pattern of the data the

sequence of change points must be determined accordingly. However, this is rarely

the case, and for that reason it is oftentimes suggested to choose time points covering

the whole range of the event times. For instance, one can choose four candidate

change-points t1 = 0 and t2, t3, t4 as the 25-th, 50-th and 75-th percentiles of the

event times, respectively. The idea behind the proposed CauchyCP method is that,

although the majority of the candidate change points are likely misspecified, at least

one of them is close to the true value. Thus, by combining the p-values of these

change-point models, the treatment effect under non-proportional hazards can be

adequately detected with properly controlled type I error. If the null hypothesis

is rejected, then the time point corresponding to the smallest individual p-value is

chosen and a change-point Cox model is fitted to the data, providing two distinct

HR estimates, one representing the time period up to the selected tCP , and another

for the subsequent time interval.

5.4 Restricted Mean Survival Time

5.4.1 Definition and properties

The usage of weighted parameter estimations for reporting a single summary mea-

sure in cases of non-proportional hazards has provoked controversy in the statistical

community, with Royston & Parmar (2011) being the main disputants. As an al-

ternative measure of overall treatment effect, they suggested the Restricted Mean



108 CHAPTER 5. TESTS FOR TREATMENT EFFECT

Survival Time (RMST), a quantity initially introduced by Irwin (1949) but over-

looked for years. Essentially, RMST is the mean of survival time up to a fixed time

cut-point τ and can be interpreted as “τ -year life expectancy”. It is inseparably

connected with the survival function as it is equal to the area under the survival

curve. Indeed, if R = min(T, τ), where T is a random variable denoting the survival

time of an individual and τ is a specified time point of interest, then the RMST is

defined as follows:

RMST(τ) = E[R] = E[min(T, τ)]. (5.10)

R is a non-negative random variable taking values ranging from 0 to τ . Therefore,

its mean can be computed by the formula

E[R] =

∫ τ

0

[1− FR(u)]du (5.11)

where

FR(u) = P (R ≤ u) = P (min(T, τ) ≤ u) = P (T ≤ u) = FT (u),

for u ∈ [0, τ ]. Consequently, (5.11) becomes

E[R] =

∫ τ

0

[1− FR(u)]du =

∫ τ

0

[1− FT (u)]du =

∫ τ

0

ST (u)du

and thus, according to (5.10),

RMST(τ) =

∫ τ

0

ST (u)du. (5.12)

In the literature, one can identify three basic properties of the RMST:

1. It is an increasing function of the chosen time point τ ,

2. the limit of the RMST(τ) as τ → ∞ is equal to the unrestricted mean sur-

vival time, which is difficult and in many cases impossible to estimate due to

censoring, and as a consequence,

3. the RMST is always smaller than the mean survival time.

Finally, it should be mentioned that instead of the RMST another quantity can be

used to express the survival profile of a population: the Restricted Mean Time Lost

(RMTL). This quantity is defined as the expected value of τ −R, i.e.,

RMTL(τ) = E[τ −R] = τ − E[min(T, τ)] =

∫ τ

0

[1− ST (u)]du.

Of course, if the RMST(τ) is known then the RMTL(τ) can be calculated directly

and vice versa. Since the RMST up to a time point τ has a slightly easier inter-

pretation than the corresponding RMTL, it is the one most usually reported in

papers.
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5.4.2 Estimation from the data

In practice, a non-parametric estimate for RMST(τ) can be obtained by combining

(5.12) and the KM estimator of the survivor function. For simplicity, RMST(τ) will

be denoted by φ(τ). If there are m failure times before τ , then

φ̂(τ) =
m∑
j=1

Ŝ(tj−1)[tj–tj−1] + Ŝ(tm)[τ − tm],

where t0 = 0. This estimator is unbiased and its standard error is equal to

σ̂ =

√√√√ ∑m
j=1 dj∑m

j=1 dj − 1

m∑
j=1

djA2
j

rj(rj–dj)
,

where dj is the number of events at tj, rj is the number of subjects at risk at tj

and Aj =
∫ τ

tj
Ŝ(t)dt. When two competing treatments are to be compared, the

difference (or the ratio) between the RMSTs of the randomized arms can be used

and a test statistic can be calculated. Generally, for K groups, the null hypothesis

of no difference can be expressed as

H0 : φ1(τ) = φ2(τ) = . . . = φK(τ),

while the alternative is

H1 : φi1(τ) ̸= φi2(τ),

for some i1, i2 ∈ {1, 2, . . . , K}. Let Σ be the covariance matrix of the vector φ(τ) =

(φ1(τ), φ2(τ), . . . , φK(τ))
′. Then Σ is a diagonal matrix with diagonal elements the

quantities σ̂2
j . Let also D be a (K− 1)×K matrix whose j-th row is ej–ej+1, where

ej is a K-dimensional vector whose j-th element is equal to 1 and all others are

equal to zero. Then, the test statistic is

φ(τ)′[D′(DΣD′)−D]φ(τ)

and it asymptotically follows a chi-square distribution with rank(DΣD′) degrees of

freedom. This homogeneity test does not identify which pairs are different and thus,

if H0 is rejected, pairwise comparisons are being performed, adjusting the p-values

to avoid falsely significant results. For instance, the statistical software SAS uses a

well-known method, called Šidák’s (1967) correction.

Of course, apart from the aforementioned non-parametric method for the cal-

culation and the comparison of the RMST amongst different groups of interest,

various parametric models have also been developed. The simplest formulation one
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can think of, is the linear model with response the RMST and the individual charac-

teristics as exploratory variables. However, RMST is non-negative and thus a linear

model might yield estimates out of bounds. It is usually preferable to fit a log-linear

model so as to avoid having an uninterpretable estimate for the RMST. Modeling

RMST via a parametric model permits the adjustment for many covariates simul-

taneously. If the linear model is implemented then the effects are interpreted as

differences in the RMST, while if the log-linear model is fitted to the data, then the

effects are interpreted in terms of RMST ratios. Due to the nature of the data in

survival analysis, i.e., due to the fact that some of the observations are censored,

modeling of RMST is accomplished using either pseudo values or Inverse Probability

Censoring Weighting (IPCW), with the first method assuming that censoring is not

informative, and the second that the censoring distribution can be properly esti-

mated. Nevertheless, other approaches have also been proposed, based on the fact

that RMST can be easily computed if the survival function of interest is estimated

(see for example Royston & Parmar’s (2002) method based on their flexible hazard

scaled family of models).

Under the two-sample problem, whether the approach used is non-parametric

or parametric, the estimate of the RMST and its standard error provide important

information about the significance of the treatment effect and an appropriate test

can be performed in a conventional manner.

5.4.3 Choice of τ

It is evident that the results obtained by any model for the RMST are dependent

on the choice of the time point τ . Usually, the selected τ is close to the end of the

follow-up. For instance, when there are two populations in the study, τ may be set

equal to the minimum of the largest observed event time in each of the two treatment

groups, or equal to the minimum of the largest observed event or censoring time.

Other approaches, including the choice of a time point τ which has some clinical

relevance or a trial-specific τ , have been developed and presented in recent papers

focusing on the design stage of the study. In general, one should keep in mind

that τ should be selected according to the problem at hand and the accumulated

information, otherwise invalid findings, such as biased or unstable estimates, will

occur.
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5.4.4 Combined test by Royston & Parmar

The RMST method is increasingly being considered as an alternative analysis ap-

proach when non-PH are apparent. However, due to the fact that the Cox PH

model exhibits maximum power under proportionality, Royston & Parmar (2016)

suggested a combination of the two methods to gain an improved statistic for the

treatment effect testing. They acknowledged the fact that the choice of τ plays

a major role on the outcome of the RMST test, and that is why they proposed

implementing the corresponding test on a range of τ values and use the maximum

statistic instead of the traditional square of the ratio of the RMST difference at a

pre-specified time point to its standard error. A suitable adjustment of the resulting

minimal p-value is accomplished via a permutation test and finally, it is combined

with Cox PH model’s p-value using a multiple testing correction closely related to

the one introduced by Bonferroni. More specifically, the algorithm steps in order to

obtain the final statistic are described as follows:

1. Firstly, a grid of time values for the calculation of the RMST difference statistic

must be selected: Since it is unlikely to obtain a reliable representative and

clinically meaningful estimate of the RMST difference early in follow-up, the

lower bound should not be too small. In the relative paper, the 30th centile of

the event times is considered as a reasonable choice for the lower bound (τstart).

For the upper bound, a logical choice is the minimum of the largest uncensored

event times in the two arms (τend). As for the number of time points on which

the RMST difference statistic is calculated, it is somewhat arbitrary. Royston

& Parmar have shown, based on twenty non-randomly chosen trial datasets,

that 5 points usually miss the optimal τ , but 10 seem to be enough, since the

performance was not quite different from when more points were selected. So,

10 equally spaced times are being selected, i.e.,

τk = τ1 +
τ10 − τ1

9
· (k − 1)

for k = 1, 2, . . . , 10, where τ1 = τstart and τ10 = τend.

2. The RMST difference statistic is calculated for each τk, k = 1, 2, · · · , 10. The
maximum value amongst them is denoted by Cmax and the corresponding p-

value pmax obtained from a chi-square distribution with 1 d.f. is the minimum.

3. A permutation test is implemented in order to gain a corrected version of

the previous p-value, since multiple tests have been performed. Firstly, the
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treatment covariate is permuted M times in order to remove any systematic

association between the treatment assignment and the outcome, preserving

the structure of the data. In each permuted dataset step 2 is applied, i.e.

the maximal chi-square statistic Ci over 10 selected and equally spaced times

is calculated, resulting in a sample of M values from the null distribution of

Cmax. Then, a corrected p-value occurs as follows:

pperm =
N + 0.5

M + 1
,

where N =
∑M

i=1 I(Ci > Cmax) and 0.5 is a continuity correction. The smallest

pperm is equal to 0.5/(M + 1). The definition of pperm is quite reasonable: the

smaller the N , the smaller the p-value, because then it is rarer to find a chi-

square statistic which is greater than Cmax. Usually, M is set equal to 999 in

simulation studies, but in definitive analysis it should be larger.

The aforementioned method exhibits three main disadvantages: it is time-

consuming, stochastic and thus not precisely reproducible and finally, the

choice of M is arbitrary. An approximation of the pperm can occur using

its relationship with pmax given by Royston & Parmar (2016), which is based

on a Bod-Tidwell model of the form E(y) = β1x
p1 + β2x

p2 . Employing three

example datasets, it was shown that

E(pperm) = 1.762(pmax)
0.885–0.802(pmax)

2.547. (5.13)

In general, after checking the validity and accuracy of this approximation, they

came to the conclusion that it performs quite well. They proposed, however,

to implement the accurate method when the approximation in (5.13) seems to

be very close to critical values, such as 0.05.

4. After the computation of pperm, the RMST and the Cox test must be com-

bined. Nevertheless, they are positively correlated since both tests correspond

to departures from the null hypothesis of identical survival functions. As a

result, the min value pmin of the corresponding p-values pperm and pCox will be

significant too often. In this case, a correction for multiple testing procedures

should be applied. Here, another empirical approach is used to approximate

the null distribution of pmin based on the idea that it is a two parameter beta

distribution, to allow some flexibility. Notice, that another important reason

for this choice is the set of possible values for pmin. The two parameters are
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estimated via the maximum likelihood. Eventually, the final p-value denoted

by pcomb is given by the formula6:

pcomb = F (pmin)

where F is the cumulative distribution function of a Beta random variable

with parameters a = 1 and b = 1.5.

When the null hypothesis is rejected, we can suspect the reason by examining

the p-values pperm and pCox. The smallest will show the dominant problem, but it is

also useful to do some extra analysis such as the GT test for proportionality and/or

the smoothed scatter plots of the scaled Schoenfeld residuals.

Various modifications of the combined test can be considered, mostly replacing

the Cox (1972) test with a weighted log-rank test (see section 5.2). In this way, the

(weighted) combination places more importance on a specified time period, in order

to detect early, late or middle difference between the survival curves of the two arms

more easily. The procedure is exactly the same, except from the last step, where

pCox must be replaced with the p-value pWLT from a weighted log-rank test. The

parameters of the beta distribution above should be modified accordingly.

5.5 Weighted Kaplan-Meier Statistics

A natural way to perform a test for treatment effect is to directly compare the

survivor function estimates of the two populations of interest. Pepe & Fleming

(1989, 1991) presented a class of tests called Weighted Kaplan-Meier tests. The

initial idea was to conduct a test for treatment effect based on the quantity

T (τ) =

∫ τ

0

[Ŝ1(t)− Ŝ2(t)]dt, (5.14)

where τ is the length of the study period. However, in the presence of heavy cen-

soring the difference between the survivor curves can be very unstable for t close τ .

Notice that, according to (5.12),

T (τ) =

∫ τ

0

[Ŝ1(t)− Ŝ2(t)]dt = RMST1(τ)− RMST2(τ)

and thus, this test is equivalent to the test presented in section 5.4.2. This is the

reason why poor choices of τ result in low power.

6Both approximations used in the combined test were shown to be adequate for practical ap-
plication.
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To overcome this problem, Pepe & Fleming (1989, 1991) proposed to base the

test on the interval of a weighted difference of the survivor functions, i.e., on the

quantity

Tw(τ) =

∫ τ

0

w(t)[Ŝ1(t)− Ŝ2(t)]dt. (5.15)

Various weighting functions w(t) can be used but the aim here is to choose one that

ensures the stability of the statistic. A famous suggestion, is to use the harmonic

mean of the probabilities Cj(t), j = 1, 2, of no censoring before time t for the two

groups. More precisely,

wC(t) =
C1(t)C2(t)

p1C1(t) + p2C2(t)
,

where p1 is the proportion of patients in sample 1 and p2 is the proportion of patients

in sample 2. In the absence of censoring, wC(t) = 1.

Similar to the RMST difference, the quantity Tw(τ) devided by its standard

deviation σTw(τ) has an asymptotic standard normal distribution. It holds that the

variance of Tw(τ) is given by

σ2
Tw
(τ) = − n

n1n2

∫ τ

0

[
∫ τ

t
w(u)S(u)du]2

S2(t)
[wC(t)]

−1dS(t),

where n is the total number of observations and nj is the number of patients in

group j, j = 1, 2.



Chapter 6

Simulation study: Tests for
treatment effect

6.1 Data simulation: Special scenarios

The aim of this chapter is to compare the performance of various tests for treatment

effect presented in Chapter 5. Therefore, for two populations with survivor func-

tions S1(t) and S2(t), the null hypothesis H0 is expressed as S1(t) = S2(t), while

the alternative HA as S1(t) ̸= S2(t). For the null hypothesis of identical survivor

functions, two sample sizes for the total number of patients are being under consid-

eration: n = 200 and n = 1000. In each case, the patients are distributed equally

between the control and the intervention group and their survival time follows an

exponential distribution with rate λ = 1. For the alternative hypothesis of dissimilar

survivor profiles between the subjects of the two arms, all the scenarios discussed

in Chapter 4 are investigated. The proportion of randomly censored observations

reaches 5% in the whole data set and the number of repetitions is equal to 1000 for

each scenario.

6.2 Results

Twenty tests for treatment effect are being compared in this chapter:

1. a max combination of weighted log-rank tests, using the sequence 0, 0.1, 0.2, ..., 0.9, 1

for ρ and γ (11× 11 = 121 individual z-statistics),

2. the max combination test by Lin et al. (2020),

3. Karrison’s (2016) versatile weighted log-rank test,
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4. Lee’s (1996) versatile weighted log-rank test,

5. Lee’s (2007) versatile weighted log-rank test,

6. a weighted log-rank test from the FH family (see section 5.2.1), with ρ = 1

and γ = 0 (Log-rank for early effects - LRE),

7. a weighted log-rank test from the FH family (see section 5.2.1), with ρ = 0

and γ = 1 (Log-rank for late effects - LRL),

8. the traditional log-rank test (see sections 2.3 and 5.2.1),

9. Cox’s (1972) test for the significance of the treatment indicator variable,

10. joint test by Royston & Parmar (2014),

11. Breslow, Elder & Berger’s (1984) combination test using rank scores,

12. the supremum log-rank test, which is essentially a combination of the tradi-

tional log-rank test with itself, since the log-rank statistic is calculated up

to each failure time and the maximum of all these statistics is set to be the

definitive statistic for the final test (Fleming et al., 1987),

13. the RMST difference using the minimum of the maximum observed failure or

censoring times in the two arm (see section 5.4),

14. the RMST difference using the minimum of the maximum observed failure

times in the two arms (see section 5.4),

15. the Combined test by Royston & Parmar (2016),

16. a weighted version of the aforementioned test, using the LRL instead of Cox’s

test,

17. the Weighted KM test (Pepe & Fleming, 1989, 1991),

18. the Cauchy CP testing procedure (Zhang et al., 2021),

19. Weighted Cox Regression employing the weights proposed by Schemper et al.

(2009), resulting in an average hazard ratio (AHR), and finally,

20. Weighted Cox Regression using the weights proposed by Xu & O’Quigley

(2000), giving an average regression effect (ARE).
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The results per each scenario are presented below, while additional tables and figures

for further insight on the findings are included in the Appendix Section B.

Identical Survivor Functions

The empirical significance level under the null hypothesis of identical survivor

functions is, as expected, approximately equal to 5% (Table 6.1, Figure 6.1). As the

sample size increases from 200 to 1000, type I error decreases for the majority of the

tests.

Test n = 200 n = 1000 Test n = 200 n = 1000
1 5.2 4.5 11 5.5 4.8
2 5.3 4.4 12 6.1 5.8
3 6.2 4.8 13 5.7 5.7
4 6.0 4.8 14 4.9 5.2
5 6.0 4.6 15 5.8 4.8
6 6.4 5.1 16 6.4 5.6
7 5.0 5.6 17 5.7 5.7
8 6.1 5.8 18 5.9 5.6
9 6.0 5.8 19 6.4 5.0
10 5.5 4.8 20 6.0 5.9

Table 6.1: Type I error (size in %) of 20 tests for treatment effect, for two different
sample sizes n.

Figure 6.1: Type I error (size) of 20 tests for treatment effect, for each sample size
n. The dashed line corresponds to type I error equal to 5%.
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Hazard Ratio
0.65 0.8 0.9

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 82.4 100 29.9 90.3 10.7 34.4
2 82.6 100 30.1 90.5 11.0 34.4
3 82.7 100 30.3 90.3 11.3 34.4
4 79.6 100 28.1 88.4 10.5 32.2
5 80.8 100 29.6 89.7 11.0 33.9
6 72.8 100 25.7 83.0 10.7 30.1
7 75.4 100 27.8 83.7 9.3 29.6
8 85.2 100 31.1 92.7 10.7 35.7
9 85.2 100 30.9 92.7 10.5 35.7
10 77.3 100 25.3 87.0 9.7 29.0
11 77.2 100 25.4 87.0 9.8 28.9
12 84.8 100 31.0 92.5 10.3 35.5
13 85.6 100 31.1 92.8 10.7 35.6
14 83.4 100 28.1 92.3 9.3 35.4
15 81.8 100 28.4 90.4 10.5 32.2
16 80.8 100 30.7 89.3 11.2 34.2
17 85.6 100 31.1 92.6 10.8 35.8
18 81.3 100 28.1 89.7 10.8 32.6
19 73.3 100 26.2 83.9 10.9 30.4
20 85.3 100 30.8 92.8 10.9 35.8

Table 6.2: Power(%) of 20 tests for treatment effect under the proportional hazards
assumption, using three constant HR functions and two different sample sizes n.

Proportional Hazards

Under the assumption of proportional hazards, as the assumed HR decreases so

does the power of the tests. Of course, the log-rank test along with Cox’s test for

significance1 achieve the maximum possible power, although in same cases they are

slightly outperformed by Tests 12, 13, 17 or 20. This is only due to the fact that the

data are simulated only 1000 times. This means, however, that the supremum log-

rank test, the RMST difference using as τ the minimum of the maximum observed

times, the weighted KM test and the weighted cox regression resulting in an ARE

have comparable power with the traditional log-rank test under PH. On the other

hand, LRE, LRL, joint test by Royston & Parmar (2014) and Breslow’s (1984) test,

along with the AHR parameters of the weighted cox regression show the greatest

lack of power in comparison to the other methods (Table 6.2, Figure 6.2).

1These tests are considered equivalent (see section 2.4.4).
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 9.4 31.9 14.5 57.5 21.0 76.3
2 9.9 32.5 15.0 57.2 20.3 75.7
3 10.3 33.6 15.1 58.1 20.7 73.8
4 10.2 34.3 14.4 55.2 19.1 73.1
5 10.7 34.3 14.8 58.0 20.2 74.0
6 12.2 40.8 19.0 64.9 23.2 79.0
7 5.9 8.3 7.3 19.3 12.8 41.5
8 8.6 26.4 14.6 51.1 21.2 74.2
9 8.6 26.2 14.6 51.0 21.2 74.1
10 11.1 36.2 14.9 57.4 18.4 71.6
11 11.1 36.2 15.1 57.3 18.3 71.6
12 8.8 26.4 14.3 51.1 21.2 73.9
13 8.0 24.8 13.8 51.1 21.5 74.7
14 7.7 24.8 13.7 50.3 20.2 74.4
15 11.6 36.9 16.2 58.2 21.4 75.4
16 12.1 34.7 16.2 55.8 20.4 72.6
17 8.7 26.0 14.3 52.2 21.5 75.6
18 10.6 34.5 15.3 57.4 19.7 74.8
19 12.0 39.9 18.9 64.7 23.1 78.9
20 8.4 24.2 13.6 49.1 21.2 72.0

Table 6.3: Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.8 and subsequent HR ≈ 1 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.

Early/Diminishing Effect

When an early effect is anticipated, for instance, when the HR is initially equal

to 0.8 and subsequently equal to 1, approximately, LRE achieves maximum power

(Table 6.3, Figure 6.3). Interestingly, Tests 1 to 5 and 19 also perform quite well in

all cases (see Tables B.1 & B.2 and Figures B.1 and B.2 in the Appendix). At the

same time, when the change in the HR is at the beginning or the middle of the study,

the Combined test by Royston & Parmar (2016), the joint test (Royston & Parmar,

2014) and Breslow’s (1984) combination have also good power in comparison to the

rest of the tests. However, when the change happens after the occurrence of 70%

of the events in the treatment group, the joint and Breslow’s tests along with LRL

show a severe lack of power. Of course, this holds for all individual cases for the

LRL test, since it places more weight on the end of the study, where HR is roughly

1.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 18.7 71.7 12.9 47.2 7.6 23.7
2 19.1 71.9 13.1 47.7 7.7 24.7
3 19.7 71.4 13.6 49.4 8.4 26.7
4 19.0 70.6 13.8 50.1 8.9 27.2
5 18.9 71.1 14.0 49.8 8.5 26.4
6 11.2 33.1 7.4 13.6 7.3 6.8
7 22.8 77.6 16.6 58.9 9.5 31.6
8 16.9 64.8 11.5 38.8 7.3 18.9
9 16.9 64.7 11.2 38.7 7.3 18.9
10 18.5 67.8 13.8 49.7 9.6 28.5
11 18.3 67.8 13.9 49.9 9.4 28.7
12 16.5 64.4 10.5 38.9 7.2 18.7
13 18.2 67.4 11.4 43.5 7.5 21.3
14 15.0 65.4 8.6 40.3 5.6 19.3
15 14.6 59.7 9.7 33.2 7.3 16.5
16 21.1 73.6 15.2 53.1 10.0 27.8
17 17.5 65.5 10.9 41.2 7.7 20.0
18 18.0 69.2 13.5 51.7 9.3 28.8
19 11.3 33.5 7.4 14.5 7.4 7.4
20 17.6 65.7 11.9 41.3 7.2 19.7

Table 6.4: Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ≈ 1 and subsequent HR = 0.8 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.

Late/Delayed Effect

Table 6.4 and Figure 6.4 give information about the power of the 20 tests under

a late effect scenario, where the final HR is equal to 0.8. In this case, the LRE

and the weighted Cox regression using weights from Schemper et al. (2009) have

the worst performance. As anticipated, the LRL test and the weighted Combined

test by Royston & Parmar (2016) achieve high power in comparison to the others.

Cauchy CP testing procedure and max combination tests 1 to 5 exhibit moderate

power, but they usually come immediately after LRL and weighted Combined test,

with an approximate loss of power of about 3% for small samples and 5-10% for

large samples. Similar conclusion are drawn for the cases where the final HR is

either equal to 0.65 or 0.9 (see Tables B.3 & B.4 and Figures B.3 & B.4).
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 10.1 30.8 10.2 34.3
2 9.7 31.4 10.1 35.3
3 10.2 33.0 10.8 38.1
4 12.0 44.6 12.4 48.9
5 10.8 33.9 11.2 39.4
6 11.4 33.2 10.9 32.2
7 6.1 12.8 8.5 21.1
8 6.3 10.2 6.1 6.1
9 6.2 10.2 6.0 6.1
10 16.5 63.6 17.8 66.5
11 16.5 63.7 17.7 66.4
12 6.2 10.3 6.0 6.2
13 9.2 21.4 6.9 8.2
14 9.3 21.9 5.6 8.1
15 12.2 41.2 12.0 41.1
16 14.9 48.4 14.6 53.0
17 9.2 21.8 6.6 8.0
18 14.6 59.7 14.7 64.9
19 10.7 31.0 10.4 30.2
20 6.0 8.9 5.6 5.6

Table 6.5: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 0.8 and subsequent HR = 1.2, for different sample sizes
n and cut points 2 and 4.

Crossing Hazards

For both cases of crossing hazards involving a HR equal to 0.8 and a HR equal

to 1.2, the joint test (Royston & Parmar, 2014) and Breslow’s (1984) proposal

with rank scores exhibit the best performance. After them, the Cauchy CP testing

procedure also seems a quite reasonable option, followed by the weighted Combined

test and Lee’s (1996) suggestion (Tables 6.5 & 6.6 and Figures 6.5 & 6.6). The latter

outperforms the other max combination tests (1, 2, 3 and 5), despite the fact that

it had similar behavior with them up to now.

Many conventional tests have severely diminished power, such as Cox’s test, the

log-rank test and the RMST difference along with a non-traditional one: the test

occurring from a weighted Cox regression with an ARE (Test 20). Moreover, these

and other tests (e.g. the supremum log-rank and the weighted KM test) seem to

perform even worse when the follow-up period is extended by two time units.
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Figure 6.5: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 0.8 and subsequent HR
= 1.2.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 7.6 26.4 8.9 33.2
2 7.5 26.8 9.2 33.8
3 7.8 28.5 9.7 36.0
4 9.9 38.8 11.6 47.8
5 8.3 29.9 10.3 37.9
6 9.0 31.3 9.0 28.8
7 5.2 11.0 8.5 23.6
8 5.6 8.5 6.1 5.2
9 5.4 8.5 6.0 5.2
10 14.4 56.4 17.8 66.0
11 14.2 56.4 17.8 66.1
12 5.5 8.6 5.7 5.1
13 7.1 17.2 5.9 5.3
14 7.4 17.9 5.3 5.3
15 9.1 34.8 9.6 34.0
16 10.6 40.7 13.0 49.5
17 7.1 18.4 5.7 5.7
18 11.6 47.1 14.1 59.2
19 9.3 30.6 8.4 27.8
20 5.3 8.0 5.9 5.9

Table 6.6: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 1.2 and subsequent HR = 0.8, for different sample sizes
n and cut points 2 and 4.

Similar results can be drawn for the other two cases of crossing hazards, leaving

out of the equation the previous statement when the initial HR is 1.10 and subse-

quently becomes equal to 0.65 (Table B.6, Figure B.6). In general, the power of

the 20 tests is higher for the latter scenario and the one where HR = 0.65 at the

beginning and equal to 1.10 afterwards (see also Table B.5, Figure B.5).

Long-term Survivors

The simulation study in this case is not so informative, but some intriguing

findings occur from the case where the initial HR is 0.8. The LRE test and the

weighted Cox regression resulting in an AHR have the lowest power. On the other

hand, the LRL and the weighted Combined test by Royston & Parmar (2016) achieve

better performance than the other 18 testing procedures, since they place more

weight at the end of the study, where the effect is greater. However, the majority of

the tests perform well, and they are quite close the optimal choices. For instance,
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Figure 6.6: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 1.2 and subsequent HR
= 0.8.



128CHAPTER 6. SIMULATION STUDY: TESTS FOR TREATMENT EFFECT

Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 48.7 99.3 61.6 100.0
2 49.0 99.3 62.0 100.0
3 48.3 99.3 61.9 100.0
4 46.2 99.2 58.3 100.0
5 47.7 99.2 60.4 100.0
6 34.8 94.5 37.4 96.2
7 51.0 99.3 65.2 100.0
8 47.1 98.9 60.9 100.0
9 46.6 98.9 60.8 100.0
10 39.8 99.0 53.8 99.9
11 40.0 99.0 53.6 99.9
12 46.6 98.9 59.9 100.0
13 40.2 97.0 60.3 99.9
14 38.6 96.9 57.3 99.9
15 41.1 98.6 54.9 99.9
16 48.1 99.2 62.9 100.0
17 39.7 96.9 59.5 99.8
18 44.5 99.0 59.7 100.0
19 35.1 94.8 38.2 96.8
20 47.0 98.9 62.2 100.0

Table 6.7: Power(%) of 20 tests for treatment effect, for the scenario of long-term
survivors with initial HR = 0.8 and subsequent HR = 0.82, for different sample sizes
n and cut points 2 and 4.

all max combination tests (Tests 1 to 5), the traditional log-rank, the supremum

log-rank, the Cauchy CP test and the weighted Cox regression giving an ARE, work

pretty well too (Table 6.7, Figure 6.7). Table B.7 and Figure B.7 in the Appendix

give also some insight into the other scenario of long-term survivors.

Generally speaking, there is not an optimal procedure for testing the significance

of the treatment effect under various non-PH patterns. However, it is obvious that

many procedures work well under different scenarios. For instance, max combination

tests perform well in all cases apart from crossing hazards. In these scenarios, their

power is quite similar. Therefore, there is no gain when a grid of values for ρ and γ is

under consideration, i.e., Test 1 is unnecessary complex. Lin et al. (2020) suggested

that after a versatile weighted test is conducted, a weighted estimate for the HR

can be estimated using as weight the weighting function resulting in the smallest

p-value amongst the individual tests. Of course, a weighted Cox model can also be

fitted to the data using either weights proposed by Schemper et al. (2009) or by
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Figure 6.7: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of long-term survivors with initial HR = 0.8 and subsequent
HR = 0.82.
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Xu & O’Quigley (2000). The first method is preferred for the early effect scenario,

while the latter for the diminishing effect and the long-term survivors case. Another

suggestion, is the usage of a change point Cox model based on the Cauchy CP testing

procedure, which also performs well here.

In the presence of crossing hazards, only three tests yield regularly valid results:

the joint test, Breslow’s (1984) combination and the Cauchy CP procedure. Since

neither of the first two produces an estimate for the HR or the RMST, Cauchy CP

method can be implemented both for testing the treatment effect and providing a

piecewise constant HR. Unfortunately, it was shown that even RMST based tests

were not suitable for this case, so it may be preferable to report a time dependent

HR rather than a non-precise summary measure for the whole study.



Chapter 7

Discussion and further research

This dissertation serves as a general overview of - mainly analytical - tests for pro-

portionality and tests for treatment effect. After a brief clarification of fundamental

definitions and statistical methods in survival analysis, various testing procedures,

developed since the introduction of the Cox proportional hazards model in 1972 up

to now, were presented and examined under four non-PH patterns via simulations.

The necessity of finding the most powerful test when the proportionality assumption

is violated is the result of recent advancements in oncology therapy, and specifically

in immunotherapy. Most randomized clinical trials with a time-to-event outcome

are designed assuming proportional hazards of the treatment effect. However, due

to new, innovative therapies with unique mechanisms of action, several types of non-

proportionality patterns usually occur either as a consequence of different treatment

effects in subgroups or due to the treatment itself.

The findings of this thesis are summarized in Tables 7.1 and 7.2 using the same

numbering for the tests for proportionality and treatment effect as the one in Chap-

ters 4 and 6, respectively. After investigating their performance via simulation

studies, it becomes clear that no test surpasses all the others under different alter-

natives. Amongst the eighteen tests for proportional hazards, four of them display

stable behavior under dissimilar types of departure from the null hypothesis: Gramb-

sch & Therneau’s suggestion (1994) using as functions of time either the ranks of

the failure times or the Kaplan–Meier estimate of the pooled survivor function, a

modification of the goodness-of-fit test proposed by Lin (1991) using as weighted

parameter estimators the ones introduced by Schemper et al. (2009) and one of the

tests proposed by Breslow et al. (1984). The latter, however, is only useful for the

two-sample case. As for the comparison of twenty tests for treatment effect, many

testing procedures seem to offer proper results: the versatile weighted log-rank tests,

the joint and combined tests by Royston & Parmar (2014, 2016), as well as the com-
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bination test suggested by Breslow et al. (1984). Nevertheless, a careful study of

the tables and figures presented in Chapter 6 shows the superiority and flexibility of

a newly developed method known as the Cauchy combination of change-point Cox

regressions (Zhang et al., 2021).

Test Early Effect Late Effect Crossing Hazards Long-term survivors

1 × × × ×
2 × × × ×
3 × × ×
4 × × × ×
5 × × × ×
6 × × ×
7
8
9 × ×
10
11 × × × ×
12 × × × ×
13 × × × ×
14 × × × ×
15 × × × ×
16
17 × × × ×
18 × × × ×

Table 7.1: Tests for proportionality which perform poorly under each scenario.

Despite the large number of testing procedures discussed, numerous other sug-

gestions have been made throughout the years. As for the tests for proportionality

already conducted, many improvements can be made. For instance, the performance

of the interval-dependent tests was examined only for the case of two non-overlapping

time intervals. More change points and/or partitions of the covariate space can be

investigated in further studies. Also, a comparison of global tests will be useful, since

in real-life applications, a wide range of characteristics, i.e., variables, is reported

for each patient. The proportionality assumption may be violated for any covariate,

not just the treatment indicator. At the same time, more alternatives should be

simulated, in order to also assess the performance of the tests for treatment effect.

Throughout this thesis, it was stressed that the early and the late effect scenar-

ios, along with crossing hazards and long-term survivors are just indicative of what

may someone encounter during the analysis of non-proportional data. Various time

functions for the hazard ratio may be considered, implementing different distribu-
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Test PH Early Effect Late Effect Crossing Hazards Long-term survivors

1
2
3
4
5
6 × × ×
7 × ×
8 ×
9 ×
10
11
12 ×
13 ×
14 ×
15
16
17 ×
18
19 × × ×
20 ×

Table 7.2: Tests for treatment effect which perform poorly under each scenario.

tions for the simulation of the patients’ survival time in each arm. For instance, the

case of non-monotone hazard ratio may be investigated using a bathtub-shaped HR

function or the case of a gradually increasing HR simulating survival times from the

Weibull distribution.

After all that, real data should be used to validate the results and ensure the

validity of the findings. New observations and issues may arise, but an extremely

thorough literature review along with a wide range of simulation studies can lead

to the development of new methods or the utilization of old ones, in a new, more

efficient way.
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Appendix A

Simulation study A

Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 9.0 14.3 10.2 21.6 9.3 19.4
2 7.8 22.2 7.1 20.8 6.4 11.3
3 7.7 21.0 9.3 30.6 6.4 10.8
4 7.8 13.8 9.2 20.7 8.2 18.7
5 7.9 22.4 7.3 21.3 6.6 11.5
6 7.6 21.0 9.5 31.0 6.3 11.2
7 8.7 25.6 9.3 27.9 6.9 17.2
8 8.9 24.5 9.3 28.0 6.9 17.7
9 8.2 23.0 8.8 26.3 6.5 16.7
10 8.2 23.9 9.1 27.4 7.0 17.8
11 4.9 13.4 6.5 19.2 6.0 16.9
12 7.6 21.0 8.9 30.6 6.3 10.9
13 7.3 20.8 8.6 30.4 6.1 10.9
14 7.1 21.0 8.7 31.2 6.2 11.1
15 7.6 21.0 8.9 30.6 6.3 10.9
16 8.8 25.3 9.3 27.8 6.8 17.3
17 7.7 14.1 9.3 20.6 8.5 18.5
18 7.9 22.5 7.3 21.4 6.4 11.4

Table A.1: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the early effect case with initial HR = 0.8 and subsequent HR ≈ 1 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 6.7 6.5 6.7 7.8 7.2 7.3
2 5.9 7.0 5.6 6.9 5.5 5.6
3 6.9 6.7 6.7 9.9 6.2 5.7
4 5.9 6.4 6.5 7.6 6.0 7.0
5 5.8 7.1 5.5 7.0 5.3 5.4
6 5.9 6.4 6.4 9.5 5.9 5.5
7 6.1 7.4 5.9 9.0 5.9 6.8
8 6.0 7.4 6.1 8.8 5.9 6.7
9 5.1 7.1 5.3 8.0 4.9 6.0
10 6.0 7.3 6.3 8.3 5.4 6.9
11 4.5 6.2 4.5 7.3 4.4 7.3
12 6.6 6.8 6.6 9.8 6.1 5.5
13 6.4 6.6 6.4 9.8 5.9 5.5
14 5.9 6.7 6.3 9.8 6.1 5.5
15 6.6 6.8 6.6 9.8 6.1 5.5
16 6.0 7.4 6.0 9.0 6.1 6.6
17 5.6 5.9 6.0 7.3 6.0 6.7
18 5.4 7.2 5.1 7.1 4.9 5.6

Table A.2: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the early effect case with initial HR = 0.9 and subsequent HR ≈ 1 after 30%,
50% and 70% of events have been observed in the treatment group, for different
sample sizes n.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 11.5 17.8 13.8 26.0 13.3 25.7
2 9.4 23.8 9.4 23.9 8.1 16.3
3 9.3 18.8 11.9 36.5 8.0 15.7
4 10.0 17.9 12.1 25.8 11.6 25.6
5 9.3 24.0 9.7 24.4 8.2 16.4
6 9.0 19.3 11.2 35.4 7.3 15.3
7 9.9 24.9 10.9 31.0 8.6 21.1
8 9.9 25.0 11.1 31.1 8.7 21.0
9 9.5 24.1 10.5 29.0 8.2 20.0
10 10.2 25.3 10.9 30.8 8.8 22.3
11 5.2 16.1 6.8 23.6 7.0 23.6
12 9.3 18.4 11.5 36.2 8.0 15.3
13 8.8 18.0 10.7 36.0 7.6 15.2
14 8.6 19.1 11.3 36.8 7.7 16.8
15 9.3 18.4 11.5 36.2 8.0 15.3
16 9.8 24.9 10.9 30.9 8.6 21.0
17 10.2 18.3 12.1 27.0 11.6 25.8
18 9.4 24.4 9.5 24.6 7.7 16.8

Table A.3: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the late effect case with initial HR ≈ 1 and subsequent HR = 0.8 after 30%, 50%
and 70% of events have been observed in the treatment group, for different sample
sizes n.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 8.1 9.6 8.3 11.7 8.8 11.9
2 6.6 8.5 6.4 8.5 6.2 7.0
3 7.5 8.5 7.6 11.9 6.6 7.5
4 6.7 9.3 7.0 11.4 7.8 11.5
5 6.7 8.2 6.5 8.5 5.9 7.1
6 6.4 8.5 6.9 11.8 6.2 7.8
7 5.9 10.1 6.2 10.9 5.8 9.1
8 5.9 10.0 6.2 10.9 5.8 9.3
9 5.9 9.1 6.0 10.3 5.7 8.6
10 5.9 10.8 6.3 11.1 5.9 9.5
11 4.4 9.0 5.0 10.3 5.0 10.2
12 7.3 8.5 7.4 11.7 6.4 7.5
13 7.1 8.5 7.0 11.4 6.1 7.4
14 6.1 8.4 6.8 12.2 5.9 8.5
15 7.3 8.5 7.4 11.7 6.4 7.5
16 5.9 10.1 6.2 10.9 5.7 9.1
17 6.9 9.5 6.9 11.5 7.3 11.2
18 7.0 8.8 6.9 8.8 6.3 6.8

Table A.4: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the late effect case with initial HR ≈ 1 and subsequent HR = 0.9 after 30%, 50%
and 70% of events have been observed in the treatment group, for different sample
sizes n.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 19.5 71.4 18.5 61.8
2 14.7 53.5 16.8 63.1
3 22.6 76.4 25.5 84.3
4 19.6 71.4 18.4 62.1
5 16.4 54.8 17.3 63.9
6 22.6 76.3 25.7 84.3
7 20.6 72.6 21.1 76.3
8 20.2 73.1 21.4 76.2
9 7.7 46.3 20.2 73.7
10 20.2 71.6 21.3 74.4
11 13.0 67.2 13.5 59.6
12 22.4 76.4 25.3 84.4
13 22.4 76.2 24.7 84.3
14 22.7 76.2 24.3 84.1
15 22.4 76.4 25.3 84.4
16 20.2 72.9 21.1 76.3
17 18.8 69.7 17.9 60.8
18 16.6 57.4 18.5 66.2

Table A.5: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 0.8 and subsequent HR = 1.2,
for different sample sizes n and cut points 2 and 4.
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Figure A.5: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 0.8 and subsequent
HR = 1.2.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 17.8 65.3 21.1 66.6
2 11.8 45.7 16.5 61.7
3 16.3 55.4 21.7 75.3
4 17.8 65.4 21.3 66.8
5 13.3 48.1 17.5 63.2
6 16.2 55.5 21.5 74.8
7 17.1 63.8 22.2 73.1
8 17.3 64.4 22.6 73.1
9 5.6 33.8 20.5 69.4
10 17.4 63.6 23.2 72.8
11 12.9 63.5 14.8 63.5
12 16.3 55.7 21.4 75.1
13 16.1 55.4 21.1 75.1
14 17.1 56.7 21.4 75.7
15 16.3 55.7 21.4 75.1
16 17.1 63.8 22.5 72.8
17 18.4 66.0 21.9 68.0
18 13.6 47.7 17.9 61.8

Table A.6: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of crossing hazards with initial HR = 1.2 and subsequent HR = 0.8,
for different sample sizes n and cut points 2 and 4.
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Figure A.6: Power of 18 tests for proportional hazards, for different sample sizes and
cut points for the scenario of crossing hazards with initial HR = 1.2 and subsequent
HR = 0.8.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 9.3 23.1 12.5 26.9
2 6.8 18.0 9.4 25.0
3 8.2 24.8 11.8 36.2
4 9.3 23.3 12.4 26.9
5 7.0 18.2 9.9 25.6
6 9.0 24.4 11.9 36.0
7 9.5 23.1 12.0 31.5
8 9.4 23.3 12.1 31.6
9 1.7 3.7 9.5 27.6
10 10.2 23.7 13.0 31.6
11 2.7 11.3 4.0 21.5
12 8.1 24.8 11.7 36.2
13 8.1 24.5 11.3 35.7
14 8.4 25.9 12.4 37.0
15 8.1 24.8 11.7 36.2
16 9.5 23.2 11.9 31.5
17 9.3 23.5 12.1 27.7
18 7.2 18.7 9.6 25.8

Table A.7: Power(%) of 18 tests for proportional hazards in the two-sample problem,
for the scenario of long-term survivors with initial HR = 0.8 and subsequent HR =
0.82, for different sample sizes n and cut points 2 and 4.
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Figure A.7: Power of 18 tests for proportional hazards, for different sample sizes
and cut points for the scenario of long-term survivors with initial HR = 0.8 and
subsequent HR = 0.82.
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Simulation study B

Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 24.8 87.8 48.3 99.5 68.8 100.0
2 24.7 88.1 47.1 99.5 68.1 100.0
3 25.6 88.8 48.3 99.5 66.6 100.0
4 25.6 90.7 45.8 99.4 65.7 100.0
5 25.9 89.2 47.8 99.6 65.0 100.0
6 32.3 92.6 56.6 99.9 68.5 100.0
7 6.9 16.6 18.0 56.1 40.3 94.7
8 20.8 72.2 42.2 97.6 67.8 100.0
9 20.7 72.2 41.8 97.6 67.4 100.0
10 27.8 91.1 45.6 99.6 59.5 100.0
11 27.8 91.1 45.6 99.6 59.5 100.0
12 20.4 71.8 41.8 97.6 67.4 100.0
13 20.8 71.7 43.9 97.9 68.8 100.0
14 20.2 71.8 44.3 98.3 69.1 100.0
15 29.5 91.2 49.1 99.6 67.6 100.0
16 28.5 90.5 46.0 99.6 64.0 100.0
17 21.6 74.5 45.6 98.3 69.8 100.0
18 26.3 89.8 46.4 99.2 66.3 100.0
19 31.2 92.7 56.7 99.9 69.0 100.0
20 19.6 69.0 39.8 97.2 65.7 99.9

Table B.1: Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.65 and subsequent HR ≈ 1 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 7.1 10.3 7.6 16.9 9.2 24.9
2 6.6 10.4 7.7 16.9 9.0 25.1
3 7.2 10.5 8.1 17.8 9.7 25.1
4 6.4 10.3 6.9 16.4 8.9 23.6
5 7.2 10.4 7.9 17.5 9.4 24.0
6 7.9 14.0 8.9 21.2 10.3 27.5
7 5.6 6.3 5.9 8.6 6.8 14.7
8 7.1 10.8 7.4 18.2 8.5 24.0
9 6.8 10.8 7.2 18.1 8.5 24.0
10 7.2 10.7 8.0 15.7 8.7 22.0
11 7.0 10.6 8.1 15.7 8.8 21.9
12 6.8 10.6 6.9 18.0 8.4 24.3
13 6.5 10.3 7.0 17.4 8.1 22.9
14 5.7 10.5 6.6 16.6 7.1 23.1
15 6.8 11.8 8.5 18.1 9.0 24.8
16 7.5 11.1 9.0 17.5 9.3 23.7
17 6.8 10.8 7.3 17.7 8.6 24.0
18 6.7 11.0 8.3 17.1 9.2 24.3
19 7.4 14.3 9.0 21.4 10.4 27.2
20 6.7 10.4 7.4 17.8 8.2 23.0

Table B.2: Power(%) of 20 tests for treatment effect, for the early effect case with
initial HR = 0.9 and subsequent HR ≈ 1 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 59.0 100.0 36.2 96.8 14.6 67.4
2 59.2 100.0 36.8 96.7 15.5 68.4
3 59.3 99.8 37.1 97.1 16.5 70.5
4 56.6 100.0 39.2 96.9 19.9 78.4
5 58.8 99.8 37.7 97.1 16.5 71.7
6 23.0 78.8 11.0 32.0 7.6 9.8
7 64.5 99.9 47.5 98.6 22.2 79.5
8 50.9 99.3 26.9 88.6 11.8 45.2
9 50.7 99.3 26.9 88.5 11.6 45.2
10 54.9 99.9 39.4 97.4 18.7 75.1
11 54.9 99.9 39.2 97.4 18.7 75.1
12 49.8 99.3 25.9 88.2 11.0 44.5
13 54.0 99.3 29.8 92.7 14.1 56.8
14 46.8 99.3 23.9 90.9 9.3 50.3
15 43.9 99.1 22.8 84.4 10.2 40.4
16 61.3 99.9 41.3 97.9 19.4 74.7
17 52.5 99.3 28.9 91.7 13.2 52.5
18 54.1 100.0 37.3 97.8 19.4 78.1
19 24.8 80.7 11.4 34.1 7.5 9.9
20 52.1 99.5 28.3 90.4 12.7 50.2

Table B.3: Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ≈ 1 and subsequent HR = 0.65 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Change point at x% of events
x = 30 x = 50 x = 70

Test n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000
1 8.6 23.2 7.2 16.2 5.5 9.7
2 8.5 22.7 7.0 16.2 5.6 9.9
3 8.5 23.0 7.3 16.9 6.3 10.3
4 7.9 22.1 7.2 15.4 6.2 9.6
5 8.5 21.6 7.4 16.8 6.5 10.4
6 7.5 12.6 7.6 7.5 6.8 5.8
7 8.3 26.0 7.4 20.5 6.6 12.7
8 7.9 21.3 7.1 15.7 6.4 9.6
9 7.7 21.2 7.0 15.7 6.3 9.6
10 8.1 21.5 7.1 16.1 6.5 9.9
11 8.1 21.5 7.1 16.0 6.5 9.9
12 7.4 21.1 6.9 15.6 6.4 9.7
13 8.0 21.9 6.7 16.5 6.7 10.0
14 6.3 21.1 6.1 15.1 5.7 9.6
15 8.7 18.9 7.1 11.9 6.2 7.6
16 10.1 24.2 8.3 16.9 7.0 11.0
17 8.0 21.8 6.7 15.7 6.5 10.1
18 8.7 21.9 7.2 16.0 6.7 10.5
19 7.3 12.5 7.6 7.6 6.7 5.8
20 8.0 21.9 7.2 16.9 6.0 10.3

Table B.4: Power(%) of 20 tests for treatment effect, for the late effect case with
initial HR ≈ 1 and subsequent HR = 0.9 after 30%, 50% and 70% of events have
been observed in the treatment group, for different sample sizes n.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 26.0 90.1 24.9 89.3
2 25.5 90.0 25.0 89.6
3 26.7 90.6 26.2 90.6
4 28.6 93.7 28.1 93.6
5 27.5 90.8 26.9 90.9
6 33.7 94.0 33.4 93.7
7 4.6 8.1 6.0 6.2
8 18.7 71.3 16.4 59.0
9 18.4 71.3 16.2 59.0
10 33.3 96.5 34.0 95.8
11 33.2 96.5 34.0 95.9
12 18.3 71.2 16.3 59.1
13 29.4 88.9 18.9 65.7
14 30.8 89.3 19.2 67.2
15 32.5 95.6 32.0 95.4
16 32.5 95.6 32.0 95.8
17 29.6 89.4 19.7 69.6
18 33.8 96.8 30.6 95.3
19 32.6 93.5 32.1 93.2
20 16.7 68.5 15.0 54.0

Table B.5: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 0.65 and subsequent HR = 1.10, for different sample sizes
n and cut points 2 and 4.
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Figure B.5: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 0.65 and subsequent
HR = 1.10.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 13.0 63.0 24.9 88.6
2 13.3 63.9 25.3 89.0
3 14.8 65.6 26.6 89.8
4 19.1 77.3 29.7 93.1
5 15.3 66.3 27.1 90.5
6 6.2 6.1 6.5 6.4
7 18.7 73.7 33.9 92.8
8 7.9 25.1 13.1 51.2
9 7.9 25.1 12.8 51.1
10 21.5 82.9 34.5 96.0
11 21.7 82.7 34.4 96.0
12 7.9 25.1 12.6 50.9
13 6.9 11.1 13.2 49.9
14 7.0 10.5 10.5 47.8
15 9.6 29.9 13.7 51.7
16 17.9 71.5 32.2 92.9
17 6.9 10.3 12.5 45.9
18 19.4 78.1 29.2 94.1
19 6.3 5.9 7.0 6.9
20 8.3 27.5 14.3 56.1

Table B.6: Power(%) of 20 tests for treatment effect, for the scenario of crossing
hazards with initial HR = 1.10 and subsequent HR = 0.65, for different sample sizes
n and cut points 2 and 4.
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Figure B.6: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of crossing hazards with initial HR = 1.10 and subsequent
HR = 0.65.
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Cut point
2 4

Test n = 200 n = 1000 n = 200 n = 1000
1 96.1 100 99.3 100
2 96.1 100 99.3 100
3 96.1 100 99.2 100
4 95.8 100 99.2 100
5 96.1 100 99.2 100
6 87.0 100 91.0 100
7 97.0 100 99.4 100
8 95.4 100 98.8 100
9 95.4 100 98.8 100
10 94.4 100 98.8 100
11 94.4 100 98.8 100
12 95.4 100 98.7 100
13 90.2 100 98.7 100
14 88.6 100 98.1 100
15 94.2 100 98.1 100
16 96.2 100 99.4 100
17 90.0 100 98.5 100
18 95.6 100 99.1 100
19 88.1 100 91.8 100
20 95.4 100 99.1 100

Table B.7: Power(%) of 20 tests for treatment effect, for the scenario of long-term
survivors with initial HR = 0.65 and subsequent HR = 0.652, for different sample
sizes n and cut points 2 and 4.
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Figure B.7: Power of 20 tests for treatment effect, for different sample sizes and cut
points for the scenario of long-term survivors with initial HR = 0.65 and subsequent
HR = 0.652.



Appendix C

Simulated scenarios

Figure C.1: Simulated scenarios for the case of proportional hazards, with baseline
hazard equal to 1.
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Figure C.2: Simulated scenarios for the early effect case with baseline hazard equal
to 1, for three change points (CP) at 30%, 50% and 70% of events in the treatment
group.
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Figure C.3: Simulated scenarios for the late effect case with baseline hazard equal
to 1, for three change points (CP) at 30%, 50% and 70% of events in the treatment
group.
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Figure C.4: Simulated scenarios for the crossing hazards case with baseline hazard
equal to 1. The vertical dashed lines correspond to two pre-specified time cut points.
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Figure C.5: Simulated scenarios for the case of long-term survivors with baseline
hazard equal to 1. The vertical dashed lines correspond to two pre-specified time
cut points.
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Bagdonavičius, V., M. A. Hafdi, and M. Nikulin (2004). Analysis of survival data

with cross-effects of survival functions. Biostatistics 5 (3), 415–425.
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