ATHENS UNIVERSITY
LiF BLONOGMICS
AND BUSINESS

OIKONOMIKO
MANEMIETHMIO
AOHNAON

Computer Vision on
Piping and Instrumentation Diagrams:
Towards the identification of their components
Mnyoavikn Opacn ce
2y€010. Xonvacemv Kal Opydvov:

[Ipog v avayvaopion Tov €ni LEPOLS GTOLYEIMV TOVG

Author: Anna Androvitsanea

Academic Supervisor: Industrial Supervisor:

K. Koutroumbas A. Karvounis, N. Koudounas, C. Merinopoulos

A Thesis submitted in fulfillment to the requirements for the degree of
Master of Science
in
Data Science
2020-2021
December 8, 2021

Aknowledgments

I would like to express my deepest gratitude to Prof. Konstantinos Koutroumbas for his
continuous support and his detailed work on reviewing my thesis. It has been a great pleasure
working with him, and a great lesson too.

I would also like to thank my industrial supervisor, Mr. Alexandros Karvounis,and the team of
Synthetica, Nick & Chris, for the input, tipps, meeting and for their great support in general.

I also thank my classmate, Domna Ladopoulou, for helping me bridge the distance between
Berlin and Athens, during the delivery of my thesis.

Finally, a special thank goes to Prof. Vasilis Vassalos for giving the chance to attend the Master

Program and for bearing with the challenges I have faced at the very end.

Abstract

Piping and Instrumentation Diagrams (P&IDs) are schematic representations of equipment,
pipelines, instrumentation, and control systems. They appear in process environments, such as Oil
Refineries, Chemical Plants, Paper Mills, and Cement Plants, etc. The identification of each ele-
ment constituting a P&ID, along with the way they are interconnected, is an important task that has
not been automated yet. In this work we study a methodology and develop the respective algorithm
towards the identification of these components. This identification aims to the classification of the
elements based on their representation as images as well as to the identification and translation of
the codes included in the diagrams.

In order to achieve this goal a combination of methods are employed. Using the OpenCV library
the outlines of the P&ID are calculated. An algorithm is developed, which based on the coordi-
nates of the outlines, delivers snapshots of the elements constituting the P&ID. In the sequel, these
elements are classified by a suitably designed classifier, to one out of 53 classes. The classifier is
a convolutional neural network (CNN), implemented using the TensorFlow and Keras libraries,
which was trained on a data set of 2970 images that belong to one out of 53 classes.

Textual information contained in the P&ID are identified, using the pytesseract library and
stored into an array. Then, they are passed to an algorithm that implements the ANSI/ISA-5.1.-
1984 (R1992) standards and deciphers the textual tags, by providing as output the name, function,
modifier etc. of each element.

The model is able to successfully identify an image and attribute it to the right class, which is a
great step towards solving the challenging problem of the identification of the elements constituting
a P&ID.

Hepiinyn

To oyédo cwAnvacemy kot opyavev (P&ID) elvar oympotikég aneikovicels eE0nAMo oy, GOAN-
VOGEWV, 0pYavav Kol cuotnudtov eAéyyov. Epgavifoviol ce £yKatacTdoelg depyaciov Ommg
Awhompua, Xnuika Epyoctdcio, Xaptomoteio kot Towevtofrounyavieg k.An. H avayvaopion
Kd0e otoryeiov TOV GLVVIGTA £va TETO10 GYED10, KAOMS Kot 1) GVVIEGHOAOYIO aVT®OV HETAED TOLG,
etvat K@TL TOAD OMUOVTIKO TTOL Ogv €xel péypl onuepa avtopatomombel. Xe avty v gpyacia
poteivoupe po pefodoroyia Kol avamTOGGOVLE TOV AVTIGTOLYO KOOIKA Y10 TV OVOLYVMDPLGT] CVTMV
TV oTotYEl®V. AVTN 1) TAVTOMOINOCT GTOYEVEL GTNV TASIVOUNOT) TV GToLEl®mV pe Bdon v avaro-
PAGTOGCT TOVG MG EIKOVEG KOOMDE KO GTIV 0VOYyVAOPLoT] KO LETAPPOCT] TOV KOIKMV TOL TEPIAAUPE-
VOVTOL GTO GYEOLOL.

['o v enitevén avTov TOV GTOHYOL YPNCUOTOIEITE £VOS GLVOLAGHOS HeBOdWV. Xpnoiomot-
ovtag ™ PPAobnkn OpenCV vroloyilovtot To mepiypappa tov kdbe ototyeiov eni tov oyediov.
Avantbocovpe Evag adyoplOpog, o omoiog pe PAoN TG CUVTETAYUEVEG TOV TTAPEYOVTOL OO TO
TEPLYPALLOATO, ONUIOVPYEL OTIYHMOTUTIO TOV GTOEI®V QVTAOV. ZTNV CLVEXELN, QLT To GTOLYEl
KOTNYOPLOTOOVVTOL OO Evav KotdAAnAa oyedtocpuévo ta&vountn, oe pa and 53 kAdoeg. O
ta&voun g etvan Eva ZuveAktikd Nevpmvikod Aiktvo, Tov VAOTOEITA [E T (p1ion ToV P1Ao0nK-
@V TensorFlow kot Keras, To omoio ekmondedovpe o€ £vo, GUVOAO d€d0UEVOV 2970 elkOVEOV TOL
avikovv o€ 53 Taéels.

O TAnpopopieg KEYWEVOL TOL TEPIEXOVTAL GTO GYEI0 COANVAGE®V Kol 0pYdvav avayvopilo-
vtal pe) xpron g PpAodnkng pytesseract Kot omobnkedovtal og Evav Tivaka. XTn cCLVEXELD,
epappolovue og avtd Evay adyoppo tov viomotel o mpoéTuTa ANSI/ISA-5.1.-1984 (R1992) ko
OTTOKPLTTOYPUPEL TIG ETIKETEG KEWLEVOL, TOPEYOVTOAG O AMOTEAEGLO TO OVOLLA, TN GLVAPTNOT, TOV
TPpOTOTOINTH K.AT. K&Oe cToryeiov.

To mpdypappo TOL AVATTUGGOVUE ETITVYXAVEL VO TOVTOTOMGEL £val ototyeio evog P&ID ko
va To 0moddcel otV 0pON KAAGM, YEYOVOC TOV AmOTEAEL £vaL TPMOTO EATIOOPOPO Prpa TPOg TV

emilvon Tov ToAH amartnTiKoh TPOPANLATOS TG avayvdons ototyeinv evog P&ID.

Contents

1 Introduction
2 Problem statement
3 Review of related literature

4 Data Collection and methods
4.1 Textualdata
42 Images.

5 Proposed methodology

5.1 Identification of vertical and horizontal lines
5.2 Identification of objects viaaCNNmodel

52.1 CNNmodel

5.2.2 Extraction of P&ID’s components

5.3 Optical character recognition of instruments

6 Results

6.1 Convolutional Neural Network

6.2 Optical character recognition
7 Limitations

8 Conclusions

11

16

19
19
24
24
27

29
29
30
30
35
36

40
40
44

55

57

A Algorithm

59

List of Figures

2.1
2.2

23

24

2.5

4.1
4.2
4.3

4.4
4.5
4.6

5.1
5.2
53
54

5.5

A Piping and Instrumentation Diagrams (Source: PID Symbols).
A Piping and Instrumentation Diagrams. Indication of the instrumentation, pipeline
and equipment (Source: PID Symbols).
A Piping and Instrumentation Diagrams. Indication of the flow direction (Source:
PID flow directions).
A Piping and Instrumentation Diagrams. Indication of the sensors, controllers,
actuators and code/symbols (Source: PID Symbols and Codes).
Sample of 16 images taken from the dataset used for the training, validation and

testingofthemodel.

An example ofa "tagnumber™. L L L
Instrument symbol tag identification (Source: aiche.org).
Sample of 16 images taken from the dataset used for the training, validation and

testing of themodel.
Histogram of classes represented in the dataset.
A Piping and Instrumentation Diagrams (Source: PID Symbols).

A Piping and Instrumentation Diagrams (Source: PID Symbols.

Contours extracted from the Piping and Instrumentation Diagrams of Fig. 4.5. . . .
Architecture of the model trained withrawdata.
Architecture of the model trained with augmented data.
Example of a cropped element taken from the Piping and Instrumentation Diagrams
of Fig. 4.5. e
Example of the identification of the circles included at the Piping and Instrumen-

tation Diagrams of Fig. 4.6..

20

37

5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

An example of a ’tag number” that goes through the optical character recognition

process. The outcome of the process is plotted on the image. 37
Learning curves of model trained withrawdata. 41
Evaluation of themodel. 41
Confusion matrix of the CNN model ontestset. 42
Instance of a P&ID (Fig. 4.5) representing a compressor. 42
Prediction of the class of an instance of a P&ID (Fig. 4.5 representing a compressor). 42
Barplot of the probability attributed to each class for the compressor. 43
Learning curves of model trained with augmented data. 44
Identification of 97 circles found on the P&ID (Fig. 4.6). 45

List of Tables

4.1
4.2
43
4.4
4.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Letters representing different variables. 21
Letters representing different output functionalities. 22
Letters representing different transducer functionalities. 22
Letters representing different fluids. o000 23
Distribution of the classes. 26
Training and validation loss and accuracy. Model trained on raw data. 40
Training and validation loss and accuracy. Model trained on augmented data. . . . 44
Result of the OCR performed on the P&ID of figure 6.8. 46
Part 1: Result of the deciphering of the OCR text performed on the P&ID of figure

0.8, 47
Part 2: Result of the deciphering of the OCR text performed on the P&ID of figure

0.8, e 48
Part 3: Result of the deciphering of the OCR text performed on the P&ID of figure

0.8, 49
Part 4: Result of the deciphering of the OCR text performed on the P&ID of figure

0.8, e 50

Chapter 1
Introduction

This work is developed in the framework of the Data Science of the Athens University of Eco-
nomics and Business. It is a computer vision application where the aim is the identification of
the objects and textual information constituting a piping and instrumentation diagram (P&ID). The
project is developed in collaboration with the company Synthetica.

Synthetica has developed a product related to Alarm System and Event Signals. In that respect,
the team collects and analyzes near-real time data in order to produce insights of various sorts.
One of the ways to expand the situational awareness is to encode and digitize in detail the pipes
and instruments that are reflected in the piping and instrumentation diagram. This information will
flow into the Alarm System signals to empower descriptive, diagnostic, predictive and prescriptive
capabilities. Apart from Shipping industry, the desired functionalities of the tool is expected to be
proved very helpful in other industrial sectors.

A piping and instrumentation diagram (P&ID) is a detailed diagram used in the process in-
dustry. It depicts the piping and process equipment along with the instrumentation and control
devices. It also shows the connections between the process equipment and the instrumentation used
to control the process. The process industry uses a standardized set of symbols used to prepare a
P&ID are standardized. They are generally based on International Society of Automation (ISA)
Standard S5.1 .

In order to attack this problem, we apply object and text detection on engineering plans (Chap.
2 and 5). This enables the identification of the objects and labels, and therefore the creation a digital
twin of the hard-copy diagram. The task is broken down in smaller parts and is developed as such.

First, concerning the object identification task, we identify the outlines at the P&ID and therefore

'Piping and instrumentation diagram. In Wikipedia. Retrieved November 22, 2021.

https://www.synthetica.ai/
https://www.synthetica.ai/
https://en.wikipedia.org/wiki/Piping_and_instrumentation_diagram

the coordinates of the elements in the PID under study to be labeled. In parallel to that, a neural
network classifier is defined and trained based on a suitably created synthetic dataset. Second, an
optical character recognition scripts is developed that identify the text on the P&ID and decode its
meaning. The synthesis of the above give rise to the proposed methodology towards the solution
of the problem of the identification of the P&ID components (Chap. 6).

The related code is written in Python 3 and employs, among other, the TensorFlow, Keras,

sklearn, OpenCV and pytesseract.

10

Chapter 2
Problem statement

The task considered in the present study is the digitization and interpretation of a piping and
instrumentation diagram (P&ID). There are various types of symbols present in the P&ID sheets
which represent certain instruments responsible for controlling the flow through pipelines and per-
forming various tasks. These consist mainly of the mechanical equipment, the piping, including
size and identification and the process control instrumentation and designation (names, numbers,
unique tag identifiers) (Fig. 4.5).

The mechanical equipment (Fig. 2.2) includes pressure vessels, columns, tanks, pumps, com-
pressors, heat exchangers, furnaces, wellheads, fans, cooling towers, turbo-expanders, pig traps,
bursting discs, restriction orifices, strainers and filters, steam traps, moisture traps, sight-glasses,
silencers, flares and vents, flame arrestors, vortex breakers, eductors etc.

The piping refers to type of pipe and line number, flow direction (Fig. 2.3), indicates the con-
nection enabled by the pipe, insulation and heat tracing etc. The process control instrumentation
and designation includes valves and their types and identifications, such as isolation, shutoff and
safety valves. It also includes the control inputs and outputs, like e.g. sensors, as well as mis-
cellaneous elements, such as vents, drains, flanges, special fittings, sampling lines, reducers and
swages.

Instruments are frequently accompanied by text (Fig. 2.4) which bears coded information.
This information is related to the variable linked to the instrument, e.g. temperature, pressure,
the function of the instrument, e.g. alarm, well, the output functionality, meaning the results it
produces, e.g. switch, transmit as well as modification of these functionalities, e.g. high, low, multi-
function etc. The coding is performed according to the ANSI/ISA-5.1.-1984 (R1992) standards.

At Figure 2.4 we can see for example the code FV-01. This gives us the information that this

11

https://www.aiche.org/sites/default/files/ChEnected-Example-PIDs-and-Lead-Sheets.pdf

——>|{ To Process |p

ve
Rotary Compressor Vent

Figure 2.1: A Piping and Instrumentation Diagrams (Source: PID Symbols).

=

CT-105

03

L]
Pipeiine (S

S I

Valve =

Rotary Compressor /_%v.m L
— |

Figure 2.2: A Piping and Instrumentation Diagrams. Indication of the instrumentation, pipeline
and equipment (Source: PID Symbols).

12

https://realpars.com/p-id/##
https://realpars.com/p-id/##

OTo° &
£
1 To Process \p
Gate
Rotary Compressor Valve Foom
Control .
Vaive Vaive e R=ENALPARS

Sample Point
\—n-.—l <5C/ h
L] Drain h -

]

Figure 2.3: A Piping and Instrumentation Diagrams. Indication of the flow direction (Source: PID
flow directions).

instrument is a valve that regulates the flow.
Our goal is to develop a methodology that takes as input a piping and instrumentation diagram
(P&ID) in an image format, and delivers as output a list of objects constituting the diagram along

with the textual information included. To achieve tis goal, the following steps are taken:
1. Import a scanned diagram and transform it into an array

2. Identify the flow diagram, meaning the lines, that connect all elements to one another within

the P&ID, as well as the contours forming the diagram

3. Spot each instrument and identify its type via a suitably designed and trained convolutional

neural network classifier.
4. Spot each label within the diagram and decipher it

This leads to the construction of a pipeline for information extraction from P&ID diagram via a
combination of traditional vision techniques and a deep learning model, in order to (a) isolate and
identify pipeline codes, inlets and outlets, and (b) detect symbols.

Concerning the identification of the mechanical equipment, in our case, we have 53 classes
of symbols to detect and localise in the sheets, e.g. ball valve, check valve, globe valve, gate

valve, filters, compressors etc (Fig. 2.5). These symbols have very low inter-class difference in

13

https://realpars.com/p-id/##
https://realpars.com/p-id/##

Controller

iU @
=

(PTY
UAL <
8 ARS
A

Gate

Rotary Compressor Yoy _§\hnt
PN

Figure 2.4: A Piping and Instrumentation Diagrams. Indication of the sensors, controllers, actua-
tors and code/symbols (Source: PID Symbols and Codes).

26 : 1
s A

visual appearances. So, standard deep networks for classification are not able to distinguish them
correctly. Therefore, we implement a convolutional neural network (CNN)[1] classifier, which is
able to discriminate among the various such symbols. The choice of a CNN classifier is justified
from the fact that CNNs are vastly used in computer vision problems and they have been designed

for processing structured arrays of data.

14

https://realpars.com/p-id/##

Triangle Reducer

g

Control Heat exhangers

\/
™M
-

Valve Ball DBE&BPY

3
=

4®

Control Centrifuges

7

J

Figure 2.5: Sample of 16 images taken from the dataset used for the training, validation and testing

of the model.

15

Spectacle Blind Triangle

=0
<

Instruments Heat exhangers

iy

Instruments Valve Ball

&

ESDV Valve Ball Valve Plug

il

25

Chapter 3
Review of related literature

The digitization of Piping and Instrumentation diagrams (P&IDs) is a challenging problem
studied by several researchers in the past. Rahul et al. [2] implemented a fully convolutional neural
network (FCNN) building a pipeline for information extraction from P&ID sheets via a combina-
tion of traditional vision techniques and state-of-the-art deep learning models. The aim was the
identification and isolation of pipeline codes, pipelines, inlets and outlets, and for detecting sym-
bols. This information populates a tree-like data structure for capturing the structure of the piping
schematics.

Rahul et al. [2] set as main goals the following:

* Determination of the flow from inlet to outlet: To this end, a combination of detection of dif-
ferent components of the process flow followed by their association with appropriate pipeline

and representation in a tree-like data structure is performed.

* Detection and recognition of graphic objects (e.g., pipelines, inlets and outlets) presented in

PID: To this end, conventional image processing and vision techniques were utilized.

* Detection of symbols in PID sheets: To this end, a fully convolutional neural network (FCN)
based segmentation for detection of symbols in PID sheets at the pixel level were utilized.
This choice was taken because of the very minute visual difference in appearance of different
symbols, as the presence of noisy and textual information inside symbols makes it difficult

to classify based on bounding box detection networks like Faster-RCNN

The symbol detection was implemented using a VGG-19 based FCN for training symbol detec-

tor. An input image of size 400 x 400 is fed to the network and it is trained using Adam optimizer

16

with a learning rate of 0.0004 and batch size equal to 8.

Elyan et al. [3] implemented Generative Adversarial Networks (GAN) to address the challenge
of class-imbalance in the dataset used during training. Generative Adversarial Networks consist
of two contesting models the Generator (G), and the Discriminator (D). The discriminator is a
classifier that receives input from the training set, which is an authentic content, and from the
generator, which serves as fake input.

The authors the training process, the discriminator learns how to distinguish between authentic
and fake input samples. The generator is trained to create samples that capture the underlying
characteristics of the original data.

They continue performing symbol recognition employing the YOLO Algorithm for Object De-
tection. This enables the representation of the problem as a set of bounding box coordinates and
class probabilities. The method is based on dividing the entire image into S X S grid, where each
cell predicts B bounding boxes and confidence scores for those boxes. The method is evaluated on
172 P&ID sheets.

The approach of Elyan et al. [3] in regard to data exploration performs a segmentation of an
image. The original P&ID sheets are large images, 7500 x 5250 pixels. To speed up the training
process they divide the sheet into 6 x 4 grid, resulting in 24 sub-images (patches) with relatively
smaller sizes compared to the original sheets (1250 x 1300). The annotation data for each patch is
obtained using the annotations for the whole P&ID.

Mani et al. [4] implemented a CNN model that performed symbol detection, text recognition and
association, as well as connection detection. The symbol detection is enabled via the Convolutional
Neural Network (CNN) that performs a three-way classification task. It determines whether an
input image contained a tag, linear matrix inequality (LMI), or no symbol. The architecture of the
CNN consists of three convolutional layers, with ReLU activations and max pooling, and two fully-
connected dense layers. It inspired by the LeNet architectures popularized for digit recognition.

An important part of the Mani et al. [4] approach is the augmentation of the training examples
by rotating, shifting, shearing, zooming, and flipping. This aims to make the network invariant to
these transformations. To launch the trained CNN in order to detect symbols in a new diagram,
they first slide over the diagram image with a small stride length and generate all 100 x 100 pixel
windows from the input diagram.

Mani et al. [4] take next the step of text recognition and association. They implement an Ef-
ficient and Accurate Scene Text Detector (EAST), a state-of-the-art pipeline which uses a neural

network to produce bounding boxes where text is present in an image. For each symbol, they iden-

17

tify associated text based on the proximity of the symbol to text bounding boxes, using a distance
threshold. Associated text for each symbol is then interpreted using Tesseract OCR, and the results
are added to the extracted information in the asset hierarchy.

Finally, Mani et al. [4] work on the connection detection using a graph search approach. The
thresholded diagram image is represented by a graph, whose nodes are individual pixels in the
diagram, while each node contains information on whether it is black or white (based on its thresh-
olded pixel intensity) and whether it is part of a symbol (and if so, which one). The graph’s edges
form links between neighboring pixels, with a maximum of eight edges per node. The symbols are
represented in the graph as a collection of nodes corresponding to the pixels that form the symbol.

Moreno-Garcia et al. [5] implement a methodology for pre-processing, shape detection and
extraction of features. As a first step they binarize the image by performing image thresholding.
This is useful for removing noise and enhancing object localisation. Thinning or skeletonisation
is another pre-processing method used on image recognition systems to discard the volume of an
object often considered as redundant information. Skew correction can be achieved through mor-
phological operations to remove salt-pepper type noise or algorithms based on morphology. Then,
the shape detection follows, in order to detect images such as arrowheads, cross-hatched areas,
arcs, dashed and dot-dashed lines. Vertical and horizontal lines are detected using morphological

operations.

18

Chapter 4
Data Collection and methods

The data used in the framework of this project is of various types, aiming to cover all aspects of
the P&ID digitization process. Therefore, the following types of data were gathered, pre-processed
and applied in the various stages of the proposed methodology:

1. Textual data
2. Images

(a) Icons

(b) Plans

4.1 'Textual data

The textual data refer to the identification of each instrument and devise (Tables 4.1 and 4.2),
transducer functions (Table 4.3), and fluid service (Table 4.4) by the use of a letter or code. This
is performed according to the ANSI/ISA-5.1.-1984 (R1992) standards. These are the international
standard developed by the International Society of Automation for creating an automated interface
between enterprise and control systems.

Pressure indicators e.g. have the abbreviation PI and temperature indicators the abbreviation
TI. The coding has a logical order, where flow and level indicators use the abbreviations FI and
LI, respectively. Since most plants can have many instruments of the same type, it is important

to be able to identify each on uniquely. To this end, number is therefore applied. This number is

19

https://www.aiche.org/sites/default/files/ChEnected-Example-PIDs-and-Lead-Sheets.pdf
{https://en.wikipedia.org/wiki/ANSI/ISA-95}{Wikipedia}. Retrieved November 22, 2021.

often referred to as the ”loop number”!. Thus, the device abbreviation and loop number become
the unique “tag number” (Figure 4.1).

The letters on the fist line are defined based on the ISA standards and provide unique informa-
tion (Fig. 4.2). The first letter defines the variable that the certain instrument measures, while the
second letter, which is optional, describes a modification to the fist letter. E.g. the code "PDIT”
is interpreted as following: First Letter stands for ”Pressure” and the second letter is a modifier
for the first and stands for ”Differential”. The third letter, which is again optional, defines an in-
dication functionality. In the example of the code "PDIT”, ’I”, which is the third letter stands for
“Indicating” . The fourth letter defines an output functionality as for example again in the case of
the code "PDIT” the letter ”T” stands for "Transmitter”.

CHV
2530,

13 E3 % % 160 15 50 s %o

Figure 4.1: An example of a ”tag number”.

Instrument Symbol Tag Identification

Second Letter: Optional Third Letter: Optional
Modifier to first letter Defines indication functionality
First Letter: Required Fourth Letter: Optional
Defines variable being measured Defines output functionality

Note:

A control symbol can use two
ore more letters. When three or
more |etters are used, the
reader must determine if the
second letter is used as a
modifier to the first by looking

i L Line: Required
up the codes in DOO1. ki e

Defines tag number

Figure 4.2: Instrument symbol tag identification (Source: aiche.org).

'Source: aiche.org

20

https://www.aiche.org/chenected/2010/09/interpreting-piping-and-instrumentation-diagrams-symbology
https://www.aiche.org/chenected/2010/09/interpreting-piping-and-instrumentation-diagrams-symbology

Table 4.1: Letters representing different variables.

Variable
ANALYZER
BURNER
USER’S CHOICE
USER’S CHOICE
VOLTAGE
FLOW

USER’S CHOICE
HAND
CURRENT
POWER

TIME

LEVEL

USER’S CHOICE
USER’S CHOICE
USER’S CHOICE
PRESSURE
QUANTITY
RADIATION
SPEED
TEMPERATURE
MULTI-VARIABLE
VIBRATION
WEIGHT, FORCE
UNCLASSIFIED
EVENT, STATE
POSITION

o
-
-
[¢"]
-

N<XEs<CH®LRZOTOZZIOAT"ZOQOTHOOW»

21

Table 4.2: Letters representing different output functionalities.

ri
o
-
-
o
H

Variable

N<Xx<CH®nZROW

USER’S CHOICE
CONTROL
CONTROL STATION
USER’S CHOICE
SWITCH
TRANSMIT
MULTI-FUNCTION
VALVE, DAMPER
UNCLASSIFIED
RELAY, COMPUTE
DRIVER, ACTUATOR UNCLASSIFIED FINAL CONTROL ELEMENT

Table 4.3: Letters representing different transducer functionalities.

Letter | Variable

E/E VOLTAGE TO VOLTAGE
E/l VOLTAGE TO CURRENT
E/P VOLTAGE TO PNEUMATIC
I/P CURRENT TO PNEUMATIC
P/1 PNEUMATIC TO CURRENT

22

Table 4.4: Letters representing different fluids.

Letter | Variable Letter | Variable

ALM | ALUMINUM SULFATE NAG | NATURAL GAS

AMN | AMMONIUM NITRATE NIA NITRIC ACID

AMH | AMMONIUM HYDROXIDE N2 NITROGEN

ABF AMMONIUM (BI)FLUORIDE || OIL OIL (GENERAL USE)

AMS | AMMONIUM SULFATE PAR PROCESS AIR

ASO ACID SOLUBLE ORGANICS || PFD POLYMER FEED

BAR | BACKWASH AIR PHA PHOSPHORIC ACID

CAF CALCIUM FLUORIDE KF POTASSIUM FLUORIDE
CAR | COMPRESSED AIR KOH | POTASSIUM HYDROXIDE
CBW | CLEAN BACKWASH WATER || PSL PROCESS SLURRY/SLUDGE
CFD CAUSTIC RAW FEED PVP PROCESS VAPOR

CcO2 CARBON DIOXIDE PWR | POTABLE WATER

CHC | CALCIUM HYPOCHLORITE || SAH SULFURIC ACID, >75%
CL2 CHLORINE SAL SULFURIC ACID, <75%
DBW | DIRTH BACKWASH WATER SHC SODIUM HYPOCHLORITE
DRN | PROCESS DRAIN SOC SODIUM CARBONATE
DSL DIESEL FUEL SOH SODIUM HYDROXIDE
EFF EFFLUENT (GENERAL USE) || SLP STEAM, <125

FEC FERRIC CHLORIDE SMB | SODIUM METABISULFITE
FEW | FILTER EFFLUENT WATER STM STEAM, 125-220

FIW FILTER INFLUENT WATER SNY SANITARY SEWER

FOL FUEL OIL STO STORM DRAIN

HCL HYDROCHLORIC ACID SWR | SERVICE WATER

HF HYDROFLUORIC ACID TFL THERMAL FLUID

HPX HYDROGEN PEROXIDE UAR | UTILITY AIR

IAR INSTRUMENT AIR UWR | UTILITY WATER

IFD INDUSTRIAL RAW FEED VNT | VENT (GENERAL USE)
LSY LIME SLURRY WOL | WASTE OIL

MEL | METHANOLS WWR | WASTEWATER (GENERAL USE)

23

4.2 Images

Apart from the textual information, distinct drawings, representing each instrument, devise,
pipe etc. In order to identify these components, diagrams are collected along with itemized icons

for each instrument.

4.2.1 Icons

In the framework of this project, a synthetic dataset is created based on two main sources. The
one source is the paper of Elyan et al. [6] which includes 2432 instances of engineering symbols
scaled to 100 by 100 pixels. The second source is a list of PID Symbols provided by Projectmate-
rials. The 538 icons, deriving from the second source, are downloaded via a web crawling script
developed for this purpose.

A total of 2970 icons belonging to 53 classes are finally gathered, e.g. ball valve, check valve,
globe valve, gate valve, filters, compressors etc (Fig. 4.3). As can be seen in Table 4.5 and Figure

4.4, the dataset has not a good balance, in the sense that there are classes of icons that are under-

represented.
Sensor Spectacle Blind Valve Plug Instruments
1l
Flange Joint Valve Slab Gate Flange Single T-Shape Fttings
Flange Single T-Shape Re; Valve Ball DB&BBV
Valve Ball Sensor Heat exhangers ESDV Valve Slab Gate

O 0 ¥ %

Figure 4.3: Sample of 16 images taken from the dataset used for the training, validation and testing
of the model.

24

https://github.com/heyad/Eng_Diagrams/tree/master/data
https://blog.projectmaterials.com/instrumentation/pid-symbols/
https://blog.projectmaterials.com/instrumentation/pid-symbols/

Histogram of classes represented in the dataset

400

350

300

(=} [=]
"2l (=

2>ucmm_ baiy

(=}
5]
—

100

50

sbuip|am

|assan

2120 qB|S 3A|_A

bnid anjea

2q0|9 aAl_A

unpuo) ybnoiyl a1eo anjep
A=Y 3AEA
Klpa1ng anjea

lleg anjea

31buy anjea

NBA

a|buen

Jaureis Aesodwal
pung a|zepads
Josuas

2s1g a4nydny
123npay

s10}083Y

sduwind

sadid

lesayduzg

S10J0p

N

sBupyen
Jasedspulg aury
SUSWINIISU|

Juiod J0323[u]
si1abueyxa jeaH
adeys-1 a|buis sbue|y
juiof abuel4

a|buel + abue|4
sbumy

sia3y

aiaydsouny 03 Jx3
3120 qe|s aneA ADST
Aju=1ng aajeA AQS3
l1eg 2A1eA AdST
siafig

abnjag

Adg%94ad

323YD aAeA + AG89EA
Agareaa

siaysniy

3q0|D 2A[BA |0UOD
JAJEA, |0IJUOD
|oajuod

|27 Aunuiued
sadid siojoauuc)
sl1ossaldwon
sabnyuiuad

xog

a|buelL + peaymoiry
pEaymMOLY

Classes

he dataset.

int

Histogram of classes represented
25

Figure 4.4

Table 4.5: Distribution of the classes.

Class Frequency
Arrowhead 240
Arrowhead + Triangle 83
Box 8
Centrifuges 8
Compressors 28
Connectors pipes 34
Continuity Label 116
Control 24
Control Valve 5
Control Valve Globe 23
Crushers 12
DB &BBV 127
DB&BBYV + Valve Check | 39
DB&BPV 113
Deluge 4
Dryers 7
ESDV Valve Ball 65
ESDV Valve Butterfly 7
ESDV Valve Slab Gate 9
Exit to Atmosphere 12
Filters 29
Fittings 17
Flange + Triangle 18
Flange Joint 50
Flange Single T-Shape 67
Heat exchangers 53
Injector Point 44

Class Frequency
Instruments 72
Line Blindspacer 4
Markings 4
Mixers 14
Motors 17
Peripheral 26
Pipes 5
Pumps 34
Reactors 8
Reducer 292
Rupture Disc 10
Sensor 394
Spectacle Blind 43
Temporary Strainer 6
Triangle 74
Valve 58
Valve Angle 29
Valve Ball 178
Valve Butterfly 74
Valve Check 130
Valve Gate Through Conduit | 4
Valve Globe 33
Valve Plug 92
Valve Slab Gate 29
Vessel 45
Weldings 53

26

4.2.2 Piping & Instrumentation Diagram

In order to test the application created in the framework of this project real Piping & Instrumen-
tation Diagrams (Fig. 4.5 and 4.6) are used. These are chosen based on the factor of complexity in

order to start from simple examples and gradually move towards more complex diagrams.

—>| To Process |p

ve
Rotary Compressor Vent

Figure 4.5: A Piping and Instrumentation Diagrams (Source: PID Symbols).

27

https://realpars.com/p-id/##

0
| e aIssIHANO

SOTVa-SIOEYAI0-SL

Cstr-aa-aso}

B
8 ONY v BINVIND)
10334 W 0L

Figure 4.6: A Piping and Instrumentation Diagrams (Source: PID Symbols.

28

https://realpars.com/p-id/##

Chapter 5
Proposed methodology

As already mentioned in Chapter 1, the proposed methodology deals with the problem of the
object and text detection on engineering plans. The methodology breaks down in several stages,
starting with a simple identification of the outlines of the different elements of the P&ID, which
yields the coordinates of the those to be labeled (Section 5.1). The next step is a convolutional
neural network (Section 5.2.1) that is trained, validated and tested with a synthetic dataset (Section
4.2.1). Finally, an optical character recognition scripts system is developed that identifies the text

on the P&ID and decodes its meaning (Section 5.3).

5.1 Identification of vertical and horizontal lines

The detection of the vertical and horizontal lines and therefore that of the outlines within the
P&ID is performed in steps. First the image is imported and transformed from RGB format to
grayscale format. This ends up with the 2-d dimensional digitized representation of the P&ID
under study, that would simplify and enable the calculations. Thus, from now on, we process the
two-dimensional array resulting from the transformation of the image to the gray-scale format.
The library used at the step is skimage. Then, the image array is passed through the module
measure.find-contours of the skimage library. This module identifies iso-valued contours in a
2D array for a given level value (Fig. 5.1). It uses the “marching squares” method! to compute the
iso-valued contours of the image array. The array values are linearly interpolated to provide better

precision in the determination of the output contours?.

"Wikipedia. Retrieved November 24, 2021.
2Source: find-contours

29

https://en.wikipedia.org/wiki/Marching_squares
https://scikit-image.org/docs/dev/api/skimage.measure.html##skimage.measure.find-contours

Figure 5.1: Contours extracted from the Piping and Instrumentation Diagrams of Fig. 4.5.

5.2 Identification of objects via a CNN model

This step consists of two main parts. The first part is the designation of the Convolutional
Neural Network classifier that will classify the objects identified in the PID under study (Section
5.2.1). The second part consists of the process of extracting the distinct icons constituting the P&ID
in order to pass them through the CNN model (Section 5.2.2).

5.2.1 CNN model

The classifier we define is a Convolutional Neural Network (Fig. 5.2) that consists entirely of
connected layers. All convolution layers use the same kernel size (3x3) and all non-terminal layers
use the rectified linear unit (relu) as the activation function. Downsampling layers use 2x2 pool
dimensions.

The first (input) layer feeds into a 2-dimensional convolution layer (Conv2D) which is immedi-
ately followed by a downsampling step, effected by a 2-dimensional max pooling (MaxPooling2D)
operation.

Next comes a 3-layer cascade of 2 identical (64-filter) Conv2D layers and MaxPooling2D. This

layer cascade immediately repeats with larger (128) filter parameter values for the 2D convolution

30

layers.
The outputs are then flattened and fed into a 2-layer cascade of a 128-unit densely-connected
(Dense) layer kept in check by a 50% Dropout layer. The latter is connected to a similar 2-layer
cascade comprising a 64-unit Dense layer followed by a Dropout layer configured with a 10%
dropout rate.
The outputs of the model are produced by a Dense layer configured with as many units as there
are classes and a softmax activation function for multiclass classification.
The model is trained, validated and tested based on the synthetic dataset presented in Sec-
tion 4.2.1. The module tf.keras.preprocessing.image_dataset_from_directory is used
in order to import the data. This module generates a tf.data.Dataset from image files in a di-
rectory, yielding batches of images from all the subdirectories, along with distinct labels®. The
tf.data.Dataset consists of Tensors, which are multi-dimensional arrays with a uniform type.
The advantage of this call is that we can already incorporate some pre-processing steps, like the
transformation from RGB format to gray-scale format, as well as the resizing of the image (Listing
5.1). Additionally, the batch size given as argument in this module, defines the grouping of data.
The classes are inferred based on the names of the sub-folders.
data_ds = tf.keras.preprocessing.image_dataset_from_directory(path,
color_mode="grayscale",
image_size=(100, 100),
batch_size=32,
labels="'inferred',
label_mode='categorical')

Listing 5.1: Import dataset from directory using the module

tf.keras.preprocessing.image_dataset_from_directory.

Once the data are imported and transformed into batches of Tensors, we split them in a training,
validation and test split. We chose a 70% - 15% - 15% size for splitting. In order to randomize
the iteration order, we call shuffle=True as argument. By performing the split before importing
the data in the model we ensure that each dataset (training, validation and test) is disjoint from the
others and each one remains an unseen dataset until we decide otherwise.

Once the data is splitted, we proceed with the training and validation of the model. The input
shape is (100, 100, 1) and the number of classes is 53, corresponding to the total of classes

created at the step of the synthetic data preparation. We go on using the EarlyStopping callback,

3Source: tf.keras.utils.image-dataset-from-directory

31

https://www.tensorflow.org/api_docs/python/tf/keras/utils/image_dataset_from_directory

input: | [(None, 100, 100, 1)]
output: | [(None, 100, 100, 1)]

input_1: InputLayer

input: (None, 100, 100, 1)
output: | (None, 100, 100, 32)

:
|

input: | (None, 50, 50, 32)
output: | (None, 50, 50, 64)

l

input: | (None, 50, 50, 64)
output: | (None, 50, 50, 64)

conv2d: Conv2D

input: | (None, 100, 100, 32)
output: (None, 50, 50, 32)

max_pooling2d: MaxPooling2D

conv2d_1: Conv2D

conv2d_2: Conv2D

A 4

input: | (None, 50, 50, 64)
output: | (None, 25, 25, 64)

max_pooling2d_1: MaxPooling2D

l

input: (None, 25, 25, 64)
output: | (None, 25, 25, 128)

)

input: | (None, 25, 25, 128)
output: | (None, 25, 25, 128)

conv2d_3: Conv2D

conv2d_4: Conv2D

y

input: | (None, 25, 25, 128)
output: | (None, 12, 12,128)

max_pooling2d_2: MaxPooling2D

l

input: | (None, 12, 12, 128)
output: (None, 18432)

l

input: | (None, 18432)
output: (None, 128)

l

input: | (None, 128)

flatten: Flatten

dense: Dense

dropout: Dropout

output: | (None, 128)

input: | (None, 128)

dense 1: Dense

output: | (None, 64)

input: | (None, 64)

dropout_1: Dropout

output: | (None, 64)

I

input: | (None, 64)

dense_2: Dense

output: | (None, 53)

Figure 5.2: Architecture of the model trained with raw data.

32

monitoring the validation loss and applying a patience of 5 epochs.

The compilation of the model uses the Adam optimizer with a rate of 1e — 3, monitors the loss
based on the categorical cross-entropy, while calculating the accuracy of the model at each step.

Finally, the model fits to the training dataset, using the validation dataset for validating each
wights at each epoch, while it runs for 50 epochs at the most, due to the call of the EarlyStopping
callback.

An alternative approach is implemented, where the data used during training are augmented
(Fig. 5.3). In this case, the architecture remained the same, but the input layer was passed through
an augmentation process (Listing 5.2). This sequential model augments the data, by applying ran-

dom contrast, flip (both vertical and horizontal), rotation, zoom as well as rescaling.

data_augmentation = tf.keras.Sequential(
[# adjust the contrast of an image or images by a random factor
layers.experimental.preprocessing.RandomContrast (factor=1.0,
seed=None) ,

randomly flip each image horizontally and vertically.

layers.experimental .preprocessing.RandomFlip(mode="horizontal",
seed=123),

randomly flip each image horizontally and vertically.

layers.experimental .preprocessing.RandomFlip(mode="vertical",
seed=123) ,

randomly rotate each image

layers.experimental.preprocessing.RandomRotation (0.1, seed=123),

random zoom

layers.experimental .preprocessing.RandomZoom(height_factor=(-1,1),
width_factor=None,
fill mode='reflect',
interpolation='bilinear',
seed=None,
£fill_value=0.0),

rescale an input in the [0, 255] range to be in the [0, 1] range, you

would pass scale=1./255

layers.experimental .preprocessing.Rescaling(1./255)])

Listing 5.2: Sequential model for data augmentation.

33

input: | [(None, 100, 100, 1)]
output: | [(None, 100, 100, 1)]

l

input: | (None, 100, 100, 1)
output: | (None, 100, 100, 1)

l

input: (None, 100, 100, 1)
output: | (None, 100, 100, 32)

l

max_pooling2d_3: MaxPooling2D

|

input: | (None, 50, 50, 32)
output: | (None, 50, 50, 64)

l

input: | (None, 50, 50, 64)
output: | (None, 50, 50, 64)

l

max_pooling2d_4: MaxPooling2D

l

input: (None, 25, 25, 64)
output: | (None, 25, 25, 128)

input_2: InputLayer

sequential_18: Sequential

conv2d_5: Conv2D

input: | (None, 100, 100, 32)
output: (None, 50, 50, 32)

conv2d_6: Conv2D

conv2d_7: Conv2D

input: | (None, 50, 50, 64)
output: | (None, 25, 25, 64)

conv2d_8: Conv2D

input: | (None, 25, 25, 128)
output: | (None, 25, 25, 128)

l

max_pooling2d_5: MaxPooling2D

l

input: [(None, 12, 12, 128)
output: (None, 18432)

conv2d_9: Conv2D

input: | (None, 25, 25, 128)
output: | (None, 12,12, 128)

flatten_1: Flatten

input: | (None, 18432)
output: (None, 128)

dense_1: Dense

input: | (None, 128)
output: | (None, 128)

dropout: Dropout

input: [(None, 128)

dense_2: Dense
output: | (None, 64)

input: | (None, 64)
output: | (None, 64)

dropout_1: Dropout

input: | (None, 64)
output: | (None, 53)

dense_3: Dense

Figure 5.3: Architecture of the model trained with augmented data.

34

5.2.2 Extraction of P&ID’s components

The extraction of the components encountered in a piping and instrumentation diagram is based

on the contours created at previous step (Section 5.1). Four main lists are created, X _min, X max,
Y min and Y_max. These list contain the minimum and maximum coordinate of each element
stored in the contours. Then the image gets cropped iteratively based on a rolling window. This
window has as coordinates the tuples (X min, Y min) and (X _max, Y _max). Then the output of
this process gets resized at (100, 100), in order to fit the input size of the CNN model (Listing
5.3).

23 from skimage import color

2 elements = [] # each element of the PID diagram

30 for i in coord_cont:

image_cropped = img[X_min[i]:X_max[i],

Y min[i]:Y _max[i]]

resized = cv2.resize(image_cropped,
34 (100, 100),
35 interpolation = cv2.INTER_AREA)

36 elements.append(resized)

Listing 5.3: Extraction of P&D elements.

In order to ensure that we fit in this window the whole instrument, devise etc, we expand its
size by 50 pixels to the left and lower limit, and 100 pixels to the right and upper limit. We go on
and do the same, by expanding the window 250 pixels on all directions. The additional cropped
images are also stored. Each element that gets produced via this process, gets fed into the model

in order to get a prediction on the class it belongs to.

plt.imshow(elements[2], cmap='gray')

<matplotlib.image.AxesImage at 0x7£110£5273a0>

Figure 5.4: Example of a cropped element taken from the Piping and Instrumentation Diagrams
of Fig. 4.5.

35

5.3 Optical character recognition of instruments

The optical character recognition task is performed in steps. The first step is the pre-processing
of the image, that includes the transformation from RGB format to grey-scale format, the resize as
well as the smoothing of the image using OpenCV Gaussian Blur. The application of the Gaussian
filter aims to the reducing of the noise at the image.

The next step is the identification of the circles in the P&ID. We already know that the textual
information is included in circles (Section 4.1), located near the instrument they want to describe.
We execute the module cv2. HoughCircles that takes as input the de-noised image and implements
the cv2.HOUGH_GRADIENT method. We therefore need three parameters to define a circle, C' :
(Zcenter, Yeenters T)» Where (Zeenter, Yeenter) define the center position and r is the radius. Once the
circles are identified, as in the case of Fig. 5.5, we first crop the image that lies beneath each circle,
using the circles as the rolling window and working iteratively (Fig. 4.1). Upon each cropped
image we run the module pytesseract.image_to_string. pytesseract, which is an optical
character recognition (OCR) tool, recognizes and “reads” the text embedded in images (Fig. 5.6).
The text extracted from the cropped images is stored in a list.

The next step is the decoding of the textual information, of the tags attributed to each instru-
ment. The codes presented in Section 4.1 and included in the Tables 4.1, 4.2, 4.3 and 4.4 are set
as dictionaries in Python. The rationale of the tag identification, again presented in Section 4.1,
is implemented via a script that takes as input a string, which is the textual part of the tag and
provides as output the translation of each letter (Listing 5.4). If we run, e.g. decipher _tag(”’FV”)
we take as output "FLOW?”, "VALVE, DAMPER”.

36

UPP. DECK

B
P

TSIE DWG NOK4B00358

N

__—

N

NSNS

N

AN

N

AN
*

AR

77

A
N
PR
RN
A

i
§
=,
L3

-——
OL Tane == o= —

0
=]

—q
T

o
=201

aowe =

—_—
GEd

50
oF-202

TO SLUDGE TANK
AR VENT PPE =
§ EE oweNGKes0oIEn

)
oz

e
G

|
] 7% 74 75 70 7 |
r = UPP [.‘Z"k% Z/ /; Z g% %/Z Z Z Z SYSTEM MARK Lo |
Z Z —_ —
| g "5 Z Z 4//// ’/// 4}/ // g L.0. PURIFICATIDN DWG. NO. J
| G HEG LG %G g TRANSFER & AUX —
/

ENG.

L.O. PIPING K4600352

Figure 5.5: Example of the identification of the circles included at the Piping and Instrumentation
Diagrams of Fig. 4.6.

20 1

40

” AV—2020B

100 4

20208

) 30 100 150

Figure 5.6: An example of a ’tag number” that goes through the optical character recognition
process. The outcome of the process is plotted on the image.

37

37 def

decipher_tag(text): # input is a string
text = text.upper ()

variable

modifier
indication_functionality = ''
output_functionality = ''

modifier_of_functionality = ''

tags = []

if len(text) == 2:
if text[0] in variables.keys():
variable = text [0]

tags.append(variables[variable])

if text[1] in indication_functionalities.keys():
indication_functionality = text[1]

tags.append(indication_functionalities[indication_functionality])

if text[1] in output_functionalities.keys():
output_functionality = text[1]
tags.append (output_functionalities [output_functionality])

if len(text) == 3:
if text[0] in variables.keys():
variable = text [0]

tags.append(variables[variable])

if text[1] in indication_functionalities.keys():
indication_functionality = text[1]

tags.append(indication_functionalities[indication_functionality])

if text[2] in output_functionalities.keys():
output_functionality = text [2]
tags.append (output_functionalities[output_functionality])

if len(text) == 4:
if text[0] in variables.keys():
variable = text [0]

tags.append(variables[variable])

38

if text[1] in modifiers.keys():
modifier = text[1]

tags.append (modifiers [modifier])

if text[2] in indication_functionalities.keys():
indication_functionality = text[2]

tags.append(indication_functionalities[indication_functionality])

if text[3] in output_functionalities.keys():
output_functionality = text [3]
tags.append (output_functionalities[output_functionalityl])

if len(text) == 5:
if text[0] in variables.keys():
variable = text [0]

tags.append(variables [variable])

if text[1] in modifiers.keys():
modifier = text[1]

tags.append(modifiers [modifier])

if text[2] in indication_functionalities.keys():
indication_functionality = text[2]

tags.append(indication_functionalities[indication_functionality])

if text[3] in output_functionalities.keys():
output_functionality = text [3]
tags.append (output_functionalities [output_functionality])

if text[4] in modifier_of_functionalities.keys():
modifier_of_functionality = text [4]
tags.append(modifier_of_functionalities[modifier_of_functionality

ID)

return tags

Listing 5.4: Instrument symbol tag identification

39

Chapter 6

Results

6.1 Convolutional Neural Network

The training and validation of the CNN was performed on the 70%-15% of the original dataset
(Section 4.2.1. The accuracy during training reached 82.88 %, while during validation went up to
92.31 % (Tab. 6.1). The learning curve (Fig. 6.1) indicates that until approximately epoch 5 the
model learns very quick, since the inclination of the curve is very steep. After epoch 5 the learning
rate gets smaller and the model still learns but at a rather slower rate.

An interesting feature that we identify is the fact that the curve of validation lies above the one
of the training. We know for sure that the validation data, are unseen data for the model during
training. Therefore, we could assume that the model learns the features of the data during training
really well, so that it can perform outstanding during validation. However, this issue needs some
further investigation.

Parallel to the accuracy, the model calculates in each step the losses, which is the quantity that
a model should seek to minimize during training (Fig. 6.1b and Tab. 6.1).

The evaluation of the model is performed based on the unseen test dataset (Fig. 6.2 and 6.3)

training | loss | accuracy
6.72 | 82.88 %
validation | loss | accuracy
293 | 9231 %

Table 6.1: Training and validation loss and accuracy.
Model trained on raw data.

40

Model accurac v Model loss

— tain — tai

0 5 n 5 0 0 5 it 5 0
epoch epoch

(a) Accuracy. (b) Loss.

Figure 6.1: Learning curves of model trained with raw data.

and reached a 99.79 % of accuracy.

evaluation = model.evaluate(test ds,
batch_size=32,
verbose=1,
sample_weight=None,
steps=None,
callbacks=callbacks,
max_queue size=10,
workers=1,
use_multiprocessing=False,
return_dict=True)

15715 [] - 28s 1ls/step - loss: 0.08088 - accuracy: ©.9979

Figure 6.2: Evaluation of the model.

The next step is to feed the trained model with an image extracted from a P&ID (Fig. 4.5).
We chose the image of the compressor as presented at Fig. 6.4. The CNN model trained with
the original data, not the augmented data, predicted that the image belongs to Class 5, which is a
compressor, with a probability of 28.81 % (Fig. 6.5). The barplot of predictions for this image,
meaning the probability that the model attributed to each class (Fig. 6.6), indicates that the model
succeeds in attributing the object to the correct class, giving low probabilities (< 12 %) to the 52

other classes.

41

Confusion matrix of the CNN model on test set &0

o 10 20 30 40 50
04 . . \ . .
50
10
40
20 1
E
30 4
[]
! r20
404
F10
50 1
—Lo

Figure 6.3: Confusion matrix of the CNN model on test set.

Figure 6.4: Instance of a P&ID (Fig. 4.5) representing a compressor.

img_array
img_array

keras.preprocessing. image.img_to_array(rotary_compressor)
tf.expand_dims(img_array, @) # Create batch axis

I test_predic = model.predict(img_array)
 np.where{test_predic[0] == test predic[8].max())[0][0], test predic[@].max(},
i labels_names[np.where(test predic[8] == test predic[@].max())[0][0]]

(5, ©.28813675, 'Compressors')

Figure 6.5: Prediction of the class of an instance of a P&ID (Fig. 4.5 representing a compressor).

42

ESEN
1eD ge|S BARA

Bnid aAleA

8qo|9 BnjeA

1npuo) ybnoiy] a3en anjep
JD8YD BARA

Alj1a1Ing anjep

lleg anjen

31buy anjen

anjep

a|buel

Jauleays Auesodws|
pullg aloe122ds
10SuUas

o5 a4nidny

12o3npay

siojoeay

sdwngd

sadld

|esayduiad

SI1010N

SIBXIW

sbupjiepn

J@dedspul|g aur
sjusWNIISy|

jul0d Joydalu]
siabueyxa 1eaH
adeys-] ajbuls abuelq
juiof @buel4

a|buel) + abuel4
sbuiy

s13314

assydsowy 03 31x3
21e9 qe|S dA[RA AAST
Alj1a1Ing sAjeA AQST
l1eg @AI_A AQS3
s19/1Q

abnjaQg

Ndg798ad

A23YD SAI_A + AGE98d
ndgg34d

s1aysni)

8qo|D BA[eA [013U0D
anjeA [013uU0)

|o13u0d

|2qe7 A1inunuod
sadid s10109uUu0)

s1ossaidwo)
sabnjluIud)d
xog
9|buel] + peaymoLy
peaymoly

o n o un o n o

m N N A = o O

S & S S8 S S o

Ayngeqoid

Class

Barplot of the probability attributed to each class for the compressor.

Figure 6.6

43

Model accuracy trained on augmented data Model loss trained on augmented data

val

0 10 0 El 0 0])) 40
epoch epach

(a) Accuracy. (b) Loss.

Figure 6.7: Learning curves of model trained with augmented data.

training | loss | accuracy
3.68 | 5231 %
validation | loss | accuracy
337 | 7428 %

Table 6.2: Training and validation loss and accuracy.
Model trained on augmented data.

The model trained on the augmented data performs worse than the one presented before, during
training and validation. It reaches an accuracy of 52.31 % during training and 74.28 % during
validation (Tab. 6.2). These results make sense if we take into account that the augmentation
alters significantly the images, making the training really difficult. However, the validation data,
which are non-augmented data, seem to work better, bringing the accuracy quite high, compared
to the training. The learning curves (Fig. 6.7) indicate again that the model still manages to learn
during training so that it is in the position to perform better during validation. The inclination of

the accuracy curve seems to be reaching almost to zero a little bit before epoch 50.

6.2 Optical character recognition

The methodology and algorithms described in Section 5.3 result to the identification of the tags
of the different instruments and devices along with their deciphering (Listing 6.1). In P&ID of
figure 4.6 97 circles are identified (Fig. 6.8). The text in these circles is given as input to the OCR
algorithm and the labels are identified (Table 6.3). Out of the 97 tags, 69 tags (71.13%) is identified
correctly in regard to its first part (e.g. Table 6.3, entry nr. 1) and 62 tags (63.92%) is identified

44

correctly in regard to its second part (e.g. Table 6.3, entry nr. 2). A total of 8 tags (8.25%) are not
identified at all (e.g. Table 6.3, entry nr. 18).

]

100 4

200 4

bkl

300

400 4

500

GO0

=

[o [&1

0 200 400 600 800 1000
Figure 6.8: Identification of 97 circles found on the P&ID (Fig. 4.6).
The list of the tags or labels are passed to the algorithm that deciphers the text. On a total of 93
tags, 58 were deciphered (59.78%). 8 of the tags were totally missing as already discussed, while

the other 31 were either lacking the first part or the letters were wrongly OCRed (Tables 6.4, 6.5,
6.6 and 6.7).

45

nr. | text OCR-ed || nr. | text OCR-ed nr. | text OCR-ed
1 BN- 26 | - 51 | HV-
2 -LV5VD 27 | CHV- 52 | HV-2033
3 AV- 28 | -ER 53 | HV-2083
4 QV- 29 | - 54 | HV-
5 N-XO 30 | HV-AOI 55 | ZFIN-NY
6 TS-OK 31 | SY-00904 56 | JPIN-X05
7 -RK 32 | -REI 57 | Y-
8 -OK 33 | -2001 58 | -
9 -LVUUF 34 | PDINF-WA 59 | AV-
10 - 35 | -CR 60 | S-
11 | CO-ZLVIVD || 36 | HV-2063 61 | PRV-2099]
12 | HVY-2052B || 37 | - 62 | -3
13 -031B 38 | HV-03247 63 | LN-
14 | C-42VUUILV || 39 | HV- 64 | -1
15 HV- 40 | HV- 65 | -07
16 TT-T 41 | HV- 66 | HV-
17 | HV-20128J || 42 | JN-20928 67 | -
18 - 43 | -2040B 68 | HV-
19 V- 44 | PI-LVUVOO0 69 | PIT-LUND
20 P-RK 45 | HV-2013 70 | HV-
21 N-OA 46 | OO- 71 | AVN-
22 - 47 | V- 72 | YAV-2050A
23 -421VIV 48 | HVY-20BTAT || 73 | AN-2060B
24 Y-0108 49 | 2011 74 | PIT-2530
25 Q- 50 | SN-C 75 | AV-

nr.

text OCR-ed

76
77
78
79
80
81
82
&3
84
85
86
87
88
89
90
91
92
93
94
95
96
97

HV-2023J
HV-

AV-
RV-2002
HV-
HV-2093
-2043
HV-20T1A
AV-20404
HYV-2103
PIT-2005A
-20728
VRV-2001
CU-2062A
-2082A
-20914
-2020A
HVY-2031A
HV-2002
AV-
A-2100B
PS-2009

Table 6.3: Result of the OCR performed on the P&ID of figure 6.8.

46

nr. OCR-ed deciphered

1 BN- [’BURNER’, "USER’S CHOICE”, "USER’S CHOICE”]
2 -LV5VD [

3 AV- [’ANALYZER’, "VALVE, DAMPER’]
4 QV- [QUANTITY’, "VALVE, DAMPER’]
5 N-XO []

6 TS-OK ["TEMPERATURE’, ’'SWITCH’]

7 -RK [

8 -OK [

9 -LVUUF [

10 - []

11 | CO-ZLVIVD ["USER’S CHOICE”, OFFICE’]
12 | HVY-2052B [’HAND’, 'RELAY, COMPUTE’]
13 -031B []

14 | C-42VUUIV (]

15 HV- [THAND’, "VALVE, DAMPER’]
16 TT-T [TEMPERATURE’, "TRANSMIT’]
17 | HV-20128J [’THAND’, "VALVE, DAMPER’]
18 - [

19 V- (]

20 P-RK [

21 N-OA []

22 - [

23 -421VIV (]

24 Y-0108 (]

25 Q- [

Table 6.4: Part 1: Result of the deciphering of the OCR text performed on the P&ID of figure 6.8.

47

nr.

deciphered

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

HV-AOI
SY-00904
-REI
-2001
PDINF-WA
-CR
HV-2063

HV-03247
HV-
HV-
HV-

JN-20928

-2040B
PI-LVUVOO
HV-2013
00-

V-
HVY-20BTAT
2011
SN-C

[]
["USER’S CHOICE”, "VALVE, DAMPER’]
[]

[]
["HAND’, "VALVE, DAMPER’]

[’SPEED’, ’RELAY, COMPUTE’]

[]
[]
["’PRESSURE’, "DIFFERENTIAL’, ’INDICATE’, "USER’S CHOICE”]

[]
['HAND’, "VALVE, DAMPER’]

(]
['HAND’, "VALVE, DAMPER’]
[’HAND’, "VALVE, DAMPER’]
[’HAND’, "VALVE, DAMPER’]

[’HAND’, "VALVE, DAMPER’]
[’POWER’, "USER’S CHOICE”, "USER’S CHOICE”]
(]

[’PRESSURE’, "INDICATE’]

[’HAND’, "VALVE, DAMPER’]

["USER’S CHOICE”, *OFFICE’]

(]
['HAND’, "RELAY, COMPUTE’]

[]
['SPEED’, "USER’S CHOICE”, "USER’S CHOICE”]

Table 6.5: Part 2: Result of the deciphering of the OCR text performed on the P&ID of figure 6.8.

48

nr.

OCR-ed

deciphered

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

HV-
HV-2033
HV-2083

HV-
ZFIN-NY

JPIN-X05
Y-

AV-

S-
PRV-2099]
-3
LN-

-1
-07
HV-
HV-
PIT-LUND
HV-
AVN-
YAV-2050A
AN-2060B
PIT-2530
AV-

["HAND’, "VALVE, DAMPER’]
['HAND’, "VALVE, DAMPER’]
['HAND’, "VALVE, DAMPER’]
['HAND’, "VALVE, DAMPER’]
[’POSITION’, "RATIO’, *INDICATE’, "USER’S CHOICE”]
[’POWER’, "INDICATE’, "USER’S CHOICE”]

[]
[]
[’ANALYZER’, "VALVE, DAMPER’]

[l
[’PRESSURE’, ’RECORD’, ’"VALVE, DAMPER’]

(]
[’LEVEL’, "USER’S CHOICE”, "USER’S CHOICE”]
(]
(]
["HAND’, "VALVE, DAMPER’]
(]

['HAND’, "VALVE, DAMPER’]
[’PRESSURE’, *INDICATE’, "TRANSMIT’]
[’HAND’, "VALVE, DAMPER’]
[’ANALYZER’, "USER’S CHOICE”]
[’EVENT, STATE’, ’ALARM’, "VALVE, DAMPER’]
[’ANALYZER’, "USER’S CHOICE”, "USER’S CHOICE”]
[’PRESSURE’, *INDICATE’, "TRANSMIT’]
[’ANALYZER’, "VALVE, DAMPER’]

Table 6.6: Part 3: Result of the deciphering of the OCR text performed on the P&ID of figure 6.8.

49

nr. OCR-ed deciphered

76 | HV-2023) [’HAND’, "VALVE, DAMPER’]

77 HV- [’HAND’, "VALVE, DAMPER’]

78 AV- [CANALYZER’, "VALVE, DAMPER’]

79 RV-2002 [’ RADIATION’, "'VALVE, DAMPER’]

80 HV- [’HAND’, "VALVE, DAMPER’]

81 HV-2093 [’HAND’, "VALVE, DAMPER’]

82 -2043 [

83 | HV-20T1A [’HAND’, "VALVE, DAMPER’]

84 | AV-20404 [CTANALYZER’, "VALVE, DAMPER’]

85 | HYV-2103 [’HAND’, "VALVE, DAMPER’]

86 | PIT-2005A [’PRESSURE’, ’INDICATE’, " TRANSMIT’]
87 -20728 [

88 | VRV-2001 [’'VIBRATION’, ’RECORD’, "VALVE, DAMPER’]
89 | CU-2062A | [USER’S CHOICE”, "MULTI-FUNCTION’, "MULTI-FUNCTION”]
90 -2082A [

91 -20914 [

92 -2020A [

93 | HVY-2031A [’HAND’, ’RELAY, COMPUTE’]

94 HV-2002 [’HAND’, "VALVE, DAMPER’]

95 AV- [’TANALYZER’, ’VALVE, DAMPER’]

96 | A-2100B [

97 | PS-2009 [’PRESSURE’, 'SWITCH’]

Table 6.7: Part 4: Result of the deciphering of the OCR text performed on the P&ID of figure 6.8.

50

138

139

140

141

142

148

149

150

import cv2

import numpy as np

3 import pytesseract

import matplotlib.pyplot as plt

s import imutils

import re

def load_image (url):
img_path = url
img = cv2.imread(img_path, 1)

return img

: def preprocessing(img, resized_width): # try for resized width = 1400

store height, width,
depth and ratio
h, w, d = img.shape

ratio = resized_width / w

resize image

resized_image = imutils.resize(img, width=resized_width)

tranform to grayscale

gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

blur image

blur_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

return resized_image, gray_image, blur_image, ratio

def find_circles(img, blur_image, resized_image, minRadius, maxRadius):
identify circles
circles = cv2.HoughCircles(
blur_image,
method=cv2.HOUGH_GRADIENT,
dp=0.1,
minDist=10,
paraml1=20,
param2=10,
minRadius = minRadius,

maxRadius= maxRadius

51

160

161

162

164

165

166

168

169

def

smooth to integer
circles = np.uintl6(np.around(circles))

" circles found on the pi&d")

print (str(circles.shape[1]) +
count = 1

img_circles = resized_image.copy ()
for circle in circles[0]:

Annotate circle and centroid

cv2.circle(img_circles, (circle[0], circle[1]), circlel[2],

2)
cv2.circle(img_circles, (circle[0], circle[1]), 2, (255,

Annotate text
offset_txt = int(circle[2] * 1.2)
cv2.putText (
img_circles,
"Circle " + str(count),
(circle[0] - offset_txt, circle[1] + offset_txt),
cv2.FONT_HERSHEY_SIMPLEX,
0.3,
(255, 0, 0),
1,
)

count += 1

plt.rcParams['figure.figsize'] = (16,9)
plt.imshow(img_circles)
plt.imsave (fname='img_output_circles. jpg',

arr=img_circles)

return circles

ocr_text(img, circles, ratio):

Read information in every circle
cropped_imgs = []

cropped_imgs_txt = []

img_circle_txt = img.copy ()

52

0,

(o,

0),

255,

-2)

0)

190 circles_int = (circles[0] // ratio).astype(int)

191

192 for circle in circles_int:
193 up = nn
194 low = ""

196 x_offset_right = np.uintl6(circle[2] * 0.79)
197 x_offset_left = np.uintl6(circle[2] * 0.65)
198 y_offset_low = np.uintl6(circle[2] * 0.72)
199 y_offset_up = np.uintl6(circle[2] * 0.56)

200

201 cropped_img_lower = img_circle_txt[

202 circle[1] : circle[1] + y_offset_low,

203 circle[0] - x_offset_left : circle[0] + x_offset_right,

204]

205 cropped_img_upper = img_circle_txt[

206 circle[1] - y_offset_up : circle[1],

207 circle[0] - x_offset_left : circle[0] + x_offset_right,

208]

209 cropped_imgs.append (np.append (cropped_img_upper, cropped_img_lower,
axis=0))

210

211 upper = pytesseract.image_to_string(

212 cropped_img_upper,

213 lang="eng",

214 config="--psm 7 -c tessedit_char_whitelist=

ABCDEFGHIJKLMNOPQRSTUVWXYZ",)

215 lower = pytesseract.image_to_string(
216 cropped_img_lower,
217 config="--psm 7 -c tessedit_char_whitelist=

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",)

219 r_upper = re.compile(r"[A-Z]+")

220 r_lower = re.compile(r"[A-Z0-9]+")

22 if not upper.isspace():

223 if re.match(r_upper, str(upper)).group(0) is not None:
224 up = re.match(r_upper, str(upper)).group(0)

225 if not lower.isspace():

226 if re.match(r_lower, str(lower)).group(0) is not None:

53

o

o
O

low = re.match(r_lower, str(lower)).group(0)

cropped_imgs_txt.append(up + "-" + low)

return cropped_imgs, cropped_imgs_txt, img_circle_txt, circles_int

img =

33 def read_text_in_circles(url, resized_width, minRadius, maxRadius):

load_image (url)

resized_image, gray_image, blur_image, ratio = preprocessing(img,

resized_width)

circles = find_circles(img, blur_image, resized_image, minRadius,maxRadius

)

cropped_imgs, cropped_imgs_txt, img_circle_txt, circles_int = ocr_text(img

, circles, ratio)

return circles, img_circle_txt, cropped_imgs, cropped_imgs_txt

circles,

img_circle_txt, cropped_imgs, cropped_imgs_txt = read_text_in_circles

('outputl.jpg',

1100,

10, 13)

Listing 6.1: Identification of circles and OCR of text of P&D elements.

54

Chapter 7
Limitations

The results presented at Chapter 6 show the potential of the methodology developed in the
framework of this project to deal with the identification of the components that constitute a P&ID.
In this Chapter we refer to the challenges faced in this project, the limitations of the methodology,
as well as to suggest ideas on how to overcome and/or mitigate.

The method succeeds in identifying an element of the P&ID of Fig. 4.5, meaning the particular
compressor, but fails to do the same for the other elements belonging to other classes. That means
that the model currently isn’t resilient enough on a dataset outside of the one we used. Let us recall
that the synthetic dataset presented in Section 4.2.1 consists of data coming from two sources. This
means that, on the one hand, we do have a total of 53 classes represented, we do however have the
representation only based on two sources. This implies that there is not enough diversity in the data.
Additionally, as already discussed in Section 4.2.1, the dataset is not in good balance, since many
classes are under-represented. In order to address this challenge we could use a balanced dataset
when training the model, and build a more diverse synthetic dataset based on data originating from
different sources (e.g., by emplying a GAN neural network). This is a way to avoid overfitting of
the model to the original data.

Another challenge faced is the identification of the size of the rolling window for each element
across the P&ID. The methodology applied in order to extract the contour of each element on
the P&ID, creats indeed some reference point, but identifies many lines for each object, meaning
that each object isn’t defined as one whole, but rather as an element consisting of many lines.
This makes it hard to extract the most accurate representation of each element and leads to the
workaround of expanding the minimum and maximum coordinates, as presented in Section 5.2.2.

A way to overcome this would be to develop a more accurate algorithm that can indeed identify

55

each element as one object, possibly by grouping line segments that share common points to one

object.

56

Chapter 8
Conclusions

In this project we deal for a less than 4 months period a very challenging application: the
identification of the components of a P&ID diagram, that takes as input a piping and instrumentation
diagram (P&ID), provides insight on its textual and visual content, is developed. The methodology
currently performs very well on the identification and decoding of the text included in the P&ID.
It is however still a challenge the identification and classification of the components lying in it.
The solid methodology developed in this project can be enriched and improved in order to address
the topic of classification of the different components of the P&ID, following e.g., the directions
outlined in Chapter 7.

Finally, it is important to notice that the proposed methodology and scope can be applied in
other types of diagrams and drawing, such as those encountered in civil engineering, architecture
etc. This could be an interesting aspect and approach, for fields that are not yet that linked to the

world of Information Technology in regard to Machine Learning.

57

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

S. Theodoridis. Machine Learning. 2020.

Rohit Rahul, Shubham Paliwal, Monika Sharma, and Lovekesh Vig. Automatic Information
Extraction from Piping and Instrumentation Diagrams. 2019. arXiv: 1901.11383 [cs.CV].

Eyad Elyan, Carlos Francisco Moreno-Garcia, and Pamela Johnston. “Symbols in Engineer-
ing Drawings (SiED): An Imbalanced Dataset Benchmarked by Convolutional Neural Net-
works”. In: Proceedings of the 21st EANN (Engineering Applications of Neural Networks)
2020 Conference. Ed. by Lazaros Iliadis, Plamen Parvanov Angelov, Chrisina Jayne, and
Elias Pimenidis. Cham: Springer International Publishing, 2020, pp. 215-224. isbn: 978-3-
030-48791-1.

Shouvik Mani, Michael A. Haddad, Dan Constantini, Willy Douhard, Qiwei Li, and Louis
Poirier. “Automatic Digitization of Engineering Diagrams using Deep Learning and Graph
Search”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). 2020, pp. 673—-679. doi: 10.1109/CVPRW50498.2020.00096.

Carlos Moreno-Garcia, Eyad Elyan, and Chrisina Jayne. “New trends on digitisation of com-
plex engineering drawings”. In: Neural Computing and Applications 31 (June 2019). doi:
10.1007/s00521-018-3583-1.

Eyad Elyan, Laura Jamieson, and Adamu Ali-Gombe. “Deep learning for symbols detection
and classification in engineering drawings”. In: Neural Networks 129 (2020), pp. 91-102.
issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.05.025. url: https://www.
sciencedirect.com/science/article/pii/S0893608020301957.

58

https://arxiv.org/abs/1901.11383
https://doi.org/10.1109/CVPRW50498.2020.00096
https://doi.org/10.1007/s00521-018-3583-1
https://doi.org/https://doi.org/10.1016/j.neunet.2020.05.025
https://www.sciencedirect.com/science/article/pii/S0893608020301957
https://www.sciencedirect.com/science/article/pii/S0893608020301957

S}

~

o

1

S

e

)

I

Appendix A

Algorithm

#!/usr/bin/env python3

HAHHHHH B AR HHHBH B A AR S H AR B BB R HHH
HAHHHHH BB H SRR R B RS SRR BB R HHH
######## P&ID digitization #H######
HAHHHHHBHAAAHHHH B R B R AR HHHHHBRAHRH
HAHHHHHER AR R AR B R AR AR AR H AR B R B R HHH

HHAHARHARHHHHR B R AR RAR AR RAR R RBHHHS
HdH S H Libraries Hit#SHHHH RS
HH#HHHHARHHHHHHH AR R B AR AR AR R R HH B
import cv2

import numpy as np

import pytesseract

import matplotlib.pyplot as plt
import imutils

import re

import sys

import cv2 as cv

from tgdm import tqdm

from skimage import morphology

from skimage.morphology import skeletonize

s import numpy as np # linear algebra

import pandas as pd #CSV file I/0 (e.g. pd.read_csv)

59

39

40

4

48

49

50

51

58

59

60

66

import matplotlib.pyplot as plt #for plotting
from collections import Counter

from sklearn.metrics import confusion_matrix
import itertools

import seaborn as sns

from random import randint

imports for array-handling and plotting
import matplotlib

matplotlib.use('agg"')

import os

import tensorflow as tf

from keras.models import Sequential, load_model
from keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_utils

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,

; import keras.applications

s from subprocess import check_output

hide warnings
import warnings

warnings.filterwarnings ('ignore')

solve cudNN initialisation

from tensorflow.compat.vl import InteractiveSession
config = tf.compat.vl.ConfigProto ()
config.gpu_options.allow_growth = True

session = InteractiveSession(config=config)

spit circles and crop images
import cv2

import numpy as np

import pytesseract

import matplotlib.pyplot as plt

import imutils

import tensorflow as tf

s import tensorflow

60

Dropout

67

68

69

70

71

72

73

74

75

86

87

88

89

90

91

93

94

95

96

97

98

99

100

from tensorflow import keras

from keras.layers import Dense

from tensorflow.keras.layers import Input, Dense

import tensorflow.keras as keras

import keras.layers

from keras.models import Sequential

from keras_preprocessing.image import ImageDataGenerator

from keras.layers import Dense, Activation, Flatten, Dropout,
BatchNormalization

from keras.layers import Conv2D, MaxPooling2D

from keras import regularizers, optimizers

import pandas as pd

> import tensorflow as tf

3 from tensorflow import keras

from tensorflow.keras import layers

s import matplotlib.pyplot as plt

path = str(sys.argv[1]) # realpars_p_id_diag_mod.png, /home/jovyan/mezcla/

Documents/Data_Science/capstone/pid-digitization/realpars_p_id_diag_mod.

png

path2 = str(sys.argv[2]) # outputl.jpg, /home/jovyan/mezcla/Documents/
Data_Science/capstone/pid-digitization/outputl. jpg

» path3 = str(sys.argv[3]) # folder/to/images, '/home/jovyan/mezcla/Documents/

Data_Science/capstone/pid-digitization/data/
Symbol_pixels_blog_projectmaterials'

HUSHEHAHAHHASHEH AR A SRS HEHEH B SRS HEHH
HERHHHHAA#ARS Step 1 #H#HHH#H#H##H#RRS
####### Contour detection #H#H#H#H###H

HAHHHHH BB AR R HHH R R B AR RHH R R BB R HHH

print ("\n Countour detection started.")

61

101

102

103

129

def prepare_image (path):
from skimage import color

from skimage import io

from skimage.color import rgb2gray

import image
img = io.imread(path)
imgGray = color.rgb2gray (img)

return imgGray

find contours
from skimage import measure

import matplotlib.pyplot as plt

5 def find_contours(r):

Find contours at a constant value of 0.8

contours = measure.find_contours(r,

0.8)

Display the image and plot all contours found

fig, ax = plt.subplots()

ax.imshow(r, cmap=plt.cm.gray)

for contour in contours:

ax.plot(contour[:, 1], contour[:, 0],

ax.axis('image"')
ax.set_xticks ([])
ax.set_yticks ([1)
plt.show()

return contours

def execute_contours (url):
img = prepare_image (url)
contours = find_contours (img)

return img, contours

img, contours = execute_contours (path)

print ("\n Countour detection finished.")

HAHHHHH U AR AR BHHHHH B R R RS HHHHH B R HHH
HERHHHHAAAARE Step 2 H#HHHHH#HHA#HHHH
######### Extraction of #H#H#H#H##H##H

62

linewidth=2)

141 ######## PIDs elements ###########
14 HAEHHHHHBBHAAAHHHBHBR AR RS HHHHHBRAHRS

44 ## spot min, max coordinates

146 coord_cont = []
47 X_min = []
s Y_min = []
10 X_max = []

150 Y_max = []

151 for contour in range(len(contours)):

52 coord_cont .append (contour)

153 X_min.append(math.floor (contours[contour][:,0].min()))
154 X_max.append(math.ceil (contours [contour] [:,0].max()))
155 Y_min.append(math.floor(contours[contour][:,1].min()))
156 Y_max.append(math.ceil (contours [contour] [:,1].max()))

158 ## crop elements along the PID diagram

159

160 from skimage import color

16t elements = [] # each element of the PID diagram

12 for i in coord_cont:

163 image_cropped = img[X_min[i]:X_max[i],
164 Y min[i]:Y_max[i]]
165 resized = cv2.resize(image_cropped,

166 (100, 100),

167 interpolation = cv2.INTER_AREA)

168 elements.append(resized)

169

170 elements_50_100 = [] # each element of the PID diagram

171 for 1 in coord_cont:

7 if X_min[i] > 50 and Y_min[i] > 50 and X_max[i]+100 < img.shape[0] and
Y max[i]+100 < img.shape[1]:

173 image_cropped = img[X_min[i]-50:X_max[i]+100,

174 Y min[i]-50:Y_max[i]+100]

175 resized = cv2.resize(image_cropped,

176 (100, 100),

177 interpolation = cv2.INTER_AREA)
178 elements_50_100.append(resized)

63

180

181

182

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

206

207

208

209

elements_250_250 = [] # each element of the PID diagram
for i in coord_cont:
if X_min[i] > 250 and Y_min[i] > 250 and X_max[i]+250 < img.shape[0] and
Y max[i]+250 < img.shapel[1]:
image_cropped = img[X_min[i]-250:X_max[i]+250,
Y min[i]-250:Y max[i]+250]
resized = cv2.resize(image_cropped,
(100, 100),
interpolation = cv2.INTER_AREA)
elements_250_250.append(resized)

HEHHHHHBRH AR AR AR B RS R B RS R B AR B RS RHHS
HHEFHHHAH#HARE Step 3 HAH#HHAHHBAHHHS
OCR text information ##H##H#H##
HUHHHHHB AR H R AR BB H BB H B RS R B RS SHS

import path2 image

try to add skeletonize

import cv2

import cv2 as cv

import numpy as np

import pytesseract

import matplotlib.pyplot as plt
import imutils

import re

from tqdm import tqdm

from skimage import morphology

from skimage.morphology import skeletonize

def load_image (url):
img_path = url
img = cv2.imread(img_path, 1)

return img

def preprocessing(img, resized_width): # try for resized_width = 1400
print ("\n Executing preprocessing()")

store height, width,

64

226

7

228

229

230

o
@
&)

245

246

247

def

248 #

249

250

depth and ratio
h, w, d = img.shape
resized_w = 1400

ratio = resized_width / w

resize image

resized_image = imutils.resize(img, width=resized_width)

tranform to grayscale

gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

blur image

blur_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

return resized_image, gray_image, blur_image, ratio

find_circles(img, blur_image, resized_image, minRadius, maxRadius):
print ("\n Executing find_circles()")
identify circles
circles = cv2.HoughCircles(
blur_image,
method=cv2.HOUGH_GRADIENT,
dp=0.1,
minDist=10,
paraml1=20,
param2=10,
minRadius = minRadius,
maxRadius= maxRadius
minRadius=11,

maxRadius=12,

smooth to integer
circles = np.uintl6(np.around(circles))

print (str(circles.shape[1]) + " circles found on the pi&d")

count = 1
img_circles = resized_image.copy ()

for circle in circles[0]:

65

260

261

262

284

285

286

287

288

289

290

293

294

295

296

297

3 def

Annotate circle and centroid

cv2.circle(img_circles, (circle[0], circlel[1]), circle[2],

2)
cv2.circle(img_circles, (circle[0], circle[1]), 2, (255,

Annotate text
offset_txt = int(circlel[2] * 1.2)
cv2.putText (
img_circles,
"Circle " + str(count),
(circle[0] - offset_txt, circle[1] + offset_txt),
cv2.FONT_HERSHEY_SIMPLEX,
0.3,
(255, 0, 0),
1,

count += 1

plt.rcParams['figure.figsize'] = (16,9)
plt.imshow(img_circles)
plt.imsave (fname='img_output_circles. jpg',

arr=img_circles)

return circles

ocr_text(img, circles, ratio):
print ("\n Executing ocr_text(")

Read information in every circle
cropped_imgs = []

cropped_imgs_txt = []

img_circle_txt = img.copy ()
circles_int = (circles[0] // ratio).astype(int)
for circle in circles_int:

up =
low =

x_offset_right = np.uintl6(circle[2] * 0.79)
x_offset_left = np.uintl6(circle[2] * 0.65)

66

0,

(o,

0),

255,

-2)

0)

298 y_offset_low = np.uintl6(circle[2] * 0.72)
299 y_offset_up = np.uintl6(circle[2] * 0.56)

300

302 cropped_img_lower = img_circle_txt[

303 circle[1] : circle[1] + y_offset_low,

304 circle[0] - x_offset_left : circle[0] + x_offset_right,
305]

306 cropped_img_upper = img_circle_txt[

307 circle[1] - y_offset_up : circle[1],

308 circle[0] - x_offset_left : circle[0] + x_offset_right,

309]

310 cropped_imgs . append (np.append (cropped_img_upper, cropped_img_lower,
axis=0))

311

312 upper = pytesseract.image_to_string(

313 cropped_img_upper,

314 lang="eng",

315 config="--psm 7 -c tessedit_char_whitelist=
ABCDEFGHIJKLMNOPQRSTUVWXYZ",)

316 lower = pytesseract.image_to_string(

317 cropped_img_lower,

318 config="--psm 7 -c tessedit_char_whitelist=
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",)

320 r_upper = re.compile(r"[A-Z]+")

32 r_lower = re.compile(r"[A-Z0-9]+")

323 if not upper.isspace():

324 if re.match(r_upper, str(upper)).group(0) is not None:
325 up = re.match(r_upper, str(upper)).group(0)

326 if not lower.isspace():

327 if re.match(r_lower, str(lower)).group(0) is not None:
328 low = re.match(r_lower, str(lower)).group(0)

329

330 cropped_imgs_txt.append(up + "-" + low)

332 return cropped_imgs, cropped_imgs_txt, img_circle_txt, circles_int

67

335 def read_text_in_circles(url, resized_width, minRadius, maxRadius):

336 print ("\n Executing read_text_in_circles()")
337 img = load_image (url)
338 resized_image, gray_image, blur_image, ratio = preprocessing(img,

resized_width)

339 circles = find_circles(img, blur_image, resized_image, minRadius,maxRadius
)

340 cropped_imgs, cropped_imgs_txt, img_circle_txt, circles_int = ocr_text (img
, circles, ratio)

341

342 return circles, img_circle_txt, cropped_imgs, cropped_imgs_txt

343

344 print ("\n Reading text in circles started.")

346 circles, img_circle_txt, cropped_imgs, cropped_imgs_txt = read_text_in_circles
(path2, 1400, 12, 14)

347

a3 print ("\n Reading text in circles finished.")

349

350 HAFHBHHHAEHHHARSHHARSHHASHHAFHBRFHERHS

351 ### Deciphering the P&IDs text ##

352 H#HHHSHSSHSE RS HE S BB HSHE RS LB R HS 1Y

354 HHHHHHHBHAAHHHHHBHBHAARHHHHBHBRHHRH
355 ######## Dictionairies #HH#HH#H#H#H#H#H#H##H
356 HHRHHAFHFHHARBRRHHFHFH AR AR BHBHHHARS

358 # instrument letter identification

359 # based on ANSI/ISA-5.1.-1984 (R1992)

360 # https://www.aiche.org/sites/default/files/ChEnected-Example-PIDs-and-Lead-
Sheets.pdf

361

32 variables = {"A":"ANALYZER",

363 "B":"BURNER",

364 "C":"USER'S CHOICE",
365 "D":"USER'S CHOICE",
366 "E":"VOLTAGE",

367 "F":"FLOW",

368 "G":"USER'S CHOICE",
369 "H":"HAND",

68

370 "I":"CURRENT",

371 "J":"POWER",

m WK :"TIME",

m "L":"LEVEL",

374 "M":"USER'S CHOICE",
375 "N":"USER'S CHOICE",
376 "Q":"USER'S CHOICE",
377 "p":"PRESSURE",

378 "Q":"QUANTITY",

379 "R":"RADIATION",

380 "gn":"SPEED",

381 WTn:"TEMPERATURE",
3 "U":"MULTI-VARIABLE",
383 "yn:"VIBRATION",

384 "W":"WEIGHT , FORCE",
385 "X":"UNCLASSIFIED",
386 "y":"EVENT, STATE",
387 nZ":"POSITION"

388 }

389

300 modifiers = {

391 "C":"CONTROL",

392 "D":"DIFFERENTIAL",
393 "F":"RATIO",

394 "J":"SCAN",

395 "M":"MOMENTARY",

396 "Q":"INTERGRATE/TOTALIZE",
397 "R":"RELIEF",

398 "S":"SAFETY",

399 "X":"X-AXIS",

400 "y":"y-AXIS",

401 "Z":"Z-AXIS"

402 }

403

404 indication_functionalities = {"A":"ALARM",

405 "B":"USER'S CHOICE",
406 "E":"PRIMARY ENTITY",
407 "G":"GLASS",

408 "I":"INDICATE",

409 "L":"LIGHT",

69

418

419

420

421

423

424

425

426

427

428

429

430

438

439

440

441

442

443

"N
"
0
"R
"y
"W
U0

{llBll:
IICII:
I|Kl|
llNll:
lISIl:
IITII:
IIUII:
llVll:
IIXII:
IIYII:
IIZII:

output_functionalities =

ELEMENT" ,

modifier_of_functionalities =

transducer functions

{IIB":
llcll:
IIHII:
IIL":
IIM":
llNll:
IIOII:
IIUII:
IIX":

"USER'S CHOICE",
"OFFICE",

"POINT TEST CONN.",
"RECORD",
"MULTI-FUNCTION",
"WELL",
"UNCLASSIFIED"

"USER'S CHOICE",
"CONTROL",

:"CONTROL STATION",

"USER'S CHOICE",
"SWITCH",

"TRANSMIT",

"MULTI-FUNCTION",

"VALVE, DAMPER",

"UNCLASSIFIED",

"RELAY, COMPUTE",

"DRIVER, ACTUATOR UNCLASSIFIED FINAL

"USER'S CHOICE",
"CLOSE",

"HIGH",

"LOW",

"MEDIUM",

"USER'S CHOICE",
"OPEN",
"MULTI-FUNCTION",
"UNCLASSIFIED"

444 # based on ANSI/ISA-5.1.-1984 (R1992)
45 # https://www.aiche.org/sites/default/files/ChEnected-Example-PIDs-and-Lead-

446

Sheets.pdf

147 transducer _functions = {"E/E":"VOLTAGE TO VOLTAGE",

70

CONTROL

448 "E/I":"VOLTAGE TO CURRENT",

449 "E/P":"VOLTAGE TO PNEUMATIC",
450 "I/P":"CURRENT TO PNEUMATIC",
451 "P/I":"PNEUMATIC TO CURRENT"
452 }

454 # fluid service codes

45 # based on ANSI/ISA-5.1.-1984 (R1992)

456 # https://www.aiche.org/sites/default/files/ChEnected-Example-PIDs-and-Lead-
Sheets.pdf

457

458 fluid_service_codes = {"ALM":"ALUMINUM SULFATE",

459 "AMN":"AMMONIUM NITRATE",

460 "AMH" :"AMMONIUM HYDROXIDE",

461 "ABF":"AMMONIUM (BI)FLUORIDE",
462 "AMS":"AMMONIUM SULFATE",

463 "ASO":"ACID SOLUBLE ORGANICS",
464 "BAR" :"BACKWASH AIR",

465 "CAF":"CALCIUM FLUORIDE",

466 "CAR" :"COMPRESSED AIR",

467 "CBW":"CLEAN BACKWASH WATER",
468 "CFD":"CAUSTIC RAW FEED (GEN. USE)",
469 "C02":"CARBON DIOXIDE",

470 "CHC":"CALCIUM HYPOCHLORITE",
471 "CL2":"CHLORINE",

472 "DBW":"DIRTH BACKWASH WATER",
473 "DRN":"PROCESS DRAIN",

474 "DSL":"DIESEL FUEL",

475 "EFF":"EFFLUENT (GENERAL USE)",
476 "FEC":"FERRIC CHLORIDE",

477 "FEW":"FILTER EFFLUENT WATER",
478 "FIW":"FILTER INFLUENT WATER",
479 TIOILY g M1, @ILLY

480 "HCL" :"HYDROCHLORIC ACID",

481 "HF":"HYDROFLUORIC ACID",

482 "HPX":"HYDROGEN PEROXIDE",

483 "IAR" :"INSTRUMENT AIR",

484 "IFD":"INDUSTRIAL RAW FEED",
485 "LSY":"LIME SLURRY",

486 "MEL":"METHANQOLS",

71

487 "NAG" :"NATURAL GAS",

488 "NIA":"NITRIC ACID",

489 "N2":"NITROGEN",

490 "OIL":"0IL (GENERAL USE)",

491 "PAR" : "PROCESS AIR",

492 "PFD":"POLYMER FEED",

493 "PHA" :"PHOSPHORIC ACID",

494 "KF":"POTASSIUM FLUORIDE",

495 "KOH" :"POTASSIUM HYDROXIDE",
496 "PSL":"PROCESS SLURRY/SLUDGE",
497 "PVP":"PROCESS VAPOR",

498 "PWR" :"POTABLE WATER",

499 "SAH":"SULFURIC ACID, >75%",
500 "SAL":"SULFURIC ACID, <75%",
501 "SHC" :"SODIUM HYPOCHLORITE",
502 "SOC":"SODIUM CARBONATE",

503 "SOH" :"SODIUM HYDROXIDE",

504 "SLP":"STEAM, <12b#",

505 "SMB":"SODIUM METABISULFITE",
506 "STM" :"STEAM, 125-220#",

507 "SNY":"SANITARY SEWER",

508 "STO":"STORM DRAIN",

509 "SWR":"SERVICE WATER",

510 "TFL":"THERMAL FLUID",

511 "UAR" :"UTILITY AIR",

512 "UWR" :"UTILITY WATER",

513 "YNT":"VENT (GENERAL USE)",
514 "WOL":"WASTE OIL",

515 "WWR":"WASTEWATER (GENERAL USE)"
516 }

517

8 HAAAHHHHH B AR A AR HHH BB ER AR AR HHHHBHAHH

v

59 # Function to decipher textual tag #
520 HHABHAHBHAHBHAHARHARBRHARARRBR AR RHHH

s # how to interpret the letter in the circles
523 # which refer to physical devices
s24 # https://www.aiche.org/chenected/2010/09/interpreting-piping-and-

instrumentation-diagrams-symbology

72

520 # how to interpret the letter in the circles
527 # which refer to physical devices

5

]

¢ # https://www.aiche.org/chenected/2010/09/interpreting-piping-and-
instrumentation-diagrams-symbology
529

s30 def decipher_tag(text): # input is a string

531 text = text.upper()

532 variable = ''

533 modifier = "'

534 indication_functionality = "'

535 output_functionality = "'

536 modifier_of_functionality = "'

537 tags = []

538

539 if len(text) == 2:

540 if text[0] in variables.keys():

541 variable = text [0]

sa0 # print ("First letter means: ", variables[variable])
543 tags.append(variables [variable])

544

545 if text[1] in indication_functionalities.keys():

546 indication_functionality = text[1]

sa7 # print ("Second letter means: ", indication_functionalitiesl|[

indication_functionality])

548 tags.append(indication_functionalities[indication_functionality])
549

550 if text[1] in output_functionalities.keys():

551 output_functionality = text[1]

ss2 # print ("Second letter means: ", output_functionalities][

output_functionality])

553 tags.append (output_functionalities[output_functionality])
554

555 if len(text) == 3:

556 if text[0] in variables.keys():

557 variable = text [0]

sss # print ("First letter means: ", variables[variable])

559 tags.append(variables [variable])

560

s61 if text[1] in indication_functionalities.keys():

562 indication_functionality = text[1]

73

563 #

564
565
566
567

ses #

580
581
582
583

ss4 #

585
586
587
588

580 #

590
591
592
593
594
595 #
596
597

598

print ("Second letter means: ", indication_functionalities|[

indication_functionality])

tags.append(indication_functionalities[indication_functionality])

if text[2] in output_functionalities.keys():
output_functionality = text[2]
print ("Third letter means: ", output_functionalities|[
output_functionality])
tags.append (output_functionalities [output_functionality])

if len(text) == 4:
if text[0] in variables.keys():
variable = text [0]
print ("First letter means: ", variables[variable])

tags.append(variables [variable])

if text[1] in modifiers.keys():
modifier = text[1]
print ("Second letter means: ", modifiers[modifier])

tags.append(modifiers [modifier])

if text[2] in indication_functionalities.keys():
indication_functionality = text[2]
print ("Third letter means: ", indication_functionalities[
indication_functionality])

tags.append(indication_functionalities[indication_functionality])

if text[3] in output_functionalities.keys():
output_functionality = text [3]

", output_functionalities|[

print ("Fourth letter means:
output_functionality])

tags.append (output_functionalities [output_functionality])

if len(text) == 5:
if text[0] in variables.keys():
variable = text [0]

print ("First letter means: ", variables[variable])

tags.append(variables[variable])

if text[1] in modifiers.keys():

74

599

600

601

602

603

604

605

606

607

608

609

610

616

H OH O OH O H

modifier = text[1]
print ("Second letter means: ", modifiers[modifier])

tags.append (modifiers [modifier])

if text[2] in indication_functionalities.keys():
indication_functionality = text[2]
print ("Third letter means: ", indication_functionalities|[
indication_functionality])

tags.append(indication_functionalities[indication_functionality])

if text[3] in output_functionalities.keys():
output_functionality = text [3]
print ("Fourth letter means: ", output_functionalities][
output_functionality])

tags.append (output_functionalities [output_functionalityl])

if text[4] in modifier_of_functionalities.keys():
modifier_of_functionality = text [4]
print ("Fifth letter means: ", modifier_of_functionalitiesl|[
modifier_of_functionality])

tags.append(modifier_of_functionalities[modifier_of_functionality

D

print ("Text tag is: ",variable,
modifier,
indication_functionality,
output_functionality,

modifier_of_functionality)

return tags

print ("\n Deciphering text in circles started.")

¢ cropped_imgs_txt_deciphered = []

for text in cropped_imgs_txt:

tag = text.split("-")[0]
tags = decipher_tag(tag)
cropped_imgs_txt_deciphered.append(decipher_tag(tag))

33 print (cropped_imgs_txt_deciphered)

75

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

35 print ("\n Deciphering text in circles finished.")

7 HAHAHHHHH BB AR R H R B R AR AR H SRR HH

HAHHHHHAFRAARE Step 4 HHEHHHHHAHHH#HHS
Convolutional Neural Network
HHut#HdHdH S USRS RS RS H SRS HAEH SRS RS HY

import data

print ("\n Import dataset from directory started.")
data_ds = tf.keras.preprocessing.image_dataset_from_directory(path3,
color_mode="
grayscale",
image_size=(100,
100),
batch_size=32,
labels='inferred',
label _mode="'
categorical')

type (data_ds)

print ("\n Import dataset from directory finished.")

create dict with labels

labels_names = {}

i=1

for item in data_ds.class_names:
labels_names[item] = i
labels_names[i] = item

i+= 1

labels_names[np.where(test_predic[0] == test_predic[0].max()) [0][0]]

split train val test

print ("\n Split train val test")

def split_train_val_test(ds,
train_split=0.7,
val_split=0.15,

76

672 test_split=0.15,

673 shuffle=True,

674 shuffle_size=10000) :

675

676 assert (train_split + test_split + val_split) == 1
o

678 ds_size = 0

679 for data, labels in ds:

680 ds_size += 1

681

682 if shuffle:

683 # Specify seed to always have the same split distribution between runs
684 ds = ds.shuffle(shuffle_size, seed=12)

685

686 train_size = int(train_split * ds_size)

687 print("train_size=", train_size)

688 val_size = int(val_split * ds_size)

689 print("val_size=", val_size)

690 print("test_size=", (ds_size - val_size - train_size))
691

692 train_ds = ds.take(train_size)

693 val_ds = ds.skip(train_size).take(val_size)

694 test_ds = ds.skip(train_size) .skip(val_size)

695

696 return train_ds, val_ds, test_ds

697

o3 train_ds, val_ds, test_ds = split_train_val_test(data_ds)
o9 type(train_ds), type(val_ds), type(test_ds)

700

700 print ("\n Compile and make the CNN model.")

70 def make_model (input_shape, num_classes):

703 inputs = keras.Input(shape=input_shape)

704 print ("inputs.shape", inputs.shape)
705 X = inputs
706 print("1x_data_augmentation.shape", x.shape)

707 # Entry block

708 #x = layers.experimental.preprocessing.Rescaling(1.0 / 255) (x)
709 x = layers.Conv2D(filters=32,

710 kernel_size=(3,3),

711 activation='relu',

77

712 padding="'same ') (x)

713 print ("2x_Conv2D.shape", x.shape)

714 x = layers.MaxPooling2D (pool_size=(2,2)) (x)
715 print ("3x_MaxPooling2D.shape", x.shape)

716 x = layers.Conv2D(filters=64,

717 kernel_size=(3,3),

718 activation='relu',

719 padding="'same') (x)

720 x = layers.Conv2D(filters=64,

7 kernel_size=(3,3),

722 activation='relu',

723 padding="'same ') (x)

724 x = layers.MaxPooling2D (pool_size=(2,2)) (x)
726 x = layers.Conv2D(filters=128,

727 kernel_size=(3,3),

728 activation='relu',

729 padding="'same ') (x)

730 x = layers.Conv2D(filters=128,

73 kernel_size=(3,3),

732 activation='relu',

733 padding="'same ') (x)

734 x = layers.MaxPooling2D (pool_size=(2,2)) (x)
735 x = layers.Flatten() (x)

736 # Densely connected layers

737 print ("x.shape", x.shape)

738 x = layers.Dense (128, activation='relu') (x)
39 x = layers.Dropout (0.5) (x)

740 x = layers.Dense (64, activation='relu') (x)
741 x = layers.Dropout (0.1) (x)

742

743 # output layer

744 if num_classes == 2:

745 activation = "sigmoid"

746 units = 1

747 else:

748 activation = "softmax"

749 units = num_classes

50

75 outputs = layers.Dense(units, activation=activation) (x)

78

752 return keras.Model (inputs, outputs)

755 model = make_model ((100, 100, 1), 53)
756 # model = make_model ((100, 100,), 53)

757 print (model . summary ())

79 callbacks = [

760 keras.callbacks.ModelCheckpoint ("save_at_{epoch}.h5"),
761 # define the early stopping

762 keras.callbacks.EarlyStopping(monitor="'val_loss',

763 patience=5)
01]

76s model.compile (

766 optimizer=keras.optimizers.Adam(1le-3),

767 loss="categorical_crossentropy",

768 metrics=["accuracy"],

771 history = model.fit_generator(

772 train_ds,

773 epochs=50,

774 callbacks=callbacks,

775 validation_data=val_ds,
776)

778 print ("Plot learning curves for training.")
779 plt.figure(figsize=(12, 6))

780

732 # print scores

753 def print_scores(history):

784 print (history.history.keys())

785 print (max(list (history.history.values()) [0]), \
786 max (list (history.history.values()) [1]), \
787 max (list (history.history.values()) [2]), \
788 max(list (history.history.values()) [3]))

730 print_scores (history)
790

791

79

792 # plot curves

793

def plots_curves(history):
794 plt.figure(figsize=(12, 6))
795 # summarize history for accuracy

796 plt.plot(history.history['accuracy'])

797 plt.plot(history.history['val_accuracy'])

798 plt.title('Model accuracy')

799 plt.ylabel('accuracy')

800 plt.xlabel('epoch')

801 plt.legend(['train', 'val'l], loc='upper left')
802 plt.savefig("accuracy_trainingl00.png")

803 plt.show ()

804 # summarize history for loss

805 plt.figure(figsize=(12, 6))

806 plt.plot(history.history['loss'])

807 plt.plot(history.history['val_loss'])

808 plt.title('Model loss')

809 plt.ylabel('loss')

810 plt.xlabel('epoch')

811 plt.legend(['train', 'val'l, loc='upper left')
812 plt.savefig("loss_trainingl00.png")

813 plt.show ()

¢14 plots_curves (history)

sic # plot architecture of the model

817 from keras.utils.vis_utils import plot_model
sis plot_model (model, show_shapes=True, dpi=100)
s1o plt.savefig("plot_model.png")

820

21 # evaluate the model

822

23 evaluation = model.evaluate(test_ds,

824 batch_size=32,

825 verbose=1,

826 sample_weight=None,

827 steps=None,

828 callbacks=callbacks,

829 max_queue_size=10,

830 workers=1,

831 use_multiprocessing=False,

80

838

839

840

841

842

843

844

845

846

847

848

849

850

852

859

860

861

862

863

864

865

866

867

868

869

870

return_dict=True)

print ("Evaluation of the model:", evaluation)

predict on the test set_xticks

predictions_test = model.predict(test_ds,
batch_size=32,
verbose=1,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,

use_multiprocessing=False)

print confusion matrix on test set

predictions = np.array([])

labels = np.array([])

for x, y in test_ds:
predictions = np.concatenate([predictions, np.argmax(model.predict(x),
axis = -1)1)
labels = np.concatenate([labels, np.argmax(y.numpy(), axis=-1)1)

cm = tf.math.confusion_matrix(labels=labels, predictions=predictions).numpy ()

from sklearn.metrics import confusion_matrix

7 import pylab as pl
gss import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (8,8)

pl.matshow(cm, cmap='Greys')

pl.title('Confusion matrix of the CNN model on test set')
pl.colorbar ()

pl.show ()

HUHHHHH B AR B AH B RS R B RS R B RS R B RS R HHHS
HHu##HHASHHARE Step b #H#HHHHHHHHHHS
Predict on PID elements
HUHHHAHFH AR B RS HBR SR B RS R B RS R HH S HHHS

81

71 index_pred = []
s probab_pred = []

973 for image in range(len(elements)):

874 plt.imshow(elements[image], cmap='gray')

875 plt.show ()

876

877 img_array = keras.preprocessing.image.img_to_array(elements[image])

878 img_array = tf.expand_dims(img_array, 0) # Create batch axis

879 test_predic = model.predict(img_array)

880 print ("The element belongs to class %d,%s with a probablity of %.2f %%." %

(np.where(test_predic[0] == test_predic[0].max()) [0][0],labels_names[np.

where (test_predic [0] == test_predic[0].max()) [0][0]], round(test_predic

[0].max () *100,2)))
881
882 index_pred.append(np.where(test_predic [0] == test_predic[0].max()) [0][0])
883 probab_pred.append(test_predic [0].max())
884
sss index_pred_50_100 = []
ss¢ probab_pred_50_100 = []
.

sss for image in range(len(elements_50_100)):

889 plt.imshow(elements_50_100[image], cmap='gray')

890 plt.show ()

891

892 img_array = keras.preprocessing.image.img_to_array(elements_50_100[image])

893 img_array = tf.expand_dims(img_array, 0) # Create batch axis

894 test_predic = model.predict(img_array)

895 print ("The element belongs to class %d,%s with a probablity of %.2f %%." %

(np.where(test_predic[0] == test_predic[0].max()) [0][0],labels_names[np.

where (test_predic [0] == test_predic[0].max()) [0][0]], round(test_predic

[0] .max () *100,2)))
896

897

898 index_pred_50_100.append (np.where(test_predic[0] == test_predic[0].max())
(ol [ol1)
899 probab_pred_50_100.append(test_predic [0] .max())

900
o1 index_pred_250_250 = []
92 probab_pred_250_250 = []

903

82

)4

905

906

907

908

909

910

918

919

920

921

922

923

924

926

927

928

929

930

931

934

for image in range(len(elements_250_250)):
plt.imshow(elements_250_250[image], cmap='gray')

plt.show ()

img_array = keras.preprocessing.image.img_to_array(elements_250_250[image
D

img_array = tf.expand_dims(img_array, 0) # Create batch axis

test_predic = model.predict(img_array)

print ("The element belongs to class %d,%s with a probablity of %.2f %%." %
(np.where(test_predic[0] == test_predic[0].max()) [0][0],labels_names[np.

where (test_predic[0] == test_predic[0].max()) [0]J[0]], round(test_predic

[0] .max () *100,2)))

index_pred_250_250.append (np.where(test_predic[0] == test_predic[0].max())
(ol fol)
probab_pred_250_250.append(test_predic [0].max())

check examples from PIDs
1

extract element

rotary_compressor = img[850:1150, 75:400]
rotary_compressor = cv2.resize(rotary_compressor,

(100, 100),

interpolation = cv2.INTER_AREA)

»s plt.imshow(rotary_compressor)

pass it through the model

img_array = keras.preprocessing.image.img_to_array(rotary_compressor)

img_array tf.expand_dims (img_array, 0) # Create batch axis

test_predic = model.predict(img_array)
33 np.where (test_predic[0] == test_predic[0].max()) [0][0], test_predic[0].max(),
labels_names [np.where(test_predic[0] == test_predic[0].max()) [0][0]]
print ("The element belongs to class %d,%s with a probablity of %.2f %%." % (np
.where(test_predic [0] == test_predic [0].max()) [0][0],labels_names [np.where
(test_predic[0] == test_predic[0].max()) [0]J[0]], round(test_predic[0].max

()%100,2)))

83

938

939

940

941

942

943

944

945

946

947

948

949

950

def plot_histogram(predictions):
plt.figure(figsize=(10,10))
plt.hist(predictions, bins=53)
plt.show ()

plot_histogram(test_predic[0])

2
pass it through the model

img_array = keras.preprocessing.image.img_to_array(elements[2])

img_array = tf.expand_dims(img_array, 0) # Create batch axis

test_predic = model.predict(img_array)

np.where(test_predic[0] == test_predic[0].max()) [0][0], test_predic[0].max()

print ("The element belongs to class %d,%s with a probablity of %.2f %%." % (ap
.where(test_predic [0] == test_predic[0].max()) [0][0]-1,1labels_names[np.
where (test_predic[0] == test_predic[0].max()) [0][0]], round(test_predic
[0] .max () *100,2)))

Listing A.1: Algorithm of the application

84

	Introduction
	Problem statement
	Review of related literature
	Data Collection and methods
	Textual data
	Images
	Icons
	Piping & Instrumentation Diagram

	Proposed methodology
	Identification of vertical and horizontal lines
	Identification of objects via a CNN model
	CNN model
	Extraction of P&ID's components

	Optical character recognition of instruments

	Results
	Convolutional Neural Network
	Optical character recognition

	Limitations
	Conclusions
	Algorithm

