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Abstract 

Georgios Samsonidis 

An Algorithmic Approach of the Effect of Parameter Estimation of 

the EWMA Control Chart 

 

Athens 2021 

 

Statistical Quality Control is a necessary tool for companies that compete in today’s 

economy. With it, the companies can ensure the quality and reliability of their products. 

The control is implemented in the production process and enables taking corrective 

measures when the produced product is considered out of the control limits. The control 

processes are done through the control diagrams (i.e. Shewhart, CUSUM, EWMA). The 

first control diagram was presented during the second Industrial Revolution and 

specifically in 1924 by Walter A. Shewhart. Today, writing this study, we understand 

that we are closer to the fourth Industrial Revolution the result of which will be the 

increasing drop of human interaction in all parts of the production process. One of the 

problems we are going to focus on in this study is the unknown parameters that 

frequently must be estimated to set the limits of control diagrams, and their estimation 

is being achieved through a data sample. There are many control diagrams used in 

statistical quality control, but for our study we are going to focus on the Exponentially 

Weighted Moving Average diagram (EWMA). Estimating the parameters for the 

EWMA chard is going to be achieved through an algorithmic process, and, by using 

older studies as a base of reference and the results of this study, we are going to try to 

produce reliable results for parameter estimation. 
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Περίληψη 

Γιώργος Σαμσονίδης 

Αλγοριθμική προσέγγιση της Επίδρασης της Εκτίμησης 

Παραμέτρων στο EWMA Διάγραμμα Eλέγχου 

 

Ο Στατιστικός Έλεγχος Ποιότητας είναι ένα αναγκαίο εργαλείο στην σημερινή εποχή 

για τις επιχειρήσεις. Με τον Στατιστικό έλεγχο ποιότητας οι επιχειρήσεις μπορούν να 

διασφαλίσουν την ποιότητα και αξιοπιστία των προϊόντων τους. Ο έλεγχος αυτός 

εφαρμόζεται στην παραγωγική διαδικασία και με τον τρόπο αυτο υπάρχει η δυνατότητα 

παρέμβασης όταν το παραγώμενο προϊόν θεωρηθεί εκτός ορίων. Η διαδικασίες ελέγχου 

γίνονται μέσα απο τα διαγράμματα ελέγχου (πχ. Shewhart, CUSUM, EWMA). Το 

πρωτό διάγραμμα ελέγχου παρουσιάστηκε κατά την 2η Βιομηχανική επανάσταση και 

συγκεκριμένα το 1924 απο τον Walter A. Shewhart. Σήμερα που γράφουμε αυτή την 

μελέτη γνωρίζουμε ότι είμαστε κόντα στην 4η Βιομηχανική επανάσταση της οποίας το 

αποτέλεσμα θα είναι η μείωση της αλληλεπίδρασης του ανθρωπού σε κάθε κομμάτι 

μιας παραγωγικής διαδικασίας. Ένα απο τα προβλήματα που θα μελετήσουμε όμως 

είναι τα όρια των διαγραμμάτων ελέγχου τα οποία αρκετές φορές παρουσιάζουν 

άγνωστες παραμέτρους οι οποίες πρέπει να εκτιμηθούν και η εκτίμηση τους γίνεται με 

την βοήθεια κάποιου δείγματος των δεδομένων. Υπάρχουν αρκετά διαγράμματα 

ελέγχου για τον στατιστικό έλεγχο ποιότητας, όμως στην μελέτη μας θα 

επικεντρωθούμε στο διάγραμμα Εκθετικής Εξομάλυνσης (EWMA). Θα εστιάσουμε 

στην εκτίμηση των παραμέτρων για το διάγραμμα EWMA μέσα απο μια αλγοριθμική 

προσέγγιση και θα προσπαθήσουμε με βάση παλαιότερες μελέτες αλλά και το πόρισμα 

των αποτελεσμάτων της εν λόγω μέλετης να παρέχουμε αξιόπιστα αποτελέσματα 

εκτίμησης παραμέτρων. 
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Introduction 
In this study we are going to focus in Statistical Quality Control, and with one of its 

most useful tools, the control diagrams. The first control diagram was created in 1924 

by Walter A. Shewhart. Other than Shewhart there are other control diagrams like the 

Exponentially Weighted Moving Average (EWMA) in which the study is being focused 

on, or Cumulative Sum (CUSUM). The dissertation is structured as follows. In the 1st 

chapter we are noting the use of control diagrams in phase I and phase II, the steps 

necessary to create a control diagram, the problems that are inherent in statistical control 

as well as the Average Run Length. In the 2nd chapter there is an in depth look in the 

Shewhart, CUSUM and specifically EWMA charts. In the 3rd chapter we are analyzing 

the effects of parameter estimation in control charts and in Average Run Length. In the 

4th chapter we are looking into the combination of Shewhart – EWMA and EWMA – 

CUSUM control diagrams. In the 5th and final chapter, we are explaining the algorithm 

simulated for the six estimators and analyzing the results of each instance. 
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Chapter 1 

1.1 Statistical process control 

The two most deciding factors for a consumer to choose to buy a product that satisfy 

their needs are the perceived quality of the product and the price attached to it. 

Companies have sought business methods to produce the highest quality of products 

with the lowest possible cost, creating items that have a competitive advantage due to 

their “value-for-money” ratio. This search for more efficient and quality assured 

production methods resulted in new frameworks for operating and administrating the 

various enterprises, geared toward continual quality improvement. 

In these procedures, statistical quality control is a critical factor, as it is the most well-

known and older way of regulating manufacturing processes to ensure product quality. 

Statistical quality control is a collection of statistical data analysis organized in three 

subsets, each of which are composed of statistical approaches geared toward different 

stages of the manufacturing process. The three aforementioned subsets are: 

1.  Experiment Design and Analysis   

2.  Statistical Process Control    

3.  Acceptance Sampling    

The focus of this dissertation is Statistical Process control, and particularly on its most 

critical instrument, control charts, which are used to detect variations in the 

manufacturing process. Physical variability is always present in any productive process, 

regardless of how well designed, maintained or monitored it is. To be clear, no matter 

of how effective a process is, no two items created will be identical and there is always 

a measurable variance between them. That is, in a term, physical variability. Other types 

of variability may arise in a process that are not attributable to random factors. 

Variability of this type is mainly caused by the following factors: 

a) Improperly tuned machinery, b) Machine operator mistake, c) Low quality or faulty 

raw material 

This type of variability is called specific variability. A process includes only physical 

variability is considered to be under statistical control (in control process) or alternately 

it works in a stable state, while one that includes specific variability is considered to be 
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out of statistical control (out of control process) or alternately that it works in an 

unstable state. Control charts are an important tool in recognizing the exact type of 

variability present in the process and can allow people in charge of the production to 

take corrective actions. 

Statistical quality control and its procedures are highly valuable in the modern world, 

as businesses try to deliver quality products and services in a highly competitive market. 

When statistical control is used in the production process it allows for fast intervention 

when the processes are judged to be in an unstable state, controlling the quality of the 

products and services associated with it. Control charts are one of the most critical tools 

available to quality assurance professionals, as their dependability is essential for the 

work. The control points of control diagrams are typically based on estimates for the 

parameters, which are frequently imprecise. Their parameters are estimated using a 

reference sample, and their precision has a major influence on the performance of the 

control diagram. As a result, academics have made great efforts in recent years on 

investigating the influence of using parameter estimates in constructing the control 

limits for various control charts and improving their performance.  The purpose of this 

dissertation is to give a critical assessment of the approaches that have been established 

in this subject. 

 

1.2 Phase I and Phase II control diagrams 

There are two phases to control a production process using control diagrams, phase I 

and phase II. 

Phase I: This phase examines samples collected in the past to check whether the process 

was in or out of statistical control. Phase I control charts help the process manager bring 

the process into statistical control. When this is achieved the control limits and the 

center line can be used for future process monitoring. This phase of the charts is also 

called retrospective. During phase I the administrator should study the process well 

before deciding when it was in statistical control and when not. 

Phase II: In this phase the control charts are used to continuously check if the process 

remains within statistical control. Since phase I, we have identified the control limits 



  

4 
 

and the center line so by taking samples at any time the process manager can easily test 

whether the process remains in statistical control or not. 

 

1.3 Classification of control charts 

Control charts are classified into different categories according to their characteristics. 

In more detail: 

1. Depending on the type of variable (continuous or categorical) that describes the 

quality characteristic we are interested in, we have control charts for variables and 

control charts for attributes. 

2. If samples larger than the unit are taken from the production process, we refer 

to control charts for rational subgroups, while if the samples are one size, then we refer 

to control charts for individual observations. 

3. If the measurements taken at time 𝑡 are dependent on the measurements taken 

at time 𝑡 − 1 then we refer to control charts for auto-correlated processes. Otherwise, 

we refer to control charts for uncorrelated processes. 

4. If the measurements taken concern only one quality characteristic then we refer 

to univariate control charts, while if the measurements refer to more than one 

characteristic then we refer to multivariate control charts. 

5. If the measurements come from a known distribution then we refer to parametric 

control charts, while if the distribution of measurements is unknown we refer to non-

parametric control charts. 

 

1.4 Run Length in Statistical Process Control 

One of the most famous performance indicators that is used in control charts is the 

Average Run Length (ARL). Usually, the distribution of Run Length of the estimated 

charts is right skewed and not geometric as it happens in the case that the parameters 

are already known. It is important to know the value of ARL in a process to be able to 

estimate the possibility the process to end up out of control. The general function for 

control chart like Shewhart is: 
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𝐴𝑅𝐿 =
1

𝑝
 

when p is the probability that a point will exceed the limits. There are two types of 

ARLs for investigating the performance of a control chart: 

 In-control ARL (𝐴𝑅𝐿0): It is the average number of control statistics plotted until a 

false signal (out of limits point) is seen when the process is in-control. 

Out-of-control ARL (𝐴𝑅𝐿1): It is the average number of control statistics plotted to 

detect that the process is out of control when the process is out of control. 

We can have to types of error in ARL calculations. Type I and Type II error. A Type I 

error is when the control chart signals as out-of-control when the process is actually in-

control. On the other hand, Type-II error is the situation where the control graph 

evaluates the process as under control and does not give a signal when the process is 

actually out of control.  

When a Shewhart control chart has 3 sigma control limits (L = 3), the probability α for 

normally distributed observations is 0.0027. So when L parameter is taken value 3, 

𝐴𝑅𝐿0 is 370.4. 

𝐴𝑅𝐿0 =
1

𝑎
 

If 𝐴𝑅𝐿0 is equal to 370 then the process it signals out-of-control every 370 observations. 

On the other hand, If the probability of Type II error is equal to 1-p then general 

𝐴𝑅𝐿1formula is: 

𝐴𝑅𝐿1 =
1

1 − 𝑝
 

While designing the control charts, it is tried to determine the parameters with the 

highest ARL0 values to give less false signals when the process is under control, and 

the lowest ARL1 values to give a fast signal when the process is out of control. 
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1.5 The Problem of Statistical Process Control 

In any productive process, no matter how well designed or well maintained, there will 

always be some form of physical variability in it. This physical variability is the 

component of many small causes which are referred to as random causes of variability. 

Physical variability is usually small in size and cannot be reduced or eliminated. A 

process that works only in the presence of physical variability is called a process within 

control. In a productive process, however, it is possible for other forms of variability to 

occur beyond physics, which will not be due to accidental causes and which lead to the 

systematic change of one or more factors that determine the quality of the product. This 

kind of non-physical variability is called specific and the causes that lead to it are called 

specific or systemic causes variability, such are usually the following:(a) incorrectly 

tuned machines, (b) machine operator errors, and (c) poor quality or defective raw 

material. When a process operates in the presence of specific variability, we say that it 

is out of (statistical) control. During the design phase of a product, it is quite important 

to set control limits for the quality characteristics of that product. These limits are the 

upper and lower control limits, which are denoted as UCL and LCL respectively, and 

between them must be the values of the quality characteristic being investigated in order 

for the final product to be acceptable. Also, in the design phase is defined a desired 

value for the quality characteristic called target value and is usually in the middle of the 

space defined by the control limits (LCL, UCL). Under conditions of physical 

variability, the vast majority of quality attribute values are within control limits, but this 

is not the case under conditions of specific variability. In case of specific variability 

there may be a change in the parameters of the distribution that follows the values of 

the quality characteristic we study. In the case of normal distribution e.g. there may be 

a shift either in the middle of the distribution, or in its variation, or in both.  In any case, 

the effect of specific variability results in an increase in the products produced that have 

quality characteristic values outside the control limits. The following figure clearly 

shows the effect of the specific causes of variability on the mean value μ0 in the control 

and on the standard deviation σ0 at different times, in detail we have:  (a) at time t1 the 

mean is shifted to the position μ1>μ0, (b) at time t2 the mean is shifted to position μ0 

while the standard deviation is shifted to position σ1> σ0, and (c) at time t3 the mean 

is shifted to position μ2 < μο. 
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Chapter 2 

2.1 Shewhart chart 

 

In 1924 Bell Telephone Laboratories became familiar with the legendary control chart, 

discovered by Walter A. Shewhart, an American scientist or most of the times known 

as the father of statistical control chart. The necessity of a method that would be able to 

control the quality of a product led Shewhart to create a chart that until now has a major 

role in the fields of manufacturing, engineering, healthcare and procedural research.  

The Shewhart control chart is the most famous chart and a major discovery which 

allows during a process to identify significant and sometimes abrupt changes. On the 

other hand, Shewhart chart is not so effective when it comes to identify small changes 

when monitoring the behavior of a product throughout the process. Nevertheless, it is 

beneficial because it determines if a process remains in statistical control and monitors 

attributes such as the mean and standard deviation, which are related to the run length 

distribution. 

When it comes to the process of a production the focus remains in observing a crucial 

quantity of a random variable X, which is a measurable characteristic, regarding the 

way it behaves during the production of a product. During the production there is a 

random selection of products, at different times having random samples X1X2, ... of 

the values of X whom measurements is the base of the process of monitoring the crucial 

quantity. Those random samples can be used to estimate the value 𝑊𝑡 = 𝑔(𝑥𝑡), a 

function of a random variable that estimates critical quantities such as the mean and the 

variance of X. 

Therefore, when observing several samples, which are acquired by the W function, it’s 

achievable to observe how the critical quantity behaves. For instance, if we want to 

produce marbles that have an X diameter and we want to observe how the mean value 

of this diameter behaves, we will select samples of random sizes of marbles where n 

(n>1) in different time points. Then using the function 𝑊𝑡 = g (𝑋𝑡 ) = (𝑋𝑡1
+ 𝑋𝑡2

 +…. + 

𝑋𝑡𝑚
 ) which is an objective evaluator of X’s mean, we can observe how the average 

value behaves.  

This is a graphic depiction of how a control chart or Shewhart chart looks like: 



  

8 
 

 

In the diagram above we can observe points that are connected with line and this points 

are our observed values. The center line or average level of the process usually 

represents the mean value of W. The top and bottom lines shown in the diagram are 

called the upper and lower control limit (UCL and LCL, respectively). As long as the 

values of W are within the control limits we can assume that the process remains under 

control and we do not need to take any corrective action.  However, if a point is found 

outside the control limits, we say that there is an indication that the process is out of 

control and we must conduct research to find out the specific causes of variability that 

are responsible for this behavior and if it is necessary to take corrective action.  

However, it should be noted that even if all points on the chart are within control but 

behave in a systematic or non-random way then this is also an indication that the process 

is out of control.   

Below we can observe UCL and LCL limits type: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎0 

𝐶𝐿 = 𝜇0 

  

 

Figure 1: Shewhart control chart for marbles 
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𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎0 

The quantities 𝜇0 state the mean value and 𝜎0 state the standard deviation of the 

function W shown in the control diagram. The quantity L indicates the distance of the 

control limits from the center line in standard deviation units. Usually L=3, so we are 

talking about Shewhart control charts with 3σ control limits. In addition to the sigma 

limit model for constructing Shewhart control charts, there is also the probability limits 

for a normal or approximate normal distribution of W 

𝑈𝐶𝐿 = 𝜇0 + 𝑧𝑎/2𝜎0 

𝐶𝐿 = 𝜇0 

𝐿𝐶𝐿 = 𝜇0 − 𝑧𝑎/2𝜎0 

In Shewhart control charts we distinguish two major categories depending on whether 

the X attribute is a continuous or discrete random variable. If the random variable X is 

continuous with mean μ and fluctuation σ2, then there are Shewhart control charts to 

monitor the mean and dispersion of X. In case the random variable X is distinct, there 

are Shewhart control charts to monitor the percentage of defective products produced 

by the production process, as well as the number (and average number) of defects in a 

control unit Antzoulakos (2003), Damianou (1996), Kaffes (1996). The simplest and 

most common Shewhart control chart is the control chart for monitoring the mean value 

of a continuous X attribute, which we will briefly develop in the next paragraph through 

an example. 

 

2.2 CUSUM chart 

 

While Shewhart charts are ideal to identify large shifts during a statistical process they 

are deficient in detecting small shifts in the parameters of such a process. The 

suggestion of a chart that can identify small shifts in the process was presented by E.S. 

Page in 1954. The CUmulative SUM or CUSUM chart is a memory-type chart with 

such a sensitivity to be able to detect those small and non-extreme shifts. CUSUM 

control charts are improved monitoring tools and belong to the category of charts that 
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were created to monitor binomial data. They define if a process is in control or out of 

control depended on collected sums, while monitoring the process. 

In comparison with the Shewhart chart, CUSUM chart can provide more data regarding 

the process, because each one of the points that are plotted in the graph is extracting 

information from many samples, something that Shewhart chart is not suitable to do 

and that is one of the most important reasons that CUSUM chart is better when it comes 

to the detection of small shifts. Those charts are the most suitable ones in case someone 

needs to analyze separate (individual) observations.  

In CUSUM chart, all sample values are taken into account by plotting the cumulative 

sums of deviations of sample values from the target value on the control charts: 

𝐶𝑖 = ∑(�̅�𝑗 − 𝜇0)

𝑖

𝑗=1

 

 

Depending on whether the process is under control or not, the 𝐶𝑖 values, which show 

the deviation from the target value, show different trends. When the process is in control 

(the process mean is equal to the target value 𝜇0), the cumulative sum is a zero mean 

random walk. A positive trend in cumulative total Ci is seen if the process mean 

increases (if the process mean is greater than the target value, 𝜇1 > 𝜇0). If the process 

mean decreases (𝜇1 < 𝜇0 if the process mean is less than the target value), a negative 

trend is seen in the cumulative total 𝐶𝑖. According to the trends detected in the process, 

deviations in the process average can be determined. 

The construction of the diagram is based on the following algorithm (Algorithmic 

Construction Method):  

𝐶𝑖
+ = 𝑚𝑎𝑥[0, 𝑥𝑖 − (𝜇0 − 𝐾) + 𝐶𝑖−1

+ ] 

𝐶𝑖
− = 𝑚𝑎𝑥[0, (𝜇0 − 𝐾) − 𝑥𝑖 + 𝐶𝑖−1

− ] 
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The initial values of the 𝐶𝑖 values are taken as zero (𝐶𝑖
+ = 𝐶𝑖

− = 0). Where, K is called 

the reference value and usually takes a value between the mean 𝜇1 that we want to 

determine and the target value 𝜇0.  

𝐾 =
𝛿

2
𝜎 =

|𝜇1 − 𝜇0|

2
 

𝜇1 = 𝜇0 + 𝛿𝜎 

𝛿 =
|𝜇1 − 𝜇0|

𝜎
 

If in the diagram we construct we use the 𝐶𝑖
+ and 𝐶𝑖

−, then we use the two-sided CUSUM 

control diagram, while if we use only one of the two, then we use the one-sided CUSUM 

control diagram. One-sided CUSUM diagrams are suitable for the detection of 

increases (the 𝐶𝑖
+) or reductions (the 𝐶𝑖

−) while the duplex can detect either increases or 

decreases in the middle of the process. In a one-sided CUSUM control diagram, we 

show only one of them on the figure 𝐶𝑖
+ or 𝐶𝑖

− and consider whether it exceeds the value 

H. If one of the 𝐶𝑖
+and 𝐶𝑖

− values exceed the limits then the process is considered out of 

control. 

If 𝐶𝑖
+ ή 𝐶𝑖

− is equal to 0, then the process is in control and we discard 1. But if either is 

different from 0, then consider if 𝐶𝑖
+ > or 𝐶𝑖

− < − where 𝐻 = ℎ𝜎. The value ℎ is known 

as the decision interval and plays the role of control limit. It is worth noting that even 

in the case of CUSUM control diagrams, the distribution of the number of points until 

we have for the first time an indication out of process control is not Geometric and 

therefore the 𝐴𝑅𝐿 is not the average value of a Geometric distribution. For example, if 

we want to find a change in the mean for = 1, then the pair we will use will be 𝑘 = 0.5 

and ℎ = 4.77, as long as these are the prices they will give 𝐴𝑅𝐿0 = 370.  

To calculate the ARL of a two-sided CUSUM control chart, we usually calculate the 

ARLs for the upper one-sided and the lower one-sided CUSUM control chart, i.e. the 

𝐴𝑅𝐿+ and 𝐴𝑅𝐿− respectively.  

Another option we have in CUSUM control charts is the application of the Fast Initial 

Response (FIR) method. In case we study a process, which even after the necessary 

corrective actions is out of control, we can calculate the 𝐶𝑖
+and 𝐶𝑖

− starting from 𝐶0
+ ≠ 0 
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and 𝐶0
− ≠ 0. We usually choose 𝐶0

+ =
𝐻

2
 and 𝐶0

− = −
𝐻

2
 . Applying this method, in case 

the process will be out of control again, the increased values for 𝐶0
+ and 𝐶0

− will help us 

to detect the change in the middle of the process faster. If the process is in control, the 

above method may cause an initial disturbance in the control diagram but will not affect 

us. 

Finally, it is worth noting that the CUSUM scale has generally limited use since 

although it is sensitive to detecting increases in process variability, it is not particularly 

effective in detecting reductions (small and / or medium). In addition, the above 

methodology may allow us to detect the change in process variation, but it is not always 

easy to distinguish this change from the change in the medium (ie the indication that 

the process is out of control may be due to a change in the medium). and not in a change 

of its variation). 

2.3 EWMA chart 

 

Another memory-type control chart like CUSUM is the EWMA control chart. In 1959 

Roberts introduced the exponentially weighted moving average control chart which is 

also an alternative option when someone wants to detect small shifts when observing 

the process average or mean. It uses past data that are summed up to the current data. 

While both CUSUM and EWMA are very similar charts there is an important difference 

between them when it comes to individual observation. The EWMA chart is insensitive 

when assuming the regularity of observations and that makes it more suitable in that 

case than CUSUM. Furthermore, in EWMA control charts, before a signal out of 

control is being found in the process, there is no geometric distribution. 

On the other hand, EWMA control chart is more difficult to interpret in comparison to 

Shewhart chart. Also, there is a delay in finding the shift in EWMA chart when the 

mean is moved on one side and the values are on the other side. Despite those 

peculiarities and despite EWMA being overlooked in the past, it is nowadays one of the 

most useful tools in quality control. Later work as well as the execution of computer 

science within the research facility space have invigorated intrigued in this quality 

control strategy. 
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In contrast to the Levey-Jennings diagram, the EWMA diagram itself does not use the 

control value. Instead, the control values (xi) are transformed into 𝒛𝒊 values according 

to the following equation: 

𝒛𝒊 = 𝝀𝒙𝒊 + (𝟏 − 𝝀)𝒛𝒊−𝟏, 

i, represents the observation value over time, 𝒛𝒊 represents the new weighted average 

and λ the weighting parameter (λ takes values between 0<λ ≤1). The weighting factor, 

indicated by the Greek letter, is the coefficient that defines the reliance of each 𝒛𝒊 value 

on its predecessor. The EWMA chart's capacity to detect tiny shifts or variations of the 

control values around the target value, i.e., systematic mistakes, is responsible for the 

elimination process. The characterization moving instrument is derived from the value 

zi, while the characterization barycentric is derived from the coefficient of gravity. The 

exponential characterisation is derived from the exponential functions used to calculate 

the Method's control limits. The EWMA diagram's creation necessitates the continuous 

solution of complicated equations. Before beginning any calculations, the average value 

(𝑧0 = �̅�) and standard deviation (𝜎𝑧𝑖

2 = 𝜎0 (
𝜆

2−𝜆
) [1 − (1 − 𝜆)2𝑖]) of the laboratory's 

control samples must be determined. Although it is standard practice to compute and 

utilize the analyzer manufacturer's control limits, it is better to calculate and in the 

laboratory itself. As previously stated, the control material values are represened in the 

EWMA diagram as 𝑧𝑖 values. The goal value of the control limits is indicated as CL 

and is the first value of equation 1, i.e. the first value 𝑧0 (Central Limit). The mean 

value of the control limits is equal to Z. The 𝑥𝑖 control values are more satisfying the 

closer the 𝑧𝑖 values are near CL. The gravity coefficient is a number that ranges from 0 

to 1.  The upper control (Upper Control Limit or UCL) and the lower control (Lower 

Control Limit or LCL) are given by the equations: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 

𝐶𝐿 = 𝜇0 

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 
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The above limits are the variable limits, ie for λ ≠ 1. Nevertheless, the percentage (1-λ) 

^ 2i tends to 0 as i increases. Therefore, the limits are stabilized and are given by the 

following relations: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√
𝜆

(2 − 𝜆)
 

𝐶𝐿 = 𝜇0 

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√
𝜆

(2 − 𝜆)
 

 

 

Figure 2:Example of Ewma control chart 
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The parameters 𝐿 and λ are used in the design of EWMA diagrams. Depending on the 

values given in the parameters, they will have different results in ARL. In certain 

studies, the ARL performance of EWMA control diagrams has been calculated with 

different values designed for the parameter λ. λ usually takes the value 0.05, 0.10, 0.20. 

In practice, from the studies that have been done, it has been determined that λ gives 

better results in the range 0.05≤λ≤0.25, with λ usually taking the value 0.05, 0.10, 0.20. 

If we have the case where λ = 1 and L = 3, then the ARL tables show the same results 

as the Shewhart tables. 

According to Montgomery (2013) the values of λ and L are calculated so that when we 

have an in-control procedure the ARL is equal to 370. In the Ewma control chart the 

performance of the ARL is better in small deviations but does not respond as fast as the 

Shewhart diagrams in large deviations. Finally, when λ = 0 the values zi and the limits 

UCL and LCL are equal to the mean value µ. 

 

2.4 Multivariate Control Charts 

 

Multivariate control charts are used to track activities with a variety of quality 

characteristics. These control charts are made in the same way as analogous univariate 

ones, and they are separated into two sections. Phase I entails gathering an in-control 

reference sample of m subgroups of size n and estimating the values of the process 

parameters in the in-control state using the data. It is possible to utilize a sample size of 

one, individual observations, or many observations. With the help of control limits and 

the parameter values in phase II, the process may be monitored. Following we can see 

the vector with quality features: 

𝑥𝑖𝑘 = (𝑥1𝑖𝑘,  𝑥2𝑖𝑘, 𝑥3𝑖𝑘, … , 𝑥𝑝𝑖𝑘) 

with 𝑘 = 1, 2, … , 𝑚 and 𝑖 = 1, 2, … , 𝑛  

We must know that 𝑥𝑖𝑘𝑠 is following a 𝑁(𝜇, 𝛴) distribution, m is the number of 

subgroups in phase I (m must be greater or equal to one and 𝑚(𝑛 − 1) > 𝑝) and p is 

the number of quality characteristics. Below we can see the chart statistic of the chi-

square control chart if the parameters are known: 

𝑥𝑗
2 = 𝑛(�̅� − 𝜇)′𝛴−1(�̅� − 𝜇) 

where  
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�̅� = [

𝑥1

𝑥2

…
𝑥𝑝

] 

With the Upper control limit of the chart: 

𝑈𝐶𝐿 = 𝑥𝑎,𝑝
2  

Maximum likelihood estimator is used for every quality characteristic when 

parameters are unknown. The equation of the sample mean is: 

�̿� =
1

𝑚
∑ �̅�𝑗𝑘

𝑚

𝑘=1

 

but in this case: 

          �̅�𝑗𝑘 =
1

𝑛
∑ 𝑥𝑖 𝑗𝑘

𝑛
𝑘=1            

with jth be the characteristic and kth is the subgroup.                                            

The vector  �̿� give us the multivariate sample mean: 

�̿� = [�̿�1, �̿�2, … , �̿�𝑝] 

The equation for the sample covariance of p x p matrix is: 

𝑆̅ =
1

𝑚 − 1
∑ (𝑥𝑖𝑘 − �̿�)(𝑥𝑖𝑘 − �̿�)

𝑚

𝑘=1
′ 

In phase I limits of the control chart are: 

𝑈𝐶𝐿 =
𝑝(𝑚 − 1)(𝑛 − 1)

𝑚𝑛 − 𝑚 − 𝑝 + 1
𝐹𝑎,𝑝,𝑚𝑛−𝑚−𝑝+1 

𝐿𝐶𝐿 = 0 

 

2.5 EWMA-Poisson chart 

In addition to the normal distribution the data in a productive process of an industry can 

also come from the Poisson distribution. Below we will describe how the EWMA 

diagram works when the data comes from a Poisson distribution. 
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The Shewhart c-chart was initially used for these cases, but the Poisson-Ewma chart 

showed that it detects small shifts of the mean faster than the Shewhart c-chart. So we 

assume that we have data that follows the Poisson (μ) distribution. Below we can 

observe the statistical representation of Ewma control chart: 

𝑍𝑡 = (1 − 𝜆)𝛧𝑡−1 + 𝜆𝛸𝑡 

with 𝑡 = 1, 2, 3 

where 𝑍0 = 𝜇0. The starting value of 𝑍𝑡 is 𝑍0 and when the process is in-control 𝑍0 =

𝜇0. Furthermore λ is the smoothing parameter. Below is the expected value of EWMA 

and variance: 

𝐸(𝑍𝑡) = 𝜇0 

𝑉𝑎𝑟(𝑍𝑡) =
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2𝑡]𝜇0 

But if we have large values of t then the variance will be: 

𝑉𝑎𝑟(𝑍∞) =
𝜆

2 − 𝜆
𝜇0 

In the occasion that we want to create the control limits of the chart, then we will use 

the second case of the variance. The control limits of Poisson EWMA are the following: 

ℎ𝑈 = 𝜇0 + 𝐴𝑈√
𝜆

2 − 𝜆
𝜇0 

ℎ𝐿 = 𝜇0 − 𝐴𝐿√
𝜆

2 − 𝜆
𝜇0 

If 𝑍𝑡 > ℎ𝑈 or  𝑍𝑡 < ℎ𝐿 then the Ewma chart signals us about a value out of the limits. 

The appropriate values for 𝐴𝐿, 𝐴𝑈 and λ are chosen, so to secure the desired 𝐴𝑅𝐿0. In 

addition, the values of λ depend on how quickly it is necessary to detect an average 

shift. When λ receives low values then we have faster detection of small and medium 

shifts. If the parameters are unknown, then the maximum likelihood will be the 

estimator for in-control mean. �̂�0 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  
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n represents the sample size in phase I. 

ℎ𝑈 = �̂�0 + 𝐴𝑈√
𝜆

2 − 𝜆
�̂�0 

ℎ𝐿 = �̂�0 − 𝐴𝐿√
𝜆

2 − 𝜆
�̂�0 

 

2.6 Parameter Estimation for EWMA control chart 

 

As we mentioned earlier in case we don’t know the mean and standard deviation we 

can then estimate those values. Suppose we have 𝑥𝑖𝑗 for 𝑖 = 1, 2, 3, … , 𝑚 and  𝑗 =

1, 2, … , 𝑛, which are data that have been extracted from a normal distribution. We also 

know that the parameter λ has a range from 0 to 1.  

𝑌𝑖 = 𝜆𝑊𝑖 + (1 − 𝜆)𝑌𝑖−1 

The first difference with the general function that is used in EWMA is 𝑥𝑖 is being 

replaced from  𝑊𝑖 which function is: 

𝑊𝑖 =
�̅�𝑖 − �̂�0

�̂�0

√𝑛

 

From the function above �̂�0 and �̂�0 are the parameters of phase I. According to Mandla 

Diko, Chakraborti, Ronald Does (2018): 

�̂�0 =
1

𝑚
∑ ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

�̂�0 = √
1

𝑚
∑ 𝑆𝑖

2

𝑚

𝑖=1

= 𝑆𝑝 

The  𝑆𝑖
2 is the variance from each sample of phase Ι. The aggregate standard deviation 

estimator, which is one of the estimators for 𝜎0 that are used most of the times, gives 

for the mean squared error the lowest values (Mahmoud et al18). 
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Diko et al, 19 on the other hand highlights that based on Montgomery,20 Schoonhoven 

et al21, 22   �̂�0 =
𝑆𝑝

𝑐4(𝑚(𝑛−1)+1)
  is of equal value and the reason is that m (n − 1) is 

usually large in those functions and therefore the constant c4 (m (n − 1) + 1) is identical 

to 1. 

The function of 𝑊𝑖 normally is: 

𝑊𝑖 =
1

𝑄
(𝛾𝑇𝑖 + 𝛿 −

𝑍

√𝑚
) 

 Where    𝑇𝑖 =
�̅�𝑖−𝜇

𝜎

√𝑛

,  𝑄 =
𝑆𝑝

𝜎0
,  𝑍 =

�̂�0−𝜇0
𝜎0

√𝑚𝑛

,  𝛾 =
𝜎

𝜎0
, 𝛿 =

𝜇−𝜇0
𝜎0

√𝑛

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

20 
 

Chapter 3 

3.1Effect of parameter estimation on control diagrams for the mean value 

 

The majority of studies that have based their research in the supposition that the 

parameters are known and the process is in-control, have used the developed control 

charts in phase II. For instance, we are interested in the process parameter when the 

mean μ and the standard deviation σ, are in-control and a quality characteristic follows 

the normal distribution. The hypothesis that the in-control values of the parameters are 

known make simpler the development and therefore the calculations of several 

quantities that are related in the control diagrams. In practice, however, the parameters 

are rarely known and the control limits are usually based on the estimated parameters. 

However, when it comes to the practical part because the parameters are most of the 

time unknown the control limits are mostly calculated using the estimated parameters. 

When the known parameters are replaced from the estimations the performance of the 

charts is affected by the changeability of the estimators and that causes a difference 

between the performance of the charts which use known parameters. Also, many 

researchers have highlighted that there is a difficulty in defining the control limits, while 

using a short amount of data or using data from samples that are not in any way 

representative.  

Shewhart (1939) pointed out that: "In most practical cases, the most difficult part of all 

is choosing the sample to be used as the basis for determining the control limits."   

We will be completely sure for the accuracy of the control limits, when a representable 

sample has been gathered. 

An empirical rule used mainly for control charts is to take m = 20 to m = 30 preliminary 

samples of size n = 4 to 6 n = 6 in phase I (Montogomery, 2005). However, these rules 

are mainly based on empirical data and are usually insufficient. The inadequacy of these 

rules for the selection of the number m and the size n of the samples led to the 

conclusion that the effect of the parameter estimation should be seriously considered 

when designing a control diagram. 

 

3.2 The distribution of run length when estimating the parameters of control 

chart 

 

If the run length distribution is geometric, then the mean ARL flow length fully 

characterizes the flow length distribution and is the acceptable efficiency measure. For 

simplification of comparisons but also for a better picture of the run length distribution, 

concise values of the run length distribution are usually used in order to evaluate in an 
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effective way the performance of the control charts using estimated parameters. For 

example, the average run length (ARL), the standard deviation of the run length (SD or 

SDRL) and the percentages of run length distribution are often used. Therefore, if the 

value T that represents the run length, if only the data follow a normal distribution and 

we have 3s as control limits in phase II, follows the geometric distribution with 

parameter 𝑝 = 0.0027  

which represents the probability of a point in the diagram to be found outside the control 

limits, then the mean value of T and its standard deviation will be respectively: 

𝐸(𝑇) =
1

𝑝
= 370.4 

𝑆𝐷(𝑇) =
√1 − 𝑝

𝑝
= 369.9 

 

Additionally, its second moment of T is the following 

                

𝛦(𝛵2) =
2𝑝

𝑛2
 

              

When the control limits of the diagram are unknown and must be estimated then the run 

length distribution is not geometric but is unknown. This means that when the 

parameters of the distribution in phase I, for example, the mean and standard deviation 

must be estimated, we cannot calculate the mean ARL run length and its standard SDRL 

deviation. That is the reason several authors have conducted studies to carefully 

calculate these values when estimating the parameters in phase I. The accuracy of the 

approaches is studied mainly through simulation methods.  

 

3.3 Studies in parameter estimation 

Prochan & Savage (1960) examined the impact that the size n and the number m from 

the samples they had collected, have on the performance of X control chart, regarding 
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the possibility that the sample of mean X is out of control limits, when in reality we are 

in-control when the unknown parameter of the standard deviation σ is estimated through 

the range 𝑅𝑚
̅̅ ̅̅  and Sp. Having given values of size n of the samples they provided values 

for the number m of the samples that needed, so to have a specific value of the former 

possibility incase the process is in-control. 

However, Prochan and Savage (1960) in their study did not consider the correlation 

between the probability that the sample mean Xi of sample i exceeds the upper UCL 

control limit and the probability that the sample mean of another sample j exceeds UCL 

control upper limit. For this reason, the results of this study are of limited use. Hillier 

(1969) addressed the above problem of estimated parameters in the case of X and R 

control diagrams. More specifically, he presented a method that was able to calculate 

the possibility of type I error, in the case of the �̅� diagram, using the R range to estimate 

the standard deviation of the process. 

However, the weakness of the method was the same as in Prochan and Savage (1960). 

Ghosh et al (1981) in their study gave formulas for calculating the flow length 

distribution of X control charts with unknown variation. The purpose of their study was 

to examine the already known criteria that have been proposed and that calculate the 

performance of a control chart in terms of their suitability with special reference to 

Shewhart X charts for controlling the mean value when the process dispersion is 

unknown. Also, another important element in their article refers to the creation of an 

economic model that assesses the impact on net income and costs associated with the 

construction of a control chart. The idea for economic models was first started by 

Duncan (1956) and later by other authors (Chiu & Cheung (1977). Another approach 

to the effect of parameter estimation was proposed by Chakraborti (2007). Chakraborti 

considered that traditional measures for the performance of a control chart, such as the 

mean ARL flow length and the standard SDRL deviation, do not provide a complete 

and satisfactory picture of the chart performance as the flow length distribution is 

asymmetric to the right. Also, there is a more general concern that it is possible to lose 

the important information that can be extracted from the performance of a control chart 

if one focuses too much on the average ARL run length. For this reason, the author 

suggested that the percentiles of the run length distribution provide a much better 

indication of the performance of the control chart. 
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3.4 Effect of parameter estimation on control diagrams for dispersion 

 

The R, S and S2 control charts are widely used in practice to monitor the dispersion of 

a process. The usual technique in process control is to estimate the control limits 

resulting from preliminary samples, which is phase I, and to use these estimates to 

create the control limits in phase II. However, few studies have been performed on the 

flow length distribution in dispersion control diagrams when the control limits are based 

on estimated parameters. 

Chen (1998) considered the case where the standard deviation σ is unknown. As an 

aftermath the control limits that are used for monitoring the variation of the process in 

phase I are the: 

UCL=Unσ 

CL=σ 

LCL=Lnσ 

 

where σ is the estimation of standard deviation σ, each one of them based on m 

preliminary samples of size n, the Xij, 1 ≤ j ≤ n, 1 ≤ i ≤m, and Un, Ln are suitable 

constants that control the probability α of the type I error. 

For a control chart that has the estimated control limits mentioned above, we consider 

the possibility 

Fi: the estimation of the standard deviation σi (1 ≤ i ≤ m) is out of control, either above 

or below the UCL and LCL respectively. 

The probability of {Fi} occurrence is calculated from the relation 

P(Fi )=P(σi < LCL or σi > UCL). 

We also define the random variable W which indicates the number of samples until the 

first Fi probability. 

The distribution of the random variable W is not geometric, because the contingencies 

{Fi} are not independent of each other. 
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Hillier (1969) studied the problem of defining m, n to produce a specific type I error in 

the R diagram. In particular, he observed that when someone uses the estimated control 

limits, the constants Un and Ln arising from the case of known parameters, (i.e. the 

known standard deviation σ), cease to create the desired probability of type I error. 

However, assuming the normality of the data, he managed to modify the constants Un 

and Ln for different values m and n to guarantee the maintenance of the desired 

probability a of the type I error. Regardless of the alterations of the constants Un and 

Ln, the distribution of the random variable W is not geometric. 
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Chapter 4 

4.1 CSEWMA control chart  

In chapter 2 we mentioned that the difference between the Shewhart and EWMA 

diagrams is that the Shewhart charts are detecting faster large deviation in the mean 

value while EWMA charts are better at detecting small deviations of the mean value. 

Lucas and Saccucci are the first who mentioned the possible combinations of those two 

diagrams, presenting a combined diagram named CSEWMA. Let’s examine the 

structure and equations of the CSEWMA. Consider that 𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑛 is our sample 

that consists of observations following normal distribution. If �̅�𝑡is the mean of the 

sample then the corresponding standardized mean will be: 

𝐷𝑡 =
�̅�𝑡 − 𝜇0
𝜎0

√𝑛
⁄

 

with 𝐷𝑡~𝑁(𝛿, 1) and 𝛿 =
√𝑛(𝜇−𝜇0)

𝜎
 

where δ is representing the shift of mean. 

In two conditions we have a signal from the CSEWMA: 

• |𝐷𝑡| > 𝑘 

• |𝑍𝑡| > ℎ√
𝜆

(1−𝜆)
 

The equation for 𝑍𝑡 is: 

𝑍𝑡 = (1 − 𝜆)𝑍𝑡−1 + 𝜆𝐷𝑡 

Furthermore, we know for the initial value of Ζ being 𝑍0 = 0 and the parameter 𝜆 ∈

(0,1]. The run length until we have an alarm from the CSEWMA chart is given by the 

equation: 

𝑅𝐿𝐶𝑆 = 𝑚𝑖𝑛(𝑅𝐿𝑆𝐻, 𝑅𝐿𝐸𝑊) 

with: 

• 𝑅𝐿𝑆𝐻 = inf{𝑡: |𝐷𝑡| > 𝑘} 

• 𝑅𝐿𝐸𝑊 = inf {𝑡: |𝑍𝑡| > ℎ√
𝜆

(1−𝜆)
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Here we have to specify two distinct cases. The first is when ℎ = ∞ where the 

CSEWMA chart turns into a Shewhart chart, and the second case is when the 𝑘 = ∞ 

where the CSEWMA chart turns into a EWMA chart.  

 

4.2 Combination of EWMA and CUSUM diagrams for simultaneous media and 

dispersion monitoring 

 

One of the most common used techniques to monitor the occurrence of causes of 

variability in a process is to use more than one diagram of the same type. The mean 

chart can be affected from a shift in variance in a combined and shared monitoring. This 

can happen because both can be shifted at the same time, due to the participation of the 

variance in the control limits of the mean diagram. These diagrams are required to 

monitor the medium and the dispersion of the process simultaneously. 

Memory control charts such as EWMA and CUSUM use a combination of previous 

and current information to study the subject of interest. Abbas et.al proposed an 

advanced control chart, which is the combination of EWMA and CUSUM control 

charts. This mixed control chart showed that can achieve the best results when it comes 

to detect smalls shifts in the process mean.  

The diagrams of Zaman, et al. are based on the proposal of Abbas, et al., from 

segregated to combined process supervision.  There are three proposed diagrams: the 

Combined Mixed EWMA-CUSUM (Combined Mixed EWMA-CUSUM, CMEC), the 

Combined Mixed Double EWMA-CUSUM (Mixed Double EWMA-CUSUM, 

CMDEC) and the Combined CUSUM (Combined CUSUM).  

The following transformation is being used, so that 𝑥𝑖𝑗 represents a specific qualitative 

feature of the process we want to monitor. 𝑥𝑖𝑗 follows normal 𝛮(𝜇+𝛿𝜇,𝜎𝛿𝜇), with mean 

𝜇 and standard deviation 𝜎. Assume the process is under control:  𝛿𝜇 =0 and 𝛿𝛾 =1.  

Suppose that 𝑖 =1,2,...  and 𝑗=1,2,...,𝑛  its indicators  𝑥𝑖𝑗,  divided into crowd groups 𝑖 

and size 𝑛. 

 

4.3 Combined EWMA – CUSUM (CMEC) chart 

To be able to construct the combination of EWMA and CUSUM control charts, we 

will have to combine the equations of those charts. The combination provides us with 

the following equations: 

𝐶𝑀𝐸𝐶𝐿𝑖
+ = max [0, (𝑌𝑖 − 𝜇) − 𝐾𝑖 + 𝐶𝑀𝐸𝐶𝐿𝑖−1

+ ] 

𝐶𝑀𝐸𝐶𝐿𝑖
− = min [0, (𝑌𝑖 − 𝜇) + 𝐾𝑖 + 𝐶𝑀𝐸𝐶𝐿𝑖−1

− ] 
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𝐶𝑀𝐸𝐶𝑉𝑖
+ = max [0, (𝑍𝑖 − 𝜇) − 𝐾𝑖 + 𝐶𝑀𝐸𝐶𝑉𝑖−1

+ ] 

𝐶𝑀𝐸𝐶𝑉𝑖
− = min [0, (𝑌𝑖 − 𝜇) + 𝐾𝑖 + 𝐶𝑀𝐸𝐶𝐿𝑖−1

−  

where, 𝐾𝑖 = 𝑘 ∗ √𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌𝑖) = 𝑘 ∗ 𝜎𝑌
2 [

𝜆

2−𝜆
(1 − (1 − 𝜆)𝑖)] 

From the equation of 𝐾𝑖, k is a constant. If 𝐶𝑀𝐸𝐶𝐿𝑖
+, 𝐶𝑀𝐸𝐶𝑉𝑖

+ exceed the 𝐻𝑖 or, 

𝐶𝑀𝐸𝐶𝐿𝑖
−, 𝐶𝑀𝐸𝐶𝑉𝑖

− are lower than −𝐻𝑖 then the process is out-of-control. The equation 

for 𝐻𝑖 is the following: 

𝐻𝑖 = ℎ ∗ 𝜎𝑌
2 [

𝜆

2 − 𝜆
(1 − (1 − 𝜆)𝑖)] 

4.4 Conclusion 

In conclusion, to achieve a sufficient performance compared to that of the known 

parameters it is necessary to obtain more data in phase I and in general the more 

parameters are estimated the larger sample sizes are required. For example, multivariate 

diagrams require more data in phase I than uni-variate control diagrams. Thus Chen 

makes it necessary to take at least 75 samples in phase I with a sample size of at least 5 

in the dispersion control diagrams (R, S and S2 ). Regarding the X control diagrams for 

the mean value, he concludes that the effect of parameter estimation is more severe for 

small shifts in the process than for larger ones and in addition that the effect is greater 

for SDRL values compared to those for ARL. In contrast, Maravelakis et al. (2002) 

suggested larger sample sizes in the dispersion control diagrams, ie 100 samples of at 

least 20 size as for smaller samples they considered the effect to be quite severe 

resulting in false alarms in the process, while in the individual observation control 

diagrams they considered that at least 300 comments. These propositions are of course 

in contradiction with the empirical rule for the selection of the number of samples which 

are m = 20 or m = 30 with quantities n = 4 or n = 5. In addition, for the detection of 

small displacements of the process it is suggested to use diagrams more sensitive than 

Shewhart control charts such as CUSUM or EWMA charts. Research in the area of the 

effect of parameter estimation on control charts is not exhaustive in the context of this 

postgraduate thesis. The study of the flow length distribution margin is of particular 

interest as in the literature several authors, while dealing with this issue, did not make 

suggestions for the selection of the samples, because they did not consider the 

distribution margin. Another research area that needs more study by researchers 
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concerns robust estimators and their use in aberrant measurements in phase I (Rocke 

(1989, 1992), Tatum (1997), Vargas (2003), Davis and Adams (2005).  In addition, the 

sensitization rules of a Shewhart control chart with estimated parameters used by 

researchers are the reason why the chart does not perform as well as in the case of 

known parameters. Moreover, the use of multiple rules at the same time makes it 

difficult to analyze the properties of control diagrams with estimated parameters, which 

is why further study is needed on this subject (Champ and Woodall (1987), Burroughs 

et al. (1993)).Also, more emphasis has been placed on media tracking diagrams than on 

diagrams to monitor dispersion, but it is also worth noting that multivariate control 

diagrams for monitoring dispersion have not been adequately studied. Finally, most 

authors agree that it is necessary to take as many samples as possible in phase I which 

guarantee a satisfactory performance in phase II. In case the data in phase I is not 

sufficient, either corrections in the control limits or their renewals are suggested when 

more samples become available. (Neduraman and Pignatiello (2001), Tsai et al.  

(2004,2005), Albers and Kallenberg (2004a, 2004c). 
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Chapter 5 

5.1 Introduction 

With the coming of the fourth industrial revolution, which is a global phenomenon, and 

the integration of robots and artificial intelligence in the working society, the workplace 

as well as the society itself will face many challenges in order to respond to the high 

demands of this continuous growth and transformation of professions and working 

positions.  

The effects of the fourth industrial revolution will have an impact in manufacturing 

developments and as a result the industry from businesses to ethnic systems will be 

forced to change. Innovation is becoming a necessity for the future of companies and 

national systems engaging them to new approaches for forward thinking and be 

pioneering. The phenomenon of globalization has played a key role in the trend of 

innovation in countries that have developed their markets around the world. 

All industrial revolutions were a stepping-stone that led to more modern and improved 

methods of production in multiple fields such as industry, healthcare, transportation, 

agriculture resulting in production development and economic growth. The Second 

industrial revolution was a mainspring for important discoveries and between them was 

Shewhart’s Control Chart. Shewhart introduced his famous chart in a period that history 

experts refer to as the aftermath of economic growth and technological revolution.  

The needs of specialist knowledge in the field of science were a pressure to universities 

to give more fundings for programs that would lead to the evolution of new ways on 

handling this rapidly increasing environment. Bell System company used statistics in 

its effort to create a telephone switching office in a more efficient way, while at that 

time the engineers that worked for this project were not yet specializing in statistics. 

Shewhart had collected this kind of previous data that assist in his studies culminate to 

the discovery of his control chart.  

Although Shewhart’s chart was a significant discovery, it wasn’t immediately 

acceptable from the employees of Bell Laboratories. The workers were worried that 

this new development would decrease their wages, because the adoption of using the 

control chart was delaying their work, which was directly linked to their wages.  
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With the reported evolution in data collection processes, we note the production 

systems used having gradually more qualitative features that are being automatically 

observed while human interaction decreases. 

As we have mentioned earlier before the creation of a control diagram is split into two 

phases, phase I in which we are checking for outliers and we estimate the unknown 

parameters, and phase II where we draw a control diagram with the parameters 

estimated to be able to monitor this process online. In phase 2 the statistical testing of 

the drawn control diagram is being drawn in time and is compared to the respective 

control limits the breaching of which is an indication of an out-of-control process. 

We are noting the connection between the past (meaning data collected beforehand) 

and the estimated operation of the future. With the technological progress there is a 

effort to minimize human interaction in please II and have it automated as much as 

possible with appropriate algorithms who can support a goal like this. Comparatively, 

it is very hard for such a process to be appropriate in phase II where good knowledge 

of statistical operations is necessary to estimate the parameters.  

Following that we will focus on Exponentially Weighted Moving Average control chart 

(EWMA) specifically when the parameters are not known and have to be estimated. A 

lot of estimators were made on estimating parameters for the EWMA control chart. Our 

test will estimate an algorithm who will analyze the variability of the EWMA control 

chart by estimating unknown parameters from samples of data where we will 

contaminate the sample with outliers to be more representative. Our test runs will run 

either with clearing the data from outliers (not with simple clearing but with a specific 

method discussed later) or with letting the data as is (with the outliers in our sample). 

The process that we are going to use in phase 1 is algorithmic and does not require 

human interaction while running, as the algorithm is going to receive the sample and 

execute all the steps that we have programmed. To enhance the results from our sample, 

in every test run we will try different sample size and different contamination ratio, and 

we will evaluate 6 different estimators of standard deviation. In the following chapters 

we will analyze the process of executing outlier detection and parameter estimation for 

phase I and then we will create an EWMA control chart for phase II of statistical control. 
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5.2 I-Control chart and parameter estimators in phase I 

The I-chart is specialized in finding large variations of the mean. The limits of the chart 

follow the following equations: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎0 

𝐶𝐿 = 𝜇0 

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎0 

With 𝜇0 being the mean value, 𝜎0 being the standard deviation and L being the distance 

of the control units from the center line. 

We have two parameters that are necessary to estimate, the mean and the standard 

deviation. For the mean the type of parameter that is used by the algorithm is the 

following: 

�̅� =
∑ 𝑥𝑖

𝑚
𝑖=1

𝑚⁄  

where 𝑥𝑖 is an observation from our sample with 𝑖 = 1,2, … , 𝑚 

For the value of 𝜇0 the estimation is considerably simpler compared to estimating the 

𝜎0 value because for the latter a lot of studies have been made but no one concludes 

with conviction on what is the best estimator. In the following table we are going to 

present the 6 estimators this dissertation is going to use.   
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Table 1: Standard Deviation Estimators 

Estimator Formula 

Sample Standard Deviation (SSD) 𝑠
𝑐4⁄  

Mean Moving Range (MnMR) 𝑀𝑅
𝑑2

⁄  

Median Moving Range (MdMR)  1.047 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝑖) 

Root Mean Square Successive 

Differences (RMSSD) 
√

1
2(𝑚 − 1)

∑ (𝑥𝑖+1 − 𝑥𝑖)2𝑚−1
𝑖=1

1 −
3

8𝑚

 

Median Absolute Deviation (MAD) 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑥|)

0.6745
 

Interquartile Range (IQR) �̂�(0.75) − �̂�(0.25)

1.349
 

 

One of the most common and well-known estimators for the I-chart is Sample Standard 

Deviation (SSD) estimator, being very effective when our data are resulting from 

normal distribution and do not contain outliers. As we can see in table 1 the equation 

of the estimator is: 

 �̂� =
𝑆

𝑐4
, where s = √

∑ (𝑥𝑖−�̅�)2𝑚
𝑖=1

𝑚−1
 and 𝑐4 = √

2

𝑚−1
∗

𝛤(𝑚
2⁄ )

𝛤(𝑚−1
2⁄ )

  

 

with 𝑐4 being a unbaised constant and 𝛤(𝑚
2⁄ ) being the gamma function for  𝑖 =

1,2, … , 𝑚 being the value of each consecutive observation of our sample. 

The next estimator is Mean Moving Range (MnMR) who, after considerable studies, 

has been found not very effective for data who are following the normal distribution 

and are statistically independent from each other. Cryer and Ryan et al. (1990) have 

also mentioned the ineffectiveness of MnMR compared to SSD. In effect, the best and 

safer results will be to calculate both estimators in practice and if we receive 
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inconsistent results take it as a sign that our data need closer analysis. The MnMR 

equation is: 

 

�̂�𝑀𝑅 =
𝑀𝑅

𝑑2
 , with 𝑀𝑅𝑖 = |𝑥𝑖+1 − 𝑥𝑖| and 𝑑2 = 1.128 

 

𝑑2 is a constant applied when our data follow the normal distribution and MR is the 

Mean Moving Range. 

The Mean Moving Range estimator (MdMR) shows better ANTAPOKRISI and, as a 

result, better results from the last two estimator (SSD, MnMR) when there is a middle 

percentage of outliers in our data, following the studies of Bruce et al. (1997). When 

we have a high percentage of outliers the best results seem to be by using the MnMR 

based on Boyles et al. (1997). The value 1.047 in the estimator’s equation is a unbaised 

constant used with the condition that our observations are normally distributed. The 

Root Mean Square Successive Differences (RMSSD) estimator based on the studies of 

Atalay, Testik, Duran et al. (2020) performs slightly better than MnMR when the 

process is in-control, but also when we have a small percentage of outliers in our data 

and the process is out of control. The equation of RMSSD estimator is: 

√
1

2(𝑚−1)
∑ (𝑥𝑖+1−𝑥𝑖)2𝑚−1

𝑖=1

1−
3

8𝑚

  , with m being the total number of observations. 

The next estimator is Median Absolute Deviation (MAD) who is found by the equation: 

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑥|)

0.6745
 

And is inadequate, based on Braun and Park et al. (2008) for data with outliers. 

Additionally, based on Boyles et al. (1997) the MAD estimator is unreliable compared 

to MnMR when our data follow a pattern. The last estimator we are going to study is 

Interquantile Range (IQR) with equation: 

�̂�(0.75) − �̂�(0.25)

1.349
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Based on the studies of Karagöz D. et al. (2016) the IQR estimator is performing better 

for a large sample size of data regardless of the deviation of such data, especially when 

we have a high percentage of outliers in the sample. 

 

5.3 Phase I : outlier detection and parameters estimation with Algorithmic 

usage 

The arrangement of the algorithm for phase I, in particular the process to identify and 

remove the outliers, is with the following method. First of all, for the needs of our tests 

we create a sample of data following a normal distribution with median 0 and standard 

deviation 1. Afterwards we randomly select some observations and replace them with 

outliers, to have a more realistic results from our sample compared to real data. The 

outliers are following normal distribution with median 4 and standard deviation 1. The 

size of our sample and number of outliers are different in consecutive testing to see how 

the estimators are responding to each sample size. For example, our sample might 

contain 50, 100, 200, 500, 1000, 10.000 observations while the Contamination Ratios1 

(CR) is respectively getting values 0%, 2%, 4% and 10%. The case where CR is equal 

to 0% is for a sample with no outliers. 

Using the I-Chart, we calculate the initial limits (UCL, LCL). It is necessary for the 

calculation of the limits to give an initial L value, and the initial L values are between 

2 and 4. According to Murat Atalay, Murat Caner Testik, Serhan Duran (2020) and 

Yao, Y., & Chakraborti, S. (2021) best value for L is 3. Afterwards we examine the 

observations one by one to see if any of them are out of the limits. When we have no 

observation that is out of limits, we move to the next step, but if there is at least one we 

remove it and calculate the limits with the rest of the observation. This process is 

executed until no observation is out of limits.  

In following, the estimation of the parameters is done by the algorithm, possibly having 

outliers in the data but after the process of their elimination. As we said before we used 

the estimators SSD, MnMR, MdMR, RMSSD, MAD και IQR. 

In the following 2 diagrams we can see how the process of phase I is executed through 

diagram depiction. In the first diagram there is no elimination of the outliers neither 

 
1 Contamination Ratios (CR) is the percentage of outliers present in our sample. 
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recalculating the limits that is why we have values outside the limits. The sample that 

was used for the creation of the diagrams is a 200-value sample with mean 0 and 

standard deviation 1. From this sample 20 values were randomly selected and replaced 

with values with mean 4 and standard deviation 1. In the second diagram we do not 

have values outside the limits and we note that the values of the limits and the size of 

the sample are different. That is because all values outside the limits were eliminated 

from our sample. The algorithm to eliminate outlier values is executing this process. 

 

 

Figure 3: I-Chart with L = 3 and without outlier filtering 
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Figure 4:I-Chart with L = 3 and after outlier filtering 

 

 

5.4 Phase II: AARL0 and SDARL0 computation with Monte Carlo simulation 

The values of the parameters λ and 𝐿𝑒𝑤𝑚𝑎were chosen initially so the ARL0 equals 370 

and using this as a base we are going to calculate the results of the estimators. The 

estimation process is being studied after the outlier filtering in our sample but without 

yet implemented. The difference with other studies in the current study is that the 

choices we have made in phase I is affecting the efficiency of phase 2 of EWMA due 

to its design. The results where this is considered is AARL0 and SDARL0. 

The algorithm in each loop executed it generates a new sample and new contaminated 

data, and every time calculating the estimators before and after the outlier filtering and 

afterwards calculating the ARL. Using the Knoth library (spc, 2004) and with the 

command xewma.arl we are calculating the arl. The values of our sample are 50, 100, 

200, 500, 1000, 10000 but, to be clear, working with sample sizes over 500 is rare in 

practice and over 1000 extremely unlikely. Nevertheless, the samples will be analyzed 

so we can study the effect on the estimators. The values of L for estimating the limits 

in phase I as we have said before are from 2 to 4 with step 0.1. The following values of 

L we are going to try are 2.7022, 2.8595, 2.959 and 3. Furthermore the λ, which is 
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necessary with  𝐿𝑒𝑤𝑚𝑎 to calculate the ARL, gets values 0.05, 0.1, 0.2, 0.25, 0.4 and 1. 

The sum of those combinations together with the Contamination Ratio (CR) are giving 

us 12096 combinations. Every combination with the method of Monte Carlo was 

simulated 250 times so we can have the best and most realistic results. After every loop 

the algorithm saves the ARL value and then we calculate the AARL0 which is the mean 

of ARL values. In the same fashion we calculate the SDARL0. 

In the following tables we showcase the 3 best estimators for the corresponding 

combination. The way we selected the best estimators is by calculating the median of 

ARL0 we can check which estimator’s values most closely approximate 370. With this 

process the results were compiled in the following tables. The data has been subjected 

to outlier filtering in phase I.   

 

Table 2: Results from simulation of algorithm for sample 50 

 CR 0%  2%  4%  10%  

M λ Estimators L Estimators L Estimators L Estimator L 

50 0.1 RMSSD 2 IQR 2 SSD 2.3 MAD 2.1 

  MnMR 2.8 SSD 2.2 MAD 2.1 IQR 2.4 

  SSD 2.7 MnMR 2.1 IQR 2.2 SSD 2.1 

 0.2 MnMR 2.9 MdMR 2.1 IQR 3.4 IQR 3.1 

  SSD 4 IQR 2.5 MAD 2.3 MAD 2.1 

  MAD 3.5 RMSSD 2.5 SSD 2.3 RMSSD 2 

 0.4 SSD 2.8 IQR 2.2 IQR 2 SSD 2 

  IQR 2.9 SSD 3 SSD 2.9 IQR 3.9 

  MdMR 3.9 RMSSD 3 RMSSD 2.3 MAD 2.3 

 1 SSD 4 MdMR 2 MnMR 2 RMSSD 2 

  RMSSD 2.3 IQR 2.1 IQR 2.7 SSD 2.1 

  IQR 2.3 MnMR 3 RMSSD 2.7 MnMR 2 
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Table 3: Results from simulation of algorithm for sample 100 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

100 0.1 SSD 2.3 MAD 2.8 IQR 3.1 SSD  2.3 

  MdMR 2.7 RMSSD 2.2 SSD 2.5 RMSSD  2.2 

  IQR 3.6 IQR 3.8 RMSSD 2.2 IQR  2.4 

 0.2 RMSSD 3 MnMR 3.6 IQR 2.8 SSD  2.3 

  MdMR 3.7 MAD 3.8 MnMR 2.2 MnMR  2.4 

  SSD 3.5 SSD 2.4 SSD 2.4 IQR  3.6 

 0.4 MAD 2.8 SSD 3.2 MnMR 3 MnMR  2.3 

  MnMR 3.9 MdMR 3.2 RMSSD 3 SSD  2.5 

  RMSSD 2.5 IQR 2.6 SD 2.8 MdMR  2.2 

 1 IQR 2.5 IQR 2.2 MAD 2.2 RMSSD  2.2 

  MnMR 2.3 MnMR 3.8 IQR 3.2 IQR  2 

  SSD 2.8 MAD 2.4 SSD 3.2 SSD  2.5 

 

Table 4: Results from simulation of algorithm for sample 200 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

200 0.1 MnMR 2.3 MAD 3 RMSSD 2.3 MnMR  3.9 

  RMSSD 2.5 IQR 3.5 MAD 3.4 SSD  2.7 

  MAD 2.8 MnMR 3.2 IQR 2.3 RMSSD  2.4 

 0.2 MAD 3 MdMR 2.2 RMSSD 3.2 MAD  2.1 

  RMSSD 2.4 RMSSD 3 IQR 2.6 IQR  2.4 

  MnMR 3.2 MnMR 3 MdMR 3.6 MnMR  2.4 

 0.4 MAD 2.5 MAD 4 MAD 3.3 IQR  2.6 

  IQR 2.6 MdMR 2.7 MdMR 3.7 MAD  2.4 

  RMSSD 2.8 RMSSD 2.8 SSD 2.7 RMSSD  2.6 
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 1 MdMR 3.7 MdMR 3 MdMR 2.4 RMSSD  2.5 

  RMSSD 3.1 IQR 3.9 IQR 3.7 MAD  2.7 

  MnMR 3.2 MAD 3.2 MAD 3.7 IQR  4 

 

 

Table 5: Results from simulation of algorithm for sample 500 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

500 0.1 MdMR 3.4 MnMR 2.5 IQR 2.9 RMSSD  2.3 

  MAD 3.7 IQR 2.1 MAD 3.1 IQR  2.1 

  RMSSD 2.4 MAD 2.9 MdMR 2.8 MdMR  2.7 

 0.2 IQR 2.9 IQR 2.9 MnMR 2.9 MAD  2.3 

  MnMR 3.7 MAD 2.9 RMSSD 3.4 IQR  3.1 

  MdMR 2.9 MdMR 2.9 MAD 2.7 RMSSD  2.9 

 0.4 MdMR 2.9 MAD 2.7 IQR 2.6 MnMR  2.6 

  MnMR 3.5 MdMR 3.8 MdMR 2.6 MAD  3.3 

  RMSSD 2.9 MnMR 2.9 RMSSD 2.7 MdMR  2.6 

 1 MnMR 3 MnMR 2.9 IQR 2.7 IQR  2.5 

  IQR 3.9 IQR 3.2 RMSSD 2.8 MAD  2.5 

  MAD 3.4 MdMR 2.9 MAD 2.8 MdMR  2.5 
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Table 6:Results from simulation of algorithm for sample 1000 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

1000 0.1 RMSSD 3.7 IQR 3.2 MAD 3.1 MAD  2.6 

  MAD 3.9 RMSSD 3.2 MnMR 2.3 MdMR  2.6 

  MnMR 3.7 MAD 3.2 IQR 3.2 IQR  2.7 

 0.2 MnMR 4 MAD 2.8 MdMR 2.8 MnMR  2.7 

  RMSSD 3.7 MnMR 2.5 MnMR 2.5 IQR  2.6 

  MAD 3.5 IQR 2.8 MAD 2.7 MAD  2.6 

 0.4 MnMR 3.4 RMSSD 2.8 MnMR 2.7 IQR  3.4 

  RMSSD 3 MdMR 2.8 MdMR 2.7 MdMR  2.5 

  IQR 3.2 IQR 2.9 RMSSD 3.6 MAD  2.4 

 1 MnMR 3.5 MnMR 2.9 IQR 2.7 MAD  3 

  MdMR 3 IQR 3.4 MnMR 3.3 IQR  3 

  RMSSD 3.4 MAD 2.8 MAD 3 RMSSD  2.7 

 

  

Table 7: Results from simulation of algorithm for sample 10000         

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

10000 0.1 IQR 3.9 IQR 3 MdMR 2.4 IQR  2.7 

  MAD 3.6 MAD 3 MAD 2.9 MAD  2.7 

  MnMR 3.9 RMSSD 3.1 IQR 2.9 MdMR  2.7 

 0.2 RMSSD 3.8 IQR 2.3 MnMR 2.6 MdMR  2.7 

  MAD 3.7 MAD 2.3 IQR 2.8 IQR  3.1 

  IQR 3.7 RMSSD 4 MAD 2.8 MAD  3.1 

 0.4 IQR 3.8 IQR 2.6 MnMR 2.9 RMSSD  2.9 

  MnMR 3.8 MAD 2.6 RMSSD 2.8 MAD  2.5 
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  Mad 3.7 MnMR 2.8 MAD 2.8 IQR  2.5 

 1 RMSSD 4 MdMR 3 MAD 3.3 MdMR  3 

  MnMR 3.8 MAD 4 IQR 3.3 RMSSD  2.8 

  MAD 3.3 IQR 4 MnMR 2.9 MAD  2.8 

 

 

The above tables are divided by sample size. The sample sizes are 50, 100, 200, 500, 

1000, 10000. Furthermore, the estimator SSD was used for sample size equal to or less 

than 200 because in large sample sizes the 2nd part of its equation is approximating the 

infinite  ( 𝛤(𝑚/2)/𝛤((𝑚 − 1)/2) ). Studies have shown that SSD can be utilized for 

larger sample sizes by approximating it, but we decided for our studies to see its 

capability in small - realistic sample sizes.  

For those sample sizes we note very good results for the SSD estimator, who is very 

effective for data with no outliers (as in our case by utilizing outlier filtering) and data 

that come from normal distribution. For sample sizes above 200 we are noting the 

estimators IQR and MAD are more and more present as the sample size increases. The 

IQR is more effective as sample size increases as we have said before. However, there 

is no clear superiority of an estimator as the rest of the estimators are present as well. 

IQR and MAD’s presence is a little more frequent with the rest of the estimators being 

reasonably close. 

In addition, we are noting that the value of L is fluctuating between 2 to 3 and in some 

rare cases gets values over 3. An important note is that as the contamination ratio 

increases the value of L is getting values from 2.6 to 3. 

Considering the previous points, we conclude that for data with no outliers the SSD 

estimator is reliable for small sample sizes. As our sample size increases, appropriate 

results can be gained by using the IQR and MAD estimators, a result that is in odds 

with the theories and studies by researchers. 
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The following tables are without outlier filtering: 

Table 8: Results from simulation of algorithm for sample 50 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

50 0.1 MnMR 2 MAD 2.8 MAD 3.8 MAD  2.5 

  IQR 2.8 IQR 3.5 IQR 3.4 IQR  2 

  RMSSD 3.7 - - - - -  - 

 0.2 SSD 2.4 MAD 3.4 IQR 3.7 IQR  3.3 

  MnMR 2.4 IQR 3.1 MAD 38

0 

MAD  3.8 

  MAD 3.5 - - - - -  - 

 0.4 IQR 2.9 MAD 2 IQR 2.7 IQR  3.5 

  MnMR 3.9 IQR 2.9 MAD 2.5 MAD  2.1 

  MdMR 2.9 - - - - -  - 

 1 SSD 3.4 IQR 3.5 IQR 3.4 -  - 

  IQR 2.8 MAD 3.5 MAD 3.9 -  - 

  MAD 2.4 - - - - -  - 

 

Table 9:Results from simulation of algorithm for sample 100 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

100 0.1 MnMR 3.2 IQR 3.8 IQR 2.3 MdMR  2.5 

  RMSSD 2.8 MAD 2.7 MAD 3.2 -  - 

  IQR 2.6 - - - - -  - 

 0.2 SSD 3.5 MAD 4 MAD 2.4 IQR  3.7 

  MAD 2.5 IQR 3 IQR 3.3 MAD  2.8 

  MdMR 3.7 - - - - -  - 

 0.4 MnMR 2.6 MdMR 3.1 MAD 2 MAD  2 
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  SSD 2.1 IQR 3.6 IQR 2 IQR  2.9 

  MAD 3.1 MAD 3.6 - - -  - 

 1 IQR 3.1 MAD 3.2 IQR 3 IQR  3.8 

  MnMR 3.3 MdMR 2.1 MAD 2.2 MAD  3.8 

  MAD 3.9 IQR 3.2 - - -  - 

 

 

Table 10: Results from simulation of algorithm for sample 200        

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

200 0.1 RMSSD 2.2 IQR 3 IQR 3.5 MnMR  3.9 

  IQR 2.8 MAD 2.8 MAD 2.3 MdMR  2.8 

  MdMR 3.1 - - - - -  - 

 0.2 MnMR 3 MdMR 2.8 MdMR 3.3 MdMR  2.8 

  MAD 2.8 IQR 2.2 IQR 2.1 -  - 

  RMSSD 3 MAD 2.2 MAD 4 -  - 

 0.4 IQR 3.3 IQR 3.4 IQR 2.9 MAD  2.3 

  MdMR 2.7 MAD 2.9 MAD 2.4 IQR  4 

  MAD 3.3 MnMR 2.9 MdMR 2.3 -  - 

 1 MdMR 3.8 MAD 4 MdMR 3.9 MAD  3.7 

  MnMR 2.3 MnMR 2.4 IQR 2.7 IQR  4 

  RMSSD 2.3 IQR 2.2 - - -  - 

 

 

     

Table 11: Results from simulation of algorithm for sample 500     

 CR 0%  2%  4%  10%   
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m λ Estimators L Estimators L Estimators L Estimators  L 

500 0.1 MnMR 2.1 MdMR 3.4 IQR 3.3 MnMR  2.4 

  IQR 2 MAD 2.9 MAD 3.3 -  - 

  MAD 3.7 IQR 3.2 MdMR 2.9 -  - 

 0.2 MnMR 2.1 IQR 3.9 IQR 3.1 MdMR  3.7 

  RMSSD 3.7 MAD 2.1 MAD 3.5 -  - 

  IQR 2.8 MdMR 2 - - -  - 

 0.4 RMSSD 3.4 MnMR 3.2 IQR 2.3 IQR  3.7 

  MnMR 3 MAD 2.2 MAD 2.3 MAD  2.9 

  IQR 3.7 IQR 3.4 - - MdMR  2.5 

 1 MdMR 2.8 MdMR 3.6 IQR 2.4 IQR  2.4 

  IQR 3.9 MnMR 2.6 MAD 2.1 MAD  2.4 

  MnMR 3.6 MAD 2.4 MdMR 3.4 -  - 

 

 

  

Table 12:Results from simulation of algorithm for sample 1000 

 CR 0%  2%  4%  10%   

m λ Estimators L Estimators L Estimators L Estimators  L 

1000 0.1 IQR 2.4 MnMR 2.6 MAD 3 -  - 

  - - MAD 4 IQR 3 -  - 

  - - IQR 4 - - -  - 

 0.2 RMSSD 2.3 MAD 2.1 MAD 2.3 MdMR  2.2 

  IQR 2 IQR 2.1 IQR 2.3 -  - 

  MnMR 3.4 - - - - -  - 

 0.4 MnMR 2.2 MnMR 3.6 IQR 3.4 IQR  2.3 

  RMSSD 3 MdMR 2.5 MAD 3.4 MAD  2.3 
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  IQR 3.8 MAD 3.7 - - -  - 

 1 MnMR 2.1 MdMR 3 IQR 3.7 -  - 

  IQR 3 MnMR 3.8 MAD 3.9 -  - 

  MAD 3 - - - - -  - 

 

Table 13:Results from simulation of algorithm for sample 10000 

 CR 0%  2%  4%  10%   

M λ Estimators L Estimators L Estimators L Estimators  L 

10000 0.1 MnMR 3.6 MdMR 3.1 MAD 2 -  - 

  RMSSD 3.9 MAD 3.8 IQR 2 -  - 

  MdMR 2 IQR 3.8 - - -  - 

 0.2 MnMR 2.6 MAD 2.6 MAD 3.6 -  - 

  MdMR 2.4 IQR 3.9 IQR 3 -  - 

  RMSSD 3.1 - - - - -  - 

 0.4 MnMR 3 MdMR 3.9 - - -  - 

  MdMR 3.5 MnMR 3.3 - - -  - 

  RMSSD 3.3 - - - - -  - 

 1 RMSSD 3.7 MdMR 3.9 IQR 3.9 -  - 

  MdMR 3.4 - - MAD 3.9 -  - 

  MnMR 2.1 - - - - -  - 

 

 

As before, the tables are divided by sample size so we can show the results. In contrast 

to our earlier process where our data has been subjected to outlier filtering, here we 

generate the sample from a normal distribution with median 0 and standard deviation 1 

and we want to see the performance of the estimators with no outlier filtering. We have 

also in this case corresponding contamination ratios (0%, 2%, 4%, 10%). Contrasting 

the earlier findings, in this case we have a clearer idea about which estimators are 

performing better and most reliably. The estimators MAD and IQR are those who 
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outclass the others in this case. We are noting that for the contamination ratio of 0% 

almost all estimators are giving reliable results with the median ARL being very 

frequently equal to the target value 370. As the contamination ratio increases then the 

estimators MAD and IQR are giving the most reliable results with their median ARL 

being very close to 370. In addition, the L value doesn’t seem to follow some pattern 

(having specified reliable values) and that is because our sample hasn’t been subjected 

to outlier filtering. 

 

5.5 Conclusion 

The fifth and final chapter of this dissertation was dedicated to the process and the 

algorithm we developed and I personally tried to verify results and earlier studies of 

statistics, and also test some processes such as in phase I where we used the estimator 

RMSSD to find the limits (UCL, LCL). The tests were inspired by Murat Caner Testik, 

Ozge Kara, Sven Knoth (2020). From the results we calculated we can reliably come to 

some conclusions and to build on them. If we have a sample not subjected to outlier 

filtering then the most reliable results can be gained by using the MAD and IQR 

estimators. These two estimators have a lot of common systems in them and as such in 

some cases they were the only reliable estimators. When we subject our sample to 

outlier filtering and our sample is equal to or smaller than 200 observations, reliable 

results can be gained by using the SSD estimator, and if our sample is larger than 200, 

as in some samples in our study with sample sizes of 500, 1000 and 10000 observations, 

we are noting that there is no clear winner between the estimators as they are all 

relatively reliable with a slighter frequency of MAD and IQR. 
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Conclusion and Suggestions 
In this study, that was created for the purposes of this dissertation, the results of 

analyzing phase I for the effectiveness of the Exponentially Weighted Moving Average 

(EWMA) that was used in phase II, were evaluated contrasted with some alternative 

scenarios. The Control Diagram I-Chart is the one chosen for analyzing phase I and 

several combination of values for the Contamination Ratio were chosen, for L as well 

as for the parameter λ of EWMA. 

Following this process, the results were analyzed, drawn and went through some 

suggestions and notes. The focus was in choosing the estimator for the standard 

deviation, given that the I-Chart is affecting the limits of phase II. The effectiveness of 

Phase II, where we tested several scenarios calculating AARL and SDARL whose 

results were given in tables. As first effect of this study was the discovery that the 

elimination of outliers in the way mentioned above during phase 1 results in a reliable 

parameter estimation. Given that those estimations affect the online monitoring of the 

process during phase II, we need to look closer into the process for  phase I contrasting 

literature around the subject. The estimators of standard deviation were different 

depending on the scenario, where the size of filtered observations are lower than 200 

values we recommend using the SSD estimator and choose lower values for L. Strong 

showing for data sample size over 200 observations by all estimators with CR taking 

values 0%, 2%, 4%, 10%. Most of all, the estimators MAD and IQR are a little better 

performing than the rest, especially for CR 10% and/or increased sample size. 

Furthermore, wit was noted that for a small sample size the results aren’t very reliable. 

It may be suggested for future researchers to seek estimators that are more effective for 

smaller sample size processes.  
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Appendix 
 

Table A.1: Values of AARL for SSD estimator 

with m = 100, CR = 0.02 and λ = 0.2 after outlier filtering 

 2.7022 2.8595 2.959 3 

2 64,4414 82,69109 94,80434 100,5087 

2,1 77,8762 113,542 160,4204 145,275 

2,2 107,5139 149,8493 212,0034 213,2947 

2,3 133,7106 206,1682 259,5514 234,5969 

2,4 143,5617 223,0261 296,2152 371,6208 

2,5 168,9281 255,2299 354,2886 362,8662 

2,6 196,1345 319,1291 394,0878 391,5676 

2,7 208,9984 297,8669 457,3353 483,2783 

2,8 219,6068 340,9977 479,9774 538,6473 

2,9 236,1027 369,1831 446,6991 554,6396 

3 268,5752 350,114 588,3317 637,3544 

3,1 271,488 466,1268 515,5752 699,3616 

3,2 266,9821 437,1156 600,9969 692,3458 

3,3 273,7118 526,8844 756,5237 764,7354 

3,4 350,2084 466,8577 698,2866 901,6194 

3,5 332,655 570,9091 739,9037 806,9856 

3,6 351,1526 558,4322 893,2291 1110,351 

3,7 361,534 668,9412 894,816 1076,25 

3,8 409,0095 681,6797 1029,475 1156,373 

3,9 467,6342 692,0224 1229,672 1617,923 

4 442,9343 801,741 1343,928 1281,801 

 

Table A.2 

Table A.2: Values of AARL for RMSSD estimator 

with m = 200, CR = 0.02 and λ = 0.2 after outlier filtering 

 2.7022 2.8595 2.959 3 

2 55,63545 67,09377 92,62638 110,3925 

2,1 79,7585 107,6421 149,0456 145,0311 

2,2 120,3945 140,2147 189,3909 221,6035 

2,3 128,1836 195,5056 264,364 263,7521 

2,4 149,07 240,4398 305,6734 342,778 

2,5 164,7339 258,4784 361,4471 379,7866 

2,6 193,4699 300,0601 377,787 431,5412 

2,7 218,2075 304,8358 425,1919 470,4791 

2,8 219,3297 349,2558 455,4121 494,1727 
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2,9 236,8006 375,0603 536,3558 587,5396 

3 257,5362 373,3104 532,8678 636,5759 

3,1 253,5841 406,4257 524,6986 697,4279 

3,2 298,6886 426,6664 563,3193 644,0837 

3,3 309,5657 480,3632 670,1184 739,3127 

3,4 294,411 494,3414 698,2193 777,3717 

3,5 305,5984 481,2029 694,0679 844,4572 

3,6 382,476 563,5336 769,7364 975,0265 

3,7 392,4586 653,0534 897,7594 1054,22 

3,8 434,7229 616,791 1097,764 1234,806 

3,9 427,8941 700,2575 1041,332 1257,51 

4 450,0799 742,7255 1053,183 1371,682 

 

 

 

Table A.3: Values of AARL for MdMR estimator 

with m = 200, CR = 0.02 and λ = 0.2 after outlier filtering 

 2.7022 2.8595 2.959 3 

2 77,47429 101,4939 146,0278 185,363 

2,1 108,2786 182,7237 247,4714 251,5839 

2,2 180,5767 191,0642 300,1332 370,2643 

2,3 176,3963 321,4765 447,7372 441,0348 

2,4 201,0884 351,0209 453,0259 520,4756 

2,5 228,5486 406,3518 543,1087 553,6429 

2,6 252,6393 402,2067 503,2559 612,3968 

2,7 283,1194 423,3074 558,3605 622,442 

2,8 271,3361 467,003 655,388 608,8334 

2,9 289,262 475,7245 785,2493 890,3547 

3 338,8971 431,8876 718,9326 818,3 

3,1 311,5524 483,204 644,1413 804,3403 

3,2 369,6586 488,2373 614,0596 781,4583 

3,3 343,5024 527,925 730,5997 731,4972 

3,4 324,3296 534,467 726,0553 902,0971 

3,5 343,5654 569,0107 733,5383 988,5313 

3,6 368,107 518,7889 799,6638 995,673 

3,7 352,4825 638,842 949,4525 1003,944 

3,8 370,9662 528,5721 868,3432 1025,437 

3,9 338,9365 525,3007 778,5596 1023,442 

4 327,268 537,108 785,695 1055,105 
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Table A.4: Values of AARL for MnMR estimator 

with m = 200, CR = 0.02 and λ = 0.2 after outlier filtering 

 2.7022 2.8595 2.959 3 

2 61,14807 75,33221 105,4094 127,8757 

2,1 87,39931 124,8409 174,6676 166,587 

2,2 135,047 154,6435 213,0772 257,4664 

2,3 140,0106 217,8257 303,2224 295,0222 

2,4 157,6933 262,0169 337,7965 380,1487 

2,5 177,3131 282,9735 391,3871 413,0466 

2,6 205,7116 322,5945 404,8313 453,379 

2,7 228,9193 325,9845 451,8336 502,2961 

2,8 228,6669 367,4988 488,7629 514,1365 

2,9 242,8217 387,5167 565,9031 624,7133 

3 263,0795 373,6194 544,1359 638,7696 

3,1 255,738 403,6939 542,3952 690,6341 

3,2 299,6271 423,6356 553,2843 628,0661 

3,3 305,3226 469,6093 634,9981 694,8931 

3,4 285,7388 470,2821 676,5834 750,1394 

3,5 299,8191 473,1873 641,912 807,4091 

3,6 351,0991 503,2305 701,8091 880,5663 

3,7 352,7022 577,1078 800,9403 921,8311 

3,8 376,2546 540,2974 928,047 1025,039 

3,9 355,9628 591,3252 850,0213 1033,851 

4 369,194 597,3487 827,9754 1090,01 

 

 

 

Table A.5: Values of AARL for MAD estimator 

with m = 200, CR = 0.02 and λ = 0.2 after outlier filtering 

 2.7022 2.8595 2.959 3 

2 101,4102 138,9107 165,6301 236,8351 

2,1 135,3065 178,9099 294,8492 313,8931 

2,2 208,0223 229,554 322,75 414,6353 

2,3 183,1974 296,8947 455,9946 470,9928 

2,4 193,1934 341,2763 444,3377 565,8438 

2,5 221,3895 348,4558 498,4325 529,4629 

2,6 235,9662 348,1018 508,4163 662,1624 

2,7 253,6313 403,6003 515,4928 595,873 

2,8 256,8641 391,6879 577,4229 631,2082 

2,9 262,2372 414,9128 565,3909 613,2586 
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3 262,4783 406,6499 562,5159 647,2063 

3,1 259,8917 410,4903 603,3392 732,7225 

3,2 263,3863 411,9237 552,6614 645,0312 

3,3 269,324 433,2265 636,433 604,7797 

3,4 265,854 483,2427 585,966 620,7615 

3,5 267,8977 439,5631 572,117 679,2715 

3,6 309,0117 447,473 537,882 715,4995 

3,7 292,8955 452,2593 605,2504 763,8661 

3,8 285,9015 435,7561 586,2229 743,6202 

3,9 268,366 472,0634 642,0773 690,996 

4 268,9788 482,8333 546,3301 724,2017 

 

 

Table A.6: Values of AARL for IQR estimator 

with m = 200, CR = 0.02 and λ = 0.2 after outlier filtering 

 2.7022 2.8595 2.959 3 

2 96,79772 137,7004 169,1506 231,6901 

2,1 132,4041 175,7735 287,6423 306,3879 

2,2 197,947 222,2506 316,0154 397,4176 

2,3 177,8525 284,0597 411,3889 455,0045 

2,4 194,1893 325,2988 418,1416 560,4967 

2,5 214,3072 351,6993 492,2204 515,3494 

2,6 233,4601 346,2991 487,9319 623,1133 

2,7 251,5967 398,2545 503,5077 565,36 

2,8 255,7086 387,9511 569,466 601,6993 

2,9 256,9415 389,0406 567,6472 584,5296 

3 264,2619 401,1544 554,2471 636,981 

3,1 251,2651 400,9109 585,1821 699,7736 

3,2 253,7854 404,6752 530,5123 611,7573 

3,3 264,5258 439,9114 597,4378 596,3712 

3,4 262,2481 496,3392 557,6219 615,6942 

3,5 269,3542 417,6019 552,8538 664,8631 

3,6 302,318 422,1748 520,038 693,996 

3,7 279,8087 437,0774 576,6372 720,6239 

3,8 279,299 418,6323 576,8025 730,9605 

3,9 257,2797 475,5363 611,1878 661,5731 

4 284,7876 454,9979 542,3828 695,3276 
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Table A.7: Values of AARL for MnMR estimator 

with m = 200, CR = 0.02 and λ = 0.2 without outlier filtering 

 2.7022 2.8595 2.959 3 

2 462,9074 768,4247 1155,823 1374,837 

2,1 457,6095 794,9669 1188,182 1242,379 

2,2 507,0485 713,6941 1174,071 1424,967 

2,3 464,2426 831,5748 1232,552 1267,255 

2,4 458,395 859,2018 1142,117 1353,111 

2,5 449,851 793,0606 1130,236 1272,852 

2,6 480,1322 759,8825 1130,372 1334,562 

2,7 500,0605 781,2367 1149,233 1374,791 

2,8 476,2855 817,7257 1134,735 1320,821 

2,9 446,5381 785,8396 1244,604 1502,369 

3 469,183 759,8885 1150,004 1372,018 

3,1 470,998 785,2871 1118,525 1398,887 

3,2 508,314 802,3702 1115,386 1223,15 

3,3 497,4463 814,3873 1143,257 1213,66 

3,4 455,5257 758,4165 1108,049 1302,869 

3,5 468,8638 790,1383 1069,642 1358,343 

3,6 495,2728 763,1767 1083,274 1425,514 

3,7 474,9455 837,884 1225,368 1464,933 

3,8 493,1033 807,353 1308,469 1448,875 

3,9 458,6102 808,2031 1183,357 1396,153 

4 452,9462 754,3327 1073,201 1409,408 

 

 

 

Table A.8: Values of AARL for MdMR estimator 

with m = 200, CR = 0.02 and λ = 0.2 without outlier filtering 

 2.7022 2.8595 2.959 3 

2 350,1403 579,9065 912,183 1218,82 

2,1 348,5209 568,8651 853,8459 1022,027 

2,2 434,3245 487,8046 891,678 1147,376 

2,3 347,6505 696,2851 994,282 998,742 

2,4 359,8159 639,1904 902,5965 1052,868 

2,5 347,0617 781,2475 950,1066 982,734 

2,6 381,7465 584,3745 834,2889 1085,533 

2,7 386,5748 653,1884 842,0457 921,4107 

2,8 370,963 651,6406 944,0195 882,3357 

2,9 359,5424 637,2667 1108,66 1213,478 
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3 420,3334 553,5777 933,8194 1088,449 

3,1 382,6523 622,7461 812,3654 993,0971 

3,2 448,3859 585,9118 815,926 1010,739 

3,3 408,5126 618,652 836,5497 857,5182 

3,4 362,2069 601,8749 817,4811 1109,721 

3,5 386,8516 624,2037 849,3308 1104,448 

3,6 409,9998 570,6701 881,9873 1150,728 

3,7 372,4324 686,2251 1020,31 1105,736 

3,8 401,7704 564,9371 930,9833 1115,091 

3,9 358,7114 563,8554 833,6468 1089,948 

4 341,8426 561,9088 814,711 1095,35 

 

 

Table A.9: Values of AARL for RMSSD estimator 

with m = 200, CR = 0.02 and λ = 0.2 without outlier filtering 

 2.7022 2.8595 2.959 3 

2 682,9085 1202,92 1830,131 2230,659 

2,1 681,6549 1281,812 1881,845 1916,874 

2,2 713,0003 1155,409 1928,938 2238,883 

2,3 698,9653 1295,839 1919,376 1974,089 

2,4 647,7848 1367,287 1746,889 2162,4 

2,5 671,0211 1202,957 1771,199 2122,904 

2,6 736,3825 1193,85 1791,782 2192,407 

2,7 731,0147 1200,315 1887,727 2594,953 

2,8 694,3658 1260,654 1744,386 2267,364 

2,9 648,381 1188,378 1922,501 2393,272 

3 673,5307 1213,176 1865,7 2266,222 

3,1 712,2378 1218,794 1768,059 2294,773 

3,2 728,6472 1294,716 1809,111 2009,784 

3,3 710,0547 1247,799 1838,701 2011,565 

3,4 669,9261 1139,913 1702,258 2074,826 

3,5 665,6277 1282,269 1734,082 2221,75 

3,6 692,8392 1195,176 1678,262 2326,631 

3,7 694,3665 1309,63 1984,401 2506,664 

3,8 710,4448 1304,536 2125,677 2328,934 

3,9 683,1394 1249,067 1951,55 2241,186 

4 660,7424 1175,389 1737,163 2355,782 
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Table A. 10: Values of AARL for MAD estimator 

with m = 200, CR = 0.02 and λ = 0.2 without outlier filtering 

 2.7022 2.8595 2.959 3 

2 263,3499 453,6943 526,2659 706,7897 

2,1 269,1914 380,5234 680,203 762,6484 

2,2 307,6862 374,0527 638,1479 768,1378 

2,3 262,0026 462,9894 706,9723 754,072 

2,4 263,31 437,0569 618,8128 789,1231 

2,5 258,0061 414,0074 614,3673 685,9953 

2,6 273,7008 412,4052 606,4466 757,167 

2,7 285,6733 441,6887 577,5257 683,2393 

2,8 278,1037 425,8711 669,1197 726,6338 

2,9 281,7341 448,8126 620,3072 679,7978 

3 283,1887 435,2411 616,464 672,7621 

3,1 265,6389 436,2866 603,3692 752,3436 

3,2 277,4291 440,2015 582,7199 646,9058 

3,3 280,498 438,822 631,1579 602,8408 

3,4 279,1347 487,5586 589,0972 687,9037 

3,5 273,0984 436,4078 567,5969 689,4223 

3,6 310,6536 440,4684 550,5284 724,6499 

3,7 293,2875 459,4443 622,3219 789,9442 

3,8 286,7588 436,2851 598,7264 780,7454 

3,9 265,2279 459,7591 636,3231 707,0271 

4 269,7831 477,1412 544,9138 712,7648 

 

 

Table A.11:  

Table A.11: Values of AARL for IQR estimator 

with m = 200, CR = 0.02 and λ = 0.2 without outlier filtering 

 2.7022 2.8595 2.959 3 

2 256,1001 419,0673 524,2203 677,539 

2,1 259,7941 386,1282 660,6804 725,9259 

2,2 300,3262 370,7903 614,9291 763,2443 

2,3 252,556 443,7871 654,4541 720,8398 

2,4 261,5922 424,8705 612,8835 771,4252 

2,5 252,1914 410,7197 606,7861 665,5249 

2,6 265,8453 401,7466 585,1441 749,4729 

2,7 280,5536 435,5888 562,3952 663,2144 

2,8 274,8569 433,5093 643,178 685,0049 

2,9 272,8603 430,3942 622,5912 648,4708 
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3 281,2313 439,0797 600,4702 667,1229 

3,1 257,0122 426,7629 590,6863 758,5202 

3,2 270,8283 430,3906 561,691 599,0682 

3,3 273,8827 430,7617 613,6583 589,8942 

3,4 266,9264 507,6348 551,7388 663,3478 

3,5 270,4531 418,3603 549,4086 673,165 

3,6 300,8035 418,3941 548,125 697,1193 

3,7 276,7578 438,9137 610,7347 750,6765 

3,8 282,0427 414,8911 571,6746 764,2863 

3,9 252,6918 473,6422 603,9607 682,619 

4 280,1364 445,2562 543,5402 685,1567 

 

 

Table A. 12: Values of AARL for SSD estimator 

with m = 100, CR = 0.02 and λ = 0.2 without outlier filtering 

 2.7022 2.8595 2.959 3 

2 681,0816 1280,162 1789,241 2534,617 

2,1 614,1191 1269,378 1781,634 1969,04 

2,2 686,09 1281,262 2038,113 2215,189 

2,3 789,5704 1340,262 2033,215 2271,016 

2,4 670,8004 1334,913 1983,026 2578,593 

2,5 778,5133 1262,656 1954,791 2290,509 

2,6 657,1008 1349,949 1915,852 2372,227 

2,7 739,574 1179,234 2019,519 2331,203 

2,8 663,8199 1177,768 1813,132 2420,364 

2,9 642,9511 1161,85 1765,776 2111,142 

3 717,8113 1339,242 1804,327 2430,445 

3,1 690,5184 1493,653 1732,196 2240,293 

3,2 656,3558 1217,275 2163,102 2164,436 

3,3 663,5395 1280,112 2011,155 2261,525 

3,4 655,9843 1210,746 1617,55 2605,518 

3,5 695,3678 1202,53 1691,793 2345,723 

3,6 715,6431 1244,655 1897,973 2382,786 

3,7 606,7026 1124,298 1763,187 2231,349 

3,8 740,0087 1312,279 2104,017 2296,482 

3,9 684,4374 1162,486 1925,722 2595,885 

4 662,1312 1369,693 1876,035 2409,933 

 

 



  

56 
 

Bibliography 
[1] Abbas, N., Riaz, M. and Does, R., 2012. CS-EWMA Chart for Monitoring 

Process Dispersion. Quality and Reliability Engineering International, 29(5), 

pp.653-663. 

[2] Abbas, Ν., Riaz, Μ. and Does, RJMM. (2013a). CS-EWMA Chart 

forMonitoringProcess Dispersion. Quality and Reliability Engineering 

international, Vol. 29(5), pp. 653-663. 

[3] Albers, W. and Kallenberg, W.C.M. (2004a). Are Estimated Control Charts in 

Control? Statistics 38, pp.67-79. 

[4] Ali, S., Pievatolo, A. and Göb, R., 2016. An Overview of Control Charts for 

High-quality Processes. Quality and Reliability Engineering International, 

32(7), pp.2171-2189. 

[5] Bradford, P. and Miranti, P., 2019. Information in an Industrial Culture: Walter 

A. Shewhart and the Evolution of the Control Chart, 1917–1954. Information & 

Culture, 54(2), pp.179-219. 

[6] Braun, W. J., & Park, D. (2008). Estimation of σ for individuals charts. Journal 

of Quality Technology, 40, 332–344. 

[7] Brondoni, S. and Zaninotto, E., 2018. Ouverture de ‘The 4th Industrial 

Revolution. Business Model Innovation & Global Competition’. Symphonya. 

Emerging Issues in Management, (2), p.1. 

[8] Bryce, R. G., Gaudard, M. A., & Joiner, B. L. (1997). Estimating the standard 

deviation for individuals control charts. Quality Engineering, 10, 331–341. 

[9] Burroughs,  T.  E.,  Rigdon,  S.E.,  Champ,  C.W.  (1993).  An  analysis  of  

Shewhart  Charts  with  Runs Rules  When  No  Standards  Are  Given,  

Proceedings  of  the  Quality  and  Productivity  Section  of  the American 

Statistical Association, August 8-12, San Francisco, CA, pp. 16-19. 

[10] C.H. Weiß and M.C. Testik, CUSUM monitoring of first-order integer-valued 

autoregressive processes of Poisson counts, J. Qual. Technol. 41(4) (2009), pp. 

389–400. 

[11] C.H. Weiß, Controlling correlated processes of Poisson counts, Qual. Reliab. 

Eng. Int. 23(6) (2007), pp. 741–754. 

[12] C.H. Weiß, EWMA monitoring of correlated processes of Poisson counts, Qual. 

Technol. Quant. Manage. 6(2) (2009),pp. 137–153. 

[13] C.H. Weiß, Thinning operations for modelling time series of counts – a survey, 

Adv. Stat. Anal. 92(3) (2008), pp. 319–341. 

[14] C.M. Borror, C.W. Champ, and S.E. Ridgon, Poisson EWMA control charts, J. 

Qual. Technol. 30(4) (1998),pp. 352–361. 

[15] Capizzi, G. and Masarotto, G., 2010. Combined Shewhart–EWMA control 

charts with estimated parameters. Journal of Statistical Computation and 

Simulation, 80(7), pp.793-807. 

[16] Cembrowski S, Westgard J, Eggert A, Toren C. Trend detection in control data: 

optimization and intepretation of Trigg’s technique for trend analysis. Clin 

Chem 1975, 21:1396-1405.  

[17] Chakraborti,  S.  (2000).  Run  Length,  Average  Run  Length  and  False  Alarm  

Rate  of  Shewhart X  Chart: Exact Derivations by Conditioning, 

Communications in Statistics-Simulation and  Computation 29, pp. 61-81. 

[18] Chakraborti,  S.  (2007).  Run  length  distribution  and  percentiles:  The  

Shewhart X  chart  with  unknown parameters, Quality Engineering 19, pp 119-

127. 



  

57 
 

[19] Chakraborti, S., 2007. Run Length Distribution and Percentiles: The Shewhart 

Chart with Unknown Parameters. Quality Engineering, 19(2), pp.119-127. 

[20] Champ, C.W. and Woodall, W.H. (1987). Exact Results for Shewhart Control 

Charts with Supplementary Runs Rules, Technometrics 29, pp. 393-399. 

[21] Chen G., Cheng W.S. and Xie H. (2001). Monitoring process mean and 

reliability with one EWMA chart. Journal of Quality Technology. Vol. 33(2), 

pp.223-233. 

[22] Chen, G. (1997). The mean and Standard Deviation of the Run Length 

Distribution of  X Charts When  Control Limits Are Estimated, Statistica Sinica 

7, pp.789-798. 

[23] Chen, G., Cheng, S.W. and Xie, H. (2004). A new EWMA Control Chart for 

Monitoring Both Location and Dispersion. Quality Technology & Quantitative 

Management, Vol. 2, pp.217-231. 

[24] Cheng S.W. and Thaga K. (2010). The max CUSUM chart. Frontiers in 

Statistical Quality Control. Vol. 2010, pp. 85-98. 

[25] Chiu, W.K and Cheung, K.C. (1977). An economic study of X charts with 

warning limits, Journal of Quality Technology 9, pp. 166-171. 

[26] Crowder S. and Hamilton M. (1992). An EWMA for monitoring standard 

deviation. Journal of Quality Technology. Vol. 24, pp. 12-21. 

[27] Cryer, J. D., & Ryan, T. P. (1990). The Estimation of Sigma for an X Chart. 

Journal of 

[28] D.C. Montgomery and C.M. Mastrangelo, Some statistical process control 

methods for auto correlated data, J. Qual. Technol. 23(3) (1991), pp. 179–193. 

[29] Diko, M., Chakraborti, S. and Does, R., 2019. Guaranteed in‐control 

performance of the EWMA chart for monitoring the mean. Quality and 

Reliability Engineering International, 35(4), pp.1144-1160. 

[30] Duncan,  A.J.  (1956).  The  economic  design  of X  charts  used  to  maintain  

current  control  of  a process, Journal of American Statistical Association 51, 

pp. 228-242. 

[31] Karagöz, D. (2016).  Robust X control chart for monitoring the skewed and 

contaminated process. Hacettepe Journal of Mathematics and Statistics 47(1), 

pp. 223-242 

[32] Lucas, J. and Saccucci, M., 1990. Exponentially Weighted Moving Average 

Control Schemes: Properties and Enhancements. Exponentially Weighted 

Moving Average Control Schemes: Properties and Enhancements, [online] 

32(1), pp.1-12 

[33] M. Atalay, M. Caner Testik, S. Duran, CH. Weiß (2020). Guidelines for 

automating Phase I of control charts by considering effects on Phase-II 

performance of individuals control chart. Quality Engineering. 

[34] Maravelakis,  P.E.,  Castagliola  P.  (2009).  An  EWMA  Chart  for  Monitoring  

the  Process  Standard Deviation  when  Parameters  are  Estimated,  

Computational  Statistics  &  Data  Analysis  53(7),  pp. 2653-2664. 

[35] Montogomery, D.C. (2005). Introduction to Statistical Quality Control, 5th Ed. 

John Wiley. 

[36] Neubauer A, The EWMA control chart: properties and comparison with other 

quality-control procedures by computer simulation. Clin Chem 1997, 43(4) 594-

601. 

[37] Pitsis, T., Beckman, S., Steinert, M., Oviedo, L. and Maisch, B., 2020. 

Designing the Future: Strategy, Design, and the 4th Industrial Revolution—An 



  

58 
 

Introduction to the Special Issue. California Management Review, 62(2), pp.5-

11. 

[38] Prochan, F. and Savage, I.R. (1960). Starting a control chart. Industrial quality 

control 17, pp 12-13.Quality Technology, 22, 187–192 

[39] Quesenberry,  C.P.  (1993).  The  effect  of    sample  size  on  estimated  limits  

for X  and X control charts, Journal of Quality Technology 25, pp. 237-247. 

[40] R.L. Mason and J.C. Young, It depends – the effect of dependent observations 

on process control, Qual. Prog. (2008),pp. 70–72. 

[41] Ramzy A. and Peiris T. (2014). Comparison of rectangular and elliptical control 

region EWMA schemes for joint quality Monitoring. Open Journal of Statistics. 

Vol. 4(11), pp. 970-976. 

[42] Roberts S. Control chart tests based on geometric moving averages. 

Technometrics 1959:1:239-250. 

[43] Rocke, D.M. (1989). Robust Control Charts. Technometrics 31, pp. 173-184. 

[44] S. and G.E.A. Papaleonida, SPC procedures for monitoring autocorrelated 

processes, Qual. Technol. Quant. Manage. 4(4) (2007), pp. 501–540. 

[45] Saleh, N., Mahmoud, M., Keefe, M. and Woodall, W., 2015. The Difficulty in 

Designing ShewhartX̄andXControl Charts with Estimated Parameters. Journal 

of Quality Technology, 47(2), pp.127-138 

[46] Sheu S.H., Huang C.J. and Hsu T.S. (2012). Extended maximum generally 

weighted moving average control chart for monitoring process mean and 

variability. Computer &Industrial Engineering. Vol. 62(1), pp. 216-225. 

[47] Tatum,  L.G.  (1997).  Robust  Estimation  of  the  Process  Standard  Deviation  

for  Control  Charts, Technometrics 39, pp. 127-141. 

[48] Tsai, T.R., Wu, S.J. and Lin, H.C. (2004). An Alternative Control Chart 

Approach Based on Small Number of Subgroups, International Journal of 

Advanced Manufacturing Technology 26, pp. 1312-1316. 

[49] Vargas, J.A. (2003). Robust Estimation in Multivariate Control Charts for 

Individual Observations, Journal of Quality Technology 35, pp. 367-376. 

[50] Yao, Y., & Chakraborti, S. (2021). Phase I monitoring of individual normal 

data: Design and implementation. Quality Engineering, 33(3) 

[51] Zaman, B., Riaz, M. and Lee, M.H. (2017). On the Performance of Control 

Charts for Simultaneous Monitoring of Location and Dispersion Parameters. 

Quality Technology & Quantitative Management, Vol. 33, pp. 37-56. 

[52] Zhang, M., Megahed, F. and Woodall, W., 2013. Exponential CUSUM Charts 

with Estimated Control Limits. Quality and Reliability Engineering 

International, 30(2), pp.275-286. 

[53] Zhang, X. and Woodall, W., 2015. Dynamic probability control limits for risk-

adjusted Bernoulli CUSUM charts. Statistics in Medicine, 34(25), pp.3336-

3348. 

[54] Αντζουλάκος, ∆. (2003). Στατιστικός Έλεγχος Ποιότητας, Σημειώσεις 

παραδόσεων, Πανεπιστήμιο Πειραιά, Πειραιάς. 

[55] Καφφές, ∆. Γ. (1996). Στατιστικός Ποιοτικός Έλεγχος, Σημειώσεις 

παραδόσεων, Πανεπιστήμιο Πειραιά, Πειραιάς. 

[56] ∆αμιανού, Χ. (1996). Στατιστικός Έλεγχος Ποιότητας και Αξιοπιστία, 

Σημειώσεις παραδόσεων, Πανεπιστήμιο Αθηνών, Αθήνα.  

 

. 



  

59 
 

 

 


