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Iepiinyn (summary in Greek)

H mopovca owoktopiky] datpiPny €otidlel ot HEAET TOV TANPOQOPLOV TOV
EUTEPLEYOVTOL GTNV AYOPE SIKOLOUATMOV TPOIPESNC Y10l TNV KOADTEPT KOTAVON O™ TNG
OmOTIUNONG TOV HETOYIK®OV TiTA®V. To OKoldUoTe TPOUIPESNS EVOOUATDOVOLY
TOAVTULEG TTANPOPOPIES Y10l TIG TPOGOOKIEC TMV EMEVOVTAOV GYETIKA LE TIG LEALOVTIKES
AmodOGELS TOV VIOKEILEVOV TITA®Y TOVG. AvTd TNydlel amd TO YEYOVOS OTL Ol 0yOpES
etvar atedeic AOY® TMEPOPIGU®V OTMOG 1 AGOUUETPN TANPOPOPNON Kot To EUTOINL
OTNV  VOYTH TOANCY, KAOOTOVTOS TO OIKOUOUOTO TPOOIPESNG  UN-TePLTT

TEPLOVGLAKA GTOLYELD.

Tnv tekevtaia dekaetio ywvav moAhég peréteg mov vmoioyilovv éva pétpo amd o
dkaumdpato tpoaipeons Kot eEeTdlovv av TPOPAETEL TIG LEAALOVTIKES ATOOOGELS TWV
uetoydv. Evdeictikd, ot Guo kar Qui (2014) Bpickovv apvntikni oxEcn avaUEGH 6TV
TEKUAPTN HETAPANTOTNTA KO TIG LEALOVTIKEG 0mOdOCELS TV petoydv Kot ot Stilger,
Kostakis ka1 Poon (2017) dgiyvouv 01t 1 00d€TEPTN MG TPOG TOV Kivouvo acvppeTpia
npoPAémel Oetikd TG peEAAOVTIKEG amodocel; Tov petoywv. Ot mpoavagepbeioeg
UEAETEG YPMNOUOTTOOVY €va HETPO HE PAom o CLYKEKPEVN 1O10TNTO/POTT|] TNG
O0VLOETEPNC WG TTPOS TOV KIVOUVO KOTOVOUNG TOV ATOOOGEDMV TMV LETOYMV Kot YU’ avTd
pmopet vo ybvovv moAVTIHES TAnpoopies. Xto 1° kepdAiao mpoteivovpe éva amd
KOWOU WETPO OYETIKO pE TNV 0LOETEPN G TPOG Tov Kivovvo katavoun. ITwo
OLYKEKPIUEVA, GLVIVALOVHE TNV SOKOIOVGT, TV OCVUUETPIO Kot TNV KOPTMOT 1OV
TeEKOipovTOL oo o OIKoMUATO Tpoaipeons o€ Eva Pabuoroyikd pétpo pe Paon Tig
TPOTIUNGELS TOV EXEVOVTAV GTIG POTES, ONAMOT pia yaunAn Pabpoioyio onpaiver 6t
1N HETOYN £XEL LYNAN SKOUOVOT), YOUNAT OGVUPETPio Kot VYNAT KOpTwon. Avtifeta
pio vynAn Pobuoroyion onuaiver 0tL M peETOYN £xEl YOUNAN OlOKVUOVGT, VYNAN
acvppeTpia Kot yapunin koptwon. Ovclactikd, T0 HETPO HOg Umopel Vo epunveLTel
®G V0o, LETPO OUVVTIKOTNTOC, OOV 0 OPIGUAC TG emekTeiveTal Aapupdvovtag vy

TNV acLppeTpio Kot TV KOptwon pali pe v Sk poven.

Ta&wopolpe T HeTOYES GE YOPTOPLAGKLIN e Bdon To Pabroroyikd PETPO oG Kot

Bpiokovpe OTL 01 HETOYEC HE LYNAO GKOP £YOLV UEYOADTEPEG OMOOOGEIS OmO TIG



HETOYEG e YounAd okop. H otatiotikd onpoavtikn oyéon peta&d Tou HETPOL LG Kot
TOV LEAAOVTIK®V OTOOOCEMV TOV LETOYMV AVIEXEL GE OAPOPO TECT AVOEKTIKOTNTOGC
omog owmAéc  to&vounoelg, Fama-MacBeth  (1973) maAwvdpounocelg kot
XPNOLOTOINGoT SelylaTOg HETOYDV HEYIANG KePaAalonoinone. Aelyvooue 6Tt avTi 1
oxéon eEnyelton amd v €kBeon oto GOK TNG UETOPANTOTNTOG TNG Oyopds Kot
eCaptdton omd TO €MIMESO TNG EMEVOLTIKNG WYLYOAOYIOG. ZE& TEPLOOOVS YOUNANG
EMEVOVTIKNG WYLYOAOYIOG TO JoPOVIKO LOVTELD OTOTIUNONG TEPLOVCIAKMY GTOLXEI®V
(ICAPM) pog e&€nyet mApog avt ™ oxéon, evd 6€ TEPLOSOVE VYNANG ETEVOVTIKNG
YUYoAOYIOG 1| OYE0T TOPAUEVEL OTOTIGTIKG CTULOVTIKY KO OTOSIOETOL GE ECQUAUEVT

TILOAOYOM).

H Biproypapio €xer dgi&er 6T1 0 Kivouvog TV aApdtov Tyoloyeitar amd TOLG
EMEVOLTEG OTNV ayopd TV OKououdtov zmpoaipeons. Eva pépog twv epeuvav
e€etdlel v emppon ToV KIVOHVOL GAUATOG OTO AGPAAGTPO KIvODHVOL TV HETOYDV
Kot TG SLKOUOVOTG, TOPEXOVTOS LoYVPES EVOEIEELG OTL £val ONUOVTIKO HEPOG ALTAOV
TV 000 ac@aAicTpwv umopel vo amodobel oe amolnuimon yo kivovvo GALOTOC
(BAéme Santa-Clara ko Yan (2010) xou Bollerslev kot Todorov (2011)). Iapdra
avtd, 0 TPOTOG HE TOV Omoio O Kivouvog GApaTOg emmpedlel ™ SGTPMUATIKN
LETAPANTOTNTO TOV OTOOOCEMV TOV UETOYDV €xel AdPel Arydtepn mpocoyr| and
Bproypapio. ‘Etor owmdv, oto 2° kepdhato eEetdlovpe av 1 €kBecm 6T GOK TOV
KaB0dKDOV (aploTEPOV) KOl AVOSTKADV (0£EUDV) AAUATOV TNG 0YOPAS TILOAOYEITAL OTIG
ayopéc. Ze éva mpmTo Pua Kataokevalovpe €va, BempnTikd cLVEREG, PETPO TOL
KIVOUVOL TUYOL®MV OALATOV HECH TOV SIKOIOUAT®OV Tpoaipecng Tov deiktn S&P 500.
H peiétn mpocopoimong mov mpaypatomolovpe delyvel 6Tt to PETPO ALTO TTaPAyEL
a&omoteg ekTunoets. Avtifeta, ot amodooelg evOg XaAPTOPLANKIOD SIKALOUAT®V TOV
npdtewvay ot Cremers, Halling and Weinbaum (2015) moapdyet pepoAnmTiKég
EKTIUNOCELS AVAPOPIKA LE TO TP TOL Kvduvov dApatog. Bpickovpe 611 ta frita ota
00K TOV KOOOIKAOV TOPEyoLV €VO GTOTICTIKG CMUOVTIKO OGQAAIGTPO KIvOHVoL -
11.52% og emota Paon yo v 0o tepiodo mov €ytve M extipnon tov Prta, ce
avtifeon pe to fNTo 6TO GOK TOV AVOOIK®OV OAUATOV. AVTH 1 GTOTIGTIKA GNUOVTIKY
oyxéon HETOEL TV PrTal 0TO GOK TV KOOOOIKOV OAUATOV KOl TOV Om0ddGE®V TO
LETOY MV OEV OPEILETOL GTAL GOK TNG OLOETEPNG G TPOG TOV KIVOLVO SLOKDLOVGTG KO
acvppetpiog. Emiong delyvovpe 011 mapdyel GTATIOTIKG ONUOVTIKES WUN-KOVOVIKES

amoddGES TOV €MOUEVO UNvo amd TNV mePiodo extiunong twv Prnta evod eivor



avOeKTIKO G J1POPETIKEG TEPLOOOVS eKTIUNONG TV PriTa OT™G 9, 6 Ko 3 uiveg Ko

0€ OLPOPETIKEG TEPLOSOVE OLUKPATNONG TOV YOPTOPLANKIOV OT®G 3 Ko 6 P VEG,.

Y10 3° kepaiaio efetdlovpe TIC KOUMOAES TEKUOPTNG UETAPANTOTNTAG TOL
TPOKVTTOVV OO TIG TIUEG OIKOOUATOV TPOOIPESC TPV TIC NUEPEG OVOKOIVMDGEMV
KEPOMV TMV eTOPEL®V. Aglyvovpe 6Tl €vo TOGOGTO aT®V Yivetal Koiho, maipvovtog
acvvnioteg popeés omwc W, S ko avamodo U. Avtd 10 yopaKTnploTiko, Tov
TopaTPEiTal KUPIMG 0 SIKOMULOTO TPOOUPESTG LUE LKPT] OLAPKELD, CUVETAYETOL LLLOL
0VOETEPN MG TTPOG TOV KIVOLVO KATOVOUN HE SLO KOPLOES Yol TV TIUN TNG LETOYNG.
Avto onuoaivel 0Tt o1 emevovTtég TPOoPAETOVY €vol AAUA GTNV TIUN TNG UETOYNG TNV
nuépa ovakoivwonsg tov kepdav. Bpiokovpe 011 ot koiheg KoumOAEG TEKUOPTNG
petafAntotrog Ovimg mPoPAETOVY HEYOAVTEPESG AMOAVTES OMOOOCELS TV LETOYDV
™V MUEPO. OVOKOIVOONG TOV KEPOMV KOl UEYOALTEPT UETAPANTOTNTO WHETA TNV
avakoivaon. Qotdco, ot anoddoelg towv straddles tov petoydv pe Koileg KapmOAES
TEKUAPTAG HETAPANTOTNTOC €lvol OMUOVTIKA YOUNAOTEPES OMd TIG OMOJOGELS TMV
straddles tov petoy®v pe UN-KOIAEC KOUTOLAES TEKUOPTHG HETOPANTOTNTAS. AVTO
opeiletan oto 0Tl TO. at-the-money dikaudpato TPoaipeong TV KOIA®V KOUTOLADY
elvar mohd mo oaxpifd kot To GApOTO OTNV T TNG UETOYNS TNV MUEPA TNG
avaKoivoong tov kepOV 0gv ivat apKeTd peydia yio va aviiotaduicovy 1o KOGTOG
TOV OWKOOUATOV Tpoaipeons. Omote ol enevdvutéc evtomilovv TIG OVOKOWMGELS
KEPODV OV TPOKAAOVY GALOTO OTIC TIHEG TOV UETOYDV KOl TANPDOVOLY GNUOVTIKE

HEYOAVTEPO OCPAAIGTPO KIVOLVOL Yid va avTioTaduicovy avtd tov kivovvo.



Abstract

This thesis focuses on examining the information contained in options about the
valuation of equity securities. Options incorporate valuable information about
investors’ expectations on future returns of their underlying securities. This stems
from the fact that markets are imperfect due to constraints such as asymmetric

information and barriers to short selling, making options non-redundant assets.

Over the last decade there have been many studies deriving a measure from option
contracts and examining whether it predicts future stock returns. For example, Guo
and Qui (2014) find a negative relation between implied volatility and future stock
returns and Stilger Kostakis and Poon (2017) show that risk-neutral skewness
positively predicts future stock returns. The aforementioned studies use a measure
based on a single property/moment of the risk-neutral distribution of stock returns and
therefore may lose valuable information. In chapter 1 we propose a joint measure of
the probability density function of stock returns. More specifically, we combine
volatility, skewness and kurtosis implied by options in a score variable based on
investors’ moment preferences, that is, a low score identifies a stock with high
volatility, low skewness and high kurtosis. On the contrary, a high score identifies a
stock with low volatility, high skewness and low kurtosis. Essentially, our measure
can be interpreted as a defensiveness measure where the definition of defensiveness is

expanded by incorporating skewness and kurtosis alongside with volatility.

We sort stocks in portfolios based on our score measure and find that high score
stocks have higher returns than low score stocks. This statistically significant relation
between our score measure and future stock returns holds various robustness tests
such as double sorts, Fama-MacBeth regressions and using a sample with larger cap
stocks. We show that this relation is explained by the exposure to shocks in aggregate
volatility and depends on investors’ sentiment. In periods of low sentiment, the
intertemporal capital asset pricing model (ICAPM) fully explains this relation, while
in periods of high sentiment the relation remains statistically significant and is

attributed to mispricing.



The literature has shown that jump risk is priced by investors in the options market. A
part of the research has examined the impact of jump risk on equity and variance risk
premiums, providing strong evidence that an important fraction of those premiums
can be attributed to the jump risk premium (see Santa-Clara and Yan (2010) and
Bollerslev and Todorov (2011)). Nevertheless, the way that jump risk impacts the
cross-sectional variation of stock returns has received less attention in the literature.
Therefore, in chapter 2 we examine if exposure to downside (left) and upside (right)
jump shocks of the market are priced. We construct a theoretically consistent measure
of jump risk through the S&P500 options. The simulation study we conduct shows
that it provides reliable estimates as opposed to the JUMP risk factor of Cremers,
Halling and Weinbaum (2015) which is a biased measure of jump risk. We find that
betas to shocks in downside jumps produce a statistically significant risk premium of -
11.52% contemporaneously in an annual basis, while betas on shocks to upside jumps
do not. The statistically significant relation between betas to shocks in downside
jumps and stock returns is not due to risk-neutral variance and skewness shocks.
Additionally, we show that it produces statistically significant abnormal returns on the
next month of the formation period while it is robust to different estimation period

such as 9, 6 and 3 months and different holding periods such as 3 and 6 months.

In chapter 3 we examine the implied volatility curves that are arise from option prices
prior to earnings announcements days. We show that a portion of them becomes
concave, taking unusual shapes such as W, S, and inverted U. This characteristic,
which is mostly observed in short-term options, implies a bimodal risk-neutral density
for the stock price. This means that investors predict a jump in the stock price at the
earnings announcement day. We find that concave implied volatility curves do predict
higher absolute stock returns at the earnings announcement day and higher volatility
after the earnings announcement day. However, straddle returns of stocks with
concave implied volatility curves are statistically significantly lower than those with
non-concave implied volatility curves. This is attributed to the fact that at-the-money
options of concave implied volatility curves are much more expensive and the jumps
of the stock price at the earnings announcement day are not large enough to offset the
substantial cost of these straddles. Therefore, investors identify earnings
announcements that make stock prices jump and pay a substantially higher premium

to hedge against this risk.
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Introduction

It is widely accepted among academic and practitioners that option contracts contain
valuable information of investors’ expectations on future returns of the underlying
asset. This happens because markets are incomplete in the real world due to
limitations such as asymmetric information, transaction costs and short-sale
restrictions, making options non-redundant assets. Recent papers have examined

whether various option-implied variables predict future stock returns.

In this stream of research Guo and Qui (2014) find a negative relation between
implied volatility and future stock returns. In their seminal work, An, Ang, Bali and
Cakici (2014) show that innovations to option-implied call (put) volatility predict
positive (negative) future stock returns. Rehman and Vilkov (2012), Stilger, Kostakis
and Poon (2017), Gkionis et. al. (2018) and Borochin, Chang and Wu (2018),
Chordia, Lin and Xiang (2020) find a positive relation between option-implied
skewness and subsequent stock returns. Xing, Zhang and Zhao (2010) and Huang and
Li (2019) examine the relation between the steepness of the implied volatility smirk
and implied variance asymmetry (both being closely related to skewness),

respectively, and future stock returns.

The above studies attribute the return predictability to informed trading, stressing that
informed traders may choose the option market due to embedded leverage (Black
(1975)) and limits to arbitrage mostly on the short side. On the contrary, Goncalves-
Pinto et. al. (2020) indicate that stock return predictability related to options trading is
driven by stock price pressure, rejecting the informed trading hypothesis. Moreover,
Augustin and Subrahmanyam (2020) argue that it is hard to distinguish informed from

speculative trading because researchers mostly do not observe the identity of traders.

Since observed option prices contain information for the probability density function
of future stock returns, the use of a single measure measuring one particular property
of this density may ignore valuable information for the return predictability of option
prices. Therefore, in Chapter 1 we suggest a joint score measure tracking the

probability density function of individual stock returns. This new measure is an

12



intuitive score variable based on the volatility, skewness and kurtosis of future stock
return distribution implied from option prices. A low level of it identifies a stock with
high volatility, low skewness and high kurtosis. On the other hand, a high level of this
measure identifies a stock with low volatility, high skewness and low kurtosis.
Intuitively, this new measure ranks stocks based on investors’ expectations about
future stock return distribution properties and can be interpreted as a forward-looking
defensiveness measure where the definition of defensiveness is expanded by
incorporating skewness and kurtosis alongside with volatility. We find that high score
stocks have higher returns than low score stocks. This statistically significant relation
between our score measure and future stock returns holds various robustness tests. We
show that this relation is explained by the exposure to shocks in aggregate volatility
building on the intertemporal asset pricing (ICAPM). High score stocks are exposed
to aggregate volatility innovations so that investors require a premium to hold them,
while low score stocks hedge against shocks in aggregate volatility. Moreover, we
document that this relation depends on investors’ sentiment. In periods of low
sentiment, the ICAPM fully explains the documented premium of the high-low score
portfolio, while in periods of high sentiment the premium remains statistically

significant and is also attributed to mispricing.

The option pricing literature provides strong evidence that aggregate jump risk is
priced by investors in the options market. In fact, it is widely accepted that jumps
should be included in option pricing models. A second stream of research examines
the impact of jump risk in the time-series variation of equity and variance risk
premiums, providing strong evidence that a significant fraction of these two premiums
can be attributed to compensation for jump risk (see Santa-Clara and Yan (2010) and
Bollerslev and Todorov (2011)). Despite the importance of jump risk documented in
the literature, the investigation of how it affects the cross-section of expected stock

returns has received less attention in the literature.

In Chapter 2 we demonstrate a model-free relation between the first and second-order
moments of the log-return risk-neutral distribution which may be used to approximate
the third-order moment of the jump process. As the first two moments can be
extracted from option prices, it is straightforward to obtain an approximation of the
third-order moment of the jump process from option prices. In addition, we provide

theoretical and empirical evidence showing that the third-order moment of the jump
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process is strongly related to the spot (and expected integrated) variance. Thus, its
innovations are affected from both volatility and jump risk. To this end, we suggest a
new measure of jump risk exposure by scaling the third-order moment of the jump
process with expected integrated variance. Theoretically, this new scaled variable is
not related to the dynamics of spot variance, and its innovations can be considered as

a proxy of jump risk.

We estimate jump risk loadings at the individual stock level using daily returns. We
then sort stocks on the realized jump risk loadings, and we investigate whether stocks
with higher betas have lower average returns contemporaneously, simultaneously
controlling for other risk factors. In addition, we investigate the relation between
realized jump-risk betas and future stock returns. Our main result is that jump risk is
priced in the cross-section of stock returns, identifying a negative market price of
jump risk, consistent with theory. We document that stocks with high jump risk
loadings significantly underperform stocks with low ones contemporaneously,
producing a statistically and economically significant premium of -9.41% per year at
the 1% level. Besides investigating the pricing of aggregate jump risk in the cross-
section of stock returns, it is also interesting to decompose jump risk innovations in
their upside and downside components and examine the relative contribution of these
two in the documented jump risk premium. The results of this exercise clearly show
that the negative jump risk premium is due to its downside jump risk component. On
the other hand, the premium of the high-low portfolio sorted by upside jump risk
betas is not significant. Finally, our results hold to a predictive setting, in which we
compare the subsequent realized monthly returns of the quintile portfolios sorted by
jump risk betas estimated over the previous period. We show that the high-low
quintile portfolio delivers significant risk-adjusted returns in the following month of
the portfolio formation period. These results are robust to different beta estimation

windows and return holding periods.

Quarterly earnings announcements are important scheduled corporate events that
disseminate substantial fundamental information to investors about the company. A
voluminous literature has examined a number of features related to these events, such
as the behavior of stock returns (Ball and Brown (1968), Beaver (1968); Ball and
Kothari (1991) Frazzini and Lamont (2007)) and systematic risk (Patton and Verardo

(2012) Savor and Wilson (2016)) around these announcements. Literature on options
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has examined the behavior of equity option prices and implied volatilities (IVs)
around earnings announcement days (EADSs), identifying three stylized features. First,
at-the-money (ATM) IV tends to increase in the runup to the EAD, as uncertainty
increases before this information event, and second, ATM 1V sharply decreases right
after the announcement, when uncertainty is resolved (Patell and Wolfson (1979)).
More recently, Dubinsky et al. (2019) documented that the term structure of ATM IV
becomes downward sloping prior to EADs, meaning that ATM 1V is higher for
options with shorter expiries than for options with longer expiries.

Building upon this literature, Chapter 3 documents a novel feature with implications
for our understanding of the behavior of stock prices, the pricing of earnings risk and
the informational content of option prices. We show that a large fraction of IV curves
extracted from short-expiry equity options systematically become concave in the run
up to EADs. In our sample of very large and liquid firms, we find that up to 37.4% of
IV curves exhibit concavity just before the announcement during the period 2013-
2019. The concave IV curves we document are typically inverse U-shaped, S-shaped,
or W-shaped. These shapes are in stark contrast with the convex volatility “smiles”
and “smirks” that are commonly observed for equity options. Interestingly, the feature
of concavity mostly disappears right after the announcement, as the uncertainty about

this event is resolved, and the IV curve reverts to its standard convex shape.

We show that a concave IV curve reflects a bimodal risk-neutral distribution (RND)
for the underlying stock price. Bimodality in the central part of the RND indicates
that, the prevailing stock price will most likely be around either of the two identified
modes. Hence, a bimodal RND reveals movements that can be considered as
anticipated jumps in the continuous-time path of the underlying stock price. To this
end, we argue that a concave IV curve provides a clear option-based signal of

impending event risk for the underlying stock.

Moreover, concavity appears in short- rather than long-expiry options. We find that
concave IV curves do predict higher absolute stock returns at the earnings
announcement day and higher volatility after the earnings announcement day.
However, straddle returns of stocks with concave 1V curves are lower than those with
non-concave IV curves. This is attributed to the fact that at-the-money options of
concave IV curves are much more expensive and the jumps of the stock price at the

earnings announcement day are not large enough to offset the substantial cost of these
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straddles. Therefore, investors identify earnings announcements that make stock
prices jump and pay a substantially higher premium to hedge against this risk

compared to other stocks.

This thesis is organized as follows. Chapter 1 constructs the score measure and
examines its stock return predictability. Chapter 2 investigates the cross-sectional
pricing of stocks according to sensitivities to option-implied jump risk. Chapter 3
documents that IV curves become concave prior to earnings announcements and
examines the implications of this feature. The last section derives the conclusions of
this thesis.

16



Chapter 1

Option-implied moments and the cross-section
of stock returns

1.1 Introduction

There is a broad consensus among academic and practitioners that option contracts
contain valuable information of investors’ expectations on future returns of the
underlying asset. This stems from the fact that markets are incomplete in the real
world due to limitations such as asymmetric information and short-sale restrictions,
making options non-redundant assets. A considerable amount of recent studies have
proposed various techniques to extract the probability distribution of the underlying
asset return from option prices (see Figleswki (2018) for a review), while others
examined the information embedded in the properties of this distribution to predict

future stock returns.

In this stream of research Guo and Qui (2014) find a negative relation between
implied volatility and future stock returns. An, Ang, Bali and Cakici (2014) show that
innovations to option-implied call (put) volatility predict positive (negative) future
stock returns. Rehman and Vilkov (2012), Conrad, Dittmar and Ghysels (2013),
Stilger, Kostakis and Poon (2017), Gkionis et. al. (2018) and Borochin, Chang and
Wu (2018), Chordia, Lin and Xiang (2020) examine the relation between option-
implied skewness and subsequent stock returns. Conrad, Dittmar and Ghysels (2013)
find a negative relation between option-implied skewness and future stock returns
while all other studies find a positive relation, Rehman and Vilkov argue that Conrad,
Dittmar and Ghysels (2013) dilute the option-implied information by averaging

option-implied skewness over the last three months thus resulting in different results.
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Xing, Zhang and Zhao (2010) and Huang and Li (2019) examine the relation between
the steepness of the implied volatility smirk and implied variance asymmetry (both
being closely related to skewness), respectively, and future stock returns. Bali and
Hovakimian (2009) show that the call-put implied volatility spread strongly predicts
future stock returns. Baltussen, Bekkum and Grient (2018) investigate the return
predictability of volatility of implied volatility (which may capture higher-order
moments). Park, Kim and Shim (2019) examine the relation between the convexity of
the implied volatility curve and subsequent stock returns, while Kim, Kim and Park
(2020) investigate the return predictability of the term structure of implied volatility
curve. In a closely related paper, Bali, Hu and Murray (2017) investigate the relation
between option-implied volatility, skewness and kurtosis and expected returns

estimated from financial analysts’ price targets.!

Most of the aforementioned studies attribute the return predictability to informed
trading, stressing that informed traders may choose the option market due to the
embedded leverage as firstly pointed out by Black (1975). On the other hand,
Goncalves-Pinto et. al. (2020) indicate that stock return predictability related to
options trading is driven by stock price pressure, showing that the implied volatility
spread of Cremers and Weinbaum (2010) and the change in the implied volatility
spread of An, Ang, Bali and Cakici (2014) stock return predictability is mainly driven
by the first day return. Moreover, Augustin and Subrahmanyam (2020) argue that
identifying informed option trading is a difficult task because researchers mostly do
not observe the identity of traders and it is hard to distinguish informed from

speculative trading.

In this stream of research, the standard approach used is to calculate a single measure
from option prices and then to examine the return predictability of this measure. For
example, this measure could be the implied volatility (see Guo and Qui (2014)), the
steepness of the implied volatility smirk (see Xing, Zhang and Zhao (2010)), the
volatility asymmetry (see Huang and Li (2019)), the convexity of the implied
volatility curve (see Park, Kim and Shim (2019)) or the implied skewness (see
Conrad, Dittmar and Ghysels (2013) and Stilger, Kostakis and Poon (2017), Chordia,
Lin and Xiang (2020) inter alia). Since however option prices observed across

1 See Giamouridis and Skiadopoulos (2010) and Christoffersen, Jacobs and Chang (2013) for a detailed
literature review on option-implied information.
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moneyness contain information for the probability density function of future stock
returns, the use of a single measure measuring one particular property of this density

may ignore valuable information for the return predictability of option prices.

The aim of this chapter is twofold. First, we suggest a novel approach to extract
information from options based on a joint measure tracking the probability density
function of individual stock returns. Second, we aim to examine the return
predictability of it. This new measure is an intuitive score variable based on the
volatility, skewness and kurtosis of future stock return distribution implied from
option prices. By construction, it encompasses the information embedded in the three
individual option-implied moments and thus, it can provide a parsimonious measure
of investors’ expectations about future stock returns. A low level of it identifies a
stock with high volatility, low skewness and high kurtosis. On the other hand, a high
level of this measure identifies a stock with low volatility, high skewness and low
kurtosis. Intuitively, this new measure ranks stocks based on investors’ expectations
about future stock return distribution properties and can be interpreted as a forward-
looking defensiveness measure where the definition of defensiveness is expanded by
incorporating skewness and kurtosis alongside with volatility.? Therefore, a low level
of this score will identify a stock that is expected to be riskier, while a high level will

identify a stock that is expected to be safer.

We first estimate decile portfolios sorting all US stocks with traded options at a
monthly frequency from 1996 to 2016 on the composite option-implied moment-
based score measure (SCORE, henceforth). The highest decile includes stocks with
the highest score implying “good” return distribution properties. We denote it as
Good henceforth. On the other hand, the lowest decile includes stocks with the lowest
score related to “bad” return distribution properties. We denote it as Bad henceforth.
The value-weighted (equally-weighted) Good minus Bad (GMB, henceforth) portfolio
yields a statistically and economically significant average return of 0.75% (0.79%)
per month. The corresponding Fama-French five-factor alpha is equal to 0.51%
(0.73%) per month, which is also statistically significant. The evidence suggests that
good stocks outperform bad ones. This positive relation between SCORE and

subsequent monthly returns is not driven by short-term stock price adjustment, it

2 Novy-Marx (2016) notes that defensive equity strategies, which go long safe or defensive stocks and
short risky or aggressive ones, are typically constructed sorting on volatility or beta.
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holds even when we restrict our sample to large, liquid stocks and it is robust to
controls of various cross-sectional effects, such as size, book-to-market, momentum,

mispricing, profitability and idiosyncratic volatility.

The significant positive average return of the GMB portfolio is not consistent with the
implications of standard moment preferences (see Arditti (1967), Scott and Horvath
(1980) and Gollier and Pratt (1996), inter alia). One would expect a negative premium
for the GMB portfolio as investors would require a higher expected return to hold
stocks with undesirable return distribution properties. Considering that, this chapter
aims to provide an alternative explanation for the documented positive premium of

good vs bad stocks.

This explanation builds on Merton’s (1973) Intertemporal CAPM (ICAPM)
conditional on the level of investors’ sentiment. This model assumes an intertemporal
(or long-horizon) risk-averse investor who seeks to hedge against adverse shocks to
the future investment opportunity set. In recent empirical works (see Barinov (2018),
inter alia) changes in aggregate market volatility, proxied by VIX, are commonly used
to capture adverse shocks in the investment opportunity set. In that context, we find
that good stocks are exposed to shocks in aggregate volatility while bad stocks hedge
against these shocks. Therefore, an ICAPM investor is willing to accept a lower or
even negative return for bad stocks as they offer a hedge against the deterioration of
the investment opportunity set proxied by shocks in VIX. This is in stark contrast with
a static risk-averse investor who would require a premium to hold bad stocks. On the
other hand, an ICAPM investor would ask for a positive premium to hold good stocks
as they are exposed to adverse shocks in the future investment opportunity set.

Additionally, we show that the explanatory power of the ICAPM depends on the level
of investors’ sentiment (which can be considered as a measure of variation in the
general tendency of mispricing). When sentiment is low, the ICAPM can completely
explain the GMB portfolio positive premium for both underpriced and overpriced
stocks. Therefore, the positive abnormal return of the GMB portfolio obtained under a
static model (CAPM or Fama-French 5-factor model) is fully rationalized by an
intertemporal asset pricing model. In contrast, in high sentiment periods the ICAPM
alpha remains positive and significant. We complement our rational risk-based

explanation with mispricing. We find that during high sentiment periods the positive
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ICAPM alpha of the GMB portfolio within overpriced stocks is due to the subsequent
underperformance of bad stocks, while within underpriced stocks it can be mostly
explained by the subsequent overperformance of good stocks. These empirical
findings, indicate that negative (positive) investors’ expectations about future states of
return for stocks perceived as overpriced (underpriced) may be reflected in the option-
implied distribution, generating a low (high) SCORE, with stocks adjusting to this

information over the next month yielding negative (positive) returns.

In summary, a rational intertemporal risk-based model explains why good stocks
overperform bad ones, at least when investors’ sentiment is low. When sentiment is
high, the positive premium of the GMB portfolio is also driven by information flow

from the options to the stock market for stocks perceived to be as relatively mispriced.

Our chapter contributes to the literature that examines the linkage between the options
market and the stock market at firm level in several ways. First, we propose a new
parsimonious measure gauging investors’ expectations about future states of stock
returns, and we examine its return predictability. The new variable encompasses the
information content of implied volatility, skewness and kurtosis, used individually in
previous studies (see Guo and Qui (2014), Xing, Zhang and Zhao (2010), Conrad,
Dittmar and Ghysels (2013) and Stilger, Kostakis and Poon (2017), inter alia).
Second, our empirical analysis indicates the existence of a robust positive relation
between SCORE and subsequent stock returns. Third, we investigate a possible
explanation for the documented relation. Contrary to a vast majority of existing
studies (including Xing, Zhang and Zhao (2010), Stilger, Kostakis and Poon (2017),
Huang and Li (2019), Park, Kim and Shim (2019) and Chordia, Lin and Xiang (2020),
inter alia) that attribute the relation between an option-implied variable tracking a
specific characteristic of the probability density function of the underlying stock
return and subsequent stock returns to a flow of information from the options to the
stock market and limits to arbitrage, we provide evidence supporting a risk-based
explanation too. This is the first study, to the best of our knowledge, indicating that
the price of aggregate volatility risk is reflected in the option-implied distribution of
individual stocks. Fourth, we contribute to a recent growing literature that documents
that various anomalies can be explained by their exposure to market volatility risk.
Barinov (2018) and Barinov and Chabakauri (2019) show that lottery-like stocks

(with high extreme past returns and large expected idiosyncratic skewness) and stocks
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with high idiosyncratic volatility, respectively, hedge against shocks in market
volatility, thus explaining their low average returns. They both argue that this is
because their growth options, that hedge against aggregate volatility risk, are more
valuable and take a larger fraction of the firm value. This argument may also hold in
our case as our empirical results indicate that bad stocks have high idiosyncratic
volatility and lottery-likeness. Finally, our study is related to recent papers that
examine the effect of investors’ sentiment on the abnormal returns of various
documented anomalies and risk factors. Stambaugh, Yu and Yuan (2012, 2015) find
that the abnormal return of various anomalies is stronger in high sentiment periods.
Shen, Yu and Zhao (2017) find that beta-sorted portfolios formed on macro-related
factors earn average returns consistent with a risk-based explanation in low sentiment
periods. In contrast when sentiment is high, the reverse sign of these average returns

is attributed to sentiment-induced mispricing.

The rest of this chapter is organized as follows. Section 2 describes the data and the
methodology used to construct SCORE. Section 3 provides the univariate portfolio-
level analysis, and a battery of robustness checks. Section 4 provides an explanation
of the documented GMB portfolio premium, and Section 5 concludes the chapter. The
Appendix includes the definition of variables employed in the analysis and technical

details of calculating volatility, skewness and kurtosis from option prices.

1.2 Data and Methodology

1.2.1 Data

For the empirical analysis, we get returns, market capitalization and prices for all
ordinary common shares (share code 10 and 11) from the CRSP database. Stock
option data are downloaded from Optionmetrics for the period January 1996 to April
2016. We use standardized option data from the volatility surface file in order to have
the same maturity for our options every day. Accounting data are obtained from
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Compustat. The returns on the market premium, SMB, HML, MOM, RMW and CMA

factors are obtained from Kenneth French’s online data library.

We drop stocks with price below $5. We filter out stocks if there is zero option
volume or zero option open interest for all option contracts on that day using regular
option data and drop stocks when at least one of the delta/maturity combination has a
dispersion measure larger than 0.2 as in Borochin, Chang and Wu (2018) and end up

with a final sample of 342,689 stock options data observations.

Stocks with options have a tilt toward larger market capitalizations and our filters
drop more illiquid stocks resulting in a final sample where only 4.64%, 14.57% and
46.81% of our stocks are below of the NYSE size 10, 20 and 50 percentiles,

respectively.

1.2.2 A score measure based on option-implied moments

As a first step we calculate option-implied moments for the total log-return
distribution of stock i at the end of each month ¢ using out-of-the money (OTM) call
and put option data with constant maturity of 1 month (see Bakshi, Kapadia and
Madan (2003)). Using these moments, we compute the option-implied volatility
(VOL), skewness (SKEW) and kurtosis (KURT) of the 1-month ahead return
distribution. Details for computing VOL, SKEW and KURT can be found in
Appendix B.

We aim to create a composite score measure to gauge the exposure of each stock to
VOL, SKEW and KURT. This composite measure will rank stocks based on
investors’ expectations about their future return distribution properties. A low level of
this score will identify a stock with potential adverse properties related to high VOL,
low SKEW and high KURT, while a high level will identify a stock with favorable
ones related to low VOL, high SKEW and low KURT. Intuitively, a high value of
SCORE identifies a defensive (safe) stock, where the definition of defensiveness is
expanded to include SKEW and KURT alongside with VOL. On the other hand, a low

8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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value of SCORE identifies an aggressive (risky) stock. The expansion of
defensiveness is justified given the enormous evidence of non-normal stock returns.
Furthermore, the inclusion of KURT, generating negative alphas (unreported), in the
score measure mitigates further concerns about an artificially constructed factor with
a-priori positive returns (see Novy-Marx (2016)). To construct this score, we follow
the methodology of Asness, Frazzini and Pedersen (2019). More specifically, we rank
VOL, SKEW and KURT cross-sectionally in ascending order and then standardize it
by subtracting its rank mean and dividing by its rank standard deviation. VOL and
KURT are multiplied by -1 so that stocks are ranked according to moment
preferences. Then we compute SCORE by averaging the previously calculated
individual z-scores. A detailed description of the SCORE calculation is presented in
Appendix A.

1.3 Empirical Results

1.3.1 Univariate portfolio-level analysis

Each month we form decile portfolios by sorting stocks on SCORE. The highest
decile includes stocks with the highest score implying favorable distribution
properties. On the other hand, the lowest decile includes stocks with the lowest score
related to adverse characteristics of their distribution. Decile portfolios are well
populated, having 140 stocks on average. Table 1 reports the time-series average of
monthly value-weighted average stocks’ characteristics (except for size which is
equally-weighted) for each decile portfolio based on SCORE. The definition of each
variable is provided in Appendix A. First, we observe that sorting on SCORE is not
equivalent on sorting on VOL and/or idiosyncratic volatility (IVOL). The IVOL
pattern of SCORE decile portfolios is not monotonic. For example, decile 2 includes
stocks with lower IVOL than decile 10. Thus, the distribution of stocks based on
SCORE is not dominated by the pattern of VOL (or IVOL). On the other hand,
SKEW and KURT of SCORE decile portfolios exhibit a monotonic pattern. SKEW
(KURT) increases (decreases) monotonically when moving from decile 1 to 10. The

non-monotonic pattern of 1IVOL holds for most of the other stock characteristics,

24



Stocks in the bad (decile 1) portfolio have lower market values, higher betas, are more
illiquid, less profitable, have higher MAX and lower MIN and are more mispriced
from stocks in the other 9 decile portfolios. The differences however between these
stocks’ characteristics among deciles 2, 3, ..., 10 are not always numerically
significant or in some cases the pattern is reversed. For example, stocks in the good
(decile 10) portfolio have higher betas, higher MAX, lower MIN, higher IVOL than
stocks in decile 2. While SKEW increases monotonically across SCORE decile
portfolios, SKEW and SCORE have opposite exposure to SIZE and MISP. In fact,
recent studies show that low SKEW stocks exhibit higher market values and lower
MISP score than high SKEW ones (see Stilger, Kostakis and Poon (2017) and
Chordia, Lin and Xiang (2020), respectively). In contrast, the results of Table 1
indicate that bad stocks have lower market values and higher MISP score than good

ones, a characteristic attributed to the volatility ranking.

To better grasp the relation between the SCORE measure and the shape of the implied
volatility curve, Figure 1 shows the pooled average implied volatility per delta point
for stocks in the bad (orange line) and good (blue dashed line) portfolio. Stocks in the
bad portfolio exhibit an implied volatility “smirk”, which is related to the
expensiveness of OTM put options. This shape is also consistent with low negative
SKEW and high KURT. In stark contrast, stocks in the good portfolio have an almost
flat implied volatility curve, satisfying the predictions of the Black-Scholes model.
Stated alternatively, this graph leads to the conclusion that good stocks have an
option-implied distribution of future log-returns which is close to normality, whereas

bad stocks have an option-implied distribution that strongly deviates from normality.

Next, we compute value-weighted and equally-weighted returns of the decile
portfolios along with alphas and factor loadings which we present in Table 2. Good
stocks tend to have higher average returns. The GMB portfolio has a value-weighted
(equally-weighted) monthly average return of 0.75% (0.79%) which is economically
and statistically significant at 1% level. The GMB portfolio has also significant
Carhart (1997) (CAR) and Fama-French (2015) five-factor (FF5) alphas, with both
short and long legs of the strategy contributing to the overall abnormal return. This is
important if we consider the fact the many anomalies derive their profits from the
short leg of the strategy (see Avramov, Chordia, Jostova and Philipov (2013)). The
factor loadings of the FF5 model indicate that, while the market beta of the GMB
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portfolio is insignificant, this portfolio is negatively exposed to SMB and positively
exposed to CMA and RMW factors. This is something to expect given the results of
Table 1. Decile 10 portfolio includes large profitable stocks compared to stocks in
decile 1 portfolio. The results of Table 2 highlight that stocks expected to be safer
have higher abnormal returns than stocks expected to be riskier after controlling for

size, B/M, profitability and investment.

From a portfolio management perspective, the GMB portfolio enhances the
performance of the well-known defensive strategy sorting high VOL (or 1VOL)
stocks and holding low VVOL (or IVOL) ones. In our sample, a value-weighted low —
high VOL (IVOL) portfolio exhibits positive albeit insignificant average return
mainly due to its high variability of returns (its monthly standard deviation is equal to
12% (9%)). The inclusion of SKEW and KURT substantially decreases its standard
deviation to 4% generating a significant average return.

1.3.2 Robustness tests

This section provides several robustness tests of our main result reported in Table 2.
Avramov, Chordia, Jostova and Philipov (2013) find that profits for various
anomalies diminish across size groups while Lu and Murray (2019) state that
“mispricing is likely to be small among liquid and large cap stocks”. To this end, we
also examine the performance of our spread portfolio using two subsamples: 1)
dropping stocks that belong to the lowest size quintile using NYSE breakpoints,
where these microcap firms account for the 14.57% of our sample and 2) using only
large cap stocks (stocks that have market capitalization larger than the NYSE median)
which account for the 53.19% of our sample. This exercise will indicate if a
significant premium exists when small illiquid stocks are excluded from the sample.
As a second robustness check we form portfolios based on SCORE using quintiles

and terciles.

Table 3 presents results in the same way as Table 2 jointly for the two robustness
checks. Results are weakening if we use less extreme breakpoints and if we use a

sample with less small cap stocks as expected. However, the GMB portfolio continues
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to show a statistically significant premium at the 5% level in all eighteen cases,
delivering a statistically and economically significant premium of 0.57% even in the
strictly conservative case of the value-weighted 3-1 tercile portfolio using only large
cap stocks. All alphas using equally-weighted returns are statistically significant while
only the FF5 alpha using the value-weighted 5-1 quintile portfolio difference in large
caps is insignificant at the 10% level. Thus, the GMB portfolio has significant
premiums and alphas even when the sample includes only large liquid stocks. The
significant premiums of the GMB portfolio formed using quintiles and terciles further
indicates that our main findings are not generated by stocks with extreme high or low
SCORE values.

In a third robustness check we split our sample into four style universes following
Novy-Marx (2016): small growth (SG), small value (SV), large growth (LG) and
large value (LV) using NYSE medians as breakpoints and examine the performance
of the GMB portfolio formed using quintiles within each subsample. Table 4 reports
the raw average returns and alphas of value-weighted portfolios across the four
subsamples. We find that the GMB portfolio provides statistically significant positive
raw and risk-adjusted returns at the 10% level in all cases.

In a fourth robustness check we examine if stocks with high (low) SCORE generate
high (low) future stock returns after controlling for several known factors in the
literature. To this end, we perform bivariate sorts on SCORE while controlling for
market beta (BETA), market capitalization (SIZE), book-to-market ratio (B/M),
momentum (MOM), reversal (REV), Amihud’s (2002) illiquidity measure (ILLIQ),
maximum daily return of the previous month (MAX) of Bali, Cakici and Whitelaw
(2011), idiosyncratic volatility (IVOL) measured as in Ang, Hodrick, Xing and
Zhang (2006), mispricing score (MISP) of Stambaugh, Yu and Yuan (2015),
profitability (PROFIT) measured as in Fama and French (2015), gross profitability
(GPROFIT) of Novy-Marx (2013), expected idiosyncratic skewness (EIS) of Boyer,
Mitton and Vorkink (2010) and beta of market volatility innovations (B AVIX)
measured as in Ang, Hodrick, Xing and Zhang (2006).

We first sort stocks based on the control variable in quintiles, then within each
quintile we further sort stocks on SCORE in quintiles, resulting in a total of 25
portfolios. We average SCORE portfolios across the five quintiles from the first sort
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and we report the average return and alpha of the GMB portfolio. These results are
shown in Table 5 using value-weighted (Panel A) and equally-weighted (Panel B)
returns. The main conclusion drawn from this table is that the documented positive
abnormal return of the GMB portfolio remains robust after controlling for all these
variables, with all alphas being significant at the 5% level. More importantly, the
GMB portfolio alphas remain statistically significant after controlling for well-known

variables used to construct defensive strategies such as IVOL and BETA.

In addition to the portfolio-level analysis, we run firm-level Fama-MacBeth (1973)
cross-sectional regressions of one month ahead stock returns on SCORE and the set of
firm characteristics used in the bivariate sorts. Table 6 reports average slope
coefficients and t-statistics in parentheses. For all econometric specifications the
average slope coefficient on SCORE is positive and significant at the 1% level
confirming our earlier results. Favorable (adverse) future return distribution properties
are associated with high (low) subsequent stock returns after controlling for market
beta, size, B/M, momentum, reversal, illiquidity, maximum daily return over the
previous month, idiosyncratic volatility, mispricing, profitability, expected
idiosyncratic skewness and beta of market volatility innovations. As a further
robustness test, we repeat the Fama-MacBeth (1973) cross-sectional regressions for
the two subsamples used previously (i.e., (1) dropping stocks that belong to the lowest
size quintile, and (2) using only large cap stocks). The results of these two additional
empirical exercises are similar to those reported in Table 6 and can be provided by the

authors upon request.

Finally, to alleviate potential concerns about nonsynchroneity bias (see Battalio and
Schultz (2006)), which may hold for a portion of our sample, we calculate SCORE
using option-implied moments calculated one day before the end of month. Again, the
portfolio sorted on SCORE exhibits positive and significant alphas. These results are

available upon request.

28



1.3.3 Univariate portfolio-level analysis in short-term periods

As already documented both legs of the strategy contribute to the overall abnormal
monthly return. This is important because it suggests that the GMB premium is not
entirely driven by short sale constraints: the long side of the hedge portfolio earns
positive abnormal returns that are large economically and statistically significant. The
overperformance of good stocks may be however short-lived and the documented
positive performance in monthly horizon might be earned in the first post-formation
days.

To examine this issue, we compute value-weighted and equally-weighted returns of
SCORE formed decile portfolios on the following day and week of the formation
period (i.e., the last day of each month). These results are reported in Table 7. The
table also reports the performance of SCORE formed decile portfolios in monthly
horizon when we skip the first day and/or the first week after the formation period.
The results of this table indicate that approximately one third of the monthly average
raw return of the GMB portfolio is realized on the first trading day after the formation
period. This average daily raw return, equal to 0.24%, is large both statistically and
economically. The high positive return of the hedge portfolio is driven by the
overperformance of good stocks. The FF5 alpha of the GMB portfolio, equal to 0.27%
for value-weighted returns, is also statistically (t-stat = 4.71) and economically
significant. In weekly horizon the GMB portfolio average returns and alphas are
lower compared to those of the first trading day but still statistically significant
(expect for value-weighted alphas). More importantly, in monthly horizon, even when
the first day or the first week are excluded, GMB portfolios alphas are still positive
and significant. Again, this is driven by the overperformance of good stocks. The
average raw monthly value-weighted return of the good (decile 10) portfolio when the
first day is excluded is 0.88%, significant at the 1% level (t-stat = 3.43). This is
approximately equal to the 73% of the overall monthly return.

Overall, these results indicate that the positive monthly abnormal return of the GMB
portfolio cannot fully be explained by its short-term performance, especially for the
long leg of the strategy. Gkionis et. al. (2018) document that stocks with high SKEW
have high subsequent stock returns, earned in the very short-term (typically

overnight). On the other hand, Goncalves-Pinto et. al. (2020) indicate that stock return
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predictability related to options trading is driven by stock price pressure, the
correction of which occurs on the next day. Our empirical findings indicate that this is
not the case when stocks are sorted by combining VOL, SKEW and KURT to a single
score measure. Good stocks have high subsequent returns that persist over the

following month.

1.3.4 Long-term performance

Moreover, we investigate how long the predictability of our score measure lasts. That
is, we examine the performance of the good, bad and GMB portfolios over subsequent
months. Table C1 reports the results. We find that the GMB portfolio delivers
statistically significant returns up to month t+5. The abnormal return predictability
from month t+2 to month t+5 is entirely driven by the short leg of the strategy. This
means the abnormal return of the long leg is present only in the first post formation

month. This is somewhat expected given the asymmetry in limits to arbitrage.

1.4 An explanation of the GMB portfolio premium

In the section we aim to provide an explanation of the documented positive abnormal
return of the GMB portfolio. It lies on Merton’s (1973) ICAPM conditional on the

level of market-wide investors’ sentiment.

The risk-based (through the ICAPM) dimension of our explanation is motivated by
our previous empirical findings showing that the GMB portfolio abnormal return
holds its significance on the large cap subsample where one expects market frictions
to be much smaller. In addition, Barinov (2018) and Barinov and Chabakauri (2019)
show that the MAX and IVOL factors, respectively, can be explained by the ICAPM
with an aggregate volatility risk factor. In particular, they indicate that stocks with
high MAX and/or high IVOL have low average returns because they hedge against
innovations in market volatility. They argue that this is due to their option-like equity

hedging against aggregate volatility risk. Motivated by these findings we investigate if
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bad stocks have low average returns because they hedge against innovations in market
volatility, while good stocks have high average returns because they exposed to
unexpected increases in market volatility. Table 1 provides preliminary evidence
supporting this argument as bad stocks tend to have high MAX and high IVOL.

The second dimension of our explanation is related to sentiment-related mispricing.
Studies in behavioral finance suggest that when arbitrage is limited, noise trader
sentiment can persist in financial markets and affect asset prices (see DeLong et. al.
(1990), inter alia). Following Stambaugh, Yu and Yuan (2012) and Shen, Yu and
Zhao (2017), we examine if market-wide sentiment affects the GMB premium.
According to these authors the existence of time-varying investors’ sentiment that
impacts many assets in the same direction at the same time and short sale constraints
that limit the ability of rational investors to exploit overpricing, generate abnormal
risk-adjusted returns. Under this view, following high sentiment periods the positive
GMB portfolio abnormal return might be also attributed to bad stocks which are
overpriced and due to limits to arbitrage investors are reluctant or unable to short

them generating negative average returns.

We examine the validity of our framework building on an ICAPM with an aggregate
volatility risk factor and sentiment intercept dummies. We construct factor FVIX that
proxies for market volatility innovations following Barinov (2018).* We then identify
variations over time in the general tendency of mispricing in the market, following
Stambaugh, Yu and Yuan (2015) and relying on the market-wide index of investors’
sentiment constructed by Baker and Wurgler (2006).° We split our sample in high-
and low-sentiment months, where months with high (low) sentiment have the Baker-
Wurgler sentiment index value at the end of the previous month above (below) its

sample median. The ICAPM augmented with sentiment dummies is given as follows:

Rt = aHdH + aLdL + BMKTMKTt + ﬂFVIXFVIXt + gt, (11)

where R, is the monthly excess return of the portfolios formed on SCORE. dy and d,,

are dummy variables indicating months with high and low sentiment, respectively.

4 A number of studies suggest using shocks in aggregate volatility as a valid ICAPM state variable (see
Campbell (1993), Chen (2002) and Ang et. al. (2006)). Chen (2002) indicates that such a risk factor is
valid if it can predict future market volatility. Barinov (2018) shows that FVIX can indeed predict
future market volatility and future recessions.

5 Stambaugh, Yu and Yuan (2012) provide evidence that the Baker-Wurgler index identifies variation
in mispricing.
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MKT is the market excess return and FVIX is the aggregate volatility risk factor. If
the GMB portfolio is exposed to innovations in market volatility, then we expect
Brvix to be negative and significant. If in addition the ICAPM can explain the
abnormal return of the GMB portfolio in low-sentiment months, then we expect a, to
be insignificant. In contrast, during high-sentiment months, where mispricing is more

likely to occur, we might observe a, to be positive and significant.

Table 8 reports the coefficient estimates of the previous model using value-weighted
(Panel A) and equally-weighted (Panel B) returns. The empirical results of Table 8
support our implications. First, for the GMB portfolio, coefficient Bgy;x iS negative
and significant indicating that its positive abnormal return is related to its exposure to
aggregate volatility risk. Second, for both value-weighted and equally-weighted
returns coefficient a; of the GMB portfolio is insignificant. In contrast ay is positive
and significant, providing evidence that the ICAPM cannot fully explain the abnormal
return of the GMB portfolio when sentiment is high.6 Additionally, this is mainly
driven by the positive abnormal return of good stocks. Thus, the positive abnormal
return of GMB portfolio in high-sentiment months is due to the overperformance of
good stocks and not the underperformance of bad stocks as one might expect.

We further examine if the positive ICAPM alpha of the GMB portfolio during high-
sentiment periods is related to the relative mispricing of stocks. To this end, we
estimate the ICAPM with the sentiment dummies for the 9 tercile portfolios formed
on SCORE and the mispricing measure MISP of Stambaugh, Yu and Yuan (2015).
The results reported in Table 9 support our conjecture. After high sentiment periods,
good stocks in the two lowest MISP terciles (i.e., stocks considered as relatively
underpriced) tend to have positive and significant ICAPM alpha ay. This significant
positive abnormal return of good stocks contributes to the overperformance of the
GMB portfolio for stocks considered as relatively underpriced following high market
sentiment. On the other hand, for overpriced stocks the significant ICAPM alphas
after high sentiment can be mainly attributed to the underperformance of bad stocks.

Finally, note that in low-sentiment months the ICAPM alpha «,, of the GMB portfolio

5 Unreported results, which can be provided by the authors upon request, indicate that the full sample
ICAPM alpha is equal to 0.38% (t-stat = 1.47) for value-weighted, and 0.56% (t-stat = 2.86) for
equally-weighted returns.
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is insignificant across all MISP terciles indicating that the ICAPM explains the

positive GMB portfolio premium irrespective of stocks relative mispricing.

The conclusion drawn by this section is that during low sentiment periods the ICAPM
completely explains the positive abnormal return of the GMB portfolio. This is
because the model captures the exposure of this portfolio to aggregate volatility risk.
Therefore, the positive abnormal return of the GMB portfolio obtained under a static
model (CAPM or Fama-French 5-factor model) is fully rationalized by the ICAPM.
When sentiment in the market is high however, the ICAPM cannot fully explain the
GMB portfolio premium. Within overpriced stocks this can be mostly explained by
the underperformance of bad stocks, while for underpriced ones this is driven by the

overperformance of good stocks.

Thus, in high-sentiment months good stocks considered as underpriced in the first
place provide positive ICAPM alphas. One might argue that these positive abnormal
returns may reflect a flow of information revealed in the options market about
favorable future return distribution properties driving investors to buy them, thus
generating positive returns on the subsequent month. However, the adjustment of
stock prices to this information is not immediate as the analysis of Section 3.3 has
also revealed pointing towards limited market efficiency at least for underpriced
stocks during high sentiment periods.’

Another possible explanation for the positive abnormal return of the GMB portfolio
lies on the theory of leverage aversion suggested by Black (1972) and Frazzini and
Pedersen (2014). According to this explanation some investors are constrained or
reluctant to use leverage and thus overweight risky securities (i.e., bad stocks)
increasing their prices and decreasing their expected returns. In contrast, the safer
assets (i.e., good stocks) are underweighted by these investors and thus trade at low
prices, offering high expected returns. Though we cannot entirely rule out this
explanation, our empirical results indicate that leverage constraints, if present, would
affect the GMB portfolio return only in high sentiment periods. In fact, one would
expect the opposite, that is, leverage constraints to manifest themselves in portfolio

returns when sentiment is low, where investors would be reluctant to borrow stocks.

" Our conclusion agrees with Asness, Frazzini and Pedersen (2019) who also attribute the positive
abnormal return of high-quality stocks to limited market efficiency.
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Finally, we examine if the conditional CAPM can explain the positive premium of the
GMB portfolio. If time-varying betas of the GMB portfolio are higher in recessions
than in expansions, then investors would require a premium to be compensated
against increased risk during recession periods. Following Petkova and Zhang (2005)
we assume that the expected market risk premium and the conditional beta are linear
functions of the four commonly used business cycle variables, i.e., the dividend yield,
the default spread, the 1-month Thill, and the term spread. We find that the
conditional CAPM alpha of the GMB decile portfolio is equal to 0.70% for value-
weighted and 0.83% for equally-weighted returns, both being statistically and
economically significant. These significant alphas can be explained by the fact that
the time-varying beta is lower (not higher) during recessions than expansions, due to
the increase in the market beta of bad stocks decile portfolio. The last empirical
finding is also consistent with Eisdorfer and Misirli (2019) indicating that distressed

stocks increase their betas during bear market regimes.

1.5 Conclusions

Sorting stocks using only one moment can ignore important information about the
impact of the whole distribution on the cross-sectional variation of future stock
returns. In this chapter we create a new score measure, combining VOL, SKEW and
KURT. A low level of it identifies a stock with high VOL, low SKEW and high
KURT. On the other hand, a high level of it identifies a stock with low VOL, high
SKEW and low KURT. A portfolio going long the highest decile (good) portfolio and
short the lowest decile (bad) portfolio yields a statistically significant 0.75% (0.79%)
value-weighted (equally-weighted) return and significant alphas, with both legs of the
strategy contributing to the overall abnormal return. This positive relation between
SCORE and subsequent monthly returns holds even when we restrict our sample to
large, liquid stocks and it is robust when controlling for various variables in

dependent bivariate sorts and Fama-MacBeth (1973) regressions.

As the significant positive average return of the GMB portfolio is not consistent with
standard moment preferences this chapter aims to provide an explanation for it. This
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explanation builds on the ICAPM including the market and the aggregate volatility
risk factors conditional on the level of investors’ sentiment. We find that good stocks
are exposed to shocks in aggregate volatility while bad stocks hedge against these
shocks. Additionally, we show that the explanatory power of the ICAPM depends on
the level of investors’ sentiment. When investors’ sentiment is low, the ICAPM can
fully explain the GMB portfolio positive premium for both underpriced and
overpriced stocks. In contrast, in high sentiment periods the ICAPM alpha remains
positive and significant. Therefore, we complement a rational risk-based explanation
with mispricing. We find that during high sentiment periods the positive ICAPM
alpha of the GMB portfolio within overpriced stocks is due to the subsequent
underperformance of bad stocks, while within underpriced stocks it can be mainly
attributed to the subsequent overperformance of good stocks. Therefore, the positive
premium of the GMB portfolio is also driven by information flow from the options to

the stock market for stocks perceived to be as relatively mispriced.
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Figure 1.1. Implied Volatility curves

This Figure shows the pooled average implied volatility curves across deltas for stocks in the
bad (orange line) and good (blue dashed line) portfolio.
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Table 1.1: Summary statistics for decile portfolios of stocks sorted by SCORE

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure computed from
VOL, SKEW and KURT. Portfolio 1 includes stocks with the lowest SCORE (bad) and portfolio 10 contains stocks with the highest SCORE (good). This
table shows the time-series average of monthly value-weighted stock characteristics (except for size which is equally-weighted) for each decile portfolio. The
definition of each variable is provided in Appendix A.

SCORE decile portfolios

Bad 2 3 4 5 6 7 8 9 Good
VOL 1191 8.98 8.89 9.20 9.50 9.85 9.95 9.95 9.67 8.97
SKEW -0.81 -0.70 -0.57 -0.48 -0.42 -0.36 -0.30 -0.24 -0.17 -0.08
KURT 4.44 4.16 3.91 3.78 3.70 3.65 3.62 3.61 3.60 3.50
BETA 111 0.92 0.93 1.00 1.03 1.06 1.08 1.07 1.03 0.95
SIZE 21.05 21.52 21.50 21.47 21.43 21.39 21.36 21.40 21.49 21.77
B/M 0.51 0.41 0.37 0.38 0.39 0.39 0.39 0.41 0.42 0.42
MOM 17.038 20.49 19.31 20.84 22.26 23.19 22.74 22.38 20.59 17.72
ILLIQ 0.18 0.08 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.07
In(PRICE) 3.50 3.85 3.92 3.90 3.89 3.87 3.84 3.84 3.84 3.88
MAX 5.20 4.05 4.05 4.18 4.35 4.53 4.56 451 4.32 4.14
MIN -4.29 -3.38 -3.47 -3.65 -3.78 -4.01 -4.08 -4.09 -4.03 -3.79
IVOL 1.64 1.29 1.30 1.37 1.44 1.52 1.54 1.55 1.52 1.44
MISP 48.83 43.78 42.60 41.95 42.75 42.67 42.60 43.04 42.88 42.07
EIS 0.65 0.59 0.59 0.58 0.59 0.58 0.59 0.59 0.60 0.61
PROFIT 0.30 0.40 0.45 0.45 0.41 0.38 0.43 0.37 0.39 0.42
GPROFIT 0.29 0.32 0.33 0.34 0.34 0.35 0.34 0.34 0.34 0.34
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Table 1.2: Value-weighted and equally-weighted portfolios of stocks sorted by SCORE

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure computed from
VOL, SKEW and KURT. Portfolio 1 includes stocks with the lowest SCORE (bad) and portfolio 10 includes stocks with the highest SCORE (good). The last
column reports the performance of the good minus bad (GMB) portfolio. The table reports average monthly returns the following month, factor loadings, and
alphas from the Carhart (1997) model (CAR), and factor loadings and alphas from the Fama and French (2015) 5-factor model (FF5). Panel A shows value-
weighted returns and Panel B shows equally-weighted returns. Adj. R2 denotes the adjusted R-squared coefficient. MKT denotes the market risk premium
factor, SMB is the size factor, HML is the value factor, MOM is the momentum factor, RMW denotes the operating profitability factor and CMA is the
investment factor. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags.

Panel A: Value-weighted returns

SCORE decile portfolios

Bad 2 3 4 5 6 7 8 9 Good GMB

Raw 0.47 0.66 0.42 0.74 0.92 0.76 0.98 1.01 0.98 1.21 0.75
(1.11) (2.14) (1.41) (2.17) (2.72) (2.29) (2.88) (3.14) (3.07) (4.47) (2.60)

CAR -0.35 -0.08 -0.25 -0.05 0.13 -0.05 0.18 0.28 0.22 0.50 0.84
(-1.96) (-0.72) (-2.47) (-0.51) (1.42) (-0.41) (1.43) (1.64) (1.77) (3.63) (3.19)

MKT 1.05 0.93 0.91 1.07 1.06 1.04 1.04 1.01 0.98 0.89 -0.15
(19.68) (31.39) (30.97) (41.38) (37.99) (24.68) (27.61) (21.96) (26.55) (24.61) (-2.04)

SMB 0.32 -0.02 -0.09 -0.05 -0.05 0.02 0.05 -0.02 -0.02 -0.19 -0.51
(4.94) (-0.40) (-2.09) (-0.88) (-1.13) (0.50) (0.91) (-0.22) (-0.51) (-3.51) (-4.75)

HML 0.15 -0.05 -0.05 -0.05 -0.02 -0.12 0.07 -0.12 0.05 0.17 0.02
(1.24) (-1.12) (-1.47) (-1.09) (-0.57) (-1.77) (0.90) (-2.58) (0.67) (2.00) (0.12)

MOM -0.15 0.07 -0.03 0.01 0.01 0.09 -0.01 -0.03 0.01 0.04 0.19
(-3.41) (2.62) (-1.47) (0.45) (0.45) (2.64) (-0.19) (-0.61) (0.17) (0.98) (2.51)

Adj. R2 82.98 85.54 87.62 89.13 87.77 87.51 84.52 83.02 83.74 77.89 29.57
FF5 -0.23 -0.04 -0.30 -0.05 0.14 0.02 0.10 0.17 0.14 0.28 0.51
(-1.49) (-0.32) (-2.83) (-0.48) (1.17) (0.20) (0.78) (1.09) (1.13) (2.48) (2.50)

MKT 1.00 0.91 0.94 1.07 1.06 1.01 1.08 1.06 1.02 0.99 -0.01
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(23.27) (26.29) (31.61) (34.13) (28.57) (27.20) (33.91) (24.66) (29.22) (32.24) (-0.10)

SMB 0.21 -0.04 -0.10 -0.08 -0.02 0.03 0.07 0.04 0.05 -0.06 -0.27
(3.80) (-0.84) (-2.20) (-1.56) (-0.56) (0.61) (1.25) (0.63) (0.95) (-1.38) (-3.42)

HML 0.36 -0.11 -0.06 -0.08 0.00 -0.16 -0.03 -0.16 0.00 -0.02 -0.38
(2.79) (-1.58) (-1.37) (-1.41) (0.05) (-1.93) (-0.47) (-2.20) (-0.01) (-0.45) (-2.45)

RMW -0.30 -0.04 0.02 -0.05 0.05 -0.01 0.07 0.16 0.18 0.37 0.67
(-3.29) (-0.63) (0.49) (-0.68) (0.96) (-0.15) (1.11) (2.23) (2.62) (5.52) (5.06)

CMA -0.26 0.11 0.06 0.13 -0.09 0.00 0.16 0.01 -0.02 0.22 0.48
(-1.87) (1.15) (0.87) (1.43) (-0.80) (-0.03) (1.55) (0.07) (-0.20) (2.36) (2.42)

Adj. R2 82.66 85.08 87.57 89.32 87.83 86.67 84.79 83.25 84.26 80.60 35.79

Panel B: Equally-weighted returns
SCORE Decile portfolios

Bad 2 3 4 5 6 7 8 9 Good GMB

Raw 0.52 0.46 0.61 0.62 0.71 0.84 1.01 0.92 1.09 1.31 0.79
(1.28) (1.11) (1.35) (1.36) (1.62) (1.85) (2.34) (2.17) (2.82) (3.84) (4.35)

CAR -0.39 -0.46 -0.30 -0.33 -0.23 -0.10 0.11 0.02 0.22 0.50 0.89
(-3.76) (-4.59) (-2.55) (-2.93) (-2.40) (-1.12) (0.96) (0.23) (1.71) (3.82) (5.98)

MKT 1.05 1.13 1.17 1.23 1.21 1.25 1.19 1.18 111 0.96 -0.09
(34.15) (32.05) (33.65) (36.08) (51.53) (41.90) (38.01) (39.77) (34.94) (29.62) (-2.52)

SMB 0.67 0.57 0.66 0.72 0.71 0.65 0.65 0.56 0.40 0.27 -0.40
(13.04) (15.95) (15.66) (18.39) (19.99) (10.11) (9.15) (6.31) (3.78) (3.28) (-5.38)

HML 0.29 0.04 -0.16 -0.17 -0.16 -0.16 -0.10 -0.01 0.15 0.31 0.02
(6.82) (0.95) (-3.92) (-4.60) (-5.56) (-3.73) (-2.05) (-0.16) (2.88) (4.31) (0.30)

MOM -0.12 -0.06 -0.10 -0.11 -0.10 -0.11 -0.16 -0.16 -0.14 -0.08 0.05
(-3.50) (-1.90) (-2.75) (-3.52) (-4.43) (-5.65) (-6.07) (-5.15) (-4.44) (-2.36) (1.31)

Adj. R2 92.95 93.79 94.13 93.72 95.58 95.43 93.73 93.09 89.91 88.06 35.44
FF5 -0.46 -0.43 -0.21 -0.23 -0.13 -0.04 0.10 -0.04 0.14 0.27 0.73
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(-4.17) (-4.46) (-1.86) (-1.98) (-1.39) (-0.38) (0.83) (-0.30) (1.05) (2.43) (5.17)
MKT 1.09 1.11 1.14 1.19 1.16 1.22 1.20 1.22 1.15 1.07 -0.02
(33.65) (30.81) (33.27) (35.77) (46.08) (35.94) (37.04) (30.86) (27.16) (34.07) (-0.54)
SMB 0.68 0.56 0.58 0.64 0.66 0.61 0.63 0.56 0.44 0.38 -0.30
(11.36) (12.33) (9.85) (14.10) (16.23) (11.03) (9.65) (7.73) (5.13) (6.89) (-5.72)
HML 0.25 0.04 -0.10 -0.10 -0.08 -0.09 -0.03 0.03 0.19 0.16 -0.09
(4.02) (0.71) (-1.72) (-1.82) (-1.86) (-1.20) (-0.37) (0.37) (1.99) (2.34) (-1.26)
RMW 0.00 -0.08 -0.25 -0.27 -0.20 -0.16 -0.11 -0.02 0.05 0.29 0.30
(-0.09) (-1.73) (-3.91) (-5.62) (-3.93) (-1.82) (-1.17) (-0.22) (0.52) (4.49) (4.29)
CMA -0.09 -0.13 -0.16 -0.18 -0.27 -0.24 -0.22 -0.17 -0.17 0.06 0.15
(-1.36) (-2.27) (-2.48) (-2.71) (-4.43) (-2.97) (-2.03) (-1.33) (-1.34) (0.77) (2.09)
Adj. R2 92.54 93.93 94.18 93.76 95.74 95.38 92.95 92.15 89.23 89.44 39.34
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Table 1.3: Value-weighted and equally-weighted portfolios of stocks sorted by SCORE
using different breakpoints and sub-samples

Decile, quintile and tercile portfolios are formed every month from January 1996 to April
2016 by sorting stocks based on the end-of-month SCORE measure. The lowest decile,
quintile or tercile portfolio includes stocks with the lowest SCORE (bad) and the highest
decile, quintile or tercile portfolio includes stocks with the highest SCORE (good). The table
reports average monthly returns the following month and alphas with respect to the Capital
Asset Pricing Model (CAPM), the Fama and French (1993) 3-factor model (FF3), the Carhart
(1997) model (CAR) and the Fama and French (2015) 5-factor (FF5) of the good minus bad
(GMB) portfolio. Panel A shows results using the full sample. Panel B shows results after
dropping all stocks in the lowest size quintile using NYSE breakpoints. Panel C shows results
for all stocks with market cap above the NYSE median. GMB(d) denotes the good minus bad
(GMB) decile portfolio, GMB(q) denotes the good minus bad (GMB) quintile portfolio and
GMB(t) denotes the good minus bad (GMB) tercile portfolio. The t-statistics (in parentheses)
are computed using Newey-West (1987) standard errors with 5 lags.

Panel A: Full sample

Panel A.1: Value-weighted Panel A.2: Equally-weighted
GMB(d) GMB(q) GMB(t) GMB(d) GMB(q) GMB(t)
Raw returns 0.75 0.51 0.56 0.79 0.71 0.58
(2.60) (2.61) (3.96) (4.35) (4.97) (4.17)
CAPM 0.92 0.56 0.57 0.89 0.77 0.62
(3.57) (2.80) (3.68) (5.25) (5.60) (4.40)
FF3 0.97 0.55 0.56 0.92 0.78 0.61
(3.80) (2.93) (3.78) (6.12) (6.09) (4.95)
CAR 0.84 0.53 0.54 0.89 0.79 0.63
(3.19) (2.77) (3.50) (5.98) (5.81) (4.75)
FF5 0.51 0.30 0.38 0.73 0.65 0.49
(2.50) (1.79) (3.06) (5.17) (5.13) (3.91)
Panel B: Dropping stocks with size in the lowest quintile
Panel B.1: Value-weighted Panel B.2: Equally-weighted
GMB(d) GMB(q) GMB(t) GMB(d) GMB(q) GMB(1)
Raw returns 0.70 0.52 0.57 0.79 0.69 0.57
(2.39) (2.69) (4.13) (4.15) (4.60) (4.01)
CAPM 0.88 0.58 0.58 0.89 0.75 0.61
(3.30) (2.88) (3.83) (5.01) (5.20) (4.27)
FF3 0.93 0.56 0.57 0.92 0.76 0.60
(3.50) (2.95) (3.98) (5.55) (5.60) (4.77)
CAR 0.80 0.54 0.55 0.86 0.76 0.62
(2.94) (2.76) (3.71) (5.34) (5.35) (4.58)
FF5 0.46 0.30 0.40 0.73 0.62 0.47
(2.13) (1.83) (3.20) (4.70) (4.69) (3.72)
Panel C: Dropping stocks with size below the median
Panel C.1: Value-weighted Panel C.2: Equally-weighted
GMB(d) GMB(q) GMB(t) GMB(d) GMB(q) GMB(t)
Raw returns 0.70 0.49 0.57 0.70 0.52 0.41
(2.40) (2.47) (4.05) (4.14) (3.95) (3.75)
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CAPM 0.87 0.55 0.59 0.79 0.58 0.45
(3.21) (2.67) (3.81) (5.06) (4.59) (4.14)
FF3 0.91 0.53 0.58 0.83 0.60 0.46
(3.32) (2.65) (3.89) (5.14) (4.56) (4.12)
CAR 0.76 0.51 0.56 0.75 0.57 0.46
(2.71) (2.40) (3.60) (4.75) (4.31) (4.03)
FF5 0.41 0.25 0.38 0.61 0.40 0.28
(1.86) (1.43) (2.99) (4.08) (3.31) (2.71)
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Table 1.4: Value-weighted portfolios of stocks sorted by SCORE across four style
universes

Quintile portfolios are formed every month from January 1996 to April 2016 by sorting
stocks based on the end-of-month SCORE measure. The lowest quintile portfolio includes
stocks with the lowest SCORE (bad) and the highest quintile portfolio includes stocks with
the highest SCORE (good). We split our sample into four style universes: small growth (SG),
small value (SV), large growth (LG) and large value (LV) using NYSE medians as
breakpoints. The table reports average monthly returns the following month and alphas with
respect to the Capital Asset Pricing Model (CAPM), the Fama and French (1993) 3-factor
model (FF3), the Carhart (1997) model (CAR) and the Fama and French (2015) 5-factor
(FF5) of the good minus bad (GMB) value-weighted portfolio. The t-statistics (in
parentheses) are computed using Newey-West (1987) standard errors with 5 lags.

Raw CAPM FF3 CAR FF5

SG 086 (3.13) 092 (352) 090 (3.62) 0.89 (350) 076 (2.89)
SV 079 (279 086 (293 085 (3.01) 078 (256) 072 (2.52)
LG 060 (284) 065 (292) 061 (2.88) 061 (273) 033 (L73)
LV 047 (L78) 050 (1.68) 0.63 (2.10) 0.62 (1.96) 0.56 (1.98)
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Table 1.5: Double-sorted portfolios on SCORE after controlling for several variables

Double-sorted quintile portfolios are formed every month from January 1996 to April 2016 by
sorting stocks based on SCORE after controlling for mispricing (MISP), idiosyncratic
volatility (IVOL), momentum (MOM), book-to-market (B/M), reversal (REV), market
capitalization (SIZE), market beta (BETA), maximum daily return of the previous month
(MAX), profitability (PROFIT), gross profitability (GPROFIT), illiquidity (ILLIQ), expected
idiosyncratic skewness (EIS) and beta of market volatility innovations (B AVIX). The
definition of each variable is provided in Appendix A. We first sort stocks into quintiles using
each one of these variables, then within each quintile, we sort stocks into quintiles based on
SCORE. We average SCORE sorted portfolios across the five quintiles from the first sort and
we report average monthly returns and alphas of the good minus bad (GMB) portfolio. Alphas
are measured with respect to the Capital Asset Pricing Model (CAPM), the Fama and French
(1993) 3-factor model (FF3), the Carhart (1997) model (CAR) and the Fama and French
(2015) 5-factor (FF5). Panel A shows value-weighted returns and Panel B shows equally-
weighted returns. The t-statistics (in parentheses) are computed using Newey-West (1987)
standard errors with 5 lags.

Panel A: Value-weighted returns

Raw CAPM FF3 CAR FF5
BETA 054 (3.30) 060 (3.66) 063 (3.72) 062 (3.66) 045 (3.11)
SIZE 060 (4.34) 065 (485 065 (497) 063 (4.69) 049 (4.13)
B/M 048 (334 050 (3.28) 053 (3.26) 054 (3.12) 042 (2.72)
MOM 066 (4.68) 070 (479) 072 (5.08) 068 (4.88) 052 (4.41)
REV 059 (3.58) 0.68 (4.23) 068 (4.48) 067 (4.19) 050 (3.59)
ILLIQ 055 (4.62) 059 (5.00) 061 (5.02) 060 (4.98) 049 (4.01)
MAX 051 (3.36) 055 (3.57) 058 (3.89) 054 (3.57) 041 (3.09)
IVOL 076 (3.66) 0.86 (4.15) 0.87 (4.60) 081 (4.25) 0.64 (4.40)
MISP 059 (3.38) 065 (3.52) 065 (3.51) 060 (3.08) 044 (2.89)

PROFIT 065 (358) 073 (3.76) 071 (3.96) 069 (3.59) 044 (2.76)
GPROFIT 050 (3.01) 052 (2.93) 050 (3.18) 048 (3.00) 0.30 (2.06)
EIS 055 (3.16) 061 (3.30) 060 (3.57) 058 (3.46) 0.36 (2.47)
BAVIX 062 (3.72) 067 (3.93) 066 (3.99) 064 (3.82) 043 (3.16)

Panel B: Equally-weighted returns

Raw CAPM FF3 CAR FF5
BETA 061 (5.00) 065 (5.62) 067 (5.70) 0.66 (5.55) 0.58 (5.14)
SIZE 060 (4.64) 065 (5.21) 066 (5.20) 0.63 (4.85) 0.49 (4.41)
B/M 065 (4.69) 069 (5.13) 070 (5.64) 0.72 (554) 0.60 (4.76)
MOM 067 (563) 072 (6.10) 072 (6.64) 074 (6.66) 060 (5.70)
REV 068 (5.30) 075 (6.03) 076 (6.50) 0.75 (6.08) 0.64 (5.67)
ILLIQ 064 (4.94) 069 (549) 070 (552) 0.68 (5.25) 056 (4.69)
MAX 065 (6.13) 067 (6.41) 069 (6.50) 069 (6.15) 0.62 (5.91)
IVOL 066 (6.02) 069 (6.39) 072 (6.60) 0.69 (6.21) 063 (6.13)
MISP 058 (4.29) 062 (4.69) 063 (4.98) 064 (5.08) 051 (4.10)

PROFIT 066 (4.76) 071 (5.10) 071 (5.77) 0.70 (5.49) 059 (4.58)
GPROFIT 0.69 (4.34) 074 (465 073 (5.30) 075 (5.16) 0.60 (4.26)
EIS 065 (5.04) 070 (561) 071 (6.15) 071 (5.90) 0.58 (4.86)
BAVIX 069 (5.17) 074 (565 074 (6.11) 075 (5.74) 0.62 (5.24)
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Table 1.6: Fama-MacBeth cross-sectional regressions

This table presents firm-level Fama-MacBeth (1973) cross-sectional regression results of one month ahead stock returns on SCORE and a set of firm
characteristics for the sample period January 1996 to April 2016. The firm characteristics that we control for in the econometric specifications include market
beta (BETA), market capitalization (SIZE), book-to-market ratio (B/M), momentum (MOM), reversal (REV), illiquidity (ILLIQ), maximum daily return of
the previous month (MAX), idiosyncratic volatility (IVOL), mispricing (MISP), profitability (PROFIT), gross profitability (GPROFIT), expected
idiosyncratic skewness (EIS) and beta of market volatility innovations (B AVIX). The definition of each variable is provided in Appendix A. All variables are
winsorized at the 1% and 99% levels. The time-series average slope coefficients are reported in each row. Adj. R2 denotes the adjusted R-squared coefficient.
The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags.

1) (2) 3) 4) (5) (6) ) (8) 9) (10) (11) (12)

Intercept 00062 00103 00125 00116 00106 00129 00159  0.0266 00247  0.0238 00270  0.0268
(1.51)  (157)  (1.84)  (L71)  (158)  (211)  (263)  (4.25)  (412)  (3.87)  (4.06)  (4.10)

SCORE 00057  0.0042 00043 00042 00043 00042 00041 00038 00038  0.038 00036  0.0035
(4.39)  (473)  (491)  (5.15)  (5.37)  (554)  (546)  (5.04)  (5.07)  (4.98)  (4.83)  (4.83)

BETA 0.0001  -0.0013 -0.0008  -0.0007  -0.0004  -0.0004  -0.0003  -0.0002  -0.0003 -0.0003  -0.0003

0.04)  (-063)  (-0.34)  (-0.32)  (-0.19)  (-0.18)  (-0.13)  (-0.10)  (-0.17)  (-0.13)  (-0.15)

SIZE -0.0005  -0.0007  -0.0006  -0.0005  -0.0007 -0.0009  -0.0012  -0.0013  -0.0011  -0.0012  -0.0012

(0.75)  (-1.08)  (-0.99)  (-081)  (-1.11)  (-153)  (-210)  (-2.15)  (-2.05)  (-2.14)  (-2.17)

B/M 0.0014 00013  0.0019 00018 00015 00012 00011 00013 00017 00018  0.0016
(0.63)  (0.58)  (085)  (0.81)  (0.71)  (056)  (0.51)  (0.56)  (0.73)  (0.79)  (0.73)

MOM -0.0005 -0.0009 -0.0006 -0.0004 -0.0002 -0.0015 -0.0013  -0.0014  -0.0018  -0.0017
(019)  (-0.31)  (-0.22)  (-0.14)  (-0.06)  (-051)  (-0.47)  (-047)  (-0.61)  (-0.59)

REV -0.0179  -0.0178  -0.0154  -0.0202  -0.0228 -0.0236  -0.0232  -0.0237  -0.0244
(255)  (-2.56)  (-2.02)  (263)  (-2.90)  (-3.02)  (-296)  (-3.05)  (-3.18)

ILLIQ -0.0387 00270  -0.0181  -0.0150  -0.0007  -0.0094  0.0105  0.0109
(-072)  (-050)  (-0.33)  (-0.26)  (-0.01)  (-0.17)  (0.20)  (0.21)

MAX -0.0256  0.0304 00405  0.0400  0.0382  0.0399  0.0431
(-141)  (144)  (1.95)  (1.94)  (1.87)  (1.98)  (2.15)

IVOL -0.2192 02093 -0.2041  -0.2055  -0.2101  -0.2153
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(2.96)  (277)  (272)  (-273)  (-2.84)  (-2.88)
MISP -0.0002  -0.0002  -0.0002  -0.0002  -0.0002
(-3.63)  (-3.24)  (-3.18)  (-321)  (-3.18)
PROFIT 0.0029
(1.40)
GPROFIT 0.0028  0.0024  0.0024
(1.01)  (0.89)  (0.86)
EIS -0.0036  -0.0034
(-1.96)  (-1.83)
B AVIX -0.0009
(-1.05)
Adj. R2 020%  537%  6.68%  7.43%  7.70%  812%  832%  8.66%  8.99%  9.07%  931%  9.53%
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Table 1.7: Value-weighted and equally-weighted portfolios of stocks sorted by SCORE in short-term periods

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure. Portfolio 1 includes
stocks with the lowest SCORE (bad) and portfolio 10 includes stocks with the highest SCORE (good). The last column reports the performance of the good
minus bad (GMB) portfolio. The table reports average returns and alphas of the 5-factor model (FF5). Panel A shows value-weighted and equally-weighted
returns one-day ahead of the formation period. Panel B shows value-weighted and equally-weighted returns one week ahead of the formation period. Panel C
shows value-weighted and equally-weighted returns the following month after excluding the first day. Panel D shows value-weighted and equally-weighted
returns the following month after excluding the first week. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags.

SCORE decile portfolios

Bad 2 3 4 5 6 7 8 9 Good GMB

Panel A: One-day ahead returns

Panel A.1: Value-weighted

Raw 0.11 0.10 0.18 0.24 0.19 0.23 0.23 0.23 0.28 0.35 0.24
(0.94) (1.15) (2.03) (2.53) (2.04) (2.31) (2.31) (2.31) (3.10) (4.20) (3.83)

FF5 -0.14 -0.11 -0.03 0.04 -0.01 0.00 0.02 0.01 0.11 0.13 0.27
(-3.46) (-3.98) (-1.03) (1.23) (-0.26) (0.06) (0.73) (0.36) 3.44 (4.05) (4.71)

Panel A.2: Equally-weighted

Raw 0.01 0.04 0.07 0.09 0.11 0.11 0.14 0.18 0.21 0.25 0.24
(0.10) (0.34) (0.69) (0.76) (0.95) (0.95) (1.15) (1.54) (1.92) (2.53) (5.87)

FF5 -0.14 -0.09 -0.04 -0.02 0.00 -0.02 0.01 0.03 0.06 0.08 0.22
(-5.46) (-3.88) (-2.02) (-1.01) (-0.04) (-0.81) (0.36) (0.94) (2.03) (2.76) (6.05)

Panel B: One-week ahead returns

Panel B.1: Value-weighted

Raw 0.16 0.19 0.33 0.41 0.36 0.39 0.39 0.37 0.39 0.37 0.21
(0.78) (1.24) (1.96) (2.16) (1.97) (1.91) (1.73) (1.82) (1.91) (1.99) (1.97)
FF5 -0.14 -0.11 0.01 0.07 0.05 0.03 0.06 0.03 0.03 -0.03 0.11
(-2.34) (-1.67) (0.18) (1.26) (1.00) (0.47) (0.94) (0.51) 0.41)  (-0.43) (1.08)
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Panel B.2: Equally-weighted

Raw 0.04 0.12 0.20 0.21 0.19 0.24 0.29 0.30 0.31 0.33 0.29
(0.18) (0.53) (0.83) (0.82) (0.76) (0.91) (1.10) (1.19) (1.38) (1.60) (3.65)
FF5 -0.19 -0.07 0.03 0.02 0.00 0.05 0.09 0.06 0.04 0.03 0.23
(-2.94) (-1.53) (0.56) (0.32) (0.08) (0.84) (1.51) (0.98) (0.59) (0.54) (2.89)
Panel C: Monthly returns excluding the first trading day

Panel C.1: Value-weighted
Raw 0.39 0.56 0.25 0.50 0.74 0.55 0.76 0.79 0.71 0.88 0.49
(1.01) (1.98) (0.90) (1.65) (2.39) (1.79) (2.48) (2.68) (2.44) (3.43) (1.88)
FF5 -0.12 0.03 -0.24 -0.05 0.15 -0.02 0.10 0.16 0.04 0.18 0.30
(-0.78) (0.25) (-2.54) (-0.47) (1.45) (-0.15) (0.83) (1.02) (0.35) (1.63) (1.54)

Panel C.2: Equally-weighted
Raw 0.53 0.43 0.54 0.55 0.63 0.75 0.89 0.76 0.91 1.08 0.55
(1.44) (1.15) (1.31) (1.33) (1.55) (1.80) (2.27) (1.98) (2.56) (3.51) (3.26)
FF5 -0.29 -0.28 -0.12 -0.12 -0.05 0.05 0.17 0.00 0.15 0.26 0.54
(-2.72) (-3.13) (-1.05) (-1.17) (-0.44) (0.52) (1.37) (0.07) (1.10) (2.36) (4.05)

Panel D: Monthly returns excluding the first week

Panel D.1: Value-weighted
Raw 0.34 0.49 0.11 0.33 0.58 0.41 0.62 0.65 0.62 0.87 0.54
(1.08) (2.16) (0.50) (1.41) (2.48) (1.74) (2.75) (3.08) (2.93) (4.65) (2.21)
FF5 -0.13 0.04 -0.26 -0.09 0.06 -0.04 0.11 0.12 0.03 0.30 0.42
(-0.92) (0.36) (-2.84) (-1.01) (0.69) (-0.46) (1.00) (0.97) (0.30) (2.65) (2.42)

Panel D.2: Equally-weighted
Raw 0.52 0.37 0.43 0.44 0.56 0.66 0.78 0.66 0.82 1.01 0.49
(1.76) (1.25) (1.29) (1.37) (1.71) (2.01) (2.52) (2.21) (2.98) (4.52) (3.12)
FF5 -0.24 -0.25 -0.18 -0.19 -0.06 0.05 0.12 -0.01 0.15 0.31 0.55
(-2.45) (-2.84) (-1.83) (-1.81) (-0.57) (0.47) (0.97) (-0.09) (1.08) (2.90) (5.03)
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Table 1.8: The ICAPM for stocks portfolios sorted by SCORE during periods of high
and low investors’ sentiment

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks
based on the end-of-month SCORE measure. Low decile portfolio includes stocks with the
lowest SCORE (bad) and high decile portfolio includes stocks with the highest SCORE
(good). High (low) sentiment indicates a month in which the value of the Baker and Wurgler
(2006) sentiment index at the end of the previous month is above (below) its sample median.
The table reports ICAPM alpha ay (a;) in high (low) sentiment months, market beta By xr
and beta of FVIX Bry;x, Tor the good, the bad and the good minus bad (GMB) portfolios.
Panel A shows value-weighted returns and Panel B shows equally-weighted returns. Adj. R2
denotes the adjusted R-squared coefficient. The t-statistics (in parentheses) are computed
using Newey-West (1987) standard errors with 5 lags.

Panel A: Value-weighted Panel B: Equally-weighted

Bad Good GMB Bad Good GMB

ay -0.16 0.47 0.62 -0.11 0.76 0.87
(-0.68) (2.36) (1.78) (-0.34) (3.40) (3.16)

a -0.04 0.10 0.14 -0.07 0.19 0.26
(-0.17) (0.49) (0.45) (-0.34) (0.99) (1.32)

Bukr 2.01 -0.01 -2.02 1.97 0.77 -1.20
(8.99) (-0.05) (-4.70) (5.59) (2.42) (-3.48)

Brvix 0.74 -0.71 -1.45 0.67 -0.20 -0.87
(4.10) (-3.29) (-4.11) (2.31) (-0.79) (-2.99)
Adj. R2 80.10% 76.67% 24.07% 80.58% 82.67% 23.14%
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Table 1.9: The ICAPM for double-sorted MISP-SCORE portfolios during periods of

high and low investors’ sentiment

Double-sorted tercile portfolios are formed every month from January 1996 to April 2016 by
sorting stocks based on SCORE after controlling for mispricing (MISP). We first sort stocks
into terciles using MISP, then within each tercile, we sort stocks into terciles based on
SCORE. High (low) sentiment indicates a month in which the value of the Baker and Wurgler
(2006) sentiment index at the end of the previous month is above (below) its sample median.
The table reports ICAPM alpha ay (a;) in high (low) sentiment months, market beta Sy xr
and beta of FVIX Bpyx, for the good, the bad and the good minus bad (GMB) portfolios
across MISP terciles. Panel A shows value-weighted returns and Panel B shows equally-
weighted returns. The t-statistics (in parentheses) are computed using Newey-West (1987)

standard errors with 5 lags.

Panel A: Value-Weighted

Panel B: Equally-Weighted

Bad Good GMB Bad Good GMB
Most underpriced ay -0.04 0.26 0.30 0.32 0.74 0.42
(-0.24) (1.13) (0.93) (1.24) (3.73) (2.28)
a, 0.02 0.21 0.20 0.25 0.27 0.02
(0.13)  (1.33) (0.86) (1.31) (1.86) (0.13)
Buxkr 0.36 0.31 -0.06 1.38 0.94 -0.44
(1.90) (1.35) (-0.15)  (3.67) (4.06) (-1.62)
Brvix -0.35 -0.46 -0.11 0.32 -0.03 -0.34
(-2.33) (-2.53) (-0.40) (1.05) (-0.16) (-1.59)
Next 40% ay -0.31 0.56 0.87 0.36 0.80 0.44
(-2.21) (2.83) (3.27) (0.96) (3.24) (1.29)
a; -0.10 -0.12 -0.02 0.09 0.17 0.08
(-0.63) (-0.56) (-0.05) (0.43) (0.89) (0.38)
Bukr 1.24 0.32 -0.92 2.08 1.08 -1.00
(6.21)  (1.00) (-1.87)  (5.20) (3.49) (-1.77)
Brvix 0.14 -0.54 -0.68 0.74 -0.05 -0.79
(0.91) (-2.03) (-1.72) (222) (-0.20) (-1.68)
Most overpriced ay -0.66 -0.19 0.47 -0.47 0.10 0.57
(-3.21) (-0.77) (1.62) (-1.42) (0.28) (2.08)
a; -0.57 -0.34 0.23 -0.28 -0.29 0.00
(-1.79) (-1.41) (0.71)  (-0.97) (-0.96) (-0.01)
Bukr 1.65 0.75 -0.90 3.01 2.05 -0.96
(4.23)  (1.93) (-2.09) (8.37) (5.38) (-2.68)
Brvix 0.32 -0.29 -0.62 1.31 0.55 -0.77
(1.14) (-0.94) (-1.84) (450) (1.78) (-2.48)
All stocks ay -0.30 0.36 0.66 -0.03 0.56 0.59
(-3.51) (2.76) (3.48) (-0.11) (2.43) (2.58)
a; -0.17 0.10 0.27 0.01 0.12 0.11
(-1.71)  (0.83) (1.40) (0.04) (0.63) (0.66)
Bukr 0.93 0.60 -0.33 2.41 1.50 -0.91
(8.74)  (3.10) (-1.21) (8.27) (6.26) (-2.62)
Brvix -0.02 -0.29 -0.27 0.98 0.26 -0.71
(-0.30) (-1.85) (-1.23) (3.97) (1.37) (-2.45)
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Chapter 2

Option-implied jump risk and the cross-section
of stock returns

2.1 Introduction

The option pricing literature provides strong evidence that aggregate jump risk is
priced by investors in the options market. In fact, it constitutes nowadays a
fundamental premise of state-of-the-art option pricing models.® A parallel stream of
research examines the impact of jump risk in the time-series variation of equity and
variance risk premiums, providing strong evidence that a significant fraction of these
two premiums can be ascribed to compensation for jump risk (see Santa-Clara and
Yan (2010) and Bollerslev and Todorov (2011)). Despite the importance of jump risk
documented in the literature, the investigation of how it affects the cross-section of
expected stock returns has received less attention.

The main objective of this chapter is to provide fresh empirical evidence that time-
varying jump risk is priced in the cross-section of stock returns. Our theoretical
background follows a large body of literature showing how to extract risk-neutral
moments from observed option prices (see Bakshi, Kapadia and Madan (2003),
among others). As a preliminary step we demonstrate a straightforward relation
between the first and second-order moments (in other words, the mean and variance)
of the log-return risk-neutral distribution which may be used to approximate the third-
order moment of the jump process. As the first two moments can be extracted from

option prices, it is straightforward to obtain an approximation of the third-order

& The relevant literature is very extensive, including early papers like Bates (1996, 2000) and Pan
(2002) up to more recent ones like Ait-Sahalia, Karaman and Mancini (2020).
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moment of the jump process from option prices. A similar formula is derived by Du
and Kapadia (2012). In addition, we provide theoretical and empirical evidence
showing that the third-order moment of the jump process is strongly related to the
spot (and expected integrated) variance. Thus, its innovations are affected from both
volatility and jump risk. To this end, we suggest a new measure of jump risk exposure
by scaling the third-order moment of the jump process with expected integrated
variance. Theoretically, this new scaled variable is not related to the dynamics of spot

variance, and its innovations can be considered as a proxy of jump risk.

Our empirical approach investigating it aggregate jump risk is priced in the cross-
section of stock returns closely follows Ang, Chen, and Xing (2006) and Cremers,
Halling, and Weinbaum (2015). Specifically, we estimate jump risk loadings at the
individual stock level using daily returns. As a second step, we sort stocks on the
realized jump risk loadings, and we investigate whether stocks with higher betas have
lower average returns contemporaneously, simultaneously controlling for other risk
factors known to affect the cross-section of expected stock returns. We focus on
uncovering a contemporaneous relation between jump risk betas and average returns,
since it constitutes the essence of a cross-sectional risk-return relation. In addition, we
investigate the relation between realized jump-risk betas and future stock returns. By
so doing, we examine if realized jump risk exposures predict future ones, allowing us

to form investable hedge portfolios ex-ante that have ex-post exposure to jump risk.

Our main result is that jump risk is priced in the cross-section of stock returns,
identifying a negative market price of jump risk, consistent with theory. We document
that stocks with high jump risk loadings significantly underperform stocks with low
ones contemporaneously, producing a statistically and economically significant
premium of -9.41% per year at the 1% level. Risk-adjusted returns with respect to the
Fama and French (1993) three-factor model and the Carhart (1997) four-factor model
are also negative and highly significant. Besides investigating the pricing of aggregate
jump risk in the cross-section of stock returns, it is also interesting to decompose
jump risk innovations in their upside and downside components and examine the
relative contribution of these two in the documented jump risk premium. The results
of this exercise clearly show that the negative jump risk premium is due to its
downside jump risk component. On the other hand, the premium of the high-low

portfolio sorted by upside jump risk betas is not significant.
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Our results are robust to bivariate sorts and Fama-MacBeth (1973) regressions. In
particular, we show that the negative relation between jump risk betas and
contemporaneous raw and risk-adjusted stock returns holds after controlling for
volatility and skewness risk exposure. This result is particularly important as
preliminary evidence indicate a strong cross-sectional relation between jump risk
loadings, and variance or skewness loadings. We also perform Fama-MacBeth (1973)
regressions, where we provide evidence for a robust negative relation between the
exposure of stocks to aggregate jump risk and contemporaneous stock returns after

controlling for several variables suggested in the literature.

Finally, our main results carry over to a predictive setting, in which we compare the
subsequent realized monthly returns of the quintile portfolios sorted by jump risk
betas estimated over the previous period. We show that the high-low quintile portfolio
delivers significant risk-adjusted returns in the following month of the portfolio
formation period. These results are robust to different beta estimation windows and

return holding periods.

This chapter is closely related to Cremers, Halling, and Weinbaum (2015). They
create a jump risk factor from option prices as a delta-neutral, vega-neutral and
gamma positive portfolio of straddle positions. This jump risk factor is orthogonal to
volatility risk and is negatively priced in the cross-section of stock returns
contemporaneously. Our study differs from Cremers, Halling and Weinbaum (2015)
in at least two important dimensions. First, we conduct a simulation study to examine
the ability of our suggested variable extracted from option prices and the variable
constructed by Cremers, Halling, and Weinbaum (2015) to proxy for jump risk. The
findings from this exercise are very interesting. While, our jump risk measure, can
accurately approximate the third-order moment of the jump size distribution, the jump
risk factor of Cremers, Halling, and Weinbaum (2015) fails to proxy for jump risk.
The main reason for that is that in practice the straddle portfolio, aiming to acquire
exposure to jump risk, is constructed using Black-Scholes sensitivities, which may
substantially differ from the true ones. This is especially true for vega. Therefore, the
proposed jump risk factor is not actually orthogonal to volatility risk, nor even to
market risk. Second, our jump risk loadings can predict the future exposure of stocks
to jump risk. Therefore, the results of the contemporaneous cross-sectional analysis

carry over to a predictive setting. In Cremers, Halling, and Weinbaum (2015) this is
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not the case. When stocks are sorted by past jump risk betas, the subsequent average
return of the high-low quintile portfolio swings sign from negative to positive.®
Therefore, an investor who seeks a hedge against jump risk and construct a hedge
portfolio ex-ante, will be poorly hedged over the following month. As Barahona,
Driessen, and Frehen (2021) show, if betas are unpredictable then investors cannot
acquire exposure to a certain risk factor, and thus to create a risk premium. These two
observations cast doubt on the jump risk premium identified by Cremers, Halling, and
Weinbaum (2015).

Our study is also related to Bollerslev, Li, and Todorov (2016) who estimate jump
risk betas from high frequency data. Like us, they find that jump risk is priced in the
cross-section of stock returns We complement their results by estimating jump risk
betas as the response of stock returns to innovations in the (approximated) third-order
moment of the jump size distribution extracted from option prices. In addition, we
provide evidence that only downside jump risk is priced in the cross-section of stock

returns.

The option pricing literature has long ago related jumps to skewness. Therefore, our
study is also related to Chang, Christoffersen, and Jacobs (2009), who investigate the
pricing of market skewness risk in the cross-section of stock returns. Our work differs
from them in two points. First, in contrast to us, they document a negative market
price of skewness risk, which implies a positive jump risk premium which is
inconsistent with economic intuition. Second, our jump risk premium remains intact

when we control for skewness risk exposure.

Finally, our cross-sectional pricing results also complement recent studies examining
the impact of jump risk in the level and time-series variation of equity and variance
risk premiums. Santa-Clara and Yan (2010) and Bollerslev and Todorov (2011),
among others, provide strong evidence that a large portion of the aggregate equity

premium and its time-series variation could be attributable to jump tail risk.

The rest of this chapter is organized as follows. Section 2 sets the theoretical

background and discuss how we can approximate a jump risk measure from option

° The sign of the high-low quintile portfolio turns out to be negative once more when stocks are sorted
by predicted jump risk betas. However, these betas are in-sample predictors (and not out-of-sample)
depending on parameter estimates which can be observed ex-post.
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prices. Section 3 conducts a small-scaled simulation study to investigate the accuracy
of our approach to approximate jump risk. Section 4 describes the data and the
methodology used to investigate whether jump risk is priced. Section 5 presents our
main results on the pricing of jump risk in the cross-section of stock returns. It also

examines the robustness of our results. Section 6 concludes the chapter.

2.2 Theoretical Background

2.2.1 General setup

No-arbitrage implies the existence of a risk-neutral probability measure Q defined on
a probability space (2, F, Q). Let S; be the stock price at time t. Then, under Q, the
stock return can be modeled as a superposition of a predictable drift component and a
martingale. The drift component is determined by no-arbitrage. The martingale
component can further be decomposed canonically into two orthogonal components: a
purely continuous martingale and a purely discontinuous martingale (see Jacob and
Shiyaev (1987), p.84). Therefore, S; solves the following stochastic differential

stochastic differential equation:

ds
S_t = (r — q)dt + o,dW; + (exp(J;) — 1)dN; — v, (dx)dt, (2.1)
t_
where the instantaneous risk-free rate r and dividend yield g are assumed to be
constant, g, is the instantaneous volatility process left unspecified and W, a standard
Brownian motion. N; is a Poisson counting process with stochastic intensity A;, J; is

the random price jump size and v, = A;g9; is the compensator with g, =

Ez@(exp(]) —1). When a jump occurs at time 7, the induced price change is (S; —
S:=) = exp(J;) — 1, which implies that log(S;/S;-) = J,. Equation (2.1) models the
price change as the sum of a risk-neutral drift and two martingale components: a
purely continuous martingale and a purely discontinuous (Jump) martingale. This is a
very general specification and we do not make any further assumptions about the

properties of the jumps or the form of the stochastic volatility process. Indeed, model
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(2.1) subsumes virtually all models used in finance with finite jump activity (see Ait-
Sahalia, Karaman, and Mancini (2020)).

2.2.2 Jump and tail index implied from option prices

Following Carr and Wu (2009) and Du and Kapadia (2012) we aim to extract a jump
risk measure building on the first two (non-central) moments of the stock log-return
during the period [0,7] and the expected quadratic variation of the log-return process
during the same period. The following Proposition states the first important result of

our analysis.

Proposition 1 For an asset price process characterized by (2.1) the following result
holds:

2ES [ln(i—Z)z] = -2 [ln(z—:)] +(r— QT +EQ [} In(Se_/So)dInS; + Jo(T), (2.2)

where

T
Jo(™) = B [ woan, (2.3)
0
with ¥(x) = (1 + x + x%/2) — e*.

Proof. In order to demonstrate this Proposition, we first apply It6’s lemma to model

(2.1) to retrieve to log of the stock price as:
S Tas, 1 (T T
ln< T) —t——f o2dt +f 1+, — el)an,. (2.4)
So o Se— 2, 0
Then define the quadratic variation of the log of the stock price process over the
period [0,7] as:

[InS,InS], f ofdt + [ " 1.2dN,. (2.5)
Combining (2.4) and (2.5) yields:

T ds,

ln@D 5o~ ns,nSlyy + J »(U,)dN,. (2.6)
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We then apply 1t6’s lemma to retrieve the squared of the log of the stock price as:

S T
() =2 f (S, /So)dInS, + [In S, In S (2.7)
0 0

Substituting equation (2.7) into (2.6), taking conditional expectations under measure
Q, and rearranging terms yields formula (2.2). m

This result relates (through the expected quadratic variation) the first and second-
order (non-central) moments of the log-return distribution with term J,(T) that
depends on the stock price discontinuous component. Intuitively, as ¥ (x) =~ —x3/3!,

Jo(T) captures the (opposite of the) third-order moment of the jump measure.

Furthermore, it is well-known in the literature that the moments of the log-return
distribution under measure Q can be directly obtained from a portfolio of European
out-of-the money (OTM) call and put options (see Bakshi, Kapadia, and Madan
(2003) and Rompolis and Tzavalis (2017)). Therefore, our second Proposition shows

how term J,(T) can be proxied by a portfolio of European call and put options.

Proposition 2 For an asset price process characterized by (2.1) the following result
holds:

. ooln SoIn (i.—o)
Jo(T) = e L CO(K T)dK +f e Py(K,T)dK 28)
+ Ao (T),
where
Ap(T) = (e DT — (r — )T — 1) — EY f In (SS >dlnSt, (2.9)
0 0

and Cy(K,T) (Py(K,T)) denotes the price of a European call (put) option observed at

time O with strike price K and time-to-maturity T.

Proof. Bakshi, Kapadia, and Madan (2003) show that:
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£Q [ln(i_z)z] _ et U:%@ —In (f—o» Co(K, T)dK

(2.10)
So 1 K
—|1-1 (—))P K,T)dK|.
+ | g (t-m(5))meen ]
Rompolis and Tzavalis (2017) further demonstrate that:
S S
Q T = pQ|ZI| =
Eo [ln (50>] Eolg,]~1
@ 1 S 1 (2.11)
—e™l U FCO(K,T)dK+f FPO(K,T)dKl.
So 0

Substituting equations (2.10) and (2.11) into (2.2) and rearranging terms yields

formula (2.7). m

Formula (2.7) is also demonstrated by Du and Kapadia (2012) in a slightly different
fashion. The results of Proposition 2 indicate that J,(T) can be calculated as the sum
of a portfolio of OTM call and put options and the term A, (T). The portfolio consists
of long positions in OTM puts and short positions in OTM calls. Intuitively, as the
prices of OTM calls (puts) increase due to the expectation of a future upside
(downside) jump, J,(T) decreases (increases) indicating an increase (decrease) in the

third-order moment of the jump measure.

As long as Ay(T) is negligeable, J,(T) can be accurately approximated by the
portfolio of OTM options. Indeed, Du and Kapadia (2012) impose some mild
additional assumptions on model (2.1) and show that 4,(T) = 0(T?). Therefore, for

a short maturity period T, the impact of A,(T) can be neglected, so that,

o In(Sy/K S
Jo(T) = e[ S8 oK, TYAK + f;

In(So/K
200 py(K, TYAK].  (2.12)

Formula (2.12) enables us to retrieve J,(T) without imposing any parametric structure

in our model using the observed prices of European call and put options.
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2.2.3 A new scaled measure of upside and downside jump risk

As noted previously, function ¥ (x) ~ —x3/3!, so that J,(T) approximates the

(opposite) of the third-order moment of the jump measure under measure Q, i.e.,

Jo(T) ~ =S Eg [ J3dN:. (2.13)
To better grasp the nature of J,(T) and the factors underlying its dynamics, we need
to put more structure in the model. To this end, we assume that jump arrivals intensity
is stochastic and depends on the spot variance, i.e., 1, = 16? where 1 > 0 (see
Andersen, Fusari and Todorov (2017)). The assumption regarding the temporal
variation of jump intensity related to spot variance is followed by a broad number of
relevant studies (see, e.g., Pan (2002), Ait-Sahalia, Karaman, and Mancini (2020)).
Moreover, we assume the distribution of J; is time-invariant. Under these assumptions
Jo(T) can be written as:

T

1
Jo(T) = —E/IE?(P)E((,@ f o2dt. (2.14)
: 0

Let #{3) = Eé@(]3) denote the third-order moment of the jump size distribution and

EIVy(T) = EQ fOT ofdt is the expected integrated variance. Then,

1
Jo(T) ~ — a/1,1{3)1511/0 (7). (2.15)

The last relationship implies that J,(T) is the product of the third-order moment of the

jump size distribution and the expected integrated variance. Thus,

RN
EIVy(T) . 31"H®

(2.16)

Hence, if we scale J,(T) with EIV,(T) we obtain a measure of the third-order moment

of the jump size distribution.

In order to be able to apply formula (2.16) in practice, we need to scale J,(T),
approximated by a portfolio of OTM call and put options as equation (2.12) indicates,

with an estimate of EIV,(T). This estimate is provided in the next Proposition.
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Proposition 3 For an asset price process characterized by (2.1) the following result
holds:

So

EIV,(T) = 2¢™ U —Co(K, T)dK +f =5 Po(K, T)dKl + By(T), (2.17)
So 0

with

T
Bo(T) =2(1+ (r —q)T — ™97 + zf (1+J, — elt)an,. (2.18)
0

Proof. The proof uses several results already found in the two previous

demonstrations. In particular, formula (2.4) implies that:

%EIVO(T) _ _g° [ln( )] Fr— T+ j (A +), —el)dN,.  (2.19)

Importing equation (2.11) in the previous formula yields:

So
EIV,(T) = 2¢"T U — Co(K, T)dK +j K12 Py (K, T)dK] + Bo(T), (2.20)
So 0
with
T
Bo(T) =2(14 (r — )T — D7) + zf (1+J, — elt)an,. (2.21)
0
|

This Proposition indicates that EIV,(T) can be approximated by a portfolio of OTM
call and put options assuming that the effect of the jump term B, (T) is negligeable. In

other words,

So 1
EIV,(T) = 2¢™" [ f — Co(K, T)dK + f 2 Po(K, T)dKl. (2.22)
So

Note here that the VIX index follows directly from this analysis.
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2.3 Simulation study

In this section we conduct a small-scaled simulation study. The aim of it is twofold.
First, we examine the accuracy of the option-implied scaled jump risk measure to
approximate the third-order moment of the jump size distribution. Second, we
measure the performance of the delta-neutral, vega-neutral and gamma positive
strategy suggested by Cremers, Halling, and Weinbaum (2015) to proxy for jump risk.
We assume that stock prices are generated by the stochastic volatility with random
jumps model with state-dependent stochastic intensity process (see Bates (2000) and
Pan (2002)). In particular, we assume the following data-generating process, under

risk-neutral measure Q, for the stock price S

as
# = (r — q — pAoP)dt + o,dWS + (exp(J,) — 1)dN, (2.23)

dof = k(0 — of)dt + no.dWg,
where W2 and W are two standard Brownian motions with correlation coefficient p,
J¢ is the random jump size conditional on a jump occurring, with time-invariant

normal distribution ]t~N(M1,0]2) and a mean relative jump size u = exp(u; +
%ajz) — 1. N, is the Poisson counter with a state-dependent stochastic intensity

process Ag? for some A > 0. The assumption of a stochastic intensity process which
is affine on the latent spot variance is in accordance with our previous theoretical

discussion in Section 2.2.3.

We conduct our experiments by simulating model (2.23) using the parameters
estimated by Pan (2002) at a daily frequency for a 1-year period.*® At each day of our
sample period we calculate the theoretical European call and put prices with 1 and 2-
month time-to-maturity for a moneyness level of [0.75,1.25]. Using the 1-month time-

to-maturity theoretical option prices we approximate J,(T) using formula (2.12) and

10 These parameters are equal to: x = 3.3,6 = 0.03,n = 0.3,p = —0.53,A = 12.3,u; = —0,21,0) =
0.038. We also assume that » = 0.05 and g = 0.0015. The initial values of the stock price and spot
variance are set to S, = 100 and g, = 0.015, respectively.
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Jo(T)/EIV,(T), where EIV,(T) is approximated by formula (2.22).1* We compare the
values of the option-implied J,(T) and J,(T)/EIV,(T) to the third-order moment of
the jump process (see equation (2.15)) and the third-order moment scaled by the

continuous part of the expected quadratic variation, respectively. Model (2.23)

implies that the third-order moment of the jump process is equal to —%ugg)F(T, 00) »

where u{3) is the time-invariant third-order moment of J; and

EQ [ o?dt = F(T,00) = T((T)a, + (1 — m(T))8), (2.24)
_ o~ KT
where m(T) = 1:—T Clearly, the third-order moment scaled by the continuous part

of the expected quadratic variation is equal to — %#{3)-

The results of the first exercise are presented in Table 1, Panel A. Figure 1 presents
the time-series theoretical and approximated values of J,(T) and EIV,(T). The results
of the table and the graphs of Figure 1 clearly indicate that the option-implied J,(T)
can very accurately approximate the third-order moment of the jump process. The
root mean square error (RMSE) is virtually zero while the mean percentage error
(MPE) is close to 6%. The results of the table also show that the approximation error
increases when we calculate J,(T)/EIV,(T). This is due to the error encountered in
the approximation of EIV,(T) by formula (2.22) as the graphs of Figure 1 also
indicate. Still, the RMSE is equal to 0.0067 and the MPE is close to 30%.

The second experiment examines the performance of the delta-neutral, vega-neutral
and gamma positive strategy suggested by Cremers, Halling, and Weinbaum (2015)
as a proxy of a jump risk factor. We use at-the-money (ATM) options with 1 and 2-
month time-to-maturity to form delta-neutral straddle positions. We then form a jump
risk factor mimicking portfolio (denoted as JUMP) by taking one long position in 1-
month straddle and vega,,/vega,y short positions in the 2-months straddle.
vega,y (vega,y) denotes the vega of the 1-month (2-months) straddle position.

Following Cremers, Halling, and Weinbaum (2015), option sensitivities are

11 Since these formulas employ integrals of continuous functions to obtain J,(T) and EIV,(T) based on
them, we can employ cubic splines to interpolate the implied by our option prices volatilities between
two different points of the data. Due to the lack of option prices at zero and o we extrapolate the
implied volatilities over the intervals (0, K,,,;»] and [K;qx, ), Where K,,,;,, and K4, are the minimum
and maximum strike prices from our data, respectively. Our results are based on a constant
extrapolation scheme, as common in the literature, that is, assuming that the implied volatility function
is flat outside the observed strike price interval.
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approximated using the Black-Scholes model and the implied volatility of the
respective options. We compare the approximated JUMP factor of Cremers, Halling,
and Weinbaum (2015) with the theoretical one calculated using option sensitivities
derived by model (2.23).

The results of this second exercise are presented in Table 1, Panel B. We report the
mean and standard deviation of the approximated and true JUMP risk factor along
with the RMSE and MPE. The average negative value of the true JUMP risk factor is
consistent with a negative jump risk premium that this strategy is exposed. In contrast,
the approximated one has a positive mean value, large variability, and deviates
substantially, from the true one, as the RMSE and MPE metrics indicate. In fact, they
have a large negative correlation of -87%. Therefore, the approximated JUMP risk
factor suggested by Cremers, Halling, and Weinbaum (2015) cannot be considered as
a robust proxy of jump risk premium as this counterexample shows. Why this
happens? The reason is that the Black-Scholes option sensitivities (and especially
vega) are poor proxies of the true ones. This is clearly observed in Figure 2, which
plots call option delta, vega and gamma across moneyness levels for one indicative
day of our sample. The direct implication of this misspecification error is that the
approximated JUMP risk factor is not a delta-neutral and vega-neutral strategy. In
fact, the average delta of the strategy is equal to 0.33, while the average vega is equal
to 8.58, indicating that the approximated JUMP risk factor is also exposed to market

and volatility risk.

2.4 Data, Variables and Empirical Methodology

This section describes our data and the empirical methodology we use to extract the
jump risk measure from observed option prices. It also presents the empirical design

we employ to investigate the pricing of jJump risk in the cross-section of stock returns.
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2.4.1 Data

For the empirical analysis, we obtain data from various sources. We get returns,
market capitalization and prices for all ordinary common shares (share code 10 and
11) from the CRSP database. Option data for the S&P 500 index are downloaded
from OptionMetrics for the period January 1996 to April 2016, we use standardized
option data from the surface file in order to obtain a constant maturity for our options
every day. Accounting data are obtained from Compustat. The returns on the market
premium, SMB, HML and MOM factors are obtained from Kenneth French’s online
data library.?

2.4.2 Extracting the jump risk measure from observed option prices

This part of the chapter shows how to calculate J,(T) and EIV,(T) using equations
(2.12) and (2.22), respectively, from observed option prices. The estimates of these
two variables will then be used to calculate a scaled measure of jump risk according
to equation (2.16). Furthermore, for the purpose of our analysis we calculate the
option-implied variance and skewness (denoted as VAR and SKEW henceforth) of the
S&P 500 index return using Bakshi, Kapadia, and Madan (2003) formula (see
Appendix B for details).

We calculate the option-implied jump risk measure J,(T) and expected integrated
variance EIVy(T) of the S&P500 index at a daily frequency following Du and
Kapadia (2012) and Bakshi, Kapadia, and Madan (2003) using 30-day constant
maturity options from the implied volatility surface file. More specifically, every day
we interpolate implied volatilities between the lowest and highest available
moneyness using cubic splines and perform constant extrapolation with 1% and 300%
as bounds. Subsequently, we convert implied volatilities to option prices using the
Black-Scholes formula, where moneyness levels less than 1 are used to create OTM

put prices and moneyness levels more than 1 are used to create OTM call prices

12 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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which are used to calculate J,(T) and EIV,(T). For the rest of the chapter, J,(T)
which is computed using this approach with T = 30 days is denoted as JTI. The
scaled measure of jump risk, which is denoted as JTIsc, is derived by dividing J,(T)
with EIV,(T) following the analysis of Section 2.2.3.

In addition, we decompose J,(T) into a downside jump risk measure ]é")(T) and an

upside jump risk measure ]é”(T) following Du and Kapadia (2012). The downside
jump risk measure corresponds to the OTM put portfolio, while the upside jump risk
measure corresponds to the OTM call portfolio.!® This decomposition is further
supported by the analysis of Bollerslev and Todorov (2011) that demonstrate that the
prices of short-maturity OTM options are dominated by the jump measure. Intuitively,
over short time intervals, changes in the price due to the continuous component are
invariably small relative to the possible impact of large jumps, and the diffusive part
may be ignored. Moreover, they show that if the jump measure is separated in an
upside and downside jump term, then OTM call prices depend on the upside jump

component, while OTM put prices depend on the downside jump component.
Following the previous analysis, we also scale ]é")(T) and the opposite of ]é”(T) by
dividing them with EIV,(T). For the rest of the chapter, we denote ]é_) (T) and the

inverse of ]é” (T), which are computed from S&P500 index option data using the
aforementioned empirical approach with T =30 days, as JTIN and JTIP,
respectively. The scaled measure of downside and upside jump risk is denoted as

JTINsc and JTIPsc, respectively.

To derive the innovations in JTI, JTIP and JTIN and their respective scaled measures
we use the daily changes in each variable as in Ang, Hodrick, Xing and Zhang (2006)
and Agarwal, Bakshi and Huij (2009).

13 Technically, we define ]é_) (T) and ]é” (T) as:
So
(M =eT f lrliﬂ%(& T)dK,
0
and
" 1n(So/K)
KZ

ISP =T f

So

C,(K, T)dK,

respectively.
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Finally, we calculate 30-day constant maturity estimates of VAR and SKEW of the
S&P500 index at a daily frequency using once more the aforementioned numerical
approach. VAR and SKEW innovations are calculated as daily changes in each

variable.

2.4.3 Empirical methodology

Our research design follows closely Ang, Chen and Xing (2006) and Cremers, Halling
and Weinbaum (2015) in considering the contemporaneous relation between the
realized factor loadings and realized stock returns. The contemporaneous relation

between factor loadings and risk premium is the essence of the risk-return relation.

Our empirical methodology employs portfolio sorts, in which stocks are sorted on
their individual factor loading estimated over a given time period. Realized average
returns are also computed over the same time period, enabling us to examine the

contemporaneous risk-return relation.

In particular, for each stock i we estimate betas using daily returns over rolling annual

periods every month from the following regression:
e =B5+ BI{/IKTtMKTt + :BIt'/IKTt_lMKTt—l + ﬁjxtAXt + ﬁjxt_lﬁxtq + &} (2.25)

where r{ is the excess return of stock i on day ¢, MKT, is the market premium (the
excess return of the market portfolio proxied by the CRSP value-weighted index) on
day t, and AX, is the daily innovation in the variable of interest. We also include one-
day lagged risk factors (see Dimson (1979)) and use the sum of the betas for each risk
factor as in Cremers, Halling, and Weinbaum (2015) to mitigate the impact of
infrequent trading. Following Bali, Engle, and Murray (2016) we require at least 200
non-missing observations in order to estimate the betas. Other factors may also
influence the returns of individual stocks. We do not include these factors in

regression (2.25) as they might add noise in the estimation of ﬁjxt. We do, however,

control for a number of them when conducting the cross-sectional asset pricing tests.
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Following the relevant literature (see, e.g., Ang, Chen, and Xing (2006)), at the
beginning of each month, we sort stocks into quintiles based on their ﬁth loadings
estimated from equation (2.25) over the previous 12 months. We then compute the
average portfolio excess returns over the same 12 months used to estimate the factor
loadings. To ensure that our results are robust to other factors known to affect stock
returns, we estimate portfolio alphas using the Fama and French (1993) three-factor
model, and the Carhart (1997) four-factor model.

We conduct a number of robustness checks to ensure that our results are not driven by
other risk factors. First, we perform dependent bivariate sorts to show that jump risk is
priced in the cross-section of stock returns when controlling for the exposure of stocks
on VAR and SKEW innovations. Second, we perform Fama-MacBeth (1973)
regressions that allows us to simultaneously control for more than one stock
characteristics. Finally, we extend our empirical methodology to a predictive setting.
Although, the contemporaneous relation between returns and factor risk loadings
represents the essence of the risk-return relation, is not of much practical value if the
betas cannot be used to predict future returns. In so doing, we sort stocks into
quintiles based on the realized betas over the past 12 months, and then compute

average returns and alphas over the following month.

2.5 Empirical Results

This section describes our main empirical results on the pricing of jump risk in the
cross-section of stock returns. We first, present summary statistics of jump risk
measures extracted from option prices. Secondly, we present summary statistics of the
factor loadings on jump risk. We then discuss the results of portfolio sorts. Finally, we
consider various robustness checks to ensure that our results are not driven by the

exposure of stocks to other risk factors.
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2.5.1 Summary statistics of jump risk measures

We begin our empirical investigation by examining the properties of jump risk
measures and their innovations extracted from traded option prices. Table 2 presents
descriptive statistics of selected variables (Panel A) and the time-series correlations of
their innovations (Panel B). The average value of JTI is positive corresponding to a
negative skewed jump size distribution. Furthermore, as the 5% percentile indicates,
JT1 is positive for almost all data points exhibiting positive skewness and positive
excess kurtosis. The results of the table also indicate that the bulk of JTI variation is
due to JTIN. The approximately 3 times higher mean value of the downside jump risk
measure, JTIN, compared to the upside jump risk one indicates that OTM put options
are more expensive than OTM call options. This is consistent with the smirk pattern
observed in the S&P 500 index implied volatility curves, termed as crash-o-phobia by
Rubinstein (1994) which is also present in other major equity indices (see Foresi and
Wu (2005)). Moreover, JTIN has twice the variability of JTIP. Similar conclusions
can be drawn by inspecting the descriptive statistics of the scaled measures of jump
risk. The statistically significant average positive value of JTIsc, equal to 0.0185,
indicates that the jump size distribution is negatively skewed. Again, the bulk of its
variation is due to the downside jump risk component. JTINsc exhibits an

approximately 3 times higher mean value and standard deviation compared to JTIPsc.

The results of Panel B indicate that innovations in the jump risk measures are
positively correlated with innovations in variance. For example, the correlation
coefficient between AJTI and AVAR is 60%. This is consistent with our theoretical
framework, indicating that random jump intensity is related to spot variance. Jump
innovations have a 95% and 51% correlation with downside and upside jump
innovations, respectively, indicating that shifts in JTI are mainly due to downside
jump innovations. Moreover, downside and upside jump innovations show a positive
correlation coefficient of 73%. In contrast, variance-scaled downside and upside jump
innovations show a negative correlation of -27%, indicating that the positive
correlation of the unscaled variables is due to their relation to variance. Moreover,
both variance-scaled upside and downside jump innovations have the expected sign

on the correlation coefficient with ASKEW . A positive (negative) downside (upside)
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jump innovation is related to a decrease (increase) in skewness. Interestingly, AJT1sc
exhibits a negative correlation with excess markets returns of -52%, while correlations
with other factors are much lower in absolute magnitude. Finally, note that the
variance-scaled jump risk measures innovations have a positive correlation with
AVAR which is lower in magnitude compared to the correlation of the unscaled

variables.

Figure 3 plots monthly innovations in the scaled jump risk measures for our sample
period (January 1996-April 2016). The highest innovation in all three variables is
observed in the aftermath of Lehman Brothers default in October 2008. Additional
significant spikes occur during the Asian currency crisis in 1997 and the LTCM
default in 1998. The plots of the figure also confirm the high correlation between
innovations in JTIsc and JTINsc.

2.5.2 Summary statistics of estimated betas

Our main empirical results are based on betas on jump innovations estimated for
individual stocks in the sample. For each stock we estimate betas with respect to
AJTIsc, AJTINsc, and AJTIPsc, using daily returns over rolling annual periods every
month from regression (2.25). In Table 3 we present summary statistics of these factor
loadings where we also include betas on AVAR and ASKEW. Betas on AJTIsc,
AJTINsc, and AJTIPsc have positive mean and median, exhibit positive skewness
and are leptokurtic, indicating that although most stocks have returns that are
positively related to jump risk measure innovations, a group of them are inversely
related. Panel B shows the time-series average of cross-sectional correlations of betas.
Betas on scaled jump risk measures are positively correlated with variance betas and
downside (upside) scaled jump shows a negative (positive) correlation coefficient of -
69% (89%) with skewness betas as expected. Panel C presents monthly
autocorrelations of betas. We observe high autocorrelation coefficients in the first lags
which is justified from the use of overlapping annual windows in the beta estimation
regression. The figure also indicates that after lag 6 the autocorrelation of all betas

decreases significantly and becomes insignificant after lag 12. These results have
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straightforward implications for the predictive regressions that we examine later,

indicating that past betas can predict future betas at least in the medium-term.

To visualize the time-series and cross-sectional variation in the betas on our main
variables of interest, i.e., AJTIsc, AJTINsc, and AJTIPsc, Figure 4 shows the time-
series of value-weighted portfolio betas, based on monthly quintile sorts. We observe
a higher dispersion among Bs;risc and fa;rinse compared to B, ripsc. It is also
evident that higher dispersion among betas is detected during periods of market stress,
like for example, 2000-2002 and 2008-2010. This excess dispersion is mainly due to
the increase of the stock’s betas in the high quintile portfolio, indicating that during
periods of market stress the positive relation between AJTIsc and high beta stock

returns further increases.

2.5.3 Univariate portfolio sorts

This section presents the main empirical results of the chapter. It investigates whether
jump risk is priced in the cross-section of stock returns through portfolio sorts. Every
month we create value-weighted portfolios by sorting stocks into quintiles based on
the jump risk betas estimated over the previous 12-month period. We compute

average realized excess returns and portfolio characteristics over the same 12 months.

Table 4, Panel A, presents the results for contemporaneous value-weighted quintile
portfolios sorted by B4;r;sc. Several conclusions can be drawn from these results.
First, as Panel A indicates stocks with a higher exposure to aggregate jump risk (i.e.,
low beta) measured by AJTIsc earn higher returns. In fact, the low quintile portfolio
average return is equal to 13.22% per year. The relation between quintile portfolio
beta and average return shows a decreasing monotonic pattern, leading to a high
quintile portfolio with an average return of 3.81%. Therefore, the high-low quintile
portfolio sorted by B4;r;sc Produces a strongly statistically and economically
significant premium of -9.41% per year. This is consistent with a negative market
price of aggregate jump risk. Stocks with low sensitivities to jump risk are exposed to
aggregate jump risk and earn high returns. In contrast, stocks with high sensitivities to
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jump risk hedge against jump risk and investors are willing to accept a lower return
for them. Second, the negative premium of the high-low portfolio is robust to other
known risk factors. Risk-adjusted returns with respect to the Fama and French (1993)
3-factor model and the Carhart (1997) 4-factor model are very close to the
documented average return and both are statistically significant at 1% level. Third,
even though the relation between betas and portfolio average returns is monotonic, the
bulk of the spread between the high and low quintile portfolios comes from the spread
between the fourth and highest quintile. This result suggests that it is the
underperformance of stocks that hedge against aggregate jump risk that is largely
responsible for the negative premium of the high-low quintile portfolio. Fourth,
consistent with the correlation coefficients between betas reported in Table 3, we
observe a monotonic pattern in Bu;rinsc, Bajripsc: Bavar and Baskew, of the quintile
portfolios sorted by f,;7;sc. In fact, high (Iow) B4r;sc stocks have high (Iow) B4, nsc
and low (high) Bajripsc. Thus, stocks hedging against aggregate jump risk, hedge
against downside jump risk, while they are exposed to upside jump risk. Moreover,
high (low) B,;r1sc stocks have high (low) Bayar and low (high) Baskew, indicating
that stocks hedging against jump risk can also hedge against aggregate volatility risk,
while they are exposed to skewness risk. Fifth, the high-low quintile portfolio sorted
by Bajrisc 1S also exposed to market risk, indicating that high beta stocks hedge
against jump risk. Finally, the spread portfolio has a negative exposure on the HML
factor. Thus, stocks which are exposed on aggregate jump risk (Iow f,;7sc) are also
exposed to the value factor. Therefore jump risk can help in explaining defensive and

value anomalies.

Besides investigating the pricing of aggregate jump risk in the cross-section of stock
returns, it is also interesting to decompose jump innovations in their upside and
downside components and examine the relative contribution of these two in the
documented jump risk premium. The results of this exercise are shown in Table 4,
Panel B and C. These results clearly show that the negative jump risk premium is due
to its downside jump risk component. On the contrary, the high-low quintile portfolio
based on B,;rpsc fails to deliver a significant premium in raw or risk-adjusted basis.
Therefore, in the reminder of the chapter we focus our investigation on the pricing of

downside aggregate jump risk.
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2.5.4 Bivariate portfolio sorts

The results of the previous section reveal that stocks which are exposed to jump risk,
they are also exposed to volatility and skewness risk. Therefore, one may argue that
the documented premium reflects the exposure of stocks on aggregate volatility risk
(see Ang, Hodrick, Xing and Zhang (2006)) and/or skewness risk (see Chang,
Christoffersen and Jacobs (2009)). To examine this issue in depth we perform
dependent bivariate sorts to examine if the spread portfolio still produces significant
premium when controlling for Byyar and Baskew. More specifically, we first sort
stocks based on B,y 4r OF Baskew In quintiles, then within each quintile we further sort

stocks on f4;rinsc, resulting in a total of 25 portfolios.

Table 5 reports the results. The high-low quintile portfolio sorted by S, ;r/ys provides
significant average returns and alphas when controlling for B, 4z (see Panel A). Not
surprisingly, the average return is reduced to -3.83% per year but remains statistically
significant at the 5% level. The results of the table also indicate that this negative
premium is mainly due to stocks in the highest B,y 4z quintile. Therefore, the highest
variation in the cross-section of stock returns due to their exposure to downside jump
risk is observed for stocks that hedge against aggregate volatility risk. In addition to
that, we observe that the highest S,y 4z and Ba;rnsc portfolio which hedges against
both aggregate volatility and downside jump risk provides the lowest return across all
25 portfolios of -1.21% per year.

Furthermore, the significant negative premium of the high-low portfolio sorted by
Bajrinsc 1S robust when controlling for B,skew (see Panel B). The average return of
the high-low quintile portfolio is -8.6% per year and statistically significant at the 1%
level. Moreover, average return and alphas of the spread portfolio remain negative
and significant across almost all B,sxsws quintiles. Interestingly though, the lowest
value is observed in the low B,skew Qquintile, indicating that the highest variation in
the cross-section of stock returns due to their exposure to downside jump risk is

observed for stocks that hedge against aggregate skewness risk.

The conclusion drawn by the section is that, although jump risk measure innovations

are correlated to innovations in variance and skewness as shown in Table 3, the
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documented negative premium of the high-low portfolio sorted by jump risk betas

cannot be explained by the exposure of stocks to volatility or skewness risk.

2.5.5 Fama-MacBeth regressions

The portfolio sorts provide strong evidence that jump risk exposure are related to
contemporaneous average stock returns. In addition, the sign of the average return of
the high-low portfolio further suggests negative price of risk for aggregate jump
innovations, consistent with asset pricing theory. However, they ignore the potential
effect of other explanatory variables known to explain the cross-sectional variation of
stock returns. Furthermore, aggregating the stocks into quintile portfolios may ignore
potentially important cross-sectional firm-level information. To address these issues,
we perform Fama-MacBeth (1973) multivariate regressions, conducted at the firm
level, that allows us to simultaneously control for more than one stock characteristics.
These include market capitalization, book-to-market ratio, momentum, mispricing,
idiosyncratic volatility, and illiquidity. The definition of each variable is provided in
Appendix A.

Table 6 presents the time-series averages of cross-sectional coefficients alongside
with the Newey-West (1987) t-statistics. We show that the f,;r;ys coefficient is
negative and statistically significant while controlling for the market capitalization,
book-to-market, momentum, mispricing, idiosyncratic volatility, and illiquidity. This
result confirms that jump risk is priced in the cross-section of stock returns and price
of jump risk is negative. The effect is also economically significant. A two-standard
deviation (equal to 2.30) increase across stocks in 8, ysc together with the estimated
premium of -0.012 from specification (6), is associated with a 5.52% drop in expected

return per year.

Overall, the evidence presented so far suggests that jump risk is priced in the cross-
section of stock returns. Systematic jump exposure matters for stocks expected
returns. These results are in line with previous studies examining the pricing of jJump

risk in the cross-section of stock returns (see Cremers, Halling and Weinbaum (2015)
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and Bollerslev, Li and Todorov (2017)). They also complement the empirical findings
of previous studies examining jump risk premium, in the market level, using time-
series stock and options data (see, e.g., Santa-Clara and Yan (2010), Bollerslev and
Todorov (2011)).

2.5.6 Predictive single-sorted portfolios

The results reported so far focus on the contemporaneous relation between jump risk
betas and stock returns. While we find strong evidence that jump risk is priced in the
cross-section of stock returns, these results have limited practical value as they cannot
be used to form an ex-ante investment strategy that can be followed to construct
hedge portfolios. Furthermore, as Barahona, Driessen and Frehen (2021) show, if
betas are unpredictable then investors cannot acquire exposure to a certain risk factor,
and thus to create a risk premium. They suggest that cross-sectional asset pricing tests
should employ betas that are observable to investors rather than using realized betas
that are only observable ex-post. In this section, we extent the previous analysis

forming predictive single-sorted portfolios.

As previously, we estimate the different betas over the past 12 months. We then sort
stocks according to each of different betas and compute the returns the following
month. We report average excess returns and risk-adjusted returns in annual basis
with respect to the Fama and French (1993) 3-factor model and Carhart (1997) 4-

factor model.

Table 7 summarizes the results. As Panel A indicates, we continue to see a
monotonically decreasing relation between the future portfolio returns and past
Bajrisc- Consistent with the slowly decaying autocorrelations for f,,r;5. shown in
Table 3, the high-low portfolio average return, equal to -4.2% per year, remains
negative though lower in magnitude, and statistically insignificant, compared to the
contemporaneous average return reported in Table 4. However, it delivers negative
and statistically significant risk-adjusted returns with respect to the Fama and French
(1993) 3-factor model and the Carhart (1997) 4-model at the 10% level. In addition,
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the estimated alphas are close in magnitude to those reported in the contemporaneous
setting. These results suggest that past jump risk betas are able to predict the cross-
sectional variation in the future stock returns. Furthermore, the relation between
Bajrisc and future stock returns cannot be explained by the size, book-to-market and
momentum factors. As previously, we decompose jump risk in its downside and
upside component and estimate downside (B4;rinsc) and upside fBa;ripsc) jump risk
betas. Consistent with the previous empirical findings, we see that the documented
negative jump risk premium is due to its downside jump risk component. Once more,

upside jump risk is not priced in the cross-section of stock returns.

2.5.7 Beta estimation and return holding periods

The predictive portfolio sorts of the previous section are based on betas estimated
from returns over the previous year and a future one-month return holding period.
These are typical estimation and holding periods used in the empirical asset pricing
literature. In the section, we aim to examine the robustness of our results to different
beta estimation periods and future return holding periods following Bollerslev, Li, and
Todorov (2016).

In Table 8 we report results, on univariate portfolios sorted by fS,;r/nsc, based on
shorter 3-, 6- and 9-months estimation periods (L) and longer 3- and 6-months
holding periods (H). In all cases examined, the high-low quintile portfolio average
excess return is negative varying between -2.12% (Panel 1) and -6.00% (Panel A) per
year. Although, average returns are insignificant, risk-adjusted returns with respect to
the Fama and French (1993) 3-factor model are statistically significant across all
regressions. The significance of the results for longer horizons highlights the

persistence in the cross-sectional predictability.

The results reported in the last two sections are in stark contrast with those of
Cremers, Halling and Weinbaum (2015). They show that when past betas are used to
form quintile portfolios, jump risk premium shift signs from negative to positive.

They attribute this finding to time-varying betas, such that using past loadings does
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not result in consistent exposure to jump risk. Our analysis does not suffer from this
problem. This can be attributed to the persistence of our jump risk betas, so that past
betas estimates computed on different estimation windows can be considered as good

proxies of future jJump risk exposure.

2.6 Conclusion

This chapter examines the cross-sectional pricing of stocks according to their
sensitivities to option-implied jump risk. We find strong evidence that jump risk is
priced in the cross-section of stock returns, and the market price of jump risk is
negative. A high-low portfolio sorted by jump risk betas produce a statistically and
economically significant negative premium of -9.41% per year. Risk-adjusted returns
are also negative and highly significant. Our results also indicate that the negative
jump risk premium is due to its downside jump risk component. On the other hand,
the premium of the high-low portfolio sorted by upside jump risk betas is not
significant. Moreover, this contemporaneous risk-return tradeoff is robust to
controlling for betas to innovations in aggregate variance or skewness using
dependent bivariate sorts. Finally, our main results carry over to a predictive setting,
in which we compare the subsequent realized monthly returns of the quintile
portfolios sorted by jump risk betas estimated over the previous period. These results

are robust to different beta estimation windows and return holding periods.

The cross-sectional evidence reported in this chapter is in line with the results in the
related option pricing and time-series literature. Jump risk constitutes an important
determinant not only of option prices and aggregate equity and volatility premium but

also impacts the cross-sectional variation of individual stocks expected returns
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Figure 2.1. Theoretical and approximated J(T) and EIV y(T) values

This figure presents theoretical and approximated daily values of J,(T) and EIV,(T) derived
in the simulation study. The theoretical values come from the SVJ model (2.23). The
approximated values of J,(T) and EIV,(T) are computed from option prices, generated by
the SVJ model, based on formulas (2.12) and (2.22), respectively.
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Figure 2.2. Call option delta, vega and gamma derived by SVJ and BS models

This figure presents call option delta, vega and gamma across moneyness levels derived by
the SVJ and the BS models. For the BS model the Greeks letters are computed across
moneyness using the implied volatility curve.
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This figure shows innovations at a monthly frequency in the scaled jump risk measure JTIsc,
the scaled downside jump risk measure JTINsc, and the scaled upside jump risk measure

Figure 2.3. Monthly innovations in scaled jump risk measures

JTIPsc. The sample period is from January 1996 to April 2016.
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Figure 2.4. Time-series of portfolio betas to scaled jump risk innovations

This figure shows the time-series of the value-weighted average betas for the quintile
portfolios sorted by B4;risc, Bajrinse aNd Bajripsc- The sample period is from January 1996 to
April 2016.
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This table reports the results of our simulation study. Panel A shows average values, and
standard deviation (Std) in parentheses, of the theoretical and approximated of J,(T), EIVy(T)
and of J,(T)/EI1V,(T) variables. Panel B reports the average values, and standard deviation
(Std) in parentheses, of the theoretical and approximated JUMP risk factor. It also reports the
same statistics for the delta and vega of the approximated JUMP risk factor. RMSE denotes
the root mean squared error, and MPE denotes the mean percentage error between the
respective theoretical and approximated variables. The theoretical values of them are implied
by the stochastic volatility with jumps model (see formula (2.23)). This model is used to

Table 2.1: Simulation study

generate call and put option prices at a daily frequency for a 1-year period.

Panel A: Theoretical vs approximated jump components

Theoretical Approximated
Jo(T) Mean 0.0067 0.0072
Std (0.0038) (0.0041)
RMSE 5.6 x 10
MPE 6.27%
EIVy(T) Mean 0.0031 0.0047
Std (0.0038) (0.0026)
RMSE 0.0018
MPE 53.59%
Jo(T)/EIVy(T) Mean 0.022 0.015
Std - (0.0001)
RMSE 0.0068
MPE 30.80%
Panel B: Theoretical vs approximated JUMP risk factor
Theoretical Approximated
JUMP Mean -0.02 0.14
Std (0.61) (3.91)
RMSE 4.44
MPE 2,544%
Delta Mean - 0.33
Std - (0.0037)
Vega Mean - 8.58
Std - (4.10)
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Table 2.2: Summary Statistics for Selected Variables
Panel A presents the mean, standard deviation, skewness, 5%, 50% and 95% percentiles of selected variables, while Panel B presents the correlations of

innovations in selected variables and daily excess market returns (MKT), SMB, HML and MOM factors. The sample period is from January 1996 to April
2016.

Panel A: Descriptive statistics

JTI JTIN JTIP JTIsc  JTINsc  JTIPsc
Mean 0.0001 0.0001 0.00003  0.0185 0.0271 0.0087
Std 0.0001 0.0002 0.0001 0.0071 0.0090 0.0034
Skewness 3.6685 3.7881 3.8031 1.4375 1.5083 0.9920
Kurtosis 18.3726 19.8564 20.2795  5.7067 5.7179 4.0122
P5 0.0000 0.0000 0.0000 0.0098 0.0165 0.0043
Median 0.0000 0.0001 0.0000 0.0171 0.0248 0.0081
P95 0.0003 0.0004 0.0001 0.0330 0.0454 0.0152
Panel B: Correlation coefficients
AJTI AJTIN AJTIP AJTIsc ~ AJTINsc  AJTIPsc  AVAR  ASKEW  MKT SMB HML MOM
AJTI 1
AJTIN 0.95 1
AJTIP 0.51 0.73 1
AJTIsc 0.66 0.50 -0.01 1
AJTINsc 0.81 0.72 0.30 0.92 1
AJTIPsc -0.04 0.16 0.63 -0.60 -0.27 1
AVAR 0.60 0.67 0.62 0.31 0.50 0.28 1
ASKEW -0.28 -0.12 0.31 -0.81 -0.58 0.87 0.03 1
MKT -0.53 -0.61 -0.64 -0.27 -0.52 -0.41 -0.74 -0.12 1
SMB 0.00 0.02 0.06 0.00 -0.01 -0.01 0.07 -0.03 0.03 1
HML 0.00 -0.04 -0.11 0.07 0.05 -0.04 -0.07 -0.05 -0.03 -0.16 1
MOM 0.09 0.15 0.24 -0.01 0.04 0.10 0.22 0.04 -0.25 0.10 -0.34 1
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Table 2.3: Summary Statistics for Betas

Panel A presents the mean, standard deviation, skewness, 5%, 50% and 95% percentiles of
stock betas. Panel B presents the time-series average of cross-sectional correlations of stock
betas. Panel C presents the autocorrelation coefficients of betas for lags 1, 2, 3, 6, 9 and 12.
Betas are estimated every month using daily data from the previous 12 months. The sample
period is from January 1996 to April 2016.

Panel A: Descriptive statistics

:BA]TISC :BA]TINSC ﬁA]TIPsc BAVAR ﬁAsKEW
Mean 0.16 0.25 0.10 0.90 -0.001
Std 1.78 2.30 5.50 16.15 0.040
Skewness 0.20 0.24 0.17 0.11 0.017
Kurtosis 4.84 4.83 4.99 5.84 5.302
P5 -2.69 -3.39 -8.75 -24.80 -0.068
Median 0.09 0.14 -0.01 0.36 -0.001
P95 3.22 4.25 9.42 28.28 0.065
Panel B: Correlation coefficients
Bajtisc Bajrinsc Bajripsc Bavar Baskew
Bajrisc 1
Bajrinsc 0.95 1
Bajripsc -0.65 -0.42 1
Bavar 0.47 0.67 0.23 1
Baskew -0.85 -0.69 0.89 -0.09 1
Panel C: Autocorrelations
Bajtisc BajTinse Bajripsc Bavar Baskew
1 0.87 0.87 0.87 0.84 0.87
2 0.75 0.75 0.75 0.71 0.76
3 0.64 0.64 0.64 0.60 0.65
6 0.36 0.36 0.36 0.32 0.37
9 0.13 0.13 0.12 0.11 0.12
12 -0.09 -0.08 -0.09 -0.05 -0.09
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Table 2.4: Contemporaneous returns and characteristics of portfolios

This table presents contemporaneous average excess and risk-adjusted returns and betas for value-weighted quintile portfolios. Every month stocks are sorted
into quintiles based on their jump risk betas (Panel A), downside jump risk betas (Panel B) and upside jump risk betas (Panel C). Betas are estimated over the
previous 12 months. All reported characteristics are contemporaneous with the betas used to construct the portfolio. Alphas are estimated with respect to the
Fama and French (1993) 3-factor model and the Carhart (1997) 4-factor model. The t-statistics (in parentheses) are computed using Newey-West (1987)
standard errors with 5 lags. The sample period is from January 1996 to April 2016.

Portfolio Return FF3alpha CARalpha  Bajrisc  Bajrinse  Bajripsc  Bavar Baskew Bukr _ Bsmup  Buumi Bmom

Panel A: Quintile portfolios sorted by £ ,7;sc
1 13.22 0.71 2.18 -1.62 -1.95 3.05 -6.70 0.03 1.14 0.31 0.24 -0.16
2 13.02 3.54 3.83 -0.57 -0.69 1.06 -2.65 0.01 0.90 0.02 0.16 -0.03
3 11.50 2.32 2.34 0.08 0.09 -0.20 0.04 0.00 0.92 -0.09 0.11 0.00
4 10.34 0.51 0.46 0.77 0.96 -1.28 3.34 -0.01 1.08 0.01 -0.15 0.01
5 3.81 -8.61 -7.62 2.13 2.66 -3.40 9.53 -0.04 1.42 0.34 -0.48 -0.11
5-1 -9.41 -9.32 -9.80 3.75 4.61 -6.45 16.23 -0.07 0.28 0.03 -0.72 0.05
(-3.24) (-3.46) (-3.90) (36.43) (35.17) (-18.11) (11.33) (-17.87) (2.46) (0.12) (-5.62) (0.38)

Panel B: Quintile portfolios sorted by B4;rinsc
1 14.14 157 3.18 -1.49 -2.00 1.77 -9.44 0.02 1.12 0.36 0.25 -0.18
2 13.54 4.25 4.38 -0.50 -0.68 0.56 -3.45 0.01 0.88 -0.01 0.17 -0.01
3 11.17 1.92 1.98 0.11 0.15 -0.07 0.60 0.00 0.92 -0.05 0.10 -0.01
4 10.10 0.03 0.04 0.76 1.03 -0.75 4.78 -0.01 1.11 -0.02 -0.13 0.00
5 2.62 -10.40 -9.34 2.07 2.78 -2.09 12.62 -0.03 1.45 0.51 -0.46 -0.12
5-1 -11.52 -11.96 -12.52 3.56 4.78 -3.85 22.06 -0.05 0.32 0.15 -0.71 0.06
(-3.78) (-4.43) (-5.08) (38.58) (37.32) (-7.87) (12.77) (-18.96) (2.30)  (0.74) (-5.41) (0.39)

Panel C: Quintile portfolios sorted by S4;r;psc
1 8.50 -2.34 -1.60 1.30 1.23 -5.48 -1.74 -0.04 1.29 0.16 -0.54 -0.08
2 11.61 2.51 2.16 0.42 0.39 -1.85 -1.09 -0.01 1.00 -0.03 -0.13 0.04
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3 11.57 2.65 2.55 -0.02 -0.02 0.22 -0.28 0.00 089 -011 011 0.01
4 10.71 0.35 1.02 -0.43 -0.36 2.29 0.65 0.01 097 002 021 -0.07
5 8.13 -5.86 -4.69 -1.01 -0.71 6.07 4.28 0.04 135 040 020 -0.13

5-1 -0.37 -3.52 -3.09 231 -1.94 11.55 6.02 0.07 006 023 073 -0.05

(-0.15) (-1.61) (-146)  (-17.90) (-8.35) (26.32)  (5.69) (18.18)  (0.76) (1.26) (6.83)  (-0.60)
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Table 2.5: Contemporaneous returns for dependent double-sorted portfolios

This table presents contemporaneous average excess and risk-adjusted returns of dependent double-sorted value-weighted quintile portfolios. Every month
stocks are first sorted into quintiles based on their volatility risk betas (Panel A) or skewness risk betas (Panel B), and then into quintiles based on downside
jump risk betas. Betas are estimated over the previous 12 months. All reported characteristics are contemporaneous with the betas used to construct the
portfolio. Alphas are estimated with respect to the Fama and French (1993) 3-factor model and the Carhart (1997) 4-factor model. The t-statistics (in
parentheses) are computed using Newey-West (1987) standard errors with 5 lags. The sample period is from January 1996 to April 2016.

Portfolio 1 (low Basrinse) 2 3 4 5 (high Basrinsc) high — low B ;7insc
Return FF3 alpha CAR alpha

Panel A: Quintile portfolios sorted first by S,y 4z and then by S, insc
1 (Iow Bayar) 13.34 16.11 15.40 14.46 9.28 -4.06 (-1.17) 0.91 (0.36) -3.79 (-1.22)
2 14.76 14.47 14.41 13.32 12.61 -2.15 (-1.15) -0.40 (-0.22) -2.22 (-1.11)
3 13.57 12.11 11.37 10.76 11.45 -2.12 (-0.97) -1.33 (-0.63) -1.74 (-0.99)
4 9.71 10.09 10.56 10.18 5.27 -4.43 (-1.96) -3.79 (-1.89) -2.53 (-1.32)
5 (high Bavar) 5.19 6.20 5.21 1.13 -1.21 -6.40 (-1.70)  -13.22  (-4.70) -9.88 (-2.77)
control -3.83 (-2.38) -3.57 (-2.36) -4.03 (-3.21)

Panel B: Quintile portfolios sorted first by Bssxgw and then by Ba,rinsc
1 (low Baskew) 9.99 10.90 7.22 2.55 -0.78 -10.77 (-2.42)  -17.99  (-5.23) -17.18 (-4.45)
2 14.69 12.97 11.54 10.94 4.78 -9.91 (-3.46) -11.19  (-4.11) -10.46 (-4.00)
3 15.11 14.08 11.79 10.92 6.80 -8.31 (-3.31) -10.00 (-3.82) -11.10 (-5.13)
4 15.90 13.74 12.72 11.03 6.17 -9.73 (-3.64) -10.90  (-3.99) -11.84 (-5.07)
5 (Iow Baskew) 9.81 13.68 13.66 10.19 5.52 -4.29 (-0.98) -0.36 (-0.09) -5.47 (-1.27)
control -8.60 (-3.42) -10.09 (-3.82) -11.21 (-5.08)
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Table 2.6: Fama-MacBeth cross-sectional regressions

This table presents firm-level Fama-MacBeth (1973) cross-sectional regression results of
contemporaneous one-year excess stock returns on S, ;rysc and a set of firm characteristics.
The firm characteristics that we control for in the econometric specifications include market
capitalization (SIZE), book-to-market ratio (B/M), momentum (MOM), mispricing (MISP),
idiosyncratic volatility (IVOL), and illiquidity (ILLIQ). The definition of each variable is
provided in Appendix A. All variables are winsorized at the 1% and 99% levels. The time-
series average slope coefficients are reported in each row. The t-statistics (in parentheses) are
computed using Newey-West (1987) standard errors with 5 lags. The sample period is from
January 1996 to April 2016.

Model 1) (2) 3) 4) (5) (6)
Intercept 0.115 0.171 0.131 0.157 0.161 0.159
(3.28) (2.34) (2.04) (4.48) (4.58) (4.41)
Basrinse -0.006 -0.007 -0.008 -0.011 -0.010 -0.012
(-1.73) (-2.11) (-2.26) (-2.86) (-2.96) (-3.33)
SIZE -0.014 -0.011 0.002 0.002 0.002
(-1.92) (-1.66) (0.73) (0.60) (0.51)
BM 0.042 0.041 0.017 0.017 0.019
(2.79) (2.66) (1.26) (1.54) (1.70)
MOM -0.078 -0.029 -0.027 -0.025
(-1.78) (-1.18) (-1.16) (-1.06)
MISP -0.002 -0.002 -0.002
(-4.37) (-5.36) (-5.33)
IVOL -0.225 -0.267
(-0.42) (-0.45)
ILLIQ 0.001
(0.43)
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Table 2.7: Predictive single-sorted portfolios

This table presents one-month ahead average excess and risk-adjusted returns of value-
weighted quintile portfolios. Returns are reported in annual basis. Every month stocks are
sorted into quintiles based on their jump risk betas (Panel A), downside jump risk betas
(Panel B) and upside jump risk betas (Panel C). Betas are estimated over the previous 12
months and portfolio returns are computed over the following month. Each portfolio is held
for one month. Alphas are estimated with respect to the Fama and French (1993) 3-factor
model and the Carhart (1997) 4-factor model. The t-statistics (in parentheses) are computed
using Newey-West (1987) standard errors with 5 lags. The sample period is from January
1996 to April 2016.

Portfolio Return FF3 alpha CAR alpha
Panel A: Quintile portfolios sorted by £, 7/
1 11.28 1.92 2.16
2 10.44 2.52 2.28
3 8.64 0.48 0.48
4 7.08 -2.16 -2.04
5 7.08 -5.4 -4.08
5-1 -4.2 -7.32 -6.24
(-1.00) (-2.22) (-1.74)
Panel B: Quintile portfolios sorted by B4;rinsc
1 10.80 1.92 1.80
2 10.08 2.04 1.68
3 9.60 1.44 1.44
4 6.24 -3.00 -2.64
5 7.56 -5.40 -3.48
5-1 -3.24 -7.32 -5.40
(-0.73) (-2.26) (-1.50)
Panel C: Quintile portfolios sorted by S ;rpsc
1 9.36 -1.68 -1.56
2 7.80 -0.48 -0.72
3 8.64 0.48 0.60
4 9.72 0.72 0.96
5 11.04 0.36 1.80
5-1 1.56 2.04 3.36
(0.43) (0.54) (0.89)
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Table 2.8: Predictive single-sorted portfolios with different beta estimation and return holding periods

This table presents H-month ahead average excess and risk-adjusted returns of value-weighted quintile portfolios. Returns are reported in annual basis. Every
month stocks are sorted into quintiles based on their downside jump risk betas. Betas are estimated over the previous L months and portfolio returns are
computed over the following H months. Alphas are estimated with respect to the Fama and French (1993) 3-factor model and the Carhart (1997) 4-factor

model. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags. The sample period is from January 1996 to April
2016.

Portfolio  Return FF3 alpha CAR alpha Return FF3 alpha CAR alpha Return FF3 alpha CAR alpha
Panel A:9L1H Panel D: 9L 3 H Panel G:9L 6 H
1 11.88 2.52 2.64 10.48 1.00 1.44 10.80 1.00 1.50
2 9.96 1.68 1.20 10.28 2.00 2.00 10.06 1.78 2.00
3 9.48 1.08 0.84 9.44 0.92 0.76 8.94 0.58 0.72
4 7.68 -1.68 -1.32 7.92 -1.44 -1.08 7.50 -1.82 -1.62
5 5.88 -7.08 -5.16 7.16 -5.52 -4.00 7.06 -4.78 -3.08
5-1 -6.00 -9.60 -7.80 -3.32 -6.52 -5.44 -3.74 -5.78 -4.58
(-1.52) (-3.22) (-2.38) (-0.92) (-2.25) (-1.66) (-1.19) (-2.46) (-1.58)
PanelB:6 L 1H Panel E:6 L3 H Panel H: 6 L6 H
1 11.16 1.20 1.68 11.20 1.12 1.92 10.94 0.60 1.20
2 10.92 2.52 2.16 10.36 1.52 1.40 10.16 1.36 1.32
3 9.84 1.56 1.20 10.00 1.36 1.24 9.64 1.10 1.24
4 7.32 -2.28 -2.16 8.28 -1.48 -1.20 8.00 -1.50 -0.86
5 5.64 -6.84 -5.40 8.92 -4.36 -2.80 7.98 -4.30 -2.54
5-1 -5.40 -8.04 -6.96 -2.28 -5.48 -4.72 -2.96 -4.90 -3.74
(-1.31) (-2.46) (-1.97) (-0.63) (-1.92) (-1.56) (-1.03) (-2.12) (-1.28)
Panel C:3L1H Panel F:3L 3H Panel I:3L6H
1 10.32 0.12 1.08 10.08 -0.20 0.80 10.54 -0.38 0.22
2 10.20 1.56 1.56 10.44 1.40 1.64 10.12 1.08 1.30

89



3 10.20 1.56 1.20 9.84 1.24 1.04 9.84 1.10 1.06
4 8.28 -1.20 -1.44 8.68 -0.60 -0.24 8.18 -1.26 -0.58
5 7.08 -5.04 -3.36 6.88 -5.24 -4.36 8.42 -3.78 -2.18

51 -3.36 5.16 444 -3.20 -5.00 -5.16 212 -3.40 -2.40

(-1.04) (-1.89) (-1.52) (-1.27) (-2.15) (-2.11) (-1.01) (-1.86) (-1.06)
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Chapter 3

Concave Implied Volatility Curves Prior to
Earnings Announcements

3.1 Introduction

Quarterly earnings announcements are scheduled corporate events that disseminate
substantial fundamental information to investors. A voluminous literature has
examined a number of features related to these events, such as the behavior of stock
returns (see, inter alia, Ball and Brown, 1968; Beaver 1968; Ball and Kothari, 1991,
Frazzini and Lamont, 2007) and systematic risk (see, for example, Patton and

Verardo, 2012; Savor and Wilson, 2016) around these announcements.

A related literature has examined the behavior of equity option prices and implied
volatilities (IVs) around earnings announcement days (EADSs), identifying three
stylized features. First, at-the-money (ATM) IV tends to increase in the runup to the
EAD, as uncertainty builds up before this information event, and second, ATM IV
sharply decreases right after the announcement, when the related uncertainty is
resolved (see Patell and Wolfson, 1979; 1981). More recently, Dubinsky and
Johannes (2006) and Dubinsky et al. (2019) have documented a third interesting
feature; the term structure of ATM IV becomes downward sloping prior to EADs,
meaning that ATM IV is higher for options with shorter expiries than for options with

longer expiries.

Building upon this literature, our study documents a novel feature with far reaching

implications for our understanding of the behavior of stock prices, the pricing of
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earnings risk and the informational content of option prices. We show that a large
fraction of IV curves extracted from short-expiry equity options systematically
become concave in the run up to EADs. In our sample of very large and liquid firms,
we find that up to 37.4% of IV curves exhibited concavity just before the
announcement during the period 2013-2019. This compares to just 3.5% of IV curves
exhibiting concavity on a typical trading day when option expiry does not span an
EAD.

The concave 1V curves we document are typically inverse U-shaped, S-shaped, or W-
shaped. These shapes are in stark contrast with the convex volatility “smiles” and
“smirks” (or “skews”) that are commonly observed for equity options, where out-0f-
the-money (OTM) puts trade at higher volatility relative to ATM options.
Interestingly, the feature of concavity mostly disappears right after the announcement,
as the uncertainty surrounding this event is resolved, and the IV curve reverts to its

standard convex shape.

An important observation we make is that a concave IV curve reflects a bimodal Risk-
Neutral Distribution (RND) for the underlying stock price. Bimodality in the central
part of the RND indicates that, subject to a minor risk-adjustment due to the very
short option expiry, the prevailing stock price will most likely be around either of the
two identified modes. Hence, a bimodal RND reveals that discrete price movements
of certain magnitude are highly anticipated by investors due to the forthcoming
announcement. These movements can be considered as anticipated jumps in the
continuous-time path of the underlying stock price. To this end, we argue that a
concave IV curve provides a clear option-based signal of impending event risk for the
underlying stock.}* This feature is entirely different from the common modelling
assumption of a low-probability, randomly timed Poisson jump, which can lead to an
IV “smirk” and a left-tailed RND, capturing tail risk and explaining the expensiveness
of OTM pults (see, for example, Bates, 1996; 2000; Pan, 2002).

Moreover, concavity appears in short- rather than long-expiry options. This feature

arises due to the relative effect between the anticipated jump and the diffusion

14 According to Liu et al. (2003, p. 231), event risk is defined as “the risk of a major event
precipitating a sudden large shock to security prices and volatilities”.
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component of the underlying stock price process. As expiry shrinks, the effect of the
anticipated jump dominates the effect of the diffusion component; this renders the
underlying RND bimodal and the IV curve concave. On the other hand, as the expiry
increases, the diffusion component dominates, the RND reverts to unimodality and
the IV curve to convexity. The sparsity of short-term equity options prior to our
sample period can provide an explanation why this feature has not been previously

documented.

Having documented these novel features, we formally define an indicator variable for
a concave IV curve and examine its informational content. Our analysis reveals that
concave IV curves possess significant predictive ability with respect to stock returns
on EAD and post-EAD realized volatility. First, we find that, on average, firms
exhibiting concave IV curves yield an absolute abnormal stock return of 6% on EAD,
which is 1.8% higher than the corresponding absolute return for firms with non-
concave IV curves. Second, we find that firms with concave IV curves exhibit an
average realized stock return volatility of 45.9% p.a. in the 10-day interval after the
announcement, which is 11.05% higher than the corresponding realized volatility of

firms with non-concave IV curves.

These findings show that investors are able to identify earnings announcements that
trigger larger than average stock price movements and volatility. Anticipating these
effects, investors trade accordingly in the option market, giving rise to concave 1V

curves and bimodal RNDs, which in turn signal ex ante the impending event risk.

The most obvious way investors could speculate on or hedge against large stock price
swings on EADs, regardless of their direction, is by purchasing straddles. Delta-
neutral ATM straddles have been commonly used to capture the price of volatility risk
for the underlying stock returns (Coval and Shumway, 2001; Bakshi and Kapadia,
2003). Therefore, we examine whether delta-neutral straddle returns on EADs differ
across concave and non-concave IV curves. Interestingly, we find that, on average,
concave IV curves are followed by a 6.17% lower delta-neutral straddle return on
EAD, as compared to non-concave IV curves. Hence, even though larger than average
stock price movements occur following the formation of concave 1V curves, these are
not sufficiently large to offset the high cost of purchasing straddles on these
occasions. In other words, we show that in the presence of concave IV curves,
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investors typically pay a significantly higher premium to hedge against the

uncertainty caused by the forthcoming announcement.

To directly show that ATM straddles are particularly expensive in the presence of
concave IV curves, we introduce a simple measure of their expensiveness.
Specifically, we compute the ratio of the sum of the ATM put and call prices divided
by the underlying stock price. Intuitively, this ratio indicates the required percentage
change in the underlying stock price, in either direction, to offset the cost of the ATM
straddle. Hence, this ratio is termed as the implied move for the underlying stock
price. The higher (lower) the value of this ratio, the more (less) expensive it is to

purchase an ATM straddle, ceteris paribus.

We find that, on average, the implied move prior to the EAD is 2.31% higher for non-
concave IV curves. This strongly significant differential confirms that ATM straddles
are much more expensive prior to EADs in the presence of concave IV curves. This
finding can help explain why these straddles yield lower returns on EADs despite the
larger than average absolute stock returns observed following the formation of
concave IV curves. This finding also provides an alternative way to illustrate that
investors pay a significantly higher premium to hedge against the event risk that is

signalled by a concave IV curve prior to the announcement.

Our study contributes to various strands of the literature. Starting from the early
studies of Patell and Wolfson (1979; 1981), there is a growing literature showing that
option-based measures embed significant information prior to earnings
announcements (see, inter alia, Amin and Lee, 1997; Ni et al., 2008; Xing et al., 2010;
Billings and Jennings, 2011; Barth and So, 2014). We add to this literature by
showing, for the first time, that the curvature properties of the IV curve contain
significant predictive ability over stock returns, realized volatility, and straddle returns
around EADs.

Our setup is related to Dubinsky et al. (2019), who also examine the impact of
predictably timed EAD price jumps on option pricing. However, their focus is on the
term structure of ATM IV prior to announcements. whereas we examine the curvature
properties of the IV curve for short-term equity options. Importantly, in their model,
the EAD jump size is assumed to be normally distributed and its mean is a

transformation of volatility. As a result, the only effect of this anticipated price jump
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is a large increase in short-term ATM IV, leading to a downward sloping term
structure prior to the announcement. The distribution of stock prices remains
unimodal and, specifically, lognormal in the simplified version used to define the
proposed term structure estimator; the jump has no effect on the shape of the IV curve
across moneyness levels. Therefore, the model of Dubinsky et al. (2019) cannot
reproduce the novel but pervasive empirical features we document in our study,
namely concavity in the 1V curve and bimodality in the RND of the underlying stock

price prior to the announcement.

Our study is also related to the literature showing that stock prices do jump upon the
release of news in the form of pre-scheduled macroeconomic (see, for example, Savor
and Wilson, 2013) or earnings announcements (see Lee and Mykland, 2008; Lee,
2012). Contributing to this literature, our study shows that large stock price
movements are systematically anticipated by investors prior to the announcement and
they can be detected ex ante because they dramatically affect the pricing of short-
expiry options. A fortiori, in the case of concave IV curves, we show that large stock
price movements are not just a possibility due to the announcement, but rather a very
likely outcome. This feature gives rise to a bimodal short-term RND for the
underlying stock price (and return), which is in stark contrast with the established

paradigm in asset pricing that relies on unimodal return distributions.

Last but not least, our findings are consistent with the demand-based option pricing
framework of Garleanu et al. (2008) and the related evidence in Bollen and Whaley
(2004) and Ni et al. (2008). In our setting, anticipating large stock price movements
due to the impending announcement, investors are motivated to trade options in a
certain range of strikes, for hedging or speculative reasons. In the absence of perfectly
elastic supply of options, market makers require a premium to be counterparties in
these trades. Hence, this trading activity leads to higher option prices and implied
volatilities for the corresponding range of strikes, giving rise to a concave 1V curve,
which in turn reflects a bimodal RND for the underlying asset price.
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3.2 Data and Methodology

3.2.1 Option Data and 1V Curves

We construct IV curves using option data sourced from OptionMetrics during the
period 2013-2019. For each calendar year, we select the 100 firms with the highest
option trading volume, requiring the underlying to be common stock (share codes 10
or 11) with share price higher than $5. This yields a total sample of 178 firms during
the entire period. The choice of the sample period and the cross-section of firms are
dictated by the availability of short-term option data. Weekly equity options have
been actively traded for a range of strikes only in the last decade. Hence,

OptionMetrics provides very sparse data for short expiries prior to 2013.

Our primary focus is on option-implied information related to earnings
announcements, so we utilize short-term options whose expiry spans the EAD. In
particular, we keep options with expiry between 3 and 13 calendar days ahead. We
source information on the timing of quarterly EADs from I/B/E/S. Following common
practice in the literature (see Barth and So, 2014; Michaely et al., 2014), if the
announcement is made after the market close, the next trading day is defined as the
EAD.

To ensure that the information embedded in IV curves is meaningful, we apply a
number of standard filters to the option data. Specifically, we discard options with
zero open interest, zero trading volume, zero bid price, midquote price less than
$0.125, non-standard settlement or missing implied volatility. We also discard options
that violate standard arbitrage bounds or when the bid is higher than the ask price. To
ensure that our findings are not driven by particularly illiquid options, we also discard

options when the bid-ask spread is higher than 20% of the midquote price.

To construct the 1V curve, we utilize the (annualized) IVs of ATM and OTM options
provided by OptionMetrics. To avoid an artificial jump at the ATM region, which
could arise from ATM puts potentially trading at higher IV relative to ATM calls, we
follow the blending approach of Figlewski (2010). Specifically, we blend the 1Vs of
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puts and calls whose strike price K lies within £2% of the underlying spot price into a

single point as follows:
Whiena(K) = alVyy (K) + (1 — a)IVeqy (K), (3.1)

where a = (Kpigh — K)/(Knigh — Kiow) and Kpign (Kiow) is the highest (lowest)
strike in this £2% range. To ensure a good coverage of the moneyness range, after the
blending we require at least 6 options for a given expiry, with at least 2 puts and at

least 2 calls.

Equipped with these 1V points, we fit a quintic spline using the function spaps in
MATLAB." This yields the smoothest IV curve in the moneyness space K /S, where
S is the current stock price, subject to a tolerance level for the sum of squared errors
between the actual and the fitted IVs. In the spirit of Bliss and Panigirtzoglou (2002,

2004), the quintic spline minimizes the following objective function:
p IV (K — TV (K )12 + [ 5© (x; 0)%dx, (32)

where IV(K;) is the actual implied volatility for strike K;, TV(K;;0) is the
corresponding fitted implied volatility, which is a function of the parameter set 8 that
defines the quintic spline S(8), and p is a smoothing parameter that is optimally
selected to ensure that the sum of squared IV errors does not exceed a given tolerance

level 16

Having imposed a number of strict filters on the option data, we seek to fit well the
actual 1V points, and hence we opt for a low tolerance level. This tolerance level
corresponds to a 0.01% mean square error between the actual and the fitted IVs.
However, to ensure that the fitted IV curve is not too erratic and does not correspond

to an ill-behaved RND, we impose further conditions. We require that no interpolated

15 A quintic spline ensures that the third derivative of the IV curve (and hence the option price
function) is continuous, yielding a well-behaved RND (see Figlewski, 2010).

16 parameter p controls the tradeoff between the goodness-of-fit and the smoothness of the
spline function; the latter is captured by its integrated squared third derivative. Setting a low
tolerance level ensures that the spline fits well the actual IV points at the expense of
smoothness. To the contrary, setting a high tolerance level yields a rather smooth spline that
may not fit well the actual IV points.
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IV point is negative and that the corresponding RND does not exhibit a negative
density point or more than two modes.*” If any of these conditions is violated, we
increase the upper bound of the mean square error in steps of 0.005% until the

conditions are met.

Applying these data filters and implementing the described methodology, we

construct 1,875 IV curves on the trading day prior to EAD for the firms in our sample.

3.2.2 Definition of Concave IV Curve

Having constructed a smooth IV curve that fits well the actual IV points, we turn our
focus on its shape. IV curves for equity options typically exhibit a “smile” or a
“smirk™ (see, inter alia, Rubinstein, 1994; Toft and Prucyk, 1997; and the review of
the early literature in Jackwerth, 2004), which corresponds to a convex IV curve
where OTM puts trade at higher IV than ATM options. This pattern corresponds to an
important deviation from the Black and Scholes (1973) model, where implied

volatility should be constant across moneyness levels.

In sharp contrast to the commonly documented convex 1V curves for equity options,
we often observe concave IV curves prior to EADs (see Section 3.1). To capture this
phenomenon in a systematic way, we introduce a definition of concavity based on the
first and second derivatives of the fitted IV curve with respect to moneyness.!8
Specifically, we define an IV curve to be concave when the following three conditions

hold. First, the second derivative of the fitted IV curve is negative for a continuous

17 To compute the RND corresponding to the fitted IV curve, we use the standard result of
Breeden and Litzenberger (1978). The density function is given by f(K) = e"79%C/0K?,
where r is the interest rate and C is the call option price as a function of the strike price K.
The fitted 1V curve contains 1,001 IV points. These 1Vs are converted to call option prices
using the Black-Scholes formula. In the absence of a continuum of strikes, we compute the
second partial derivative in the above formula using finite differences and derive the RND for
the range of the available moneyness levels.

18 First and second derivatives of the fitted IV curve are computed using finite differences.
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moneyness (K/S) range of at least 0.03 points, i.e., for a continuous range of strikes
that amount to at least 3% of the underlying spot price. Second, we require that the
fitted IV curve exhibits a stationary point within the moneyness range where it
exhibits concavity. Third, this stationary point is located between the second lowest
(Kmins1) and the second highest (K,,q.—1) Strikes of the actual IV points used to fit

the smooth IV curve.

These conditions alleviate the potential concern that the documented concavity may
be an artefact of outliers or the employed smoothing spline. In particular, they ensure
that our definition does not simply capture very local infection points or marginally
concave parts of the IV curve. They also ensure that the concavity does not arise from

the lowest or highest actual strikes, which typically correspond to deep OTM options.

This definition is sufficiently general to capture various shapes of concavity, such as
the inverse U-shape, W-shape, and S-shape IV curves illustrated in Figure 1. Using
this definition, we define the dummy variable CONCAVE, which takes the value 1

when the IV curve is concave and zero otherwise.

3.2.3 Other Variables and Data Sources

In addition to CONCAVE, we use a number of other variables in the subsequent
empirical analysis. The definition of these variables is provided in Appendix D. For
each firm, we compute at the daily frequency its market beta (BETA), the natural
logarithm of market capitalization (LN(SIZE)) and stock price (LN(PRICE)), 5-day
cumulative stock return (RUNUP), momentum return (MOM), stock turnover ratio
(STOCKTR), and idiosyncratic volatility (IVOL). The source of stock prices, trading
volumes and number of outstanding shares is CRSP. With respect to firm
fundamentals, we utilize the book-to-market value ratio (B/M) and the leverage ratio
(LEVERAGE) using quarterly data from COMPUSTAT. We also use the number of
analysts providing earnings forecasts (NUMEST), the standard deviation of these
forecasts (DISPERSION), and the differential stock beta around EADs (ANNBETA) as
in Barth and So (2014). Analysts forecast data are obtained from I/B/E/S.
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We also use a number of option-based variables. Specifically, we compute the ATM
implied volatility (ATMIV) and the difference between the realized volatility and
ATMIV (RVIV) of Goyal and Saretto (2009). Since our focus is on short-expiry
options, we construct ATMIV and RVIV utilizing the 10-day volatility surfaces that
have been recently introduced by OptionMetrics. In addition, we compute the Risk-
Neutral Skewness (RNS) and Risk-Neutral Kurtosis (RNK), following the approach of
Bakshi et al. (2003). We also use the option-to-stock trading volume ratio (O/S) of
Roll et al. (2010). Last but not least, we compute the term structure estimate of ATM
implied volatility (TSIV) proposed by Dubinsky et al. (2019) as the difference
between short- and long-term ATM implied volatilities. Equity option prices, implied

volatilities and trading volumes are sourced from OptionMetrics.

3.2.4 Summary Statistics

Table 1 presents the summary statistics for the variables used in our analysis. Their
values are computed on the day prior to EAD and they are winsorized at the 1% and
99% levels. We report that 37.4% of the IV curves extracted prior to the EAD exhibit
concavity. These IV curves are computed from short-term options, with an average
EXPIRY of 6.47 calendar days and a large number of STRIKES (average=16.72
strikes). The latter feature is consistent with the fact that our sample consists of very
large firms, with an average (median) market capitalization of $56,387 ($66,171)
million. As a result, these firms exhibit a much lower degree of IVOL
(average=24.17% p.a.), they trade at a much higher price (average=$75.94), they
exhibit low B/M ratios (average=0.35), and they are followed by a very large number
of analysts (average=24.32), as compared to the corresponding values typically
encountered in studies that utilize the entire CRSP universe.

With respect to option-based variables, the median RNS (RNK) value is -0.26 (3.42),
illustrating that these moments do not take substantially different values just before
the EAD. To the contrary, in line with the arguments of Patell and Wolfson (1979;
1981), ATMIV is substantially higher prior to EADs, with an average value of 42.31%
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p.a.. As a consequence, RVIV takes very large negative values, with an average of -
16.68% p.a.. Moreover, TSIV is almost always positive, with an average value of
6.58% p.a.. This confirms the arguments of Dubinsky et al. (2019) that the term
structure of ATM implied volatility is downward sloping prior to EADs. Last but not
least, we report substantial stock trading activity prior to the EAD, with an average
daily STOCKTR value of 2.27%, and an even higher trading activity in the option
market, with an average O/S value of 27.09%.

Table 2 reports the pairwise correlations among these variables. Our main focus is on
the correlation properties of the newly proposed variable CONCAVE. Most notably,
we find that CONCAVE is positively correlated with IVOL, ATMIV, RNS, and TSIV,
whereas it is negatively correlated with RNK and RVIV. Hence, concave IV curves are
associated with higher levels of ATM implied volatility and a steeper downward
sloping IV term structure prior to EAD. Moreover, CONCAVE exhibits a positive
correlation with STOCKTR, O/S and NUMEST, which indicates that concave IV
curves more often appear when there is substantial coverage by financial analysts as
well as high trading activity by investors prior to the announcement.

However, it should be noted that the reported correlations for CONCAVE are not
particularly high (mostly, much less than 0.40 in absolute value), alleviating the
potential concern that CONCAVE may simply mimic another firm characteristic. To
the contrary, Table 2 illustrates the extremely high pairwise correlations between
ATMIV, RVIV, TSIV, IVOL, and LN(SIZE) prior to EADs.

Table 3 compares the average values of these variables across observations of
concave and non-concave IV curves on the day prior to EAD. We find that concave
IV curves are extracted from sets of options with a somewhat shorter average expiry
and a higher average number of available strikes. We also find that concave 1V curves
are associated with firms that, on average, are followed by more analysts, they are
relatively smaller, and they exhibit lower B/M and LEVERAGE ratios.

Moreover, we observe that concave IV curves are associated with significantly higher
average values of BETA, IVOL, STOCKTR and O/S as well as higher average stock
prices and returns (LN(PRICE), RUNUP, MOM) prior to the EAD. Consistent with
the pairwise correlations presented in Table 2, we also report that concave IV curves
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are accompanied, on average, by significantly higher ATMIV, RNS, and TSIV values

and significantly lower RNK and RVIV values relative to non-concave IV curves.

3.3 Features and Determinants of 1V Curves

3.3.1 Features of Concave IV Curves

This Section illustrates the main features of concave IV curves observed in the data.
Figure 1 provides examples of the three main types of concavity we encounter in our
sample. Panel A shows an inverse U-shape IV curve, where the IV of OTM calls and
puts is substantially lower than the IV of ATM options. This shape is in stark contrast
with the well-known U-shape IV curve (“smile”), where OTM calls and puts exhibit
higher IV than ATM options. Interestingly, such an inverse U-shape IV curve is
mentioned in Hull (2009, p. 398), who describes it as a “frown” and provides a

textbook example how this shape could arise in equity options.

Panel B of Figure 1 illustrates an S-shape curve exhibiting two stationary points. In
this particular example, the concave part of the curve is located in the OTM calls
region, whereas the OTM puts region exhibits a typical convex shape. An
interpretation of this shape is that concavity arises in a specific moneyness range,
where options are trading at higher volatility relatively to neighbouring strikes.

Panels C and D provide examples of an even more intriguing type of concavity, a W-
shape IV curve. This shape exhibits three stationary points, with a U-shape curve
followed by an inverse-U shape curve, which is in turn followed by another U-shape
curve. Here, concavity arises in specific ranges of moneyness, with near-the-money
options trading at volatility levels as high as, or even higher than, deep OTM options.

The above shapes of concavity systematically appear in short-expiry equity options
just before EADs. Interestingly, these shapes typically disappear right after the
announcement, with the IV curve reverting to a standard convex shape. Figure 2
illustrates this pattern using as example the earnings announcement of Apple that took

place right after the market close on 28" October, 2013. Whereas the IV curve
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extracted just before the announcement from options with 4 days to expiry exhibits a
clear W-shape, it reverts to a “smile” on the following day using options with the
same expiry date. This illustration alleviates the potential concern that the concave
shapes we uncover may be an artefact of our methodology to fit the IV curve or the

use of very short-expiry options.

Figure 3 further illustrates that IV curves often become concave in the runup to the
EAD but they subsequently revert to their standard convex shape. Specifically, Figure
3 reports the fraction of concave IV curves for the firms in our sample on trading days
around the EAD d. We observe that the fraction of concave IV curves gradually
increases from 17.5% on d-5 to 25.2% on day d-2, reaching the peak of 37.4% on the
trading day prior to EAD. Right after the announcement, there is a sharp drop in the
fraction of IV curves exhibiting concavity to only 7.8% on d. This fraction

subsequently drops further and hovers around 4% from d+1 onwards.

To emphasize how uncommon it is to find a large fraction of concave IV curves using
options whose expiry does not span an EAD, we perform the following analysis. For
the firms in our sample, we impose the same data filters and follow the same steps of
the methodology described in Section 2 to compute CONCAVE on all trading days
during the period 2013-2019. We extract 72,736 firm-day IV curves from short-term
options whose expiry does not span an EAD. We find that only 3.5% out of these
observations exhibit a concave 1V curve. This finding further alleviates the potential
concern that the large faction of concave IV curves we identify in the runup to the
EAD may be an artefact of our methodology or the use of very short-expiry options.
The main variable of interest in our analysis (CONCAVE) is defined with respect to
the properties of the IV curve. Interestingly, the shape of the IV curve is a reflection
of the properties of the RND for the underlying stock price. For example, a symmetric
volatility “smile” corresponds to a leptokurtic RND, whereas a volatility “smirk™ (or
“skew”) is associated with a negatively skewed RND (see the related discussion in
Jackwerth, 2004; and Hull, 2009, ch. 18).

Figure 4 illustrates that a concave IV curve reflects a bimodal RND for the underlying
stock price. This is a rather unusual feature. Practically, RND bimodality implies that

at option expiry, the underlying stock will most likely trade around either of the two
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identified price modes.*® Panel B of Figure 4 illustrates the RND for the stock price of
Amazon, extracted from options with 8 days to expiry on 26" April, 2018, i.e., just
before the earnings announcement that took place right after the market close.
Whereas the closing stock price was $1,517.96 on that day, the 8-day RND reveals
two price modes at expiry; one at $1,444.8 (i.e., 4.8% lower) and the other one at
$1,602 (i.e., 5.5% higher). Following the announcement, Amazon’s stock price
exhibited a positive return of 3.6% on 27" April and closed at $1,580.95 (i.e., 4.15%
higher) on 4" May.

Another interpretation of RND bimodality prior to an EAD, as illustrated in Figure 4,
is that a discrete price movement or jump is anticipated due to the forthcoming
announcement. Interestingly, the textbook example of Hull (2009) argues that a
concave, inverse U-shape IV curve reflects a bimodal RND for the underlying asset
price, which in turn arises “when a single large jump is anticipated”. In sum, we argue
that a bimodal RND and a concave IV curve provide option-based signals of
impending event risk in the underlying stock. Our analysis reveals that earnings
announcements frequently give rise to event risk, which is priced in the option
market, and hence can be detected ex ante.

RND bimodality is an important feature that distinguishes our study from Dubinsky et
al. (2019). The model introduced by the latter study allows for predictably timed price
jumps on EADs. However, by assuming a normally distributed EAD jump size, their
implied RND remains unimodal, and hence their model cannot reproduce the concave
IV curves observed in the data.

Last but not least, we find that concave IV curves predominantly appear in short
expiry options. Figure 5 illustrates an example of fitted IV curves for Amazon across
different expiries (8, 22, 36, and 50 days) on 26" April, 2018. Whereas the IV curve
for the 8-day expiry clearly exhibits a W-shape type of concavity, this feature is much

less obvious for the 22-day expiry and disappears for longer expiries.?

191t should be noted that the RND indicates risk-neutral probabilities rather than physical
probabilities. However, since we utilize firm-level options with very short expiries, the
adjustment from risk-neutral to physical probabilities is expected to have only a minor effect.
20 Data on short-expiry equity options are sparsely available prior to 2013, offering a practical
reason why this feature has not been documented in the prior literature.
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Intuitively, these patterns arise due to the relative effects of the anticipated stock price
jump on EAD versus the diffusion component of the underlying process. As expiry
shrinks, the effect of the anticipated price jump dominates the effect of the diffusion
component, rendering the underlying RND bimodal and the IV curve concave. To the
contrary, as time to expiry increases, the effect of the diffusion component dominates
the effect of the anticipated price jump, the RND reverts to unimodality, and the 1V
curve becomes convex. This Figure further illustrates the different focus of our study
relative to Dubinsky et al. (2019). Whereas the latter study argues that the term
structure of ATM 1V is downward sloping prior to EADs, a feature that Figure 4
clearly illustrates, our focus is on the shape of the entire IV curve extracted from

short-expiry options.

3.3.2 Determinants of Concave IV Curves

This Section examines how concave IV curves are related to a number of firm
characteristics prior to EADs. Specifically, we run logistic regressions of CONCAVE
on sets of contemporaneously measured variables. This constitutes a more formal
analysis relative to the pairwise correlations reported in Table 2, allowing us to
simultaneously consider multiple variables and to test for the statistical significance of
these relationships. Table 4 presents the corresponding results. We report z-statistics
based on two-way clustered standard errors, at the quarter- and firm-level. This choice
is motivated by the arguments of Petersen (2009) and the potential concern that the
innovations of the utilized variables may be strongly correlated across quarters and
across firms. All models include BETA, LN(SIZE), B/M, LEVERAGE, as well as
EXPIRY and STRIKES.

The estimates of Model (1) show that IV curves extracted from options with shorter
expiry and larger number of strikes are significantly more likely to be concave.
Moreover, firms that are relatively smaller and less leveraged are also more likely to

exhibit a concave IV curve prior to the EAD. Model (2) adds several return-based
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characteristics. The main finding is that a higher level of IVOL is significantly

associated with a concave IV curve.

Model (3) includes a number of option-based variables. We find that a concave 1V
curve is more likely to be observed as ATMIV increases and as RVIV decreases.?! We
also find that the probability of observing a concave 1V curve significantly increases
with higher values of RNS and lower values of RNK. The latter findings are consistent
with the observation that concave IV curves reflect bimodal RNDs, as illustrated in
the right Panel of Figure 4. Bimodality in the central part of the RND yields a more
symmetric and less leptokurtic distribution, as compared to the commonly observed

negatively skewed and fat-tailed RNDs, which correspond to convex IV curves.

Model (4) includes firm characteristics that are considered to be proxies of
fundamental uncertainty with respect to the forthcoming earnings announcement.
Notably, we find that a concave IV curve more likely arises as the number of analysts
following the firm increases. Last, Model (5) considers stock and option-to-stock
trading activity. We report that a higher O/S value prior to the EAD is a significant

determinant of concave IV curves.

Despite the highly significant contemporaneous relationship between CONCAVE and
a number of firm characteristics, none of the reported models yields a very high
pseudo R-squared. This feature further alleviates the potential concern that
CONCAVE may be simply mimicking existing firm characteristics or their

combinations.

2L TSIV is almost perfectly negatively correlated with ATMIV, and hence they cannot be both
included in a regression model. Nevertheless, we have alternatively included TSIV instead of
ATMIV in Model (3). The results confirm that a concave 1V curve is more likely to appear as
TSIV takes higher values.
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3.4 The informational content of CONCAVE

3.4.1 Absolute Stock Returns on EAD

We now turn our focus on the informational content of CONCAVE. We first examine
whether concave IV curves can predict higher or lower absolute stock returns on EAD
relative to non-concave IV curves. To ensure that our results are not affected by
market-wide price movements or systematic factor-related returns, we use the
absolute abnormal stock return on EAD (ABSEADABRET) with respect to the Fama-
French-Carhart (FFC) 4-factor model.

Specifically, we compute the abnormal stock return on EAD as the realized minus the
expected return. The expected return is calculated on the basis of pre-estimated factor

loadings for each firm from the following regression model:
xtye = & + Bukr,iMKT; + Bsup,iSMB: + Bump,iHML: + Bruom, WML, + €, (3.3)

where x1; . denotes the excess stock return of firm i on day t, MKT denotes the excess
market return, SMB denotes the size factor return, HML denotes the value factor
return, and WML denotes the momentum factor return.?? To estimate this model, we
use daily returns from d-250 to d-25, where d is the EAD, requiring at least 200
observations. This choice ensures that the estimated factor loadings are not affected
by stock returns observed in the runup to the EAD.

The summary statistics reported in Table 1 show that the average value of
ABSEADABRET is 4.84%, whereas the median value is 3.42%. These statistics are
consistent with the finding in prior literature that stock prices often exhibit very large
movements around earnings announcements (see Lee and Mykland, 2008; Lee, 2012;
Kapadia and Zekhnini, 2019). This feature becomes even more striking if one takes

into account that our sample consists of very big capitalisation firms.

Table 5 presents estimates from predictive panel regressions of ABSEADABRET on
CONCAVE plus a number of firm characteristics measured on the day prior to the

22 Daily MKT, SMB, HML, and WML returns are sourced from Kenneth French’s online data
library.
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EAD.Z Models (1), (3), and (5) report t-statistics based on two-way clustered
standard errors, at the firm- and quarter- level. Models (2), (4), and (6) include
quarterly fixed effects to ensure that our results are not entirely driven by specific

quarters in our sample period.

Overall, the results in Table 5 show that concave IV curves observed prior to EADs
predict significantly higher ABSEADABRET values. Column (1) shows that, on
average, concave IV curves are followed by a 1.8% (t-stat: 5.63) higher absolute
abnormal stock return on EAD relative to non-concave IV curves. On average, the
latter are followed by a 4.16% ABSEADABRET, whereas concave IV curves are, on
average, followed by a 5.96% ABSEADABRET. This highly significant return
differential remains intact when we account for quarterly fixed effects in column (2),
confirming that it is not driven by specific quarters in our sample period. Moreover,
this differential remains significant when we additionally control in columns (3)-(6)

for a number of firm characteristics that may be related to future stock returns.?*

An interesting interpretation of this predictive relationship is that investors are able to
ex ante identify earnings announcements where larger than average stock price
movements are observed, and they trade accordingly in the option market. On these
occasions, IV curves become concave and the corresponding RNDs for the underlying
stock price become clearly bimodal, indicating that a very large stock price movement
is likely to be observed on EAD. In fact, the occurrence of larger than average
absolute stock returns upon these announcements verifies the informational content of
CONCAVE.

2 Following 5" March 2008, OptionMetrics records bid and ask option prices at 15:59 EST.
This ensures that the criticism of Battalio and Schulz (2006) on non-synchronicity bias does
not apply during our sample period.
24 Unreported results, which are available upon request, yield very similar conclusions when
we alternatively use gross, rather than abnormal, absolute stock returns on EAD.
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3.4.2 Post-EAD Stock Return Volatility

Next, we examine the informational content of CONCAVE with respect to the post-
EAD stock return volatility (POSTEADVOL). To this end, we compute the
(annualized) 10-day stock return volatility from d to d+9, according to the standard
formula:

252 d+9
POSTEADVOL = —2 12 (3.4)
N t=d

where 1, is the daily log-return.

Whereas POSTEADVOL is naturally affected by the magnitude of ABSEADABRET, it
is conceptually different from the latter because it also captures the stock price
fluctuations occurring after the EAD. We opt for a 10-day measurement window in
our benchmark results to be consistent with the range of expiries observed in our
option sample. Nevertheless, we have repeated the subsequent analysis using
alternatively the 5-day and the 21-day post-EAD stock return volatility as dependent
variable. The results are very similar to the ones presented in Table 6 and they are

readily available upon request.

The mean (median) value of POSTEADVOL reported in Table 1 is 38.97% (31.47%)
p.a.. Even though we mainly include large capitalization stocks in our sample, we still
find that their returns exhibit a high degree of volatility in the 10-day interval right

after the earnings announcement.

Table 6 presents estimates from predictive panel regressions of POSTEADVOL on
CONCAVE plus a number of firm characteristics measured on the day prior to the
EAD. We find that CONCAVE possesses significant predictive ability over
POSTEADVOL too. Column (1) indicates that concave IV curves are followed by an
average POSTEADVOL of 45.86% p.a., whereas non-concave IV curves are followed
by an average POSTEADVOL of 34.81% p.a., yielding a highly significant differential
of 11.05% p.a. (t-stat: 5.35). Column (2) confirms that this differential is not purely
driven by volatility episodes in certain quarters. This predictive relationship remains
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significant when we additionally control in columns (3)-(6) for a number of firm

characteristics that may also be related to stock return volatility.

The reported predictive ability of CONCAVE indicates that investors can identify the
announcements that cause a significant increase in post-EAD volatility. As a
consequence, they trade in the option market to hedge against or to speculate on this
feature, determining prices that correspond to a bimodal RND for the underlying
stock return. In turn, an RND that features bimodality in its central part implies,
ceteris paribus, a higher degree of variance over the remaining life of the options.
Hence, observing higher than average POSTEADVOL for concave 1V curves verifies
the informational content of CONCAVE.

3.4.3 Straddle Returns Around EADs

Having established that concave IV curves are typically associated with significantly
higher absolute stock returns on EADs and post-EAD realized volatility, as compared
to non-concave IV curves, we further examine the behavior of straddle returns around
EADs. Anticipating these stock return characteristics, investors could take long
positions in ATM straddles to either speculate on or hedge against these large price
swings regardless of their direction. In fact, delta-neutral ATM straddle returns have
been used to measure the price of volatility risk for the underlying stock returns (see
e.g., Coval and Shumway, 2001; Bakshi and Kapadia, 2003).

We firstly examine the returns of delta-neutral ATM straddles (STRADDLE) on EAD.
Similar to prior literature, we use the nearest-to-the-money pair of call and put options
within the moneyness (K/S) range of 0.98-1.02. We buy the straddle at the close of
the trading day prior to the EAD and we sell it at the close after the announcement.
We use the shortest available options, requiring that they have at least 3 days to expiry
when we close the position. The return of the delta-neutral straddle on EAD is given

by:

Tstraddle = WeTe + (1 — Wc)rp (3.9)

110



where 7. (1;,) is the return of the call (put) option on EAD. The weight w, is given by:

Apyr/PUT
Acarr/CALL = Apyr /PUT

W, = (3.6)

where A.4.. (Apyr) 1S the delta of the call (put) provided by OptionMetrics and CALL
(PUT) is the corresponding call (put) price. This weight ensures that the straddle is
delta-neutral at formation. We have repeated the analysis reported in Table 7 using
simple instead of delta-neutral ATM straddle returns. The results, which are readily

available upon request, are very similar to the ones reported in Table 7.

The summary statistics reported in Table 1 show that the median STRADDLE value
on EAD is -14.35%. This finding provides support for the argument that investors
most often pay a substantial price to be hedged against the increased volatility and
large stock price swings observed around EADs. However, it should be noted that
STRADDLE exhibits a positively skewed distribution in our sample and its average

value is 0.25%.

Table 7 presents estimates from predictive panel regressions of STRADDLE on
CONCAVE as well as a number of firm characteristics measured on the day prior to
the EAD. Models (1), (3), and (5) use two-way clustered standard errors, whereas
Models (2), (4), and (6) add quarterly fixed effects. We also control for the expiry and
the average moneyness of the pair of options used to construct this straddle strategy,

ensuring that our results are not driven by these features.

Overall, we find that concave IV curves predict a significantly lower straddle return
on EAD. In particular, column (1) shows that concave IV curves are followed by a
6.17% (t-stat: -2.88) lower STRADDLE return, as compared to non-concave IV
curves. Column (2) shows that the economic and statistical significance of this finding
is not driven by specific quarters in our sample period. Furthermore, this predictive
relationship remains intact when we additionally control in columns (3)-(6) for a
number of firm characteristics that may be related to volatility, and hence the
observed STRADDLE returns.

The main conclusion from this analysis is that when IV curves become concave,

investors most often pay a substantially higher premium to hedge against the larger
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than average stock price swings that are typically observed on these EADs. In fact, the
median STRADDLE value is -17.19% when CONCAVE=1 and -13.03% when
CONCAVE=0. In other words, even though larger than average stock price
movements occur on EADs following the formation of concave IV curves, these price
swings are not large enough to offset the substantial cost of purchasing straddles on
these occasions. As a corollary, whereas it is known to be typically profitable to write
straddles prior to EADs (see Gao et al., 2018; Dubinsky et al., 2019), we document
that is even more profitable to do so when concave IV curves are observed.

To provide direct evidence that ATM straddles are particularly costly in the presence
of concave IV curves, we introduce an intuitive measure of their expensiveness.

Specifically, we calculate the following ratio:

IMPMOVE = CALL + PUT (3.7)
~ STOCK '

where, as above, CALL (PUT) is the ATM call (put) price at straddle formation, i.e.,
on the day prior to the EAD, and STOCK is the corresponding price of the underlying
stock. This measure roughly indicates how much the underlying stock price should
move in either direction to offset the cost of a symmetric ATM straddle, and hence it
is termed as the implied stock price move (IMPMOVE). The higher (lower) the value
of IMPMOVE, the more (less) expensive it is to purchase an ATM straddle, ceteris

paribus.

To construct this measure, we use the same pair of nearest-to-the-money call and put
options that we used above to construct the delta-neutral straddle. The summary
statistics reported in Table 1 indicate an average (median) IMPMOVE value of 6.22%
(5.27%). Taking into account that we utilize very short-expiry options, these statistics
indicate that ATM straddles are quite expensive prior to EADs, as they require a

substantial stock price move in either direction to offset their cost.

Table 8 presents estimates from contemporaneous panel regressions of IMPMOVE on
CONCAVE and a number of firm characteristics measured on the day prior to EAD.
Models (1), (3), and (5) use two-way clustered standard errors, whereas Models (2),

(4), and (6) add quarterly fixed effects. In unreported results, we have additionally
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controlled for the expiry and the average moneyness of the pair of options used to

compute IMPMOVE; the results are very similar to the ones presented in Table 8.

Overall, we find very strong evidence that ATM straddles are much more expensive
in the presence of concave IV curves. Specifically, column (1) indicates that concave
IV curves are associated with a 2.31% (t-stat: 7.79) higher IMPMOVE relative to non-
concave IV curves. The average value of IMPMOVE is 7.67% when CONCAVE=1
and 5.46% when CONCAVE=0. This significant differential is not subsumed when we
control for quarterly fixed effects or additional firm characteristics in columns (2)-(6).

These findings provide direct evidence that in the presence of concave IV curves, the
underlying stock price should exhibit a substantially larger move after the
announcement, in either direction, to offset the cost of purchasing the ATM straddle
prior to the EAD. This evidence rationalizes why despite the larger than average
absolute stock returns realized on EADs following the formation of concave IV
curves, the corresponding straddle returns are still much lower relative to non-concave
IV curves. This is because these straddles are substantially more expensive to
purchase in the first place, and hence the realized price jumps on EADs are not

sufficient to offset their cost.

The significantly higher cost of buying ATM straddles in the presence of concave IV
curves provides an alternative way to illustrate that investors pay a significantly
higher price to hedge against the event risk that arises on these occasions due to the
impending announcement. This evidence further corroborates the argument that
concave IV curves provide an ex ante signal of event risk. Based on these findings,
we conclude that investors can ex ante identify the announcements that trigger large
stock price moves and they pay a substantially higher premium to hedge against them,
most obviously by purchasing ATM straddles. As a result of this hedging activity, the
corresponding ATM options become very expensive, trading at higher volatility, and

hence the corresponding IV curves turn concave prior to EADs.
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3.5 Conclusions

This study documents, for the first time in the literature, that the IV curves of equity
options frequently exhibit concavity prior to the EAD. This shape is in stark contrast
with the convex volatility “smiles” or “smirks” that are commonly observed for equity
options. Concavity is most obvious in short-expiry options, it reflects a bimodal RND
for the underlying stock price, and quickly disappears after the announcement, as the

uncertainty surrounding this event is resolved.

This feature has far reaching implications for our understanding of the behavior of
stock prices, the pricing of earnings risk and the informational content of option
prices. We report significant evidence that firms with concave IV curves exhibit
higher absolute abnormal stock returns on EAD and higher realized volatility after the
announcement. Despite the larger than average stock price moves on EAD following
the formation of concave IV curves, we still find that the corresponding delta-neutral
straddle returns are significantly lower than for non-concave 1V curves. To rationalise
this finding, we provide strong evidence that ATM straddles are significantly more
expensive in the presence of concave IV curves, and hence the realized stock price
jumps are not sufficient to offset the substantial cost of these straddles.

Overall, we show that investors can ex ante identify the announcements that trigger
larger than average stock price moves and they pay a substantially higher premium to
hedge against this event risk. This hedging activity impacts on option prices, leading
to the formation of a concave 1V curve. To this end, we conclude that concavity in the
IV curve constitutes an ex ante option-implied signal for event risk in the underlying

stock arising due to the impending announcement.

The focus of our study is on scheduled corporate earnings announcements. However,
it would be interesting to examine the features and the informational content of IV
curves around other, non-corporate events that may also trigger large asset price
moves. In fact, prior studies have argued that macroeconomic announcements and
geopolitical events can give rise to substantial event risk, which can be ex ante
reflected in option prices (see Savor and Wilson, 2013; Leahy and Thomas, 1996;
Melick and Thomas, 1997; Kelly et al., 2015; Hanke et al., 2018). We anticipate that
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the curvature properties of the IV curve around these events can reveal substantial
information with respect to the pricing of event risk and the subsequent behavior of

asset prices.
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Figure 3.1. Types of concave IV curves
This Figure shows different types of concave IV curves computed on the day prior to the EAD. Panel A shows an example of an inverse U-shape IV curve for
Twitter, computed from options with 3 days to expiry on 29" July, 2014. Panel B presents an example of an S-shape IV curve for Ebay, computed from options with
3 days to expiry on 29" April, 2014. Panels C and D present examples of W-shape 1V curves for Google and Netflix, computed from options with 4 days to expiry
on 23 April and 16™ July 2018, respectively. Circles indicate implied volatilities corresponding to actual traded strikes, whereas the curve is fitted using a
smoothing spline.
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Figure 3.2. Concave IV curves around EAD

This Figure illustrates how a concave IV curve prior to the EAD becomes convex after the announcement. Panel A presents a concave IV curve for Apple, computed
from options with 4 days to expiry on 28" October, 2013, i.e., prior to its quarterly earnings announcement. Panel B presents a convex IV curve for the same firm,
computed from options with 3 days to expiry on 29" October, 2013, i.e., right after the announcement.
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Figure 3.3. Fraction of concave IV curves around EAD

This Figure shows the fraction of firms exhibiting a concave IV curve on each trading day from d-5 to d+5, where d is the quarterly EAD. The definition of a
concave IV curve is provided in Section 2.2. IV curves are computed for the 100 firms with the highest option trading activity per year during the period 2013-2019.
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Figure 3.4. Concave IV curves and RND bimodality

This Figure illustrates the correspondence between a concave 1V curve and the RND for the underlying stock price. Panel A presents the IV curve for Amazon,
computed from options with 8 days to expiry on 26 April, 2018, i.e., just before its quarterly earnings announcement. Circles indicate implied volatilities
corresponding to actual traded strikes, whereas the curve is fitted using a smoothing spline. Panel B presents the central part of the corresponding RND for Amazon
on the same day. The RND is computed for the range of available strikes using the non-parametric methodology of Figlewski (2010).
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Figure 3.5. IV curves for short- vs longer-expiry options

This Figure shows the shape of IV curves for Amazon, computed from options with different expiries (8, 22, 36, and 50 days to expiry) on 26" April, 2018, i.e., just
before its quarterly earnings announcement. The IV curves are fitted using a smoothing spline.
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Table 3. 1: Summary statistics

This Table presents summary statistics for selected variables. CONCAVE is an indicator variable that takes the value 1
when the IV curve is concave on the day prior to the EAD and zero otherwise. ABSEADABRET is the absolute
abnormal stock return on EAD, measured with respect to the 4-factor FFC model. POSTEADVOL is the 10-day post-
EAD annualized realized stock return volatility. STRADDLE denotes the return of the delta-neutral ATM straddle
strategy on EAD. IMPMOVE denotes the ratio of the sum of the ATM put and call prices divided by the underlying
stock price. The definition of the rest of the variables is provided in Appendix D. These summary statistics are based
on the values of the variables measured on the day prior to the EAD and they are computed for a sample of quarterly
earnings announcements during the period 2013-2019.

Variable Mean St. Dev. 25™ petl Median 75% petl Obs.
CONCAVE 0.374 0.48 0 0 1 1,875
EXPIRY 6.47 2.61 4 8 9 1,875
STRIKES 16.72 11.83 9 13 20 1,875
BETA 1.09 0.31 0.90 1.09 1.28 1,842
LN(SIZE) 10.94 1.30 10.08 11.10 11.97 1,867
B/M 0.35 0.32 0.13 0.26 0.45 1,760
LEVERAGE 0.34 0.24 0.16 0.27 0.49 1,809
RUNUP 0.43% 3.84% -1.71% 0.53% 2.56% 1,875
MOM 17.92% 40.92% -5.49% 12.03% 32.12% 1,842
IVOL 24.17% 12.35% 15.20% 20.55% 29.62% 1,842
LN(PRICE) 4.33 0.90 3.76 421 4,77 1,875
ATMIV 42.31% 20.28% 28.13% 35.77% 51.53% 1,825
RNS -0.28 0.24 -0.43 -0.26 -0.12 1,875
RNK 3.51 0.45 3.22 3.42 3.70 1,875
RVIV -16.68% 14.30% -23.08% -14.74% -7.67% 1,825
TSIV 6.58% 3.66% 3.87% 5.50% 8.35% 1,867
NUMEST 24.32 7.58 19 24 30 1,867
DISPERSION 12.46% 25.80% 2.43% 4.43% 9.95% 1,860
ANNBETA 0.08 0.80 -0.31 0.06 0.49 1,801
STOCKTR 2.27% 2.88% 0.65% 1.14% 2.57% 1,875
0/s 27.09% 31.69% 5.64% 15.11% 35.35% 1,875
ABSEADABRET 4.84% 4.64% 1.58% 3.42% 6.44% 1,842
POSTEADVOL 38.97% 25.28% 21.77% 31.47% 48.31% 1,872
STRADDLE 0.25% 50.21% -33.93% -14.35% 20.30% 1,862
IMPMOVE 6.22% 3.16% 3.96% 5.27% 7.74% 1,863
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Table 3.2: Pairwise correlations of firm characteristics
This Table presents pairwise correlation coefficients among selected variables. CONCAVE is an indicator variable that takes the value 1 when the 1V curve is concave on the

day prior to the EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. These correlations are based on the values of the variables
measured on the day prior to the EAD and they are computed for a sample of quarterly earnings announcements during the period 2013-2019.
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CONCAVE 1

BETA 009 1

LN(SIZE) 019 027 1

B/M 012 022 -012 1

LEVERAGE  -021 014 -003 071 1

RUNUP 003 004 -002 001 -001 1

MOM 012 010 -0.05 -0.19 -0.18 005 1

IVOL 029 028 -0.76 -0.02 -016 003 019 1

LN(PRICE) 012 -012 040 -034 -031 007 016 -025 1

ATMIV 035 030 -0.68 -0.06 -023 -0.04 016 084 -020 1

RNS 040 011 -023 001 -005 003 009 019 -003 015 1

RNK 042 -008 035 010 021 001 -010 -033 008 -038 -058 1

RVIV 033 -013 043 009 024 -002 -009 -057 009 -063 -019 033 1

TSIV 039 023 -061 -015 -033 -002 017 078 -0.14 094 016 -041 -068 1

NUMEST 020 000 022 -023 -040 004 003 -006 024 010 006 -014 -017 019 1

DISPERSION 0.04 016 -025 0.08 0.03 002 003 033 -002 029 005 -0.04 -0.16 0.24 -0.09 1

ANNBETA 005 011 -009 005 001 001 006 011 000 011 -001 -005 -0.09 012 -0.08 004 1

STOCKTR 027 027 -065 -001 -014 005 023 079 -009 078 014 -025 -048 075 001 029 014 1

O/Ss 0.27 -0.0vr 0.02 -0.15 -0.12 0.06 006 000 051 004 005 -0.04 -0.13 010 013 -004 o0.05 011 1
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Table 3.3: Characteristics of firms with concave vs. non-concave IV curves

This Table presents the average values of selected variables for firms when they exhibit a concave 1V curve on the day
prior to the EAD (CONCAVE=1) versus the corresponding average values when they do not exhibit a concave IV
curve (CONCAVE=0). The definition of the rest of the variables is provided in Appendix D. The values of the
variables are measured on the day prior to the EAD and they are computed for a sample of quarterly earnings
announcements during the period 2013-2019. The pre-last column contains the difference in the average values and
the last column presents the corresponding t-statistic under the null hypothesis of equal means.

Variable CONCAVE=1 CONCAVE=0 Difference t-stat
EXPIRY 6.08 6.71 -0.63 -5.05
STRIKES 21.30 13.98 7.31 12.22
BETA 1.13 1.07 0.06 3.72
LN(SIZE) 10.64 11.12 -0.48 -7.50
B/M 0.30 0.38 -0.09 -5.77
LEVERAGE 0.27 0.38 -0.10 -9.59
RUNUP 0.68% 0.27% 0.41% 2.18
MOM 23.77% 14.50% 9.27% 4.35
IVOL 28.55% 21.61% 6.94% 11.47
LN(PRICE) 4.44 4.26 0.18 3.79
ATMIV 51.19% 37.02% 14.16% 14.59
RNS -0.15 -0.36 0.20 21.07
RNK 3.26 3.66 -0.40 -22.22
RVIV -22.79% -13.05% -9.74% -13.94
TSIV 8.35% 5.52% 2.83% 16.69
NUMEST 26.14 23.22 2.92 7.85
DISPERSION 13.73% 11.71% 2.03% 1.65
ANNBETA 0.11 0.07 0.04 1.03
STOCKTR 3.21% 1.71% 1.49% 10.37
o/s 37.75% 20.71% 17.04% 10.41
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Table 3.4: Determinants of concave 1V curves

This Table presents the results of contemporaneous logistic regressions of CONCAVE on alternative sets of firm
characteristics. CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the
day prior to the EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D.
The values of the variables are measured on the day prior to the EAD and they are computed for a sample of
quarterly earnings announcements during the period 2013-2019. z-statistics are provided in parentheses, using
two-way clustered standard errors at the firm- and quarter-level.

@ 2) 3 4) ®)
-0.110 -0.114 -0.118 -0.111 -0.028
EXPIRY (-3.47) (-3.63) (-3.62) (-3.79) (-0.76)
0.047 0.039 0.046 0.046 0.030
STRIKES (4.96) (3.87) (5.57) (5.29) (3.00)
BETA 0.359 0.294 0.125 0.369 0.344
(1.65) (1.37) (0.74) (1.58) (1.49)
-0.317 -0.142 0.313 -0.409 -0.250
LN(SIZE) (-3.89) (-1.29) (3.31) (-5.06) (-2.48)
B/M 0.057 0.047 -0.362 -0.155 0.128
(0.16) (0.12) (-0.98) (-0.48) (0.35)
-1.641 -1.472 0.201 -0.818 -1.659
LEVERAGE (-3.10) (-2.86) (0.40) (-1.65) (-3.08)
RUNUP (1017477)
0.045
MOM (0.24)
2.481
IVOL (2.42)
LN(PRICE) ?(501241)
ATMIV (236423%
4,077
RNS (8.60)
-2.222
RNK (-5.74)
-1.592
RVIV (2.81)
NUMEST ?402253
DISPERSION ('_01'22979)
ANNBETA ?0'06516;
STOCKTR fi02267)
1.337
o/s (3.34)
Constant 2.951 0.500 3.146 2.695 1.470
(2.94) (0.31) (1.54) (2.49) (1.14)
Clustered SE Quarter&Firm  Quarter&Firm  Quarter&Firm  Quarter&Firm  Quarter&Firm
Observations 1,733 1,733 1,692 1,687 1,733
Pseudo R-square 12.41% 12.93% 32.39% 14.15% 13.88%
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Table 3.5: Concave IV curves and absolute abnormal stock returns on EAD

This Table presents results from predictive panel regressions of the absolute abnormal stock return on EAD
(ABSEADABRET) on CONCAVE and a set of firm-level characteristics measured on the day prior to the EAD.
The abnormal stock return is computed with respect to the 4-factor FFC model. CONCAVE is an indicator
variable that takes the value 1 when the IV curve is concave on the day prior to the EAD and zero otherwise.
The definition of the rest of the variables is provided in Appendix D. The sample consists of quarterly earnings
announcements during the period 2013-2019. Models (1), (3), and (5), use two-way clustered standard errors, at
the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed effects. t-statistics are provided in
parentheses.

1) ) ©) (4) (5) (6)
0.0180 0.0190 0.0086 0.0090 0.0054 0.0054
CONCAVE (5.63) (8.56) (3.14) (4.15) (2.18) (2.47)
0.0028 0.0018 -0.0013 -0.0032
BETA (0.76) (0.50) (-0.35) (-0.91)
-0.0156 -0.0157 -0.0156 -0.0160
LN(SIZE) (-9.80) (-17.09) (-10.59) (-16.84)
-0.0187 -0.0172 -0.0137 -0.0117
B/M (-3.60) (-4.91) (-2.88) (-3.38)
0.0341 0.0398 0.0220 0.0293
RUNUP (1.55) (1.48) (0.95) (1.11)
-0.0003 0.0034 0.0003 0.0039
MOM (-0.06) (1.25) (0.06) (1.44)
0.0006 0.0006 -0.0003 -0.0004
LN(PRICE) (0.25) (0.41) (-0.13) (-0.33)
0.0010 0.0011
NUMEST (4.28) (7.71)
0.0114 0.0129
DISPERSION (1.67) (3.28)
0.0033 0.0032
ANNBETA (1.94) (2.54)
Constant 0.0416 - 0.2168 - 0.1974 -
(16.55) (10.84) (10.49)
Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No
Fixed Effects No Quarter No Quarter No Quarter
Observations 1,837 1,837 1,733 1,733 1,687 1,687
R-squared 3.52% 5.85% 21.85% 23.84% 23.52% 25.70%
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Table 3.6: Concave IV curves and 10-day post-EAD stock return volatility

This Table presents results from predictive panel regressions of the post-EAD realized stock return volatility
(POSTEADVOL) on CONCAVE and a set of firm-level characteristics measured on the day prior to the EAD.
Post-EAD volatility is computed using stock returns from d to d+9, where d is the EAD, and it is annualized.
CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the day prior to the
EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. The sample
consists of quarterly earnings announcements during the period 2013-2019. Models (1), (3), and (5), use two-
way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed
effects. t-statistics are provided in parentheses.

(@) (2) (3) (4) (5) (6)
0.1105 0.1177 0.0443 0.0465 0.0327 0.0312
CONCAVE (5.35) (9.97) (2.91) (4.54) (2.42) (3.06)
0.0798 0.0688 0.0682 0.0529
BETA (3.60) (4.15) (3.14) (3.25)
-0.0953 -0.0979 -0.0906 -0.0952
LN(SIZE) (-11.17) (-22.62) (-11.51) (-21.35)
-0.0853 -0.0690 -0.0627 -0.0437
B/M (-3.73) (-4.17) (-2.97) (-2.69)
-0.1671 -0.0237 -0.2351 -0.0712
RUNUP (-1.24) (-0.19) (-1.48) (-0.57)
0.0303 0.0583 0.0298 0.0593
MOM (1.48) (4.56) (1.37) (4.67)
-0.0031 -0.0038 -0.0060 -0.0072
LN(PRICE) (-0.25) (-0.59) (-0.61) (-1.16)
0.0041 0.0045
NUMEST (3.29) (6.81)
0.0902 0.1008
DISPERSION (3.37) (5.50)
0.0070 0.0031
ANNBETA (0.94) (0.54)
Constant 0.3481 - 1.3612 - 1.2165 -
(18.94) (12.26) (11.79)
Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No
Fixed Effects No Quarter No Quarter No Quarter
Observations 1,867 1,867 1,730 1,730 1,684 1,684
R-squared 4.49% 8.95% 32.89% 38.59% 33.35% 39.62%
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Table 3.7: Concave 1V curves and delta-neutral straddle returns on EAD

This Table presents results from predictive panel regressions of delta-neutral ATM straddle returns computed on
EAD (STRADDLE) on CONCAVE and a set of firm-level characteristics measured on the day prior to the EAD.
CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the day prior to the
EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. Option controls
include the expiry and the average moneyness of the options used to construct the straddle strategy. The sample
consists of quarterly earnings announcements during the period 2013-2019. Models (1), (3), and (5), use two-
way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed
effects. t-statistics are provided in parentheses.

D ) ©) (4) (5) (6)
-0.0617 -0.0578 -0.0631 -0.0597 -0.0666 -0.0620
CONCAVE (-2.88) (-2.22) (-2.94) (-2.26) (-2.69) (-2.25)
-0.0541 -0.0529 -0.0533 -0.0537 -0.0592 -0.0610
BETA (-1.62) (-1.24) (-1.62) (-1.25) (-1.64) (-1.38)
-0.0411 -0.0407 -0.0430 -0.0427 -0.0432 -0.0425
LN(SIZE) (-3.58) (-3.98) (-4.40) (-3.82) (-4.33) (-3.51)
-0.0216 -0.0241 -0.0220 -0.0223 -0.0142 -0.0108
B/M (-0.81) (-0.60) (-0.78) (-0.52) (-0.48) (-0.25)
0.4276 0.4482 0.4060 0.4353
RUNUP (2.32) (1.36) (1.95) (1.29)
-0.0229 -0.0183 -0.0250 -0.0220
MOM (-0.59) (-0.55) (-0.58) (-0.64)
0.0055 0.0061 0.0063 0.0066
LN(PRICE) (0.46) (0.37) (0.58) (0.39)
0.0006 0.0005
NUMEST (0.36) (0.28)
0.0111 0.0235
DISPERSION (0.17) (0.47)
0.0050 0.0132
ANNBETA (0.36) (0.83)
Constant 0.7523 - 0.6440 - 2.3630 -
(0.33) (0.28) (0.99)
Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No
Fixed Effects No Quarter No Quarter No Quarter
Option Controls Yes Yes Yes Yes Yes Yes
Observations 1,720 1,720 1,720 1,720 1,674 1,674
R-squared 1.17% 2.88% 1.31% 3.01% 1.35% 3.12%

127



Table 3.8: Concave IV curves and straddle-implied stock price moves prior to EAD

This Table presents results from contemporaneous panel regressions of the implied move of the underlying
stock price prior to the EAD (IMPMOVE) on CONCAVE and a set of firm-level characteristics measured on the
day prior to the EAD. IMPMOVE denotes the ratio of the sum of the ATM put and call prices divided by the
underlying stock price. CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave
on the day prior to the EAD and zero otherwise. The definition of the rest of the variables is provided in
Appendix D. The sample consists of quarterly earnings announcements during the period 2013-2019. Models
(1), (3), and (5), use two-way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6),
include quarterly fixed effects. t-statistics are provided in parentheses.

1) (2) 3) 4) 5) (6)
0.0231 0.0239 0.0131 0.0133 0.0099 0.0094
CONCAVE (7.79) (17.01) (6.23) (13.27) (6.15) (10.15)
0.0102 0.0094 0.0080 0.0064
BETA (2.75) (5.77) (2.56) (4.34)
-0.0145 -0.0147 -0.0141 -0.0143
LN(SIZE) (-10.96) (-34.59) (-13.29) (-36.13)
-0.0173 -0.0154 -0.0134 -0.0113
B/M (-4.79) (-9.50) (-4.27) (-7.64)
-0.0484 -0.0364 -0.0540 -0.0384
RUNUP (-1.88) (-2.92) (-1.97) (-3.41)
0.0039 0.0084 0.0050 0.0097
MOM (1.67) (6.75) (2.46) (8.44)
-0.0011 -0.0011 -0.0017 -0.0019
LN(PRICE) (-0.54) (-1.80) (-1.11) (-3.30)
0.0009 0.0010
NUMEST (4.62) (15.99)
0.0134 0.0145
DISPERSION (2.69) (8.66)
0.0021 0.0012
ANNBETA (1.79) (2.34)
Constant 0.0536 - 0.2139 - 0.1900 -
(20.16) (11.62) (14.22)
Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No
Fixed Effects No Quarter No Quarter No Quarter
Observations 1,858 1,858 1,721 1,721 1,675 1,675
R-squared 12.47% 17.90% 55.52% 62.02% 60.04% 67.29%
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Conclusions

This thesis, composed of three independent empirical studies, examines the

informational role of option contracts on future stock returns.

In chapter 1, we create a joint measure tracking the probability density function of
individual stock returns. This new measure is an intuitive score variable based on risk-
neutral volatility, skewness and kurtosis. Essentially, our measure ranks stocks based
on investors’ expectations about future return distribution properties and can be
interpreted as a defensiveness measure where the definition of defensiveness is
expanded by incorporating skewness and kurtosis alongside with volatility. We find
that high rank stocks significantly outperform low rank stocks. A portfolio going long
the highest decile portfolio and short the lowest decile portfolio yields a statistically
significant 0.75% (0.79%) value-weighted (equally-weighted) return and significant
alphas, with both legs of the strategy contributing to the overall abnormal return. This
relation is robust to various variables proposed in the literature using double sorts and
Fama-MacBeth regressions. This relation is not consistent with standard moment
preferences, so we provide an alternative explanation building on the ICAPM. We
find that high rank stocks are exposed to shocks in aggregate volatility while low rank
stocks hedge against these shocks. Moreover, we show that the explanatory power of
the ICAPM depends on the level of investors’ sentiment. When investors’ sentiment
is low, the ICAPM can fully explain this relation. In contrast, in high sentiment
periods the ICAPM alpha remains positive and significant and is attributed to
mispricing. It would be interesting for future research to examine the score measure’s
predictability constructed from options of longer than 1-month time-to-maturity.
Furthermore, in a portfolio management perspective, it would be fascinating to

compare the performance of the high-low score portfolio to volatility-managed ones.

In chapter 2, we examine the cross-sectional pricing of equities according to their
sensitivities to innovations in option-implied jump risk. We find strong evidence that

jump risk is negatively priced in the cross-section of stock returns. We use the Du and

129



Kapadia (2012) formulas and find that high-low quntile portfolios formed by betas to
jump risk and its downside jump component produce significant negative premiums
of -9.41% and -11.52% per year contemporaneously, respectively. Notably, this
contemporaneous risk-return tradeoff is robust to controlling for betas to innovations
in aggregate variance or skewness using dependent bivariate sorts. Lastly, we
examine the relation between jump risk sensitivities and future stock returns and show
that the hedge portfolio delivers significant abnormal returns in the following month
of the portfolio formation, while it is also robust to different beta estimation and
holding period windows. The clear conclusion drawn by our results is that jump risk
constitutes an important determinant not only of option prices and aggregate equity
and volatility premiums but also impacts the cross-sectional variation of individual
stocks returns. Future research could be done examining if aggregate volatility (in
addition to market return) jump risk, that can be extracted using VIX options, is

priced in the cross-section of stock returns.

In chapter 3 we investigate the implied volatility curves that are determined from
option prices prior to earnings announcements days. We show, that a fraction of them
becomes concave, taking unusual shapes such as W, S, and inverted. This
characteristic, which is mostly observed in short-term options, reflects a bimodal risk-
neutral density for the stock price and quickly disappears after the earnings
announcement day. This pattern is consistent with investors anticipating a jump in the
stock price at the earnings announcement day. We find that concave implied volatility
curves do predict higher absolute stock returns at the earnings announcement day and
higher realized volatility following the earnings announcement day at a 5-, 10- or 21-
day interval. However, straddle returns of stocks with concave implied volatility
curves are significantly lower than those with non-concave implied volatility curves.
We rationalize this finding to the fact that at-the-money options of concave implied
volatility curves are much more expensive and the jumps of the stock price at the
earnings announcement day are not large enough to offset the substantial cost of these
straddles. Therefore, investors identify event risk in stocks that jump in the earnings
announcement days and pay a substantially higher premium to hedge against this risk.
As a future research, it would be intriguing to investigate whether these patterns in

implied volatility curves occur in other firm level events or macro announcements.
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Appendix A

Book-to-Market ratio (B/M): We compute a firm’s book-to-market ratio following
Fama and French (1993). Book value is the book value of stockholders’ equity plus
deferred taxes plus investment tax credit minus the book value of preferred stock.

Market value is the number of shares outstanding times the price of the stock.
Beta: We estimate the CAPM beta using a 60-month rolling estimation window.

Beta AVIX (B AVIX): Following Ang, Hodrick, Xing and Zhang (2006), we estimate
the beta of market volatility innovations by regressing daily returns of the previous

month on VXO first differences.

Expected Idiosyncratic skewness (EIS): We obtain EIS data from Brian Boyer’s

website.? See Boyer, Mitton and Vorkink (2010) for a detailed description.

Gross Profitability (GPROFIT): Following Novy-Marx (2013), we define a firm’s
gross profitability as annual revenues minus costs of goods sold, divided by total

assets.

Idiosyncratic volatility (IVOL): Following Ang, Hodrick, Xing and Zhang (2006),
we define idiosyncratic volatility as the standard deviation of residuals of the Fama

and French (1993) three-factor model using a one-month rolling window.

Iliquidity (ILLIQ): We compute Amihud’s (2002) illiquidity measure in a rolling

|Ri,al
VOLDi'd

one year window as: : ILLIQ; = %2321 where R; 4 is the return of stock i on day

25 http://boyer.byu.edu/Research/skewdata2.html
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d and VOLD, 4 is the dollar volume of stock i traded on day d. We multiply ILLIQ; with

10 (except Table 1 where we multiply it with 108).

Maximum daily return (MAX): The largest daily return of a stock during the

previous month.

Minimum daily return (MIN): The minimum daily return of a stock during the

previous month.

Mispricing measure (MISP): We use the Stambaugh, Yu and Yuan (2015)
mispricing measure which is constructed by combining rankings on 11 anomaly

variables. We obtain MISP data from Robert Stambaugh’s website.?®

Momentum (MOM): Momentum is the compounded return from month ¢t — 12 to

month t — 2.

Profitability (PROFIT): Following Fama and French (2015), we define a firm’s
profitability as annual revenues minus costs of goods sold, interest expense and
selling, general and administrative expenses, all divided by book equity, pairing data

as in their paper.
Reversal (REV): Reversal is the return in the previous month t — 1.

SCORE: At the end of each month t we rank VOL, SKEW and KURT cross-
sectionally in ascending order with VOL and KURT multiplied by -1, so that all
distribution shape parameters are ranked according to moment preferences, that is,
TvoL,, = rank(=VOL;.), Tskgw,, = rank(SKEW;.) and ryygr,, = rank(—KURT;;). We

then standardize each rank as follows: zy = (ry —7y)/0y,, Where M=

26 http://finance.wharton.upenn.edu/~stambaug/
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{voL;., SKEW;, KURT;.}, T is the rank cross-sectional sample mean and o, is the
rank cross-sectional standard deviation. Finally, we compute SCORE for each stock i

as the mean of the previously calculated individual z-scores, i.e., SCORE;, =

(1/3)(ZV0LM + Zskew,;, + ZKURTL-I)-

SIZE: Firm size is the log of the market value of equity in millions of dollars, that is,

the number of shares outstanding times the price of the stock.
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Appendix B

The formulas of the second, third and fourth-order non-central moments of the future

log-return distribution implied from option prices are given as follows (see Bakshi,
Kapadia and Madan (2003)):

»2(1-In|g|)

Vie=e'" .L T’Ci,t(r, K)dK

it
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el (i)
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el (o]

KZ

P, (7,K)dK

respectively. C; . (t, K) (P;¢(, K)) denotes the call (put) option price of stock i at time ¢
with strike price K and time-to-maturity ¢ (which is equal to 1 month). S;, is stock
price of stock i at time ¢ adjusted for future dividends. In particular, we subtract from

the current stock price the present value of future dividends with ex-dividend dates
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during the following month, as in Bali, Hu and Murray (2017). r denotes the risk-free

rate.

In order to calculate the integrals inside the previous formulas we interpolate implied
volatilities between the lowest and highest available moneyness using cubic splines
and perform constant extrapolation with 1% and 300% moneyness as bounds,
resulting in 1,000 grid points. Subsequently, we convert implied volatilities to option
prices using the Black-Scholes formula and use those prices to numerically calculate

the above integrals.

The first non-central moment can be approximated using higher-order moments as:

rT 1 1 1
Hig=e' " —1—5Vy _gWi,t ~ o2

5 Xi¢ (B.4)

Using these option-implied moments we compute the volatility (VOL), skewness
(SKEW) and kurtosis (KURT) of the 1-month ahead return distribution for stock i at
the end of each month ¢ as follows:

VOL;; = /Vi,t — u%t, (B.5)

Wit —3uVie + 2.“1'3,15
VoL,

SKEW;, = (B.6)

Xie — 4 eWie + 6:uiz,tVi,t - 3#31&

KURT;, =
' VOL?,

(B.7)
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Appendix C

Table C1: Long term performance of SCORE portfolios

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure. Low decile
portfolio includes stocks with the lowest SCORE (bad) and high decile portfolio includes stocks with the highest SCORE (good). The table reports average
returns and alphas of the Fama and French (2015) 5-factor model (FF5) over months t+2 up to t+6. Panel A shows value-weighted returns and Panel B shows
equally-weighted returns. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags.

Panel A: Value-weighted

t+2 t+3 t+4 t+5 t+6
Bad Good GMB Bad Good GMB Bad Good GMB Bad Good GMB Bad Good GMB
Raw 0.33 1.03 0.71 0.42 1.08 0.66 0.37 0.87 0.50 0.23 0.90 0.67 0.47 1.01 0.54
(0.70) (3.44) (2.43) (0.86) (3.71) (2.05) (0.76) (3.00) (1.56) (0.45) (2.98) (2.00) (0.89) (3.28) (1.63)
FF5 -0.51 0.01 0.52 -0.47 0.07 0.55 -0.43 -0.09 0.34 -0.52 -0.03 0.49 -0.32 0.09 0.41

(-2.79) (0.05) (2.24) (-2.49) (0.53) (2.44) (-2.69) (-0.73) (1.57) (-2.81) (-0.21) (1.95) (-1.38) (0.68) (1.62)

Panel B: Equally-weighted

Raw  0.58 1.03 0.44 0.69 1.11 0.42 0.62 1.03 0.41 0.69 1.11 0.42 0.90 1.09 0.19
(1.48) (2.98)  (2.87)  (1.68)  (3.16) (2.39)  (1.45) (293)  (2.50)  (1.61) (3.12)  (2.39)  (2.06)  (3.14) (1.10)
FF5 -0.45 -0.05 0.40 -0.31 0.04 0.35 -0.33 -0.02 0.32 -0.21 0.08 0.29 -0.06 0.07 0.13

(-4.47)  (-0.43)  (3.00) (-2.37) (0.36)  (2.48)  (-2.90)  (-0.14)  (2.41)  (-1.15)  (0.68)  (1.52)  (-0.31)  (0.65)  (0.69)

143



Appendix D

ANNBETA: Following Barth and So (2014), announcement beta is the estimate of

coefficient 85 from the following firm-level regression model:
xti¢ = a; + f1;MKT, + B, ;AnnDay; , + ,83,1-(MKTt * AnnDayi,t) + ¢, (D.1)

where xr;, is the excess daily return of firm i on day t, MKT denotes the excess
market return, and AnnDay; . is a dummy variable that takes the value 1 on trading
days {d-1, d, d+1}, where d is the EAD, and O otherwise. We estimate this model
using daily data during the past 12 quarters. We require at least 8 EADs and at least

451 observations.

ATMIV: The average of the annualized call implied volatility with delta=0.5 and the
annualized put implied volatility with delta=-0.5. Annualized implied volatilities are

sourced from the 10-day Volatility Surface File of OptionMetrics.

B/M: The ratio of firm book value of equity (CEQ) to market capitalization. Market
capitalization is defined as the product of share price (PRC) times the number of
shares outstanding (SHROUT). We drop observations with negative book value. We

use the B/M ratio computed at the end of the previous fiscal quarter.

BETA: The market beta estimated from the Fama-French-Carhart 4-factor (FFC4)
regression model specified in equation (3). We estimate this model at t using daily
data from t-250 to t-25 and requiring at least 200 observations. MKT, SMB, HML, and

WML returns are sourced from Kenneth French’s online data library.

DISPERSION: The standard deviation of the earnings per share (EPS) forecasts for
the next quarterly earnings announcement scaled by the absolute value of the mean
EPS forecast. EPS forecasts are sourced from 1/B/E/S.

IVOL: The firm-level annualized standard deviation of residuals from the FFC4
regression model specified in equation (3). We estimate this model at t using daily
data from t-250 to t-25 and requiring at least 200 observations.
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LEVERAGE: The ratio of total liabilities (LT) to the sum of market capitalization and
total liabilities. Market capitalization is defined as the product of share price (PRC)
times the number of shares outstanding (SHROUT). We use the LEVERAGE ratio
computed at the end of the previous fiscal quarter.

LN(PRICE): The natural logarithm of the share price (PRC).

LN(SIZE): The natural logarithm of the firm’s market capitalization (in million $).
Market capitalization is defined as the product of share price (PRC) times the number
of shares outstanding (SHROUT). We use the market capitalization computed at the

end of the previous fiscal quarter.

MOM: The cumulative stock return from day t-250 to day t-25. We require at least

200 daily observations.

NUMEST: The number of analysts providing EPS forecasts for the next quarterly

earnings announcement sourced from 1/B/E/S.

O/S: The ratio of daily option trading volume to daily stock trading volume. Option
trading volume is multiplied by 100, as each option contract corresponds to a 100-
share lot. We sum up the trading volume of all call and put options with the same

expiry as the one used to define the indicator CONCAVE.

RVIV: The difference between the annualized realized (historical) volatility and the
at-the-money implied volatility (ATMIV). Realized volatility is sourced from the 10-
day Historical Volatility File provided by OptionMetrics.

RUNUP: The cumulative stock return from day t-4 to day t. We require all 5 daily

observations.

RNK: The Risk-Neutral Kurtosis computed as per the definition of Bakshi et al.
(2003). We use prices of OTM and ATM options with the same expiry as the one
used to define the indicator CONCAVE. We require at least 4 options, with at least 2
calls and 2 puts. Option prices are converted to implied volatilities and vice versa via
the Black-Scholes formula. We use a cubic spline to interpolate implied volatilities
between the lowest and the highest available strikes and perform a constant

extrapolation outside this range, with lower bound K/S=1/3 and upper bound K/S=3.
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RNS: The Risk-Neutral Skewness computed as per the definition of Bakshi et al.
(2003). We use prices of OTM and ATM options with the same expiry as the one
used to define the indicator CONCAVE. We require at least 4 options, with at least 2
calls and 2 puts. Option prices are converted to implied volatilities and vice versa via
the Black-Scholes formula. We use a cubic spline to interpolate implied volatilities
between the lowest and the highest available strikes and perform a constant

extrapolation outside this range, with lower bound K/S=1/3 and upper bound K/S=3.

STOCKTR: The ratio of daily stock trading volume (VOL) to shares outstanding
(SHROUT*1,000).

TSIV: The term structure estimator of ATM implied volatility proposed by Dubinsky

et al. (2019) and defined as the square root of the following expression:

2 2

Q 2 otr, =0T

(Gi,term) - T—}._T—lz ) (D.2)
1 2

where atZ,Tl is the squared annualized ATM implied volatility corresponding to the
nearest expiry T;, whereas a,?,Tz is the squared annualized ATM implied volatility

corresponding to the second nearest expiry T,. T, is the same as the maturity of the
options used to define the indicator CONCAVE. We use the nearest-to-the-money
option to compute the ATM implied volatility, with moneyness defined as the strike

price divided by the forward price. TSIV is not defined when o/, < ofr, .
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