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Περίληψη (summary in Greek) 

 

Η παρούσα διδακτορική διατριβή εστιάζει στη μελέτη των πληροφοριών που 

εμπεριέχονται στην αγορά δικαιωμάτων προαίρεσης για την καλύτερη κατανόηση της 

αποτίμησης των μετοχικών τίτλων. Τα δικαιώματα προαίρεσης ενσωματώνουν 

πολύτιμες πληροφορίες για τις προσδοκίες των επενδυτών σχετικά με τις μελλοντικές 

αποδόσεις των υποκείμενων τίτλων τους. Αυτό πηγάζει από το γεγονός ότι οι αγορές 

είναι ατελείς λόγω περιορισμών όπως η ασύμμετρη πληροφόρηση και τα εμπόδια 

στην ανοιχτή πώληση, καθιστώντας τα δικαιώματα προαίρεσης μη-περιττά 

περιουσιακά στοιχεία.  

Την τελευταία δεκαετία έγιναν πολλές μελέτες που υπολογίζουν ένα μέτρο από τα 

δικαιώματα προαίρεσης και εξετάζουν αν προβλέπει τις μελλοντικές αποδόσεις των 

μετοχών. Ενδεικτικά, οι Guo και Qui (2014) βρίσκουν αρνητική σχέση ανάμεσα στην 

τεκμαρτή μεταβλητότητα και τις μελλοντικές αποδόσεις των μετοχών και οι Stilger, 

Kostakis και Poon (2017) δείχνουν ότι η ουδέτερη ως προς τον κίνδυνο ασυμμετρία 

προβλέπει θετικά τις μελλοντικές αποδόσεις των μετοχών. Οι προαναφερθείσες 

μελέτες χρησιμοποιούν ένα μέτρο με βάση μια συγκεκριμένη ιδιότητα/ροπή της 

ουδέτερης ως προς τον κίνδυνο κατανομής των αποδόσεων των μετοχών και γι’ αυτό 

μπορεί να χάνουν πολύτιμες πληροφορίες. Στο 1ο κεφάλαιο προτείνουμε ένα από 

κοινού μέτρο σχετικό με την ουδέτερη ως προς τον κίνδυνο κατανομή. Πιο 

συγκεκριμένα, συνδυάζουμε την διακύμανση, την ασυμμετρία και την κύρτωση που 

τεκμαίρονται από τα δικαιώματα προαίρεσης σε ένα βαθμολογικό μέτρο με βάση τις 

προτιμήσεις των επενδυτών στις ροπές, δηλαδή μία χαμηλή βαθμολογία σημαίνει ότι 

η μετοχή έχει υψηλή διακύμανση, χαμηλή ασυμμετρία και υψηλή κύρτωση. Αντίθετα 

μία υψηλή βαθμολογία σημαίνει ότι η μετοχή έχει χαμηλή διακύμανση, υψηλή 

ασυμμετρία και χαμηλή κύρτωση. Ουσιαστικά, το μέτρο μας μπορεί να ερμηνευτεί 

ως ένα μέτρο αμυντικότητας, όπου ο ορισμός της επεκτείνεται λαμβάνοντας υπόψιν 

την ασυμμετρία και την κύρτωση μαζί με την διακύμανση. 

Ταξινομούμε τις μετοχές σε χαρτοφυλάκια με βάση το βαθμολογικό μέτρο μας και 

βρίσκουμε ότι οι μετοχές με υψηλό σκορ έχουν μεγαλύτερες αποδόσεις από τις 
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μετοχές με χαμηλό σκορ. Η στατιστικά σημαντική σχέση μεταξύ του μέτρου μας και 

των μελλοντικών αποδόσεων των μετοχών αντέχει σε διάφορα τεστ ανθεκτικότητας 

όπως διπλές ταξινομήσεις, Fama-MacBeth (1973) παλινδρομήσεις και 

χρησιμοποίηση δείγματος μετοχών μεγάλης κεφαλαιοποίησης. Δείχνουμε ότι αυτή η 

σχέση εξηγείται από την έκθεση στα σοκ της μεταβλητότητας της αγοράς και 

εξαρτάται από το επίπεδο της επενδυτικής ψυχολογίας. Σε περιόδους χαμηλής 

επενδυτικής ψυχολογίας το  διαχρονικό μοντέλο αποτίμησης περιουσιακών στοιχείων 

(ICAPM) μας εξηγεί πλήρως αυτή τη σχέση, ενώ σε περιόδους υψηλής επενδυτικής 

ψυχολογίας η σχέση παραμένει στατιστικά σημαντική και αποδίδεται σε εσφαλμένη 

τιμολόγηση. 

Η βιβλιογραφία έχει δείξει ότι ο κίνδυνος των αλμάτων τιμολογείται από τους 

επενδυτές στην αγορά των δικαιωμάτων προαίρεσης. Ένα μέρος των ερευνών 

εξετάζει την επιρροή του κινδύνου άλματος στα ασφάλιστρα κινδύνου των μετοχών 

και της διακύμανσης, παρέχοντας ισχυρές ενδείξεις ότι ένα σημαντικό μέρος αυτών 

των δύο ασφαλίστρων μπορεί να αποδοθεί σε αποζημίωση για κίνδυνο άλματος 

(βλέπε Santa-Clara και Yan (2010) και Bollerslev και Todorov (2011)). Παρόλα 

αυτά, ο τρόπος με τον οποίο ο κίνδυνος άλματος επηρεάζει τη διαστρωματική 

μεταβλητότητα των αποδόσεων των μετοχών έχει λάβει λιγότερη προσοχή από τη 

βιβλιογραφία. Έτσι λοιπόν, στο 2ο κεφάλαιο εξετάζουμε αν η έκθεση στα σοκ των 

καθοδικών (αριστερών) και ανοδικών (δεξιών) αλμάτων της αγοράς τιμολογείται στις 

αγορές. Σε ένα πρώτο βήμα κατασκευάζουμε ένα, θεωρητικά συνεπές, μέτρο του 

κινδύνου τυχαίων αλμάτων μέσω των δικαιωμάτων προαίρεσης του δείκτη S&P 500. 

Η μελέτη προσομοίωσης που πραγματοποιούμε δείχνει ότι το μέτρο αυτό παράγει 

αξιόπιστες εκτιμήσεις. Αντίθετα, οι αποδόσεις ενός χαρτοφυλακίου δικαιωμάτων που 

πρότειναν οι Cremers, Halling and Weinbaum (2015) παράγει μεροληπτικές 

εκτιμήσεις αναφορικά με το πριμ του κινδύνου άλματος. Βρίσκουμε ότι τα βήτα στα 

σοκ των καθοδικών παράγουν ένα στατιστικά σημαντικό ασφάλιστρο κινδύνου -

11.52% σε ετήσια βάση για την ίδια περίοδο που έγινε η εκτίμηση των βήτα, σε 

αντίθεση με τα βήτα στα σοκ των ανοδικών αλμάτων. Αυτή η στατιστικά σημαντική 

σχέση μεταξύ των βήτα στα σοκ των καθοδικών αλμάτων και τον αποδόσεων το 

μετοχών δεν οφείλεται στα σοκ της ουδέτερης ως προς τον κίνδυνο διακύμανσης και 

ασυμμετρίας. Επίσης δείχνουμε ότι παράγει στατιστικά σημαντικές μη-κανονικές 

αποδόσεις τον επόμενο μήνα από την περίοδο εκτίμησης των βήτα ενώ είναι 
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ανθεκτικό σε διαφορετικές περιόδους εκτίμησης των βήτα όπως 9, 6 και 3 μήνες και 

σε διαφορετικές περιόδους διακράτησης του χαρτοφυλακίου όπως 3 και 6 μήνες. 

Στο 3ο κεφάλαιο εξετάζουμε τις καμπύλες τεκμαρτής μεταβλητότητας που 

προκύπτουν από τις τιμές δικαιωμάτων προαίρεσης πριν τις ημέρες ανακοινώσεων 

κερδών των εταιρειών. Δείχνουμε ότι  ένα ποσοστό αυτών γίνεται κοίλο, παίρνοντας 

ασυνήθιστες μορφές όπως W, S και ανάποδο U. Αυτό το χαρακτηριστικό, που 

παρατηρείται κυρίως σε δικαιώματα προαίρεσης με μικρή διάρκεια, συνεπάγεται μια 

ουδέτερη ως προς τον κίνδυνο κατανομή με δυο κορυφές για την τιμή της μετοχής. 

Αυτό σημαίνει ότι οι επενδυτές προβλέπουν ένα άλμα στην τιμή της μετοχής την 

ημέρα ανακοίνωσης των κερδών. Βρίσκουμε ότι οι κοίλες καμπύλες τεκμαρτής 

μεταβλητότητας όντως προβλέπουν μεγαλύτερες απόλυτες αποδόσεις των μετοχών 

την ημέρα ανακοίνωσης των κερδών και μεγαλύτερη μεταβλητότητα μετά την 

ανακοίνωση. Ωστόσο, οι αποδόσεις των straddles των μετοχών με κοίλες καμπύλες 

τεκμαρτής μεταβλητότητας είναι σημαντικά χαμηλότερες από τις αποδόσεις των 

straddles των μετοχών με μη-κοίλες καμπύλες τεκμαρτής μεταβλητότητας. Αυτό 

οφείλεται στο ότι τα at-the-money δικαιώματα προαίρεσης των κοίλων καμπυλών 

είναι πολύ πιο ακριβά και τα άλματα στην τιμή της μετοχής την ημέρα της 

ανακοίνωσης των κερδών δεν είναι αρκετά μεγάλα για να αντισταθμίσουν το κόστος 

των δικαιωμάτων προαίρεσης. Οπότε οι επενδυτές εντοπίζουν τις ανακοινώσεις 

κερδών που προκαλούν άλματα στις τιμές των μετοχών και πληρώνουν σημαντικά 

μεγαλύτερο ασφάλιστρο κινδύνου για να αντισταθμίσουν αυτό τον κίνδυνο. 
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Abstract 

 

This thesis focuses on examining the information contained in options about the 

valuation of equity securities. Options incorporate valuable information about 

investors’ expectations on future returns of their underlying securities. This stems 

from the fact that markets are imperfect due to constraints such as asymmetric 

information and barriers to short selling, making options non-redundant assets. 

Over the last decade there have been many studies deriving a measure from option 

contracts and examining whether it predicts future stock returns. For example, Guo 

and Qui (2014) find a negative relation between implied volatility and future stock 

returns and Stilger Kostakis and Poon (2017) show that risk-neutral skewness 

positively predicts future stock returns. The aforementioned studies use a measure 

based on a single property/moment of the risk-neutral distribution of stock returns and 

therefore may lose valuable information. In chapter 1 we propose a joint measure of 

the probability density function of stock returns. More specifically, we combine 

volatility, skewness and kurtosis implied by options in a score variable based on 

investors’ moment preferences, that is, a low score identifies a stock with high 

volatility, low skewness and high kurtosis. On the contrary, a high score identifies a 

stock with low volatility, high skewness and low kurtosis. Essentially, our measure 

can be interpreted as a defensiveness measure where the definition of defensiveness is 

expanded by incorporating skewness and kurtosis alongside with volatility. 

We sort stocks in portfolios based on our score measure and find that high score 

stocks have higher returns than low score stocks. This statistically significant relation 

between our score measure and future stock returns holds various robustness tests 

such as double sorts, Fama-MacBeth regressions and using a sample with larger cap 

stocks. We show that this relation is explained by the exposure to shocks in aggregate 

volatility and depends on investors’ sentiment. In periods of low sentiment, the 

intertemporal capital asset pricing model (ICAPM) fully explains this relation, while 

in periods of high sentiment the relation remains statistically significant and is 

attributed to mispricing. 
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The literature has shown that jump risk is priced by investors in the options market. A 

part of the research has examined the impact of jump risk on equity and variance risk 

premiums, providing strong evidence that an important fraction of those premiums 

can be attributed to the jump risk premium (see Santa-Clara and Yan (2010) and 

Bollerslev and Todorov (2011)). Nevertheless, the way that jump risk impacts the 

cross-sectional variation of stock returns has received less attention in the literature. 

Therefore, in chapter 2 we examine if exposure to downside (left) and upside (right) 

jump shocks of the market are priced. We construct a theoretically consistent measure 

of jump risk through the S&P500 options. The simulation study we conduct shows 

that it provides reliable estimates as opposed to the JUMP risk factor of Cremers, 

Halling and Weinbaum (2015) which is a biased measure of jump risk. We find that 

betas to shocks in downside jumps produce a statistically significant risk premium of -

11.52% contemporaneously in an annual basis, while betas on shocks to upside jumps 

do not. The statistically significant relation between betas to shocks in downside 

jumps and stock returns is not due to risk-neutral variance and skewness shocks. 

Additionally, we show that it produces statistically significant abnormal returns on the 

next month of the formation period while it is robust to different estimation period 

such as 9, 6 and 3 months and different holding periods such as 3 and 6 months. 

In chapter 3 we examine the implied volatility curves that are arise from option prices 

prior to earnings announcements days. We show that a portion of them becomes 

concave, taking unusual shapes such as W, S, and inverted U. This characteristic, 

which is mostly observed in short-term options, implies a bimodal risk-neutral density 

for the stock price. This means that investors predict a jump in the stock price at the 

earnings announcement day. We find that concave implied volatility curves do predict 

higher absolute stock returns at the earnings announcement day and higher volatility 

after the earnings announcement day. However, straddle returns of stocks with 

concave implied volatility curves are statistically significantly lower than those with 

non-concave implied volatility curves. This is attributed to the fact that at-the-money 

options of concave implied volatility curves are much more expensive and the jumps 

of the stock price at the earnings announcement day are not large enough to offset the 

substantial cost of these straddles. Therefore, investors identify earnings 

announcements that make stock prices jump and pay a substantially higher premium 

to hedge against this risk.
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Introduction 

 

It is widely accepted among academic and practitioners that option contracts contain 

valuable information of investors’ expectations on future returns of the underlying 

asset. This happens because markets are incomplete in the real world due to 

limitations such as asymmetric information, transaction costs and short-sale 

restrictions, making options non-redundant assets. Recent papers have examined 

whether various option-implied variables predict future stock returns. 

In this stream of research Guo and Qui (2014) find a negative relation between 

implied volatility and future stock returns. In their seminal work, An, Ang, Bali and 

Cakici (2014) show that innovations to option-implied call (put) volatility predict 

positive (negative) future stock returns. Rehman and Vilkov (2012), Stilger, Kostakis 

and Poon (2017), Gkionis et. al. (2018) and Borochin, Chang and Wu (2018), 

Chordia, Lin and Xiang (2020) find a positive relation between option-implied 

skewness and subsequent stock returns. Xing, Zhang and Zhao (2010) and Huang and 

Li (2019) examine the relation between the steepness of the implied volatility smirk 

and implied variance asymmetry (both being closely related to skewness), 

respectively, and future stock returns. 

The above studies attribute the return predictability to informed trading, stressing that 

informed traders may choose the option market due to embedded leverage (Black 

(1975)) and limits to arbitrage mostly on the short side. On the contrary, Goncalves-

Pinto et. al. (2020) indicate that stock return predictability related to options trading is 

driven by stock price pressure, rejecting the informed trading hypothesis. Moreover, 

Augustin and Subrahmanyam (2020) argue that it is hard to distinguish informed from 

speculative trading because researchers mostly do not observe the identity of traders. 

Since observed option prices contain information for the probability density function 

of future stock returns, the use of a single measure measuring one particular property 

of this density may ignore valuable information for the return predictability of option 

prices. Therefore, in Chapter 1 we suggest a joint score measure tracking the 

probability density function of individual stock returns. This new measure is an 
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intuitive score variable based on the volatility, skewness and kurtosis of future stock 

return distribution implied from option prices.  A low level of it identifies a stock with 

high volatility, low skewness and high kurtosis. On the other hand, a high level of this 

measure identifies a stock with low volatility, high skewness and low kurtosis. 

Intuitively, this new measure ranks stocks based on investors’ expectations about 

future stock return distribution properties and can be interpreted as a forward-looking 

defensiveness measure where the definition of defensiveness is expanded by 

incorporating skewness and kurtosis alongside with volatility. We find that high score 

stocks have higher returns than low score stocks. This statistically significant relation 

between our score measure and future stock returns holds various robustness tests. We 

show that this relation is explained by the exposure to shocks in aggregate volatility 

building on the intertemporal asset pricing (ICAPM). High score stocks are exposed 

to aggregate volatility innovations so that investors require a premium to hold them, 

while low score stocks hedge against shocks in aggregate volatility. Moreover, we 

document that this relation depends on investors’ sentiment. In periods of low 

sentiment, the ICAPM fully explains the documented premium of the high-low score 

portfolio, while in periods of high sentiment the premium remains statistically 

significant and is also attributed to mispricing. 

The option pricing literature provides strong evidence that aggregate jump risk is 

priced by investors in the options market. In fact, it is widely accepted that jumps 

should be included in option pricing models. A second stream of research examines 

the impact of jump risk in the time-series variation of equity and variance risk 

premiums, providing strong evidence that a significant fraction of these two premiums 

can be attributed to compensation for jump risk (see Santa-Clara and Yan (2010) and 

Bollerslev and Todorov (2011)). Despite the importance of jump risk documented in 

the literature, the investigation of how it affects the cross-section of expected stock 

returns has received less attention in the literature. 

In Chapter 2 we demonstrate a model-free relation between the first and second-order 

moments of the log-return risk-neutral distribution which may be used to approximate 

the third-order moment of the jump process. As the first two moments can be 

extracted from option prices, it is straightforward to obtain an approximation of the 

third-order moment of the jump process from option prices. In addition, we provide 

theoretical and empirical evidence showing that the third-order moment of the jump 
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process is strongly related to the spot (and expected integrated) variance. Thus, its 

innovations are affected from both volatility and jump risk. To this end, we suggest a 

new measure of jump risk exposure by scaling the third-order moment of the jump 

process with expected integrated variance. Theoretically, this new scaled variable is 

not related to the dynamics of spot variance, and its innovations can be considered as 

a proxy of jump risk. 

We estimate jump risk loadings at the individual stock level using daily returns. We 

then sort stocks on the realized jump risk loadings, and we investigate whether stocks 

with higher betas have lower average returns contemporaneously, simultaneously 

controlling for other risk factors. In addition, we investigate the relation between 

realized jump-risk betas and future stock returns. Our main result is that jump risk is 

priced in the cross-section of stock returns, identifying a negative market price of 

jump risk, consistent with theory. We document that stocks with high jump risk 

loadings significantly underperform stocks with low ones contemporaneously, 

producing a statistically and economically significant premium of -9.41% per year at 

the 1% level. Besides investigating the pricing of aggregate jump risk in the cross-

section of stock returns, it is also interesting to decompose jump risk innovations in 

their upside and downside components and examine the relative contribution of these 

two in the documented jump risk premium. The results of this exercise clearly show 

that the negative jump risk premium is due to its downside jump risk component. On 

the other hand, the premium of the high-low portfolio sorted by upside jump risk 

betas is not significant. Finally, our results hold to a predictive setting, in which we 

compare the subsequent realized monthly returns of the quintile portfolios sorted by 

jump risk betas estimated over the previous period. We show that the high-low 

quintile portfolio delivers significant risk-adjusted returns in the following month of 

the portfolio formation period. These results are robust to different beta estimation 

windows and return holding periods. 

Quarterly earnings announcements are important scheduled corporate events that 

disseminate substantial fundamental information to investors about the company. A 

voluminous literature has examined a number of features related to these events, such 

as the behavior of stock returns (Ball and Brown (1968), Beaver (1968); Ball and 

Kothari (1991) Frazzini and Lamont (2007)) and systematic risk (Patton and Verardo 

(2012) Savor and Wilson (2016)) around these announcements. Literature on options 
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has examined the behavior of equity option prices and implied volatilities (IVs) 

around earnings announcement days (EADs), identifying three stylized features. First, 

at-the-money (ATM) IV tends to increase in the runup to the EAD, as uncertainty 

increases before this information event, and second, ATM IV sharply decreases right 

after the announcement, when uncertainty is resolved (Patell and Wolfson (1979)). 

More recently, Dubinsky et al. (2019) documented that the term structure of ATM IV 

becomes downward sloping prior to EADs, meaning that ATM IV is higher for 

options with shorter expiries than for options with longer expiries. 

Building upon this literature, Chapter 3 documents a novel feature with implications 

for our understanding of the behavior of stock prices, the pricing of earnings risk and 

the informational content of option prices. We show that a large fraction of IV curves 

extracted from short-expiry equity options systematically become concave in the run 

up to EADs. In our sample of very large and liquid firms, we find that up to 37.4% of 

IV curves exhibit concavity just before the announcement during the period 2013-

2019. The concave IV curves we document are typically inverse U-shaped, S-shaped, 

or W-shaped. These shapes are in stark contrast with the convex volatility “smiles” 

and “smirks” that are commonly observed for equity options. Interestingly, the feature 

of concavity mostly disappears right after the announcement, as the uncertainty about 

this event is resolved, and the IV curve reverts to its standard convex shape. 

We show that a concave IV curve reflects a bimodal risk-neutral distribution (RND) 

for the underlying stock price. Bimodality in the central part of the RND indicates 

that, the prevailing stock price will most likely be around either of the two identified 

modes. Hence, a bimodal RND reveals movements that can be considered as 

anticipated jumps in the continuous-time path of the underlying stock price. To this 

end, we argue that a concave IV curve provides a clear option-based signal of 

impending event risk for the underlying stock. 

Moreover, concavity appears in short- rather than long-expiry options. We find that 

concave IV curves do predict higher absolute stock returns at the earnings 

announcement day and higher volatility after the earnings announcement day. 

However, straddle returns of stocks with concave IV curves are lower than those with 

non-concave IV curves. This is attributed to the fact that at-the-money options of 

concave IV curves are much more expensive and the jumps of the stock price at the 

earnings announcement day are not large enough to offset the substantial cost of these 
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straddles. Therefore, investors identify earnings announcements that make stock 

prices jump and pay a substantially higher premium to hedge against this risk 

compared to other stocks. 

This thesis is organized as follows. Chapter 1 constructs the score measure and 

examines its stock return predictability. Chapter 2 investigates the cross-sectional 

pricing of stocks according to sensitivities to option-implied jump risk. Chapter 3 

documents that IV curves become concave prior to earnings announcements and 

examines the implications of this feature. The last section derives the conclusions of 

this thesis. 

  

 



17 
 

Chapter 1 

 

Option-implied moments and the cross-section 

of stock returns 

 

1.1 Introduction 

 

There is a broad consensus among academic and practitioners that option contracts 

contain valuable information of investors’ expectations on future returns of the 

underlying asset. This stems from the fact that markets are incomplete in the real 

world due to limitations such as asymmetric information and short-sale restrictions, 

making options non-redundant assets. A considerable amount of recent studies have 

proposed various techniques to extract the probability distribution of the underlying 

asset return from option prices (see Figleswki (2018) for a review), while others 

examined the information embedded in the properties of this distribution to predict 

future stock returns. 

In this stream of research Guo and Qui (2014) find a negative relation between 

implied volatility and future stock returns. An, Ang, Bali and Cakici (2014) show that 

innovations to option-implied call (put) volatility predict positive (negative) future 

stock returns. Rehman and Vilkov (2012), Conrad, Dittmar and Ghysels (2013), 

Stilger, Kostakis and Poon (2017), Gkionis et. al. (2018) and Borochin, Chang and 

Wu (2018), Chordia, Lin and Xiang (2020) examine the relation between option-

implied skewness and subsequent stock returns. Conrad, Dittmar and Ghysels (2013) 

find a negative relation between option-implied skewness and future stock returns 

while all other studies find a positive relation, Rehman and Vilkov argue that Conrad, 

Dittmar and Ghysels (2013) dilute the option-implied information by averaging 

option-implied skewness over the last three months thus resulting in different results. 
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Xing, Zhang and Zhao (2010) and Huang and Li (2019) examine the relation between 

the steepness of the implied volatility smirk and implied variance asymmetry (both 

being closely related to skewness), respectively, and future stock returns. Bali and 

Hovakimian (2009) show that the call-put implied volatility spread strongly predicts 

future stock returns. Baltussen, Bekkum and Grient (2018) investigate the return 

predictability of volatility of implied volatility (which may capture higher-order 

moments). Park, Kim and Shim (2019) examine the relation between the convexity of 

the implied volatility curve and subsequent stock returns, while Kim, Kim and Park 

(2020) investigate the return predictability of the term structure of implied volatility 

curve. In a closely related paper, Bali, Hu and Murray (2017) investigate the relation 

between option-implied volatility, skewness and kurtosis and expected returns 

estimated from financial analysts’ price targets.1 

Most of the aforementioned studies attribute the return predictability to informed 

trading, stressing that informed traders may choose the option market due to the 

embedded leverage as firstly pointed out by Black (1975). On the other hand, 

Goncalves-Pinto et. al. (2020) indicate that stock return predictability related to 

options trading is driven by stock price pressure, showing that the implied volatility 

spread of Cremers and Weinbaum (2010) and the change in the implied volatility 

spread of An, Ang, Bali and Cakici (2014) stock return predictability is mainly driven 

by the first day return. Moreover, Augustin and Subrahmanyam (2020) argue that 

identifying informed option trading is a difficult task because researchers mostly do 

not observe the identity of traders and it is hard to distinguish informed from 

speculative trading. 

In this stream of research, the standard approach used is to calculate a single measure 

from option prices and then to examine the return predictability of this measure. For 

example, this measure could be the implied volatility (see Guo and Qui (2014)), the 

steepness of the implied volatility smirk (see Xing, Zhang and Zhao (2010)), the 

volatility asymmetry (see Huang and Li (2019)), the convexity of the implied 

volatility curve (see Park, Kim and Shim (2019)) or the implied skewness (see 

Conrad, Dittmar and Ghysels (2013) and Stilger, Kostakis and Poon (2017), Chordia, 

Lin and Xiang (2020) inter alia). Since however option prices observed across 

 
1 See Giamouridis and Skiadopoulos (2010) and Christoffersen, Jacobs and Chang (2013) for a detailed 
literature review on option-implied information. 
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moneyness contain information for the probability density function of future stock 

returns, the use of a single measure measuring one particular property of this density 

may ignore valuable information for the return predictability of option prices. 

The aim of this chapter is twofold. First, we suggest a novel approach to extract 

information from options based on a joint measure tracking the probability density 

function of individual stock returns. Second, we aim to examine the return 

predictability of it. This new measure is an intuitive score variable based on the 

volatility, skewness and kurtosis of future stock return distribution implied from 

option prices. By construction, it encompasses the information embedded in the three 

individual option-implied moments and thus, it can provide a parsimonious measure 

of investors’ expectations about future stock returns.  A low level of it identifies a 

stock with high volatility, low skewness and high kurtosis. On the other hand, a high 

level of this measure identifies a stock with low volatility, high skewness and low 

kurtosis. Intuitively, this new measure ranks stocks based on investors’ expectations 

about future stock return distribution properties and can be interpreted as a forward-

looking defensiveness measure where the definition of defensiveness is expanded by 

incorporating skewness and kurtosis alongside with volatility.2 Therefore, a low level 

of this score will identify a stock that is expected to be riskier, while a high level will 

identify a stock that is expected to be safer. 

We first estimate decile portfolios sorting all US stocks with traded options at a 

monthly frequency from 1996 to 2016 on the composite option-implied moment-

based score measure (SCORE, henceforth). The highest decile includes stocks with 

the highest score implying “good” return distribution properties. We denote it as 

Good henceforth. On the other hand, the lowest decile includes stocks with the lowest 

score related to “bad” return distribution properties. We denote it as Bad henceforth. 

The value-weighted (equally-weighted) Good minus Bad (GMB, henceforth) portfolio 

yields a statistically and economically significant average return of 0.75% (0.79%) 

per month. The corresponding Fama-French five-factor alpha is equal to 0.51% 

(0.73%) per month, which is also statistically significant. The evidence suggests that 

good stocks outperform bad ones. This positive relation between SCORE and 

subsequent monthly returns is not driven by short-term stock price adjustment, it 

 
2 Novy-Marx (2016) notes that defensive equity strategies, which go long safe or defensive stocks and 

short risky or aggressive ones, are typically constructed sorting on volatility or beta. 
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holds even when we restrict our sample to large, liquid stocks and it is robust to 

controls of various cross-sectional effects, such as size, book-to-market, momentum, 

mispricing, profitability and idiosyncratic volatility.  

The significant positive average return of the GMB portfolio is not consistent with the 

implications of standard moment preferences (see Arditti (1967), Scott and Horvath 

(1980) and Gollier and Pratt (1996), inter alia). One would expect a negative premium 

for the GMB portfolio as investors would require a higher expected return to hold 

stocks with undesirable return distribution properties. Considering that, this chapter 

aims to provide an alternative explanation for the documented positive premium of 

good vs bad stocks. 

This explanation builds on Merton’s (1973) Intertemporal CAPM (ICAPM) 

conditional on the level of investors’ sentiment. This model assumes an intertemporal 

(or long-horizon) risk-averse investor who seeks to hedge against adverse shocks to 

the future investment opportunity set. In recent empirical works (see Barinov (2018), 

inter alia) changes in aggregate market volatility, proxied by VIX, are commonly used 

to capture adverse shocks in the investment opportunity set. In that context, we find 

that good stocks are exposed to shocks in aggregate volatility while bad stocks hedge 

against these shocks. Therefore, an ICAPM investor is willing to accept a lower or 

even negative return for bad stocks as they offer a hedge against the deterioration of 

the investment opportunity set proxied by shocks in VIX. This is in stark contrast with 

a static risk-averse investor who would require a premium to hold bad stocks.  On the 

other hand, an ICAPM investor would ask for a positive premium to hold good stocks 

as they are exposed to adverse shocks in the future investment opportunity set.  

Additionally, we show that the explanatory power of the ICAPM depends on the level 

of investors’ sentiment (which can be considered as a measure of variation in the 

general tendency of mispricing). When sentiment is low, the ICAPM can completely 

explain the GMB portfolio positive premium for both underpriced and overpriced 

stocks. Therefore, the positive abnormal return of the GMB portfolio obtained under a 

static model (CAPM or Fama-French 5-factor model) is fully rationalized by an 

intertemporal asset pricing model. In contrast, in high sentiment periods the ICAPM 

alpha remains positive and significant. We complement our rational risk-based 

explanation with mispricing. We find that during high sentiment periods the positive 
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ICAPM alpha of the GMB portfolio within overpriced stocks is due to the subsequent 

underperformance of bad stocks, while within underpriced stocks it can be mostly 

explained by the subsequent overperformance of good stocks. These empirical 

findings, indicate that negative (positive) investors’ expectations about future states of 

return for stocks perceived as overpriced (underpriced) may be reflected in the option-

implied distribution, generating a low (high) SCORE, with stocks adjusting to this 

information over the next month yielding negative (positive) returns. 

In summary, a rational intertemporal risk-based model explains why good stocks 

overperform bad ones, at least when investors’ sentiment is low. When sentiment is 

high, the positive premium of the GMB portfolio is also driven by information flow 

from the options to the stock market for stocks perceived to be as relatively mispriced.  

Our chapter contributes to the literature that examines the linkage between the options 

market and the stock market at firm level in several ways. First, we propose a new 

parsimonious measure gauging investors’ expectations about future states of stock 

returns, and we examine its return predictability. The new variable encompasses the 

information content of implied volatility, skewness and kurtosis, used individually in 

previous studies (see Guo and Qui (2014), Xing, Zhang and Zhao (2010), Conrad, 

Dittmar and Ghysels (2013) and Stilger, Kostakis and Poon (2017), inter alia). 

Second, our empirical analysis indicates the existence of a robust positive relation 

between SCORE and subsequent stock returns. Third, we investigate a possible 

explanation for the documented relation. Contrary to a vast majority of existing 

studies (including Xing, Zhang and Zhao (2010), Stilger, Kostakis and Poon (2017), 

Huang and Li (2019), Park, Kim and Shim (2019) and Chordia, Lin and Xiang (2020), 

inter alia)  that attribute the relation between an option-implied variable tracking a 

specific characteristic of the probability density function of the underlying stock 

return and subsequent stock returns to a flow of information from the options to the 

stock market and limits to arbitrage, we provide evidence supporting a risk-based 

explanation too. This is the first study, to the best of our knowledge, indicating that 

the price of aggregate volatility risk is reflected in the option-implied distribution of 

individual stocks. Fourth, we contribute to a recent growing literature that documents 

that various anomalies can be explained by their exposure to market volatility risk. 

Barinov (2018) and Barinov and Chabakauri (2019) show that lottery-like stocks 

(with high extreme past returns and large expected idiosyncratic skewness) and stocks 
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with high idiosyncratic volatility, respectively, hedge against shocks in market 

volatility, thus explaining their low average returns. They both argue that this is 

because their growth options, that hedge against aggregate volatility risk, are more 

valuable and take a larger fraction of the firm value. This argument may also hold in 

our case as our empirical results indicate that bad stocks have high idiosyncratic 

volatility and lottery-likeness. Finally, our study is related to recent papers that 

examine the effect of investors’ sentiment on the abnormal returns of various 

documented anomalies and risk factors. Stambaugh, Yu and Yuan (2012, 2015) find 

that the abnormal return of various anomalies is stronger in high sentiment periods. 

Shen, Yu and Zhao (2017) find that beta-sorted portfolios formed on macro-related 

factors earn average returns consistent with a risk-based explanation in low sentiment 

periods. In contrast when sentiment is high, the reverse sign of these average returns 

is attributed to sentiment-induced mispricing. 

The rest of this chapter is organized as follows. Section 2 describes the data and the 

methodology used to construct SCORE. Section 3 provides the univariate portfolio-

level analysis, and a battery of robustness checks. Section 4 provides an explanation 

of the documented GMB portfolio premium, and Section 5 concludes the chapter. The 

Appendix includes the definition of variables employed in the analysis and technical 

details of calculating volatility, skewness and kurtosis from option prices.  

 

1.2 Data and Methodology 

1.2.1 Data 

 

For the empirical analysis, we get returns, market capitalization and prices for all 

ordinary common shares (share code 10 and 11) from the CRSP database. Stock 

option data are downloaded from Optionmetrics for the period January 1996 to April 

2016. We use standardized option data from the volatility surface file in order to have 

the same maturity for our options every day. Accounting data are obtained from 
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Compustat. The returns on the market premium, SMB, HML, MOM, RMW and CMA 

factors are obtained from Kenneth French’s online data library.3 

We drop stocks with price below $5. We filter out stocks if there is zero option 

volume or zero option open interest for all option contracts on that day using regular 

option data and drop stocks when at least one of the delta/maturity combination has a 

dispersion measure larger than 0.2 as in Borochin, Chang and Wu (2018) and end up 

with a final sample of 342,689 stock options data observations. 

Stocks with options have a tilt toward larger market capitalizations and our filters 

drop more illiquid stocks resulting in a final sample where only 4.64%, 14.57% and 

46.81% of our stocks are below of the NYSE size 10, 20 and 50 percentiles, 

respectively. 

 

1.2.2 A score measure based on option-implied moments 

 

As a first step we calculate option-implied moments for the total log-return 

distribution of stock 𝑖 at the end of each month 𝑡 using out-of-the money (OTM) call 

and put option data with constant maturity of 1 month (see Bakshi, Kapadia and 

Madan (2003)). Using these moments, we compute the option-implied volatility 

(VOL), skewness (SKEW) and kurtosis (KURT) of the 1-month ahead return 

distribution. Details for computing VOL, SKEW and KURT can be found in 

Appendix B.    

We aim to create a composite score measure to gauge the exposure of each stock to 

VOL, SKEW and KURT. This composite measure will rank stocks based on 

investors’ expectations about their future return distribution properties. A low level of 

this score will identify a stock with potential adverse properties related to high VOL, 

low SKEW and high KURT, while a high level will identify a stock with favorable 

ones related to low VOL, high SKEW and low KURT. Intuitively, a high value of 

SCORE identifies a defensive (safe) stock, where the definition of defensiveness is 

expanded to include SKEW and KURT alongside with VOL. On the other hand, a low 

 
3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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value of SCORE identifies an aggressive (risky) stock. The expansion of 

defensiveness is justified given the enormous evidence of non-normal stock returns. 

Furthermore, the inclusion of KURT, generating negative alphas (unreported), in the 

score measure mitigates further concerns about an artificially constructed factor with 

a-priori positive returns (see Novy-Marx (2016)).   To construct this score, we follow 

the methodology of Asness, Frazzini and Pedersen (2019). More specifically, we rank 

VOL, SKEW and KURT cross-sectionally in ascending order and then standardize it 

by subtracting its rank mean and dividing by its rank standard deviation. VOL and 

KURT are multiplied by -1 so that stocks are ranked according to moment 

preferences. Then we compute SCORE by averaging the previously calculated 

individual 𝑧-scores. A detailed description of the SCORE calculation is presented in 

Appendix A.  

 

1.3 Empirical Results 

1.3.1 Univariate portfolio-level analysis 

 

Each month we form decile portfolios by sorting stocks on SCORE. The highest 

decile includes stocks with the highest score implying favorable distribution 

properties. On the other hand, the lowest decile includes stocks with the lowest score 

related to adverse characteristics of their distribution. Decile portfolios are well 

populated, having 140 stocks on average. Table 1 reports the time-series average of 

monthly value-weighted average stocks’ characteristics (except for size which is 

equally-weighted) for each decile portfolio based on SCORE. The definition of each 

variable is provided in Appendix A. First, we observe that sorting on SCORE is not 

equivalent on sorting on VOL and/or idiosyncratic volatility (IVOL). The IVOL 

pattern of SCORE decile portfolios is not monotonic. For example, decile 2 includes 

stocks with lower IVOL than decile 10. Thus, the distribution of stocks based on 

SCORE is not dominated by the pattern of VOL (or IVOL). On the other hand, 

SKEW and KURT of SCORE decile portfolios exhibit a monotonic pattern. SKEW 

(KURT) increases (decreases) monotonically when moving from decile 1 to 10. The 

non-monotonic pattern of IVOL holds for most of the other stock characteristics. 
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Stocks in the bad (decile 1) portfolio have lower market values, higher betas, are more 

illiquid, less profitable, have higher MAX and lower MIN and are more mispriced 

from stocks in the other 9 decile portfolios. The differences however between these 

stocks’ characteristics among deciles 2, 3, …, 10 are not always numerically 

significant or in some cases the pattern is reversed. For example, stocks in the good 

(decile 10) portfolio have higher betas, higher MAX, lower MIN, higher IVOL than 

stocks in decile 2. While SKEW increases monotonically across SCORE decile 

portfolios, SKEW and SCORE have opposite exposure to SIZE and MISP. In fact, 

recent studies show that low SKEW stocks exhibit higher market values and lower 

MISP score than high SKEW ones (see Stilger, Kostakis and Poon (2017) and 

Chordia, Lin and Xiang (2020), respectively). In contrast, the results of Table 1 

indicate that bad stocks have lower market values and higher MISP score than good 

ones, a characteristic attributed to the volatility ranking.  

To better grasp the relation between the SCORE measure and the shape of the implied 

volatility curve, Figure 1 shows the pooled average implied volatility per delta point 

for stocks in the bad (orange line) and good (blue dashed line) portfolio. Stocks in the 

bad portfolio exhibit an implied volatility “smirk”, which is related to the 

expensiveness of OTM put options. This shape is also consistent with low negative 

SKEW and high KURT. In stark contrast, stocks in the good portfolio have an almost 

flat implied volatility curve, satisfying the predictions of the Black-Scholes model. 

Stated alternatively, this graph leads to the conclusion that good stocks have an 

option-implied distribution of future log-returns which is close to normality, whereas 

bad stocks have an option-implied distribution that strongly deviates from normality. 

Next, we compute value-weighted and equally-weighted returns of the decile 

portfolios along with alphas and factor loadings which we present in Table 2. Good 

stocks tend to have higher average returns. The GMB portfolio has a value-weighted 

(equally-weighted) monthly average return of 0.75% (0.79%) which is economically 

and statistically significant at 1% level. The GMB portfolio has also significant 

Carhart (1997) (CAR) and Fama-French (2015) five-factor (FF5) alphas, with both 

short and long legs of the strategy contributing to the overall abnormal return. This is 

important if we consider the fact the many anomalies derive their profits from the 

short leg of the strategy (see Avramov, Chordia, Jostova and Philipov (2013)). The 

factor loadings of the FF5 model indicate that, while the market beta of the GMB 
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portfolio is insignificant, this portfolio is negatively exposed to SMB and positively 

exposed to CMA and RMW factors. This is something to expect given the results of 

Table 1. Decile 10 portfolio includes large profitable stocks compared to stocks in 

decile 1 portfolio. The results of Table 2 highlight that stocks expected to be safer 

have higher abnormal returns than stocks expected to be riskier after controlling for 

size, B/M, profitability and investment. 

From a portfolio management perspective, the GMB portfolio enhances the 

performance of the well-known defensive strategy sorting high VOL (or IVOL) 

stocks and holding low VOL (or IVOL) ones. In our sample, a value-weighted low – 

high VOL (IVOL) portfolio exhibits positive albeit insignificant average return 

mainly due to its high variability of returns (its monthly standard deviation is equal to 

12% (9%)). The inclusion of SKEW and KURT substantially decreases its standard 

deviation to 4% generating a significant average return.  

 

1.3.2 Robustness tests 

 

This section provides several robustness tests of our main result reported in Table 2. 

Avramov, Chordia, Jostova and Philipov (2013) find that profits for various 

anomalies diminish across size groups while Lu and Murray (2019) state that 

“mispricing is likely to be small among liquid and large cap stocks”.  To this end, we 

also examine the performance of our spread portfolio using two subsamples: 1) 

dropping stocks that belong to the lowest size quintile using NYSE breakpoints, 

where these microcap firms account for the 14.57% of our sample and 2) using only 

large cap stocks (stocks that have market capitalization larger than the NYSE median) 

which account for the 53.19% of our sample. This exercise will indicate if a 

significant premium exists when small illiquid stocks are excluded from the sample. 

As a second robustness check we form portfolios based on SCORE using quintiles 

and terciles.  

Table 3 presents results in the same way as Table 2 jointly for the two robustness 

checks. Results are weakening if we use less extreme breakpoints and if we use a 

sample with less small cap stocks as expected. However, the GMB portfolio continues 
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to show a statistically significant premium at the 5% level in all eighteen cases, 

delivering a statistically and economically significant premium of 0.57% even in the 

strictly conservative case of the value-weighted 3-1 tercile portfolio using only large 

cap stocks. All alphas using equally-weighted returns are statistically significant while 

only the FF5 alpha using the value-weighted 5-1 quintile portfolio difference in large 

caps is insignificant at the 10% level. Thus, the GMB portfolio has significant 

premiums and alphas even when the sample includes only large liquid stocks. The 

significant premiums of the GMB portfolio formed using quintiles and terciles further 

indicates that our main findings are not generated by stocks with extreme high or low 

SCORE values.     

In a third robustness check we split our sample into four style universes following 

Novy-Marx (2016): small growth (SG), small value (SV), large growth (LG) and 

large value (LV) using NYSE medians as breakpoints and examine the performance 

of the GMB portfolio formed using quintiles within each subsample. Table 4 reports 

the raw average returns and alphas of value-weighted portfolios across the four 

subsamples. We find that the GMB portfolio provides statistically significant positive 

raw and risk-adjusted returns at the 10% level in all cases. 

In a fourth robustness check we examine if stocks with high (low) SCORE generate 

high (low) future stock returns after controlling for several known factors in the 

literature. To this end, we perform bivariate sorts on SCORE while controlling for 

market beta (BETA), market capitalization (SIZE), book-to-market ratio (B/M), 

momentum (MOM), reversal (REV),  Amihud’s (2002) illiquidity measure (ILLIQ), 

maximum daily return of the previous month (MAX) of Bali, Cakici and Whitelaw 

(2011), idiosyncratic volatility (IVOL)  measured as in Ang, Hodrick, Xing and 

Zhang (2006), mispricing score (MISP) of Stambaugh, Yu and Yuan (2015), 

profitability (PROFIT) measured as in Fama and French (2015), gross profitability 

(GPROFIT) of Novy-Marx (2013), expected idiosyncratic skewness (EIS) of Boyer, 

Mitton and Vorkink (2010) and beta of market volatility innovations (β ΔVIX) 

measured as in Ang, Hodrick, Xing and Zhang (2006).  

We first sort stocks based on the control variable in quintiles, then within each 

quintile we further sort stocks on SCORE in quintiles, resulting in a total of 25 

portfolios. We average SCORE portfolios across the five quintiles from the first sort 
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and we report the average return and alpha of the GMB portfolio. These results are 

shown in Table 5 using value-weighted (Panel A) and equally-weighted (Panel B) 

returns. The main conclusion drawn from this table is that the documented positive 

abnormal return of the GMB portfolio remains robust after controlling for all these 

variables, with all alphas being significant at the 5% level. More importantly, the 

GMB portfolio alphas remain statistically significant after controlling for well-known 

variables used to construct defensive strategies such as IVOL and BETA. 

In addition to the portfolio-level analysis, we run firm-level Fama-MacBeth (1973) 

cross-sectional regressions of one month ahead stock returns on SCORE and the set of 

firm characteristics used in the bivariate sorts. Table 6 reports average slope 

coefficients and t-statistics in parentheses. For all econometric specifications the 

average slope coefficient on SCORE is positive and significant at the 1% level 

confirming our earlier results. Favorable (adverse) future return distribution properties 

are associated with high (low) subsequent stock returns after controlling for market 

beta, size, B/M, momentum, reversal, illiquidity, maximum daily return over the 

previous month, idiosyncratic volatility, mispricing, profitability, expected 

idiosyncratic skewness and beta of market volatility innovations. As a further 

robustness test, we repeat the Fama-MacBeth (1973) cross-sectional regressions for 

the two subsamples used previously (i.e., (1) dropping stocks that belong to the lowest 

size quintile, and (2) using only large cap stocks). The results of these two additional 

empirical exercises are similar to those reported in Table 6 and can be provided by the 

authors upon request. 

Finally, to alleviate potential concerns about nonsynchroneity bias (see Battalio and 

Schultz (2006)), which may hold for a portion of our sample, we calculate SCORE 

using option-implied moments calculated one day before the end of month. Again, the 

portfolio sorted on SCORE exhibits positive and significant alphas. These results are 

available upon request. 
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1.3.3 Univariate portfolio-level analysis in short-term periods 

 

As already documented both legs of the strategy contribute to the overall abnormal 

monthly return. This is important because it suggests that the GMB premium is not 

entirely driven by short sale constraints: the long side of the hedge portfolio earns 

positive abnormal returns that are large economically and statistically significant. The 

overperformance of good stocks may be however short-lived and the documented 

positive performance in monthly horizon might be earned in the first post-formation 

days. 

To examine this issue, we compute value-weighted and equally-weighted returns of 

SCORE formed decile portfolios on the following day and week of the formation 

period (i.e., the last day of each month). These results are reported in Table 7. The 

table also reports the performance of SCORE formed decile portfolios in monthly 

horizon when we skip the first day and/or the first week after the formation period. 

The results of this table indicate that approximately one third of the monthly average 

raw return of the GMB portfolio is realized on the first trading day after the formation 

period. This average daily raw return, equal to 0.24%, is large both statistically and 

economically. The high positive return of the hedge portfolio is driven by the 

overperformance of good stocks. The FF5 alpha of the GMB portfolio, equal to 0.27% 

for value-weighted returns, is also statistically (t-stat = 4.71) and economically 

significant. In weekly horizon the GMB portfolio average returns and alphas are 

lower compared to those of the first trading day but still statistically significant 

(expect for value-weighted alphas). More importantly, in monthly horizon, even when 

the first day or the first week are excluded, GMB portfolios alphas are still positive 

and significant. Again, this is driven by the overperformance of good stocks. The 

average raw monthly value-weighted return of the good (decile 10) portfolio when the 

first day is excluded is 0.88%, significant at the 1% level (t-stat = 3.43). This is 

approximately equal to the 73% of the overall monthly return. 

Overall, these results indicate that the positive monthly abnormal return of the GMB 

portfolio cannot fully be explained by its short-term performance, especially for the 

long leg of the strategy. Gkionis et. al. (2018) document that stocks with high SKEW 

have high subsequent stock returns, earned in the very short-term (typically 

overnight). On the other hand, Goncalves-Pinto et. al. (2020) indicate that stock return 
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predictability related to options trading is driven by stock price pressure, the 

correction of which occurs on the next day. Our empirical findings indicate that this is 

not the case when stocks are sorted by combining VOL, SKEW and KURT to a single 

score measure. Good stocks have high subsequent returns that persist over the 

following month.   

 

1.3.4 Long-term performance 

 

Moreover, we investigate how long the predictability of our score measure lasts. That 

is, we examine the performance of the good, bad and GMB portfolios over subsequent 

months. Table C1 reports the results. We find that the GMB portfolio delivers 

statistically significant returns up to month t+5. The abnormal return predictability 

from month t+2 to month t+5 is entirely driven by the short leg of the strategy. This 

means the abnormal return of the long leg is present only in the first post formation 

month. This is somewhat expected given the asymmetry in limits to arbitrage. 

 

1.4 An explanation of the GMB portfolio premium 

 

In the section we aim to provide an explanation of the documented positive abnormal 

return of the GMB portfolio. It lies on Merton’s (1973) ICAPM conditional on the 

level of market-wide investors’ sentiment.  

The risk-based (through the ICAPM) dimension of our explanation is motivated by 

our previous empirical findings showing that the GMB portfolio abnormal return 

holds its significance on the large cap subsample where one expects market frictions 

to be much smaller. In addition, Barinov (2018) and Barinov and Chabakauri (2019) 

show that the MAX and IVOL factors, respectively, can be explained by the ICAPM 

with an aggregate volatility risk factor. In particular, they indicate that stocks with 

high MAX and/or high IVOL have low average returns because they hedge against 

innovations in market volatility. They argue that this is due to their option-like equity 

hedging against aggregate volatility risk. Motivated by these findings we investigate if 



31 
 

bad stocks have low average returns because they hedge against innovations in market 

volatility, while good stocks have high average returns because they exposed to 

unexpected increases in market volatility. Table 1 provides preliminary evidence 

supporting this argument as bad stocks tend to have high MAX and high IVOL.   

The second dimension of our explanation is related to sentiment-related mispricing. 

Studies in behavioral finance suggest that when arbitrage is limited, noise trader 

sentiment can persist in financial markets and affect asset prices (see DeLong et. al. 

(1990), inter alia). Following Stambaugh, Yu and Yuan (2012) and Shen, Yu and 

Zhao (2017), we examine if market-wide sentiment affects the GMB premium. 

According to these authors the existence of time-varying investors’ sentiment that 

impacts many assets in the same direction at the same time and short sale constraints 

that limit the ability of rational investors to exploit overpricing, generate abnormal 

risk-adjusted returns. Under this view, following high sentiment periods the positive 

GMB portfolio abnormal return might be also attributed to bad stocks which are 

overpriced and due to limits to arbitrage investors are reluctant or unable to short 

them generating negative average returns. 

We examine the validity of our framework building on an ICAPM with an aggregate 

volatility risk factor and sentiment intercept dummies. We construct factor FVIX that 

proxies for market volatility innovations following Barinov (2018).4 We then identify 

variations over time in the general tendency of mispricing in the market, following 

Stambaugh, Yu and Yuan (2015) and relying on the market-wide index of investors’ 

sentiment constructed by Baker and Wurgler (2006).5 We split our sample in high- 

and low-sentiment months, where months with high (low) sentiment have the Baker-

Wurgler sentiment index value at the end of the previous month above (below) its 

sample median. The ICAPM augmented with sentiment dummies is given as follows: 

 𝑅𝑡 = 𝑎𝐻𝑑𝐻 + 𝑎𝐿𝑑𝐿 + 𝛽𝛭𝛫𝛵𝑀𝐾𝑇𝑡 + 𝛽𝐹𝑉𝐼𝑋𝐹𝑉𝐼𝑋𝑡 + 𝜀𝑡, (1.1) 

   

where 𝑅𝑡  is the monthly excess return of the portfolios formed on SCORE. 𝑑𝐻 and 𝑑𝐿 

are dummy variables indicating months with high and low sentiment, respectively. 

 
4 A number of studies suggest using shocks in aggregate volatility as a valid ICAPM state variable (see 

Campbell (1993), Chen (2002) and Ang et. al. (2006)). Chen (2002) indicates that such a risk factor is 

valid if it can predict future market volatility. Barinov (2018) shows that FVIX can indeed predict 

future market volatility and future recessions.  
5 Stambaugh, Yu and Yuan (2012) provide evidence that the Baker-Wurgler index identifies variation 

in mispricing. 



32 
 

MKT is the market excess return and FVIX is the aggregate volatility risk factor. If 

the GMB portfolio is exposed to innovations in market volatility, then we expect 

𝛽𝐹𝑉𝐼𝑋 to be negative and significant.  If in addition the ICAPM can explain the 

abnormal return of the GMB portfolio in low-sentiment months, then we expect 𝑎𝐿 to 

be insignificant. In contrast, during high-sentiment months, where mispricing is more 

likely to occur, we might observe 𝑎𝐻 to be positive and significant. 

Table 8 reports the coefficient estimates of the previous model using value-weighted 

(Panel A) and equally-weighted (Panel B) returns. The empirical results of Table 8 

support our implications. First, for the GMB portfolio, coefficient 𝛽𝐹𝑉𝐼𝑋 is negative 

and significant indicating that its positive abnormal return is related to its exposure to 

aggregate volatility risk. Second, for both value-weighted and equally-weighted 

returns coefficient 𝑎𝐿  of the GMB portfolio is insignificant. In contrast 𝑎𝐻 is positive 

and significant, providing evidence that the ICAPM cannot fully explain the abnormal 

return of the GMB portfolio when sentiment is high.6 Additionally, this is mainly 

driven by the positive abnormal return of good stocks. Thus, the positive abnormal 

return of GMB portfolio in high-sentiment months is due to the overperformance of 

good stocks and not the underperformance of bad stocks as one might expect.  

We further examine if the positive ICAPM alpha of the GMB portfolio during high-

sentiment periods is related to the relative mispricing of stocks. To this end, we 

estimate the ICAPM with the sentiment dummies for the 9 tercile portfolios formed 

on SCORE and the mispricing measure MISP of Stambaugh, Yu and Yuan (2015). 

The results reported in Table 9 support our conjecture. After high sentiment periods, 

good stocks in the two lowest MISP terciles (i.e., stocks considered as relatively 

underpriced) tend to have positive and significant ICAPM alpha 𝛼𝐻. This significant 

positive abnormal return of good stocks contributes to the overperformance of the 

GMB portfolio for stocks considered as relatively underpriced following high market 

sentiment. On the other hand, for overpriced stocks the significant ICAPM alphas 

after high sentiment can be mainly attributed to the underperformance of bad stocks. 

Finally, note that in low-sentiment months the ICAPM alpha 𝛼𝐿 of the GMB portfolio 

 
6 Unreported results, which can be provided by the authors upon request, indicate that the full sample 

ICAPM alpha is equal to 0.38% (t-stat = 1.47) for value-weighted, and 0.56% (t-stat = 2.86) for 

equally-weighted returns.    
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is insignificant across all MISP terciles indicating that the ICAPM explains the 

positive GMB portfolio premium irrespective of stocks relative mispricing. 

The conclusion drawn by this section is that during low sentiment periods the ICAPM 

completely explains the positive abnormal return of the GMB portfolio. This is 

because the model captures the exposure of this portfolio to aggregate volatility risk. 

Therefore, the positive abnormal return of the GMB portfolio obtained under a static 

model (CAPM or Fama-French 5-factor model) is fully rationalized by the ICAPM. 

When sentiment in the market is high however, the ICAPM cannot fully explain the 

GMB portfolio premium. Within overpriced stocks this can be mostly explained by 

the underperformance of bad stocks, while for underpriced ones this is driven by the 

overperformance of good stocks.     

Thus, in high-sentiment months good stocks considered as underpriced in the first 

place provide positive ICAPM alphas. One might argue that these positive abnormal 

returns may reflect a flow of information revealed in the options market about 

favorable future return distribution properties driving investors to buy them, thus 

generating positive returns on the subsequent month. However, the adjustment of 

stock prices to this information is not immediate as the analysis of Section 3.3 has 

also revealed pointing towards limited market efficiency at least for underpriced 

stocks during high sentiment periods.7  

Another possible explanation for the positive abnormal return of the GMB portfolio 

lies on the theory of leverage aversion suggested by Black (1972) and Frazzini and 

Pedersen (2014). According to this explanation some investors are constrained or 

reluctant to use leverage and thus overweight risky securities (i.e., bad stocks) 

increasing their prices and decreasing their expected returns. In contrast, the safer 

assets (i.e., good stocks) are underweighted by these investors and thus trade at low 

prices, offering high expected returns. Though we cannot entirely rule out this 

explanation, our empirical results indicate that leverage constraints, if present, would 

affect the GMB portfolio return only in high sentiment periods. In fact, one would 

expect the opposite, that is, leverage constraints to manifest themselves in portfolio 

returns when sentiment is low, where investors would be reluctant to borrow stocks. 

 
7 Our conclusion agrees with Asness, Frazzini and Pedersen (2019) who also attribute the positive 

abnormal return of high-quality stocks to limited market efficiency. 
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Finally, we examine if the conditional CAPM can explain the positive premium of the 

GMB portfolio. If time-varying betas of the GMB portfolio are higher in recessions 

than in expansions, then investors would require a premium to be compensated 

against increased risk during recession periods. Following Petkova and Zhang (2005) 

we assume that the expected market risk premium and the conditional beta are linear 

functions of the four commonly used business cycle variables, i.e., the dividend yield, 

the default spread, the 1-month Tbill, and the term spread. We find that the 

conditional CAPM alpha of the GMB decile portfolio is equal to 0.70% for value-

weighted and 0.83% for equally-weighted returns, both being statistically and 

economically significant. These significant alphas can be explained by the fact that 

the time-varying beta is lower (not higher) during recessions than expansions, due to 

the increase in the market beta of bad stocks decile portfolio. The last empirical 

finding is also consistent with Eisdorfer and Misirli (2019) indicating that distressed 

stocks increase their betas during bear market regimes.        

 

1.5 Conclusions 

 

Sorting stocks using only one moment can ignore important information about the 

impact of the whole distribution on the cross-sectional variation of future stock 

returns. In this chapter we create a new score measure, combining VOL, SKEW and 

KURT. A low level of it identifies a stock with high VOL, low SKEW and high 

KURT. On the other hand, a high level of it identifies a stock with low VOL, high 

SKEW and low KURT. A portfolio going long the highest decile (good) portfolio and 

short the lowest decile (bad) portfolio yields a statistically significant 0.75% (0.79%) 

value-weighted (equally-weighted) return and significant alphas, with both legs of the 

strategy contributing to the overall abnormal return. This positive relation between 

SCORE and subsequent monthly returns holds even when we restrict our sample to 

large, liquid stocks and it is robust when controlling for various variables in 

dependent bivariate sorts and Fama-MacBeth (1973) regressions.  

As the significant positive average return of the GMB portfolio is not consistent with 

standard moment preferences this chapter aims to provide an explanation for it. This 
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explanation builds on the ICAPM including the market and the aggregate volatility 

risk factors conditional on the level of investors’ sentiment. We find that good stocks 

are exposed to shocks in aggregate volatility while bad stocks hedge against these 

shocks. Additionally, we show that the explanatory power of the ICAPM depends on 

the level of investors’ sentiment. When investors’ sentiment is low, the ICAPM can 

fully explain the GMB portfolio positive premium for both underpriced and 

overpriced stocks. In contrast, in high sentiment periods the ICAPM alpha remains 

positive and significant. Therefore, we complement a rational risk-based explanation 

with mispricing. We find that during high sentiment periods the positive ICAPM 

alpha of the GMB portfolio within overpriced stocks is due to the subsequent 

underperformance of bad stocks, while within underpriced stocks it can be mainly 

attributed to the subsequent overperformance of good stocks. Therefore, the positive 

premium of the GMB portfolio is also driven by information flow from the options to 

the stock market for stocks perceived to be as relatively mispriced. 
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Figure 1.1. Implied Volatility curves 

This Figure shows the pooled average implied volatility curves across deltas for stocks in the 

bad (orange line) and good (blue dashed line) portfolio. 
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Table 1.1: Summary statistics for decile portfolios of stocks sorted by SCORE 

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure computed from 

VOL, SKEW and KURT. Portfolio 1 includes stocks with the lowest SCORE (bad) and portfolio 10 contains stocks with the highest SCORE (good). This 

table shows the time-series average of monthly value-weighted stock characteristics (except for size which is equally-weighted) for each decile portfolio. The 

definition of each variable is provided in Appendix A. 

SCORE decile portfolios 

 Bad 2 3 4 5 6 7 8 9 Good 

VOL 11.91 8.98 8.89 9.20 9.50 9.85 9.95 9.95 9.67 8.97 

SKEW -0.81 -0.70 -0.57 -0.48 -0.42 -0.36 -0.30 -0.24 -0.17 -0.08 

KURT 4.44 4.16 3.91 3.78 3.70 3.65 3.62 3.61 3.60 3.50 

BETA 1.11 0.92 0.93 1.00 1.03 1.06 1.08 1.07 1.03 0.95 

SIZE 21.05 21.52 21.50 21.47 21.43 21.39 21.36 21.40 21.49 21.77 

B/M 0.51 0.41 0.37 0.38 0.39 0.39 0.39 0.41 0.42 0.42 

MOM 17.03 20.49 19.31 20.84 22.26 23.19 22.74 22.38 20.59 17.72 

ILLIQ 0.18 0.08 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.07 

ln(PRICE) 3.50 3.85 3.92 3.90 3.89 3.87 3.84 3.84 3.84 3.88 

MAX 5.20 4.05 4.05 4.18 4.35 4.53 4.56 4.51 4.32 4.14 

MIN -4.29 -3.38 -3.47 -3.65 -3.78 -4.01 -4.08 -4.09 -4.03 -3.79 

IVOL 1.64 1.29 1.30 1.37 1.44 1.52 1.54 1.55 1.52 1.44 

MISP 48.83 43.78 42.60 41.95 42.75 42.67 42.60 43.04 42.88 42.07 

EIS 0.65 0.59 0.59 0.58 0.59 0.58 0.59 0.59 0.60 0.61 

PROFIT 0.30 0.40 0.45 0.45 0.41 0.38 0.43 0.37 0.39 0.42 

GPROFIT 0.29 0.32 0.33 0.34 0.34 0.35 0.34 0.34 0.34 0.34 
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Table 1.2: Value-weighted and equally-weighted portfolios of stocks sorted by SCORE 

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure computed from 

VOL, SKEW and KURT. Portfolio 1 includes stocks with the lowest SCORE (bad) and portfolio 10 includes stocks with the highest SCORE (good). The last 

column reports the performance of the good minus bad (GMB) portfolio. The table reports average monthly returns the following month, factor loadings, and 

alphas from the Carhart (1997) model (CAR), and factor loadings and alphas from the Fama and French (2015) 5-factor model (FF5). Panel A shows value-

weighted returns and Panel B shows equally-weighted returns. Adj. R2 denotes the adjusted R-squared coefficient. MKT denotes the market risk premium 

factor, SMB is the size factor, HML is the value factor, MOM is the momentum factor, RMW denotes the operating profitability factor and CMA is the 

investment factor. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags. 

Panel A: Value-weighted returns 

  SCORE decile portfolios 

  Bad 2 3 4 5 6 7 8 9 Good GMB 

Raw 0.47 0.66 0.42 0.74 0.92 0.76 0.98 1.01 0.98 1.21 0.75 

  (1.11) (2.14) (1.41) (2.17) (2.72) (2.29) (2.88) (3.14) (3.07) (4.47) (2.60) 

CAR -0.35 -0.08 -0.25 -0.05 0.13 -0.05 0.18 0.28 0.22 0.50 0.84 

 (-1.96) (-0.72) (-2.47) (-0.51) (1.42) (-0.41) (1.43) (1.64) (1.77) (3.63) (3.19) 

MKT 1.05 0.93 0.91 1.07 1.06 1.04 1.04 1.01 0.98 0.89 -0.15 

 (19.68) (31.39) (30.97) (41.38) (37.99) (24.68) (27.61) (21.96) (26.55) (24.61) (-2.04) 

SMB 0.32 -0.02 -0.09 -0.05 -0.05 0.02 0.05 -0.02 -0.02 -0.19 -0.51 

 (4.94) (-0.40) (-2.09) (-0.88) (-1.13) (0.50) (0.91) (-0.22) (-0.51) (-3.51) (-4.75) 

HML 0.15 -0.05 -0.05 -0.05 -0.02 -0.12 0.07 -0.12 0.05 0.17 0.02 

 (1.24) (-1.12) (-1.47) (-1.09) (-0.57) (-1.77) (0.90) (-2.58) (0.67) (2.00) (0.12) 

MOM -0.15 0.07 -0.03 0.01 0.01 0.09 -0.01 -0.03 0.01 0.04 0.19 

 (-3.41) (2.62) (-1.47) (0.45) (0.45) (2.64) (-0.19) (-0.61) (0.17) (0.98) (2.51) 

Adj. R2 82.98 85.54 87.62 89.13 87.77 87.51 84.52 83.02 83.74 77.89 29.57 

FF5  -0.23 -0.04 -0.30 -0.05 0.14 0.02 0.10 0.17 0.14 0.28 0.51 

 (-1.49) (-0.32) (-2.83) (-0.48) (1.17) (0.20) (0.78) (1.09) (1.13) (2.48) (2.50) 

MKT 1.00 0.91 0.94 1.07 1.06 1.01 1.08 1.06 1.02 0.99 -0.01 
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 (23.27) (26.29) (31.61) (34.13) (28.57) (27.20) (33.91) (24.66) (29.22) (32.24) (-0.10) 

SMB 0.21 -0.04 -0.10 -0.08 -0.02 0.03 0.07 0.04 0.05 -0.06 -0.27 

 (3.80) (-0.84) (-2.20) (-1.56) (-0.56) (0.61) (1.25) (0.63) (0.95) (-1.38) (-3.42) 

HML 0.36 -0.11 -0.06 -0.08 0.00 -0.16 -0.03 -0.16 0.00 -0.02 -0.38 

 (2.79) (-1.58) (-1.37) (-1.41) (0.05) (-1.93) (-0.47) (-2.20) (-0.01) (-0.45) (-2.45) 

RMW -0.30 -0.04 0.02 -0.05 0.05 -0.01 0.07 0.16 0.18 0.37 0.67 

 (-3.29) (-0.63) (0.49) (-0.68) (0.96) (-0.15) (1.11) (2.23) (2.62) (5.52) (5.06) 

CMA -0.26 0.11 0.06 0.13 -0.09 0.00 0.16 0.01 -0.02 0.22 0.48 

 (-1.87) (1.15) (0.87) (1.43) (-0.80) (-0.03) (1.55) (0.07) (-0.20) (2.36) (2.42) 

Adj. R2 82.66 85.08 87.57 89.32 87.83 86.67 84.79 83.25 84.26 80.60 35.79 

Panel B: Equally-weighted returns 

  SCORE Decile portfolios 

  Bad 2 3 4 5 6 7 8 9 Good GMB 

Raw 0.52 0.46 0.61 0.62 0.71 0.84 1.01 0.92 1.09 1.31 0.79 

  (1.28) (1.11) (1.35) (1.36) (1.62) (1.85) (2.34) (2.17) (2.82) (3.84) (4.35) 

CAR -0.39 -0.46 -0.30 -0.33 -0.23 -0.10 0.11 0.02 0.22 0.50 0.89 

 (-3.76) (-4.59) (-2.55) (-2.93) (-2.40) (-1.12) (0.96) (0.23) (1.71) (3.82) (5.98) 

MKT 1.05 1.13 1.17 1.23 1.21 1.25 1.19 1.18 1.11 0.96 -0.09 

 (34.15) (32.05) (33.65) (36.08) (51.53) (41.90) (38.01) (39.77) (34.94) (29.62) (-2.52) 

SMB 0.67 0.57 0.66 0.72 0.71 0.65 0.65 0.56 0.40 0.27 -0.40 

 (13.04) (15.95) (15.66) (18.39) (19.99) (10.11) (9.15) (6.31) (3.78) (3.28) (-5.38) 

HML 0.29 0.04 -0.16 -0.17 -0.16 -0.16 -0.10 -0.01 0.15 0.31 0.02 

 (6.82) (0.95) (-3.92) (-4.60) (-5.56) (-3.73) (-2.05) (-0.16) (2.88) (4.31) (0.30) 

MOM -0.12 -0.06 -0.10 -0.11 -0.10 -0.11 -0.16 -0.16 -0.14 -0.08 0.05 

 (-3.50) (-1.90) (-2.75) (-3.52) (-4.43) (-5.65) (-6.07) (-5.15) (-4.44) (-2.36) (1.31) 

Adj. R2 92.95 93.79 94.13 93.72 95.58 95.43 93.73 93.09 89.91 88.06 35.44 

FF5  -0.46 -0.43 -0.21 -0.23 -0.13 -0.04 0.10 -0.04 0.14 0.27 0.73 
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 (-4.17) (-4.46) (-1.86) (-1.98) (-1.39) (-0.38) (0.83) (-0.30) (1.05) (2.43) (5.17) 

MKT 1.09 1.11 1.14 1.19 1.16 1.22 1.20 1.22 1.15 1.07 -0.02 

 (33.65) (30.81) (33.27) (35.77) (46.08) (35.94) (37.04) (30.86) (27.16) (34.07) (-0.54) 

SMB 0.68 0.56 0.58 0.64 0.66 0.61 0.63 0.56 0.44 0.38 -0.30 

 (11.36) (12.33) (9.85) (14.10) (16.23) (11.03) (9.65) (7.73) (5.13) (6.89) (-5.72) 

HML 0.25 0.04 -0.10 -0.10 -0.08 -0.09 -0.03 0.03 0.19 0.16 -0.09 

 (4.02) (0.71) (-1.72) (-1.82) (-1.86) (-1.20) (-0.37) (0.37) (1.99) (2.34) (-1.26) 

RMW 0.00 -0.08 -0.25 -0.27 -0.20 -0.16 -0.11 -0.02 0.05 0.29 0.30 

 (-0.09) (-1.73) (-3.91) (-5.62) (-3.93) (-1.82) (-1.17) (-0.22) (0.52) (4.49) (4.29) 

CMA -0.09 -0.13 -0.16 -0.18 -0.27 -0.24 -0.22 -0.17 -0.17 0.06 0.15 

 (-1.36) (-2.27) (-2.48) (-2.71) (-4.43) (-2.97) (-2.03) (-1.33) (-1.34) (0.77) (2.09) 

Adj. R2 92.54 93.93 94.18 93.76 95.74 95.38 92.95 92.15 89.23 89.44 39.34 
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Table 1.3: Value-weighted and equally-weighted portfolios of stocks sorted by SCORE 

using different breakpoints and sub-samples 

Decile, quintile and tercile portfolios are formed every month from January 1996 to April 

2016 by sorting stocks based on the end-of-month SCORE measure. The lowest decile, 

quintile or tercile portfolio includes stocks with the lowest SCORE (bad) and the highest 

decile, quintile or tercile portfolio includes stocks with the highest SCORE (good). The table 

reports average monthly returns the following month and alphas with respect to the Capital 

Asset Pricing Model (CAPM), the Fama and French (1993) 3-factor model (FF3), the Carhart 

(1997) model (CAR) and the Fama and French (2015) 5-factor (FF5) of the good minus bad 

(GMB) portfolio. Panel A shows results using the full sample. Panel B shows results after 

dropping all stocks in the lowest size quintile using NYSE breakpoints. Panel C shows results 

for all stocks with market cap above the NYSE median. GMB(d) denotes the good minus bad 

(GMB) decile portfolio, GMB(q) denotes the good minus bad (GMB) quintile portfolio and 

GMB(t) denotes the good minus bad (GMB) tercile portfolio. The t-statistics (in parentheses) 

are computed using Newey-West (1987) standard errors with 5 lags. 

Panel A:  Full sample 

  Panel A.1: Value-weighted Panel A.2: Equally-weighted 

 GMB(d) GMB(q) GMB(t) GMB(d) GMB(q) GMB(t) 

Raw returns 0.75 0.51 0.56 0.79 0.71 0.58 

 (2.60) (2.61) (3.96) (4.35) (4.97) (4.17) 

CAPM 0.92 0.56 0.57 0.89 0.77 0.62 

 (3.57) (2.80) (3.68) (5.25) (5.60) (4.40) 

FF3 0.97 0.55 0.56 0.92 0.78 0.61 

 (3.80) (2.93) (3.78) (6.12) (6.09) (4.95) 

CAR 0.84 0.53 0.54 0.89 0.79 0.63 

 (3.19) (2.77) (3.50) (5.98) (5.81) (4.75) 

FF5 0.51 0.30 0.38 0.73 0.65 0.49 

 (2.50) (1.79) (3.06) (5.17) (5.13) (3.91) 

Panel B:  Dropping stocks with size in the lowest quintile 

  Panel B.1: Value-weighted Panel B.2: Equally-weighted 

 GMB(d) GMB(q) GMB(t) GMB(d) GMB(q) GMB(t) 

Raw returns 0.70 0.52 0.57 0.79 0.69 0.57 

 (2.39) (2.69) (4.13) (4.15) (4.60) (4.01) 

CAPM 0.88 0.58 0.58 0.89 0.75 0.61 

 (3.30) (2.88) (3.83) (5.01) (5.20) (4.27) 

FF3 0.93 0.56 0.57 0.92 0.76 0.60 

 (3.50) (2.95) (3.98) (5.55) (5.60) (4.77) 

CAR 0.80 0.54 0.55 0.86 0.76 0.62 

 (2.94) (2.76) (3.71) (5.34) (5.35) (4.58) 

FF5 0.46 0.30 0.40 0.73 0.62 0.47 

 (2.13) (1.83) (3.20) (4.70) (4.69) (3.72) 

Panel C: Dropping stocks with size below the median 

 Panel C.1: Value-weighted Panel C.2: Equally-weighted 

 GMB(d) GMB(q) GMB(t) GMB(d) GMB(q) GMB(t) 

Raw returns 0.70 0.49 0.57 0.70 0.52 0.41 

 (2.40) (2.47) (4.05) (4.14) (3.95) (3.75) 
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CAPM 0.87 0.55 0.59 0.79 0.58 0.45 

 (3.21) (2.67) (3.81) (5.06) (4.59) (4.14) 

FF3 0.91 0.53 0.58 0.83 0.60 0.46 

 (3.32) (2.65) (3.89) (5.14) (4.56) (4.12) 

CAR 0.76 0.51 0.56 0.75 0.57 0.46 

 (2.71) (2.40) (3.60) (4.75) (4.31) (4.03) 

FF5 0.41 0.25 0.38 0.61 0.40 0.28 

  (1.86) (1.43) (2.99) (4.08) (3.31) (2.71) 
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Table 1.4: Value-weighted portfolios of stocks sorted by SCORE across four style 

universes 

Quintile portfolios are formed every month from January 1996 to April 2016 by sorting 

stocks based on the end-of-month SCORE measure. The lowest quintile portfolio includes 

stocks with the lowest SCORE (bad) and the highest quintile portfolio includes stocks with 

the highest SCORE (good). We split our sample into four style universes: small growth (SG), 

small value (SV), large growth (LG) and large value (LV) using NYSE medians as 

breakpoints. The table reports average monthly returns the following month and alphas with 

respect to the Capital Asset Pricing Model (CAPM), the Fama and French (1993) 3-factor 

model (FF3), the Carhart (1997) model (CAR) and the Fama and French (2015) 5-factor 

(FF5) of the good minus bad (GMB) value-weighted portfolio. The t-statistics (in 

parentheses) are computed using Newey-West (1987) standard errors with 5 lags. 

 Raw CAPM FF3 CAR FF5 

SG 0.86 (3.13) 0.92 (3.52) 0.90 (3.62) 0.89 (3.50) 0.76 (2.89) 

SV 0.79 (2.79) 0.86 (2.93) 0.85 (3.01) 0.78 (2.56) 0.72 (2.52) 

LG 0.60 (2.84) 0.65 (2.92) 0.61 (2.88) 0.61 (2.73) 0.33 (1.73) 

LV 0.47 (1.78) 0.50 (1.68) 0.63 (2.10) 0.62 (1.96) 0.56 (1.98) 
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Table 1.5: Double-sorted portfolios on SCORE after controlling for several variables 

Double-sorted quintile portfolios are formed every month from January 1996 to April 2016 by 

sorting stocks based on SCORE after controlling for mispricing (MISP), idiosyncratic 

volatility (IVOL), momentum (MOM), book-to-market (B/M), reversal (REV), market 

capitalization (SIZE), market beta (BETA), maximum daily return of the previous month 

(MAX), profitability (PROFIT), gross profitability (GPROFIT),  illiquidity (ILLIQ), expected 

idiosyncratic skewness (EIS) and beta of market volatility innovations (β ΔVIX). The 

definition of each variable is provided in Appendix A. We first sort stocks into quintiles using 

each one of these variables, then within each quintile, we sort stocks into quintiles based on 

SCORE. We average SCORE sorted portfolios across the five quintiles from the first sort and 

we report average monthly returns and alphas of the good minus bad (GMB) portfolio. Alphas 

are measured with respect to the Capital Asset Pricing Model (CAPM), the Fama and French 

(1993) 3-factor model (FF3), the Carhart (1997) model (CAR) and the Fama and French 

(2015) 5-factor (FF5). Panel A shows value-weighted returns and Panel B shows equally-

weighted returns. The t-statistics (in parentheses) are computed using Newey-West (1987) 

standard errors with 5 lags. 

Panel A: Value-weighted returns 

 Raw CAPM FF3 CAR FF5 

BETA 0.54 (3.30) 0.60 (3.66) 0.63 (3.72) 0.62 (3.66) 0.45 (3.11) 

SIZE 0.60 (4.34) 0.65 (4.85) 0.65 (4.97) 0.63 (4.69) 0.49 (4.13) 

B/M 0.48 (3.34) 0.50 (3.28) 0.53 (3.26) 0.54 (3.12) 0.42 (2.72) 

MOM 0.66 (4.68) 0.70 (4.79) 0.72 (5.08) 0.68 (4.88) 0.52 (4.41) 

REV 0.59 (3.58) 0.68 (4.23) 0.68 (4.48) 0.67 (4.19) 0.50 (3.59) 

ILLIQ 0.55 (4.62) 0.59 (5.00) 0.61 (5.02) 0.60 (4.98) 0.49 (4.01) 

MAX 0.51 (3.36) 0.55 (3.57) 0.58 (3.89) 0.54 (3.57) 0.41 (3.09) 

IVOL 0.76 (3.66) 0.86 (4.15) 0.87 (4.60) 0.81 (4.25) 0.64 (4.40) 

MISP 0.59 (3.38) 0.65 (3.52) 0.65 (3.51) 0.60 (3.08) 0.44 (2.89) 

PROFIΤ 0.65 (3.58) 0.73 (3.76) 0.71 (3.96) 0.69 (3.59) 0.44 (2.76) 

GPROFIT 0.50 (3.01) 0.52 (2.93) 0.50 (3.18) 0.48 (3.00) 0.30 (2.06) 

EIS 0.55 (3.16) 0.61 (3.30) 0.60 (3.57) 0.58 (3.46) 0.36 (2.47) 

β ΔVIX 0.62 (3.72) 0.67 (3.93) 0.66 (3.99) 0.64 (3.82) 0.43 (3.16) 

Panel B: Equally-weighted returns 

 Raw CAPM FF3 CAR FF5 

BETA 0.61 (5.00) 0.65 (5.62) 0.67 (5.70) 0.66 (5.55) 0.58 (5.14) 

SIZE 0.60 (4.64) 0.65 (5.21) 0.66 (5.20) 0.63 (4.85) 0.49 (4.41) 

B/M 0.65 (4.69) 0.69 (5.13) 0.70 (5.64) 0.72 (5.54) 0.60 (4.76) 

MOM 0.67 (5.63) 0.72 (6.10) 0.72 (6.64) 0.74 (6.66) 0.60 (5.70) 

REV 0.68 (5.30) 0.75 (6.03) 0.76 (6.50) 0.75 (6.08) 0.64 (5.67) 

ILLIQ 0.64 (4.94) 0.69 (5.49) 0.70 (5.52) 0.68 (5.25) 0.56 (4.69) 

MAX 0.65 (6.13) 0.67 (6.41) 0.69 (6.50) 0.69 (6.15) 0.62 (5.91) 

IVOL 0.66 (6.02) 0.69 (6.39) 0.72 (6.60) 0.69 (6.21) 0.63 (6.13) 

MISP 0.58 (4.29) 0.62 (4.69) 0.63 (4.98) 0.64 (5.08) 0.51 (4.10) 

PROFIΤ 0.66 (4.76) 0.71 (5.10) 0.71 (5.77) 0.70 (5.49) 0.59 (4.58) 

GPROFIT 0.69 (4.34) 0.74 (4.65) 0.73 (5.30) 0.75 (5.16) 0.60 (4.26) 

EIS 0.65 (5.04) 0.70 (5.61) 0.71 (6.15) 0.71 (5.90) 0.58 (4.86) 

β ΔVIX 0.69 (5.17) 0.74 (5.65) 0.74 (6.11) 0.75 (5.74) 0.62 (5.24) 
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Table 1.6: Fama-MacBeth cross-sectional regressions 

This table presents firm-level Fama-MacBeth (1973) cross-sectional regression results of one month ahead stock returns on SCORE and a set of firm 

characteristics for the sample period January 1996 to April 2016. The firm characteristics that we control for in the econometric specifications include market 

beta (BETA), market capitalization (SIZE), book-to-market ratio (B/M), momentum (MOM), reversal (REV), illiquidity (ILLIQ), maximum daily return of 

the previous month (MAX), idiosyncratic volatility (IVOL), mispricing (MISP), profitability (PROFIT), gross profitability (GPROFIT), expected 

idiosyncratic skewness (EIS) and beta of market volatility innovations (β ΔVIX). The definition of each variable is provided in Appendix A. All variables are 

winsorized at the 1% and 99% levels. The time-series average slope coefficients are reported in each row. Adj. R2 denotes the adjusted R-squared coefficient. 

The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Intercept 0.0062 0.0103 0.0125 0.0116 0.0106 0.0129 0.0159 0.0266 0.0247 0.0238 0.0270 0.0268 

 (1.51) (1.57) (1.84) (1.71) (1.58) (2.11) (2.63) (4.25) (4.12) (3.87) (4.06) (4.10) 

SCORE 0.0057 0.0042 0.0043 0.0042 0.0043 0.0042 0.0041 0.0038 0.0038 0.0038 0.0036 0.0035 

 (4.39) (4.73) (4.91) (5.15) (5.37) (5.54) (5.46) (5.04) (5.07) (4.98) (4.83) (4.83) 

BETA  0.0001 -0.0013 -0.0008 -0.0007 -0.0004 -0.0004 -0.0003 -0.0002 -0.0003 -0.0003 -0.0003 

  (0.04) (-0.63) (-0.34) (-0.32) (-0.19) (-0.18) (-0.13) (-0.10) (-0.17) (-0.13) (-0.15) 

SIZE  -0.0005 -0.0007 -0.0006 -0.0005 -0.0007 -0.0009 -0.0012 -0.0013 -0.0011 -0.0012 -0.0012 

  (-0.75) (-1.08) (-0.99) (-0.81) (-1.11) (-1.53) (-2.10) (-2.15) (-2.05) (-2.14) (-2.17) 

B/M  0.0014 0.0013 0.0019 0.0018 0.0015 0.0012 0.0011 0.0013 0.0017 0.0018 0.0016 

  (0.63) (0.58) (0.85) (0.81) (0.71) (0.56) (0.51) (0.56) (0.73) (0.79) (0.73) 

MOM   -0.0005 -0.0009 -0.0006 -0.0004 -0.0002 -0.0015 -0.0013 -0.0014 -0.0018 -0.0017 

   (-0.19) (-0.31) (-0.22) (-0.14) (-0.06) (-0.51) (-0.47) (-0.47) (-0.61) (-0.59) 

REV    -0.0179 -0.0178 -0.0154 -0.0202 -0.0228 -0.0236 -0.0232 -0.0237 -0.0244 

    (-2.55) (-2.56) (-2.02) (-2.63) (-2.90) (-3.02) (-2.96) (-3.05) (-3.18) 

ILLIQ     -0.0387 -0.0270 -0.0181 -0.0150 -0.0007 -0.0094 0.0105 0.0109 

     (-0.72) (-0.50) (-0.33) (-0.26) (-0.01) (-0.17) (0.20) (0.21) 

MAX      -0.0256 0.0304 0.0405 0.0400 0.0382 0.0399 0.0431 

      (-1.41) (1.44) (1.95) (1.94) (1.87) (1.98) (2.15) 

IVOL       -0.2192 -0.2093 -0.2041 -0.2055 -0.2101 -0.2153 
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       (-2.96) (-2.77) (-2.72) (-2.73) (-2.84) (-2.88) 

MISP         -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 

         (-3.63) (-3.24) (-3.18) (-3.21) (-3.18) 

PROFIT           0.0029    

           (1.40)    

GPROFIT            0.0028 0.0024 0.0024 

            (1.01) (0.89) (0.86) 

EIS             -0.0036 -0.0034 

             (-1.96) (-1.83) 

β ΔVIX              -0.0009 

              (-1.05) 

Adj. R2 0.20% 5.37% 6.68% 7.43% 7.70% 8.12% 8.32% 8.66% 8.99% 9.07% 9.31% 9.53% 
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Table 1.7: Value-weighted and equally-weighted portfolios of stocks sorted by SCORE in short-term periods 

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure. Portfolio 1 includes 

stocks with the lowest SCORE (bad) and portfolio 10 includes stocks with the highest SCORE (good). The last column reports the performance of the good 

minus bad (GMB) portfolio. The table reports average returns and alphas of the 5-factor model (FF5). Panel A shows value-weighted and equally-weighted 

returns one-day ahead of the formation period. Panel B shows value-weighted and equally-weighted returns one week ahead of the formation period. Panel C 

shows value-weighted and equally-weighted returns the following month after excluding the first day. Panel D shows value-weighted and equally-weighted 

returns the following month after excluding the first week. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags. 

 SCORE decile portfolios  

 Bad 2 3 4 5 6 7 8 9 Good GMB 

Panel A: One-day ahead returns 

Panel A.1: Value-weighted 

Raw 0.11 0.10 0.18 0.24 0.19 0.23 0.23 0.23 0.28 0.35 0.24 

 (0.94) (1.15) (2.03) (2.53) (2.04) (2.31) (2.31) (2.31) (3.10) (4.20) (3.83) 

FF5 -0.14 -0.11 -0.03 0.04 -0.01 0.00 0.02 0.01 0.11 0.13 0.27 

 (-3.46) (-3.98) (-1.03) (1.23) (-0.26) (0.06) (0.73) (0.36) 3.44 (4.05) (4.71) 

Panel A.2: Equally-weighted 

Raw 0.01 0.04 0.07 0.09 0.11 0.11 0.14 0.18 0.21 0.25 0.24 

 (0.10) (0.34) (0.69) (0.76) (0.95) (0.95) (1.15) (1.54) (1.91) (2.53) (5.87) 

FF5 -0.14 -0.09 -0.04 -0.02 0.00 -0.02 0.01 0.03 0.06 0.08 0.22 

 (-5.46) (-3.88) (-2.02) (-1.01) (-0.04) (-0.81) (0.36) (0.94) (2.03) (2.76) (6.05) 

Panel B: One-week ahead returns 

Panel B.1: Value-weighted 

Raw 0.16 0.19 0.33 0.41 0.36 0.39 0.39 0.37 0.39 0.37 0.21 

 (0.78) (1.24) (1.96) (2.16) (1.97) (1.91) (1.73) (1.82) (1.91) (1.99) (1.97) 

FF5 -0.14 -0.11 0.01 0.07 0.05 0.03 0.06 0.03 0.03 -0.03 0.11 

 (-2.34) (-1.67) (0.18) (1.26) (1.00) (0.47) (0.94) (0.51) (0.41) (-0.43) (1.08) 
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Panel B.2: Equally-weighted 

Raw 0.04 0.12 0.20 0.21 0.19 0.24 0.29 0.30 0.31 0.33 0.29 

 (0.18) (0.53) (0.83) (0.82) (0.76) (0.91) (1.10) (1.19) (1.38) (1.60) (3.65) 

FF5 -0.19 -0.07 0.03 0.02 0.00 0.05 0.09 0.06 0.04 0.03 0.23 

 (-2.94) (-1.53) (0.56) (0.32) (0.08) (0.84) (1.51) (0.98) (0.59) (0.54) (2.89) 

Panel C: Monthly returns excluding the first trading day 

Panel C.1: Value-weighted 

Raw 0.39 0.56 0.25 0.50 0.74 0.55 0.76 0.79 0.71 0.88 0.49 

 (1.01) (1.98) (0.90) (1.65) (2.39) (1.79) (2.48) (2.68) (2.44) (3.43) (1.88) 

FF5 -0.12 0.03 -0.24 -0.05 0.15 -0.02 0.10 0.16 0.04 0.18 0.30 

 (-0.78) (0.25) (-2.54) (-0.47) (1.45) (-0.15) (0.83) (1.02) (0.35) (1.63) (1.54) 

Panel C.2: Equally-weighted 

Raw 0.53 0.43 0.54 0.55 0.63 0.75 0.89 0.76 0.91 1.08 0.55 

 (1.44) (1.15) (1.31) (1.33) (1.55) (1.80) (2.27) (1.98) (2.56) (3.51) (3.26) 

FF5 -0.29 -0.28 -0.12 -0.12 -0.05 0.05 0.17 0.00 0.15 0.26 0.54 

 (-2.72) (-3.13) (-1.05) (-1.17) (-0.44) (0.52) (1.37) (0.07) (1.10) (2.36) (4.05) 

Panel D: Monthly returns excluding the first week 

Panel D.1: Value-weighted 

Raw 0.34 0.49 0.11 0.33 0.58 0.41 0.62 0.65 0.62 0.87 0.54 

 (1.08) (2.16) (0.50) (1.41) (2.48) (1.74) (2.75) (3.08) (2.93) (4.65) (2.21) 

FF5 -0.13 0.04 -0.26 -0.09 0.06 -0.04 0.11 0.12 0.03 0.30 0.42 

 (-0.92) (0.36) (-2.84) (-1.01) (0.69) (-0.46) (1.00) (0.97) (0.30) (2.65) (2.42) 

Panel D.2: Equally-weighted 

Raw 0.52 0.37 0.43 0.44 0.56 0.66 0.78 0.66 0.82 1.01 0.49 

 (1.76) (1.25) (1.29) (1.37) (1.71) (2.01) (2.52) (2.21) (2.98) (4.52) (3.12) 

FF5 -0.24 -0.25 -0.18 -0.19 -0.06 0.05 0.12 -0.01 0.15 0.31 0.55 

 (-2.45) (-2.84) (-1.83) (-1.81) (-0.57) (0.47) (0.97) (-0.09) (1.08) (2.90) (5.03) 
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Table 1.8: The ICAPM for stocks portfolios sorted by SCORE during periods of high 

and low investors’ sentiment 

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks 

based on the end-of-month SCORE measure. Low decile portfolio includes stocks with the 

lowest SCORE (bad) and high decile portfolio includes stocks with the highest SCORE 

(good). High (low) sentiment indicates a month in which the value of the Baker and Wurgler 

(2006) sentiment index at the end of the previous month is above (below) its sample median. 

The table reports ICAPM alpha 𝑎𝐻 (𝑎𝐿) in high (low) sentiment months, market beta 𝛽𝑀𝐾𝑇 

and beta of FVIX 𝛽𝐹𝑉𝐼𝑋, for the good, the bad and the good minus bad (GMB) portfolios. 

Panel A shows value-weighted returns and Panel B shows equally-weighted returns. Adj. R2 

denotes the adjusted R-squared coefficient. The t-statistics (in parentheses) are computed 

using Newey-West (1987) standard errors with 5 lags. 

  Panel A: Value-weighted Panel B: Equally-weighted  

  Bad Good GMB Bad Good GMB 

𝑎𝐻 -0.16 0.47 0.62 -0.11 0.76 0.87 

 (-0.68) (2.36) (1.78) (-0.34) (3.40) (3.16) 

𝑎𝐿 -0.04 0.10 0.14 -0.07 0.19 0.26 

 (-0.17) (0.49) (0.45) (-0.34) (0.99) (1.32) 

𝛽𝑀𝐾𝑇 2.01 -0.01 -2.02 1.97 0.77 -1.20 

 (8.99) (-0.05) (-4.70) (5.59) (2.42) (-3.48) 

𝛽𝐹𝑉𝐼𝑋 0.74 -0.71 -1.45 0.67 -0.20 -0.87 

 (4.10) (-3.29) (-4.11) (2.31) (-0.79) (-2.99) 

Adj. R2 80.10% 76.67% 24.07% 80.58% 82.67% 23.14% 
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Table 1.9: The ICAPM for double-sorted MISP-SCORE portfolios during periods of 

high and low investors’ sentiment 

Double-sorted tercile portfolios are formed every month from January 1996 to April 2016 by 

sorting stocks based on SCORE after controlling for mispricing (MISP). We first sort stocks 

into terciles using MISP, then within each tercile, we sort stocks into terciles based on 

SCORE. High (low) sentiment indicates a month in which the value of the Baker and Wurgler 

(2006) sentiment index at the end of the previous month is above (below) its sample median. 

The table reports ICAPM alpha 𝑎𝐻 (𝑎𝐿) in high (low) sentiment months, market beta 𝛽𝑀𝐾𝑇 

and beta of FVIX 𝛽𝐹𝑉𝐼𝑋, for the good, the bad and the good minus bad (GMB) portfolios 

across MISP terciles. Panel A shows value-weighted returns and Panel B shows equally-

weighted returns. The t-statistics (in parentheses) are computed using Newey-West (1987) 

standard errors with 5 lags. 

    Panel A: Value-Weighted Panel B: Equally-Weighted 

    Bad Good GMB Bad Good GMB 

Most underpriced 𝑎𝐻 -0.04 0.26 0.30 0.32 0.74 0.42 

  (-0.24) (1.13) (0.93) (1.24) (3.73) (2.28) 

 𝑎𝐿 0.02 0.21 0.20 0.25 0.27 0.02 

  (0.13) (1.33) (0.86) (1.31) (1.86) (0.13) 

 𝛽𝑀𝐾𝑇 0.36 0.31 -0.06 1.38 0.94 -0.44 

  (1.90) (1.35) (-0.15) (3.67) (4.06) (-1.62) 

 𝛽𝐹𝑉𝐼𝑋 -0.35 -0.46 -0.11 0.32 -0.03 -0.34 

  (-2.33) (-2.53) (-0.40) (1.05) (-0.16) (-1.59) 

Next 40% 𝑎𝐻 -0.31 0.56 0.87 0.36 0.80 0.44 

  (-2.21) (2.83) (3.27) (0.96) (3.24) (1.29) 

 𝑎𝐿 -0.10 -0.12 -0.02 0.09 0.17 0.08 

  (-0.63) (-0.56) (-0.05) (0.43) (0.89) (0.38) 

 𝛽𝑀𝐾𝑇 1.24 0.32 -0.92 2.08 1.08 -1.00 

  (6.21) (1.00) (-1.87) (5.20) (3.49) (-1.77) 

 𝛽𝐹𝑉𝐼𝑋 0.14 -0.54 -0.68 0.74 -0.05 -0.79 

  (0.91) (-2.03) (-1.72) (2.22) (-0.20) (-1.68) 

Most overpriced 𝑎𝐻 -0.66 -0.19 0.47 -0.47 0.10 0.57 

  (-3.21) (-0.77) (1.62) (-1.42) (0.28) (2.08) 

 𝑎𝐿 -0.57 -0.34 0.23 -0.28 -0.29 0.00 

  (-1.79) (-1.41) (0.71) (-0.97) (-0.96) (-0.01) 

 𝛽𝑀𝐾𝑇 1.65 0.75 -0.90 3.01 2.05 -0.96 

  (4.23) (1.93) (-2.09) (8.37) (5.38) (-2.68) 

 𝛽𝐹𝑉𝐼𝑋 0.32 -0.29 -0.62 1.31 0.55 -0.77 

  (1.14) (-0.94) (-1.84) (4.50) (1.78) (-2.48) 

All stocks 𝑎𝐻 -0.30 0.36 0.66 -0.03 0.56 0.59 

  (-3.51) (2.76) (3.48) (-0.11) (2.43) (2.58) 

 𝑎𝐿 -0.17 0.10 0.27 0.01 0.12 0.11 

  (-1.71) (0.83) (1.40) (0.04) (0.63) (0.66) 

 𝛽𝑀𝐾𝑇 0.93 0.60 -0.33 2.41 1.50 -0.91 

  (8.74) (3.10) (-1.21) (8.27) (6.26) (-2.62) 

 𝛽𝐹𝑉𝐼𝑋 -0.02 -0.29 -0.27 0.98 0.26 -0.71 

  (-0.30) (-1.85) (-1.23) (3.97) (1.37) (-2.45) 
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Chapter 2 

 

Option-implied jump risk and the cross-section 

of stock returns 

 

2.1 Introduction 

 

The option pricing literature provides strong evidence that aggregate jump risk is 

priced by investors in the options market. In fact, it constitutes nowadays a 

fundamental premise of state-of-the-art option pricing models.8 A parallel stream of 

research examines the impact of jump risk in the time-series variation of equity and 

variance risk premiums, providing strong evidence that a significant fraction of these 

two premiums can be ascribed to compensation for jump risk (see Santa-Clara and 

Yan (2010) and Bollerslev and Todorov (2011)). Despite the importance of jump risk 

documented in the literature, the investigation of how it affects the cross-section of 

expected stock returns has received less attention. 

The main objective of this chapter is to provide fresh empirical evidence that time-

varying jump risk is priced in the cross-section of stock returns. Our theoretical 

background follows a large body of literature showing how to extract risk-neutral 

moments from observed option prices (see Bakshi, Kapadia and Madan (2003), 

among others). As a preliminary step we demonstrate a straightforward relation 

between the first and second-order moments (in other words, the mean and variance) 

of the log-return risk-neutral distribution which may be used to approximate the third-

order moment of the jump process. As the first two moments can be extracted from 

option prices, it is straightforward to obtain an approximation of the third-order 

 
8 The relevant literature is very extensive, including early papers like Bates (1996, 2000) and Pan 

(2002) up to more recent ones like Ait-Sahalia, Karaman and Mancini (2020).   
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moment of the jump process from option prices. A similar formula is derived by Du 

and Kapadia (2012). In addition, we provide theoretical and empirical evidence 

showing that the third-order moment of the jump process is strongly related to the 

spot (and expected integrated) variance. Thus, its innovations are affected from both 

volatility and jump risk. To this end, we suggest a new measure of jump risk exposure 

by scaling the third-order moment of the jump process with expected integrated 

variance. Theoretically, this new scaled variable is not related to the dynamics of spot 

variance, and its innovations can be considered as a proxy of jump risk. 

Our empirical approach investigating it aggregate jump risk is priced in the cross-

section of stock returns closely follows Ang, Chen, and Xing (2006) and Cremers, 

Halling, and Weinbaum (2015). Specifically, we estimate jump risk loadings at the 

individual stock level using daily returns. As a second step, we sort stocks on the 

realized jump risk loadings, and we investigate whether stocks with higher betas have 

lower average returns contemporaneously, simultaneously controlling for other risk 

factors known to affect the cross-section of expected stock returns. We focus on 

uncovering a contemporaneous relation between jump risk betas and average returns, 

since it constitutes the essence of a cross-sectional risk-return relation. In addition, we 

investigate the relation between realized jump-risk betas and future stock returns. By 

so doing, we examine if realized jump risk exposures predict future ones, allowing us 

to form investable hedge portfolios ex-ante that have ex-post exposure to jump risk. 

Our main result is that jump risk is priced in the cross-section of stock returns, 

identifying a negative market price of jump risk, consistent with theory. We document 

that stocks with high jump risk loadings significantly underperform stocks with low 

ones contemporaneously, producing a statistically and economically significant 

premium of -9.41% per year at the 1% level. Risk-adjusted returns with respect to the 

Fama and French (1993) three-factor model and the Carhart (1997) four-factor model 

are also negative and highly significant. Besides investigating the pricing of aggregate 

jump risk in the cross-section of stock returns, it is also interesting to decompose 

jump risk innovations in their upside and downside components and examine the 

relative contribution of these two in the documented jump risk premium. The results 

of this exercise clearly show that the negative jump risk premium is due to its 

downside jump risk component. On the other hand, the premium of the high-low 

portfolio sorted by upside jump risk betas is not significant. 
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Our results are robust to bivariate sorts and Fama-MacBeth (1973) regressions. In 

particular, we show that the negative relation between jump risk betas and 

contemporaneous raw and risk-adjusted stock returns holds after controlling for 

volatility and skewness risk exposure. This result is particularly important as 

preliminary evidence indicate a strong cross-sectional relation between jump risk 

loadings, and variance or skewness loadings. We also perform Fama-MacBeth (1973) 

regressions, where we provide evidence for a robust negative relation between the 

exposure of stocks to aggregate jump risk and contemporaneous stock returns after 

controlling for several variables suggested in the literature. 

Finally, our main results carry over to a predictive setting, in which we compare the 

subsequent realized monthly returns of the quintile portfolios sorted by jump risk 

betas estimated over the previous period. We show that the high-low quintile portfolio 

delivers significant risk-adjusted returns in the following month of the portfolio 

formation period. These results are robust to different beta estimation windows and 

return holding periods. 

This chapter is closely related to Cremers, Halling, and Weinbaum (2015). They 

create a jump risk factor from option prices as a delta-neutral, vega-neutral and 

gamma positive portfolio of straddle positions. This jump risk factor is orthogonal to 

volatility risk and is negatively priced in the cross-section of stock returns 

contemporaneously. Our study differs from Cremers, Halling and Weinbaum (2015) 

in at least two important dimensions. First, we conduct a simulation study to examine 

the ability of our suggested variable extracted from option prices and the variable 

constructed by Cremers, Halling, and Weinbaum (2015) to proxy for jump risk. The 

findings from this exercise are very interesting. While, our jump risk measure, can 

accurately approximate the third-order moment of the jump size distribution, the jump 

risk factor of Cremers, Halling, and Weinbaum (2015) fails to proxy for jump risk. 

The main reason for that is that in practice the straddle portfolio, aiming to acquire 

exposure to jump risk, is constructed using Black-Scholes sensitivities, which may 

substantially differ from the true ones. This is especially true for vega. Therefore, the 

proposed jump risk factor is not actually orthogonal to volatility risk, nor even to 

market risk. Second, our jump risk loadings can predict the future exposure of stocks 

to jump risk. Therefore, the results of the contemporaneous cross-sectional analysis 

carry over to a predictive setting. In Cremers, Halling, and Weinbaum (2015) this is 



54 
 

not the case. When stocks are sorted by past jump risk betas, the subsequent average 

return of the high-low quintile portfolio swings sign from negative to positive.9 

Therefore, an investor who seeks a hedge against jump risk and construct a hedge 

portfolio ex-ante, will be poorly hedged over the following month. As Barahona, 

Driessen, and Frehen (2021) show, if betas are unpredictable then investors cannot 

acquire exposure to a certain risk factor, and thus to create a risk premium. These two 

observations cast doubt on the jump risk premium identified by Cremers, Halling, and 

Weinbaum (2015). 

Our study is also related to Bollerslev, Li, and Todorov (2016) who estimate jump 

risk betas from high frequency data. Like us, they find that jump risk is priced in the 

cross-section of stock returns We complement their results by estimating jump risk 

betas as the response of stock returns to innovations in the (approximated) third-order 

moment of the jump size distribution extracted from option prices. In addition, we 

provide evidence that only downside jump risk is priced in the cross-section of stock 

returns. 

The option pricing literature has long ago related jumps to skewness. Therefore, our 

study is also related to Chang, Christoffersen, and Jacobs (2009), who investigate the 

pricing of market skewness risk in the cross-section of stock returns. Our work differs 

from them in two points. First, in contrast to us, they document a negative market 

price of skewness risk, which implies a positive jump risk premium which is 

inconsistent with economic intuition. Second, our jump risk premium remains intact 

when we control for skewness risk exposure. 

Finally, our cross-sectional pricing results also complement recent studies examining 

the impact of jump risk in the level and time-series variation of equity and variance 

risk premiums. Santa-Clara and Yan (2010) and Bollerslev and Todorov (2011), 

among others, provide strong evidence that a large portion of the aggregate equity 

premium and its time-series variation could be attributable to jump tail risk. 

The rest of this chapter is organized as follows. Section 2 sets the theoretical 

background and discuss how we can approximate a jump risk measure from option 

 
9 The sign of the high-low quintile portfolio turns out to be negative once more when stocks are sorted 

by predicted jump risk betas. However, these betas are in-sample predictors (and not out-of-sample) 

depending on parameter estimates which can be observed ex-post. 
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prices. Section 3 conducts a small-scaled simulation study to investigate the accuracy 

of our approach to approximate jump risk. Section 4 describes the data and the 

methodology used to investigate whether jump risk is priced. Section 5 presents our 

main results on the pricing of jump risk in the cross-section of stock returns. It also 

examines the robustness of our results. Section 6 concludes the chapter. 

 

2.2 Theoretical Background 

2.2.1 General setup 

 

No-arbitrage implies the existence of a risk-neutral probability measure ℚ defined on 

a probability space (𝛺, 𝐹, ℚ). Let 𝑆𝑡 be the stock price at time 𝑡. Then, under ℚ, the 

stock return can be modeled as a superposition of a predictable drift component and a 

martingale. The drift component is determined by no-arbitrage. The martingale 

component can further be decomposed canonically into two orthogonal components: a 

purely continuous martingale and a purely discontinuous martingale (see Jacob and 

Shiyaev (1987), p.84). Therefore, 𝑆𝑡 solves the following stochastic differential 

stochastic differential equation: 

 
𝑑𝑆𝑡
𝑆𝑡−

= (𝑟 − 𝑞)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + (𝑒𝑥𝑝(𝐽𝑡) − 1)𝑑𝑁𝑡 − 𝑣𝑡(𝑑𝑥)𝑑𝑡, 

 

(2.1) 

 

where the instantaneous risk-free rate  𝑟 and dividend yield 𝑞 are assumed to be 

constant, 𝜎𝑡 is the instantaneous volatility process left unspecified and 𝑊𝑡 a standard 

Brownian motion. 𝑁𝑡 is a Poisson counting process with stochastic intensity 𝜆𝑡, 𝐽𝑡 is 

the random price jump size and 𝑣𝑡 = 𝜆𝑡𝑔𝑡 is the compensator with 𝑔𝑡 =

𝐸𝑡
ℚ
(𝑒𝑥𝑝(𝐽) − 1). When a jump occurs at time 𝜏, the induced price change is (𝑆𝜏 −

𝑆𝜏−) = 𝑒𝑥𝑝(𝐽𝜏) − 1, which implies that 𝑙𝑜𝑔(𝑆𝜏/𝑆𝜏−) = 𝐽𝜏. Equation (2.1) models the 

price change as the sum of a risk-neutral drift and two martingale components: a 

purely continuous martingale and a purely discontinuous (jump) martingale. This is a 

very general specification and we do not make any further assumptions about the 

properties of the jumps or the form of the stochastic volatility process. Indeed, model 
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(2.1) subsumes virtually all models used in finance with finite jump activity (see Ait-

Sahalia, Karaman, and Mancini (2020)). 

 

2.2.2 Jump and tail index implied from option prices 

 

Following Carr and Wu (2009) and Du and Kapadia (2012) we aim to extract a jump 

risk measure building on the first two (non-central) moments of the stock log-return 

during the period [0,Τ] and the expected quadratic variation of the log-return process 

during the same period. The following Proposition states the first important result of 

our analysis. 

Proposition 1 For an asset price process characterized by (2.1) the following result 

holds: 

1

2
𝐸0
ℚ [𝑙𝑛(

𝑆𝛵

𝑆0
)2] = −𝐸0

ℚ [𝑙𝑛(
𝑆𝛵

𝑆0
)] + (𝑟 − 𝑞)𝛵 + 𝐸0

ℚ
∫ 𝑙𝑛(𝑆𝑡−/𝑆0)𝑑𝑙𝑛𝑆𝑡
𝛵

0
+ 𝐽0(𝛵),   (2.2) 

where 

 
𝐽0(𝛵) = 𝐸0

ℚ∫ 𝜓(𝐽𝑡)𝑑𝑁𝑡

𝛵

0

, (2.3) 

with 𝜓(𝑥) = (1 + 𝑥 + 𝑥2/2) − 𝑒𝑥. 

Proof. In order to demonstrate this Proposition, we first apply Itô’s lemma to model 

(2.1) to retrieve to log of the stock price as: 

 
𝑙𝑛 (

𝑆𝛵
𝑆0
) =  ∫

𝑑𝑆𝑡
𝑆𝑡−

𝛵

0

−
1

2
∫ 𝜎𝑡

2𝑑𝑡 + ∫ (1 + 𝐽𝑡 − 𝑒
𝐽𝑡)𝑑𝑁𝑡

𝑇

0

𝛵

0

. (2.4) 

Then define the quadratic variation of the log of the stock price process over the 

period [0,Τ] as: 

 [𝑙𝑛 𝑆, 𝑙𝑛 𝑆]0,𝛵 = ∫ 𝜎𝑡
2𝑑𝑡 + ∫ 𝐽𝑡

2𝑑𝑁𝑡
𝑇

0

𝛵

0
. (2.5) 

Combining (2.4) and (2.5) yields:  

 
𝑙𝑛 (

𝑆𝛵
𝑆0
) = ∫

𝑑𝑆𝑡
𝑆𝑡−

𝛵

0

− [ln 𝑆 , ln 𝑆]0,𝛵 +∫ 𝜓(𝐽𝑡)𝑑𝑁𝑡

𝛵

0

. (2.6) 
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We then apply Itô’s lemma to retrieve the squared of the log of the stock price as: 

 
𝑙𝑛(
𝑆𝛵
𝑆0
)2 = 2∫ 𝑙𝑛(𝑆𝑡−/𝑆0)𝑑𝑙𝑛𝑆𝑡 + [𝑙𝑛 𝑆, 𝑙𝑛 𝑆]0,𝛵

𝛵

0

. (2.7) 

 

Substituting equation (2.7) into (2.6), taking conditional expectations under measure 

ℚ, and rearranging terms yields formula (2.2). ■ 

This result relates (through the expected quadratic variation) the first and second-

order (non-central) moments of the log-return distribution with term 𝐽0(𝛵) that 

depends on the stock price discontinuous component. Intuitively, as 𝜓(𝑥) ≈ −𝑥3/3!, 

𝐽0(𝛵) captures the (opposite of the) third-order moment of the jump measure. 

Furthermore, it is well-known in the literature that the moments of the log-return 

distribution under measure ℚ can be directly obtained from a portfolio of European 

out-of-the money (OTM) call and put options (see Bakshi, Kapadia, and Madan 

(2003) and Rompolis and Tzavalis (2017)). Therefore, our second Proposition shows 

how term 𝐽0(𝛵) can be proxied by a portfolio of European call and put options. 

Proposition 2 For an asset price process characterized by (2.1) the following result 

holds:  

 

𝐽0(𝛵) = 𝑒
𝑟𝑇 [∫

ln (
𝑆0
𝐾)

𝐾2

∞

𝑆0

𝐶0(𝐾, 𝑇)𝑑𝐾 + ∫
ln (
𝑆0
𝐾)

𝐾2

𝑆0

0

𝑃0(𝐾, 𝑇)𝑑𝐾]

+ 𝐴0(𝑇), 

(2.8) 

where 

 
𝐴0(𝑇) = (𝑒

(𝑟−𝑞)𝑇 − (𝑟 − 𝑞)𝑇 − 1) − 𝐸0
ℚ∫ ln (

𝑆𝑡−
𝑆0
)𝑑𝑙𝑛𝑆𝑡

𝛵

0

, (2.9) 

and 𝐶0(𝐾, 𝑇) (𝑃0(𝐾, 𝑇)) denotes the price of a European call (put) option observed at 

time 0 with strike price 𝐾 and time-to-maturity 𝑇.  

Proof. Bakshi, Kapadia, and Madan (2003) show that: 
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𝐸0
ℚ
[𝑙𝑛(

𝑆𝛵
𝑆0
)2] = 2𝑒𝑟𝑇 [∫

1

𝐾2
(1 − ln (

𝐾

𝑆0
))

∞

𝑆0

𝐶0(𝐾, 𝑇)𝑑𝐾

+ ∫
1

𝐾2
(1 − ln (

𝐾

𝑆0
))

𝑆0

0

𝑃0(𝐾, 𝑇)𝑑𝐾]. 

(2.10) 

Rompolis and Tzavalis (2017) further demonstrate that:  

 
𝐸0
ℚ [𝑙𝑛 (

𝑆𝑇
𝑆0
)] = 𝐸0

ℚ [
𝑆𝑇
𝑆0
] − 1

− 𝑒𝑟𝑇 [∫
1

𝐾2

∞

𝑆0

𝐶0(𝐾, 𝑇)𝑑𝐾 + ∫
1

𝐾2

𝑆0

0

𝑃0(𝐾, 𝑇)𝑑𝐾]. 

(2.11) 

Substituting equations (2.10) and (2.11) into (2.2) and rearranging terms yields 

formula (2.7). ■ 

Formula (2.7) is also demonstrated by Du and Kapadia (2012) in a slightly different 

fashion. The results of Proposition 2 indicate that 𝐽0(𝛵) can be calculated as the sum 

of a portfolio of OTM call and put options and the term 𝐴0(𝑇). The portfolio consists 

of long positions in OTM puts and short positions in OTM calls. Intuitively, as the 

prices of OTM calls (puts) increase due to the expectation of a future upside 

(downside) jump, 𝐽0(𝛵) decreases (increases) indicating an increase (decrease) in the 

third-order moment of the jump measure. 

As long as 𝐴0(𝑇) is negligeable, 𝐽0(𝛵) can be accurately approximated by the 

portfolio of OTM options. Indeed, Du and Kapadia (2012) impose some mild 

additional assumptions on model (2.1) and show that 𝐴0(𝑇) = 𝑂(𝑇
2). Therefore, for 

a short maturity period 𝑇, the impact of 𝐴0(𝑇) can be neglected, so that, 

 𝐽0(𝛵) ≈ 𝑒
𝑟𝑇[∫

𝑙𝑛(𝑆0/𝐾)

𝐾2

∞

𝑆0
𝐶0(𝐾, 𝑇)𝑑𝐾 + ∫

𝑙𝑛(𝑆0/𝐾)

𝐾2

𝑆0
0

𝑃0(𝐾, 𝑇)𝑑𝐾]. (2.12) 

Formula (2.12) enables us to retrieve 𝐽0(𝛵) without imposing any parametric structure 

in our model using the observed prices of European call and put options.  
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2.2.3 A new scaled measure of upside and downside jump risk 

 

As noted previously, function 𝜓(𝑥) ≈ −𝑥3/3!, so that 𝐽0(𝛵) approximates the 

(opposite) of the third-order moment of the jump measure under measure ℚ, i.e., 

 𝐽0(𝛵) ≈ −
1

3!
𝐸0
ℚ
∫ 𝐽𝑡

3𝑑𝑁𝑡
𝑇

0
. (2.13) 

To better grasp the nature of 𝐽0(𝛵) and the factors underlying its dynamics, we need 

to put more structure in the model. To this end, we assume that jump arrivals intensity 

is stochastic and depends on the spot variance, i.e., 𝜆𝑡 = 𝜆𝜎𝑡
2 where 𝜆 > 0 (see 

Andersen, Fusari and Todorov (2017)). The assumption regarding the temporal 

variation of jump intensity related to spot variance is followed by a broad number of 

relevant studies (see, e.g., Pan (2002), Ait-Sahalia, Karaman, and Mancini (2020)). 

Moreover, we assume the distribution of 𝐽𝑡 is time-invariant. Under these assumptions 

𝐽0(𝛵) can be written as: 

 
𝐽0(𝛵) ≈ −

1

3!
𝜆𝐸0

ℚ(𝐽3)𝐸0
ℚ∫ 𝜎𝑡

2𝑑𝑡
𝛵

0

. (2.14) 

Let 𝜇(3)
𝐽 = 𝐸0

ℚ(𝐽3) denote the third-order moment of the jump size distribution and 

𝐸𝐼𝑉0(𝑇) =  𝐸0
ℚ
∫ 𝜎𝑡

2𝑑𝑡
𝛵

0
 is the expected integrated variance. Then, 

 
𝐽0(𝛵) ≈ −

1

3!
𝜆𝜇(3)

𝐽 𝐸𝐼𝑉0(𝑇). (2.15) 

The last relationship implies that 𝐽0(𝛵) is the product of the third-order moment of the 

jump size distribution and the expected integrated variance. Thus,  

 𝐽0(𝛵)

𝐸𝐼𝑉0(𝑇)
≈
1

3!
𝜆𝜇(3)

𝐽 . (2.16) 

Hence, if we scale 𝐽0(𝛵) with 𝐸𝐼𝑉0(𝑇) we obtain a measure of the third-order moment 

of the jump size distribution. 

In order to be able to apply formula (2.16) in practice, we need to scale 𝐽0(𝛵), 

approximated by a portfolio of OTM call and put options as equation (2.12) indicates, 

with an estimate of 𝐸𝐼𝑉0(𝑇). This estimate is provided in the next Proposition. 
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Proposition 3 For an asset price process characterized by (2.1) the following result 

holds:  

 
𝐸𝐼𝑉0(𝑇) = 2𝑒

𝑟𝑇 [∫
1

𝐾2

∞

𝑆0

𝐶0(𝐾, 𝑇)𝑑𝐾 + ∫
1

𝐾2

𝑆0

0

𝑃0(𝐾, 𝑇)𝑑𝐾] + 𝐵0(𝑇), (2.17) 

with 

 
𝐵0(𝑇) = 2(1 + (𝑟 − 𝑞)𝑇 − 𝑒

(𝑟−𝑞)𝑇) + 2∫ (1 + 𝐽𝑡 − 𝑒
𝐽𝑡)𝑑𝑁𝑡

𝑇

0

. (2.18) 

 

Proof. The proof uses several results already found in the two previous 

demonstrations. In particular, formula (2.4) implies that: 

 1

2
𝐸𝐼𝑉0(𝑇) = −𝐸0

ℚ [𝑙𝑛 (
𝑆𝑇
𝑆0
)] + (𝑟 − 𝑞)𝑇 + ∫ (1 + 𝐽𝑡 − 𝑒

𝐽𝑡)𝑑𝑁𝑡

𝑇

0

. (2.19) 

Importing equation (2.11) in the previous formula yields: 

 
𝐸𝐼𝑉0(𝑇) = 2𝑒

𝑟𝑇 [∫
1

𝐾2

∞

𝑆0

𝐶0(𝐾, 𝑇)𝑑𝐾 + ∫
1

𝐾2

𝑆0

0

𝑃0(𝐾, 𝑇)𝑑𝐾] + 𝐵0(𝑇), (2.20) 

with 

 
𝐵0(𝑇) = 2(1 + (𝑟 − 𝑞)𝑇 − 𝑒

(𝑟−𝑞)𝑇) + 2∫ (1 + 𝐽𝑡 − 𝑒
𝐽𝑡)𝑑𝑁𝑡

𝑇

0

. (2.21) 

■ 

This Proposition indicates that 𝐸𝐼𝑉0(𝑇) can be approximated by a portfolio of OTM 

call and put options assuming that the effect of the jump term 𝐵0(𝑇) is negligeable. In 

other words, 

 
𝐸𝐼𝑉0(𝑇) = 2𝑒

𝑟𝑇 [∫
1

𝐾2

∞

𝑆0

𝐶0(𝐾, 𝑇)𝑑𝐾 + ∫
1

𝐾2

𝑆0

0

𝑃0(𝐾, 𝑇)𝑑𝐾]. (2.22) 

Note here that the VIX index follows directly from this analysis. 
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2.3 Simulation study 

 

In this section we conduct a small-scaled simulation study. The aim of it is twofold. 

First, we examine the accuracy of the option-implied scaled jump risk measure to 

approximate the third-order moment of the jump size distribution. Second, we 

measure the performance of the delta-neutral, vega-neutral and gamma positive 

strategy suggested by Cremers, Halling, and Weinbaum (2015) to proxy for jump risk. 

We assume that stock prices are generated by the stochastic volatility with random 

jumps model with state-dependent stochastic intensity process (see Bates (2000) and 

Pan (2002)). In particular, we assume the following data-generating process, under 

risk-neutral measure ℚ, for the stock price 𝑆   

 𝑑𝑆𝑡
𝑆𝑡−

= (𝑟 − 𝑞 − 𝜇𝜆𝜎𝑡
2)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡

𝑆 + (𝑒𝑥𝑝(𝐽𝑡) − 1)𝑑𝑁𝑡 (2.23) 

  

𝑑𝜎𝑡
2 = 𝜅(𝜃 − 𝜎𝑡

2)𝑑𝑡 + 𝜂𝜎𝑡𝑑𝑊𝑡
𝜎, 

 

where 𝑊𝑡
𝑆 and 𝑊𝑡

𝜎 are two standard Brownian motions with correlation coefficient 𝜌, 

𝐽𝑡 is the random jump size conditional on a jump occurring, with time-invariant 

normal distribution 𝐽𝑡~𝑁(𝜇𝐽, 𝜎𝐽
2) and a mean relative jump size 𝜇 = 𝑒𝑥𝑝(𝜇𝐽 +

1

2
𝜎𝐽
2) − 1. 𝑁𝑡 is the Poisson counter with a state-dependent stochastic intensity 

process 𝜆𝜎𝑡
2 for some 𝜆 > 0. The assumption of a stochastic intensity process which 

is affine on the latent spot variance is in accordance with our previous theoretical 

discussion in Section 2.2.3. 

We conduct our experiments by simulating model (2.23) using the parameters 

estimated by Pan (2002) at a daily frequency for a 1-year period.10 At each day of our 

sample period we calculate the theoretical European call and put prices with 1 and 2-

month time-to-maturity for a moneyness level of [0.75,1.25]. Using the 1-month time-

to-maturity theoretical option prices we approximate 𝐽0(𝛵) using formula (2.12) and 

 
10 These parameters are equal to: 𝜅 = 3.3, 𝜃 = 0.03, 𝜂 = 0.3, 𝜌 = −0.53, 𝜆 =  12.3, 𝜇𝐽 = −0,21, 𝜎𝐽 =

0.038. We also assume that 𝑟 = 0.05 and 𝑞 = 0.0015. The initial values of the stock price and spot 

variance are set to 𝑆0 = 100 and 𝜎0 = 0.015, respectively. 



62 
 

𝐽0(𝛵)/𝐸𝐼𝑉0(𝑇), where 𝐸𝐼𝑉0(𝑇) is approximated by formula (2.22).11 We compare the 

values of the option-implied 𝐽0(𝛵) and 𝐽0(𝛵)/𝐸𝐼𝑉0(𝑇) to the third-order moment of 

the jump process (see equation (2.15)) and the third-order moment scaled by the 

continuous part of the expected quadratic variation, respectively. Model (2.23) 

implies that the third-order moment of the jump process is equal to −
1

3!
𝜇(3)
𝐽 𝐹(𝑇, 𝜎0) , 

where 𝜇(3)
𝐽

 is the time-invariant third-order moment of  𝐽𝑡 and 

 𝐸0
ℚ
∫ 𝜎𝑡

2𝑑𝑡 = 𝐹(𝑇, 𝜎0) = 𝑇(𝑚(𝑇)𝜎0 + (1 −𝑚(𝑇))𝜃)
𝛵

0
, (2.24) 

where  𝑚(𝑇) =
1−𝑒−𝜅𝑇

𝜅𝑇
. Clearly, the third-order moment scaled by the continuous part 

of the expected quadratic variation is equal to −
1

3!
𝜇(3)
𝐽

. 

The results of the first exercise are presented in Table 1, Panel A. Figure 1 presents 

the time-series theoretical and approximated values of 𝐽0(𝛵) and 𝐸𝐼𝑉0(𝑇). The results 

of the table and the graphs of Figure 1 clearly indicate that the option-implied 𝐽0(𝛵) 

can very accurately approximate the third-order moment of the jump process. The 

root mean square error (RMSE) is virtually zero while the mean percentage error 

(MPE) is close to 6%. The results of the table also show that the approximation error 

increases when we calculate 𝐽0(𝛵)/𝐸𝐼𝑉0(𝑇). This is due to the error encountered in 

the approximation of 𝐸𝐼𝑉0(𝑇) by formula (2.22) as the graphs of Figure 1 also 

indicate. Still, the RMSE is equal to 0.0067 and the MPE is close to 30%. 

The second experiment examines the performance of the delta-neutral, vega-neutral 

and gamma positive strategy suggested by Cremers, Halling, and Weinbaum (2015) 

as a proxy of a jump risk factor. We use at-the-money (ATM) options with 1 and 2-

month time-to-maturity to form delta-neutral straddle positions. We then form a jump 

risk factor mimicking portfolio (denoted as JUMP) by taking one long position in 1-

month straddle and 𝑣𝑒𝑔𝑎1𝑀/𝑣𝑒𝑔𝑎2𝑀 short positions in the 2-months straddle. 

𝑣𝑒𝑔𝑎1𝑀 (𝑣𝑒𝑔𝑎2𝑀) denotes the vega of the 1-month (2-months) straddle position. 

Following Cremers, Halling, and Weinbaum (2015), option sensitivities are 

 
11 Since these formulas employ integrals of continuous functions to obtain 𝐽0(𝛵) and 𝐸𝐼𝑉0(𝑇) based on 

them, we can employ cubic splines to interpolate the implied by our option prices volatilities between 

two different points of the data. Due to the lack of option prices at zero and ∞ we extrapolate the 

implied volatilities over the intervals (0, 𝐾𝑚𝑖𝑛] and [𝐾𝑚𝑎𝑥 , ∞), where 𝐾𝑚𝑖𝑛  and 𝐾𝑚𝑎𝑥  are the minimum 

and maximum strike prices from our data, respectively. Our results are based on a constant 

extrapolation scheme, as common in the literature, that is, assuming that the implied volatility function 

is flat outside the observed strike price interval. 
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approximated using the Black-Scholes model and the implied volatility of the 

respective options. We compare the approximated JUMP factor of Cremers, Halling, 

and Weinbaum (2015) with the theoretical one calculated using option sensitivities 

derived by model (2.23). 

The results of this second exercise are presented in Table 1, Panel B. We report the 

mean and standard deviation of the approximated and true JUMP risk factor along 

with the RMSE and MPE. The average negative value of the true JUMP risk factor is 

consistent with a negative jump risk premium that this strategy is exposed. In contrast, 

the approximated one has a positive mean value, large variability, and deviates 

substantially, from the true one, as the RMSE and MPE metrics indicate. In fact, they 

have a large negative correlation of -87%. Therefore, the approximated JUMP risk 

factor suggested by Cremers, Halling, and Weinbaum (2015) cannot be considered as 

a robust proxy of jump risk premium as this counterexample shows. Why this 

happens? The reason is that the Black-Scholes option sensitivities (and especially 

vega) are poor proxies of the true ones. This is clearly observed in Figure 2, which 

plots call option delta, vega and gamma across moneyness levels for one indicative 

day of our sample. The direct implication of this misspecification error is that the 

approximated JUMP risk factor is not a delta-neutral and vega-neutral strategy. In 

fact, the average delta of the strategy is equal to 0.33, while the average vega is equal 

to 8.58, indicating that the approximated JUMP risk factor is also exposed to market 

and volatility risk. 

 

2.4 Data, Variables and Empirical Methodology 

 

This section describes our data and the empirical methodology we use to extract the 

jump risk measure from observed option prices. It also presents the empirical design 

we employ to investigate the pricing of jump risk in the cross-section of stock returns.   
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2.4.1 Data 

 

For the empirical analysis, we obtain data from various sources. We get returns, 

market capitalization and prices for all ordinary common shares (share code 10 and 

11) from the CRSP database. Option data for the S&P 500 index are downloaded 

from OptionMetrics for the period January 1996 to April 2016, we use standardized 

option data from the surface file in order to obtain a constant maturity for our options 

every day. Accounting data are obtained from Compustat. The returns on the market 

premium, SMB, HML and MOM factors are obtained from Kenneth French’s online 

data library.12 

 

2.4.2 Extracting the jump risk measure from observed option prices 

 

This part of the chapter shows how to calculate 𝐽0(𝑇) and 𝐸𝐼𝑉0(𝑇) using equations 

(2.12) and (2.22), respectively, from observed option prices. The estimates of these 

two variables will then be used to calculate a scaled measure of jump risk according 

to equation (2.16). Furthermore, for the purpose of our analysis we calculate the 

option-implied variance and skewness (denoted as 𝑉𝐴𝑅 and 𝑆𝐾𝐸𝑊 henceforth) of the 

S&P 500 index return using Bakshi, Kapadia, and Madan (2003) formula (see 

Appendix B for details).   

We calculate the option-implied jump risk measure 𝐽0(𝑇) and expected integrated 

variance 𝐸𝐼𝑉0(𝑇) of the S&P500 index at a daily frequency following Du and 

Kapadia (2012) and Bakshi, Kapadia, and Madan (2003) using 30-day constant 

maturity options from the implied volatility surface file. More specifically, every day 

we interpolate implied volatilities between the lowest and highest available 

moneyness using cubic splines and perform constant extrapolation with 1% and 300% 

as bounds. Subsequently, we convert implied volatilities to option prices using the 

Black-Scholes formula, where moneyness levels less than 1 are used to create OTM 

put prices and moneyness levels more than 1 are used to create OTM call prices 

 
12 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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which are used to calculate 𝐽0(𝑇) and 𝐸𝐼𝑉0(𝑇). For the rest of the chapter, 𝐽0(𝑇) 

which is computed using this approach with 𝑇 = 30 days is denoted as 𝐽𝑇𝐼. The 

scaled measure of jump risk, which is denoted as 𝐽𝑇𝐼𝑠𝑐, is derived by dividing 𝐽0(𝑇) 

with 𝐸𝐼𝑉0(𝑇) following the analysis of Section 2.2.3. 

In addition, we decompose 𝐽0(𝑇) into a downside jump risk measure 𝐽0
(−)(𝑇) and an 

upside jump risk measure 𝐽0
(+)(𝑇) following Du and Kapadia (2012). The downside 

jump risk measure corresponds to the OTM put portfolio, while the upside jump risk 

measure corresponds to the OTM call portfolio.13 This decomposition is further 

supported by the analysis of Bollerslev and Todorov (2011) that demonstrate that the 

prices of short-maturity OTM options are dominated by the jump measure. Intuitively, 

over short time intervals, changes in the price due to the continuous component are 

invariably small relative to the possible impact of large jumps, and the diffusive part 

may be ignored. Moreover, they show that if the jump measure is separated in an 

upside and downside jump term, then OTM call prices depend on the upside jump 

component, while OTM put prices depend on the downside jump component. 

Following the previous analysis, we also scale 𝐽0
(−)(𝑇) and the opposite of 𝐽0

(+)(𝑇) by 

dividing them with 𝐸𝐼𝑉0(𝑇). For the rest of the chapter, we denote 𝐽0
(−)(𝑇) and the 

inverse of 𝐽0
(+)(𝑇), which are computed from S&P500 index option data using the 

aforementioned empirical approach with 𝑇 = 30 days, as 𝐽𝑇𝐼𝑁 and 𝐽𝑇𝐼𝑃, 

respectively. The scaled measure of downside and upside jump risk is denoted as 

𝐽𝑇𝐼𝑁𝑠𝑐 and 𝐽𝑇𝐼𝑃𝑠𝑐, respectively.    

To derive the innovations in 𝐽𝑇𝐼, 𝐽𝑇𝐼𝑃 and 𝐽𝑇𝐼𝑁 and their respective scaled measures 

we use the daily changes in each variable as in Ang, Hodrick, Xing and Zhang (2006) 

and Agarwal, Bakshi and Huij (2009). 

 
13 Technically, we define 𝐽0

(−)(𝑇) and 𝐽0
(+)(𝑇) as: 

𝐽0
(−)(𝑇) = 𝑒𝑟𝑇∫

ln(𝑆0 𝐾⁄ )

𝐾2
𝑃0(𝐾, 𝑇)𝑑𝐾

𝑆0

0

, 

and 

𝐽0
(+)(𝑇) = 𝑒𝑟𝑇∫

ln(𝑆0 𝐾⁄ )

𝐾2
𝐶0(𝐾, 𝑇)𝑑𝐾,

+∞

𝑆0

 

respectively. 
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Finally, we calculate 30-day constant maturity estimates of 𝑉𝐴𝑅 and 𝑆𝐾𝐸𝑊 of the 

S&P500 index at a daily frequency using once more the aforementioned numerical 

approach. 𝑉𝐴𝑅 and 𝑆𝐾𝐸𝑊 innovations are calculated as daily changes in each 

variable. 

 

2.4.3 Empirical methodology 

 

Our research design follows closely Ang, Chen and Xing (2006) and Cremers, Halling 

and Weinbaum (2015) in considering the contemporaneous relation between the 

realized factor loadings and realized stock returns. The contemporaneous relation 

between factor loadings and risk premium is the essence of the risk-return relation. 

Our empirical methodology employs portfolio sorts, in which stocks are sorted on 

their individual factor loading estimated over a given time period. Realized average 

returns are also computed over the same time period, enabling us to examine the 

contemporaneous risk-return relation.  

In particular, for each stock 𝑖 we estimate betas using daily returns over rolling annual 

periods every month from the following regression: 

𝑟𝑡
𝑖 = 𝛽0

𝑖 + 𝛽𝑀𝐾𝑇𝑡
𝑖 𝑀𝐾𝑇𝑡 + 𝛽𝑀𝐾𝑇𝑡−1

𝑖 𝑀𝐾𝑇𝑡−1 + 𝛽𝛥𝑋𝑡
𝑖 𝛥𝑋𝑡 + 𝛽𝛥𝑋𝑡−1

𝑖 𝛥𝑋𝑡−1 + 𝜀𝑡
𝑖 (2.25) 

where 𝑟𝑡
𝑖 is the excess return of stock 𝑖 on day 𝑡, 𝑀𝐾𝑇𝑡 is the market premium (the 

excess return of the market portfolio proxied by the CRSP value-weighted index) on 

day 𝑡, and 𝛥𝑋𝑡 is the daily innovation in the variable of interest. We also include one-

day lagged risk factors (see Dimson (1979)) and use the sum of the betas for each risk 

factor as in Cremers, Halling, and Weinbaum (2015) to mitigate the impact of 

infrequent trading. Following Bali, Engle, and Murray (2016) we require at least 200 

non-missing observations in order to estimate the betas. Other factors may also 

influence the returns of individual stocks. We do not include these factors in 

regression (2.25) as they might add noise in the estimation of 𝛽𝛥𝑋𝑡
𝑖 . We do, however, 

control for a number of them when conducting the cross-sectional asset pricing tests. 
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Following the relevant literature (see, e.g., Ang, Chen, and Xing (2006)), at the 

beginning of each month, we sort stocks into quintiles based on their 𝛽𝛥𝑋𝑡
𝑖  loadings 

estimated from equation (2.25) over the previous 12 months. We then compute the 

average portfolio excess returns over the same 12 months used to estimate the factor 

loadings. To ensure that our results are robust to other factors known to affect stock 

returns, we estimate portfolio alphas using the Fama and French (1993) three-factor 

model, and the Carhart (1997) four-factor model. 

We conduct a number of robustness checks to ensure that our results are not driven by 

other risk factors. First, we perform dependent bivariate sorts to show that jump risk is 

priced in the cross-section of stock returns when controlling for the exposure of stocks 

on 𝑉𝐴𝑅 and 𝑆𝐾𝐸𝑊 innovations. Second, we perform Fama-MacBeth (1973) 

regressions that allows us to simultaneously control for more than one stock 

characteristics. Finally, we extend our empirical methodology to a predictive setting. 

Although, the contemporaneous relation between returns and factor risk loadings 

represents the essence of the risk-return relation, is not of much practical value if the 

betas cannot be used to predict future returns. In so doing, we sort stocks into 

quintiles based on the realized betas over the past 12 months, and then compute 

average returns and alphas over the following month.     

 

2.5 Empirical Results 

 

This section describes our main empirical results on the pricing of jump risk in the 

cross-section of stock returns. We first, present summary statistics of jump risk 

measures extracted from option prices. Secondly, we present summary statistics of the 

factor loadings on jump risk. We then discuss the results of portfolio sorts. Finally, we 

consider various robustness checks to ensure that our results are not driven by the 

exposure of stocks to other risk factors. 
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2.5.1 Summary statistics of jump risk measures 

 

We begin our empirical investigation by examining the properties of jump risk 

measures and their innovations extracted from traded option prices. Table 2 presents 

descriptive statistics of selected variables (Panel A) and the time-series correlations of 

their innovations (Panel B). The average value of 𝐽𝑇𝐼 is positive corresponding to a 

negative skewed jump size distribution. Furthermore, as the 5% percentile indicates, 

𝐽𝑇𝐼 is positive for almost all data points exhibiting positive skewness and positive 

excess kurtosis. The results of the table also indicate that the bulk of 𝐽𝑇𝐼 variation is 

due to 𝐽𝑇𝐼𝑁. The approximately 3 times higher mean value of the downside jump risk 

measure, 𝐽𝑇𝐼𝑁, compared to the upside jump risk one indicates that OTM put options 

are more expensive than OTM call options. This is consistent with the smirk pattern 

observed in the S&P 500 index implied volatility curves, termed as crash-o-phobia by 

Rubinstein (1994) which is also present in other major equity indices (see Foresi and 

Wu (2005)). Moreover, 𝐽𝑇𝐼𝑁 has twice the variability of 𝐽𝑇𝐼𝑃. Similar conclusions 

can be drawn by inspecting the descriptive statistics of the scaled measures of jump 

risk. The statistically significant average positive value of 𝐽𝑇𝐼𝑠𝑐, equal to 0.0185, 

indicates that the jump size distribution is negatively skewed. Again, the bulk of its 

variation is due to the downside jump risk component. 𝐽𝑇𝐼𝑁𝑠𝑐 exhibits an 

approximately 3 times higher mean value and standard deviation compared to 𝐽𝑇𝐼𝑃𝑠𝑐. 

The results of Panel B indicate that innovations in the jump risk measures are 

positively correlated with innovations in variance. For example, the correlation 

coefficient between 𝛥𝐽𝑇𝐼 and 𝛥𝑉𝐴𝑅 is 60%. This is consistent with our theoretical 

framework, indicating that random jump intensity is related to spot variance. Jump 

innovations have a 95% and 51% correlation with downside and upside jump 

innovations, respectively, indicating that shifts in 𝐽𝑇𝐼 are mainly due to downside 

jump innovations. Moreover, downside and upside jump innovations show a positive 

correlation coefficient of 73%. In contrast, variance-scaled downside and upside jump 

innovations show a negative correlation of -27%, indicating that the positive 

correlation of the unscaled variables is due to their relation to variance. Moreover, 

both variance-scaled upside and downside jump innovations have the expected sign 

on the correlation coefficient with 𝛥𝑆𝐾𝐸𝑊. A positive (negative) downside (upside) 
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jump innovation is related to a decrease (increase) in skewness. Interestingly, 𝛥𝐽𝑇𝐼𝑠𝑐 

exhibits a negative correlation with excess markets returns of -52%, while correlations 

with other factors are much lower in absolute magnitude. Finally, note that the 

variance-scaled jump risk measures innovations have a positive correlation with 

𝛥𝑉𝐴𝑅 which is lower in magnitude compared to the correlation of the unscaled 

variables.  

Figure 3 plots monthly innovations in the scaled jump risk measures for our sample 

period (January 1996-April 2016). The highest innovation in all three variables is 

observed in the aftermath of Lehman Brothers default in October 2008. Additional 

significant spikes occur during the Asian currency crisis in 1997 and the LTCM 

default in 1998. The plots of the figure also confirm the high correlation between 

innovations in 𝐽𝑇𝐼𝑠𝑐 and 𝐽𝑇𝐼𝑁𝑠𝑐. 

 

2.5.2 Summary statistics of estimated betas  

 

Our main empirical results are based on betas on jump innovations estimated for 

individual stocks in the sample. For each stock we estimate betas with respect to 

𝛥𝐽𝑇𝐼𝑠𝑐, 𝛥𝐽𝑇𝐼𝑁𝑠𝑐, and 𝛥𝐽𝑇𝐼𝑃𝑠𝑐, using daily returns over rolling annual periods every 

month from regression (2.25). In Table 3 we present summary statistics of these factor 

loadings where we also include betas on 𝛥𝑉𝐴𝑅 and 𝛥𝑆𝐾𝐸𝑊. Betas on 𝛥𝐽𝑇𝐼𝑠𝑐, 

𝛥𝐽𝑇𝐼𝑁𝑠𝑐, and 𝛥𝐽𝑇𝐼𝑃𝑠𝑐 have positive mean and median, exhibit positive skewness 

and are leptokurtic, indicating that although most stocks have returns that are 

positively related to jump risk measure innovations, a group of them are inversely 

related. Panel B shows the time-series average of cross-sectional correlations of betas. 

Betas on scaled jump risk measures are positively correlated with variance betas and 

downside (upside) scaled jump shows a negative (positive) correlation coefficient of -

69% (89%) with skewness betas as expected. Panel C presents monthly 

autocorrelations of betas. We observe high autocorrelation coefficients in the first lags 

which is justified from the use of overlapping annual windows in the beta estimation 

regression. The figure also indicates that after lag 6 the autocorrelation of all betas 

decreases significantly and becomes insignificant after lag 12. These results have 
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straightforward implications for the predictive regressions that we examine later, 

indicating that past betas can predict future betas at least in the medium-term.   

To visualize the time-series and cross-sectional variation in the betas on our main 

variables of interest, i.e., 𝛥𝐽𝑇𝐼𝑠𝑐, 𝛥𝐽𝑇𝐼𝑁𝑠𝑐, and 𝛥𝐽𝑇𝐼𝑃𝑠𝑐, Figure 4 shows the time-

series of value-weighted portfolio betas, based on monthly quintile sorts. We observe 

a higher dispersion among 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 and 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 compared to 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐. It is also 

evident that higher dispersion among betas is detected during periods of market stress, 

like for example, 2000-2002 and 2008-2010. This excess dispersion is mainly due to 

the increase of the stock’s betas in the high quintile portfolio, indicating that during 

periods of market stress the positive relation between 𝛥𝐽𝑇𝐼𝑠𝑐 and high beta stock 

returns further increases. 

 

2.5.3 Univariate portfolio sorts 

 

This section presents the main empirical results of the chapter. It investigates whether 

jump risk is priced in the cross-section of stock returns through portfolio sorts. Every 

month we create value-weighted portfolios by sorting stocks into quintiles based on 

the jump risk betas estimated over the previous 12-month period. We compute 

average realized excess returns and portfolio characteristics over the same 12 months. 

Table 4, Panel A, presents the results for contemporaneous value-weighted quintile 

portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐. Several conclusions can be drawn from these results. 

First, as Panel A indicates stocks with a higher exposure to aggregate jump risk (i.e., 

low beta) measured by 𝛥𝐽𝑇𝐼𝑠𝑐 earn higher returns. In fact, the low quintile portfolio 

average return is equal to 13.22% per year. The relation between quintile portfolio 

beta and average return shows a decreasing monotonic pattern, leading to a high 

quintile portfolio with an average return of 3.81%. Therefore, the high-low quintile 

portfolio sorted by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 produces a strongly statistically and economically 

significant premium of -9.41% per year. This is consistent with a negative market 

price of aggregate jump risk. Stocks with low sensitivities to jump risk are exposed to 

aggregate jump risk and earn high returns. In contrast, stocks with high sensitivities to 
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jump risk hedge against jump risk and investors are willing to accept a lower return 

for them. Second, the negative premium of the high-low portfolio is robust to other 

known risk factors. Risk-adjusted returns with respect to the Fama and French (1993) 

3-factor model and the Carhart (1997) 4-factor model are very close to the 

documented average return and both are statistically significant at 1% level. Third, 

even though the relation between betas and portfolio average returns is monotonic, the 

bulk of the spread between the high and low quintile portfolios comes from the spread 

between the fourth and highest quintile. This result suggests that it is the 

underperformance of stocks that hedge against aggregate jump risk that is largely 

responsible for the negative premium of the high-low quintile portfolio. Fourth, 

consistent with the correlation coefficients between betas reported in Table 3, we 

observe a monotonic pattern in 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐, 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐, 𝛽𝛥𝑉𝐴𝑅 and 𝛽𝛥𝑆𝐾𝐸𝑊, of the quintile 

portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐. In fact, high (low) 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 stocks have high (low) 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 

and low (high) 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐. Thus, stocks hedging against aggregate jump risk, hedge 

against downside jump risk, while they are exposed to upside jump risk.  Moreover, 

high (low) 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 stocks have high (low) 𝛽𝛥𝑉𝐴𝑅 and low (high) 𝛽𝛥𝑆𝐾𝐸𝑊,  indicating 

that stocks hedging against jump risk can also hedge against aggregate volatility risk, 

while they are exposed to skewness risk. Fifth, the high-low quintile portfolio sorted 

by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 is also exposed to market risk, indicating that high beta stocks hedge 

against jump risk. Finally, the spread portfolio has a negative exposure on the 𝐻𝑀𝐿 

factor. Thus, stocks which are exposed on aggregate jump risk (low 𝛽𝛥𝐽𝑇𝐼𝑠𝑐) are also 

exposed to the value factor. Therefore jump risk can help in explaining defensive and 

value anomalies. 

Besides investigating the pricing of aggregate jump risk in the cross-section of stock 

returns, it is also interesting to decompose jump innovations in their upside and 

downside components and examine the relative contribution of these two in the 

documented jump risk premium. The results of this exercise are shown in Table 4, 

Panel B and C. These results clearly show that the negative jump risk premium is due 

to its downside jump risk component. On the contrary, the high-low quintile portfolio 

based on 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 fails to deliver a significant premium in raw or risk-adjusted basis. 

Therefore, in the reminder of the chapter we focus our investigation on the pricing of 

downside aggregate jump risk.  
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2.5.4 Bivariate portfolio sorts 

 

The results of the previous section reveal that stocks which are exposed to jump risk, 

they are also exposed to volatility and skewness risk. Therefore, one may argue that 

the documented premium reflects the exposure of stocks on aggregate volatility risk 

(see Ang, Hodrick, Xing and Zhang (2006)) and/or skewness risk (see Chang, 

Christoffersen and Jacobs (2009)). To examine this issue in depth we perform 

dependent bivariate sorts to examine if the spread portfolio still produces significant 

premium when controlling for 𝛽𝛥𝑉𝐴𝑅 and 𝛽𝛥𝑆𝐾𝐸𝑊. More specifically, we first sort 

stocks based on 𝛽𝛥𝑉𝐴𝑅 or 𝛽𝛥𝑆𝐾𝐸𝑊 in quintiles, then within each quintile we further sort 

stocks on 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐, resulting in a total of 25 portfolios. 

Table 5 reports the results. The high-low quintile portfolio sorted by 𝛽𝛥𝐽𝑇𝐼𝑁𝑠 provides 

significant average returns and alphas when controlling for 𝛽𝛥𝑉𝐴𝑅 (see Panel A). Not 

surprisingly, the average return is reduced to -3.83% per year but remains statistically 

significant at the 5% level. The results of the table also indicate that this negative 

premium is mainly due to stocks in the highest 𝛽𝛥𝑉𝐴𝑅 quintile. Therefore, the highest 

variation in the cross-section of stock returns due to their exposure to downside jump 

risk is observed for stocks that hedge against aggregate volatility risk. In addition to 

that, we observe that the highest 𝛽𝛥𝑉𝐴𝑅 and 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 portfolio which hedges against 

both aggregate volatility and downside jump risk provides the lowest return across all 

25 portfolios of -1.21% per year. 

Furthermore, the significant negative premium of the high-low portfolio sorted by 

𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 is robust when controlling for 𝛽𝛥𝑆𝐾𝐸𝑊 (see Panel B). The average return of 

the high-low quintile portfolio is -8.6% per year and statistically significant at the 1% 

level. Moreover, average return and alphas of the spread portfolio remain negative 

and significant across almost all 𝛽𝛥𝑆𝐾𝐸𝑊 quintiles. Interestingly though, the lowest 

value is observed in the low 𝛽𝛥𝑆𝐾𝐸𝑊 quintile, indicating that the highest variation in 

the cross-section of stock returns due to their exposure to downside jump risk is 

observed for stocks that hedge against aggregate skewness risk. 

The conclusion drawn by the section is that, although jump risk measure innovations 

are correlated to innovations in variance and skewness as shown in Table 3, the 
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documented negative premium of the high-low portfolio sorted by jump risk betas 

cannot be explained by the exposure of stocks to volatility or skewness risk. 

 

2.5.5 Fama-MacBeth regressions 

        

The portfolio sorts provide strong evidence that jump risk exposure are related to 

contemporaneous average stock returns. In addition, the sign of the average return of 

the high-low portfolio further suggests negative price of risk for aggregate jump 

innovations, consistent with asset pricing theory. However, they ignore the potential 

effect of other explanatory variables known to explain the cross-sectional variation of 

stock returns. Furthermore, aggregating the stocks into quintile portfolios may ignore 

potentially important cross-sectional firm-level information. To address these issues, 

we perform Fama-MacBeth (1973) multivariate regressions, conducted at the firm 

level, that allows us to simultaneously control for more than one stock characteristics. 

These include market capitalization, book-to-market ratio, momentum, mispricing, 

idiosyncratic volatility, and illiquidity. The definition of each variable is provided in 

Appendix A.     

Table 6 presents the time-series averages of cross-sectional coefficients alongside 

with the Newey-West (1987) t-statistics. We show that the 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐  coefficient is 

negative and statistically significant while controlling for the market capitalization, 

book-to-market, momentum, mispricing, idiosyncratic volatility, and illiquidity. This 

result confirms that jump risk is priced in the cross-section of stock returns and price 

of jump risk is negative. The effect is also economically significant. A two-standard 

deviation (equal to 2.30) increase across stocks in 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 together with the estimated 

premium of -0.012 from specification (6), is associated with a 5.52% drop in expected 

return per year. 

Overall, the evidence presented so far suggests that jump risk is priced in the cross-

section of stock returns. Systematic jump exposure matters for stocks expected 

returns. These results are in line with previous studies examining the pricing of jump 

risk in the cross-section of stock returns (see Cremers, Halling and Weinbaum (2015) 
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and Bollerslev, Li and Todorov (2017)). They also complement the empirical findings 

of previous studies examining jump risk premium, in the market level, using time-

series stock and options data (see, e.g., Santa-Clara and Yan (2010), Bollerslev and 

Todorov (2011)).    

 

2.5.6 Predictive single-sorted portfolios 

 

The results reported so far focus on the contemporaneous relation between jump risk 

betas and stock returns. While we find strong evidence that jump risk is priced in the 

cross-section of stock returns, these results have limited practical value as they cannot 

be used to form an ex-ante investment strategy that can be followed to construct 

hedge portfolios. Furthermore, as Barahona, Driessen and Frehen (2021) show, if 

betas are unpredictable then investors cannot acquire exposure to a certain risk factor, 

and thus to create a risk premium. They suggest that cross-sectional asset pricing tests 

should employ betas that are observable to investors rather than using realized betas 

that are only observable ex-post. In this section, we extent the previous analysis 

forming predictive single-sorted portfolios. 

As previously, we estimate the different betas over the past 12 months. We then sort 

stocks according to each of different betas and compute the returns the following 

month. We report average excess returns and risk-adjusted returns in annual basis 

with respect to the Fama and French (1993) 3-factor model and Carhart (1997) 4-

factor model.   

Table 7 summarizes the results. As Panel A indicates, we continue to see a 

monotonically decreasing relation between the future portfolio returns and past 

𝛽𝛥𝐽𝑇𝐼𝑠𝑐. Consistent with the slowly decaying autocorrelations for 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 shown in 

Table 3, the high-low portfolio average return, equal to -4.2% per year, remains 

negative though lower in magnitude, and statistically insignificant, compared to the 

contemporaneous average return reported in Table 4. However, it delivers negative 

and statistically significant risk-adjusted returns with respect to the Fama and French 

(1993) 3-factor model and the Carhart (1997) 4-model at the 10% level. In addition, 
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the estimated alphas are close in magnitude to those reported in the contemporaneous 

setting. These results suggest that past jump risk betas are able to predict the cross-

sectional variation in the future stock returns. Furthermore, the relation between 

𝛽𝛥𝐽𝑇𝐼𝑠𝑐 and future stock returns cannot be explained by the size, book-to-market and 

momentum factors. As previously, we decompose jump risk in its downside and 

upside component and estimate downside (𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐) and upside 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐) jump risk 

betas. Consistent with the previous empirical findings, we see that the documented 

negative jump risk premium is due to its downside jump risk component. Once more, 

upside jump risk is not priced in the cross-section of stock returns. 

 

2.5.7 Beta estimation and return holding periods     

 

The predictive portfolio sorts of the previous section are based on betas estimated 

from returns over the previous year and a future one-month return holding period. 

These are typical estimation and holding periods used in the empirical asset pricing 

literature. In the section, we aim to examine the robustness of our results to different 

beta estimation periods and future return holding periods following Bollerslev, Li, and 

Todorov (2016).   

In Table 8 we report results, on univariate portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐, based on 

shorter 3-, 6- and 9-months estimation periods (L) and longer 3- and 6-months 

holding periods (H). In all cases examined, the high-low quintile portfolio average 

excess return is negative varying between -2.12% (Panel I) and -6.00% (Panel A) per 

year. Although, average returns are insignificant, risk-adjusted returns with respect to 

the Fama and French (1993) 3-factor model are statistically significant across all 

regressions. The significance of the results for longer horizons highlights the 

persistence in the cross-sectional predictability. 

The results reported in the last two sections are in stark contrast with those of 

Cremers, Halling and Weinbaum (2015). They show that when past betas are used to 

form quintile portfolios, jump risk premium shift signs from negative to positive. 

They attribute this finding to time-varying betas, such that using past loadings does 
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not result in consistent exposure to jump risk. Our analysis does not suffer from this 

problem. This can be attributed to the persistence of our jump risk betas, so that past 

betas estimates computed on different estimation windows can be considered as good 

proxies of future jump risk exposure.    

   

2.6 Conclusion 

 

This chapter examines the cross-sectional pricing of stocks according to their 

sensitivities to option-implied jump risk. We find strong evidence that jump risk is 

priced in the cross-section of stock returns, and the market price of jump risk is 

negative. A high-low portfolio sorted by jump risk betas produce a statistically and 

economically significant negative premium of -9.41% per year. Risk-adjusted returns 

are also negative and highly significant. Our results also indicate that the negative 

jump risk premium is due to its downside jump risk component. On the other hand, 

the premium of the high-low portfolio sorted by upside jump risk betas is not 

significant. Moreover, this contemporaneous risk-return tradeoff is robust to 

controlling for betas to innovations in aggregate variance or skewness using 

dependent bivariate sorts. Finally, our main results carry over to a predictive setting, 

in which we compare the subsequent realized monthly returns of the quintile 

portfolios sorted by jump risk betas estimated over the previous period. These results 

are robust to different beta estimation windows and return holding periods. 

The cross-sectional evidence reported in this chapter is in line with the results in the 

related option pricing and time-series literature. Jump risk constitutes an important 

determinant not only of option prices and aggregate equity and volatility premium but 

also impacts the cross-sectional variation of individual stocks expected returns
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Figure 2.1. Theoretical and approximated 𝑱𝟎(𝜯) and 𝑬𝑰𝑽𝟎(𝑻) values 

This figure presents theoretical and approximated daily values of 𝐽0(𝛵) and 𝐸𝐼𝑉0(𝑇) derived 

in the simulation study. The theoretical values come from the SVJ model (2.23). The 

approximated values of  𝐽0(𝛵) and 𝐸𝐼𝑉0(𝑇) are computed from option prices, generated by 

the SVJ model, based on formulas (2.12) and (2.22), respectively.   
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Figure 2.2. Call option delta, vega and gamma derived by SVJ and BS models 

This figure presents call option delta, vega and gamma across moneyness levels derived by 

the SVJ and the BS models. For the BS model the Greeks letters are computed across 

moneyness using the implied volatility curve.  
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Figure 2.3. Monthly innovations in scaled jump risk measures 

This figure shows innovations at a monthly frequency in the scaled jump risk measure 𝐽𝑇𝐼𝑠𝑐, 

the scaled downside jump risk measure 𝐽𝑇𝐼𝑁𝑠𝑐, and the scaled upside jump risk measure 

𝐽𝑇𝐼𝑃𝑠𝑐. The sample period is from January 1996 to April 2016. 
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Figure 2.4. Time-series of portfolio betas to scaled jump risk innovations 

This figure shows the time-series of the value-weighted average betas for the quintile 

portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐, 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 and 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐. The sample period is from January 1996 to 

April 2016.  
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Table 2.1: Simulation study 

This table reports the results of our simulation study. Panel A shows average values, and 

standard deviation (Std) in parentheses, of the theoretical and approximated of 𝐽0(𝛵), 𝐸𝐼𝑉0(𝑇) 

and of 𝐽0(𝛵)/𝐸𝐼𝑉0(𝑇) variables. Panel B reports the average values, and standard deviation 

(Std) in parentheses, of the theoretical and approximated JUMP risk factor. It also reports the 

same statistics for the delta and vega of the approximated JUMP risk factor. RMSE denotes 

the root mean squared error, and MPE denotes the mean percentage error between the 

respective theoretical and approximated variables. The theoretical values of them are implied 

by the stochastic volatility with jumps model (see formula (2.23)). This model is used to 

generate call and put option prices at a daily frequency for a 1-year period. 

Panel A: Theoretical vs approximated jump components 

  Theoretical Approximated 

𝐽0(𝑇) Mean 0.0067 0.0072 

 Std (0.0038) (0.0041) 

 RMSE  5.6 × 10-6 

 MPE  6.27% 

𝐸𝐼𝑉0(𝑇) Mean 0.0031 0.0047 

 Std (0.0038) (0.0026) 

 RMSE  0.0018 

 MPE  53.59% 

𝐽0(𝑇) 𝐸𝐼𝑉0(𝑇)⁄  Mean 0.022 0.015 

 Std - (0.0001) 

 RMSE  0.0068 

 MPE  30.80% 

Panel B: Theoretical vs approximated JUMP risk factor 

  Theoretical Approximated 

JUMP Mean -0.02 0.14 

 Std (0.61) (3.91) 

 RMSE  4.44 

 MPE  2,544% 

Delta Mean - 0.33 

 Std - (0.0037) 

Vega Mean - 8.58 

  Std - (4.10) 
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Table 2.2: Summary Statistics for Selected Variables 

Panel A presents the mean, standard deviation, skewness, 5%, 50% and 95% percentiles of selected variables, while Panel B presents the correlations of 

innovations in selected variables and daily excess market returns (𝑀𝐾𝑇), 𝑆𝑀𝐵, 𝐻𝑀𝐿 and 𝑀𝑂𝑀 factors. The sample period is from January 1996 to April 

2016. 

   Panel A: Descriptive statistics    

     𝐽𝑇𝐼 𝐽𝑇𝐼𝑁 𝐽𝑇𝐼𝑃 𝐽𝑇𝐼𝑠𝑐 𝐽𝑇𝐼𝑁𝑠𝑐 𝐽𝑇𝐼𝑃𝑠𝑐    

   Mean 0.0001 0.0001 0.00003 0.0185 0.0271 0.0087    

   Std 0.0001 0.0002 0.0001 0.0071 0.0090 0.0034    

   Skewness 3.6685 3.7881 3.8031 1.4375 1.5083 0.9920    

   Kurtosis 18.3726 19.8564 20.2795 5.7067 5.7179 4.0122    

   P5 0.0000 0.0000 0.0000 0.0098 0.0165 0.0043    

   Median 0.0000 0.0001 0.0000 0.0171 0.0248 0.0081    

   P95 0.0003 0.0004 0.0001 0.0330 0.0454 0.0152    

Panel B: Correlation coefficients   

  𝛥𝐽𝑇𝐼 𝛥𝐽𝑇𝐼𝑁 𝛥𝐽𝑇𝐼𝑃 𝛥𝐽𝑇𝐼𝑠𝑐 𝛥𝐽𝑇𝐼𝑁𝑠𝑐 𝛥𝐽𝑇𝐼𝑃𝑠𝑐 𝛥𝑉𝐴𝑅 𝛥𝑆𝐾𝐸𝑊 𝑀𝐾𝑇 𝑆𝑀𝐵 𝐻𝑀𝐿 𝑀𝑂𝑀 

𝛥𝐽𝑇𝐼 1            
𝛥𝐽𝑇𝐼𝑁 0.95 1           
𝛥𝐽𝑇𝐼𝑃 0.51 0.73 1          
𝛥𝐽𝑇𝐼𝑠𝑐 0.66 0.50 -0.01 1         
𝛥𝐽𝑇𝐼𝑁𝑠𝑐 0.81 0.72 0.30 0.92 1        
𝛥𝐽𝑇𝐼𝑃𝑠𝑐 -0.04 0.16 0.63 -0.60 -0.27 1       
𝛥𝑉𝐴𝑅 0.60 0.67 0.62 0.31 0.50 0.28 1      
𝛥𝑆𝐾𝐸𝑊 -0.28 -0.12 0.31 -0.81 -0.58 0.87 0.03 1     
𝑀𝐾𝑇 -0.53 -0.61 -0.64 -0.27 -0.52 -0.41 -0.74 -0.12 1    
𝑆𝑀𝐵 0.00 0.02 0.06 0.00 -0.01 -0.01 0.07 -0.03 0.03 1   
𝐻𝑀𝐿 0.00 -0.04 -0.11 0.07 0.05 -0.04 -0.07 -0.05 -0.03 -0.16 1  
𝑀𝑂𝑀 0.09 0.15 0.24 -0.01 0.04 0.10 0.22 0.04 -0.25 0.10 -0.34 1 
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Table 2.3: Summary Statistics for Betas 

Panel A presents the mean, standard deviation, skewness, 5%, 50% and 95% percentiles of 

stock betas. Panel B presents the time-series average of cross-sectional correlations of stock 

betas. Panel C presents the autocorrelation coefficients of betas for lags 1, 2, 3, 6, 9 and 12. 

Betas are estimated every month using daily data from the previous 12 months. The sample 

period is from January 1996 to April 2016. 

Panel A: Descriptive statistics 

 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝛮𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 𝛽𝛥𝑉𝐴𝑅 𝛽𝛥𝑆𝐾𝐸𝑊 

Mean 0.16 0.25 0.10 0.90 -0.001 

Std 1.78 2.30 5.50 16.15 0.040 

Skewness 0.20 0.24 0.17 0.11 0.017 

Kurtosis 4.84 4.83 4.99 5.84 5.302 

P5 -2.69 -3.39 -8.75 -24.80 -0.068 

Median 0.09 0.14 -0.01 0.36 -0.001 

P95 3.22 4.25 9.42 28.28 0.065 

Panel B: Correlation coefficients 

 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝛮𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 𝛽𝛥𝑉𝐴𝑅 𝛽𝛥𝑆𝐾𝐸𝑊 

𝛽𝛥𝐽𝑇𝐼𝑠𝑐 1     
𝛽𝛥𝐽𝑇𝐼𝛮𝑠𝑐 0.95 1    
𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 -0.65 -0.42 1   

𝛽𝛥𝑉𝐴𝑅 0.47 0.67 0.23 1  

𝛽𝛥𝑆𝐾𝐸𝑊 -0.85 -0.69 0.89 -0.09 1 

Panel C: Autocorrelations  

 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝛮𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 𝛽𝛥𝑉𝐴𝑅 𝛽𝛥𝑆𝐾𝐸𝑊 

1 0.87 0.87 0.87 0.84 0.87 

2 0.75 0.75 0.75 0.71 0.76 

3 0.64 0.64 0.64 0.60 0.65 

6 0.36 0.36 0.36 0.32 0.37 

9 0.13 0.13 0.12 0.11 0.12 

12 -0.09 -0.08 -0.09 -0.05 -0.09 
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Table 2.4: Contemporaneous returns and characteristics of portfolios 

This table presents contemporaneous average excess and risk-adjusted returns and betas for value-weighted quintile portfolios. Every month stocks are sorted 

into quintiles based on their jump risk betas (Panel A), downside jump risk betas (Panel B) and upside jump risk betas (Panel C). Betas are estimated over the 

previous 12 months. All reported characteristics are contemporaneous with the betas used to construct the portfolio. Alphas are estimated with respect to the 

Fama and French (1993) 3-factor model and the Carhart (1997) 4-factor model. The t-statistics (in parentheses) are computed using Newey-West (1987) 

standard errors with 5 lags. The sample period is from January 1996 to April 2016. 

Portfolio Return FF3 alpha CAR alpha 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝛮𝑠𝑐 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 𝛽𝛥𝑉𝐴𝑅 𝛽𝛥𝑆𝐾𝐸𝑊 𝛽𝑀𝐾𝑇 𝛽𝑆𝑀𝐵 𝛽𝐻𝑀𝐿 𝛽𝑀𝑂𝑀 

Panel A: Quintile portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐  

1 13.22 0.71 2.18 -1.62 -1.95 3.05 -6.70 0.03 1.14 0.31 0.24 -0.16 

2 13.02 3.54 3.83 -0.57 -0.69 1.06 -2.65 0.01 0.90 0.02 0.16 -0.03 

3 11.50 2.32 2.34 0.08 0.09 -0.20 0.04 0.00 0.92 -0.09 0.11 0.00 

4 10.34 0.51 0.46 0.77 0.96 -1.28 3.34 -0.01 1.08 0.01 -0.15 0.01 

5 3.81 -8.61 -7.62 2.13 2.66 -3.40 9.53 -0.04 1.42 0.34 -0.48 -0.11 

5-1 -9.41 -9.32 -9.80 3.75 4.61 -6.45 16.23 -0.07 0.28 0.03 -0.72 0.05 

 (-3.24) (-3.46) (-3.90) (36.43) (35.17) (-18.11) (11.33) (-17.87) (2.46) (0.12) (-5.62) (0.38) 

Panel B: Quintile portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 

1 14.14 1.57 3.18 -1.49 -2.00 1.77 -9.44 0.02 1.12 0.36 0.25 -0.18 

2 13.54 4.25 4.38 -0.50 -0.68 0.56 -3.45 0.01 0.88 -0.01 0.17 -0.01 

3 11.17 1.92 1.98 0.11 0.15 -0.07 0.60 0.00 0.92 -0.05 0.10 -0.01 

4 10.10 0.03 0.04 0.76 1.03 -0.75 4.78 -0.01 1.11 -0.02 -0.13 0.00 

5 2.62 -10.40 -9.34 2.07 2.78 -2.09 12.62 -0.03 1.45 0.51 -0.46 -0.12 

5-1 -11.52 -11.96 -12.52 3.56 4.78 -3.85 22.06 -0.05 0.32 0.15 -0.71 0.06 

 (-3.78) (-4.43) (-5.08) (38.58) (37.32) (-7.87) (12.77) (-18.96) (2.30) (0.74) (-5.41) (0.39) 

Panel C: Quintile portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 

1 8.50 -2.34 -1.60 1.30 1.23 -5.48 -1.74 -0.04 1.29 0.16 -0.54 -0.08 

2 11.61 2.51 2.16 0.42 0.39 -1.85 -1.09 -0.01 1.00 -0.03 -0.13 0.04 
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3 11.57 2.65 2.55 -0.02 -0.02 0.22 -0.28 0.00 0.89 -0.11 0.11 0.01 

4 10.71 0.35 1.02 -0.43 -0.36 2.29 0.65 0.01 0.97 0.02 0.21 -0.07 

5 8.13 -5.86 -4.69 -1.01 -0.71 6.07 4.28 0.04 1.35 0.40 0.20 -0.13 

5-1 -0.37 -3.52 -3.09 -2.31 -1.94 11.55 6.02 0.07 0.06 0.23 0.73 -0.05 

 (-0.15) (-1.61) (-1.46) (-17.90) (-8.35) (26.32) (5.69) (18.18) (0.76) (1.26) (6.83) (-0.60) 
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Table 2.5: Contemporaneous returns for dependent double-sorted portfolios 

This table presents contemporaneous average excess and risk-adjusted returns of dependent double-sorted value-weighted quintile portfolios. Every month 

stocks are first sorted into quintiles based on their volatility risk betas (Panel A) or skewness risk betas (Panel B), and then into quintiles based on downside 

jump risk betas. Betas are estimated over the previous 12 months. All reported characteristics are contemporaneous with the betas used to construct the 

portfolio. Alphas are estimated with respect to the Fama and French (1993) 3-factor model and the Carhart (1997) 4-factor model. The t-statistics (in 

parentheses) are computed using Newey-West (1987) standard errors with 5 lags. The sample period is from January 1996 to April 2016. 

Portfolio 1 (low 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐)  2 3 4 5 (high 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐) high – low 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐  

      Return  FF3 alpha  CAR alpha  

Panel A: Quintile portfolios sorted first by 𝛽𝛥𝑉𝐴𝑅 and then by 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐  

1 (low 𝛽𝛥𝑉𝐴𝑅) 13.34 16.11 15.40 14.46 9.28 -4.06 (-1.17) 0.91 (0.36) -3.79 (-1.22) 

2 14.76 14.47 14.41 13.32 12.61 -2.15 (-1.15) -0.40 (-0.22) -2.22 (-1.11) 

3 13.57 12.11 11.37 10.76 11.45 -2.12 (-0.97) -1.33 (-0.63) -1.74 (-0.99) 

4 9.71 10.09 10.56 10.18 5.27 -4.43 (-1.96) -3.79 (-1.89) -2.53 (-1.32) 

5 (high 𝛽𝛥𝑉𝐴𝑅) 5.19 6.20 5.21 1.13 -1.21 -6.40 (-1.70) -13.22 (-4.70) -9.88 (-2.77) 

     control -3.83 (-2.38) -3.57 (-2.36) -4.03 (-3.21) 

Panel B: Quintile portfolios sorted first by 𝛽𝛥𝑆𝐾𝐸𝑊 and then by 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 

1 (low 𝛽𝛥𝑆𝐾𝐸𝑊) 9.99 10.90 7.22 2.55 -0.78 -10.77 (-2.42) -17.99 (-5.23) -17.18 (-4.45) 

2 14.69 12.97 11.54 10.94 4.78 -9.91 (-3.46) -11.19 (-4.11) -10.46 (-4.00) 

3 15.11 14.08 11.79 10.92 6.80 -8.31 (-3.31) -10.00 (-3.82) -11.10 (-5.13) 

4 15.90 13.74 12.72 11.03 6.17 -9.73 (-3.64) -10.90 (-3.99) -11.84 (-5.07) 

5 (low 𝛽𝛥𝑆𝐾𝐸𝑊) 9.81 13.68 13.66 10.19 5.52 -4.29 (-0.98) -0.36 (-0.09) -5.47 (-1.27) 

          control -8.60 (-3.42) -10.09 (-3.82) -11.21 (-5.08) 
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Table 2.6: Fama-MacBeth cross-sectional regressions 

This table presents firm-level Fama-MacBeth (1973) cross-sectional regression results of 

contemporaneous one-year excess stock returns on 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 and a set of firm characteristics. 

The firm characteristics that we control for in the econometric specifications include market 

capitalization (SIZE), book-to-market ratio (B/M), momentum (MOM), mispricing (MISP), 

idiosyncratic volatility (IVOL), and illiquidity (ILLIQ). The definition of each variable is 

provided in Appendix A. All variables are winsorized at the 1% and 99% levels. The time-

series average slope coefficients are reported in each row. The t-statistics (in parentheses) are 

computed using Newey-West (1987) standard errors with 5 lags. The sample period is from 

January 1996 to April 2016. 

 Model (1) (2) (3) (4) (5) (6) 

Intercept 0.115 0.171 0.131 0.157 0.161 0.159 

 (3.28) (2.34) (2.04) (4.48) (4.58) (4.41) 

𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 -0.006 -0.007 -0.008 -0.011 -0.010 -0.012 

 (-1.73) (-2.11) (-2.26) (-2.86) (-2.96) (-3.33) 

SIZE  -0.014 -0.011 0.002 0.002 0.002 

  (-1.92) (-1.66) (0.73) (0.60) (0.51) 

BM  0.042 0.041 0.017 0.017 0.019 

  (2.79) (2.66) (1.26) (1.54) (1.70) 

MOM   -0.078 -0.029 -0.027 -0.025 

   (-1.78) (-1.18) (-1.16) (-1.06) 

MISP    -0.002 -0.002 -0.002 

    (-4.37) (-5.36) (-5.33) 

IVOL     -0.225 -0.267 

     (-0.42) (-0.45) 

ILLIQ      0.001 

            (0.43) 
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Table 2.7: Predictive single-sorted portfolios 

This table presents one-month ahead average excess and risk-adjusted returns of value-

weighted quintile portfolios. Returns are reported in annual basis. Every month stocks are 

sorted into quintiles based on their jump risk betas (Panel A), downside jump risk betas 

(Panel B) and upside jump risk betas (Panel C). Betas are estimated over the previous 12 

months and portfolio returns are computed over the following month. Each portfolio is held 

for one month. Alphas are estimated with respect to the Fama and French (1993) 3-factor 

model and the Carhart (1997) 4-factor model. The t-statistics (in parentheses) are computed 

using Newey-West (1987) standard errors with 5 lags. The sample period is from January 

1996 to April 2016. 

Portfolio Return FF3 alpha CAR alpha 

Panel A: Quintile portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑠𝑐 

1 11.28 1.92 2.16 

2 10.44 2.52 2.28 

3 8.64 0.48 0.48 

4 7.08 -2.16 -2.04 

5 7.08 -5.4 -4.08 

5-1 -4.2 -7.32 -6.24 

 (-1.00) (-2.22) (-1.74) 

Panel B: Quintile portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑁𝑠𝑐 

1 10.80 1.92 1.80 

2 10.08 2.04 1.68 

3 9.60 1.44 1.44 

4 6.24 -3.00 -2.64 

5 7.56 -5.40 -3.48 

5-1 -3.24 -7.32 -5.40 

 (-0.73) (-2.26) (-1.50) 

Panel C: Quintile portfolios sorted by 𝛽𝛥𝐽𝑇𝐼𝑃𝑠𝑐 

1 9.36 -1.68 -1.56 

2 7.80 -0.48 -0.72 

3 8.64 0.48 0.60 

4 9.72 0.72 0.96 

5 11.04 0.36 1.80 

5-1 1.56 2.04 3.36 

 (0.43) (0.54) (0.89) 
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Table 2.8: Predictive single-sorted portfolios with different beta estimation and return holding periods 

This table presents H-month ahead average excess and risk-adjusted returns of value-weighted quintile portfolios. Returns are reported in annual basis. Every 

month stocks are sorted into quintiles based on their downside jump risk betas. Betas are estimated over the previous L months and portfolio returns are 

computed over the following H months. Alphas are estimated with respect to the Fama and French (1993) 3-factor model and the Carhart (1997) 4-factor 

model. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags. The sample period is from January 1996 to April 

2016. 

Portfolio Return FF3 alpha  CAR alpha  Return FF3 alpha  CAR alpha  Return FF3 alpha  CAR alpha 

 Panel A: 9 L 1 H  Panel D: 9 L 3 H  Panel G: 9 L 6 H 

1 11.88 2.52 2.64  10.48 1.00 1.44  10.80 1.00 1.50 

2 9.96 1.68 1.20  10.28 2.00 2.00  10.06 1.78 2.00 

3 9.48 1.08 0.84  9.44 0.92 0.76  8.94 0.58 0.72 

4 7.68 -1.68 -1.32  7.92 -1.44 -1.08  7.50 -1.82 -1.62 

5 5.88 -7.08 -5.16  7.16 -5.52 -4.00  7.06 -4.78 -3.08 

5-1 -6.00 -9.60 -7.80  -3.32 -6.52 -5.44  -3.74 -5.78 -4.58 

 (-1.52) (-3.22) (-2.38)  (-0.92) (-2.25) (-1.66)  (-1.19) (-2.46) (-1.58) 

 Panel B: 6 L 1 H  Panel E: 6 L 3 H  Panel H: 6 L 6 H 

1 11.16 1.20 1.68  11.20 1.12 1.92  10.94 0.60 1.20 

2 10.92 2.52 2.16  10.36 1.52 1.40  10.16 1.36 1.32 

3 9.84 1.56 1.20  10.00 1.36 1.24  9.64 1.10 1.24 

4 7.32 -2.28 -2.16  8.28 -1.48 -1.20  8.00 -1.50 -0.86 

5 5.64 -6.84 -5.40  8.92 -4.36 -2.80  7.98 -4.30 -2.54 

5-1 -5.40 -8.04 -6.96  -2.28 -5.48 -4.72  -2.96 -4.90 -3.74 

 (-1.31) (-2.46) (-1.97)  (-0.63) (-1.92) (-1.56)  (-1.03) (-2.12) (-1.28) 

 Panel C: 3 L 1 H  Panel F: 3 L 3 H  Panel I: 3 L 6 H 

1 10.32 0.12 1.08  10.08 -0.20 0.80  10.54 -0.38 0.22 

2 10.20 1.56 1.56  10.44 1.40 1.64  10.12 1.08 1.30 
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3 10.20 1.56 1.20  9.84 1.24 1.04  9.84 1.10 1.06 

4 8.28 -1.20 -1.44  8.68 -0.60 -0.24  8.18 -1.26 -0.58 

5 7.08 -5.04 -3.36  6.88 -5.24 -4.36  8.42 -3.78 -2.18 

5-1 -3.36 -5.16 -4.44  -3.20 -5.00 -5.16  -2.12 -3.40 -2.40 

 (-1.04) (-1.89) (-1.52)  (-1.27) (-2.15) (-2.11)  (-1.01) (-1.86) (-1.06) 
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Chapter 3 

 

Concave Implied Volatility Curves Prior to 

Earnings Announcements 

 

3.1 Introduction 

 

Quarterly earnings announcements are scheduled corporate events that disseminate 

substantial fundamental information to investors. A voluminous literature has 

examined a number of features related to these events, such as the behavior of stock 

returns (see, inter alia, Ball and Brown, 1968; Beaver 1968; Ball and Kothari, 1991; 

Frazzini and Lamont, 2007) and systematic risk (see, for example, Patton and 

Verardo, 2012; Savor and Wilson, 2016) around these announcements. 

A related literature has examined the behavior of equity option prices and implied 

volatilities (IVs) around earnings announcement days (EADs), identifying three 

stylized features. First, at-the-money (ATM) IV tends to increase in the runup to the 

EAD, as uncertainty builds up before this information event, and second, ATM IV 

sharply decreases right after the announcement, when the related uncertainty is 

resolved (see Patell and Wolfson, 1979; 1981). More recently, Dubinsky and 

Johannes (2006) and Dubinsky et al. (2019) have documented a third interesting 

feature; the term structure of ATM IV becomes downward sloping prior to EADs, 

meaning that ATM IV is higher for options with shorter expiries than for options with 

longer expiries. 

Building upon this literature, our study documents a novel feature with far reaching 

implications for our understanding of the behavior of stock prices, the pricing of 
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earnings risk and the informational content of option prices. We show that a large 

fraction of IV curves extracted from short-expiry equity options systematically 

become concave in the run up to EADs. In our sample of very large and liquid firms, 

we find that up to 37.4% of IV curves exhibited concavity just before the 

announcement during the period 2013-2019. This compares to just 3.5% of IV curves 

exhibiting concavity on a typical trading day when option expiry does not span an 

EAD. 

The concave IV curves we document are typically inverse U-shaped, S-shaped, or W-

shaped. These shapes are in stark contrast with the convex volatility “smiles” and 

“smirks” (or “skews”) that are commonly observed for equity options, where out-of-

the-money (OTM) puts trade at higher volatility relative to ATM options. 

Interestingly, the feature of concavity mostly disappears right after the announcement, 

as the uncertainty surrounding this event is resolved, and the IV curve reverts to its 

standard convex shape. 

An important observation we make is that a concave IV curve reflects a bimodal Risk-

Neutral Distribution (RND) for the underlying stock price. Bimodality in the central 

part of the RND indicates that, subject to a minor risk-adjustment due to the very 

short option expiry, the prevailing stock price will most likely be around either of the 

two identified modes. Hence, a bimodal RND reveals that discrete price movements 

of certain magnitude are highly anticipated by investors due to the forthcoming 

announcement. These movements can be considered as anticipated jumps in the 

continuous-time path of the underlying stock price. To this end, we argue that a 

concave IV curve provides a clear option-based signal of impending event risk for the 

underlying stock.14 This feature is entirely different from the common modelling 

assumption of a low-probability, randomly timed Poisson jump, which can lead to an 

IV “smirk” and a left-tailed RND, capturing tail risk and explaining the expensiveness 

of OTM puts (see, for example, Bates, 1996; 2000; Pan, 2002). 

Moreover, concavity appears in short- rather than long-expiry options. This feature 

arises due to the relative effect between the anticipated jump and the diffusion 

 
14 According to Liu et al. (2003, p. 231), event risk is defined as “the risk of a major event 

precipitating a sudden large shock to security prices and volatilities”. 
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component of the underlying stock price process. As expiry shrinks, the effect of the 

anticipated jump dominates the effect of the diffusion component; this renders the 

underlying RND bimodal and the IV curve concave. On the other hand, as the expiry 

increases, the diffusion component dominates, the RND reverts to unimodality and 

the IV curve to convexity. The sparsity of short-term equity options prior to our 

sample period can provide an explanation why this feature has not been previously 

documented. 

Having documented these novel features, we formally define an indicator variable for 

a concave IV curve and examine its informational content. Our analysis reveals that 

concave IV curves possess significant predictive ability with respect to stock returns 

on EAD and post-EAD realized volatility. First, we find that, on average, firms 

exhibiting concave IV curves yield an absolute abnormal stock return of 6% on EAD, 

which is 1.8% higher than the corresponding absolute return for firms with non-

concave IV curves. Second, we find that firms with concave IV curves exhibit an 

average realized stock return volatility of 45.9% p.a. in the 10-day interval after the 

announcement, which is 11.05% higher than the corresponding realized volatility of 

firms with non-concave IV curves. 

These findings show that investors are able to identify earnings announcements that 

trigger larger than average stock price movements and volatility. Anticipating these 

effects, investors trade accordingly in the option market, giving rise to concave IV 

curves and bimodal RNDs, which in turn signal ex ante the impending event risk. 

The most obvious way investors could speculate on or hedge against large stock price 

swings on EADs, regardless of their direction, is by purchasing straddles. Delta-

neutral ATM straddles have been commonly used to capture the price of volatility risk 

for the underlying stock returns (Coval and Shumway, 2001; Bakshi and Kapadia, 

2003). Therefore, we examine whether delta-neutral straddle returns on EADs differ 

across concave and non-concave IV curves. Interestingly, we find that, on average, 

concave IV curves are followed by a 6.17% lower delta-neutral straddle return on 

EAD, as compared to non-concave IV curves. Hence, even though larger than average 

stock price movements occur following the formation of concave IV curves, these are 

not sufficiently large to offset the high cost of purchasing straddles on these 

occasions. In other words, we show that in the presence of concave IV curves, 
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investors typically pay a significantly higher premium to hedge against the 

uncertainty caused by the forthcoming announcement. 

To directly show that ATM straddles are particularly expensive in the presence of 

concave IV curves, we introduce a simple measure of their expensiveness. 

Specifically, we compute the ratio of the sum of the ATM put and call prices divided 

by the underlying stock price. Intuitively, this ratio indicates the required percentage 

change in the underlying stock price, in either direction, to offset the cost of the ATM 

straddle. Hence, this ratio is termed as the implied move for the underlying stock 

price. The higher (lower) the value of this ratio, the more (less) expensive it is to 

purchase an ATM straddle, ceteris paribus. 

We find that, on average, the implied move prior to the EAD is 2.31% higher for non-

concave IV curves. This strongly significant differential confirms that ATM straddles 

are much more expensive prior to EADs in the presence of concave IV curves. This 

finding can help explain why these straddles yield lower returns on EADs despite the 

larger than average absolute stock returns observed following the formation of 

concave IV curves. This finding also provides an alternative way to illustrate that 

investors pay a significantly higher premium to hedge against the event risk that is 

signalled by a concave IV curve prior to the announcement. 

Our study contributes to various strands of the literature. Starting from the early 

studies of Patell and Wolfson (1979; 1981), there is a growing literature showing that 

option-based measures embed significant information prior to earnings 

announcements (see, inter alia, Amin and Lee, 1997; Ni et al., 2008; Xing et al., 2010; 

Billings and Jennings, 2011; Barth and So, 2014). We add to this literature by 

showing, for the first time, that the curvature properties of the IV curve contain 

significant predictive ability over stock returns, realized volatility, and straddle returns 

around EADs. 

Our setup is related to Dubinsky et al. (2019), who also examine the impact of 

predictably timed EAD price jumps on option pricing. However, their focus is on the 

term structure of ATM IV prior to announcements. whereas we examine the curvature 

properties of the IV curve for short-term equity options. Importantly, in their model, 

the EAD jump size is assumed to be normally distributed and its mean is a 

transformation of volatility. As a result, the only effect of this anticipated price jump 
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is a large increase in short-term ATM IV, leading to a downward sloping term 

structure prior to the announcement. The distribution of stock prices remains 

unimodal and, specifically, lognormal in the simplified version used to define the 

proposed term structure estimator; the jump has no effect on the shape of the IV curve 

across moneyness levels. Therefore, the model of Dubinsky et al. (2019) cannot 

reproduce the novel but pervasive empirical features we document in our study, 

namely concavity in the IV curve and bimodality in the RND of the underlying stock 

price prior to the announcement. 

Our study is also related to the literature showing that stock prices do jump upon the 

release of news in the form of pre-scheduled macroeconomic (see, for example, Savor 

and Wilson, 2013) or earnings announcements (see Lee and Mykland, 2008; Lee, 

2012). Contributing to this literature, our study shows that large stock price 

movements are systematically anticipated by investors prior to the announcement and 

they can be detected ex ante because they dramatically affect the pricing of short-

expiry options. A fortiori, in the case of concave IV curves, we show that large stock 

price movements are not just a possibility due to the announcement, but rather a very 

likely outcome. This feature gives rise to a bimodal short-term RND for the 

underlying stock price (and return), which is in stark contrast with the established 

paradigm in asset pricing that relies on unimodal return distributions. 

Last but not least, our findings are consistent with the demand-based option pricing 

framework of Garleanu et al. (2008) and the related evidence in Bollen and Whaley 

(2004) and Ni et al. (2008). In our setting, anticipating large stock price movements 

due to the impending announcement, investors are motivated to trade options in a 

certain range of strikes, for hedging or speculative reasons. In the absence of perfectly 

elastic supply of options, market makers require a premium to be counterparties in 

these trades. Hence, this trading activity leads to higher option prices and implied 

volatilities for the corresponding range of strikes, giving rise to a concave IV curve, 

which in turn reflects a bimodal RND for the underlying asset price. 
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3.2 Data and Methodology 

3.2.1 Option Data and IV Curves 

 

We construct IV curves using option data sourced from OptionMetrics during the 

period 2013-2019. For each calendar year, we select the 100 firms with the highest 

option trading volume, requiring the underlying to be common stock (share codes 10 

or 11) with share price higher than $5. This yields a total sample of 178 firms during 

the entire period. The choice of the sample period and the cross-section of firms are 

dictated by the availability of short-term option data.  Weekly equity options have 

been actively traded for a range of strikes only in the last decade. Hence, 

OptionMetrics provides very sparse data for short expiries prior to 2013. 

Our primary focus is on option-implied information related to earnings 

announcements, so we utilize short-term options whose expiry spans the EAD. In 

particular, we keep options with expiry between 3 and 13 calendar days ahead. We 

source information on the timing of quarterly EADs from I/B/E/S. Following common 

practice in the literature (see Barth and So, 2014; Michaely et al., 2014), if the 

announcement is made after the market close, the next trading day is defined as the 

EAD. 

To ensure that the information embedded in IV curves is meaningful, we apply a 

number of standard filters to the option data. Specifically, we discard options with 

zero open interest, zero trading volume, zero bid price, midquote price less than 

$0.125, non-standard settlement or missing implied volatility. We also discard options 

that violate standard arbitrage bounds or when the bid is higher than the ask price. To 

ensure that our findings are not driven by particularly illiquid options, we also discard 

options when the bid-ask spread is higher than 20% of the midquote price. 

To construct the IV curve, we utilize the (annualized) IVs of ATM and OTM options 

provided by OptionMetrics. To avoid an artificial jump at the ATM region, which 

could arise from ATM puts potentially trading at higher IV relative to ATM calls, we 

follow the blending approach of Figlewski (2010). Specifically, we blend the IVs of 
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puts and calls whose strike price 𝐾 lies within ±2% of the underlying spot price into a 

single point as follows: 

𝐼𝑉𝑏𝑙𝑒𝑛𝑑(𝐾) = 𝑎𝐼𝑉𝑝𝑢𝑡(𝐾) + (1 − 𝑎)𝐼𝑉𝑐𝑎𝑙𝑙(𝐾),                    (3.1)  

where 𝑎 = (𝐾ℎ𝑖𝑔ℎ − 𝐾)/(𝐾ℎ𝑖𝑔ℎ − 𝐾𝑙𝑜𝑤) and 𝐾ℎ𝑖𝑔ℎ (𝐾𝑙𝑜𝑤) is the highest (lowest) 

strike in this ±2% range. To ensure a good coverage of the moneyness range, after the 

blending we require at least 6 options for a given expiry, with at least 2 puts and at 

least 2 calls. 

Equipped with these IV points, we fit a quintic spline using the function spaps in 

MATLAB.15 This yields the smoothest IV curve in the moneyness space 𝐾/𝑆, where 

𝑆 is the current stock price, subject to a tolerance level for the sum of squared errors 

between the actual and the fitted IVs. In the spirit of Bliss and Panigirtzoglou (2002, 

2004), the quintic spline minimizes the following objective function: 

         𝜌∑ [𝐼𝑉(𝐾𝑖) − 𝐼�̂�(𝐾𝑖; 𝜃)]
2 + ∫ 𝑆(3)(𝑥; 𝜃)2𝑑𝑥

+∞

−∞
𝑁
𝑖=1 ,                  (3.2) 

where 𝐼𝑉(𝐾𝑖) is the actual implied volatility for strike 𝐾𝑖, 𝐼�̂�(𝐾𝑖; 𝜃) is the 

corresponding fitted implied volatility, which is a function of the parameter set 𝜃 that 

defines the quintic spline 𝑆(𝜃), and 𝜌 is a smoothing parameter that is optimally 

selected to ensure that the sum of squared IV errors does not exceed a given tolerance 

level.16 

Having imposed a number of strict filters on the option data, we seek to fit well the 

actual IV points, and hence we opt for a low tolerance level. This tolerance level 

corresponds to a 0.01% mean square error between the actual and the fitted IVs. 

However, to ensure that the fitted IV curve is not too erratic and does not correspond 

to an ill-behaved RND, we impose further conditions. We require that no interpolated 

 
15 A quintic spline ensures that the third derivative of the IV curve (and hence the option price 

function) is continuous, yielding a well-behaved RND (see Figlewski, 2010). 

16 Parameter 𝜌 controls the tradeoff between the goodness-of-fit and the smoothness of the 

spline function; the latter is captured by its integrated squared third derivative. Setting a low 

tolerance level ensures that the spline fits well the actual IV points at the expense of 

smoothness. To the contrary, setting a high tolerance level yields a rather smooth spline that 

may not fit well the actual IV points. 
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IV point is negative and that the corresponding RND does not exhibit a negative 

density point or more than two modes.17 If any of these conditions is violated, we 

increase the upper bound of the mean square error in steps of 0.005% until the 

conditions are met. 

Applying these data filters and implementing the described methodology, we 

construct 1,875 IV curves on the trading day prior to EAD for the firms in our sample.  

 

3.2.2 Definition of Concave IV Curve 

 

Having constructed a smooth IV curve that fits well the actual IV points, we turn our 

focus on its shape. IV curves for equity options typically exhibit a “smile” or a 

“smirk” (see, inter alia, Rubinstein, 1994; Toft and Prucyk, 1997; and the review of 

the early literature in Jackwerth, 2004), which corresponds to a convex IV curve 

where OTM puts trade at higher IV than ATM options. This pattern corresponds to an 

important deviation from the Black and Scholes (1973) model, where implied 

volatility should be constant across moneyness levels. 

In sharp contrast to the commonly documented convex IV curves for equity options, 

we often observe concave IV curves prior to EADs (see Section 3.1). To capture this 

phenomenon in a systematic way, we introduce a definition of concavity based on the 

first and second derivatives of the fitted IV curve with respect to moneyness.18 

Specifically, we define an IV curve to be concave when the following three conditions 

hold. First, the second derivative of the fitted IV curve is negative for a continuous 

 
17 To compute the RND corresponding to the fitted IV curve, we use the standard result of 

Breeden and Litzenberger (1978). The density function is given by 𝑓(𝐾) = 𝑒𝑟𝑇𝜕2𝐶/𝜕𝐾2, 

where 𝑟 is the interest rate and 𝐶 is the call option price as a function of the strike price 𝐾. 

The fitted IV curve contains 1,001 IV points. These IVs are converted to call option prices 

using the Black-Scholes formula. In the absence of a continuum of strikes, we compute the 

second partial derivative in the above formula using finite differences and derive the RND for 

the range of the available moneyness levels. 

18 First and second derivatives of the fitted IV curve are computed using finite differences. 
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moneyness (K/S) range of at least 0.03 points, i.e., for a continuous range of strikes 

that amount to at least 3% of the underlying spot price. Second, we require that the 

fitted IV curve exhibits a stationary point within the moneyness range where it 

exhibits concavity. Third, this stationary point is located between the second lowest 

(𝐾𝑚𝑖𝑛+1) and the second highest (𝐾𝑚𝑎𝑥−1) strikes of the actual IV points used to fit 

the smooth IV curve. 

These conditions alleviate the potential concern that the documented concavity may 

be an artefact of outliers or the employed smoothing spline. In particular, they ensure 

that our definition does not simply capture very local infection points or marginally 

concave parts of the IV curve. They also ensure that the concavity does not arise from 

the lowest or highest actual strikes, which typically correspond to deep OTM options. 

This definition is sufficiently general to capture various shapes of concavity, such as 

the inverse U-shape, W-shape, and S-shape IV curves illustrated in Figure 1. Using 

this definition, we define the dummy variable CONCAVE, which takes the value 1 

when the IV curve is concave and zero otherwise.  

 

3.2.3 Other Variables and Data Sources 

 

In addition to CONCAVE, we use a number of other variables in the subsequent 

empirical analysis. The definition of these variables is provided in Appendix D. For 

each firm, we compute at the daily frequency its market beta (BETA), the natural 

logarithm of market capitalization (LN(SIZE)) and stock price (LN(PRICE)), 5-day 

cumulative stock return (RUNUP), momentum return (MOM), stock turnover ratio 

(STOCKTR), and idiosyncratic volatility (IVOL). The source of stock prices, trading 

volumes and number of outstanding shares is CRSP. With respect to firm 

fundamentals, we utilize the book-to-market value ratio (B/M) and the leverage ratio 

(LEVERAGE) using quarterly data from COMPUSTAT. We also use the number of 

analysts providing earnings forecasts (NUMEST), the standard deviation of these 

forecasts (DISPERSION), and the differential stock beta around EADs (ANNBETA) as 

in Barth and So (2014). Analysts forecast data are obtained from I/B/E/S. 
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We also use a number of option-based variables. Specifically, we compute the ATM 

implied volatility (ATMIV) and the difference between the realized volatility and 

ATMIV (RVIV) of Goyal and Saretto (2009). Since our focus is on short-expiry 

options, we construct ATMIV and RVIV utilizing the 10-day volatility surfaces that 

have been recently introduced by OptionMetrics. In addition, we compute the Risk-

Neutral Skewness (RNS) and Risk-Neutral Kurtosis (RNK), following the approach of 

Bakshi et al. (2003). We also use the option-to-stock trading volume ratio (O/S) of 

Roll et al. (2010). Last but not least, we compute the term structure estimate of ATM 

implied volatility (TSIV) proposed by Dubinsky et al. (2019) as the difference 

between short- and long-term ATM implied volatilities. Equity option prices, implied 

volatilities and trading volumes are sourced from OptionMetrics. 

 

3.2.4 Summary Statistics 

 

Table 1 presents the summary statistics for the variables used in our analysis. Their 

values are computed on the day prior to EAD and they are winsorized at the 1% and 

99% levels. We report that 37.4% of the IV curves extracted prior to the EAD exhibit 

concavity. These IV curves are computed from short-term options, with an average 

EXPIRY of 6.47 calendar days and a large number of STRIKES (average=16.72 

strikes). The latter feature is consistent with the fact that our sample consists of very 

large firms, with an average (median) market capitalization of $56,387 ($66,171) 

million. As a result, these firms exhibit a much lower degree of IVOL 

(average=24.17% p.a.), they trade at a much higher price (average=$75.94), they 

exhibit low B/M ratios (average=0.35), and they are followed by a very large number 

of analysts (average=24.32), as compared to the corresponding values typically 

encountered in studies that utilize the entire CRSP universe. 

With respect to option-based variables, the median RNS (RNK) value is -0.26 (3.42), 

illustrating that these moments do not take substantially different values just before 

the EAD. To the contrary, in line with the arguments of Patell and Wolfson (1979; 

1981), ATMIV is substantially higher prior to EADs, with an average value of 42.31% 
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p.a.. As a consequence, RVIV takes very large negative values, with an average of -

16.68% p.a.. Moreover, TSIV is almost always positive, with an average value of 

6.58% p.a.. This confirms the arguments of Dubinsky et al. (2019) that the term 

structure of ATM implied volatility is downward sloping prior to EADs. Last but not 

least, we report substantial stock trading activity prior to the EAD, with an average 

daily STOCKTR value of 2.27%, and an even higher trading activity in the option 

market, with an average O/S value of 27.09%. 

Table 2 reports the pairwise correlations among these variables. Our main focus is on 

the correlation properties of the newly proposed variable CONCAVE. Most notably, 

we find that CONCAVE is positively correlated with IVOL, ATMIV, RNS, and TSIV, 

whereas it is negatively correlated with RNK and RVIV. Hence, concave IV curves are 

associated with higher levels of ATM implied volatility and a steeper downward 

sloping IV term structure prior to EAD. Moreover, CONCAVE exhibits a positive 

correlation with STOCKTR, O/S and NUMEST, which indicates that concave IV 

curves more often appear when there is substantial coverage by financial analysts as 

well as high trading activity by investors prior to the announcement. 

However, it should be noted that the reported correlations for CONCAVE are not 

particularly high (mostly, much less than 0.40 in absolute value), alleviating the 

potential concern that CONCAVE may simply mimic another firm characteristic. To 

the contrary, Table 2 illustrates the extremely high pairwise correlations between 

ATMIV, RVIV, TSIV, IVOL, and LN(SIZE) prior to EADs. 

Table 3 compares the average values of these variables across observations of 

concave and non-concave IV curves on the day prior to EAD. We find that concave 

IV curves are extracted from sets of options with a somewhat shorter average expiry 

and a higher average number of available strikes. We also find that concave IV curves 

are associated with firms that, on average, are followed by more analysts, they are 

relatively smaller, and they exhibit lower B/M and LEVERAGE ratios. 

Moreover, we observe that concave IV curves are associated with significantly higher 

average values of BETA, IVOL, STOCKTR and O/S as well as higher average stock 

prices and returns (LN(PRICE), RUNUP, MOM) prior to the EAD. Consistent with 

the pairwise correlations presented in Table 2, we also report that concave IV curves 
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are accompanied, on average, by significantly higher ATMIV, RNS, and TSIV values 

and significantly lower RNK and RVIV values relative to non-concave IV curves. 

 

3.3 Features and Determinants of IV Curves 

3.3.1 Features of Concave IV Curves 

 

This Section illustrates the main features of concave IV curves observed in the data. 

Figure 1 provides examples of the three main types of concavity we encounter in our 

sample. Panel A shows an inverse U-shape IV curve, where the IV of OTM calls and 

puts is substantially lower than the IV of ATM options. This shape is in stark contrast 

with the well-known U-shape IV curve (“smile”), where OTM calls and puts exhibit 

higher IV than ATM options. Interestingly, such an inverse U-shape IV curve is 

mentioned in Hull (2009, p. 398), who describes it as a “frown” and provides a 

textbook example how this shape could arise in equity options. 

Panel B of Figure 1 illustrates an S-shape curve exhibiting two stationary points. In 

this particular example, the concave part of the curve is located in the OTM calls 

region, whereas the OTM puts region exhibits a typical convex shape. An 

interpretation of this shape is that concavity arises in a specific moneyness range, 

where options are trading at higher volatility relatively to neighbouring strikes. 

Panels C and D provide examples of an even more intriguing type of concavity, a W-

shape IV curve. This shape exhibits three stationary points, with a U-shape curve 

followed by an inverse-U shape curve, which is in turn followed by another U-shape 

curve. Here, concavity arises in specific ranges of moneyness, with near-the-money 

options trading at volatility levels as high as, or even higher than, deep OTM options.  

The above shapes of concavity systematically appear in short-expiry equity options 

just before EADs. Interestingly, these shapes typically disappear right after the 

announcement, with the IV curve reverting to a standard convex shape. Figure 2 

illustrates this pattern using as example the earnings announcement of Apple that took 

place right after the market close on 28th October, 2013. Whereas the IV curve 
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extracted just before the announcement from options with 4 days to expiry exhibits a 

clear W-shape, it reverts to a “smile” on the following day using options with the 

same expiry date. This illustration alleviates the potential concern that the concave 

shapes we uncover may be an artefact of our methodology to fit the IV curve or the 

use of very short-expiry options. 

Figure 3 further illustrates that IV curves often become concave in the runup to the 

EAD but they subsequently revert to their standard convex shape. Specifically, Figure 

3 reports the fraction of concave IV curves for the firms in our sample on trading days 

around the EAD d. We observe that the fraction of concave IV curves gradually 

increases from 17.5% on d-5 to 25.2% on day d-2, reaching the peak of 37.4% on the 

trading day prior to EAD. Right after the announcement, there is a sharp drop in the 

fraction of IV curves exhibiting concavity to only 7.8% on d. This fraction 

subsequently drops further and hovers around 4% from d+1 onwards. 

To emphasize how uncommon it is to find a large fraction of concave IV curves using 

options whose expiry does not span an EAD, we perform the following analysis. For 

the firms in our sample, we impose the same data filters and follow the same steps of 

the methodology described in Section 2 to compute CONCAVE on all trading days 

during the period 2013-2019. We extract 72,736 firm-day IV curves from short-term 

options whose expiry does not span an EAD. We find that only 3.5% out of these 

observations exhibit a concave IV curve. This finding further alleviates the potential 

concern that the large faction of concave IV curves we identify in the runup to the 

EAD may be an artefact of our methodology or the use of very short-expiry options. 

The main variable of interest in our analysis (CONCAVE) is defined with respect to 

the properties of the IV curve. Interestingly, the shape of the IV curve is a reflection 

of the properties of the RND for the underlying stock price. For example, a symmetric 

volatility “smile” corresponds to a leptokurtic RND, whereas a volatility “smirk” (or 

“skew”) is associated with a negatively skewed RND (see the related discussion in 

Jackwerth, 2004; and Hull, 2009, ch. 18). 

Figure 4 illustrates that a concave IV curve reflects a bimodal RND for the underlying 

stock price. This is a rather unusual feature. Practically, RND bimodality implies that 

at option expiry, the underlying stock will most likely trade around either of the two 
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identified price modes.19 Panel B of Figure 4 illustrates the RND for the stock price of 

Amazon, extracted from options with 8 days to expiry on 26th April, 2018, i.e., just 

before the earnings announcement that took place right after the market close. 

Whereas the closing stock price was $1,517.96 on that day, the 8-day RND reveals 

two price modes at expiry; one at $1,444.8 (i.e., 4.8% lower) and the other one at 

$1,602 (i.e., 5.5% higher). Following the announcement, Amazon’s stock price 

exhibited a positive return of 3.6% on 27th April and closed at $1,580.95 (i.e., 4.15% 

higher) on 4th May. 

Another interpretation of RND bimodality prior to an EAD, as illustrated in Figure 4, 

is that a discrete price movement or jump is anticipated due to the forthcoming 

announcement. Interestingly, the textbook example of Hull (2009) argues that a 

concave, inverse U-shape IV curve reflects a bimodal RND for the underlying asset 

price, which in turn arises “when a single large jump is anticipated”. In sum, we argue 

that a bimodal RND and a concave IV curve provide option-based signals of 

impending event risk in the underlying stock. Our analysis reveals that earnings 

announcements frequently give rise to event risk, which is priced in the option 

market, and hence can be detected ex ante. 

RND bimodality is an important feature that distinguishes our study from Dubinsky et 

al. (2019). The model introduced by the latter study allows for predictably timed price 

jumps on EADs. However, by assuming a normally distributed EAD jump size, their 

implied RND remains unimodal, and hence their model cannot reproduce the concave 

IV curves observed in the data. 

Last but not least, we find that concave IV curves predominantly appear in short 

expiry options. Figure 5 illustrates an example of fitted IV curves for Amazon across 

different expiries (8, 22, 36, and 50 days) on 26th April, 2018. Whereas the IV curve 

for the 8-day expiry clearly exhibits a W-shape type of concavity, this feature is much 

less obvious for the 22-day expiry and disappears for longer expiries.20 

 
19 It should be noted that the RND indicates risk-neutral probabilities rather than physical 

probabilities. However, since we utilize firm-level options with very short expiries, the 

adjustment from risk-neutral to physical probabilities is expected to have only a minor effect. 

20 Data on short-expiry equity options are sparsely available prior to 2013, offering a practical 

reason why this feature has not been documented in the prior literature. 
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Intuitively, these patterns arise due to the relative effects of the anticipated stock price 

jump on EAD versus the diffusion component of the underlying process. As expiry 

shrinks, the effect of the anticipated price jump dominates the effect of the diffusion 

component, rendering the underlying RND bimodal and the IV curve concave. To the 

contrary, as time to expiry increases, the effect of the diffusion component dominates 

the effect of the anticipated price jump, the RND reverts to unimodality, and the IV 

curve becomes convex. This Figure further illustrates the different focus of our study 

relative to Dubinsky et al. (2019). Whereas the latter study argues that the term 

structure of ATM IV is downward sloping prior to EADs, a feature that Figure 4 

clearly illustrates, our focus is on the shape of the entire IV curve extracted from 

short-expiry options. 

 

3.3.2 Determinants of Concave IV Curves 

 

This Section examines how concave IV curves are related to a number of firm 

characteristics prior to EADs. Specifically, we run logistic regressions of CONCAVE 

on sets of contemporaneously measured variables. This constitutes a more formal 

analysis relative to the pairwise correlations reported in Table 2, allowing us to 

simultaneously consider multiple variables and to test for the statistical significance of 

these relationships. Table 4 presents the corresponding results. We report z-statistics 

based on two-way clustered standard errors, at the quarter- and firm-level. This choice 

is motivated by the arguments of Petersen (2009) and the potential concern that the 

innovations of the utilized variables may be strongly correlated across quarters and 

across firms. All models include BETA, LN(SIZE), B/M, LEVERAGE, as well as 

EXPIRY and STRIKES. 

The estimates of Model (1) show that IV curves extracted from options with shorter 

expiry and larger number of strikes are significantly more likely to be concave. 

Moreover, firms that are relatively smaller and less leveraged are also more likely to 

exhibit a concave IV curve prior to the EAD. Model (2) adds several return-based 
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characteristics. The main finding is that a higher level of IVOL is significantly 

associated with a concave IV curve. 

Model (3) includes a number of option-based variables. We find that a concave IV 

curve is more likely to be observed as ATMIV increases and as RVIV decreases.21 We 

also find that the probability of observing a concave IV curve significantly increases 

with higher values of RNS and lower values of RNK. The latter findings are consistent 

with the observation that concave IV curves reflect bimodal RNDs, as illustrated in 

the right Panel of Figure 4. Bimodality in the central part of the RND yields a more 

symmetric and less leptokurtic distribution, as compared to the commonly observed 

negatively skewed and fat-tailed RNDs, which correspond to convex IV curves. 

Model (4) includes firm characteristics that are considered to be proxies of 

fundamental uncertainty with respect to the forthcoming earnings announcement. 

Notably, we find that a concave IV curve more likely arises as the number of analysts 

following the firm increases. Last, Model (5) considers stock and option-to-stock 

trading activity. We report that a higher O/S value prior to the EAD is a significant 

determinant of concave IV curves. 

Despite the highly significant contemporaneous relationship between CONCAVE and 

a number of firm characteristics, none of the reported models yields a very high 

pseudo R-squared. This feature further alleviates the potential concern that 

CONCAVE may be simply mimicking existing firm characteristics or their 

combinations. 

 

 

 
21 TSIV is almost perfectly negatively correlated with ATMIV, and hence they cannot be both 

included in a regression model. Nevertheless, we have alternatively included TSIV instead of 

ATMIV in Model (3). The results confirm that a concave IV curve is more likely to appear as 

TSIV takes higher values. 
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3.4 The informational content of CONCAVE 

3.4.1 Absolute Stock Returns on EAD 

 

We now turn our focus on the informational content of CONCAVE. We first examine 

whether concave IV curves can predict higher or lower absolute stock returns on EAD 

relative to non-concave IV curves. To ensure that our results are not affected by 

market-wide price movements or systematic factor-related returns, we use the 

absolute abnormal stock return on EAD (ABSEADABRET) with respect to the Fama-

French-Carhart (FFC) 4-factor model. 

 Specifically, we compute the abnormal stock return on EAD as the realized minus the 

expected return. The expected return is calculated on the basis of pre-estimated factor 

loadings for each firm from the following regression model: 

  𝑥𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑀𝐾𝑇,𝑖𝑀𝐾𝑇𝑡 + 𝛽𝑆𝑀𝐵,𝑖𝑆𝑀𝐵𝑡 + 𝛽𝐻𝑀𝐿,𝑖𝐻𝑀𝐿𝑡 + 𝛽𝑀𝑂𝑀,𝑖𝑊𝑀𝐿𝑡 + 𝜀𝑖,𝑡, (3.3) 

where 𝑥𝑟𝑖,𝑡 denotes the excess stock return of firm i on day t, MKT denotes the excess 

market return, SMB denotes the size factor return, HML denotes the value factor 

return, and WML denotes the momentum factor return.22 To estimate this model, we 

use daily returns from d-250 to d-25, where d is the EAD, requiring at least 200 

observations. This choice ensures that the estimated factor loadings are not affected 

by stock returns observed in the runup to the EAD. 

The summary statistics reported in Table 1 show that the average value of 

ABSEADABRET is 4.84%, whereas the median value is 3.42%. These statistics are 

consistent with the finding in prior literature that stock prices often exhibit very large 

movements around earnings announcements (see Lee and Mykland, 2008; Lee, 2012; 

Kapadia and Zekhnini, 2019). This feature becomes even more striking if one takes 

into account that our sample consists of very big capitalisation firms. 

Table 5 presents estimates from predictive panel regressions of ABSEADABRET on 

CONCAVE plus a number of firm characteristics measured on the day prior to the 

 
22 Daily MKT, SMB, HML, and WML returns are sourced from Kenneth French’s online data 

library. 
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EAD.23 Models (1), (3), and (5) report t-statistics based on two-way clustered 

standard errors, at the firm- and quarter- level. Models (2), (4), and (6) include 

quarterly fixed effects to ensure that our results are not entirely driven by specific 

quarters in our sample period. 

Overall, the results in Table 5 show that concave IV curves observed prior to EADs 

predict significantly higher ABSEADABRET values. Column (1) shows that, on 

average, concave IV curves are followed by a 1.8% (t-stat: 5.63) higher absolute 

abnormal stock return on EAD relative to non-concave IV curves. On average, the 

latter are followed by a 4.16% ABSEADABRET, whereas concave IV curves are, on 

average, followed by a 5.96% ABSEADABRET. This highly significant return 

differential remains intact when we account for quarterly fixed effects in column (2), 

confirming that it is not driven by specific quarters in our sample period. Moreover, 

this differential remains significant when we additionally control in columns (3)-(6) 

for a number of firm characteristics that may be related to future stock returns.24 

An interesting interpretation of this predictive relationship is that investors are able to 

ex ante identify earnings announcements where larger than average stock price 

movements are observed, and they trade accordingly in the option market. On these 

occasions, IV curves become concave and the corresponding RNDs for the underlying 

stock price become clearly bimodal, indicating that a very large stock price movement 

is likely to be observed on EAD. In fact, the occurrence of larger than average 

absolute stock returns upon these announcements verifies the informational content of 

CONCAVE. 

 

 

 
23 Following 5th March 2008, OptionMetrics records bid and ask option prices at 15:59 EST. 

This ensures that the criticism of Battalio and Schulz (2006) on non-synchronicity bias does 

not apply during our sample period. 

24 Unreported results, which are available upon request, yield very similar conclusions when 

we alternatively use gross, rather than abnormal, absolute stock returns on EAD. 
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3.4.2 Post-EAD Stock Return Volatility 

 

Next, we examine the informational content of CONCAVE with respect to the post-

EAD stock return volatility (POSTEADVOL). To this end, we compute the 

(annualized) 10-day stock return volatility from d to d+9, according to the standard 

formula: 

 

𝑃𝑂𝑆𝑇𝐸𝐴𝐷𝑉𝑂𝐿 = √
252

𝑁
∑ 𝑟𝑡

2
𝑑+9

𝑡=𝑑
 (3.4) 

 

where 𝑟𝑡 is the daily log-return. 

Whereas POSTEADVOL is naturally affected by the magnitude of ABSEADABRET, it 

is conceptually different from the latter because it also captures the stock price 

fluctuations occurring after the EAD. We opt for a 10-day measurement window in 

our benchmark results to be consistent with the range of expiries observed in our 

option sample. Nevertheless, we have repeated the subsequent analysis using 

alternatively the 5-day and the 21-day post-EAD stock return volatility as dependent 

variable. The results are very similar to the ones presented in Table 6 and they are 

readily available upon request. 

The mean (median) value of POSTEADVOL reported in Table 1 is 38.97% (31.47%) 

p.a.. Even though we mainly include large capitalization stocks in our sample, we still 

find that their returns exhibit a high degree of volatility in the 10-day interval right 

after the earnings announcement. 

Table 6 presents estimates from predictive panel regressions of POSTEADVOL on 

CONCAVE plus a number of firm characteristics measured on the day prior to the 

EAD. We find that CONCAVE possesses significant predictive ability over 

POSTEADVOL too. Column (1) indicates that concave IV curves are followed by an 

average POSTEADVOL of 45.86% p.a., whereas non-concave IV curves are followed 

by an average POSTEADVOL of 34.81% p.a., yielding a highly significant differential 

of 11.05% p.a. (t-stat: 5.35). Column (2) confirms that this differential is not purely 

driven by volatility episodes in certain quarters. This predictive relationship remains 
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significant when we additionally control in columns (3)-(6) for a number of firm 

characteristics that may also be related to stock return volatility. 

The reported predictive ability of CONCAVE indicates that investors can identify the 

announcements that cause a significant increase in post-EAD volatility. As a 

consequence, they trade in the option market to hedge against or to speculate on this 

feature, determining prices that correspond to a bimodal RND for the underlying 

stock return. In turn, an RND that features bimodality in its central part implies, 

ceteris paribus, a higher degree of variance over the remaining life of the options. 

Hence, observing higher than average POSTEADVOL for concave IV curves verifies 

the informational content of CONCAVE. 

 

3.4.3 Straddle Returns Around EADs 

 

Having established that concave IV curves are typically associated with significantly 

higher absolute stock returns on EADs and post-EAD realized volatility, as compared 

to non-concave IV curves, we further examine the behavior of straddle returns around 

EADs. Anticipating these stock return characteristics, investors could take long 

positions in ATM straddles to either speculate on or hedge against these large price 

swings regardless of their direction. In fact, delta-neutral ATM straddle returns have 

been used to measure the price of volatility risk for the underlying stock returns (see 

e.g., Coval and Shumway, 2001; Bakshi and Kapadia, 2003).  

We firstly examine the returns of delta-neutral ATM straddles (STRADDLE) on EAD. 

Similar to prior literature, we use the nearest-to-the-money pair of call and put options 

within the moneyness (K/S) range of 0.98-1.02. We buy the straddle at the close of 

the trading day prior to the EAD and we sell it at the close after the announcement. 

We use the shortest available options, requiring that they have at least 3 days to expiry 

when we close the position. The return of the delta-neutral straddle on EAD is given 

by: 

 𝑟𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = 𝑤𝑐𝑟𝑐 + (1 − 𝑤𝑐)𝑟𝑝 (3.5) 

 



111 
 
 

where 𝑟𝑐 (𝑟𝑝) is the return of the call (put) option on EAD. The weight 𝑤𝑐 is given by: 

 
𝑤𝑐 = −

𝛥𝑃𝑈𝑇/𝑃𝑈𝑇

𝛥𝐶𝐴𝐿𝐿/𝐶𝐴𝐿𝐿 − 𝛥𝑃𝑈𝑇/𝑃𝑈𝑇
 (3.6) 

 

where 𝛥𝐶𝐴𝐿𝐿 (𝛥𝑃𝑈𝑇) is the delta of the call (put) provided by OptionMetrics and 𝐶𝐴𝐿𝐿 

(𝑃𝑈𝑇) is the corresponding call (put) price. This weight ensures that the straddle is 

delta-neutral at formation. We have repeated the analysis reported in Table 7 using 

simple instead of delta-neutral ATM straddle returns. The results, which are readily 

available upon request, are very similar to the ones reported in Table 7.  

The summary statistics reported in Table 1 show that the median STRADDLE value 

on EAD is -14.35%. This finding provides support for the argument that investors 

most often pay a substantial price to be hedged against the increased volatility and 

large stock price swings observed around EADs. However, it should be noted that 

STRADDLE exhibits a positively skewed distribution in our sample and its average 

value is 0.25%. 

Table 7 presents estimates from predictive panel regressions of STRADDLE on 

CONCAVE as well as a number of firm characteristics measured on the day prior to 

the EAD. Models (1), (3), and (5) use two-way clustered standard errors, whereas 

Models (2), (4), and (6) add quarterly fixed effects. We also control for the expiry and 

the average moneyness of the pair of options used to construct this straddle strategy, 

ensuring that our results are not driven by these features. 

Overall, we find that concave IV curves predict a significantly lower straddle return 

on EAD. In particular, column (1) shows that concave IV curves are followed by a 

6.17% (t-stat: -2.88) lower STRADDLE return, as compared to non-concave IV 

curves. Column (2) shows that the economic and statistical significance of this finding 

is not driven by specific quarters in our sample period. Furthermore, this predictive 

relationship remains intact when we additionally control in columns (3)-(6) for a 

number of firm characteristics that may be related to volatility, and hence the 

observed STRADDLE returns. 

The main conclusion from this analysis is that when IV curves become concave, 

investors most often pay a substantially higher premium to hedge against the larger 
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than average stock price swings that are typically observed on these EADs. In fact, the 

median STRADDLE value is -17.19% when CONCAVE=1 and -13.03% when 

CONCAVE=0. In other words, even though larger than average stock price 

movements occur on EADs following the formation of concave IV curves, these price 

swings are not large enough to offset the substantial cost of purchasing straddles on 

these occasions. As a corollary, whereas it is known to be typically profitable to write 

straddles prior to EADs (see Gao et al., 2018; Dubinsky et al., 2019), we document 

that is even more profitable to do so when concave IV curves are observed. 

To provide direct evidence that ATM straddles are particularly costly in the presence 

of concave IV curves, we introduce an intuitive measure of their expensiveness. 

Specifically, we calculate the following ratio: 

 
𝐼𝑀𝑃𝑀𝑂𝑉𝐸 =

𝐶𝐴𝐿𝐿 +  𝑃𝑈𝑇

𝑆𝑇𝑂𝐶𝐾
 (3.7) 

 

where, as above, 𝐶𝐴𝐿𝐿 (𝑃𝑈𝑇) is the ATM call (put) price at straddle formation, i.e., 

on the day prior to the EAD, and 𝑆𝑇𝑂𝐶𝐾 is the corresponding price of the underlying 

stock. This measure roughly indicates how much the underlying stock price should 

move in either direction to offset the cost of a symmetric ATM straddle, and hence it 

is termed as the implied stock price move (IMPMOVE). The higher (lower) the value 

of IMPMOVE, the more (less) expensive it is to purchase an ATM straddle, ceteris 

paribus. 

To construct this measure, we use the same pair of nearest-to-the-money call and put 

options that we used above to construct the delta-neutral straddle. The summary 

statistics reported in Table 1 indicate an average (median) IMPMOVE value of 6.22% 

(5.27%). Taking into account that we utilize very short-expiry options, these statistics 

indicate that ATM straddles are quite expensive prior to EADs, as they require a 

substantial stock price move in either direction to offset their cost. 

Table 8 presents estimates from contemporaneous panel regressions of IMPMOVE on 

CONCAVE and a number of firm characteristics measured on the day prior to EAD. 

Models (1), (3), and (5) use two-way clustered standard errors, whereas Models (2), 

(4), and (6) add quarterly fixed effects. In unreported results, we have additionally 
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controlled for the expiry and the average moneyness of the pair of options used to 

compute IMPMOVE; the results are very similar to the ones presented in Table 8. 

Overall, we find very strong evidence that ATM straddles are much more expensive 

in the presence of concave IV curves. Specifically, column (1) indicates that concave 

IV curves are associated with a 2.31% (t-stat: 7.79) higher IMPMOVE relative to non-

concave IV curves. The average value of IMPMOVE is 7.67% when CONCAVE=1 

and 5.46% when CONCAVE=0. This significant differential is not subsumed when we 

control for quarterly fixed effects or additional firm characteristics in columns (2)-(6). 

These findings provide direct evidence that in the presence of concave IV curves, the 

underlying stock price should exhibit a substantially larger move after the 

announcement, in either direction, to offset the cost of purchasing the ATM straddle 

prior to the EAD. This evidence rationalizes why despite the larger than average 

absolute stock returns realized on EADs following the formation of concave IV 

curves, the corresponding straddle returns are still much lower relative to non-concave 

IV curves. This is because these straddles are substantially more expensive to 

purchase in the first place, and hence the realized price jumps on EADs are not 

sufficient to offset their cost. 

The significantly higher cost of buying ATM straddles in the presence of concave IV 

curves provides an alternative way to illustrate that investors pay a significantly 

higher price to hedge against the event risk that arises on these occasions due to the 

impending announcement. This evidence further corroborates the argument that 

concave IV curves provide an ex ante signal of event risk. Based on these findings, 

we conclude that investors can ex ante identify the announcements that trigger large 

stock price moves and they pay a substantially higher premium to hedge against them, 

most obviously by purchasing ATM straddles. As a result of this hedging activity, the 

corresponding ATM options become very expensive, trading at higher volatility, and 

hence the corresponding IV curves turn concave prior to EADs. 
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3.5 Conclusions 

 

This study documents, for the first time in the literature, that the IV curves of equity 

options frequently exhibit concavity prior to the EAD. This shape is in stark contrast 

with the convex volatility “smiles” or “smirks” that are commonly observed for equity 

options. Concavity is most obvious in short-expiry options, it reflects a bimodal RND 

for the underlying stock price, and quickly disappears after the announcement, as the 

uncertainty surrounding this event is resolved. 

This feature has far reaching implications for our understanding of the behavior of 

stock prices, the pricing of earnings risk and the informational content of option 

prices. We report significant evidence that firms with concave IV curves exhibit 

higher absolute abnormal stock returns on EAD and higher realized volatility after the 

announcement. Despite the larger than average stock price moves on EAD following 

the formation of concave IV curves, we still find that the corresponding delta-neutral 

straddle returns are significantly lower than for non-concave IV curves. To rationalise 

this finding, we provide strong evidence that ATM straddles are significantly more 

expensive in the presence of concave IV curves, and hence the realized stock price 

jumps are not sufficient to offset the substantial cost of these straddles. 

Overall, we show that investors can ex ante identify the announcements that trigger 

larger than average stock price moves and they pay a substantially higher premium to 

hedge against this event risk. This hedging activity impacts on option prices, leading 

to the formation of a concave IV curve. To this end, we conclude that concavity in the 

IV curve constitutes an ex ante option-implied signal for event risk in the underlying 

stock arising due to the impending announcement. 

The focus of our study is on scheduled corporate earnings announcements. However, 

it would be interesting to examine the features and the informational content of IV 

curves around other, non-corporate events that may also trigger large asset price 

moves. In fact, prior studies have argued that macroeconomic announcements and 

geopolitical events can give rise to substantial event risk, which can be ex ante 

reflected in option prices (see Savor and Wilson, 2013; Leahy and Thomas, 1996; 

Melick and Thomas, 1997; Kelly et al., 2015; Hanke et al., 2018). We anticipate that 
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the curvature properties of the IV curve around these events can reveal substantial 

information with respect to the pricing of event risk and the subsequent behavior of 

asset prices. 
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Figure 3.1. Types of concave IV curves 
This Figure shows different types of concave IV curves computed on the day prior to the EAD. Panel A shows an example of an inverse U-shape IV curve for 

Twitter, computed from options with 3 days to expiry on 29th July, 2014. Panel B presents an example of an S-shape IV curve for Ebay, computed from options with 

3 days to expiry on 29th April, 2014. Panels C and D present examples of W-shape IV curves for Google and Netflix, computed from options with 4 days to expiry 

on 23rd April and 16th July 2018, respectively. Circles indicate implied volatilities corresponding to actual traded strikes, whereas the curve is fitted using a 

smoothing spline.  

  
Panel A: Inverse U-shape IV Curve      Panel B: S-shape IV Curve 

  
Panel C: W-shape IV Curve       Panel D: W-shape IV Curve
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Figure 3.2. Concave IV curves around EAD 

This Figure illustrates how a concave IV curve prior to the EAD becomes convex after the announcement. Panel A presents a concave IV curve for Apple, computed 

from options with 4 days to expiry on 28th October, 2013, i.e., prior to its quarterly earnings announcement. Panel B presents a convex IV curve for the same firm, 

computed from options with 3 days to expiry on 29th October, 2013, i.e., right after the announcement. 

 

                     Panel A: Concave IV curve prior to the announcement            Panel B: Convex IV curve after the announcement 
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Figure 3.3. Fraction of concave IV curves around EAD 

This Figure shows the fraction of firms exhibiting a concave IV curve on each trading day from d-5 to d+5, where d is the quarterly EAD. The definition of a 

concave IV curve is provided in Section 2.2. IV curves are computed for the 100 firms with the highest option trading activity per year during the period 2013-2019. 

 

 

 



119 
 
 

Figure 3.4. Concave IV curves and RND bimodality 

This Figure illustrates the correspondence between a concave IV curve and the RND for the underlying stock price. Panel A presents the IV curve for Amazon, 

computed from options with 8 days to expiry on 26th April, 2018, i.e., just before its quarterly earnings announcement. Circles indicate implied volatilities 

corresponding to actual traded strikes, whereas the curve is fitted using a smoothing spline. Panel B presents the central part of the corresponding RND for Amazon 

on the same day. The RND is computed for the range of available strikes using the non-parametric methodology of Figlewski (2010). 

 

Panel A: Concave IV Curve              Panel B: Bimodal Risk-Neutral Distribution 
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Figure 3.5. IV curves for short- vs longer-expiry options 

This Figure shows the shape of IV curves for Amazon, computed from options with different expiries (8, 22, 36, and 50 days to expiry) on 26th April, 2018, i.e., just 

before its quarterly earnings announcement. The IV curves are fitted using a smoothing spline. 
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Table 3. 1: Summary statistics 

This Table presents summary statistics for selected variables. CONCAVE is an indicator variable that takes the value 1 

when the IV curve is concave on the day prior to the EAD and zero otherwise. ABSEADABRET is the absolute 

abnormal stock return on EAD, measured with respect to the 4-factor FFC model. POSTEADVOL is the 10-day post-

EAD annualized realized stock return volatility. STRADDLE denotes the return of the delta-neutral ATM straddle 

strategy on EAD. IMPMOVE denotes the ratio of the sum of the ATM put and call prices divided by the underlying 

stock price. The definition of the rest of the variables is provided in Appendix D. These summary statistics are based 

on the values of the variables measured on the day prior to the EAD and they are computed for a sample of quarterly 

earnings announcements during the period 2013-2019. 

Variable Mean St. Dev. 25th pctl Median 75th pctl Obs. 

CONCAVE 0.374 0.48 0 0 1 1,875 

EXPIRY 6.47 2.61 4 8 9 1,875 

STRIKES 16.72 11.83 9 13 20 1,875 

BETA 1.09 0.31 0.90 1.09 1.28 1,842 

LN(SIZE) 10.94 1.30 10.08 11.10 11.97 1,867 

B/M 0.35 0.32 0.13 0.26 0.45 1,760 

LEVERAGE 0.34 0.24 0.16 0.27 0.49 1,809 

RUNUP 0.43% 3.84% -1.71% 0.53% 2.56% 1,875 

MOM 17.92% 40.92% -5.49% 12.03% 32.12% 1,842 

IVOL 24.17% 12.35% 15.20% 20.55% 29.62% 1,842 

LN(PRICE) 4.33 0.90 3.76 4.21 4.77 1,875 

ATMIV 42.31% 20.28% 28.13% 35.77% 51.53% 1,825 

RNS -0.28 0.24 -0.43 -0.26 -0.12 1,875 

RNK 3.51 0.45 3.22 3.42 3.70 1,875 

RVIV -16.68% 14.30% -23.08% -14.74% -7.67% 1,825 

TSIV 6.58% 3.66% 3.87% 5.50% 8.35% 1,867 

NUMEST 24.32 7.58 19 24 30 1,867 

DISPERSION 12.46% 25.80% 2.43% 4.43% 9.95% 1,860 

ANNBETA 0.08 0.80 -0.31 0.06 0.49 1,801 

STOCKTR 2.27% 2.88% 0.65% 1.14% 2.57% 1,875 

O/S 27.09% 31.69% 5.64% 15.11% 35.35% 1,875 

ABSEADABRET 4.84% 4.64% 1.58% 3.42% 6.44% 1,842 

POSTEADVOL 38.97% 25.28% 21.77% 31.47% 48.31% 1,872 

STRADDLE 0.25% 50.21% -33.93% -14.35% 20.30% 1,862 

IMPMOVE 6.22% 3.16% 3.96% 5.27% 7.74% 1,863 
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Table 3.2: Pairwise correlations of firm characteristics 
This Table presents pairwise correlation coefficients among selected variables. CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the 

day prior to the EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. These correlations are based on the values of the variables 

measured on the day prior to the EAD and they are computed for a sample of quarterly earnings announcements during the period 2013-2019. 
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CONCAVE 1                   

BETA 0.09 1                  

LN(SIZE) -0.19 -0.27 1                 

B/M -0.12 0.22 -0.12 1                

LEVERAGE -0.21 0.14 -0.03 0.71 1               

RUNUP 0.03 0.04 -0.02 0.01 -0.01 1              

MOM 0.12 0.10 -0.05 -0.19 -0.18 0.05 1             

IVOL 0.29 0.28 -0.76 -0.02 -0.16 0.03 0.19 1            

LN(PRICE) 0.12 -0.12 0.40 -0.34 -0.31 0.07 0.16 -0.25 1           

ATMIV 0.35 0.30 -0.68 -0.06 -0.23 -0.04 0.16 0.84 -0.20 1          

RNS 0.40 0.11 -0.23 0.01 -0.05 0.03 0.09 0.19 -0.03 0.15 1         

RNK -0.42 -0.08 0.35 0.10 0.21 0.01 -0.10 -0.33 0.08 -0.38 -0.58 1        

RVIV -0.33 -0.13 0.43 0.09 0.24 -0.02 -0.09 -0.57 0.09 -0.63 -0.19 0.33 1       

TSIV 0.39 0.23 -0.61 -0.15 -0.33 -0.02 0.17 0.78 -0.14 0.94 0.16 -0.41 -0.68 1      

NUMEST 0.20 0.00 0.22 -0.23 -0.40 0.04 0.03 -0.06 0.24 0.10 0.06 -0.14 -0.17 0.19 1     

DISPERSION 0.04 0.16 -0.25 0.08 0.03 0.02 0.03 0.33 -0.02 0.29 0.05 -0.04 -0.16 0.24 -0.09 1    

ANNBETA 0.05 0.11 -0.09 0.05 0.01 0.01 0.06 0.11 0.00 0.11 -0.01 -0.05 -0.09 0.12 -0.08 0.04 1   

STOCKTR 0.27 0.27 -0.65 -0.01 -0.14 0.05 0.23 0.79 -0.09 0.78 0.14 -0.25 -0.48 0.75 0.01 0.29 0.14 1  

O/S 0.27 -0.07 0.02 -0.15 -0.12 0.06 0.06 0.00 0.51 0.04 0.05 -0.04 -0.13 0.10 0.13 -0.04 0.05 0.11 1 
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Table 3.3: Characteristics of firms with concave vs. non-concave IV curves 

This Table presents the average values of selected variables for firms when they exhibit a concave IV curve on the day 

prior to the EAD (CONCAVE=1) versus the corresponding average values when they do not exhibit a concave IV 

curve (CONCAVE=0). The definition of the rest of the variables is provided in Appendix D. The values of the 

variables are measured on the day prior to the EAD and they are computed for a sample of quarterly earnings 

announcements during the period 2013-2019. The pre-last column contains the difference in the average values and 

the last column presents the corresponding t-statistic under the null hypothesis of equal means. 

  

Variable CONCAVE=1 CONCAVE=0 Difference t-stat 

EXPIRY 6.08 6.71 -0.63 -5.05 

STRIKES 21.30 13.98 7.31 12.22 

BETA 1.13 1.07 0.06 3.72 

LN(SIZE) 10.64 11.12 -0.48 -7.50 

B/M 0.30 0.38 -0.09 -5.77 

LEVERAGE 0.27 0.38 -0.10 -9.59 

RUNUP 0.68% 0.27% 0.41% 2.18 

MOM 23.77% 14.50% 9.27% 4.35 

IVOL 28.55% 21.61% 6.94% 11.47 

LN(PRICE) 4.44 4.26 0.18 3.79 

ATMIV 51.19% 37.02% 14.16% 14.59 

RNS -0.15 -0.36 0.20 21.07 

RNK 3.26 3.66 -0.40 -22.22 

RVIV -22.79% -13.05% -9.74% -13.94 

TSIV 8.35% 5.52% 2.83% 16.69 

NUMEST 26.14 23.22 2.92 7.85 

DISPERSION 13.73% 11.71% 2.03% 1.65 

ANNBETA 0.11 0.07 0.04 1.03 

STOCKTR 3.21% 1.71% 1.49% 10.37 

O/S 37.75% 20.71% 17.04% 10.41 
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Table 3.4: Determinants of concave IV curves 

This Table presents the results of contemporaneous logistic regressions of CONCAVE on alternative sets of firm 

characteristics. CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the 

day prior to the EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. 

The values of the variables are measured on the day prior to the EAD and they are computed for a sample of 

quarterly earnings announcements during the period 2013-2019. z-statistics are provided in parentheses, using 

two-way clustered standard errors at the firm- and quarter-level.  

 (1) (2) (3) (4) (5) 

EXPIRY 
-0.110 

(-3.47) 

-0.114 

(-3.63) 

-0.118 

(-3.62) 

-0.111 

(-3.79) 

-0.028 

(-0.76) 

STRIKES 
0.047 

(4.96) 

0.039 

(3.87) 

0.046 

(5.57) 

0.046 

(5.29) 

0.030 

(3.00) 

BETA 
0.359 

(1.65) 

0.294 

(1.37) 

0.125 

(0.74) 

0.369 

(1.58) 

0.344 

(1.49) 

LN(SIZE) 
-0.317 

(-3.89) 

-0.142 

(-1.29) 

0.313 

(3.31) 

-0.409 

(-5.06) 

-0.250 

(-2.48) 

B/M 
0.057 

(0.16) 

0.047 

(0.12) 

-0.362 

(-0.98) 

-0.155 

(-0.48) 

0.128 

(0.35) 

LEVERAGE 
-1.641 

(-3.10) 

-1.472 

(-2.86) 

0.201 

(0.40) 

-0.818 

(-1.65) 

-1.659 

(-3.08) 

RUNUP 
 1.147 

(0.77) 

   

MOM 
 0.045 

(0.24) 

   

IVOL 
 2.481 

(2.42) 

   

LN(PRICE) 
 0.021 

(0.14) 

   

ATMIV 
  2.629 

(3.43) 

  

RNS 
  4.077 

(8.60) 

  

RNK 
  -2.222 

(-5.74) 

  

RVIV 
  -1.592 

(-2.81) 

  

NUMEST 
   0.045 

(4.42) 

 

DISPERSION 
   -0.299 

(-1.27) 

 

ANNBETA 
   0.056 

(0.61) 

 

STOCKTR 
    6.027 

(1.26) 

O/S 
    1.337 

(3.34) 

Constant 2.951 

(2.94) 

0.500 

(0.31) 

3.146 

(1.54) 

2.695 

(2.49) 

1.470 

(1.14) 

Clustered SE Quarter&Firm Quarter&Firm Quarter&Firm Quarter&Firm Quarter&Firm 

Observations 1,733 1,733 1,692 1,687 1,733 

Pseudo R-square 12.41% 12.93% 32.39% 14.15% 13.88% 
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Table 3.5: Concave IV curves and absolute abnormal stock returns on EAD 

This Table presents results from predictive panel regressions of the absolute abnormal stock return on EAD 

(ABSEADABRET) on CONCAVE and a set of firm-level characteristics measured on the day prior to the EAD. 

The abnormal stock return is computed with respect to the 4-factor FFC model. CONCAVE is an indicator 

variable that takes the value 1 when the IV curve is concave on the day prior to the EAD and zero otherwise. 

The definition of the rest of the variables is provided in Appendix D. The sample consists of quarterly earnings 

announcements during the period 2013-2019. Models (1), (3), and (5), use two-way clustered standard errors, at 

the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed effects. t-statistics are provided in 

parentheses.  

 (1) (2) (3) (4) (5) (6) 

CONCAVE 
0.0180 

(5.63) 

0.0190 

(8.56) 

0.0086 

(3.14) 

0.0090 

(4.15) 

0.0054 

(2.18) 

0.0054 

(2.47) 

BETA 
  0.0028 

(0.76) 

0.0018 

(0.50) 

-0.0013 

(-0.35) 

-0.0032 

(-0.91) 

LN(SIZE) 
  -0.0156 

(-9.80) 

-0.0157 

(-17.09) 

-0.0156 

(-10.59) 

-0.0160 

(-16.84) 

B/M 
  -0.0187 

(-3.60) 

-0.0172 

(-4.91) 

-0.0137 

(-2.88) 

-0.0117 

(-3.38) 

RUNUP 
  0.0341 

(1.55) 

0.0398 

(1.48) 

0.0220 

(0.95) 

0.0293 

(1.11) 

MOM 
  -0.0003 

(-0.06) 

0.0034 

(1.25) 

0.0003 

(0.06) 

0.0039 

(1.44) 

LN(PRICE) 
  0.0006 

(0.25) 

0.0006 

(0.41) 

-0.0003 

(-0.13) 

-0.0004 

(-0.33) 

NUMEST 
    0.0010 

(4.28) 

0.0011 

(7.71) 

DISPERSION 
    0.0114 

(1.67) 

0.0129 

(3.28) 

ANNBETA 
    0.0033 

(1.94) 

0.0032 

(2.54) 

Constant 0.0416 

(16.55) 

- 0.2168 

(10.84) 

- 0.1974 

(10.49) 

- 

Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No 

Fixed Effects No Quarter No Quarter No Quarter 

Observations 1,837 1,837 1,733 1,733 1,687 1,687 

R-squared 3.52% 5.85% 21.85% 23.84% 23.52% 25.70% 
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Table 3.6: Concave IV curves and 10-day post-EAD stock return volatility 

This Table presents results from predictive panel regressions of the post-EAD realized stock return volatility 

(POSTEADVOL) on CONCAVE and a set of firm-level characteristics measured on the day prior to the EAD. 

Post-EAD volatility is computed using stock returns from d to d+9, where d is the EAD, and it is annualized. 

CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the day prior to the 

EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. The sample 

consists of quarterly earnings announcements during the period 2013-2019. Models (1), (3), and (5), use two-

way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed 

effects. t-statistics are provided in parentheses. 

 (1) (2) (3) (4) (5) (6) 

CONCAVE 
0.1105 

(5.35) 

0.1177 

(9.97) 

0.0443 

(2.91) 

0.0465 

(4.54) 

0.0327 

(2.42) 

0.0312 

(3.06) 

BETA 
  0.0798 

(3.60) 

0.0688 

(4.15) 

0.0682 

(3.14) 

0.0529 

(3.25) 

LN(SIZE) 
  -0.0953 

(-11.17) 

-0.0979 

(-22.62) 

-0.0906 

(-11.51) 

-0.0952 

(-21.35) 

B/M 
  -0.0853 

(-3.73) 

-0.0690 

(-4.17) 

-0.0627 

(-2.97) 

-0.0437 

(-2.69) 

RUNUP 
  -0.1671 

(-1.24) 

-0.0237 

(-0.19) 

-0.2351 

(-1.48) 

-0.0712 

(-0.57) 

MOM 
  0.0303 

(1.48) 

0.0583 

(4.56) 

0.0298 

(1.37) 

0.0593 

(4.67) 

LN(PRICE) 
  -0.0031 

(-0.25) 

-0.0038 

(-0.59) 

-0.0060 

(-0.61) 

-0.0072 

(-1.16) 

NUMEST 
    0.0041 

(3.29) 

0.0045 

(6.81) 

DISPERSION 
    0.0902 

(3.37) 

0.1008 

(5.50) 

ANNBETA 
    0.0070 

(0.94) 

0.0031 

(0.54) 

Constant 0.3481 

(18.94) 

- 1.3612 

(12.26) 

- 1.2165 

(11.79) 

- 

Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No 

Fixed Effects No Quarter No Quarter No Quarter 

Observations 1,867 1,867 1,730 1,730 1,684 1,684 

R-squared 4.49% 8.95% 32.89% 38.59% 33.35% 39.62% 
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Table 3.7: Concave IV curves and delta-neutral straddle returns on EAD 

This Table presents results from predictive panel regressions of delta-neutral ATM straddle returns computed on 

EAD (STRADDLE) on CONCAVE and a set of firm-level characteristics measured on the day prior to the EAD. 

CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave on the day prior to the 

EAD and zero otherwise. The definition of the rest of the variables is provided in Appendix D. Option controls 

include the expiry and the average moneyness of the options used to construct the straddle strategy. The sample 

consists of quarterly earnings announcements during the period 2013-2019. Models (1), (3), and (5), use two-

way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed 

effects. t-statistics are provided in parentheses. 

 (1) (2) (3) (4) (5) (6) 

CONCAVE 
-0.0617 

(-2.88) 

-0.0578 

(-2.22) 

-0.0631 

(-2.94) 

-0.0597 

(-2.26) 

-0.0666 

(-2.69) 

-0.0620 

(-2.25) 

BETA 
-0.0541 

(-1.62) 

-0.0529 

(-1.24) 

-0.0533 

(-1.62) 

-0.0537 

(-1.25) 

-0.0592 

(-1.64) 

-0.0610 

(-1.38) 

LN(SIZE) 
-0.0411 

(-3.58) 

-0.0407 

(-3.98) 

-0.0430 

(-4.40) 

-0.0427 

(-3.82) 

-0.0432 

(-4.33) 

-0.0425 

(-3.51) 

B/M 
-0.0216 

(-0.81) 

-0.0241 

(-0.60) 

-0.0220 

(-0.78) 

-0.0223 

(-0.52) 

-0.0142 

(-0.48) 

-0.0108 

(-0.25) 

RUNUP 
  0.4276 

(2.32) 

0.4482 

(1.36) 

0.4060 

(1.95) 

0.4353 

(1.29) 

MOM 
  -0.0229 

(-0.59) 

-0.0183 

(-0.55) 

-0.0250 

(-0.58) 

-0.0220 

(-0.64) 

LN(PRICE) 
  0.0055 

(0.46) 

0.0061 

(0.37) 

0.0063 

(0.58) 

0.0066 

(0.39) 

NUMEST 
    0.0006 

(0.36) 

0.0005 

(0.28) 

DISPERSION 
    0.0111 

(0.17) 

0.0235 

(0.47) 

ANNBETA 
    0.0050 

(0.36) 

0.0132 

(0.83) 

Constant 0.7523 

(0.33) 

- 0.6440 

(0.28) 

- 2.3630 

(0.99) 

- 

Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No 

Fixed Effects No Quarter No Quarter No Quarter 

Option Controls Yes Yes Yes Yes Yes Yes 

Observations 1,720 1,720 1,720 1,720 1,674 1,674 

R-squared 1.17% 2.88% 1.31% 3.01% 1.35% 3.12% 
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Table 3.8: Concave IV curves and straddle-implied stock price moves prior to EAD 

This Table presents results from contemporaneous panel regressions of the implied move of the underlying 

stock price prior to the EAD (IMPMOVE) on CONCAVE and a set of firm-level characteristics measured on the 

day prior to the EAD. IMPMOVE denotes the ratio of the sum of the ATM put and call prices divided by the 

underlying stock price. CONCAVE is an indicator variable that takes the value 1 when the IV curve is concave 

on the day prior to the EAD and zero otherwise. The definition of the rest of the variables is provided in 

Appendix D. The sample consists of quarterly earnings announcements during the period 2013-2019. Models 

(1), (3), and (5), use two-way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6), 

include quarterly fixed effects. t-statistics are provided in parentheses. 

 (1) (2) (3) (4) (5) (6) 

CONCAVE 
0.0231 
(7.79) 

0.0239 
(17.01) 

0.0131 
(6.23) 

0.0133 
(13.27) 

0.0099 
(6.15) 

0.0094 
(10.15) 

BETA 
  0.0102 

(2.75) 
0.0094 
(5.77) 

0.0080 
(2.56) 

0.0064 
(4.34) 

LN(SIZE) 
  -0.0145 

(-10.96) 
-0.0147 
(-34.59) 

-0.0141 
(-13.29) 

-0.0143 
(-36.13) 

B/M 
  -0.0173 

(-4.79) 
-0.0154 
(-9.50) 

-0.0134 
(-4.27) 

-0.0113 
(-7.64) 

RUNUP 
  -0.0484 

(-1.88) 
-0.0364 
(-2.92) 

-0.0540 
(-1.97) 

-0.0384 
(-3.41) 

MOM 
  0.0039 

(1.67) 
0.0084 
(6.75) 

0.0050 
(2.46) 

0.0097 
(8.44) 

LN(PRICE) 
  -0.0011 

(-0.54) 
-0.0011 
(-1.80) 

-0.0017 
(-1.11) 

-0.0019 
(-3.30) 

NUMEST 
    0.0009 

(4.62) 
0.0010 
(15.99) 

DISPERSION 
    0.0134 

(2.69) 
0.0145 
(8.66) 

ANNBETA 
    0.0021 

(1.79) 
0.0012 
(2.34) 

Constant 0.0536 
(20.16) 

- 0.2139 
(11.62) 

- 

 

0.1900 
(14.22) 

- 

Clustered SE Quarter&Firm No Quarter&Firm No Quarter&Firm No 

Fixed Effects No Quarter No Quarter No Quarter 

Observations 1,858 1,858 1,721 1,721 1,675 1,675 

R-squared 12.47% 17.90% 55.52% 62.02% 60.04% 67.29% 



129 
 
 

Conclusions 

 

This thesis, composed of three independent empirical studies, examines the 

informational role of option contracts on future stock returns. 

In chapter 1, we create a joint measure tracking the probability density function of 

individual stock returns. This new measure is an intuitive score variable based on risk-

neutral volatility, skewness and kurtosis. Essentially, our measure ranks stocks based 

on investors’ expectations about future return distribution properties and can be 

interpreted as a defensiveness measure where the definition of defensiveness is 

expanded by incorporating skewness and kurtosis alongside with volatility. We find 

that high rank stocks significantly outperform low rank stocks. A portfolio going long 

the highest decile portfolio and short the lowest decile portfolio yields a statistically 

significant 0.75% (0.79%) value-weighted (equally-weighted) return and significant 

alphas, with both legs of the strategy contributing to the overall abnormal return. This 

relation is robust to various variables proposed in the literature using double sorts and 

Fama-MacBeth regressions. This relation is not consistent with standard moment 

preferences, so we provide an alternative explanation building on the ICAPM. We 

find that high rank stocks are exposed to shocks in aggregate volatility while low rank 

stocks hedge against these shocks. Moreover, we show that the explanatory power of 

the ICAPM depends on the level of investors’ sentiment. When investors’ sentiment 

is low, the ICAPM can fully explain this relation. In contrast, in high sentiment 

periods the ICAPM alpha remains positive and significant and is attributed to 

mispricing. It would be interesting for future research to examine the score measure’s 

predictability constructed from options of longer than 1-month time-to-maturity. 

Furthermore, in a portfolio management perspective, it would be fascinating to 

compare the performance of the high-low score portfolio to volatility-managed ones.  

In chapter 2, we examine the cross-sectional pricing of equities according to their 

sensitivities to innovations in option-implied jump risk. We find strong evidence that 

jump risk is negatively priced in the cross-section of stock returns. We use the Du and 
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Kapadia (2012) formulas and find that high-low quntile portfolios formed by betas to 

jump risk and its downside jump component produce significant negative premiums 

of -9.41% and -11.52% per year contemporaneously, respectively. Notably, this 

contemporaneous risk-return tradeoff is robust to controlling for betas to innovations 

in aggregate variance or skewness using dependent bivariate sorts. Lastly, we 

examine the relation between jump risk sensitivities and future stock returns and show 

that the hedge portfolio delivers significant abnormal returns in the following month 

of the portfolio formation, while it is also robust to different beta estimation and 

holding period windows. The clear conclusion drawn by our results is that jump risk 

constitutes an important determinant not only of option prices and aggregate equity 

and volatility premiums but also impacts the cross-sectional variation of individual 

stocks returns. Future research could be done examining if aggregate volatility (in 

addition to market return) jump risk, that can be extracted using VIX options, is 

priced in the cross-section of stock returns. 

In chapter 3 we investigate the implied volatility curves that are determined from 

option prices prior to earnings announcements days. We show, that a fraction of them 

becomes concave, taking unusual shapes such as W, S, and inverted. This 

characteristic, which is mostly observed in short-term options, reflects a bimodal risk-

neutral density for the stock price and quickly disappears after the earnings 

announcement day. This pattern is consistent with investors anticipating a jump in the 

stock price at the earnings announcement day. We find that concave implied volatility 

curves do predict higher absolute stock returns at the earnings announcement day and 

higher realized volatility following the earnings announcement day at a 5-, 10- or 21-

day interval. However, straddle returns of stocks with concave implied volatility 

curves are significantly lower than those with non-concave implied volatility curves. 

We rationalize this finding to the fact that at-the-money options of concave implied 

volatility curves are much more expensive and the jumps of the stock price at the 

earnings announcement day are not large enough to offset the substantial cost of these 

straddles. Therefore, investors identify event risk in stocks that jump in the earnings 

announcement days and pay a substantially higher premium to hedge against this risk. 

As a future research, it would be intriguing to investigate whether these patterns in 

implied volatility curves occur in other firm level events or macro announcements. 
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Appendix A 

 

Book-to-Market ratio (B/M): We compute a firm’s book-to-market ratio following 

Fama and French (1993). Book value is the book value of stockholders’ equity plus 

deferred taxes plus investment tax credit minus the book value of preferred stock. 

Market value is the number of shares outstanding times the price of the stock. 

Beta: We estimate the CAPM beta using a 60-month rolling estimation window. 

Beta ΔVIX (β ΔVIX): Following Ang, Hodrick, Xing and Zhang (2006), we estimate 

the beta of market volatility innovations by regressing daily returns of the previous 

month on VXO first differences. 

Expected Idiosyncratic skewness (EIS): We obtain EIS data from Brian Boyer’s 

website.25 See Boyer, Mitton and Vorkink (2010) for a detailed description. 

Gross Profitability (GPROFIT): Following Novy-Marx (2013), we define a firm’s 

gross profitability as annual revenues minus costs of goods sold, divided by total 

assets. 

Idiosyncratic volatility (IVOL): Following Ang, Hodrick, Xing and Zhang (2006), 

we define idiosyncratic volatility as the standard deviation of residuals of the Fama 

and French (1993) three-factor model using a one-month rolling window. 

Illiquidity (ILLIQ): We compute Amihud’s (2002) illiquidity measure in a rolling 

one year window as: : 𝐼𝐿𝐿𝐼𝑄𝑖 =
1

𝐷
∑

|𝑅𝑖,𝑑|

𝑉𝑂𝐿𝐷𝑖,𝑑

𝐷
𝑑=1  where 𝑅𝑖,𝑑 is the return of stock 𝑖 on day 

 
25 http://boyer.byu.edu/Research/skewdata2.html 

http://boyer.byu.edu/Research/skewdata2.html


139 
 
 

𝑑 and 𝑉𝑂𝐿𝐷𝑖,𝑑 is the dollar volume of stock 𝑖 traded on day 𝑑. We multiply 𝐼𝐿𝐿𝐼𝑄𝑖 with 

106 (except Table 1 where we multiply it with 108).     

Maximum daily return (MAX): The largest daily return of a stock during the 

previous month. 

Minimum daily return (MIN): The minimum daily return of a stock during the 

previous month. 

Mispricing measure (MISP): We use the Stambaugh, Yu and Yuan (2015) 

mispricing measure which is constructed by combining rankings on 11 anomaly 

variables. We obtain MISP data from Robert Stambaugh’s website.26 

Momentum (MOM): Momentum is the compounded return from month 𝑡 − 12 to 

month 𝑡 − 2. 

Profitability (PROFIT): Following Fama and French (2015), we define a firm’s 

profitability as annual revenues minus costs of goods sold, interest expense and 

selling, general and administrative expenses, all divided by book equity, pairing data 

as in their paper. 

Reversal (REV): Reversal is the return in the previous month 𝑡 − 1. 

SCORE:  At the end of each month 𝑡 we rank VOL, SKEW and KURT cross-

sectionally in ascending order with VOL and KURT multiplied by -1, so that all 

distribution shape parameters are ranked according to moment preferences, that is, 

𝑟𝑉𝑂𝐿𝑖,𝑡 = 𝑟𝑎𝑛𝑘(−𝑉𝑂𝐿𝑖,𝑡), 𝑟𝑆𝐾𝐸𝑊𝑖,𝑡
= 𝑟𝑎𝑛𝑘(𝑆𝐾𝐸𝑊𝑖,𝑡) and 𝑟𝐾𝑈𝑅𝑇𝑖,𝑡 = 𝑟𝑎𝑛𝑘(−𝐾𝑈𝑅𝑇𝑖,𝑡). We 

then standardize each rank as follows: 𝑧𝑀 = (𝑟𝑀 − 𝑟𝑀̅̅ ̅)/𝜎𝑟𝑀 , where 𝑀 =

 
26 http://finance.wharton.upenn.edu/~stambaug/  

http://finance.wharton.upenn.edu/~stambaug/
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{𝑉𝑂𝐿𝑖,𝑡 , 𝑆𝐾𝐸𝑊𝑖,𝑡 , 𝐾𝑈𝑅𝑇𝑖,𝑡}, 𝑟𝑀̅̅ ̅ is the rank cross-sectional sample mean and 𝜎𝑟𝑀  is the 

rank cross-sectional standard deviation. Finally, we compute SCORE for each stock 𝑖 

as the mean of the previously calculated individual 𝑧-scores, i.e., 𝑆𝐶𝑂𝑅𝐸𝑖,𝑡 =

(1 3⁄ )(𝑧𝑉𝑂𝐿𝑖,𝑡 + 𝑧𝑆𝐾𝐸𝑊𝑖,𝑡
+ 𝑧𝐾𝑈𝑅𝑇𝑖,𝑡). 

SIZE: Firm size is the log of the market value of equity in millions of dollars, that is, 

the number of shares outstanding times the price of the stock.
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Appendix B 

 

The formulas of the second, third and fourth-order non-central moments of the future 

log-return distribution implied from option prices are given as follows (see Bakshi, 

Kapadia and Madan (2003)): 

 

𝑉𝑖,𝑡 = 𝑒
𝑟𝜏(∫

2(1 − ln [
𝐾
𝑆𝑖,𝑡
])

𝐾2

∞

𝑆𝑖,𝑡

𝐶𝑖,𝑡(𝜏, 𝐾)𝑑𝐾

+∫
2(1 + ln ([

𝑆𝑖,𝑡
𝐾 ]
))

𝐾2
𝑃𝑖,𝑡(𝜏, 𝐾)𝑑𝐾

𝑆𝑖,𝑡

0

) 

(B.1) 

 

 

𝑊𝑖,𝑡 = 𝑒
𝑟𝜏

(

 
 
∫

6ln [
𝐾
𝑆𝑖,𝑡
] − 3 (ln [

𝐾
𝑆𝑖,𝑡
])
2

𝐾2

∞

𝑆𝑖,𝑡

𝐶𝑖,𝑡(𝜏, 𝐾)𝑑𝐾

−∫
6 ln [

𝑆𝑖,𝑡
𝐾 ] + 3(ln [

𝑆𝑖,𝑡
𝐾 ])

2

𝐾2
𝑃𝑖,𝑡(𝜏, 𝐾)𝑑𝐾

𝑆𝑖,𝑡

0

)
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𝑋𝑖,𝑡 = 𝑒
𝑟𝜏

(

 
 
∫

12(ln [
𝐾
𝑆𝑖,𝑡
])
2

− 4(ln [
𝐾
𝑆𝑖,𝑡
])
3

𝐾2

∞

𝑆𝑖,𝑡
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+∫
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0
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, 

respectively. 𝐶𝑖,𝑡(𝜏, 𝐾) (𝑃𝑖,𝑡(𝜏, 𝐾)) denotes the call (put) option price of stock 𝑖 at time 𝑡 

with strike price 𝐾 and time-to-maturity 𝜏 (which is equal to 1 month). 𝑆𝑖,𝑡 is stock 

price of stock 𝑖 at time 𝑡 adjusted for future dividends. In particular, we subtract from 

the current stock price the present value of future dividends with ex-dividend dates 
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during the following month, as in Bali, Hu and Murray (2017). 𝑟 denotes the risk-free 

rate. 

In order to calculate the integrals inside the previous formulas we interpolate implied 

volatilities between the lowest and highest available moneyness using cubic splines 

and perform constant extrapolation with 1% and 300% moneyness as bounds, 

resulting in 1,000 grid points. Subsequently, we convert implied volatilities to option 

prices using the Black-Scholes formula and use those prices to numerically calculate 

the above integrals. 

The first non-central moment can be approximated using higher-order moments as: 

 
𝜇𝑖,𝑡 = 𝑒

𝑟𝜏 − 1 −
1

2
𝑉𝑖,𝑡 −

1

6
𝑊𝑖,𝑡 −

1

24
𝑋𝑖,𝑡 (B.4) 

 

Using these option-implied moments we compute the volatility (VOL), skewness 

(SKEW) and kurtosis (KURT) of the 1-month ahead return distribution for stock 𝑖 at 

the end of each month 𝑡 as follows: 

 
𝑉𝑂𝐿𝑖,𝑡 = √𝑉𝑖,𝑡 − 𝜇𝑖,𝑡

2 , (B.5) 

 

 
𝑆𝐾𝐸𝑊𝑖,𝑡 =

𝑊𝑖,𝑡 − 3𝜇𝑖,𝑡𝑉𝑖,𝑡 + 2𝜇𝑖,𝑡
3

𝑉𝑂𝐿𝑖,𝑡
3  (B.6) 

 

 
𝐾𝑈𝑅𝑇𝑖,𝑡 =

𝛸𝑖,𝑡 − 4𝜇𝑖,𝑡𝑊𝑖,𝑡 + 6𝜇𝑖,𝑡
2 𝑉𝑖,𝑡 − 3𝜇𝑖,𝑡

4

𝑉𝑂𝐿𝑖,𝑡
4 . (B.7) 
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Appendix C 

 

Table C1: Long term performance of SCORE portfolios 

Decile portfolios are formed every month from January 1996 to April 2016 by sorting stocks based on the end-of-month SCORE measure. Low decile 

portfolio includes stocks with the lowest SCORE (bad) and high decile portfolio includes stocks with the highest SCORE (good). The table reports average 

returns and alphas of the Fama and French (2015) 5-factor model (FF5) over months t+2 up to t+6. Panel A shows value-weighted returns and Panel B shows 

equally-weighted returns. The t-statistics (in parentheses) are computed using Newey-West (1987) standard errors with 5 lags. 

Panel A: Value-weighted 

    t+2     t+3     t+4     t+5     t+6   

  Bad Good GMB Bad Good GMB Bad Good GMB Bad Good GMB Bad Good GMB 

Raw 0.33 1.03 0.71 0.42 1.08 0.66 0.37 0.87 0.50 0.23 0.90 0.67 0.47 1.01 0.54 

 (0.70) (3.44) (2.43) (0.86) (3.71) (2.05) (0.76) (3.00) (1.56) (0.45) (2.98) (2.00) (0.89) (3.28) (1.63) 

FF5 -0.51 0.01 0.52 -0.47 0.07 0.55 -0.43 -0.09 0.34 -0.52 -0.03 0.49 -0.32 0.09 0.41 

 (-2.79) (0.05) (2.24) (-2.49) (0.53) (2.44) (-2.69) (-0.73) (1.57) (-2.81) (-0.21) (1.95) (-1.38) (0.68) (1.62) 

Panel B: Equally-weighted 

Raw 0.58 1.03 0.44 0.69 1.11 0.42 0.62 1.03 0.41 0.69 1.11 0.42 0.90 1.09 0.19 

 (1.48) (2.98) (2.87) (1.68) (3.16) (2.39) (1.45) (2.93) (2.50) (1.61) (3.12) (2.39) (2.06) (3.14) (1.10) 

FF5 -0.45 -0.05 0.40 -0.31 0.04 0.35 -0.33 -0.02 0.32 -0.21 0.08 0.29 -0.06 0.07 0.13 

  (-4.47) (-0.43) (3.00) (-2.37) (0.36) (2.48) (-2.90) (-0.14) (2.41) (-1.15) (0.68) (1.52) (-0.31) (0.65) (0.69) 
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Appendix D 

 

ANNBETA: Following Barth and So (2014), announcement beta is the estimate of 

coefficient 𝛽3 from the following firm-level regression model: 

         𝑥𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽1,𝑖𝑀𝐾𝑇𝑡 + 𝛽2,𝑖𝐴𝑛𝑛𝐷𝑎𝑦𝑖,𝑡 + 𝛽3,𝑖(𝑀𝐾𝑇𝑡 ∗ 𝐴𝑛𝑛𝐷𝑎𝑦𝑖,𝑡) + 𝜀𝑖,𝑡, (D.1) 

where 𝑥𝑟𝑖,𝑡 is the excess daily return of firm i on day t, MKT denotes the excess 

market return, and 𝐴𝑛𝑛𝐷𝑎𝑦𝑖,𝑡 is a dummy variable that takes the value 1 on trading 

days {d-1, d, d+1}, where d is the EAD, and 0 otherwise. We estimate this model 

using daily data during the past 12 quarters. We require at least 8 EADs and at least 

451 observations. 

ATMIV: The average of the annualized call implied volatility with delta=0.5 and the 

annualized put implied volatility with delta=-0.5. Annualized implied volatilities are 

sourced from the 10-day Volatility Surface File of OptionMetrics. 

B/M: The ratio of firm book value of equity (CEQ) to market capitalization. Market 

capitalization is defined as the product of share price (PRC) times the number of 

shares outstanding (SHROUT). We drop observations with negative book value. We 

use the B/M ratio computed at the end of the previous fiscal quarter. 

BETA: The market beta estimated from the Fama-French-Carhart 4-factor (FFC4) 

regression model specified in equation (3). We estimate this model at t using daily 

data from t-250 to t-25 and requiring at least 200 observations. MKT, SMB, HML, and 

WML returns are sourced from Kenneth French’s online data library. 

DISPERSION: The standard deviation of the earnings per share (EPS) forecasts for 

the next quarterly earnings announcement scaled by the absolute value of the mean 

EPS forecast. EPS forecasts are sourced from I/B/E/S. 

IVOL: The firm-level annualized standard deviation of residuals from the FFC4 

regression model specified in equation (3). We estimate this model at t using daily 

data from t-250 to t-25 and requiring at least 200 observations. 
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LEVERAGE: The ratio of total liabilities (LT) to the sum of market capitalization and 

total liabilities. Market capitalization is defined as the product of share price (PRC) 

times the number of shares outstanding (SHROUT). We use the LEVERAGE ratio 

computed at the end of the previous fiscal quarter. 

LN(PRICE): The natural logarithm of the share price (PRC). 

LN(SIZE): The natural logarithm of the firm’s market capitalization (in million $). 

Market capitalization is defined as the product of share price (PRC) times the number 

of shares outstanding (SHROUT). We use the market capitalization computed at the 

end of the previous fiscal quarter. 

MOM: The cumulative stock return from day t-250 to day t-25. We require at least 

200 daily observations. 

NUMEST: The number of analysts providing EPS forecasts for the next quarterly 

earnings announcement sourced from I/B/E/S. 

O/S: The ratio of daily option trading volume to daily stock trading volume. Option 

trading volume is multiplied by 100, as each option contract corresponds to a 100-

share lot. We sum up the trading volume of all call and put options with the same 

expiry as the one used to define the indicator CONCAVE. 

RVIV: The difference between the annualized realized (historical) volatility and the 

at-the-money implied volatility (ATMIV). Realized volatility is sourced from the 10-

day Historical Volatility File provided by OptionMetrics. 

RUNUP: The cumulative stock return from day t-4 to day t. We require all 5 daily 

observations. 

RNK: The Risk-Neutral Kurtosis computed as per the definition of Bakshi et al. 

(2003). We use prices of OTM and ATM options with the same expiry as the one 

used to define the indicator CONCAVE. We require at least 4 options, with at least 2 

calls and 2 puts. Option prices are converted to implied volatilities and vice versa via 

the Black-Scholes formula. We use a cubic spline to interpolate implied volatilities 

between the lowest and the highest available strikes and perform a constant 

extrapolation outside this range, with lower bound K/S=1/3 and upper bound K/S=3.  
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RNS: The Risk-Neutral Skewness computed as per the definition of Bakshi et al. 

(2003). We use prices of OTM and ATM options with the same expiry as the one 

used to define the indicator CONCAVE. We require at least 4 options, with at least 2 

calls and 2 puts. Option prices are converted to implied volatilities and vice versa via 

the Black-Scholes formula. We use a cubic spline to interpolate implied volatilities 

between the lowest and the highest available strikes and perform a constant 

extrapolation outside this range, with lower bound K/S=1/3 and upper bound K/S=3.  

STOCKTR: The ratio of daily stock trading volume (VOL) to shares outstanding 

(SHROUT*1,000). 

TSIV: The term structure estimator of ATM implied volatility proposed by Dubinsky 

et al. (2019) and defined as the square root of the following expression: 

    (𝜎𝑖,𝑡𝑒𝑟𝑚
𝑄 )

2
=
𝜎𝑡,𝑇1
2 −𝜎𝑡,𝑇2

2

𝑇1
−1−𝑇2

−1  ,                                  (D.2) 

where 𝜎𝑡,𝑇1
2  is the squared annualized ATM implied volatility corresponding to the 

nearest expiry 𝑇1, whereas 𝜎𝑡,𝑇2
2  is the squared annualized ATM implied volatility 

corresponding to the second nearest expiry 𝑇2. 𝑇1 is the same as the maturity of the 

options used to define the indicator CONCAVE. We use the nearest-to-the-money 

option to compute the ATM implied volatility, with moneyness defined as the strike 

price divided by the forward price. TSIV is not defined when 𝜎𝑡,𝑇1
2 < 𝜎𝑡,𝑇2

2 . 

 

 


