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Abstract 

Classical financial decision-making is based on the assumptions of ‘efficient market’, 

in an economy with many restrictions that cannot capture all the necessary aspects of 

modern needs. For instance, once we add some real-life sources of funding for      

corporation traditional models of valuation, in respect to which many popular risk 

metrics are calculated are no-longer suitable for use.  

During the early 70’s a strong engagement started between economic problems and 

more mathematical and sophisticated valuation and modelling techniques. Option 

Pricing Theory showed the pathway, according to which corporate liabilities can be 

treated as a combination of simple option contracts, allowing us to model many 

economic instances and securities with non-linear equations, that were defined based 

on an underlying asset and an assumed risk-free rate. 

This thesis highlights the importance of Contingent Claim Analysis approach into 

calculating key features of economic entities like market value of asset and market 

value of debt. By calculating these we are able then  to extract suitable risk metrics 

allowing us to both compare different sectors and evaluate the progress of a specific 

issuer of debt in time. 

At the end of the methodology presentation, we apply the CCA method to extract risk-

metrics for a systemic Greek bank from the first quarter of 2001 to the third quarter of 

2020, a time-period of high interest as it included many critical points, like the Greek 

debt and financial crisis and the 2015 referendum. We  investigate whether  Distance-

to-Distress and Probability-of-Default are good predictors of vulnerabilities  related to 

the Greek Banking Sector. 
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1. Introduction 

All parts of the global economic system have nowadays realized the essence of models 

that are able to quantify the risks taken from financial corporations, firms and 

individuals. Following the early 21st century financial crisis, analyzing credit risks 

became critical for every decision globally. 

The technique presented here, Contingent Claim Analysis (CCA), is used for 

determining the price of a security whose payoffs depend upon the prices of one or 

more other securities [4]. CCA roots are present in the Option Pricing Theory as 

developed by Black and Scholes (1973), Merton (1974) and Vasicek (1977) and have 

been  developed rapidly since then.  

Here, our main focus is using CCA to get the market value of assets of a debt issuer and 

through that exploiting some very useful and important risk metrics. 

Before we dive further into the CCA approach, it would be beneficial to make a brief 

introduction both into Black and Scholes and Merton work combined with some more 

widely-used and influential models on Option Pricing Theory as it would allow us to 

deeply understand the concepts and methodology of Contingent Claim Analysis. 

 

1.1 The Black-Scholes-Merton Model 

Black-Scholes-Merton model is a mathematical model of financial derivative market 

from which the Black-Scholes formula can be derived. With the use of this formula, we 

can estimate prices of options during their whole life-time and not strictly at their 

maturity [7]. Black and Scholes model had an incredible influence in modern financial 

pricing and marked the beginning of a significant increase in option trading, which has 

nowadays adopted more scientific methods. The formula itself  is used even today for 

pricing, with some customizations from the practitioners. 

In their initial work, Black and Scholes came up with a Partial Differential equation 

named as “the Black-Scholes equation”, and later Robert Merton (1973) contributed to 

the mathematical understanding of their equation (using Stochastic Calculus) that lead 

to what later became known as the “Black-Scholes-Merton formula”. 

 

Assumptions of the Model 

● There exists in the market a constant risk-free rate. 

● The price of the underlying asset in our option, follows a geometric Brownian 

motion, where we initially assume its drift and volatility are constant. 

● The above security, does not distribute any dividend during the  option’s life-

time. 

● Arbitrage opportunities do not occur in the under-investigation market. 

● We can instantly borrow and lend money at the risk-free rate. 

● Even fractions of security amounts can be traded. 
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● Transactions do not require any additional cost to be delivered. 

With these assumptions holding, we can determine the price of an option traded in the 

previously described market and written on the above security; at any time until the 

option’s maturity, using the Black-Scholes formula.   

 

The Black-Scholes Equation 

As already described, this is a Partial Differential Equation (PDE) describing the price 

movement of European Options under Black-Scholes model. For a European call or put 

option, with respect to the previous market-assumptions this equation is denoted as: 

                                    
𝜕𝑉𝑠,𝑡

𝜕𝑡
+

1

2
𝜎2𝑆𝑡

2 𝜕2𝑉𝑆,𝑡

𝜕𝑆𝑡
2 + 𝑟𝑆𝑡

𝜕𝑉𝑆,𝑡

𝜕𝑆𝑡
− 𝑟𝑉𝑆,𝑡 = 0                         (1.1.1) 

Where 𝑉𝑆,𝑡 is the option price with respect to time and underlying’s price. The risk-free 

rate is denoted as 𝑟, the volatility of the underlying asset is 𝜎 and the underlying’s price 

with respect to time is denoted as 𝑆𝑡. 

 

Black-Scholes Formula 

This formula can calculate the value of European calls or puts. It is obtained by solving 

the equation (1.1.1) with respect to the conditions for a European call option: 

● 𝑐0,𝑡 = 0, ∀ 𝑡 ∈ [0, 𝑇] 

● 𝑐𝑆,𝑡 → 𝑆𝑡 , 𝑓𝑜𝑟 𝑆𝑡 ≫ 0 

● 𝑐𝑆,𝑡 = (𝑆𝑇 − 𝐾, 0)  

Where 𝑐𝑆,𝑡 is the call price with respect to time and underlying’s price. Strike price is 

denoted as 𝐾, and 𝑇 represents the time of  the option’s maturity. 

The above conditions are basically describing the main characteristics of the option, 

like what happens to the option’s price when the underlying security completely loses 

value or how its value is calculated at maturity. 

Note that for European puts, the above conditions are slightly different, to capture the 

information of put options unique characteristics. 

Finally, the previously described process gives us the formula for the price of a 

European Call option with respect to time and value of the underlying security: 

                                         𝑐𝑆,𝑡 = 𝐹(𝑑1)𝑆𝑡 − 𝐹(𝑑2)𝐾𝑒−𝑟(𝑇−𝑡)                                 (1.1.2) 

Where the parameters 𝑑1, 𝑑2 are defined as: 

                                                 𝑑1 =
𝑙𝑛 (

𝑆𝑡
𝐾

) +(𝑟+
𝜎2

2
)(𝑇−𝑡)

𝜎√𝑇−𝑡
                                            (1.1.3) 

                                                   𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡                                             (1.1.4) 
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For better intuition regarding how a European call’s price changes with respect to the 

value of underlying security changes and for different time to maturity values we 

performed some experimental calculation on an IPython notebook and we ended up 

with the following three-dimensional plot: 

 

1: European call prices for different values of underlying security and time to maturity. 

Note that, throughout our calculations we assumed Strike Price (𝐾) and volatility (𝜎) to 

be constant. 

After defining the call price for every time-point up to maturity with equation (1.1.2), 

we can leverage put-call parity to extract the value of the corresponding put option. 

Put-call parity, is a static mathematical formula that implies a relationship between two 

identical options (a put and a call option with same strike prices and maturities) based 

on the simple idea that a portfolio containing at time 𝑡 a call option and the discounted 

at time 𝑡 strike price value in cash, should have identical value with a portfolio formed 

by the, corresponding to previous call, put option and the underlying security of both 

options. Hence, we can describe this assumption via the mathematical formula: 

                                                     𝑐𝑡 + 𝐾𝑒−𝑟(𝑇−𝑡) = 𝑝𝑡 + 𝑆𝑡                                     (1.1.5) 
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Note, at this point that put call parity only stands for European options, as American 

options can be exercised at any time during time interval [0, 𝑇] and not strictly at 

maturity. Also, traders very often use put-call parity to investigate arbitrage 

opportunities in markets of low liquidity. 

Lastly, by combining equations (1.1.5) and (1.1.2) we can calculate the value of a 

European put option with strike price and maturity identical to those of (1.1.2) 

equation’s call as: 

𝑝𝑆,𝑡 = 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆𝑡 − 𝐹(𝑑1)𝑆𝑡 + 𝐹(𝑑2)𝐾𝑒−𝑟(𝑇−𝑡) 

                                    𝑝𝑆,𝑡 = 𝐹(−𝑑2)𝐾𝑒−𝑟(𝑇−𝑡) − 𝐹(−𝑑1)𝑆𝑡                                (1.1.6) 

 

1.2 Alternative Models for Option Pricing 

Apart from Black-Scholes there are some other very interesting models trying to 

estimate what the price of an option should be, given the input characteristics for that 

option like the Strike Price, Time to Maturity etc. Combined with Black-Scholes-

Merton model, these approaches are heavily used by traders and other professionals as 

a very handful way of estimating the fair price for an instrument so that they can build 

portfolios and strategies.  

 

The Cox-Ross-Rubinstein Binomial Option-Pricing Model 

Binomial Option-Pricing Model is a risk-neutral model used to price instrument such 

as vanilla options. It is heavily used for path-dependent options like American Put 

Options and American Call Options. 

In this model, after defining the number of periods we want to investigate, we build a 

decision tree for the evolution of the underlying security over these periods. At every 

node of our decision tree exist three possible paths/scenarios (markets will go up, down 

or stay neutral) each one associated with a probability. After building our tree of the 

underlying’s price possible evolutions we can then define the pay-off of our option at 

each node. 

To help our understanding with an example, imagine the following example, where we 

want to build a three-period model to price a Call Option that has a stock as the 

underlying Asset. At every period, markets can go up or down increasing or decreasing 

the security’s value by a pre-define factor 𝑢 or 𝑑 with a probability of 𝑝 or 1 − 𝑝 

respectively. 
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2: Presentation of binomial model. (Source: https://en.wikipedia.org/wiki/Binomial_options_pricing_model) 

 

After constructing our tree containing underlying security values, an algorithmic 

process can be followed to price the Call Option: 

1. Calculate the price of option at each final node. For the example of Call Option, 

use the formula: max(𝑆3
𝑗

− 𝐾, 0) , 𝑤𝑖𝑡ℎ 𝑗 ∈ {𝑢, 𝑑}. 

2. Use backpropagation approach to define the option value at each one of the 

“earlier” nodes up to the 𝑛 = 0 node that represents option’s value for the 

present time. 

3. For every node 𝑖 ∈ [0, 3) use the formula: 

𝑐𝑖 = 𝑒−𝑟[𝑝𝑐𝑖+1
𝑢 + (1 − 𝑝)𝑐𝑖+1

𝑑 ]. 

Note that, in the last formula, the option’s value at period 𝑖 is calculated as the 

discounted value (using the assumed risk-free rate 𝑟) of the expected value in the next 

period. 

 

Monte Carlo Methods for Option Pricing 

Monte Carlo Simulation is a technique to generate multiple possible future outcomes 

of a random variable [16] that are also commonly called realizations of a stochastic 

process; that is followed by the quantity modelized by that random variable. In 

Mathematical Finance, a Monte Carlo approach for option pricing aims into estimating 

the price of an option that is exposed into some forms of uncertainty and the valuation 

process relies on risk-neutral valuation as the current value of the examined option is 

just the discounted value (using a pre-defined risk-free rate) of the value that was 

calculated for the option in the end of the simulated process. 

https://en.wikipedia.org/wiki/Binomial_options_pricing_model
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In practice, most of the times we consider that for a Call Option with a Stock as the 

underlying security, the stock price to be the main source of uncertainty. Hence, we can 

estimate the option price if we simulate the process that the value of stock (let it be 

denoted as 𝑆𝑡) follows. In our analysis, we consider that the stock price follows a 

Brownian motion like: 

                                                     𝑑𝑆𝑡 = 𝜇 𝑑𝑡 +  𝜎 𝑆𝑡  𝑑𝑊𝑡                                     (1.1.7)  

where the coefficients of both deterministic and stochastic term try to replicate the 

conditions in the market.  

After conducting several realizations of process described by equation (1.1.7), we can 

take an average forecast of the stock price in the future. Therefore, we can calculate the 

value of option then via its pay-off function. After completing these steps, we can price 

the option by discounting its future price into the present.  

For better intuition, this approach can be demonstrated via an example. In an IPython 

notebook, ten realizations of the process followed by the stock price were constructed 

with 𝜇 = 0.05 standing for the risk-free term and a volatility of 5%. For the Call option 

we assumed a Strike Price of 100. For every one of ten different final outcomes of the 

stock price the Call payoff was calculated.  

 

3: Monte Carlo simulation example. 
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The price of the option today, was just the discounted average of the ten payoffs. The 

formula we used can be summarized in the following equation: 

𝑐0 = 𝑒−00.5𝑇[
1

10
(max(𝑆𝑇,1 − 𝐾, 0) + max(𝑆𝑇,2 − 𝐾, 0) + ⋯ + max(𝑆𝑇,10 − 𝐾, 0) )] 

 

where  𝑐0 stands for the current price of option, 𝑇 is the final time-point for each of the 

ten realizations, 𝐾 denotes option’s Strike Price and each of 𝑆𝑇,𝑖 , 𝑖 ∈ {1,2,3, … ,10} 

representing the final stock price in 𝑖-th realization. 

 

1.3 Description of the CCA Model 

The main objective of CCA is to use Merton’s (1974) model to investigate if the debt 

issuer that can be a bank, an economic sector, a Non-Financial Corporation or even a 

country’s households will have enough assets to honor their obligations at maturity [1]. 

The issuer will be able to honor its obligations at maturity, if the market value of his 

assets is greater than the debt to be repaid. If that is not the case, the issuer declares 

bankruptcy and all the assets now belong to the creditors. The loss of creditors in that 

case, can also be quantified via the difference between assets and total liabilities.  

At this point, we should get an intuition for the reason behind the CCA and Option 

Theory association. As we already know a call option gives the holder the right-not the 

obligation-to buy the underlying asset at a predetermined price, known as the “strike 

price” at option’s maturity or during the option’s lifespan for European and American 

options respectively. On the other hand, a put option provides the owner with the right 

to sell the underlying security at a predetermined strike price. For European options, 

we can summarize the above in the following non-linear functions: 

                                                      𝑐 = (𝑆𝑇 − 𝐾, 0)                                                (1.2.1)  

                                                   𝑝 = 𝑚𝑎𝑥 (𝐾 − 𝑆𝑇 , 0)                                          (1.2.2)                        

Where 𝐾stands for the strike price of option and 𝑆𝑡 stands for the underlying security 

market value at a specific time t, with T representing maturity. 

Hence, we can associate the decision of a debt issuer with whether he will honor his 

obligations at maturity with a decision or whether a call option will be exercised at 

maturity. Supposing that he would exercise the call option if underlying’s market value 

exceeded strike price, the same way he will pay his liabilities if the market value of 

assets at maturity exceeds his nominal debt. As, in the simplest approach, a firm’s 

equity market value equals the difference between assets and debt, we can handle the 

issuer’s equity market value as a call option with assets representing the underlying 

security and strike price equal to the nominal debt. 

An important aspect of our analysis is that debt repayments are not certain and whether 

they will happen heavily      relates on assets value. Therefore, we cannot discount values 
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based on a risk-free term and we need to take uncertainty under consideration. This 

uncertainty is described in CCA with the use of put options. 

Our goal is to create a formula for debt for the investor , that could be discounted using 

a risk-free rate, and could also contain the information associated with the case of non-

repayment for debt. This is achieved through a put option with the firm’s total assets as 

the underlying security and strike price to be the debt amount to be paid at maturity [1]. 

What the put option represents here, is exactly what happens in case  the issuer of debt 

is unable to repay that amount at maturity. Then that amount’s value (strike price of put 

option) will be greater than the assets’ value (underlying security of put option), hence 

put option will be exercised returning to the holder (the investor) a recovery in case of 

default from the debt issuer. 

So now, we can describe the issuer’s risky-debt as the summation of default-free 

amount (𝐵) to be paid at maturity plus the previously described put option. If, at 

maturity, the assets of the issuer are greater than that amount     ; creditors will be paid 

normally and the put option’s value will be equal to zero, otherwise the investor suffers 

a loss, which is the equivalent of liquidating issuer’s assets in case of no-repayment 

(guarantee against default). The risky-debt, in that case, is described by the following 

formula: 

                                                        𝐷𝑡 = 𝐵𝑒−𝑟(𝑇−𝑡) − 𝑝𝑡                                        (1.2.3) 

where:   

The risky-debt at a specific time point is denoted as 𝐷𝑡, value of the previously 

described put option is denoted as 𝑝𝑡 and the default-free amount to be paid at maturity 

is denoted as 𝐵. Also, as usual, 𝑡 refers to time and belongs in the interval [0, 𝑇], 𝑇 

represents the maturity time and 𝑟 is the assumed risk-free rate in our analysis. 

 

1.4 Distress Barrier 

In order to deploy the CCA for quantifying the risks associated with an economic entity, 

we use the concept of Distress Barrier (𝐵𝑡). Distress barrier represents what we 

previously described as default-free debt amount and is the amount to be repaid by the 

issuer to the creditors at maturity. Then, if assets are found to be less than the  distress 

barrier the issuer is in distress or default. 

Distress barrier is described in a mathematical formula, as the weighted sum of long-

term debt (𝐷𝐿) and short-term debt (𝐷𝑆). In fact, we consider the whole short-term debt 

and a fraction of the long-term one. 

                                                         𝐵𝑡 = 𝐷𝑆,𝑡 + 𝑎𝐷𝐿,𝑡                                               (1.3.1) 

 

 where: 

𝑎 ∈ [0,1] 
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We should note here that, by changing the 𝑎 value, we get different distress barriers 

corresponding to different economic entities and fitting their unique features. 

 

 

1.5 Approximation for Equity Market Value 

As we stated earlier, whether the issuer will be able to repay his debt at maturity is 

described as a call option with underlying security to be the assets and strike price to 

be the amount to be repaid. The value of that option, with respect to notation we set 

before, is: 

                                  𝑆𝑡 ≡ 𝑐𝑡 = 𝐹(𝑑1)𝐴𝑡 − 𝐹(𝑑2)𝐵𝑒−𝑟(𝑇−𝑡), ∀𝑡 ∈ [0, 𝑇)           (1.4.1)                            

Where 𝐴𝑡 is the market value of assets at time 𝑡, 𝐵𝑒−𝑟(𝑇−𝑡)
, is the distress barrier 

discounted at time 𝑡 and 𝑟 is the risk-free rate we use throughout our analysis. 

Although at maturity (𝑡 ≡ 𝑇) the above function describes exactly what explained 

above, during the whole time-spectrum ( 𝑡 ∈ [0, 𝑇]) and assuming that assets are 

greater than liabilities, this function is also used as an approximation for the equity 

market value of the entity issuing the debt. Hence, we can write that: 

                                                 𝑆𝑡 = 𝐴𝑡 − 𝐷𝑡 , ∀𝑡 ∈ [0, 𝑇]                                     (1.4.2) 

 

1.6 Applications of CCA 

In the framework described earlier, where market values of assets for the debt issuer 

are extracted with CCA in order to calculate insightful risk metrics, we are going to 

present the methodology used for different sectors: 

● Standard CCA approach  

● Variation of methodology for Non-Financial Corporations 

● Variation of methodology for Household (HH) sector 

● CDS valuation for the Government Sector (GVT) 
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2. The Standard CCA Approach 

 

2.1 Formalization of Model 

As already mentioned before, the market value of equity can be described as a junior 

claim on the assets, and hence as a call option on them with liabilities as strike price [2]. 

With that in mind, we can describe it as in equation (1.3.2):  𝑆𝑡 = 𝐴𝑡 − 𝐷𝑡 , ∀𝑡 ∈ [0, 𝑇] . 

Where 𝑆𝑡 , 𝐴𝑡, 𝐷𝑡 represent equity market value, assets value and risky debt at every time 

point from start to maturity respectively. 

We assume that the assets follow a stochastic process with a drift of 𝜇𝐴 in the 

deterministic term and their volatility 𝜎𝐴 affecting the stochastic term. 

                                                       
𝑑𝐴𝑡

𝐴𝑡
= 𝜇𝐴𝑑𝑡 + 𝜎𝐴𝑑𝑊𝑡                                        (2.1.1)    

 

Here, 𝑊𝑡 represents the random component of the process modeled as a standard 

Brownian motion. In discrete time, the random part follows a normal distribution of 

zero mean and variance equal to √𝑑𝑡. In continuous time, the above equation is referred 

to as a geometric Brownian motion [15], where 𝑊𝑡 is a Wiener-process with 

𝑑𝑊𝑡~𝑁(0, 𝑑𝑡) [2]. 

Keeping in mind the assumptions above and defying an initial value for assets (𝐴0 ), 

assets value for any time-point in the interval from start to maturity is given from the 

following mathematical formula: 

                                          𝐴𝑡 = 𝐴0𝑒
(𝜇𝐴−

𝜎𝐴
2

2
)𝑡+𝜎𝐴𝑊𝑡

 , ∀ 𝑡 ∈ [0, 𝑇]                             (2.1.2) 
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For better understanding, we created some realizations of stochastic processes to 

demonstrate. 

 

4: Realizations of stochastic moves, in the same time interval but with different drifts and volatilities. The graph 
was generated in Jupyter notebook for IPython environment. 

In the above graph we can observe exactly what the previous equations describe. The 

sequential values that 𝐴𝑡 gets in the interval [0, 𝑇] are derived from the summation of 

a deterministic variable with already known values through the interval and a random 

variable whose values are randomly picked from a distribution. 

As we already explained, the debt issuer will declare bankruptcy or will be in distress 

if at maturity (𝑡 ≡ 𝑇) assets value 𝐴𝑇 is less than the distress barrier 𝐵. This is visualized 

into the following graph: 
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5: CCA approach visualization with respect to assets stochastic process realization. The graph was generated in 

Jupyter Notebook for IPython environment.  

Here apart from the methodology intuition part, we can also visualize some very 

important risk metrics, associated with CCA that will be calculated later on. The first 

metric is the Distance-to-Distress (DtD) denoted here as the green line. This metric 

basically represents the distance between the       final value of the assets and the distress 

barrier and the higher value it gets the safer the issuer is from distress. The second 

noticeable metric in the above graph is Probability-of-Default visualized here as the 

orange area under 𝐴𝑇 probability density function. Basically, this metric provides us 

with the probability that assets of debt  will fall below the distress barrier at maturity. 

 

2.2 Calculation of Assets Value 

Treating issuer’s equity market value as a call option on assets, we can retrieve the 

following equation using Black and Scholes (1973) methodology: 

                                         𝑆𝑡 = 𝐴𝑡 𝐹(𝑑1) − 𝐵𝑒−𝑟(𝑇−𝑡)  𝐹(𝑑2)                                (2.2.1) 

 

Also, by using equation (1.3.2) we can also write: 

                                     𝐷𝑡 = 𝐴𝑡 − 𝐴𝑡  𝐹(𝑑1) + 𝐵𝑒−𝑟(𝑇−𝑡)  𝐹(𝑑2)                           (2.2.2) 

Where:  

                                 𝑑1 =
𝑙𝑛 (

𝐴𝑡
𝐵

) +(𝑟+
𝜎𝛢

2

2
)(𝛵−𝑡)

𝜎𝐴√𝑇−𝑡
, 𝑑2 = 𝑑1 − 𝜎𝐴√𝑇 − 𝑡                      (2.2.3) 

And 𝐹 denotes the cumulative normal distribution, 𝑟 is the chosen risk-free rate and 𝜎𝐴 

is the assets market value volatility of returns. 
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Note that, in order for the above formulas to be accurate they must describe an economic 

system with no transaction costs, arbitrage opportunities and dividend distribution. 

Another important assumption of this analysis is that bankruptcy can only occur at at 

maturity and by no means in the meantime [0, 𝑇). 

 

Our final objective is to calculate assets value and volatility as with the knowledge of 

them we can calculate both the value of our debt and some very informative risk 

metrics. On this direction and leveraging the fact that we can retrieve equity value and 

volatility of equity from market, we apply Itô’s lemma on S [15]: 

                           𝑑𝑆𝑡 = (
𝜕𝑆𝑡

𝜕𝐴𝑡
𝜇𝐴𝑡 +

𝜕𝑆𝑡

𝜕𝑡
+

1

2

𝜕2𝑆𝑡

𝜕𝐴𝑡
2 𝜎2𝐴𝑡

2) 𝑑𝑡 +
𝜕𝑆𝑡

𝜕𝐴𝑡
𝜎𝐴𝑡  𝑑𝑊𝑡              (2.2.4) 

From which equation, we can retrieve: 

                                                 𝑆𝑡𝜎𝑆 = 𝐴𝑡𝜎𝐴
𝜕𝑆𝑡

𝜕𝐴𝑡
= 𝐴𝑡𝜎𝐴𝐹(𝑑1)                                (2.2.5) 

Equations (2.2.5) combined with equation (2.2.1) form a two-by-two system of 

equations, which let us calculate the two unknown entities that are assets and their 

volatility. After solving that system, with respect to 𝐴𝑡, 𝜎𝐴  we obtain a time-series for 

both assets and the volatility of their returns in the under-investigation time interval.  

An important notice should be made here, as it is also highlighted in  the literature. The 

above system is highly-sensitive to initial values for equity market value and volatility 

of equity returns. In practice, we observe large deviations in the final solutions for assets 

and their volatilities, even for small changes in initial conditions [2]. 

Note that, the above approach, where in order to obtain values of Assets and their 

volatility we solve the system of equations (2.2.5) and (2.2.1), allows changes in the 

volatility of Assets (𝜎𝐴) value. However, to be consistent with initial model’s theory we 

should treat 𝜎𝐴 as a constant value [14] and only allow Asset value to change over time. 

In this framework and to keep up with mathematical strictness, the best way of 

obtaining 𝐴𝑡 values and their “risk” 𝜎𝐴 would be via an equation that tries to minimize 

at every time-point in the interval [0, 𝑇] the deviation from what equations (2.2.5) and 

(2.2.1) state [1]. Hence, this objective can be described as the following optimization 

problem: 

             min
𝐴𝑡,𝜎𝐴

∑ [𝐴𝑡 𝐹(𝑑1) − 𝐵𝑒−𝑟(𝑇−𝑡) 𝐹(𝑑2)]2 +𝑡∈[0,𝑇] ∑ [𝑡∈[0,𝑇] 𝐴𝑡𝜎𝐴 − 𝑆𝑡𝜎𝑆]2  (2.2.6) 

Where, we try to ensure that at every time-spot in the interval of interest, we pick the 

value for 𝐴𝑡, 𝜎𝐴 that make equations that formed the initial system stand or in the worst 

case have the least deviation possible. 

 

2.3 Risk Metrics Calculation 

In the present approach, as we already stated before, we use Contingent Claim Analysis 

to quantify credit risk. After solving the system of equations described in section 2.2, 
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we can now easily calculate the value of debt, via equation (2.2.2) and various 

interesting risk metrics, leveraging the newly acquired knowledge of 𝐴𝑡  and 𝜎𝐴 values. 

The metrics used for calculating credit risk are presented below: 

 

2.3.1 Distance to Distress (DtD) 

Distance to Distress (DtD) stands for the distance between assets value and the distress 

barrier assumed for the specific debt issuer at the start of our analysis. Obviously, the 

higher value this metric gets the more distant the default or distress scenario is, as assets 

value would be significantly over the      distress barrier in that case. 

In CCA, DtD equals to 𝑑2 and statistical terms, it describes the number of standard 

deviations final assets value is away from distress barrier. We use the following formula 

for this metric: 

                                               𝐷𝑡𝐷 = 𝑑2 =
𝑙𝑛 (

𝐴𝑡
𝐵

) +(𝑟−
𝜎𝛢

2

2
)(𝛵−𝑡)

𝜎𝐴√𝑇−𝑡
                                  (2.3.1) 

In literature, a more naïve approach on calculation of this metric is often used [2]: 

                                                                 𝐷𝑡𝐷 =
𝐴𝑡−𝐵

𝐴𝑡𝜎𝐴
                                           (2.3.2) 

 

 

2.3.2 Probability of Default (PD) 

Probability of Default (PD) is a metric that provides us with the probability, that at a 

specific time 𝑡, the value of assets fall below the distress barrier threshold. For known 

value of the distress barrier at time 𝑡, 𝐵𝑡 we can calculate the previously described 

metric as: 

                                 𝑃𝐷 =𝑃𝑟 𝑃𝑟 (𝐴𝑡 ≤ 𝐵𝑡)  = 𝐹(−
𝑙𝑛 (

𝐴0
𝐵𝑡

) +(𝜇𝐴−
𝜎𝐴

2

2
)𝑡

𝜎𝐴√𝑡
)                      (2.3.3) 

In the above equation, the argument of the normal cumulative function has great 

similarities with the previously described risk metric, Distance-to-Default. In fact, the 

absolute values are exactly the same, if we use the risk-free rate 𝑟 instead of the above 

drift term 𝜇𝐴 . 

Calculating probability with the exact (2.3.3) formula, leads to the calculation of the 

“actual” Probability of Default [2]. Throughout our analysis, we will stay in “risk-neutral 

world” for our calculations and we will instead use the “risk-neutral” Probability of 

Default that is calculated with (2.3.3) equation by substituting drift term of assets with 

the risk-free rate. 

Note that, because risk-free rate in practice tends to be lower than the drift term of 

assets, the “actual” Probabilities of Default tend to be lower than the risk-free ones. 
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2.3.3 Ex-ante expected loss 

This metric, basically represents the loss the investor would suffer if the issuer of debt 

declares bankruptcy at maturity. In CCA terminology, it is the value of the previously 

described put option and can be calculated via the following formula: 

                                                        𝑚𝑎𝑥 (0, 𝐷𝑇 − 𝐴𝑇)                                              (2.3.4) 
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3. CCA Extension to Other Sectors 

The analysis described in the previous sections can change its direction and start 

focusing on whole sectors of specific characteristics and not on pre-determined debt 

and instances, as it was initially designed to. In order to apply CCA to various sectors 

like households of a country (HH) or Non-Financial Corporations (NFC) we should re-

adjust our model and its parameters to fit the available data for the sector the best 

possible way. In the sections that follow, we are going to describe the methodology that 

leads to the calculation for each specific sector of interest, exploiting the knowledge 

provided by data we have available. 

As stated from the beginning of the Contigent Claim Analysis description, the whole 

process is based on the construction of a risk-adjusted balance sheet for the under-

examination instance. In the following graph, we present a highly informative 

categorization of how we model the various quantities in each CCA application case in 

order to continue our analysis. 

 

6: 1 Balance-Sheet construction guide for CCA Analysis. Source: Dale F. Gray, Robert C. Merton, Zvi Bodie. New 
Framework for Measuring and Managing Macrofinancial Risk and Financial Stability [12]. 

1 
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3.1 Non-Financial Corporations (NFC) 

Here, we treat the whole under-investigation sector as it was one entity according to 

Gray and Malone (2008) approach [14]. To follow the methodology analyzed in chapter 

2, we need to first make some assumptions on how we are going to “construct” the 

model’s parameters from the available data. The main focus of this process is what our 

equity market value and volatility would stand for and how we will define the sector's      

distress barrier. Setting these up, would allow us to calculate assets and their volatility 

and then exploit the desired risk-metrics. 

The equity market value of under examination sector (𝑆𝑡) is approximated as the sum 

of the market capitalization of all members of that sector. For example, if we try to 

analyze the banking sector of a country, the equity market value in our equations would 

be the summation of market capitalization for every bank in that country. 

A building-block for Contingent Claim Analysis is the distress barrier assumed at the 

start of every analysis. Distress barrier is given by equation (1.2.1) and as we stated at 

section 1.2 the value of 𝑎 parameter is chosen with respect to each sector’s individual 

characteristics. For NFC’s, the most common practical approach is to set 𝑎 equal to 0.5 
[2]. This decision leads to a distress barrier that is the sum of short-term debt and half of 

the long-term debt. 

Last but not least, we should also define the equity volatility of the sector with respect 

to the available data. We consider the volatility of NFC sector’s equity a combination 

of sector’s corporations’ volatilities. In practice, there are two popular approaches for 

calculating the whole sector volatility, that although their differences they produce 

similar outputs. The first technique treats sector volatility as the average of sector’s 

“members” volatilities, with each volatility weighted with respect to each market 

capitalization contribution to the whole sector’s market capitalization. The second 

approach, focuses again on the weighted average of corporation volatilities but with 

respect to correlation between equities. Note that most of the time estimating NFC 

sector volatility with the second approach leads to higher DtD values, as the 

corresponding volatility of the sector tends to be lower due to the existence of negative 

correlations among the sector’s equities. 

 

3.2 Households Sector (HH) 

In order to apply our model as defined in chapter 2 for a country’s household (HH) 

sector we have, again, to redefine the way we extract our important parameters from 

our available data. One of the trickiest things about this process is that households do 

not issue equity [2]. 

Although very serious attempts have been made in this direction and balance sheets 

with respect to household characteristics have been created, it is very difficult to 

“construct” this kind of balance sheets as the different items that they consist of are      
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sometimes impossible to quantify. Another important drawback we have to deal with, 

is that as there has never been reported a massive default from the HH sector, our 

application of CCA results in extremely high DtD values and close to zero PD values.  

Applying the approach made by Castrén and Kavonius (2009), leveraging the 

knowledge provided from our dataset we approximate 𝑆𝑡 as the net financial worth of 

the whole HH sector. Also, the distress barrier in that case is modeled through the total 

debt of the household that mainly contains mortgages. Finally, the HH equity volatility 

through the volatility of the ten -year government bond for every country’s households. 

The main reason behind that last assumption about volatility is the common belief that 

the government bond volatility is a very good estimation for HH sector volatility. This 

thought can be justified as a government bond reflects information about critical 

features of a domestic economy, as growth and inflation. 

 

3.3 The Government Sector (GVT) 

In order to analyze the Government Sector (GVT) we have to change our approach of 

constructing balance sheets and model the features of interest via options. Also, the 

GVT sector does not issue any equity to capture some information about 𝑆𝑡. Lastly, if 

we continued in the same direction for extracting risk metrics for the GVT sector, we 

would face the practical problem of market value of debt constantly exceeding  the 

distress barrier [2]. 

Following the methodology firstly presented by Gray et al. (2013) will extract risk-

neutral PD and DtD through risky debt valuation. Here, we are going to use the market 

traded Credit Default Swaps (CDS) and their spread (𝑠 =
𝐶𝐷𝑆𝑡

10000
), that are financial 

derivatives or contracts that allow investors to interchange their credit risks [5]. 

In the first step of our analysis, we define the Expected Loss Ratio (ELR), that is the 

Expected Loss (EL) per unit of riskless debt. Hence, we calculate ELR via the following 

formula: 

                                          𝐸𝐿𝑅 =
𝐵𝑒−𝑟(𝑇−𝑡)−𝐷𝑡

𝐵𝑒−𝑟(𝑇−𝑡) = 1 −
𝐷𝑡

𝐵𝑒−𝑟(𝑇−𝑡)                             (3.3.1) 

 

 

The spread 𝑠 relates to ELR via the following equation [2]: 

                                                  𝑠 = −
1

𝑇
𝑙𝑜𝑔 (1 − 𝐸𝐿𝑅)                                                   (3.3.2) 

 

Thus, using equations (3.3.1) and (3.3.2) we can solve for debt value and get as a result 

the formula: 

                                                    𝐷𝑡 = 𝐵𝑒−(𝑠+𝑟)(𝑇−𝑡)                                             (3.3.3) 
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Now, given the CDS spread 𝑠, we can calculate the risk-neutral PD through the   

formula [6]: 

                                                     𝑃𝐷 = 1 − 𝑒
−

𝑠

1−𝜌                                                 (3.3.4) 

Where 𝜌 is used to denote the recovery rate. 

 

Finally, working in “risk-neutral world” where we use the risk-free rate for every 

deterministic value change, we can calculate Distance-to-Distress metric according to 

what we discussed in chapter 2. There, we defined Probability of default as: 

                                                          𝑃𝐷 = 𝐹(−𝑑2)                                                (3.3.5) 

Since we already have mentioned that 𝐷𝑡𝐷 = 𝑑2, we can now calculate DtD with the 

formula below: 

                                         𝐷𝑡𝐷 = −𝐹−1(𝑃𝐷) = −𝐹−1(1 − 𝑒
−

𝑠

1−𝜌)                        (3.3.6) 
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4. Application for Greek Banking Sector 

In the present part of the project, we try to apply the previously described technique to 

a Greek Bank’s case in a time range from first 2001 quarter to third quarter of 2020. 

Our main goal is to apply the Contingent Claim Analysis to extract from our available 

data the values for both risky-debt and Assets and continue with the calculation of 

Distance-to-Distress and Probability of Default risk metrics. 

 

4.1 Available Data 

For modeling essential features of the under-examination bank we used information 

from the bank’s balance sheets. Leveraging the knowledge from them, we extracted the 

time-series for short-term and long-term debts that helped us define the distress barrier 

by setting our 𝑎 value equal to 0.5. 

To define the equity market value, we used the public data for the bank's equity market 

capitalization. On the other hand, we used daily data from the bank’s stock price closing 

value to extract the volatility of equity returns with a 30-days’ time lag. 

The used risk-free rate 𝑟, was constructed using the yield of the 3-month Greek 

Government Bond. 

After defying the Assets market value via CCA we calculated the market value of risky 

debt in our final data, by subtracting equity from them following equation (1.3.2): 

𝑆𝑡 = 𝐴𝑡 − 𝐷𝑡, ∀𝑡 ∈ [0, 𝑇]. 
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4.2 Visualization of Results 

After importing the data into our IPython notebook, we began our data processing. 

Performing our analysis, we came up with values for Assets, Debt, Distress Barrier by 

solving the defined two by two system of equations with respect to 𝐴𝑡, 𝜎𝐴 and more 

important DtD and PD metrics throughout the time interval of interest (Q1-2001 to Q3 

2020). In the next lines will present our findings in the form of graphs: 

 

7: Assets, Equity and Debt market values, calculated from available data. The graph was generated in Jupyter 

Notebook for IPython environment. 

In the above graph, we can observe the evolution of Equity, Debt and Assets values 

from early 2001 to late 2020. Debt and assets seem to have a similar movement, while 

equity is in very lower magnitudes. An interesting fact here, is the significant and 

continuing rise in debt’s value from the beginning of Greek Crisis until approximately 

the early 2015, when we have a turning point, from where debt starting to slightly 

decrease in value. The above results seem to approximately satisfy the assumed 

equation (1.3.2) that is a building block of our analysis. 
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The next graph to be presented is the one of both Distress Barrier and Assets with 

respect to time. As we stated from the start of this project the debt issuer will be in 

distress if the value of assets falls below the distress barrier. Combined with the graph 

where we plot the values of risk-metrics, the next is one of the most interesting and 

informative graphs that reflect the condition of the under-examination institute in the 

long-term, with respect to its liabilities. 

 

8: Distress Barrier and Assets results from our analysis. The graph was generated in Jupyter Notebook for IPython 

environment *. 

 

Here it is obvious that the difference between Assets and Distress Barrier reached its 

maximum values before the year 2009. That was a breaking point, from which mainly 

due to Greek financial crisis things started to rapidly change. 

Beyond that time-point, we can observe a severe decrease in the difference between 

Assets and Distress Barrier values, a fact that reflects the proximity to distress for the 

Greek banking sector at that period. Indeed, during this time-period, Greek Banks were 

recapitalized several times. 

Although there was an improvement in the Distress Barrier-Assets difference 

approximately around 2014, things started to get worse again from year 2015 and then, 

reflecting a period of high uncertainty about the Greek Economy. 
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In the final graph, we present the values of risk-metrics we calculated over the time 

period of 2001-2020. This is probably the most important and informative graph of our 

analysis, as the risk-metrics presented can be used as benchmarks that directly associate 

the condition of the examined bank with the value of a metric designed explicitly to 

describe this kind of scenarios. 

  

 

9: Distance-to-Distress and Probability of Default as calculated through our analysis. The graph was generated 
using Jupyter Notebook for IPython environment. 

 

A stand-out result here, is that Distance-to-Distress was at significantly higher levels 

before the Greek financial crisis, but this changed drastically from late 2007 combined 

with the global crisis started from the U.S.A at that year. Since then, DtD was never 

restored to its initial high scale, with a slight improvement observed the years after 

2016. This impressive decline in Distance-to-Distress metric indicates that the 

examined instance was constantly closer to the default the years after 2008 and reflects 

the global concerns about the path of Greek Economy at that time-period. 

On the other hand, Probability of Default results are not that insightful. The reason 

behind that, is that it is almost stable in extremely low-near zero values. This is justified 

as the above are the “risk-neutral” PD, where the risk-free rate is used and they tend to 

be lower than the “actual” ones [2]. As we already mentioned, this is the reason we 

mainly compare DtD’s among sectors or over time in these kinds of analysis. 
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In conclusion, DtD metric seems to describe accurate enough the potential problems 

associated with the Banking Sector and can be used to produce efficient predictions for 

the condition of Banking Institutions. 

 

4.3 Analytical Results of Analysis 

The final results of the analysis, were exported from our IPython notebook to an excel 

workbook in order to be presented in a more analytical way. These results are presented 

in the following table, where each row represents a specific day when analysis was 

made and each column representing the values of a specific variable of the model. 

 

Dates Distress 

Barrier 

Assets Asset 

Volatility 

Market 

Value of 

Debt 

DtD PD 

2001- Q1 10922.39 12575.06 0.00518459 10478.90926 35.16915 2.9629E-271 

2001-Q2 10771.03 12484.95 0.00772657 10348.68775 24.28435 1.4346E-130 

2001-Q3 10156.58 11121.28 0.00980813 9814.113259 12.7436 1.6921E-37 

2001-Q4 11576.32 12900.54 0.00635267 11232.31099 21.79464 1.3041E-105 

2002-Q1 13016.55 13781.4 0.00500883 12621.33437 17.5528 2.8311E-69 

2002-Q2 12649.7 13494.86 0.00361569 12274.61556 26.21054 1.0077E-151 

2002-Q3 12694.83 13383.77 0.0029016 12347.39524 27.77544 4.295E-170 

2002-Q4 13387.52 14084.17 0.00194253 13077.88795 38.16003 0 

2003-Q1 12826.05 13359.35 0.00293821 12516.87834 22.16798 3.4989E-109 

2003-Q2 13364.38 14159.09 0.00559887 13059.19614 14.44013 1.44638E-47 

2003-Q3 13117.79 14132.05 0.00475347 12834.91611 20.25153 1.72171E-91 

2003-Q4 13390.36 15032.08 0.00444346 13119.5265 30.62369 2.9612E-206 

2004-Q1 13793.4 15360.7 0.00705774 13515.31933 18.13094 9.08147E-74 

2004-Q2 13874.04 15469.57 0.00489196 13572.82103 26.73643 8.8803E-158 

2004-Q3 13359.23 14913.91 0.00300699 13068.53368 43.92521 0 

2004-Q4 14459.1 16703.73 0.0047544 14162.87524 34.70398 3.4308E-264 

2005-Q1 15338.74 17826.59 0.01000323 15022.99303 17.10041 7.36817E-66 

2005-Q2 16430.9 19173.41 0.00755246 16089.44791 23.21523 1.5977E-119 

2005-Q3 18649.88 21749.53 0.00523835 18265.0566 33.32895 7.3523E-244 

2005-Q4 20402.86 23854.04 0.00387517 19964.88624 45.92598 0 

2006-Q1 19475.16 24291.19 0.01611995 18919.43391 15.49598 1.8465E-54 

2006-Q2 20764.05 25091.79 0.01856039 20096.05015 11.9526 3.14608E-33 

2006-Q3 21465.64 26204.84 0.0053958 20714.9032 43.56652 0 

2006-Q4 23926.01 29581.29 0.00829393 23022.36606 30.21984 6.4999E-201 

2007-Q1 29159.94 35129.56 0.00993241 28104.48569 22.45821 5.3189E-112 

2007-Q2 31546.49 37756.7 0.00683158 30445.22049 31.50231 4.0385E-218 

2007-Q3 33083.22 40342.98 0.00976218 31879.11877 24.11535 8.6265E-129 

2007-Q4 38728.86 46268.74 0.01224522 37212.13645 17.78298 4.78735E-71 

2008-Q1 40661.82 45635.6 0.01254374 39028.00841 12.46278 5.95725E-36 

2008-Q2 43340.76 43969.3 0.01051006 38281.37471 13.17526 6.09022E-40 

2008-Q3 44459.07 45949.17 0.01383313 41170.78971 7.931038 1.08661E-15 

2008-Q4 48136.84 48844.29 0.00440864 46735.20801 10.00987 6.89645E-24 

2009-Q1 47437.51 48425.73 0.00431717 46778.01336 8.016516 5.43935E-16 

2009-Q2 47245.39 49195.58 0.00540795 46808.04675 9.196472 1.84948E-20 

2009-Q3 45733.13 49732.41 0.00775686 45471.83307 11.5425 4.0274E-31 
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2009-Q4 48151.15 49911.06 0.00736411 47190.61379 7.607228 1.40019E-14 

2010-Q1 49465.98 49990 0.00417997 47814.31427 10.6434 9.35837E-27 

2010-Q2 50990.34 50477.15 0.00203741 49303.55546 11.54527 3.89975E-31 

2010-Q3 52037.58 51119.43 0.00191028 49898.76193 12.65083 5.5352E-37 

2010-Q4 52499.75 50440.91 0.00204533 49213.518 12.04315 1.05371E-33 

2011-Q1 50797.45 50190.58 0.00442298 48589.92526 7.325701 1.18827E-13 

2011-Q2 52248.92 49794.49 0.00223309 48571.12678 11.13815 4.09004E-29 

2011-Q3 52501.15 48755.01 0.00256251 48217.64339 4.323741 7.67028E-06 

2011-Q4 50104.03 46746.34 0.00109481 46457.08172 5.669065 7.17893E-09 

2012-Q1 48066.11 45329.59 0.00139506 44994.59694 5.316371 5.29287E-08 

2012-Q2 47749.15 45422.35 0.00128047 45126.23205 5.107351 1.63353E-07 

2012-Q3 69148.89 66383.75 0.00103932 65976.72168 5.917045 1.63888E-09 

2012-Q4 71981.88 69461.55 0.0011566 69075.10402 4.822998 7.07084E-07 

2013-Q1 83880.8 80699.17 0.00052281 80476.22379 5.291406 6.06899E-08 

2013-Q2 84878.1 88073.29 0.02226464 81834.02813 3.288862 0.000502966 

2013-Q3 82852.95 86345.56 0.00758965 80004.85316 10.04543 4.81141E-24 

2013-Q4 82919.35 88199.98 0.00706996 80438.94772 13.02457 4.43473E-39 

2014-Q1 80037.28 88146.98 0.0101744 78001.84612 12.01265 1.52467E-33 

2014-Q2 77986.34 86239.45 0.01182233 76354.24439 10.2919 3.83235E-25 

2014-Q3 77543.02 84806.98 0.00909763 76630.32644 11.13955 4.02614E-29 

2014-Q4 80871.84 84621.39 0.0108335 79068.58925 6.259538 1.9306E-10 

2015-Q1 80206.71 79900.08 0.0065356 77709.47435 4.250315 1.06735E-05 

2015-Q2 79583.67 79980.79 0.00751082 77539.99793 4.122631 1.87284E-05 

2015-Q3 77734.21 76728.06 0.00196174 76252.10677 3.170714 0.000760323 

2015-Q4 76610.95 77463.03 0.01418259 75035.20493 2.233736 0.012750226 

2016-Q1 74585.69 74634.26 0.00592962 72651.83096 4.537139 2.85112E-06 

2016-Q2 73198.88 72696.32 0.00522809 71290.27676 3.733107 9.45663E-05 

2016-Q3 71263.46 70584.61 0.00195987 69414.35988 8.529334 7.35965E-18 

2016-Q4 70326.09 70660.28 0.00436535 68835.03996 5.992894 1.03069E-09 

2017-Q1 66433.87 66701.43 0.0023112 65216.7916 9.738154 1.03643E-22 

2017-Q2 63560.85 64348.96 0.00284863 62471.32746 10.39414 1.31827E-25 

2017-Q3 57853.81 58196.71 0.00449999 56930.39471 4.886511 5.13192E-07 

2017-Q4 55784.5 56346.75 0.0025085 55006.20773 9.597508 4.09503E-22 

2018-Q1 54470.44 54979.25 0.00178914 53857.0381 11.52574 4.89364E-31 

2018-Q2 50360.99 51275.24 0.00298058 50000.19582 8.446883 1.49592E-17 

2018-Q3 50352.28 50806.47 0.00215439 49985.54726 7.5601 2.0138E-14 

2018-Q4 52873.5 52809.03 0.00080962 52442.234 8.608434 3.70326E-18 

2019-Q1 50462 50794.92 0.00174172 50263.06828 6.042446 7.58975E-10 

2019-Q2 50758 51976.78 0.00493515 50638.85827 5.28164 6.40163E-08 

2019-Q3 50465 51673.33 0.00194432 50328.42439 13.56254 3.33922E-42 

2019-Q4 52623 53928.61 0.00149457 52623.00014 16.39717 1.00184E-60 

2020-Q1 51798 52306.07 0.00296846 51715.70434 3.822325 6.60997E-05 

2020-Q2 55681.5 56188.05 0.00176612 55502.49369 6.950025 1.82611E-12 

2020-Q3 59013.5 59288.82 0.00063291 58823.78265 12.44158 7.7701E-36 

 

Where the observations related with the two important risk-metrics are similar to what 

we already described. Probability-of-Default, due to the reasons described earlier, 

remains in extremely low values that are practically zero and is not suitable for further 

analysis.  
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In contrast, the Distance-to-Distress metric has a significant fall around 2008 and 

continues reflecting the bad condition of the Banking Sector until 2016, when a slight 

improvement appears.  

From the analysis above, appears that Distance-to-Distress is a good predictor of 

potential problems in the Greek Banking sector. 
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Appendix 

In this section will be presented the code used to extract figures throughout the project. 

On the other hand, code used for CCA analysis and results visualization would be 

available upon request.  

 

 

Figure 1: 

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
from scipy.stats import norm 
from math import sqrt, exp 
from mpl_toolkits.mplot3d import Axes3D 
 
 
class BS: 
    ''' 
   create BS class so that we can instantly create Black-Sholes valu
es objects! 
    ''' 
 
    def __init__(self, call, stock, strike, maturity, interest, vola
tility, dividend): 
        self.call = call 
        self.stock = stock 
        self.strike = strike 
        self.maturity = maturity 
        self.interest = interest 
        self.volatility = volatility 
        self.dividend = dividend 
        self.d1 = (self.volatility * sqrt(self.maturity)) ** (-1) * 
(np.log(self.stock / self.strike) + (self.interest-self.dividend + s
elf.volatility ** 2 / 2) * self.maturity) 
        self.d2 = self.d1 - self.volatility * sqrt(self.maturity) 
   #define methods to our class to price the different options-attri
butes 
    def price(self): 
        if self.call: 
            return exp(-self.dividend * self.maturity) * norm.cdf(se
lf.d1) * self.stock - norm.cdf(self.d2) * self.strike * exp(-self.in
terest * self.maturity) 
        else: 
            return norm.cdf(-self.d2) * self.strike * exp(-self.inte
rest * self.maturity) - norm.cdf(-self.d1) * self.stock * exp(-self.
dividend * self.maturity) 
 
#Create arrays with the different input values for each variable 
S = np.linspace(0, 200, 50) #stock price 
T = np.linspace(0.001, 3, 50) #time to maturity 
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#s = np.linspace(0.001, 0.8, 50) #volatility 
s=np.ones((50,1))/4 
 
#Calculate call price for different price combinations 
ct = np.array([]) 
for i in range(0, len(T)): 
  ct = np.append(ct, BS(True, S, 80, T[i], 0.05, 0.3, 0.02).price(), 
axis=0) 
ct = ct.reshape(len(S), len(T)) 
 
#Calculate call price for volatility-price combinations 
cs = np.array([]) 
for i in range(0, len(s)): 
  cs = np.append(cs, BS(True, S, 80, 3, 0.05, s[i], 0.02).price(), a
xis=0) 
cs = cs.reshape(len(S), len(s)) 
 
#Generate 3D graph 
X1, Y1 = np.meshgrid(S, T) 
 
fight = plt.figure() 
ax = Axes3D(figct) 
ax.plot_surface(X1, Y1, ct, rstride=1, cstride=1, cmap=cm.coolwarm, 
shade='interp') 
ax.view_init(27,-125) 
plt.title('Call Option Price') 
ax.set_xlabel('S') 
ax.set_ylabel('T') 
ax.set_zlabel('c') 
 
 
X2, Y2 = np.meshgrid(S, s) 
 
figcs = plt.figure(figsize=(12,8)) 
ax = Axes3D(figcs) 
ax.plot_surface(X2, Y2, cs, rstride=1, cstride=1, cmap=cm.coolwarm, 
shade='interp') 
ax.view_init(27,-125) 
plt.title('Call Option Price wrt Volatility') 
ax.set_xlabel('Stock Price') 
ax.set_ylabel('Volatility') 
ax.set_zlabel('Call price') 
 
plt.show() 
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Figure 3: 

import numpy as np 
from matplotlib import pyplot as plt 
 
 
S0 = 100 #initial stock price 
K = 100 #strike price 
r = 0.05 #risk-free interest rate 
sigma = 0.50 #volatility in market 
T = 1 #time in years 
N = 100 #number of steps within each simulation 
deltat = T/N #time step 
i = 10 #number of simulations 
discount_factor = np.exp(-r*T) #discount factor 
 
S = np.zeros([i,N]) 
t = range(0,N,1) 
 
 
plt.figure(figsize=(12,8)) 
for y in range(0,i-1): 
    S[y,0]=S0 
    for x in range(0,N-1): 
        S[y,x+1] = S[y,x]*(np.exp((r-(sigma**2)/2)*deltat + sigma*de
ltat*np.random.normal(0,1))) 
    plt.plot(t,S[y]) 
 
    plt.title("DIFFERENT REALIZATIONS FOR STOCK PRICE PROCESS") 
plt.xlabel(' Time Steps') 
plt.ylabel('Stock Price') 
plt.tight_layout() 
plt.vlines(x=99,ymax=106,ymin=83, linestyle='--',color='black',linew
idth=2.0,label="Final Stock Values for several realizations") 
plt.legend() 
plt.show() 
 
 
C = np.zeros((i-1,1), dtype=np.float16) 
for y in range(0,i-1): 
    C[y]=np.maximum(S[y,N-1]-K,0) 
 
CallPayoffAverage = np.average(C) 
CallPayoff = discount_factor*CallPayoffAverage 
print(CallPayoff) 
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Figure 4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

import matplotlib.pyplot as plt 
import numpy as np 
 
T = 2 
mu = 0.5 
sigma = 0.4 
S0 = 20 
dt = 0.01 
N = round(T/dt) 
t = np.linspace(0, T, N) 
W = np.random.standard_normal(size = N)  
W = np.cumsum(W)*np.sqrt(dt) ### standard brownian motion 
X = (mu+0.5*sigma**2)*t + sigma*W  
S = S0*np.exp(X) ### geometric brownian motion  
 
 
W2 = np.random.standard_normal(size = N)  
W2 = np.cumsum(W2)*np.sqrt(dt) 
X2 = (0.5+0.5*0.6**2)*t + 0.6*W2 
S2 = S0*np.exp(X2) 
               
plt.plot(t, S, label='A(t) process up to to maturity, mu=0.5 and 
std=0.4') 
plt.plot(t, S2, label='B(t) process up to to maturity, mu=0.5 and 
std=0.6') 
plt.xlabel("Time") 
plt.ylabel('A(t) and B(t) process') 
plt.legend() 
plt.grid() 
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Figure 5: 

 

 

Figures 7, 8, 9 and the Summary table of Results: 

Code available upon request. 

 

 

 

 

 

 

 

import matplotlib.pyplot as plt 
import numpy as np 
import scipy.stats as stats 
import math 
 
T = 2 
mu = 0.5 
sigma = 0.4 
S0 = 20 
dt = 0.01 
N = round(T/dt) 
t = np.linspace(0, T, N) 
W = np.random.standard_normal(size = N)  
W = np.cumsum(W)*np.sqrt(dt) ### standard brownian motion  
X = (mu+0.5*sigma**2)*t + sigma*W  
S = S0*np.exp(X) ### geometric brownian motion  
 
#plt.style.use('seaborn-bright') 
 
               
plt.plot(t, S, label='Assets process realization') 
plt.hlines(S0-3,xmin=0,xmax=T+1, color='red', label='Distess Barrier
',linestyle='--') 
plt.vlines(T+0.01,ymin=0,ymax=S[-1]+40, color='black', label='Asset 
at maturity distribution') 
plt.vlines(T+0.08,ymin=S0-3,ymax=S[-1], color='green', label='DtD') 
plt.hlines(S[-1],xmin=2,xmax=T+0.08,linestyle='--', color='green') 
plt.hlines(S0-3,xmin=2,xmax=T+0.08,linestyle='--', color='green') 
plt.xlabel("Time") 
plt.xlim((0.00,3.00)) 
plt.ylabel('A(t) and B(t) process') 
plt.legend(loc='upper left') 
#plt.grid() 
plt.show() 
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