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Abstract 
In recent years, there is a massive waste of energy production. This problem is not only from the side of 

electricity retailers but also from the side of users who consumes electricity. The everyday energy 

consumption routine causes the lack of energy resources because of the ignorance of the impact of our 

actions. But what if we change our energy consumption behavior? Is it easy to do such a change or is it 

difficult? The idea of developing a Recommender System for Smart Energy Grids is a great way to reduce 

energy consumption in our households and help Earth retain its resources. 

As Recommender Systems developed for energy efficiency are among the most popular Smart City goals 

(Quijano-Sanchez, Cantador, & M Cortes-Cediel, 2020) there are many different implementations in the 

literature. Among others, Matrix Factorization has been consolidated as the best performing approach in 

many domains (Koren, Matrix Factorization Techniques for Recommender Systems, 2009); (Zeng & Wang, 

2019), and it is believed by (Quijano-Sanchez, Cantador, & M Cortes-Cediel, 2020) that Model-based 

methods may have an important impact in Smart City initiatives, especially due to the huge amounts of 

sensor data generated at city scale in many applications. 

This thesis aims to develop a Recommender System for Smart Energy Grids, that offers energy tips for 

energy efficiency, where a set of Matrix Factorization models using Singular Value Decomposition 

algorithm are trained with explicit feedback with the help of Clustering and especially K-Means algorithm, 

in order to offer predictions fast and memory-efficiently compared to a single Matrix Factorization model. 

Each of the Matrix Factorization models is trained with the respective subset of ratings of households that 

belong within the same cluster, where these households share a similar energy consumption behavior, 

while missing ratings of households are imputed with the mean rating of the cluster. In more detail, the 

different models offer faster response time and lower computational cost concerning predictions, while 

the training with ratings of cluster households and the imputation of missing ratings with the mean rating 

of each cluster offers more accuracy.  

At the same time, in order that the proposed Recommender System offers a more personalized 

experience to the households, a set of “Real-Time rules” was created which filters the predictions list from 

Matrix Factorization models with respect to the recommendation time frame, the appliance of energy tips 

to electrical devices that are used from the target household and the interests of the target household 

and its similar users. Eventually, the final recommendation of the proposed Recommender System 

observes the real-time consumption of the target household’s electrical devices appeared in the filtered 

prediction list, in order to find possible increased consumption based on household’s past behavior. 

In summary, this thesis highlights the importance of Clustering in both Matrix Factorization Models with 

SVD algorithm and the task of creating a dense ratings matrix, in order to offer accurate predictions in a 

fast and memory-efficiently way.  Finally, as far as the personalization of recommendations is concerned, 

this thesis introduces a set of “Real-Time rules” that take into consideration the time frame where the 

recommendation takes place, the electrical devices used from the target household, the interests of the 

target household based on the interests of similar users, and, finally, the real-time energy consumption 

of the target household.  

Keywords 

Recommender Systems; Smart Energy Grid; Machine Learning; Matrix Factorization; Personalized 

Recommendations



 

 
 

Chapter 1 | Introduction  
Today’s electricity grid is used so that massive amounts of energy are being lost (Farhangi, 2010). On the 

other hand, lack of energy is a problem caused by our everyday routine in which big amounts of energy is 

used without even considering if there is a real need. Therefore, a way to sustain the energy resources is 

to introduce a smart way to convince people to decrease their energy consumption. 

The next-generation electric power system is known as Smart Grid. A definition proposed by (Murphy, 

2010) is the following: 

“A smart grid is a modern electric system. It uses communications, sensors, automation and computers 

to improve the flexibility, security, reliability, efficiency, and safety of the electricity system. It offers 

consumers increased choice by facilitating opportunities to control their electricity use and respond to 

electricity price changes by adjusting their consumption. In short, it brings all elements of the electricity 

system production, delivery and consumption closer together to improve overall system operation for the 

benefit of consumers and the environment.”  

 

Figure 1: An example of communication architecture in Smart Grid (Bari, Jiang, & Saad, 2014) 

So, with the help of smart meter data from Smart Energy Grids, a way to convince people to reduce their 

energy consumption is to take advantage of a Recommender System that offers personalized content. Of 

course, several different factors could influence energy usage, but the aim of Recommender Systems in 

Smart Energy Grids is to convince users to change their energy behavior by saving money and helping the 

planet retain its resources. (Martinez, Lairner, & Keating, 2009) suggests that the customers’ behavior is 

an important factor. More specifically, the cost of energy is usually considered as the most important 

factor customers regard concerning how much energy they wish to spend. Another factor is the 

environmental footprint. These factors are considered as inner motivations for customers. 

Another factor that might influence the household to reduce energy its consumption as described in 

(Agency, 2010) is the efficiency of electrical appliances in the household. By displaying the energy spent 

and how much the system predicts that the customer will spend, the customer is able to make a decision 
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on how to handle this device, for example considering change this particular device, or initiate to handle 

it more efficiently. 

According to (Crawley & Huang, 1997), external influences such as the weather and sunshine hours, are 

also factors that can affect a possible change in energy usage. If there is information about the energy 

consumption needed for heating or air conditioning, this can be viable in understanding how to use energy 

more cost-efficiently. 

Finally, for an effective change of energy consumption pattern, there is a need to understand what type 

of information is needed so as to change the consumers’ energy behavior. Do they care about saving 

money? Their environmental footprint? What will make the consumer behave differently and how it can 

be achieved? 

With that in mind, Recommender Systems in Smart Energy Grids can have an impact on the energy 

consumption behavior of households. However, a Recommender System should handle smart meter data 

accordingly by getting only the most useful information, consider external factors such as the weather and 

listen to consumer needs, to successfully solve the energy consumption reduction problem. 

 

1.1 | The Problem 
In a Smart Energy Grid there are large amounts of information available in real-time. This information 

could be revealed to the consumer, but it would be very hard to make any use of the full spectrum of 

sensors, controls, and information technologies available. At the same time, users should be able to make 

fast decisions about how they want to spend their energy. For this reason, the Smart Energy Grid should 

be able to inform consumers about different ways that will help them reduce their energy consumption. 

Therefore, a Recommender System could effectively handle this problem by recommending energy tips 

that could help consumers reduce their energy consumption. 

There exist Recommender Systems that use Collaborative Filtering (Kong & Liang, 2020) and especially 

Memory-based algorithms (Kwac, Flora, & Rajagopal, 2014); (Collaborative Recommendations and 

Adaptive Control for Personalised Energy Saving, H2020). However, this class of algorithms is memory and 

time insufficient when providing predictions for Big-Data. Also, in most real-world problems people tend 

to rate a small number of available items and the ratings matrix becomes sparse (Ricci, Rokach, & Shapira, 

2015). In that case, Memory-based algorithms do not have enough feedback to provide accurate 

predictions. Matrix Factorization is a method that can handle both cases, namely effectively handle the 

data-sparsity problem and providing accurate predictions while being memory and time-efficient (Koren, 

Factorization meets the neighborhood: A multifaceted collaborative filtering model, 2008).  

From the above, Matrix Factorization successfully overcomes many of the problems of Memory-based 

algorithms. However, as data increases, the need for even more efficient ways to provide accurate 

predictions while being time and memory-efficient is apparent. So, the problem is to find a solution that 

extends the advantages of Matrix Factorization by improving the accuracy and the time and memory cost.  

At the same time, we should try to offer to users real-time personalized recommendations taking into 

consideration the time frame where the recommendation takes place while at the same time observing 

the current energy consumption of the user. In the literature, there was not any approach of personalized 

recommendations that consider these two cases. 
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1.2 | Novelty 
In this thesis, we address the problem of having an even more efficient way in terms of time, memory, 

and accuracy, to generate predictions using Matrix Factorization, and especially SVD algorithm, which is 

the model-based approach that implements the Collaborative Filtering method of RSs, with explicit 

feedback by combining the results derived from a Clustering algorithm. At the same time, we will present 

a novel way to offer personalized recommendations taking into consideration, mainly, the 

recommendation time frame and current energy consumption of the target user. 

The contributions of this thesis are as follows: 

• We propose a novel method for providing accurate predictions to households with less training 

and testing time and memory usage by grouping the households into clusters based on their 

electricity consumption using the K-Means algorithm and then create a Matrix Factorization 

model for each cluster, with fewer households that are also similar in terms of electricity 

consumption. To get even more accurate results, we consider imputing the missing ratings of 

users with the mean rating of the cluster they belong to. Finally, the algorithm used for Matrix 

Factorization is SVD, which is suitable for explicit ratings. 

• We present “Real-Time rules”, a novel approach for personalized recommendations which 

includes a sequence of steps applied in each prediction list generated from the Matrix 

Factorization models taking into consideration, at first, the time frame where the 

recommendation takes places, the electrical devices used from the target household, the interests 

of both target household and cluster’s households, and, then, the real-time energy consumption 

of the target household that might be increased in certain electrical devices that smart meter data 

are collected. With this step, we offer the final recommendation to the target household. 

• Our approach achieved an average RMSE of 0.812, an average training time of 0.12 s from 0.48 s, 
an average testing time of 0.06 s from 0.24 s, a Precision @ 15 of 70% which is 25% better than a 
dummy-static Recommender System and a Recall @ 15 which is 13% better, respectively. The 
same quality of predictions retained after applying “Real-Time rules” which offers a single, 
personalized recommendation. 

 
 

1.3 | Literature Review 
Key subjects as “User Profiling for Smart Energy Grid”, “Recommender System for Smart Energy Grid”, 

“Recommender Systems for Smart Cities” have been explored. 

A recent paper by (Quijano-Sanchez, Cantador, & M Cortes-Cediel, 2020) stated the different 

Recommender Systems approaches that have been used in the context of smart cities. The purpose of 

this paper was to show current opportunities and challenges where personalized recommendations could 

be exploited as solutions for citizens, firms, and public administrations. This paper gave a clear and 

updated view concerning Recommender Systems in Smart Cities and how important is the reduction of 

energy consumption as a research topic. Also, this paper presented the different approaches of 

Recommender Systems that Smart City applications use, which Smart Energy Grids are part of them. 

Regarding specific smart city actions and goals, among the most addressed objectives is energy efficiency. 

Moreover, as trending goals, saving energy in smart homes in a smart environment stands out among all. 
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Concerning the recommendations strategies on Smart City applications, Figure 2 shows their distribution 

in the papers. Most of the approaches are Collaborative Filtering and Content-based, representing 35% 

and 22% of the surveyed papers, respectively. However, in most papers, several recommendations 

strategies are performed following hybrid techniques. 

 

Figure 2: Recommendation Approaches (Quijano-Sanchez, Cantador, & M Cortes-Cediel, 2020) 

In terms of the computed evaluation metrics, the majority (44%) make use of ranking quality metrics, 

mainly precision and recall. The next popular metrics are MAE and RMSE – which measure rating 

prediction errors and are reports in 18% of the cases – and user satisfaction, representing another 18%. 

System response time is considered in 8% of the cases, whereas systems effectiveness is analyzed in 6% 

of the evaluations. The rest of the used metrics are related to a variety of task dependent issues, such as 

time saved by users, energy consumption reduction and traffic congestion. 

Also, a lot of different approaches to reduce the energy consumption of a user have been developed. In 

(Haben, Singleton, & Grindrod, 2016) paper, a combination of the Finite Mixture Model (FMM) of Gaussian 

multivariate distribution as a clustering method with the EM Algorithm has been made in order to 

distinguish user groups based on their electricity consumption and later help them to reduce demand in 

Low-Voltage networks. 

Another approach described in (Luo, Ranzi, Wang, & Dong, Service Recommendation in Smart Grid: Vision, 

Technologies, and Applications, 2016) provided recommendations concerning electricity retail plans, 

using Fuzzy C-Means as a clustering method in order to find users that have a similar energy consumption 

with the target user. Then, a distance metric found similar users with target user, collected their electricity 
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retails plans choices implicitly and then employed a weighted aggregation strategy to aggregate the 

similar users’ ratings for predicting the rating of the target user on a particular retail plan. 

In (Schweizer, et al., 2015), a Window-sliding algorithm has been used, more specifically, an event stream 

of the current behavior data inside the smart home cooperates with an association rule database in order 

to match triplets of events with rules that exist in the association rule database. If there is a match, then 

a set of energy tips are being generated. In order to prioritize the most important ones, weights are 

assigned in each of these rules and then the final recommendation is being made. 

Finally, a similar approach comparing to this thesis has been developed by enCOMPASS project 

(Collaborative Recommendations and Adaptive Control for Personalised Energy Saving, H2020). This 

Recommender System generated recommendations for energy tips obtained from a static database which 

was also used in this thesis. The main parts used in this project were Clustering and Time Series Analysis 

for determining the similarity between users depending on their energy consumption, while 

recommendations were generated using Collaborative Filtering and a Memory-based approach with 

implicit feedback. As far as Clustering is concerned, the features used apart from energy consumption, 

were related to demographics, house information, and categorical data. Additionally, a weight was 

assigned to each tip before proceeding to Collaborative Filtering.  

 

1.4 | Thesis Structure 
In the second chapter of this thesis, a detailed review of what is a Recommender System, what is the 

purpose of it and what are the different methods and approaches of implementation are presented. 

Additionally, significant emphasis is given to Matrix Factorization, and especially Singular Value 

Decomposition, because of the leading presence in the proposed Recommender System. Also, the same 

detailed information is given for Clustering and especially K-Means algorithm, which is a main part of the 

proposed Recommender System. Finally, a review concerning the different evaluation methods and 

metrics that have been used in this thesis is presented. 

The third chapter has detailed information about the datasets used for the Recommendation process such 

as column names, descriptions, diagrams that highlight the distribution of users and ratings, and, finally, 

the use of each dataset in the main parts of the proposed Recommender System. 

The fourth chapter describes all the components of the proposed Recommender System along with the 

final structure of the last, observes a set of experiments that led to the final decision concerning the 

Collaborative Filtering approach, and finally, presents a simulation. In more detail concerning the 

components of the proposed Recommender System, those are Clustering, which K-Means algorithm was 

used with features related to energy consumption of households, next is Matrix Factorization where SVD 

algorithm is used, and finally the “Real-Time rules” which consists of multiple filtering steps to the 

prediction list from Matrix Factorization models and leads to the final recommendation. All the 

aforementioned are accompanied with diagrams, charts and tables that provide relevant information. 

The last chapter is the Conclusion which emphasizes the results of the proposed Recommender System, 

the problems faced while developing this Recommender System, how some general problems of 

Collaborative Filtering have been handled, and finally, present some ideas for future work. 
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Chapter 2 | Background  
Recommender Systems (RSs) can be developed in multiple ways to best serve our purpose. In that section, 

focus is given on basic knowledge concerning RSs in order to understand why they provide value. 

Specifically, a detailed discussion will be presented concerning the definition of RSs and all the information 

needed to understand the purpose of RSs, their types, and how they work. 

 

2.1 | Recommender Systems 
As mentioned by (Portugal, Alencar, & Cowan), “Recommender Systems (RS) are used to help users find 

new items or services, such as books, music, transportation or even people, based on information about 

the user, or the recommended item”. These systems also play an important role in decision-making, 

helping users to maximize profits or minimize risks. Today, RSs are used in many information-based 

companies such as Google, Twitter, LinkedIn, and Netflix. The field of RS has its origin in the mid-1990s 

with the introduction of Tapestry, the first RS. 

 

Figure 3: Popular platforms that make use of Recommender Systems 

Recommendation problem has mainly three tasks: 

1) Collecting information about users, 

2) Learning from collected information and predicting users’ preferences for unknown 

items, 

3) Applying a function or building a model that selects (and ranks) the items that are more 

likely to be preferred by users. 

As far as the data collection and profiling task is concerned, in order for the Recommender System to 

provide personalized suggestions, past choices and preferences of users are used that reflect users’ tastes 

and interests. This information can be either explicitly provided or implicitly inferred. More information 

about these two types of feedback can be found in Section 2.1.2.   
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2.1.1 | Data for Recommender Systems 

The data which RSs use are Items, Users, and Transactions. In more detail: 

Items: Items are the objects to be recommended to users. The value of each item (positive or negative) is 

determined by users’ interactions such as, for example, popular, unpopular, trending, etc. and that 

interaction determines the possibility to recommend or not. Depending on the type of RS, the item should 

be as descriptive as it could in order to relate it with other similar items. 

Users: Users of an RS are the ones who feed RSs with data in order to get personalized recommendations 

and help others, with similar interests, find what best suits them.  

Transactions: It is generally referred to a transaction, or as a recorder of interaction, that was given 

explicitly or implicitly. Those transactions store important information generated during the human-

computer interaction which are useful for the algorithm that provides predictions. 

Ratings are the most popular form of transaction data that an RS collects. These ratings may be collected 

explicitly or implicitly. 

Explicit feedback is direct preference statements made by users about items they know (Quijano-Sanchez, 

Cantador, & M Cortes-Cediel, 2020). This knowledge is usually stored as ratings or as unary/binary values. 

Explicit feedback is the most preferred because it allows a precise control on what the system knows 

about the users’ preferences. However, collecting that type of information requires time and effort from 

the side of users. Moreover, when including explicit interactions in real world application, there is a high 

risk of biases in rating distribution and thus in item relevance predictions, as users may tend to rate only 

what they like (Zhao, Harper, Adomavicius, & Konstan, 2018). 

Implicit feedback, on the other hand, refers to user preferences that are inferred from implicit/indirect 

user interactions with the system and/or the environment without the need for users to actively inserting 

input. This form of preferences can be obtained by recording search queries, product purchases, and 

mouse actions, among others. While it allows capturing abundant information about users, it tends to 

obtain information that is noisier and may be biased to positive preferences (Zhao, Harper, Adomavicius, 

& Konstan, 2018).  

Summarizing, when feedback is explicit, we refer to ratings: 

• Numerical, such as the 1-5 stars provided in the movie RS of Netflix 

• Ordinal, such as “Strongly Disagree”, “Agree”, etc. that the user is asked to select the term which 

best describe what he/she feels about an item 

• Binary, such as 0 for Dislike and 1 for Like 

When implicit, we refer to ratings: 

• Unary, where a user has observed or purchased an item, or otherwise rated the item positively. 

In such cases, the absence of a rating indicates that there is no information relating the user to 

the item. 
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Whenever we are discussing about RSs, we refer to these variables, functions, and sets: 

𝒖:  𝑢𝑠𝑒𝑟 

𝒊:  𝑖𝑡𝑒𝑚 

𝐫(𝒖, 𝒊):  𝑟𝑎𝑡𝑖𝑛𝑔 (𝑡𝑟𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝒓̂(𝒖, 𝒊):  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (based on true function) 

𝑺: 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎 𝑟𝑎𝑡𝑖𝑛𝑔  

𝑹̂: 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

,𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ (𝑢1, 𝑢𝑛),   𝑖 ∈ (𝑖1, 𝑖𝑛) 

After the prediction phase, the system will recommend the items 𝑖𝑗1…  𝑖𝑗𝑘 (k ≤ n) with the largest 

predicted utility. 

 

2.1.2 | Recommendation Techniques 

RSs can be classified by the degree of personalization, including the usefulness and accuracy of the 

recommendations (Schafer, Konstan, & Riedl, 2001). The degree of personalization can be defined from 

low to high. The first degree of personalization is a relatively simple system that does not take user’s 

preferences into account when making recommendations. For instance, the RS only generated a list of 

the most popular items based on the number of review or number of purchases (i.e. editor’s choices or 

top-sellers) (Ricci, Rokach, & Shapira, 2015). 

Another way to classify recommender systems could be according to different principles depending on 

the task they are focused in, for example predicting item ratings and ranking item sets. Also, the approach 

to extract user preferences, implicit or explicit feedback, and the recommendation dynamics they follow 

(i.e. single shot or unique answer and conversational or iterative approaches) (Quijano-Sanchez, Cantador, 

& M Cortes-Cediel, 2020).  

In summary, the different techniques of RSs are the following:  

• Content-Based Filtering 

• Collaborative Filtering 

• Demographic 

• Knowledge-Based 

• Hybrid 

The three most popular types of RSs are Content-Based Filtering (Lops, Gemmis, & Semeraro, 2011), 

Collaborative-Filtering (Ekstrand, Riedl, & Konstan, 2011) and Hybrid.  

Recommendation techniques have different strengths and weaknesses. Some of the most common 

weaknesses are the rating sparsity problem and the cold start problem (Schein, Popescul, Ungar, & 

Pennock, 2002). 
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Figure 4: Collaborative Filtering vs Content-Based Filtering 1 

Collaborative Filtering 

Collaborative filtering (also known as social filtering) is the most widely implemented recommendation 

system. It recommends popular items to users based on the feedback of other users who share the same 

interests. This approach suffers from the cold-start problem, whereby a new item or a brand-new user 

has not enough data available, namely ratings, in order to get accurate and relevant recommendations 

and Data-Sparsity problem. The most popular approaches of Collaborative Filtering are Memory-based 

and Model-based. The Memory-based approach compares a user’s historical records to other records in 

the database (Schiaffino & Amandi, 2009).The Model-based approach uses statistical or learning methods, 

such as a Bayesian network (Huang & Bian, 2009), where a filtering technique classifies the user’s historical 

records and builds a user model that is subsequently used in the recommendation process (Hsu, Lin, & 

Ho, 2012).  

 

2.1.3 | Matrix Factorization  

Matrix Factorization has become the predominant technique in Recommender Systems (Nobrega & 

Marinho, 2014). In its basic form, Matrix Factorization characterizes both items and users by vectors or 

factors in front of item rating patterns (Koren, Matrix Factorization Techniques for Recommender 

Systems, 2009). High correspondence between item and user factors leads to a recommendation. These 

methods have become popular in recent years by combining good scalability with predictive accuracy. 

Also, they offer much flexibility for modeling various real-life situations. 

 
1 https://towardsdatascience.com/brief-on-recommender-systems-b86a1068a4dd 
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Recommender systems rely on different types of input data, which are often placed in a matrix with one 

dimension represented users and in the other dimension representing items of interest. The most 

convenient data is high-quality explicit feedback, which includes explicit input by users regarding their 

interest in products. An example is Netflix which collects star ratings for movies, and TiVo users indicate 

their preferences for TV shows by pressing thumbs up and thumbs down buttons. Usually, expected 

feedback comprises a sparse matrix, since any single user is likely to have rated only a small percentage 

of possible items. 

One strength of Matrix Factorization is that it allows incorporation of additional information. When 

explicit feedback is not available, Recommender Systems can infer user preferences using implicit 

feedback, which indirectly reflects opinion by observing user behavior including purchase history, 

browsing history, search patterns, or even mouse movements. Implicit feedback usually denotes the 

presence or absence of an event, so it is typically represented by a densely filled matrix. 

Additionally, Factorization methods address the problems of limited coverage and sparsity by projecting 

users and items into a reduced latent space that captures their most salient futures. Because users and 

items are compared in this dense subspace of high-level features, instead of the “rating space”, more 

meaningful relations can be discovered. In particular, a relation between two users can be found, even 

though these users have rated different items. As a result, such methods are generally less sensitive to 

sparse data (Bell, Koren, & Volinsky, Modeling relationships at multiple scales to improve accuracy of large 

recommender systems, 2007); (Billsus & Pazzani, 1998) 

Matrix factorization models map both users and items to a joint latent factor space of dimensionality 𝑓, 

such that user-item interactions are modeled as inner products in that space. Accordingly, each item 𝑖 is 

associated with a vector 𝑞𝑖 ∈ ℝ
𝑓 , and each user 𝑢 is associated with a vector 𝑝𝑢 ∈ ℝ

𝑓. For a given item 𝑖, 

the elements of 𝑞𝑖 measure the extent to which the item possesses those factors positive or negative. For 

a given user 𝑢, the elements of 𝑝𝑢 measure the extent of interest the user has in items that are high on 

the corresponding factors, again, positive or negative. The resulting dot product, 𝑞𝑖 
𝑇𝑝𝑢, captures the 

interaction between user 𝑢 and item 𝑖 - the user’s overall interest in the item’s characteristics. These are 

approximate user’s 𝑢, rating of item 𝑖, which is denoted by 𝑟𝑢𝑖, leading to the estimate: 

𝑟̂𝑢𝑖 = 𝑞𝑖 
𝑇𝑝𝑢 

Equation 1: Predicted Rating (1) 

The major challenge is computing the mapping of each item and user to factor vectors  

𝑞𝑖, 𝑝𝑢 ∈ ℝ
𝑓. After the Recommender System completes this mapping, it can easily estimate the rating a 

user will give to any item by using Equation 1. 

To learn the factor vectors (𝑞𝑖 𝑎𝑛𝑑 𝑝𝑢), the system minimizes the regularized squared error on the set of 

known ratings: 

𝑚𝑖𝑛
𝑞∗,𝑝∗

∑ 𝑟𝑢𝑖 − 𝑞𝑖
𝑇𝑝𝑢 + 𝜆(||𝑞𝑖||

2
+ ||𝑝𝑢||

2
) 

(𝑢,𝑖)∈𝐾

 

Equation 2: Minimization of error function 
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where λ is a regularization parameter that weights the two terms so that the objective function is not 

dominated by one or the other. Common algorithms to minimize the objective function is Stochastic 

Gradient Descent and Alternating Least Squares. 

 

Figure 5: Matrix Factorization visualized2 

 

2.2 | Clustering 
Clustering is an approach of unsupervised learning that deals with the data structure partition in an 

unknown area and is the basis for further learning. The definition for clustering is described as follows 

(Jain & Dubes, 1988): 

a) Instances, in the same cluster, must be similar as much as possible 

b) Instances, in different clusters, must be different as much as possible 

c) Measurement for similarity and dissimilarity must be clear and have the practical meaning 

In simple words, clustering is an unsupervised learning method that tries to identify relations between 

data points where the area is unknown, and there is no prior knowledge. 

The standard process of clustering can be divided into the following steps: 

1) Feature extraction and selection: Extract and select the most representative features from the 

original data set 

2) Clustering algorithm design: Design the clustering algorithm according to the characteristics of 

the problem 

3) Result evaluation: Evaluate the clustering result and judge the validity of the algorithm 

4) Result explanation: Give a practical explanation for the clustering result 

 

 

 
2 https://towardsdatascience.com/recsys-series-part-4-the-7-variants-of-matrix-factorization-for-collaborative-
filtering-368754e4fab5 
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2.2.1 | K-Means 

K-means is a clustering algorithm that belongs into the category of Clustering based on Partition, where 

the main idea is to regard the center of data points as the center of the corresponding cluster (Xu & Tian, 

2015). K-Means is one of the most popular of this kind of clustering algorithms. The core idea of K-means 

is to update the center of class, which is represented by the center of data points, by iterative 

computations, and the iterative browsers will be continued until some criteria for convergence is met. 

Also, K-Means, is strictly dependent on the value of K, which is the number of clusters. The number of 

clusters is not known and sometimes it becomes challenging to find the optimal K for the available data. 

The advantages of such clustering algorithms are the relatively low time complexity and high computing 

efficiency in general. 

The disadvantages of such clustering algorithms are that they are relatively sensitive to the outliers, easily 

drawn into local optimal, the number of clusters needed to be preset, and the clustering result is sensitive 

to the number of clusters. 

In the clustering problem, there is a training set {𝑥(1), … , 𝑥(𝑚)} that its data need to be grouped into a 

few cohesive clusters 𝑘. Each data point 𝑥(𝑖) ∈ ℝ𝑛 belongs to a feature vector but there are no labels for 

𝑦(𝑖), making this an unsupervised learning problem. The goal is to predict 𝑘 centroids and a label 𝑐(𝑖) for 

each datapoint. The algorithm3 is as presented: 

1. Initialize cluster centroids 𝜇1, 𝜇2, … , 𝜇𝑘  ∈  ℝ
𝑛 randomly. 

2. Repeat until convergence: 
{ 

For every 𝑖, set 

𝑐(𝑖) = argmin
𝑗
||𝑥(𝑖) − 𝜇𝑗||

2
 

Equation 3: Step 2a of K-Means algorithm 

 

For each 𝑗, set 

𝜇𝑗 =
∑ 1𝑚
𝑖=1 {𝑐𝑖 = 𝑗} 𝑥𝑖

∑ 1𝑚
𝑖=1 {𝑐𝑖 = 𝑗} 

 

Equation 4: Step 2b of K-Means algorithm 

} 

2.2.2 | The Elbow method 

The Elbow method is a heuristic used in determining the number of clusters in a data set (Elbow Method 

(Clustering), 2021). The method consists of plotting the explained variation as a function of the number 

 
3 https://stanford.edu/~cpiech/cs221/handouts/kmeans.html 
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of clusters and picking the elbow of the curve as the number of clusters to use. In case of K-Means, Elbow 

method finds the optimal 𝑘 which refers to the number of clusters. 

 

2.2.3 | Hopkins Statistic  

The Hopkins Statistic as mentioned in (Hopkins Statistic, 2020), is a way of measuring the cluster tendency 

of a dataset (Hopkins & Skellam, 1954), or the feasibility of cluster analysis. It acts as a statistical 

hypothesis test where the null hypothesis is that the data is generated by a Poisson point process and are 

thus uniformly randomly distributed (Banerjee, 2004). A value close to 1 tends to indicate that the data is 

highly clustered, random data will tend to result in values around 0.5, and uniformly distributed data will 

tend to result in values close to 0 (Aggarwal, Data Mining, 2015). 

The formula of Hopkins Statistic is as follows: 

𝐻 =
∑ 𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑦𝑖

𝑛
𝑖=1

 

Equation 5: Hopkins Statistic Formula 

Where 𝐷 is the dataset that contains n uniformly points (𝑝1, … , 𝑝𝑛), 

∑ 𝑥𝑖
𝑛
𝑖=1  is the summary of distances between real points, 𝑝𝑖  𝜖 𝐷, and their nearest neighbors, 𝑞𝑖 𝜖 𝐷,  

∑ 𝑦𝑖
𝑛
𝑖=1  is the summary of distances between artificial points generated randomly for dataset 𝐷 with exact  

𝑛 points and the same variation as the original real dataset 𝐷, and their nearest artificial data points. 

 

Finally, to understand if the dataset used for Clustering has meaningful clusters, then Hopkins Statistic 

above 0.5 will inform us that there is a high probability that the dataset is not uniformly distributed, 

meaning that the distance between real points and artificial ones is substantially larger. 

 

2.2.4 | Silhouette coefficient 

Silhouette coefficient is a way to evaluate the clustering result based on the average normalized distance 

between a data point and other data points in the same cluster and average distance among different 

clusters (Aggarwal, Data Mining, 2015).  

The silhouette value ranges from -1 to +1, where a high value indicates that the object is well matched to 

its own cluster and poorly matched to neighboring clusters (Rousseeuw, 1987). 
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2.3 | Evaluation of Recommender Systems 
In this section, the evaluation metrics used for detecting the accuracy of predictions and the quality of 

recommendations will be presented, so as the evaluation method where Collaborative Filtering was 

evaluated. 

 

2.3.1 | Evaluation Metrics 

One of the error metrics is Root Mean Squared Error (RMSE). The way RMSE works is that the system has 
generated some predicted ratings 𝑟̂𝑢𝑖 for a test set 𝐼 of user-item pairs (𝑢, 𝑖)  for which the true ratings 
𝑟𝑢𝑖 are known. Typically, 𝑟𝑢𝑖 are known because they are hidden in an offline experiment, or because they 
were obtained through a user study or online experiment. The RMSE between the predicted and actual 
ratings is given by the following Equation 6: 
 

RMSE = √
1

|𝐼|
∑ (𝑟̂𝑢𝑖 − 𝑟𝑢𝑖)

2
(𝑢,𝑖)∈𝐼  

 
Equation 6: RMSE formula 

As far as quality evaluation metrics is concerned, Recall and Precision are among the most popular. 

However, in the context of Recommender Systems, sometimes, is better to consider only the top-k 

recommendations to evaluate the recommendations. So, in Equations 7 and 8, Recall @ K and Precision 

@ K quality metrics are being presented where they consider only the top-k recommendations. In more 

detail, Recommended (u) is the items obtained from the top-K prediction list of user 𝑢 where their 

predicted rating exceeds a certain threshold. At the same time, an item is considered as Relevant (u) for 

user 𝑢 if the real rating exceeds a certain threshold. As far as the threshold is concerned, this value can 

be anything. 

 

Recall @ K (u) = 
Recommended (u) ∩ Relevant (u)

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑢)
 

Equation 7: Recall @ K Formula 

Precision @ K (u) = 
Recommended (u) ∩ Relevant (u)

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 (𝑢)
 

Equation 8: Precision @ K Formula 

Essentially, Recall is the proportion of relevant items that are recommended, and Precision is the 

proportion of recommended items that are relevant. 
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2.3.2 | Evaluation Method 

Cross Validation 

Cross validation is an evaluation method used for offline evaluation (Aggarwal, Recommmender Systems 

- The Textbook, 2016). This method takes as input the ratings offered by users and divides them into q 

equal sets. Therefore, if S is the set of specified entries in the ratings matrix R, then the size of each set, 

in terms of the number of entries is |S|/q. One of the q segments is used for testing, and the remaining 

(q – 1) segments are used for training. In other words, a total of |S|/q entries are hidden during each such 

training process, and the accuracy is then evaluated over these entries. This process is repeated q times 

by using each of the q segments as the test set. The average accuracy over the q different test sets is 

reported. It is worth mentioning that this approach can closely estimate the true accuracy when the value 

of q is large. 
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Chapter 3 | Datasets used 
In this chapter, information about each dataset used in the proposed Recommender System is provided. 

In more detail, column names and description of them is available, etc. Also, diagrams that describe the 

distribution of users or ratings are presented.  

 

3.1 | The Pecan Street Dataset 
The Pecan Street Dataset is a collection of hourly measurements in circuit-level electricity use and 

generation from nearly 1.000 volunteer homes from 2012 through 2019. Those measurements are 

anonymized, cleaned and curated into specific datasets while made available for free to university 

researchers through Dataport4. 

Essentially, some important columns of Pecan Street dataset that are presented in Table 1, are related to 

energy consumption data, while others provide information about the household such as the building 

type of the house, presence of photovoltaic panels, total square footage of the house and more. 

Feature Name Description  

Data id The unique identifier for the home-resident. 

Building type “Single-Family Home”, “Town Home”, 
“Apartment”, “Mobile Home”. 

Pv Denotes if the specific house has solar 
photovoltaic system installed. 

Total square footage The square footage of the first floor of the home. 

Air Air compressor circuit. 

Air window unit Window unit air conditioner circuit. 

Aquarium Aquarium circuit. 

Bathroom Bathroom circuit that includes only lights, fans, 
and wall outlets. 

Bedroom Bedroom circuit that includes only lights, fans, 
and wall outlets. 

Car Electric vehicle charger. 

Clothes washer Stand-alone clothes washing machine. 

Clothes washer dry g Clothes washing machine and natural gas-
powered dryer circuit. 

Dining room Dining room circuit that includes only lights, fans, 
and wall outlets. 

Dishwasher Dishwashers circuit. 

Disposal Kitchen sink garbage disposal circuit. 

Dry e Electricity-powered clothed dryer (240V circuit). 

Dry g Natural gas-powered clothes dryer (120V circuit). 
Meters will only pick up the electricity use from 
the dryer’s drum rotation, not the gas heating 
signature. 

 
4 https://www.pecanstreet.org/dataport/ 
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Freezer Stand-alone freezer circuit. 

Furnace Furnace and air handler circuit. 

Garage Garage circuit that includes only lights, fans, and 
wall outlets. 

Gen Power generated by a solar photovoltaic system. 

Grid Measurement of power drawn from the electrical 
grid (grid = use – gen) 

Heater Stand-alone heater circuit 

House fan Whole home fan circuit 

Ice maker Stand-alone icemaker circuit 

Jacuzzi Jacuzzi bathtub or hot tub 

Kitchen Kitchen circuit that includes only lights, fans, and 
wall outlets. 

Kitchen App First kitchen small appliance circuit that includes 
only wall outlets in the kitchen, and so may 
include toasters, coffee makers, blenders, etc. 

Lights plugs General lighting and plugs circuit that includes 
lights, fans, and wall outlets, often from multiple 
rooms in the home. 

Living Room Living room circuit that includes only lights, fans, 
and wall outlets. 

Microwave Microwave circuit. 

Office Home office circuit that includes only lights, fans, 
and wall outlets. Computers may be common 
devices plugged into included any wall outlets 
included on this type of circuit. 

Outside Lights plugs Exterior lighting and plugs circuit. 

Oven Oven circuit. 

Pool Combination pool pump and/or pool auxiliary 
power circuit. 

Pool Light Pool lighting circuit. 

Pool pump Pool pump circuit. 

Pump Any type of pump that is not a pool pump. 

Range Range (either a stand-alone cooktop or a cooktop 
and an oven) circuit. 

Refrigerator Refrigerator circuit 

Security Security system circuit 

Shed Shed circuit 

Sprinkler Sprinkler system circuit 

Use Whole home electricity use (use = gen + grid) 

Utility room Utility room circuit 

Vent hood Vent hood circuit 

Water heater Electric water heater 

Wine cooler Wine cooler circuit 
Table 1: Feature Names and their Description for the Pecan Street Dataset 
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From the 1000 available households, only 612 of them used for training the proposed Recommender 

System.  

Finally, Pecan Street Dataset is used for Clustering purposes and plays a significant role in the 2nd part of 

Real-Time rules. 

 

3.2 | Dataset with Tips  
The dataset with energy tips was originally taken from enCOMPASS Project (Collaborative 

Recommendations and Adaptive Control for Personalised Energy Saving, H2020) and is a part of the 

mobile application “Funergy” which tries to learn, in a fun way, the user how he/she can reduce energy 

consumption and change effectively his/her behavior in order to achieve energy savings, cost-efficiency 

and protect the environment. However, additional columns were added for the shake of the proposed 

Recommender System. The unique energy tips are 180. 

The columns in the Tips dataset are those presented in Table 2. The new columns added are appliance, 

whenTime, and whenSeason. 

Table 2: Feature names and descriptions for Tip Dataset 

In Figure 6 we plot the number of energy tips that apply in each of the electrical devices which exist in the 

Pecan Street dataset is presented. It seems that the most energy tips apply in electrical devices that have 

a direct relationship with the air, such as air-condition, or air conditioning in windows, while others apply 

to all rooms which contain lights, fans, and wall outlets. Also, another category of appliance is the one 

that is rather general than to a specific electric device (use column). Less frequent are energy tips that 

refer to jacuzzi, freezer, oven, etc. 

Feature Name Description 

Tip id The unique identifier of the energy tip. 

Appliance The electric device which the energy tip applies to. 

When Time The time of the day which is most suitable for the tip to be recommended. 

When Season The season of the year which is most suitable for the tip to be recommended. 

Title A general title of the energy tip 

Description A more informative text about the energy tip 
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Figure 6: Frequency of appliance of electrical devices in available energy tips 

 

3.3 | Ratings Matrix - Synthetic dataset 
Since there is no explicit feedback from households of the Pecan Street Dataset, a synthetic ratings dataset 

was created intended to be used in Matrix Factorization with SVD. Considering that ratings are values 

from 1 through 5, we used the binomial distribution which is frequently seen in real-world problems and 

allows us to calculate whether an event happened due to random chance. The idea is that a set of 5 unique 

values is being created, namely 0 through 4, which are later translated to 1 through 5 for convenience, 

and then a random assignment of these values to households as a rating for a certain tip is being 

performed.  

In more details, concerning the way the random ratings are generated, each cluster will have ratings from 

households that follow the binomial distribution but having a different success probability. Success 

probability in binomial distribution is how close we are to N, namely the “success” case which in our 

experiment is 4. The rest numbers, from 0 through 3 are handled as the “failure” case. In simple words, if 

the probability of success is low, then the frequency of numbers close to 4 will be less than those close to 

0. So, for example, Cluster 1 has the success probability of 0.2, which means that the most frequently seen 



30 
 

ratings will be 0 and 1 while rating values of 2,3, and 4 will occur less frequently. Then, Cluster 2 will have 

a probability of success of 0.4, Cluster 3 probability of success 0.6, and so on, meaning, also, that each 

Cluster’s households share the same average rating. 

The reason behind this idea is that if Cluster’s households share similar energy consumption behavior, 

then they might rate similarly. For example, a group of households might give higher ratings for 

recommended tips than others, while some might give neutral ratings. 

After generating the synthetic ratings dataset, 20% of ratings were excluded in order to have a sparse 

ratings matrix and were kept as a separate column for evaluation purposes. Finally, each household does 

not have a specific number of ratings, namely a household might have ratings for a large amount of tips 

e.g. 170/180, while others might have fewer ratings for available tips. 

Overall, the ratings matrix has the following information in Table 3 where the first column references to 

household id, which is the same as the data id in Table 1, the second one to tip id, and the last columns 

reference the corresponding rating. In the case of Rating column, we have the rating of the household to 

a tip but 20% are missing. In the case of All_Ratings column, we have all the ratings of the household to a 

tip in order to use it for evaluation purposes. 

Feature name Description Count of Unique 
Values 

Count of values 

Household ID The Household ID from 
Pecan Street Dataset 

612 - 

Tip ID The Tip ID from Tips 
Dataset 

180 - 

Rating  The rating that the 
household ID gave for 
the respective tip ID. 
20% of the values are 
missing. 

5 88.128 

All_ratings The rating that that the 
household ID gave for 
the according tip ID.  
0% of the values are 
missing. 

5 110.160 

Table 3: Feature names, their descriptions and further information  for the Ratings dataset 

As presented in Figure 7, the rating value 1 occurs ~10.000 times (10.5%), 2 occurs ~20.000 times (17.5%), 

3 and 4 values ~21.000 times (19.6 and 19.7 %, respectively), and 5 ~13.000 times (12.6%). Additionally, 

the mean rating is 3.079 and the standard deviation 1.27. 

Finally, the Ratings matrix is used in Matrix Factorization and in the first part of Real-Time rules. 
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Figure 7: Distribution of ratings. It is obvious that the frequency of appearance of each rating value follows a distribution like 
normal distribution. 

 

3.4 | Use of datasets within the Recommender System 
The use of each dataset in each step of the Final Recommender System is presented in Table 4 below. 

Dataset  Use in Step 

Pecan Street Dataset Clustering, Real-Time Rules 

Synthetic Dataset with Ratings Matrix Factorization, Real-Time Rules 

Tips Dataset Matrix Factorization, Real-Time Rules 
Table 4: Use of datasets in each step of the Final Recommender System 

The Pecan Street Dataset is used in Clustering and in “Real-Time rules”. While in Clustering, the overall 

system considers the user’s past energy consumption behavior and extracts some features that train the 

K-Means algorithm. While in “Real-Time rules”, past energy consumption behavior and devices used by 

the target household are being used to filter out irrelevant tips resulted from the Matrix Factorization 

Prediction list. 

The Synthetic ratings matrix was generated after Clustering due to the finalization of the total households 

that will train the Matrix Factorization models for predictions. 

Last but not least, the dataset with tips is mandatory for creating the Synthetic ratings matrix because it 

contains the item that the Recommender System provides recommendations. Additionally, information 

about each energy tip is significant in both Matrix Factorization and “Real-Time rules” in order to provide 

the description of the recommendation. 
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Chapter 4 | Recommender System Approach 
This chapter consists of three parts. The first part showcases the steps involved in the proposed 

Recommender System, the second part presents the conducted Experiments for deciding the most 

optimal approach for implementing Collaborative Filtering, and the third part provides a simulation of the 

proposed Recommender System. 

In more detail, the first part provides detailed information about the basic structure of the proposed 

Recommender System. More specifically, a detailed description of the training features for K-Means 

algorithm and the number of clusters is provided, while evaluation of Clustering is conducted through 

several evaluation metrics. Then, figures and diagrams present information about the ratings distribution 

of the cluster’s households. As for the second part of the proposed Recommender System, namely the 

Matrix Factorization, Singular Value Decomposition algorithm is presented. Finally, a detailed explanation 

of “Real-Time rules” is given. 

The second part of this chapter is dedicated to the experiments. The conducted experiments highlight the 

significance of Matrix Factorization in Recommender Systems. At the same time, the experiments are 

divided by 3 methods of imputation of missing ratings in order to make the ratings matrix denser and 

provide even more accurate predictions. The evaluation of error in predictions in each of the experiments 

is done through 5-Fold Cross Validation method and the evaluation metric used for the best approach is 

Root Mean Squared Error (RMSE), while the quality evaluation of the provided recommendations is done 

using Precision @ 15 and Recall @ 15 comparing with a dummy-static Recommender System. Additionally, 

the same quality evaluation was done after applying the 1st Part of the “Real-Time rules” due to filtering 

of the prediction lists from MF models. 

The third part showcases a simulation of the proposed Recommender System for two households. 

 

4.1 | Parts of the proposed Recommender System 
In this section, detailed information about each step of the proposed Recommender System, as shown in 

Figure 8, can be found with the respective evaluation. In more detail, information will be given about the 

Clustering task with K-Means algorithm, the prediction phase from Matrix Factorization models, and, 

finally, the appliance of “Real-Time Rules”. Additionally, the final version of the proposed Recommender 

System is presented along with diagrams with detailed information. 

In summary, the proposed Recommender System predicts, with satisfactory accuracy, the unknown 

ratings of households using the respective Matrix Factorization model depending on the cluster where 

the target household belongs to and then, the “Real-Time rules” are applied in the sorted prediction list 

of each household in order to filter out irrelevant energy tips, prioritize the remaining ones based on 

“weight” and, finally, provide the top-1 recommendation after observing the real-time energy 

consumption of the target household’s electrical devices for increased consumption. Graphically, the 

aforementioned are presented in Figure 9, so the interaction between datasets used and the households 

within the RS. 
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Figure 8: The three parts of the proposed Recommender System 

 

Figure 9: Data Flow and Step-by-Step diagram of Final Recommender System 

Clustering of households based 
on energy consumption

Predict unknown ratings of 
households using Collaborative 

Filtering technique Matrix 
Factorization

Apply “Real-Time rules” for 
personalized recommendations
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4.1.1 | Clustering – Feature Selection and Optimal K 

After loading the Pecan Street Dataset, the creation of the energy profile of each household begins. This 

energy profile consists of features that take into account the total energy consumption drawn by the 

electrical grid and the photovoltaic system of a household in specific cases e.g. by season, by weekends, 

etc. In more detail, the features are the following: 

• Average energy consumption for each household for Weekdays (Monday through Friday). 

• Average energy consumption for each household for Weekend days (Saturday and Sunday). 

• Normalized energy consumption per hour for each household (Use per hour divided by the 

average consumption of the household) 

• Average energy consumption for each household 

• Average energy consumption of each household for each month 

The other two features assume that a day is divided by time periods. The first time period is Overnight, 
started from 22:00 through 6:00, the second one is Breakfast from 6:00 through 9:00, the third one is 
Daytime from 9:00 through 15:00 and the final one is Evening from 15:00 through 22:00. This idea was 
first mentioned by (Haben, Singleton, & Grindrod, 2016) which analyzed multiple time series of energy 
consumption data from smart meters and conclude in these 4 time periods within a day. 

Table 5: Time periods 

Taking the above into consideration, there are two features that were found from the work of (Haben, 

Singleton, & Grindrod, 2016): 

1) Seasonal Score  

2) Weekend vs Weekday Difference score 

 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = |
𝑝𝑤1 − 𝑝𝑠1
𝑃1𝑚𝑒𝑎𝑛

| + |
𝑝𝑤2 − 𝑝𝑠2
𝑃2𝑚𝑒𝑎𝑛

| + |
𝑝𝑤3 − 𝑝𝑠3
𝑃3𝑚𝑒𝑎𝑛

| + |
𝑝𝑤4 − 𝑝𝑠4
𝑃4𝑚𝑒𝑎𝑛

| 

Equation 9: Seasonal Score 

 

𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑣𝑠 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 = |
𝑝𝑤𝑑1 − 𝑝𝑤𝑒1
𝑃1𝑚𝑒𝑎𝑛

| + |
𝑝𝑤𝑑2 − 𝑝𝑤𝑒2
𝑃2𝑚𝑒𝑎𝑛

| +  |
𝑝𝑤𝑑3 − 𝑝𝑤𝑒3
𝑃3𝑚𝑒𝑎𝑛

| + |
𝑝𝑤𝑑4 − 𝑝𝑤𝑒4
𝑃4𝑚𝑒𝑎𝑛

| 

Equation 10: Weekend vs Weekday Score 

Here for each household and time period, a calculation for both is being made: 

• The Average consumption of household 𝑃1𝑚𝑒𝑎𝑛 , 𝑃2𝑚𝑒𝑎𝑛 , 𝑃3𝑚𝑒𝑎𝑛 , 𝑃4𝑚𝑒𝑎𝑛  

• The Average consumption in Summer 𝑝𝑠1 , 𝑝𝑠2 , 𝑝𝑠3 , 𝑝𝑠4 

• The Average consumption in Winter 𝑝𝑤1 , 𝑝𝑤2 , 𝑝𝑤3 , 𝑝𝑤4 

Time period 1 Time period 2  Time period 3 Time period 4 

Overnight 
22:00 – 6:00 

Breakfast 
6:00 – 9:00 

Daytime – 9:00 – 15:00 Evening – 15:00 – 
22:00 
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• The Average consumption on Weekdays 𝑝𝑤𝑑1 , 𝑝𝑤𝑑2 , 𝑝𝑤𝑑3 , 𝑝𝑤𝑑4  

• The Average consumption on Weekend days 𝑝𝑤𝑒1 , 𝑝𝑤𝑒2 , 𝑝𝑤𝑒3 , 𝑝𝑤𝑒4  

The above two features were normalized by the average consumption in each equivalent period (in 

seasonal score per season, in weekend-weekday score per the observed weekday or weekend day) so that 

households with low average energy consumption do not take into account as households with a higher 

change in energy consumption behavior in comparison with households with high average energy 

consumption (Haben, Singleton, & Grindrod, 2016). At the same time, due to differentiation in demand 

that was not included in seasonal or weekday vs weekend scores, the standard deviation was included in 

calculations to measure the household’s behavioral diversity. 

All these features create an energy profile for each household to train K-Means and if a household does 

not have data for a specific feature, then it is excluded. So, even if the dataset contains data for 1.000 

households, the above features rejected some of them end up having 612 households for training the 

Clustering model and train, at a later stage, the MF algorithm used for generating recommendations. 

As far as the number of clusters is concerned, the Elbow Curve indicated that the preferable k number for 

k-Means, concerning the training data, is 4. 

 

Figure 10: Results for optimal number of clusters based on K-Elbow Curve 

As far as the Hopkins Statistic is concerned, which is used to assess the clustering tendency of a dataset 

by measuring the probability that a given dataset is generated by uniform data distribution, the resulted 

score is ≈0.87, which indicates that the training dataset, namely the energy profiles created, has 

meaningful clusters to get created, so Clustering is a reasonable task. As mentioned in (Haben, Singleton, 

& Grindrod, 2016), “choosing the correct attributes and the number of them is potentially the most 

important aspect of a successful clustering”. 

Finally, the average value of silhouette score is ≈0.59 which indicates that the clusters well represent each 

household based on features given. 
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Table 6 has all the information concerning the “rating behavior” of each group. Cluster 1 has 141 

households and ratings are generated with low success probability, so ratings are generally low. Next, 

Cluster 2 has 142 households that rate neutrally, and Cluster 3 households tend to give higher ratings. 

Finally, Cluster 4 has a lot of households (180) that give high ratings and for that reason, the overall mean 

rating is greater than 2.5. 

Cluster  Success probability Count of users Mean rating 

1 0.2 141 1.8 

2 0.4 142 2.6 

3 0.6 149 3.38 

4 0.8 180 4.19 
Table 6: Cluster's average ratings 

 

4.1.2 | Matrix Factorization – Singular Value Decomposition (SVD) 

Matrix Factorization models map both users and items to a join latent factor space of dimensionality, such 
that user-item interactions are modeled as inner products in that space (Equation 1) (Ricci, Rokach, & 
Shapira, 2015). However, much of the observed variation in rating values is due to effects associated with 
either users or items, known as biases or intercepts, independent of any interactions (Koren, Matrix 
Factorization Techniques for Recommender Systems, 2009). 
So, if biases for items and users added, then the baseline estimator changes to Equation 11:  

𝑟̂𝑢𝑖 = 𝜇 + 𝑏𝑖 + 𝑏𝑢 + 𝑞𝑖
𝑇𝑝𝑢 

Equation 11: Predicted Rating formula 

Where 𝜇 is the global average rating, 𝑏𝑖 indicates the observed deviations of item 𝑖, or so-called item bias, 

and 𝑏𝑢 the user’s 𝑢, or so-called user bias, respectively, from the average. Also, 𝑞𝑖 is a vector which is 

associated with an item 𝑖 and 𝑝𝑢 with a user 𝑢, respectively. As far as 𝑝𝑢𝑞𝑖 
𝑇 is concerned, this is the 

resulting dot product that captures the interaction between user 𝑢 and item 𝑖. 

In order to learn the model parameters 𝑏𝑖, 𝑏𝑢, 𝑞𝑖, 𝑝𝑢,  the minimization of the regularized squared error 

changes to Equation 12: 

𝑚𝑖𝑛
𝑏∗,𝑞∗,𝑝∗

∑ 𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢 − 𝑞𝑖
𝑇𝑝𝑢 + 𝜆(𝑏𝑖

2 + 𝑏𝑢
2 + ||𝑞𝑖||

2
+ ||𝑝𝑢||

2
) 

(𝑢,𝑖)∈𝐾

 

Equation 12: Minimization of the regularized squared error 

Here, the observed ratings broken down into its four components: global average 𝜇, item bias 𝑏𝑖, user 

bias 𝑏𝑢, and user item interaction 𝑞𝑖
𝑇𝑝𝑢. This allows its component to explain only the part of a signal 

relevant to it. Also, the constant 𝜆 avoids overfitting by penalizing the magnitudes of the parameters and 

is usually determined by cross validation. The system learns by minimizing the squared error function, 

namely, to have a lower value of error between true and predicted rating (Koren, Factorization meets the 

neighborhood: A multifaceted collaborative filtering model, 2008); (Paterek, 2007). Because both 𝑞𝑖 and 

 𝑝𝑢 are unknowns, Equation 12 is not convex. However, if we fix one of the unknowns, the optimization 
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problem becomes quadratic and can be solved optimally. Minimization, in the case of Singular Value 

Decomposition, is typically performed by Stochastic Gradient: 

𝑏𝑢  ← 𝑏𝑢 + 𝛾(𝑒𝑢𝑖 − 𝜆𝑏𝑢) 

𝑏𝑖  ← 𝑏𝑖 + 𝛾(𝑒𝑢𝑖 − 𝜆𝑏𝑖) 

𝑝𝑢  ← 𝑝𝑢 + 𝛾(𝑒𝑢𝑖 · 𝑞𝑖 − 𝜆𝑝𝑢) 

𝑞𝑖  ← 𝑞𝑖 + 𝛾(𝑒𝑢𝑖 · 𝑝𝑢 − 𝜆𝑞𝑖) 

where 𝑒𝑢𝑖 = 𝑟𝑢𝑖 − 𝑟̂𝑢𝑖. These steps are performed over all the ratings of the trainset and repeated 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 times. Baselines are initialized to 0, user and item factors are randomly initialized 

according to a normal distribution, while learning rate 𝛾 and the regularization term 𝜆. 

Finally, in case of the proposed Recommender System, the regularization term 𝜆 is set to 0.02, the learning 

rate 𝛾 to 0.005. After several experiments, those values generate more accurate results based on RMSE. 

An observation was that high values of regularized term of items led to poor performance for the dataset 

used, while higher number of iterations did not offer higher accuracy at all. 

Detailed evaluation of SVD should be found in 4.2 section where experiments are presented concerning 

the most accurate algorithm and approach based on the data available. 

 

4.1.3 | Real-Time Rules 

Having in mind that energy consumption has a direct relationship with the time of the year, day of week, 

and hour within the day, a set of “Real-Time rules” were created to filter the prediction list of Matrix 

Factorization Models and provide even more personalized recommendations based on real-time 

conditions concerning the time frame of the recommendation taken place and the energy consumption 

of the target household. 

In more detail, “Real-Time rules” are divided into two parts, Part 1 and Part 2. The first one aims to exclude 

irrelevant energy tips that are not applicable due to the season, time period, and hour of the day where 

the recommendation takes place. Also, it excludes energy tips that apply in electrical devices that are not 

used by the target household. Finally, a “weight” is calculated that considers the high ratings of the target 

household and the Cluster’s households, so that it prioritizes the energy tips left on the prediction list.  As 

for the second part, the final recommendation results are based on the current energy consumption of 

the target household and its past energy consumption behavior. The past energy consumption is, 

essentially, the average energy consumption of the target household for the current season, day of week 

i.e. weekday or weekend, and hour of the recommendation for each electrical device that the energy tips 

of the filtered prediction list apply to. These averages are considered as a threshold concerning the current 

energy consumption and if just one of the resulting electrical devices surpasses this threshold, then the 

top-1 energy tip that applies in this electrical device is being recommended to the target household. 

However, if no electrical device expresses an energy consumption concern, then the energy tip that 

applies to the electrical device that the target household has given the highest ratings, essentially based 

on “weight”, is considered as the top-1 and is being recommended. 
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“Real-Time rules” were created having in mind the features used in Clustering. In more detail, as features 

of Clustering has to do with the season, month, hour, and day of the week, we thought that similar filtering 

cases of the predictions list from Matrix Factorization models may offer a more personalized experience 

to the target household in real-time. 

In more detail concerning the “Real-Time rules”, the steps are the following: 

While offline, the proposed Recommender System should: 

1) Create Clusters with available households based on their energy consumption behavior 

2) Predict a list of recommendations 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑢 from Matrix Factorization models using Singular 

Value Decomposition algorithm for user 𝑢 where 𝑢 ∈ 𝐾, which 𝐾 contains all households in 

ratings matrix 𝑅 

3) Find 𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑢 used by household 𝑢 ∈ 𝐾 

4) Find ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑐, namely all the households 𝑢 ∈ 𝐾 that appear in the same cluster 𝑐 

While in real-time:  

Part 1 

1) Find 𝑚𝑜𝑛𝑡ℎ 

2) Find 𝑠𝑒𝑎𝑠𝑜𝑛 

3) Find 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (i.e. 12:00 p.m. then Morning) 

4) Find 𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘 

5) Find 𝑤𝑒𝑒𝑘 𝑑𝑎𝑦, namely if it is a week day or a weekend day 

6) Keep only the prediction list generated from Matrix Factorization models 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑢 for target 

household 𝑢  

7) Find the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑢, namely the cluster of target household 𝑢 ∈ 𝐾 

Having found the information above, we continue by filtering the predictions list of the respective Matrix 

Factorization model in order to keep only relevant energy tips based on the time frame where the 

recommendation takes place and the electrical devices that smart meter data are collected for the target 

household: 

8) 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑢 having only 𝑡𝑖𝑝𝑠 that apply on 𝑑𝑒𝑣𝑖𝑐𝑒𝑠𝑢 of target household 𝑢 

a. If 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 has left with one tip, then revert action of step 8 and go to step 9 

9) Update 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 having only 𝑡𝑖𝑝𝑠 that apply on 𝑠𝑒𝑎𝑠𝑜𝑛 = {current season | All Seasons} 

a. If 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 has left with one tip, then revert action of step 9 and go to step 10 

10) Update 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 having only 𝑡𝑖𝑝𝑠 that apply on based on 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = {current time period | 

All Time Periods} (e.g. it’s 21:00 so it’s Evening) 

a. If 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 has left with zero tips, then the recommendation procedure is set to trigger 

again in an hour that corresponds to time period of energy tips left 

b. If 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 has left with one tip, then Recommend the Top-1 from 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 

After filtering out the prediction list with “irrelevant energy tips” based on time frame of the 

recommendation, we continue by finding the interests of the target household based on similar 

households, namely the households that belong to the same Cluster with the target household. A tip that 
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has been already rated from the target household and similar households and holds a 4 or 5 rating value 

for both households, is considered as interesting. 

11) For ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑐  where 𝑐 is the cluster where target household 𝑢 belongs: 

a. 𝑐𝑜𝑢𝑛𝑡(𝑟)𝑐𝑑𝑒𝑣𝑖𝑐𝑒 = Count ratings 𝑟 for each 𝑑𝑒𝑣𝑖𝑐𝑒 in 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 

b. 𝑐𝑜𝑢𝑛𝑡𝐻𝑖𝑔ℎ(𝑟 ⋲ {4,5})𝑐𝑑𝑒𝑣𝑖𝑐𝑒 = Count ratings 𝑟 with 4-5 value for each 𝑑𝑒𝑣𝑖𝑐𝑒 in 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 

12) For target household 𝑢 

a. 𝑐𝑜𝑢𝑛𝑡(𝑟)𝑢𝑑𝑒𝑣𝑖𝑐𝑒 = Count ratings 𝑟 for each 𝑑𝑒𝑣𝑖𝑐𝑒 in 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 

b. 𝑐𝑜𝑢𝑛𝑡𝐻𝑖𝑔ℎ(𝑟 ⋲ {4,5})𝑢𝑑𝑒𝑣𝑖𝑐𝑒 = Count ratings 𝑟 with 4-5 value for each 𝑑𝑒𝑣𝑖𝑐𝑒 in 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 

13) Compute 𝐷𝑒𝑣𝑖𝑐𝑒 𝑅𝑎𝑡𝑖𝑜𝑐𝑑𝑒𝑣𝑖𝑐𝑒  = 
𝑐𝑜𝑢𝑛𝑡𝐻𝑖𝑔ℎ(𝑟⋲{4,5})𝑐𝑑𝑒𝑣𝑖𝑐𝑒  

𝑐𝑜𝑢𝑛𝑡(𝑟)𝑐𝑑𝑒𝑣𝑖𝑐𝑒
  

14) Compute 𝐷𝑒𝑣𝑖𝑐𝑒 𝑅𝑎𝑡𝑖𝑜𝑢𝑑𝑒𝑣𝑖𝑐𝑒  = 
𝑐𝑜𝑢𝑛𝑡𝐻𝑖𝑔ℎ(𝑟⋲{4,5})𝑢𝑑𝑒𝑣𝑖𝑐𝑒  

𝑐𝑜𝑢𝑛𝑡(𝑟)𝑢𝑑𝑒𝑣𝑖𝑐𝑒
 

Finally, a “weight” is calculated for each electrical device, so that each tip from the filtered prediction list 

that applies in each of the devices will be ranked higher than others if the target household finds its 

electrical device more interesting: 

15) Compute 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑣𝑖𝑐𝑒𝑢 = 
𝐷𝑒𝑣𝑖𝑐𝑒 𝑅𝑎𝑡𝑖𝑜𝑢𝑑𝑒𝑣𝑖𝑐𝑒
𝐷𝑒𝑣𝑖𝑐𝑒 𝑅𝑎𝑡𝑖𝑜𝑐𝑑𝑒𝑣𝑖𝑐𝑒

  

a. If 𝐷𝑒𝑣𝑖𝑐𝑒 𝑅𝑎𝑡𝑖𝑜𝑐𝑑𝑒𝑣𝑖𝑐𝑒𝑖𝑠 0 continue to the next device 

b. If 𝑟𝑢𝑑𝑒𝑣𝑖𝑐𝑒 = 0 , namely target household 𝑢 do not have ratings for the specific 𝑑𝑒𝑣𝑖𝑐𝑒 

then 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑣𝑖𝑐𝑒𝑢 = max (𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑣𝑖𝑐𝑒𝑢) 

16) 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢  =  𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑢 sorted based on 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑣𝑖𝑐𝑒𝑢  

Part 2 

In this part, past energy consumption behavior and real-time energy consumption play a vital role to 

detect possible increased consumption of the target household’s electrical devices. The most important 

note in each of the conditions below is that if there is no data for a certain electrical device “Real-Time 

rules” will try to minimize the “loss” by keeping, at least, one case where the time frame of 

recommendation is respected. For example, if there are no data for the current day of the week, then we 

consider energy consumption of household on weekdays or weekend days, depending on the day of week. 

Similarly, if there is not enough energy consumption data to represent a season, then only data of the 

current month are considered. 

17) 𝑑𝑎𝑡𝑎𝑢 = Energy consumption data of the target household 𝑢 for all devices in 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢  

for current 𝑑𝑎𝑦 𝑜𝑓 𝑤𝑒𝑒𝑘 and ℎ𝑜𝑢𝑟 

a. If 𝑑𝑎𝑡𝑎𝑢 = 0 due to current 𝑑𝑎𝑦 𝑜𝑓 𝑤𝑒𝑒𝑘 then: 

i. 𝑑𝑎𝑡𝑎𝑢 = Energy consumption data of target household 𝑢 for all devices in 

𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 for current 𝑤𝑒𝑒𝑘 𝑑𝑎𝑦 (𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝑜𝑟 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑑𝑎𝑦) and ℎ𝑜𝑢𝑟 

b. If 𝑑𝑎𝑡𝑎𝑢 = 0 due to current 𝑤𝑒𝑒𝑘 𝑑𝑎𝑦 then: 

i.  data𝑑𝑎𝑡𝑎𝑢 = Energy consumption data of target household 𝑢 for all devices in 

𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 for current ℎ𝑜𝑢𝑟 
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18) Filter 𝑑𝑎𝑡𝑎𝑢 with data for Current 𝑚𝑜𝑛𝑡ℎ 

a. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑚𝑜𝑛𝑡ℎ_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒  = Average consumption of target 

household 𝑢 for 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 devices for the Current 𝑚𝑜𝑛𝑡ℎ, ℎ𝑜𝑢𝑟 and 

(𝑤𝑒𝑒𝑘 𝑑𝑎𝑦 𝑜𝑟 𝑑𝑎𝑦 𝑜𝑓 𝑤𝑒𝑒𝑘) based on Past Data (e.g. Saturday 10:00 a.m. average 

consumption on June) 

19) Filter 𝑑𝑎𝑡𝑎𝑢𝑑𝑒𝑣𝑖𝑐𝑒 with data for Current 𝑠𝑒𝑎𝑠𝑜𝑛 

a. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒= Average consumption of target 

household 𝑢 for 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 devices for the Current 𝑠𝑒𝑎𝑠𝑜𝑛, ℎ𝑜𝑢𝑟 and (𝑤𝑒𝑒𝑘 𝑑𝑎𝑦) 

based on Past Data (e.g. Monday 9:00 a.m average consumption on Summer) 

b. 𝑀𝑜𝑛𝑡ℎ𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑢𝑑𝑒𝑣𝑖𝑐𝑒= Number of months that data are available 

20) If 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑚𝑜𝑛𝑡ℎ_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒 and 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒 are ≠ 0 and 𝑀𝑜𝑛𝑡ℎ𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑢𝑑𝑒𝑣𝑖𝑐𝑒 > 1 

then: 

a. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛_𝑚𝑜𝑛𝑡ℎ_ℎ𝑜𝑢𝑟 𝑑𝑒𝑣𝑖𝑐𝑒 = 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑚𝑜𝑛𝑡ℎ_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒,  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒) 

21) If values from step 18a, 19a and 20a are 0 then: 

a. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑓𝑜𝑟 ℎ𝑜𝑢𝑟 𝑑𝑒𝑣𝑖𝑐𝑒 = Average consumption of target 

household 𝑢 for 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 devices for the Current ℎ𝑜𝑢𝑟 based on Past Data 

So, as 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑑𝑒𝑣𝑖𝑐𝑒 we consider one of the following variables mentioned before: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑒𝑣𝑖𝑐𝑒 =

{
 

 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛_𝑚𝑜𝑛𝑡ℎ_ℎ𝑜𝑢𝑟 𝑑𝑒𝑣𝑖𝑐𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑚𝑜𝑛𝑡ℎ_ℎ𝑜𝑢𝑟𝑑𝑒𝑣𝑖𝑐𝑒
 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛_ℎ𝑜𝑢𝑟 𝑑𝑒𝑣𝑖𝑐𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑓𝑜𝑟 ℎ𝑜𝑢𝑟 𝑑𝑒𝑣𝑖𝑐𝑒

 

22) Find  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟𝑑𝑒𝑣𝑖𝑐𝑒 for 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 devices  

23) 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑒𝑣𝑖𝑐𝑒 

This is the last step of Part 2 of "Real-Time rules". This step will inform us if there is at least one electrical 

device that exceeds the average consumption that we found earlier so that top-1 energy tip which applies 

in such electrical device to be recommended. If there is no such case, then the top-1 from the filtered list 

of Part 1 is recommended. 

24) If there’s a 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 0, recommend the 𝑡𝑖𝑝 that applies to the 𝑑𝑒𝑣𝑖𝑐𝑒 with 

max (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

a. Else recommend the top-1 of 𝑆𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑢 

 

4.1.4 | Final Recommender System 

The basic steps of the proposed Recommender System and the execution timeline without applying the 

“Real-Time rules” can be found in Figure 11. More specifically, Clustering should be done once a week, 

while training of the Matrix Factorization Models should be done once a day in order to predict unknown 

ratings of households. 
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Figure 11: Flowchart of basic steps for Recommendation process 

As far as the frequency of iterations about each basic step of the Recommender System is concerned, 

since the RS handles a lot of data, it is important to consider first the computational cost for each step. 

For this reason, Clustering should be done only once a week and in times where most of the households 

do not have an active session in the RS, while predictions with MF Models using SVD should be generated 

once a day. The reason behind each of these decisions is justifiable as follows. In clustering, we deal with 

energy consumption data, which is more difficult to change especially within a week. Of course, the energy 

consumption should positively change over time, so the weekly update should acquire changes in 

household’s energy consumption behavior, if any. In Matrix Factorization models, due to ratings added all 

the time, updated information should be introduced. 

The Final Recommender System has specific rules from applying some of its basic steps. More specifically, 

a household cannot belong to a Cluster if the RS does not have any energy consumption data collected 

from smart meters. The reason is that Clustering cannot provide the assignment of a household to a 

cluster because when calculating the energy profile of a user, it will be empty. Moreover, we will not know 

the Matrix Factorization model that should predict the unknown ratings of a target household. Eventually, 

the household will not get recommendations until providing smart meter data for at least one device. 

However, in case energy consumption data is available, so the target household belongs to a Cluster, the 
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total absence of ratings is not a significant problem due to the imputation of missing ratings with the mean 

rating of Cluster that the target household belongs to as a first step. Thus, the respective Matrix 

Factorization model can provide a list of predictions for the target household, overcoming the Cold Start 

Problem. As far as the 1st Part of “Real-Time Rules” is concerned, it is evident that the lack of rating 

feedback from the target household will affect the effectiveness of the “weight” calculation. “Weight” is 

calculated based on rating data of the target household and households that belong within the same 

cluster as the target household. So, this step would not change the prediction list by prioritizing energy 

tips that apply in interesting, for the target household and cluster households, electrical devices. However, 

the filtering of the prediction list will function as expected due to the available time frame of the 

recommendation. As far as the 2nd Part of “Real-Time Rules”, the absence of rating feedback from the 

target household is not a problem and will not affect its functionality.   

The most important step is the trigger of the Recommender System for recommendation to the target 

household. If this is the first time in the specific day that a trigger has been fired, then the RS will proceed 

with all the steps below, otherwise, some steps will be avoided because they have been already executed 

and should continue from where we have left, namely the step where the trigger was set to fire again in 

the preferred time period.  

 

4.2 | Experiments 
In this section, a set of experiments are presented with their results concluding with the most accurate 

algorithm to use for the Matrix Factorization model(s) based on the available ratings matrix. The RMSE is 

obtained through 5-Fold Cross-Validation, a method that ensures that our predictions are not generated 

from an overfitted algorithm/model. 

Finally, the quality evaluation of the produced recommendations of the final approach used in the 

proposed RS is presented in comparison with a dummy-static RS. With this, we highlight the significance 

of the proposed Recommender System in providing accurate recommendations in a fast and memory-

efficient way. 

 

4.2.1 | Experiment 1: Find the most optimal CF approach for the ratings matrix 

The purpose of this experiment is to identify between K-Nearest Neighbors (Memory-based CB) and 

Matrix Factorization (Model-based CB) using SVD, which approach results in the most accurate predictions 

based on the ratings matrix while offering fast and memory-efficient training and testing times. In more 

detail, K-Nearest Neighbors is a Memory-Based algorithm that predicts using a distance or similarity 

metric. This class of algorithms provide a very fast training time since it just stores the data and their 

labels, but it is heavy in terms of storage. Also, the prediction phase is slow since it calculates all the 

distances to determine the k-Nearest Neighbors. Thus, is not practical for a large-scale system. Moreover, 

a frequent problem is that they do not generalize the data at all, namely, they tend to overfit the data. On 

the other hand, Matrix Factorization overcome the data sparsity problem, which is common in real-world 

datasets. Also, SGD is a relatively fast algorithm (Koren, Matrix Factorization Techniques for 

Recommender Systems, 2009) that learns based on the learning rate given as a hyperparameter. 
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Each of the aforementioned algorithms needs some pre-defined parameters to work. As seen in Table 7, 

K-Nearest Neighbor considers only 5 neighbors, the comparison is made between items and the 

predictions are calculated based on cosine similarity. In Table 8, SVD needs to have pre-defined the 

number of latent factors, the number of iterations where SGD will execute, the learning rate and the 

regularization term which is part of the cost function that needs to get minimized. 

Parameters Value of parameter 

Number of Neighbors  5 

Comparison between  Items (Item-based) 

Similarity Metric  Cosine Similarity 
Table 7: Parameters of K-Nearest Neighbors  

Parameters Value of parameter 

Number of factors 2 

Number of epochs   5 

Learning Rate   0.005 

Regularization term for the cost function   0.02 

Add biases Yes 
Table 8: Parameters of Singular Value Decomposition 

Finally, the unknown ratings of households are deleted.  

Algorithm RMSE Train Time (s) Test Time (s) 

SVD 0.898 0.39 0.22 

K-Nearest Neighbors 0.97 0.79 2.10 
Table 9: Results of Experiment 1 

As presented in Table 9, the needed time for the algorithm to learn is the training time, while the time for 

generating predictions is the testing time. So, SVD seems to result to the best RMSE score, while having a 

relatively small train and test time. Similar results were observed for SDG with minor differences. Finally, 

k-Nearest Neighbor provides neither good prediction accuracy nor good training and testing times. 

  

4.2.2 | Experiment 2: Recommend using SVD algorithm with all ratings 

The purpose of this experiment is to test four different methods of imputing missing ratings in order to 

find which one offers the most accurate predictions. Data imputation approach has been widely used, 

because it does not require additional data from other sources (e.g., trust networks and crowdsourcing) 

(Lee, Kim, Xie, & Park, 2018). Since the imputed value is not a real rating but an inferred rating, however, 

there may exist an error. Inferring the imputed value of a missing rating accurately is the key to reducing 

such errors and eventually improving the accuracy of CF.  

As far as the different methods of imputation of missing ratings is concerned, the first one is to delete the 

missing ratings, the second and the third one is to replace them with the mean rating or median, 

respectively, while the fourth one is to replace the unknown ratings of each household with the mean 

rating of the cluster it belongs to. 
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Imputation 
method 

RMSE  Train 
Time (s)  

Test 
Time (s)  

Delete unknown 
ratings 

0.899 0.37 0.19 

Fill unknown 
ratings with the 
mean rating 

0.881 0.49 0.26 

Fill unknown 
ratings with the 
median rating 

0.88 0.58 0.19 

Fill unknown 
ratings with the 
mean rating of 
each cluster 

0.812 0.48 0.24 

Table 10: Results of Experiment 2 

From Table 10, it is obvious that the RMSE score is the same either imputing with mean rating or with 

median for both algorithms. Also, in the case of deleting unknown ratings of households, the RMSE score 

worsened because of the decreased amount of data. Finally, the best RMSE score is observed in the case 

of imputing missing data for each household with the mean rating of the cluster it belongs to.  

Additionally, the train and test times for both algorithms have minor differences, except in the case of 

deleting the unknown ratings which is justifiable because the ratings data decreased. 

 

4.2.3 | Experiment 3: Recommend using SVD algorithm with ratings from each cluster  

The purpose of this experiment is to use the results of Clustering when creating a Matrix Factorization 

model with SVD algorithm. The idea is that a household belongs in the same cluster with other households 

that share similar energy consumption patterns. In that way, the ratings of households might be similar in 

real-world scenarios. In more detail concerning the experiment, a predictive model is created for each 

cluster, trained with the respective ratings of households, and tested with four different methods to 

impute missing ratings. The methods for imputing missing ratings are the same as in Experiment 2. 

In more detail, the number of models is the same as the number of clusters, which is 4, and each 

household gets recommendations from the respective model, namely the one that represents the cluster 

where it belongs. Each model is trained with rating data from households that belong in the same cluster. 

The difference in the RMSE score of each model is due to the different training data. 

This experiment is divided into two parts; The first one provides the RMSE score of each model for each 

imputation method concerning missing ratings, while the second one provides the average RMSE score of 

all MF models for each tested algorithm and each imputation method of missing ratings. 

In Table 11, the RMSE score for each MF model is presented for each of the tested algorithms. From the 

results obtained, it is apparent that SVD provides the best results while imputing missing ratings with the 

mean rating of each cluster. The most significant part of this experiment is observed in training and testing 

times. This time the same prediction accuracy score was obtained but the time to train and test data 



45 
 

reduced significantly. In more detail, both training and testing time of SVD is reduced by 75%. The reason 

is that the data used in each of these MF models are less due to the reduced number of households that 

appear in each training dataset. For example, 612 households train the MF model in Experiment 2, but in 

this experiment, households appeared in each cluster and will train the respective model is about 140. 

Table 11: Results of Experiment 3 

From the results, it is obvious that even if we dealt with a synthetic dataset, this approach is promising 

and is a reliable way to reduce computational cost while keeping the prediction accuracy high.  

 

 

 

 

 

 

 

 

 

 

 

Imputation 
method 

Model 
1 
RMSE  

Model 
2 RMSE  

Model 
3 RMSE 

Model 
4 RMSE 

Average 
RMSE 

Average 
Training 
Time 

Average 
Testing 
time 

Delete unknown 
ratings 

0.806 0.99 0.98 0.803 0.894 0.09 0.04 

Fill unknown 
ratings with the 
mean rating 

0.869 0.898 0.898 0.869 0.883 0.12 0.06 

Fill unknown 
ratings with the 
median rating 

0.869 0.898 0.899 0.868 0.883 0.15 0.07 

Fill unknown 
ratings with the 
mean rating of 
each cluster 

0.726 0.898 0.898 0.726 0.812 0.12 0.06 
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4.2.4 | Results of Experiments 

The final approach for generating predictions is presented in Figure 12.  

 

Figure 12: Final approach for generating predictions 

To summarize, SVD gave the best results when we tried to create a denser matrix by imputing missing 

ratings with the mean rating of each cluster.  

As far as the quality of the predictions of the proposed approach is concerned, the calculation of Precision 

@ 15 and Recall @ 15 for each MF model was calculated (essentially the average of the Precision @ 15 

and Recall @ 15 of each household in each of the clusters) and presented in Table 12. In order to calculate 

these quality metrics, remember that when generating the synthetic dataset with ratings, 20% of them 

were made invisible in order to be considered as missing ratings of households and then kept as a separate 

column for evaluation purposes.  In more detail, the unknown ratings of energy tips that their real rating 
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is greater or equal to the mean real rating of the cluster where each household belongs to, from now on 

threshold, is considered as a relevant recommendation. 

Additionally, the same quality evaluation of recommendations was conducted for a dummy-static 

Recommender System as shown in Table 13. This dummy-static RS assign to each unknown rating a value 

of 3, which is the mean rating of all households. What we want to prove with this dummy-static RS is the 

usefulness of the proposed RS in providing accurate and relevant recommendations in comparison with a 

simple Recommender System that generates dummy predictions.  

Finally, as presented in Table 14, the average Precision @ 15 of the proposed RS resulted in 0.70, meaning 

that about 10 of the top-15 predictions obtained from Matrix Factorization Models using SVD are relevant, 

and the average Recall @ 15 resulted in 0.42 means that 42 % of the relevant tips of a household appear 

in the top-15 recommendation list. As far as the dummy-static RS is concerned, the dummy top-15 for 

households of each cluster generated an average Precision @ 15 of 0.45 and an average Recall @ 15 of 

0.29. In summary, the proposed Recommender System has a Precision @ 15 25% better than a simple, 

ransom RS and a Recall @ 15 13% better. In other words, the proposed RS achieve to include 25% more 

tips that are relevant and 13% more tips of the proportion of relevant tips.  

MF Model based on 

Cluster 
Precision @ 15 Recall @ 15 

1 57 % 41 % 

2 53 % 42 % 

3 81 % 41 % 

4 83 % 42 % 
Table 12: Precision @ 15 and Recall @ 15 for each MF Model - Proposed Recommender System 

MF Model based on 

Cluster  
Precision @ 15 Recall @ 15 

1 58 % 41 % 

2 52 % 41 % 

3 82 % 42 % 

4 0 % 0 % 
Table 13: Precision @ 15 and Recall @ 15 for each MF Model – Dummy-static Recommender System 

 Average Precision @ 15 Average Recall @ 15 

Proposed RS 70 % 42 % 

Dummy-static RS 45% 29 % 
Table 14: Average Precision @ 15 and Recall @15 for both RSs 

The reason why we observe a relatively good Precision @ 15 and Recall @ 15 from the dummy-static RS, 

is that the synthetic ratings matrix has a mean rating of 3, so that the most households give a rating of 3. 

But, what about if a cluster with households behave differently? What if none of the real ratings are 3? 

Can the dummy-static RS achieve to find a way to cope with this? No. This is the reason why the proposed 

Recommender System offers quality recommendations than a dummy-static Recommender System. 

The same evaluation was done after applying Part 1 of “Real-Time rules”. In short, Part 1 of “Real-Time 

rules” take as input the sorted prediction list and filters out irrelevant energy tips based on the 

recommendation time frame, the electrical devices that a target household use and the interests of a 
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target household with its similar households. However, due to many possible combinations that can apply 

in Part 1 of “Real-Time rules”, it was decided to test a single case to observe the quality of 

recommendations of the proposed Recommender System. The test case references to Winter season, 

Evening time period and Weekend day. Finally, Precision @ 15 and Recall @ 15 for both the RSs (proposed 

and dummy-static) result in the same evaluation score. That means that we achieve to retain the same 

quality of recommendations and at the same time keeping up with the recommendation time frame, the 

devices that each target household use and the interests of each household based on the “weight”.  

Finally, the proposed Recommender System succeed in improving the time cost (average training time of 

0.12 s from 0.48 s and testing time 0.06 s from 0.24 s) and memory usage (each model is getting trained 

with about 27.500 ratings than 110.160) for providing predictions by 75%, having a Matrix Factorization 

model for each cluster. Moreover, it succeeded improving the prediction accuracy (average RMSE of 

0.813) and quality (25% Precision @ 15 and 13% Recall better than a dummy-static RS) by imputing missing 

ratings with the mean rating of each cluster for each MF model and finally, introduce a set of filtering rules 

that offers personalized recommendations by taking into consideration the recommendation time-frame, 

the electrical devices used by each household, the interests of each household and its respective 

neighbors and, finally, by observing the real-time energy consumption of the target household in order to 

identify possible increased consumption so that to provide the most relevant recommendations in real-

time. 

 

4.3| Simulation 
In this section, a simulation of the proposed Recommender System for two households will be presented. 

The analyzed energy consumption data from Pecan Street dataset will be from 2012 through 2013. Also, 

the current energy consumption for each household used in Part 2 of “Real-Time rules” is synthetic and 

aims to highlight the behavior of “Real-Time rules” through the Recommender System. 

Detailed information for the first household #4352 is presented in Table 15, while for household #4298 in 

Table 16. In more detail, household #4352 has energy consumption data (e-gauge) from May through 

December of 2012 and January through June of 2013 for 16 devices. On the other hand, household #4298 

has data for just one year beginning from late February 2013 through June 2013 for 9 devices. 

User ID 4352 

Cluster 3 

Mean rating of Cluster 3.8 

Unknown ratings 39/180 

Start date - Collection of e-gauge data since May 2012 

End date - Collection of e-gauge data since June 2013 

Count of devices with smart meters 16 
Table 15: Information about household #4352 

User ID 4298 

Cluster  3 

Mean rating of Cluster 3.8 

Unknown ratings 42/180 

Collection of e-gauge data since February 2013 



49 
 

End date - Collection of e-gauge data since June 2013 

Count of devices with smart meters 9 
Table 16: Information about household #4298 

The first part of the proposed Recommender System is Clustering. In this part, households that have 

available energy consumption data will be assigned to a cluster based on their energy consumption 

behavior. As far as the households of this simulation are concerned, both households were assigned to 

Cluster 3. The households that belong to this cluster are in total 149 and have a mean rating of 3.8 so they 

tend to give high ratings. 

The second part of the proposed Recommender System is the prediction one. In this part, each of the 

available Matrix Factorization models will be trained with data from the households that belong to the 

respective cluster. Additionally, the missing ratings of households in this MF model will be replaced with 

the mean rating of cluster households, namely 3.8. In our case, the Matrix Factorization model No 3 will 

provide the prediction list for each of the households.  

Finally, the top-5 prediction list of unrated tips for household #4352 is as presented in Table 17, while for 

household #4298 in Table 18. As far as the real rating is concerned, remember that when the synthetic 

ratings dataset was created, 20% of the ratings made invisible and kept as a separate column for 

evaluation purposes. 

Tip id  Appliance  Predicted rating Real rating 

431 Use  3.42 3 

23 Office  3.38 4 

429 Lights  3.37 4 

20 Office 3.36 4 

53 All Rooms 3.31 4 
Table 17: Top-5 Prediction list of MF Model for household #4352 

Tip id  Appliance  Predicted rating Real rating 

101 All Rooms 3.44 3 

431 Use  3.44 4 

13 Range 3.41 4 

20 Office 3.41 3 

456 Refrigerator  3.40 5 
Table 18: Top-5 Prediction list of MF Model for household #4298 

After generating predictions for both households, it is time to apply “Real-Time rules”. Remember that in 

“Real-Time rules” we do not only make use of the ratings of each household, but also the current and past 

energy consumption.  

The time frame where the recommendation procedure takes place is Saturday (Weekend day) February 

27 20:00 where the season is Winter, and the time period is Evening. For both households, the energy 

consumption data for some devices is for just one year (essentially one month) and for some others for 

two years (e.g. February 2012 and 2013). 

As previously described, the 1st part of “Real-Time Rules” aims to filter the prediction list from the 

respective Matrix Factorization model based on devices used by the target household and the time frame 

where the recommendation takes place. Thus, from the energy tips that were generated as predictions 
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from SVD, only 29 from 39 apply on devices used from household #4352, while for household #4298 only 

25 from 42. So, in each case, we can proceed by filtering the prediction list with devices used by the target 

household. If there was only 1 tip left, due to the collection of smart meter data for the household for just 

one device from the available ones in the prediction list, then this rule would have not been taken into 

consideration. In this case, the predictions list would have more general energy tips meaning that some 

energy tips may apply in devices that no smart meter data are collected for the target household. 

Next, we consider keeping only the energy tips that apply to the current season, namely Winter, or in all 

seasons. Again, if just one tip had left, we would not consider this filtering rule. For household #4352, the 

recommendation list was reduced by 7 energy tips resulting in 22 energy tips left to be recommended. 

For household #4298, the recommendation list was reduced by 6 energy tips resulting in 19 energy tips. 

The third filtering condition keeps only energy tips that apply in the current time period, namely Evening, 

or in all time periods. If there were no such energy tips, so all energy tips that were left apply in the 

Morning, then the recommendation procedure would have set to trigger the next morning, namely from 

6 a.m. through 5 p.m. In this case, both households have data that apply in the Evening. Household #4352 

has now 19 energy tips left to be recommended, while household #4298 has 17 energy tips left. 

Finally, the filtered list for household #4352 has 19 energy tips left to be recommended that apply in 14 

devices used by the household, while household #4298 has 17 energy tips left that apply in 7 devices. 

Right after, a weight is assigned to each device in the filtered list, so that later sorted in descending order 

to find the devices that the target household has the most interest in. In the calculation of weight, we do 

not take only into consideration the target’s household ratings, but also ratings of households that belong 

in the same cluster with the target household. After the calculation, we find out that household #4352 

has a special interest in energy tips that apply in Cars with a weight of 1.39 as show in Table 19. As for 

household #4298, its special interest belongs to devices related to plugs and lights in exterior places of a 

household with a weight of 1.18 as shown in Table 20.  

Tip id  Appliance  Predicted rating Real rating 

397 Car  3.12 3 

396 Car  3.18 4 

251 Kitchen/Kitchen 
App/Refrigerator 

3.18 3 

474 Dishwasher/Clothes 
washer 

3.20 3 

394 Air/Air Window 3.30 2 

Table 19: Top-5 filtered list for household #4352 

Tip id  Appliance Predicted rating Real rating 

63 Lights 3.27 5 

246 Lights 3.27 3 

220 Lights 3.25 5 
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18 Air/Air Window  3.32 4 

215 Air/Air Window  3.30 4 

Table 20: Top-5 filtered list for household #4298 

After applying the steps described in Part 1 of “Real-Time rules”, Part 2 begins. The goal is to find the 

device that has an increased energy consumption in real-time taking into consideration past energy 

consumption data and specifically the average consumption data of the target household. 

As mentioned before, we have a small sample of energy consumption for both households in this 

simulation. A significant note that highlights the efficiency of the proposed Recommender System in 

handling unavailability of data is that whenever there is no data available for a device for the current 

conditions where the recommendation takes place, e.g. current season, day of the week, hour, month, 

then the RS considers only what is available. For example, if we do not have energy consumption data for 

at least 2 months of Winter, then the average consumption of the target household is not considered 

based on season but rather based on the rest available cases. Another example is when there is no data 

for a device for the current day of the week. In that case, we consider the week day, e.g. if Saturday (day 

of the week 6), then we consider the target household’s average energy consumption data on Weekend 

days. 

In more detail concerning the current energy consumption data, this refers to the energy consumption 

that the target household has in each of the used devices appeared in the recommendation list. As 

previously mentioned, depending on the energy consumption data available for the target household, the 

calculation of average consumption in each of the devices used by the target household is different. With 

that in mind, an observation of the average consumption of the target household in each of the used 

devices has been made in order create synthetic values as the real-time consumption for each device used 

from the target household that either surpass the average consumption or not. 

So, the current energy consumption for some devices of household #4352 is presented in Table 21 and 

for household #4298 in Table 22: 

Use Air 1 Bedroom 
1 

Car  Clothes 
washer 

Dishwasher Dryer  Furnace 
1 

Refrigerator 

1.97 1 0.08 0.87 0.18 0.0012 1.08 0.21 0.05 
Table 21: Current energy consumption of household #4352 

Use Air 1 Bathroom 
1 

Car  Clothes 
washer 

Furnace Jacuzzi Outside Lights 
and Plugs 

0.85 0.8 0.01 1.31 0.7 0.01 0.12 0.186 
Table 22:Current energy consumption of household #4298 

Even though a household has installed smart meters in some devices, there are cases where no data is 

available from the date of enrolment in the Pecan Street Dataset but in a later time. Among different 

households, this case is apparent for household #4352, for example, for Car device where the collection 

of energy consumption data begun in May 2013 and through June 2013. So, in this case, where no data is 

available for the observed season (Winter) or the observed month (February), the average energy 

consumption of household #4352 is considered based on observed hour (20:00) and on observed 

day (Saturdays). On the other hand, household #4298 has energy consumption data for plugs and lights 
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of exterior places of a household (a device) for the observed Month (February), so the average energy 

consumption of household #4298 is considered based on observed month. 

As mentioned before, real-time energy consumption has synthetic data created for this simulation. So, for 

household #4352 it was considered to give a higher value than the average consumption for Use, Car, 

Kitchen App, Dishwasher, Bedroom, Furnace, and Air devices. From the above mentioned, the device with 

the highest difference between average consumption and real-time consumption will be recommended. 

As far as the household #4298, none of the devices appeared in the filtered prediction list exceeds the 

average energy consumption in real-time. So, the top-1 from the filtered list of Part 1 of “Real-Time rules”, 

which is sorted based on “weight”, is recommended. 

Finally, as shown in Table 23, household #4352 has its highest difference, based on the average 

consumption during Saturdays at 20:00, in real-time consumption based on past data for “Use”, namely 

the summary of photovoltaics energy and energy drawn from the electric grid. In this case, the energy tips 

are more general. In Table 24, household #4298 does not exceed average consumption in any of the 

devices appeared in the filtered predictions list, so the top-1 recommendation from Part 1 of the “Real-

Time rules” is recommended. 

Household  4352 

Tip Description Irritated by the blinking light on the electric 
devices in stand-by mode? Turn off your gaming 
console instead of leaving it on stand-by while it is 
not in use 

Appliance  Use 

Time Period of appliance General 

Season of appliance All 

Real-Time Consumption 1.98 

Average Consumption 1.80 

Weight 0.99 

Predicted Rating 3.41 

Real Rating 3 
Table 23: Recommendation for Household #4352 

Household  4298 

Tip Description Remember to switch off lights when rooms are 
unoccupied. 

Appliance  Lights 

Time Period of appliance Evening 

Season of appliance All 

Real-Time Consumption 0.186 

Average Consumption 0.1863 

Weight 1.18 

Predicted Rating 3.27 

Real Rating 3 
 Table 24: Recommendation for Household #4298 

Additionally, Figure 13 presents the average consumption at 20:00 o’clock for use for all days of the week 

for household #4352 and similar households that belong to the same cluster with the target household. 
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The red dot expresses the real-time consumption of the household concerning use and we can observe a 

significant increase.  

 

Figure 13: Average energy consumption of “use” for household #4352 and corresponding cluster per Weekday at 20:00 o’clock. 
Red point points on current consumption. 

Figure 14 presents the average consumption on Saturdays and at 20:00 o’clock for “outside lights and 

plugs”, namely the energy consumption of the exterior lights and plugs of a household, for each month 

that energy consumption data are available for household #4298, in comparison with similar households 

that exist within the same cluster with the target household. As in Figure 13, the red dot expresses the 

real-time consumption of the household concerning “outside lights and plugs” and what we can observe 

is that the real-time consumption is almost equal with the average energy consumption, but the “Real-

Time rules” do not raise concern about this. Essentially, Part 2 of the “Real-Time rules” is an extra 

procedure that aims to find if there is a device that exceeds, even a little, the average consumption of a 

specific device. 

 

Figure 14: Average energy consumption of exterior plugs and lights for household #4298 and corresponding cluster per Month 
on Weekday 6 (Saturday) and 20:00 o’clock. Red point points on current consumption. 
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Finally, the appliance of “Real-Time rules” offers something personalized. We did manage to keep the 

energy tips that apply at least in one case concerning the recommendation time frame, we keep in tips 

that apply in devices used by the target household, we prioritize the filtered predictions list based on the 

“weight” that takes into account the interests from both target household and similar households in the 

same cluster, and finally, Part 2 of “Real-Time rules”, helped us to find what is the most suitable tip looking 

at the real-time consumption of the target household. In each case, if there were not a concern, we 

managed to have a list that considers many parameters that offer a personalized experience to each of 

the households in this simulation.  
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Chapter 5 | Conclusion 
The proposed Recommender System succeed in improving the time and memory cost for providing 

recommendations by having a Matrix Factorization model for each cluster, improve the prediction 

accuracy and quality by imputing missing ratings with the mean rating of each cluster, introduce a set of 

filtering rules that offers personalized recommendations by taking into consideration for each household 

the recommendation time-frame, the electrical devices used, the interests of the household and its similar 

households, and finally, by observing the real-time energy consumption in order to identify possible 

increased consumption so that to provide the most relevant recommendations in real-time. 

 

5.1 | Problems faced 
The first challenge faced in developing such Recommender System in Smart Energy Grids is data 

acquisition. Lately, there are a lot of datasets5 that share the energy consumption of households and 

demographic information, however, what is missing from these datasets is the collection of feedback for 

tips recommended to households when energy consumption is higher than usual for certain electrical 

devices. To resolve this, a synthetic dataset was created based on some assumptions that it is believed 

that reflect reality. 

The second challenge was the lack of feedback even after households have rated a certain energy tip. It is 

not known if the recommended tip was useful at all after applying the real-time rules either by not having 

a “Done/Not Done” feedback from the household or by implicitly infer the energy consumption after the 

recommendation. 

Another problem is the lack of energy consumption data. If the System does not have a lot of data, for 

example, it has data for just one day, then: 

• Clustering will not work well 

• Predictions will be irrelevant because the target household might belong in the wrong cluster and 

so the wrong model will predict unknown ratings 

Also, if a device does not have a tip that applies to it, then households will not get recommendations for 

the specific device, neither the RS detect a possible increased energy consumption in this device. So, there 

is a need for enrichment of the static database with the energy tips in order that all the devices have an 

equal probability of getting recommended to households that smart meters collect data. 

 

5.2 | Solution to common problems 
As far as the Cold Start Problem is concerned, two solutions are adapted in the proposed Recommender 

System. First and foremost, Matrix Factorization technique can effectively provide accurate predictions 

 
5 https://data.mendeley.com/datasets/n85kwcgt7t/1, 

https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households, 

https://www.kaggle.com/jaganadhg/house-hold-energy-data, 

https://www.pecanstreet.org/dataport/ 
 

https://data.mendeley.com/datasets/n85kwcgt7t/1
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://www.kaggle.com/jaganadhg/house-hold-energy-data
https://www.pecanstreet.org/dataport/
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even when a ratings matrix is sparse, essentially having a few data available for a new user. So, if a 

household belongs to a cluster, then even if there are a few ratings, the respective Matrix Factorization 

model can effectively provide accurate recommendations. Additionally, the imputation of missing ratings 

of households for tips with the average rating of the cluster it belongs significantly improve the accuracy 

of the predictions so as to provide to households that belong in a cluster, an accurate prediction. 

Essentially, cluster households that share similar energy consumption data, share also similar ratings 

based on the synthetic ratings dataset that tries to imitate a real one, and that could help a new household 

get accurate recommendations until achieving a denser rating matrix. 

For the data sparsity problem, the solution was to use Matrix Factorization. This problem arises due to 

the lack of feedback which is common in most of the items that an RS uses. 

Finally, computational and memory cost has been resolved using, at first Matrix Factorization and 

especially SVD, and therefore by introducing for each cluster an MF Model where a smaller set of users 

can provide even better predictions than all the users together. 

 

5.3 | Future work 
The proposed Recommender System consists of many state-of-the-art algorithms and methods that could 

provide personalized and accurate recommendations. However, we believe that the overall 

Recommender System can improve its accuracy and relevance by introducing some new features in the 

Clustering procedure. 

As far as the ratings dataset is concerned, the first significant change is to introduce implicit feedback from 

the smart meters. An example of implicit feedback should be a decrease of energy consumption in a 

specific electric device after a sequence of recommendations concerning that electrical device. Also, if the 

Recommender System has a User Interface that provides a categorization of energy tips based on the 

appliance of an electric device, then if a household/user has a lot of views in the specific category, then 

this is a sign of interest. 

Moreover, in case where implicit feedback is introduces, Alternating Least Squares (ALS) is the state-of-

the-art algorithm used in Matrix Factorization. ALS is favorable because the system can use parallelization 

(Zhou & al., 2008). In ALS, the system computes each 𝑞𝑖 independently of the other item factors and 

computes each  𝑝𝑢 independently of the other user factors. Moreover, ALS is an algorithm that can be 

used in a Big Data environment, an advantage that gives a solution to the problem of data explosion where 

the time and space complexities are critical (Luo, Ranzi, Wang, & Dong, Service Recommendation in Smart 

Grid: Vision, Technologies, and Applications, 2016). For example, it is already implemented in Spark, a 

unified analytics engine for large-scale data processing6. 

Also, a Recommender System is not only useful because of its accuracy, but also when presented 

accordingly within an elegant graphical user interface. With that in mind, in case this Recommender 

System integrates into a Mobile Application, some ideas after the recommendation is presented to the 

target household are presented: 

 
6 https://spark.apache.org/ 
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1) Show the percentage of: 

a. All users in the application that find this energy tip useful 

b. Users in the same cluster with the target user that find this energy tip useful 

2) Show a range of the reduction of energy consumption that users succeed after applying the 

recommended energy tip 

3) Show a range of the amount of money that users save after applying the recommended energy 

tip 

Additionally, the enrichment of the database with energy tips should be the next improvement of the 

proposed Recommender System including tips for public buildings such as schools, companies, etc. so that 

if the RS integrates within an application, would be accessible to a wider range of users. 
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