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Abstract

In actuarial applications and especially in automobile insurance statistical model-
ing contributes in a priori ratemaking.
Generalised linear models based on various distributions and techniques can help us
distinguish between different types of count claims and examine their charachter-
istics. Poisson regression is our basic tool,while negative binomial and generalised
Poisson regression give us the opportunity to overcome difficult issues like over-
dipsersion. Zero-inflated models are quite useful since we face an excess of zeros,
something really common when it comes to insurance applications. This analysis,
goes through modeling two different types of claims through different methods.

Our analysis is separated to different methods of modeling and different distribu-
tions. It starts with explaining all techniques of modeling and specificely trivariate
reduction method, models based on multiplicative factors and copula-based mod-
els. The next step of our analysis focuses on different distributions for count
claims, like Poisson, negative binomial and mixed Poisson distributions in gen-
eral and generalised Poisson too. We examine differences between independence
between types of claims and correlation existence. Furthermore, we begin from the
most strict modeling technique, which allows only positive dependence between the
types of guarantees and as we go through our analysis we relax these assumptions.
Complicated models with extra parameters, especially negative binomial regres-
sion ones, that explain dependence and overcome overdispersion issues are used
through this analysis.
Insurance pricing is carried out, summing premiums for each type of guarantee,
after drivers’ represantative profiles are constructed. These models are applied in
an automobile insurance database belonging to a Spanish insurance company. A
subset of 6000 contracts is used for our purposes.
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1 Introduction

Technology’s rapid evolution in recent years is fully attached to science’s evolu-
tion. Statistics is a great example of this special relationship. Computers nowadays
provide statisticians with lots of tools when it comes to data handling and statist-
ical modeling.

This analysis is based on modeling bivariate count data in actuarial and insurance
applications. Designing an efficient tariff structure has been a great challenge for
any insurance company. Insurers use data from former claims of company’s clients
and try to price each individual of the portfolio in the most efficient way.

In the case of one type of claims, modeling is much more simplified and stat-
isticians have proposed a variety of ideas to deal with it, like David, Mihaela &
Jemna, Danut. (2015) proposed univariate Poisson and negative binomial mod-
els in automobile insurance claim counts. But insurance companies face multiple
type of claims from their clients, so models’ complexity increases and literature of
the bivariate and especially multivariate case is not so wide. A univariate model
can use only a single type of claim as a response variable. Therefore, since an
automobile insurance claim can arise as a result of an accident or for example
windshield damage or theft, it is essential that the response variable of a model
has to be of greater dimension. A multivariate model of course can explain better
the connection between the response and explanatories. Different types of claims
can be explained from different characteristics of the driver. For example, a claim
for an accident can be alleged to driver’s experience, while a claim for theft can
be alleged to the territory that driver lives. Consequently, a univariate response
variable cannot distinguish characteristics of different types of claim.

Our purpose is to design ratemaking systems using a variety of models and deal
with issues that arise, comparing the efficiency of each one. Through our analysis,
we try to examine which characteristics of insured drivers, have an important
impact to the number of claims. In other words, we want to construct drivers
profile and through the implementation of different models, to identify the best
model that fits the data. All these models are applied on automobile insurance
data. Claims of insured are divided in two groups (third party liability and the
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rest). Many other variables are included also such as gender of insured, type of car,
place of residence etc. They will be used as explanatory variables in our models,
helping us to handle the heterogeneity of portfolio.

Individuals differ a lot from each other explaining the heterogeneity of the portfolio.
In a priori ratemaking there are important variables of drivers’ behavior that can
not be measured, like driver’s aggressiveness or drinking behaviour. In order to
deal with this problem, risk measures should be included in the models.

Our first approach relies on modeling through bivariate Poisson and bivariate
negative binomial regression through trivariate reduction technique. The trivari-
ate reduction is in many contexts an appealing method for constructing bivariate
distributions. Basically, the idea is to create a pair of dependent random vari-
ables from three or more random variables. If we assume that numbers of claim
counts,which are our variables, between our two categories are independent, then
everything is quite simple. However, the most interesting part begins when this
assumption does not hold. Measuring dependence between these two different
categories of claim counts is a big challenge and modeling becomes immediately
harder. Bivariate Poisson models and zero inflated versions based on trivariate re-
duction on count data were used by Karlis and Ntzoufras (2003) on sports data and
by Bermudez (2009) on insurance claim counts. Through trivariate reduction only
positive dependence between claim counts is allowed. This limitation encourages
us to explore different ways of modeling more flexible correlation structures.

The second approach of our analysis relies on mixture of bivariate Poisson re-
gression combined with different distributions used for random effects. Mixtures
of bivariate Poisson models can be implemented in different ways. We focus on
bivariate Poisson models using a random variable α for mixing , where α fol-
lows a distribution. Ghitany & Karlis & Al-Mutairi & Al-Awadhi (2012) used
three multivariate mixed Poisson models (negative binomial, inverse Gaussian and
lognormal) for modeling, that allow only positive correlation between claim counts.
Some models based on mixture models proposed from Steyn (1976) and Aitchinson
and Ho (1989), using bivariate normal and bivariate lognormal respectively as the
mixing distribution. Moreover, in all these models,random effects can follow any
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type of distributions not only continuous but discrete also.

Another idea was proposed from Bermudez and Karlis (2012), as they used an m-
finite mixture of bivariate Poisson regressions extending Karlis and Meligkotsidou
(2007) case. The main advantages of this approach are: overdispersion is allowed,
interpretation of the model is easier due to mixture model’s clustering and different
regression lines are used for every component. This finite mixture model allows
also negative correlation if the parameters are negative correlated.

Previous models deal mainly with overdispersion issues, but there are plenty more
focusing on correlation between variables. Our third approach uses a different way
to model dependence between claim clounts. The advantage is that in opposi-
tion to modeling with trivariate reduction method, these models allow a flexible
correlation structure through a multiplicative factor. A multiplicative factor is a
dependency parameter that gives us the opportunity to transform the joint probab-
ility function of two variables,in our case our two different claim counts variables,
to a product of marginals. If these variables were independent, then naturally
the joint probability function could be transformed to this product. Through this
multiplicative factor and using appropriate bounded functions, this factorisation is
eligible for dependent variables also. Furthermore, anyone can use different distri-
butions for modeling each category of claim counts. Therefore, it is not necessary
for both types of claims to follow the same distribution function. It is import-
ant to mention that, through this multiplicative factor, any kind of correlation
between these two variables is allowed, both positive and negative, zero also. Lak-
shminarayana (1999) proposed a bivariate Poisson distribution that allows any
kind of correlation. To be more specific, the model was a product of Poisson
marginal distributions with a multiplicative factor. Moreover, for our analysis
we will use bivariate zero inflated Poisson marginal distributions also. Follow-
ing this particular technique Famoye (2010, 2012) proposed a bivariate negative
binomial regression and later Faroughi (2017) different forms of bivariate zero in-
flated negative binomial regression. Zamani et al. (2016) introduced some nested
bivariate generalized Poisson regression models. These models give the opportun-
ity of comparison through likelihood ratio tests and their difference relies on the
dispersion parameter. Finally, Hofel and Leitner (2012) presented bivariate count
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data models based on Sarmanov distributions. Its formula is less complicated than
copula-based model,that we explain in the next part. Moreover, implementation
of the model is less time consuming and in parallel it keeps many properties like
allowance of both positive and negative correlation between variables.

The last part of our modeling analysis is related to copula functions. Copulas
are functions that enable us to separate the marginal distributions from the de-
pendency structure of a given multivariate distribution in a different way than
a multiplicative factor. Specificely, copula is a multivariate distribution function
with marginally uniform random variables on [0,1]. Copula functions have some
appealing properties such as they allow scale-free measures of dependence and
are useful in constructing families of joint distributions. Shi and Valdez (2014)
proposed multivariate regression models that model correlation through common
shock variables and copula functions that allow negative binomial marginals. So et
al (2011) used the zero-inflation extension for the negative binomial model based
on copulas to deal with correlation issues but in the bivariate case. Faroughi and
Ismail (2017) proposed similar models in different forms in order to deal with
overdispersion.

In conclusion, after implementation of all models we end up with a priori ratem-
aking. To construct a tariff structure that reflects the various risk profiles in a
portfolio, actuaries usually rely on regression techniques. Such techniques allow
for the inclusion of various explanatory variables so that the actuary is able to
construct risk classes with more or less similar risk profiles. For insurance pricing,
five driver’s profiles are constructed based on specific characteristics of insured
drivers’ profiles and we compare our models mean scores in all of them in order to
identify the best models.

Our analysis starts with exploration of our data and explanation of variables.
Continuously, we provide every method we use in order to construct our models
and how to optimize all of them. The next part, focuses on the analysis of all
models based on different probability distributions. In the last part, we present
results from our analysis and we go through an a priori ratemaking process in
order to show which model fits better our data, based on specific drivers’ profiles.
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2 Data

2.1 Data acquiring

For our statistical analysis, data from a Spanish automobile insurance company
are used. Specifically, every model is implemented on a random subset of 6000
observations and 8 explanatory variables. The first two variables in our dataset
are numbers of claims for each category of insureds (N1: number of claims from
third-party liability guarantees and N2: number of claims from rest of guarantees).
Third-party insurance is an insurance policy purchased for protection against the
claims of another. Third-party offers coverage against claims of damages and
losses incurred by a driver who is not the insured, the principal, and is therefore
not covered under the insurance policy. The driver who caused damages is the
third-party. The rest variables are used as explanatory variables in our models,
defining specific characteristics of insured customers, such as the number and the
code of their policy, their gender, age and horsepower of car.

In order to analyze deeper the nature of these variables, one variable describes
the gender of an insured person. Another, takes into consideration, whether a
person drives in an urban area or not. Essentially, on the one hand, an urban area
possibly has lower traffic than a city center, but on the other hand drivers may
have different driving behaviour. Another interesting characteristic is whether an
insured drives in a deemed high risk region like Northern Spain or in a lower risk.
Age also is an important issue, since drivers over thirty years old probably are
more experienced in driving than younger drivers. Another variable takes into
account vehicle’s horsepower. A really strong vehicle with horsepower over 5500
cc might be really dangerous to be driven from an amateur driver. Last but not
least, a fact that is really important for an automobile insurance company and
for insurance companies in general, is related to the loyalty of the insured. It is
reasonable to assume that an insured who has been five or more years with the
company is treated in a different way than a new one. Insurance companies can
build better someone’s profile over the years.
All these characteristics mentioned above, are described from binary variables
(Yes/No) in our dataset and response variables from count ones.
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List of variables we use in our analysis:

• GEN: Equals 1 if the driver is a woman and 0 if it is a man

• URB: Equals 1 when driving in urban area, 0 otherwise.

• ZON: Equals 1 when zone is deemed high risk (northern Spain), 0 otherwise.

• LOY: Equals 1 if the client has been with the company for more than five
years, 0 otherwise.

• AGE: Equals 1 if the insured is 30 years old or younger, 0 otherwise.

• POW: Equals 1 if the vehicle’s horsepower is equal to or greater than 5500
cc, 0 otherwise.

• N1: number of claims from third-party liability guarantee.

• N2: number of claims from all other guarantees.

All these variables help insurers to have a clear image about profiles of their clients.
Some of these variables, characterize the driver, like gender, age and loyalty. Other,
characterize the car that the client drives like horsepower and others the area that
client drives, urban, high risk or not. Response variables N1 and N2 that count
how many claims a client reports will be denoted in our models as N1i, N2i, where
i = 1, 2, ..., 6000 denotes the client that we are referred to.
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2.2 Exploratory Analysis

In this section of our analysis we focus on the most important characteristics of
our data, in an attempt to highlight them visually also using appropriate plots.
Statistical modeling is carried out using variablesN1 andN2 as a bivariate response
variable. As we mentioned above, N1 refers to the number of claims from third-
party liability guarantees and N2 to the number of claims for the rest of the
guarantees. The minimum and the maximum values are 0 and 6 for both of them
respectively. Although, the range of these variables equals to six, the mean values
are 0.087 and 0.131 with variance 0.139 and 0.200 respectively. Both mean and
variance values are close to zero and as Table 1 indicates there is an excess of zero
counts. By the term, excess of zeros, we mean that we observe for some reason
more often zeros than those expected by our model. It is obvious that zero is the
most frequent value for both N1i, N2i, for every i = 1, 2, 3, ..., 6000. The difference
between zero claim counts and non zero claim counts is big enough, since it is
5611 and 389 respectively for N1 and 5391 and 609 for N2. For both response
variables N1, N2 maximum values equal to six have really low frequencies, 3 and
4 respectively and in general since zero counts are so many for both response
variables, it is reasonable for the mean to be close to zero. Moreover, since non-
zero counts are a lot less than zero ones, variation is close to the mean, but it
exceeds it, as we mentioned above.

Table 1: Frequency table of response variables

Resp N1i N2i

Val
0 5611 5391
1 290 488
2 74 82
3 19 30
4 4 3
5 1 4
6 1 2
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Table 2: Zero and non zero pairs of response variables

Pairs of (N1i, N2i)
N1i 0 1 2 3 4 5 6
N2i

0 5118 403 66 18 3 3 0
1 208 64 11 7 0 0 0
2 51 16 3 2 0 1 1
3 11 4 2 2 0 0 0
4 3 1 0 0 0 0 0
5 0 0 0 0 0 0 1
6 0 0 0 1 0 0 0

Moreover, a matter of great interest is also to notice the frequency of each pair of
claim counts. In other words, how many clients have zero claim counts for both
categories at the same time and so on for every possible combination.

It is obvious to notice from Table 2, that for i = 1, 2, 3, ..., 6000 zero pairs of
response variables N1i, N2i are the most common pair, since 5118 zero pairs exist
while the next most common combination equals 403 pairs. Therefore, a great
number of the total clients have no claims, neither from third-liability guarantees
nor from the rest of the guarantees.

Correlation between N1 and N2 is 0.20 indicating that there is positive dependence
between different type of claims.
All the other variables are used as covariates in our models except for two variables
in our dataset that refer to the number and code of policy and are used from
insurance companies in order to discriminate one policy from another. As a matter
of fact, these two variables are not important for our purposes, so they will not
be taken into consideration for the rest of our analysis. Therefore, six binary
explanatory variables are used that take values 0 and 1 (definition in paragraph
2.1). Our dataset does not have any missing value and in addition it has some
significant characteristics, that help us understand in a better way policyholders’
profiles. Firstly, the difference between young policyholders (younger than 30
years old) and older is important to be mentioned. In our sample there are 5355
policyholders older than 30 years old and 645 younger than them. Maximum values
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Figure 1: Number of drivers in urban area

for both our response variables occur in older insured.
Moreover, the difference between males and females is an interesting issue, because
83.6% of the population are males and only 16.4% are females. Furthermore, the
biggest part of policyholders are loyal to the company, since 4937 out of 6000 have
been more than 5 years with the company. It is important for our analysis to
mention that more than 80% of the population are males driving a vehicle of 5500
cc or greater. Among policyholders 3918 are driving in an urban area as it is
shown in Figure 1, so the area that insured chose to drive reveals a more balanced
relationship among the population.

The most of the total insured do not drive in a high-risk district of the country as
it is shown in Figure 2.
Another really important issue that we will discuss also later in our analysis is that
zero counts are the most often value of both our response variables. Apparently,
this fact is obvious consulting Figure 3 for both of the response variables. As
anyone can notice from both figures, more than 5000 observations of our count
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Figure 2: Number of drivers in high-risk zone

data are equal to zero. Phenomena like this, lead to specific problems when it
comes to modeling like overdispersion, that we will try to overcome as the analysis
goes through.

Modeling excess of zeros in insurance data is a very intriguing situation. It is quite
reasonable for anyone to wonder the reason why such a difference between zero
and non-zero claims exist. Although, from figures it is not obvious why, this excess
exists, modeling comes next to expose this phenomenon. Nevertheless, from these
figures it is quite visible, that our observations are left-skewed distributed, since
zero claims are the most often observation. These counts lead to skewed distri-
butions, in order to model unobserved heterogeneity that causes overdispersion.
In parallel, claim counts equal to five or six are quite a few for both response
variables, therefore left-skewness is too sharp. Obviously for that reason, normal
distribution does not fit well our data and probably Poisson, negative binomial
among others are some distributions that will help us in modeling.
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(a) Third party liability count claims (N1)

(b) Rest of guarantees count claims (N2)

Figure 3: Both types of guarantees count claims

Many insurance companies use bonus malus systems when it comes to their policies.
In insurance, a bonus-malus system (BMS), adjusts the premium paid by a cus-
tomer according to their individual claim history. Most insurers around the world
have introduced some form of merit-rating in automobile third party liability insur-
ance. Such systems penalize at-fault accidents by premium surcharges and reward
claim-free years by discounts, commonly known as a "no-claims discount". There-
fore, an insured is tempted not to report all accidents in order to claim rewards.As
a result, a statistician has to be suspicious about zero counts, so he has to take
into consideration these incidents.
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3 Method

3.1 Introduction to Statistical Modeling

This chapter aims to introduce the basic probability models for count data and
methods of construction that will be applied to automobile insurance data. Using
as a response variable, our bivariate count variable of the guarantees and binary
variables as explanatories, we try to build appropriate models that can fit our
data, expose all of their special characteristics and find these models that fit our
data the best. Predictions of the expected frequency of claims can be derived too.
Probability models in practice always rely on probability distributions and Poisson
distribution is one of them, which has been used widely for insurance data.This
distribution has some solid assumptions, like the equality of its mean and variance.
When our data do not let us make such an assumption we use specific techniques
to introduce several different forms to overcome such difficulties. For example,
generalised form of bivariate Poisson and Poisson mixtures are some forms we
will go through. Constructing the generalised form of bivariate Poisson we can
handle overdispersion. This fact holds, since an extra parameter is introduced
that enables the variance to be proportional to the mean. Another problem, is
the excess of zeros we described earlier. To be more specific, zero counts are
greater than expected from the Poisson distribution. In order to solve such issues,
we introduce zero inflated versions of bivariate Poisson or mixtures with other
distributions that can fit better our data. It is important to mention another
interesting property of bivariate Poisson distribution, the issue of positive or neg-
ative dependence.Bivariate Poisson via trivariate reduction, that we will focus in
the next section, allows only positive dependence between count variables. There-
fore, if our response variables in our data have negative dependence we have to
find alternative methods to construct a model. Models based on a multiplicative
factor, a factor that allows both positive and negative dependence, also models
based on copula functions give the solution to this kind of problems. Techniques
for modeling our data vary, but we are going to analyze trivariate reduction based
models as well as multiplicative factor and copula based ones.
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3.2 Modeling techniques

Literature for building models based on univariate distributions is quite extended
since these models are easier to handle than bivariate ones. When someone wants
to model a bivariate count reponse variable, like automobile insurance types of
guarantees in our case, he has to face many difficulties and challenges like cor-
relation between variables and more. Our first approach for the construction of
a bivariate model is through trivariate reduction method, then we go on using a
multiplicative factor in order to allow different marginals for our types of guaran-
tees and finally we end up using copulas and common shock variables.
We describe these techniques in this section and we give further details in the next
section,while we introduce all models.

3.2.1 Trivariate reduction

It is well known that trivariate reduction, Mardia (1970), a method to gener-
ate two dependent random variables from three independent random variables,
can be used to generate Poisson random variables with specified marginal distri-
butions and correlation structure. The method,however, works only for positive
correlations. Trivariate reduction method is a popular and old technique used for
constructing dependent variables. It has been used for both continuous and dis-
crete cases. The method consists of building a pair of dependent random variables
starting from three (or more) independent (usually) random variables. The func-
tions that connect initial variables are generally elementary functions, or are given
by the structure of the variables that we want to generate. A general approach is
the following:
Consider random variables X1, X2 and X3. Then we may define a new pair of
variables using N1 = g1(X1, X3) and N2 = g2(X2, X3) where gi(·, ·), i = 1, 2 are
some functions. The central idea is that since N ’s share the common X3 they are
correlated, the correlation structure is determined by the functions g.
Typical choices are for example g(X1, X2) = X1 + X2 which is used to derive
the bivariate Poisson distribution if the X’s follow Poisson distributions, and
g(X1, X2) = min(X1, X2) for bivariate exponential distributions if the X’s follow
exponential distributions. The method can be very flexible, while the choice of the
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functions g determine the correlation properties and perhaps put restrictions on
them. For example the usage of g(X1, X2) = X1 +X2 leads to necessarily positive
correlation. It is important to explain why trivariate reduction leads to positive
correlation. As we mentioned earlier, let X1, X2, X3 be three mutually independ-
ent Poisson random variables. Then, N1=X1+X3 and N2=X2+X3 are two new
random variables that follow Poisson distribution with rate θ1 and θ2 respectively.
According to Holgate (1984), X1 ∼ P (θ1-η), X2∼ P (θ2-η) and X3∼ P (η) with
η∈ [0,min(θ1,θ2)]. Then corr(N1, N2) = η√

θ1θ2
is non-negative and increasing in

η. If θ1 = θ2 = θ is fixed, corr(N1, N2) takes all values between 0 and 1 as η goes
from 0 to θ. Otherwise, if θ1 6=θ2, then corr(N1, N2) ≤ min(θ1,θ2)√

(θ1θ2)
.

3.2.2 Multiplicative factor

In this section, we describe an alternative type of modeling, that allows for both
positive and negative dependence between random variables. Our models are
defined as a product of two marginal distributions with a multiplicative factor.
This factor is the reason why dependence can be either positive or negative, over-
coming a big limitation that trivariate reduction technique obeys.
The correlation between the two variates can be either positive or negative, de-
pending on the value chosen for the parameter in the above multiplicative factor.
We assume that the marginal means of the bivariate model are functions of the
explanatory variables. Further, we assume that the relationship between the mar-
ginal means and the covariates in our analysis is log-linear. This relationship is
usually referred to as the link function in the univariate case. Other link functions
can be considered, but we restrict our discussion in this analysis to log-linear re-
lationship. Therefore, let us assume that F (n1, n2) is the cumulative function of
(n1, n2), with marginals F1(n1) and F2(n2), that follow Poisson distribution with
rates θ1 and θ2 respectively.
Then the cumulative function,

F (n1, n2) = F1(n1)F2(n2)[1 + α[h1(n1)h2(n2)− E(h1(n1))E(h2(n2))]] (1)
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where h1(n1) and h2(n2) are bounded functions of (n1, n2)∈R2 and α is the multi-
plicative factor Panditi et al.(1988).
When α is positive or negative so is the dependence between the two variables
respectively.
Let’s assume that h1(n1) = exp (−n1) and h2(n2) = exp (−n2). Then, E[N1] = θ1

and E[N2] = θ2. As a result,from the dispersion matrix of (n1, n2) the correlation
coefficient is:

ρ = α
√
θ1θ2(1− e−1)2e(θ1+θ2)(1−e−1)

(2)

Therefore, when α is positive, the dependence between response variables is pos-
itive, when it is negative, so is the dependence.
It is important to mention, that multiplicative factor technique allows us to chose
different marginals for our models. Therefore, anyone can use for example Poisson
distribution to model third-party liability count claims and negative binomial for
the rest count claims.

This modeling technique was introduced by Lakshminarayana et al. (1999) using
a bivariate Poisson model. The innovation of this model was related to correlation
restrictions. Both positive and negative correlation between claim counts is allowed
as we mentioned, therefore this model has been used as a primitive idea for more
interesting models that can handle problems like overdispersion using for example
generalised Poisson or negative binomial marginal distributions. Multiplicative
factor α is a measure of dependence that lies in a closed interval ordered by the
dispersion matrix of our bivariate response variable. For more information about
its structure see Lakshminarayana et al. (1999).
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3.2.3 Common Shock and Copulas

Our last construction method is via copulas and common shock models.
Copulas are functions that enable us to separate the marginal distributions from
the dependency structure of a given multivariate distribution. They are useful for
several reasons. Firstly, as a way of studying scale-free measures of dependence
and secondly, as a starting point for constructing families of bivariate distributions.
However, they are sometimes used in a "black-box" fashion and understanding the
overall joint multivariate distribution can be difficult, when it is constructed by
separately specifying the marginals and copula. But, let us define what a copula
is.
Let C(u, v) be a bivariate distribution function defined on the unit square with
uniform marginals on [0,1]. For all (u, v) ∈ (0, 1)2, then C(0, 0) = 0, C(1, 1) =

1, C(u, 1) = u,C(1, v) = v.
Suppose that F (n1i, n2i) is a bivariate distribution function with marginals G1i =

P (N1i ≤ n1i) and G2i = P (N2i ≤ n2i).
Then through the copula function C we have F (n1i, n2i) = C(G1i, G2i; ξ) where ξ
is a dependence parameter, Sklars’ Theorem (1959).
Copula’s density function, i.e. a PDF, is obtained in the usual manner as:

c(u, v) =
dC(u, v)

dudv
(3)

The copula links the marginal distributions together to form the joint distribu-
tion. There are plenty of these functions that can link two different marginals
with a dependence parameter, Joe (1997), Nelsen (1999). Frank, Gumbel, Gaus-
sian, t-copula are some examples but we will focus on two Archimedean copulas:
Frank’s and Clayton’s copulas, Frank (1979) and Clayton (1978). However, we will
present Gumbel’s copula also, Gumbel (1960), a copula that gives similar results
in modeling with the other two copulas, that we mentioned. Nevertheless, it is
an alternative in Archimedean copula modeling. Gaussian and t-copulas belong
to elliptical copulas, though we chose Archimedean instead of elliptical, due to
the key disadvantage that elliptical copulas do not have closed form expressions
and are restricted to have radial symmetry, conditions that do not help with our
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analysis, beacause of copula’s density complexity.

While the copula function of the Gaussian distribution does not allow for depend-
ence in the tails, the Student-t copula does not allow for asymmetric tail depend-
ence. However, dependence models contained in the class of Archimedean copulas
can indeed capture dependence in the upper and lower tail dependences. To es-
timate the Archimedean copula, we only need to find functions which will serve as
generators and define the corresponding copula. Each has a single parameter that
controls the degree of dependence and are defined by:

C(u, v) = φ−1(φ(u) + φ(v)) (4)

where φ is the generator of the copula.
A function φ : R+ 7→ I is said to be an (outer additive) generator if it is continuous,
decreasing and φ(0) = 1, with limt→∞ φ(t) = 0.

Figure 4: Three Different Archimedean Copulas Scatterplots

In Figure 4, we can see scatterplots of our three Archimedean copulas and highlight
some of their characteristics. Based on Figure 4, the Gumbel copula and the
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Clayton copula can capture the asymmetric dependence between large and small
values. For instance, the Gumbel copula exhibits stronger right tail dependence,
while the Clayton copula implies the opposite.However, let us firstly define these
three copulas and then we will analyze some of their characteristics.
The Frank copula is a symmetric Archimedean copula given by:

CFR(u, v) = −1

ξ
log(1 +

(e−ξu − 1)(e−ξv − 1)

e−ξ − 1
) (5)

where ξ∈R-{0}.

Frank copulas have some interesting general attributes. Firstly, they have positive
slope and from Figure 4 the absence of a tail on either end of the scatter is obvious.
Another characteristic is a nebulous but uniform cloud along the full correlation
path. Finally, correlation is relatively weak due to the wide and uniform degree of
scatter.
The Clayton copula, Clayton (1978), is an asymmetric Archimedean copula,exhibiting
greater dependence in the negative tail than in the positive.

CCL(u, v) = (u−ξ + v−ξ − 1)−1/ξ (6)

Clayton copulas have heavy concentration/density in the left tail and an expanding
cloud as we can see in Figure 4.

The Gumbel copula, or Gumbel-Hougard copula is an asymmetric Archimedean
copula, exhibiting greater dependence in the positive tail than in the negative.
This copula is given by:

CGB(u, v) = exp−[(− log(u))ξ + (− log(v))ξ]1/ξ (7)

Copulas are a way of modeling and explaining dependence between different claim
counts. We introduce another way, to serve our purposes by using common shock
variables. A natural approach to modeling this dependence is to assume that all
losses can be related to a series of underlying and independent shock processes.
When a shock occurs this may cause losses of several different types, the common
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shock causes the numbers of losses of each type to be dependent. It is commonly
assumed that the different varieties of shocks arrive as independent Poisson pro-
cesses, in which case the counting processes for the different loss types are also
Poisson and can be easily handled analytically.
A simple bivariate model with a common covariance term could be constructed by
adding a common parameter to each response variable. This common parameter
has the role of a random effect that implies an identical correlation for all pairs of
claim type. A good basic reference on such models is Barlow and Proschan (1975)
and the ideas go back to Marshall and Olkin (1967). We will define such models
in the next chapter of our analysis, based on negative binomial regression models.

3.3 Optimization

Since we explained all modeling techniques we use to construct bivariate models
for our automobile insurance claims data, it is essential to mention the way we
will compare these models. Trivariate reduction, multiplicative factor based and
copula-based models lie to different assumptions while they can handle different
modeling problems as we explained earlier. Therefore, it is crucial to find appropri-
ate methods to compare these models efficiency. As a result, we use optimization
techniques in order to maximize their likelihood function. The safest criterion for
this comparison in our analysis is based to maximum likelihood estimation, but
quantities like Akaike is also used.

3.3.1 Maximum likelihood estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the
parameters of a probability distribution by maximizing a likelihood function, so
that under the assumed statistical model the observed data is most probable. The
point in the parameter space that maximizes the likelihood function is called the
maximum likelihood estimate. The logic of maximum likelihood is both intuitive
and flexible and as such the method has become a dominant mean of statistical
inference.
The likelihood of a sample of observations is defined as the joint density of the data,
with the parameters taken as variable and the data as fixed (multiplied by any
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arbitrary constant or function of the data but not of the parameters). Specifically,
let N1i, N2i for i = 1, ..., 6000 be a set of independent and identically distributed
outcomes with probability mass function P (·|e) where e is a vector of parameters.
The likelihood function is the probability of observing the data Nj i = nj i for
i = 1, ..., 6000 and j = 1, 2 that is,

L(e) =
6000∏
i=1

P (n1i, n2i|e) (8)

The key idea for estimation in likelihood problems is that the most reasonable
estimate is the value of the parameter vector that would make the observed data
most likely to occur. For our purposes we use the logarithm of this quantity called
log-likelihood.
To sum up, for both types of count claims we maximize the log-likelihood of each
bivariate model by optimizing all explanatory variables. These variables, are in-
duced in our models, through a log-linear relationship between the mean of our
response variable and the explanatory variables. In these models, the response
variable (N1i, N2i) is assumed to follow an exponential family distribution with
mean θj i, which is assumed to be some function of xTjiβj. Some would call these
“nonlinear” because θj i is often a nonlinear function of the covariates, but McCul-
lagh and Nelder (1982) consider them to be linear, because the covariates affect
the distribution of the response variable only through the linear combination xTjiβj.
Furthermore, it is essential for someone to wonder about methods that can be used
to achieve our goal of optimization.
Optimization of likelihood function carried out with two different algorithms.
For models via trivariate reduction and mixed Poisson models we implement an
EM algorithm proposed by Karlis and Ntzoufras (2003) and Ghitany Karlis et
al. (2012) for our models respectively. Standard errors of all variables obtained
through bootstrap method, Efron (1979).
More information about the construction of the algorithm exists in the previous
mentioned papers and in the next sections of our analysis.

When it comes to the other two categories, we implement a quasi-Newton al-
gorithm because Hessian matrix was too expensive to be computed due to com-
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plicated forms of functions. Standard errors in this case were derived from the
diagonal elements of square root inverse Hessian matrix, a matrix that was de-
veloped in the 19th century by the German mathematician Ludwig Otto Hesse
and later named after him.

AIC, Akaike (1971), value was obtained through maximum value of likelihood,
since it is a function of this quantity. We define AIC value in the next section of
our analysis.

3.3.2 Optimization methods

Our analysis goes through two optimization methods, quasi Newton-Raphson and
expectation-maximization (EM) algorithms. The first method (NR) is a time
consuming technique that needs derivatives of likelihood function. The second one
(EM) is a more elegant method that does not need derivatives, it is less complicated
but not eligible in every model. Of course, these two methods can be combined.
For example, an EM algorithm with inner NR steps, though we will not go through
such a combination.

3.3.2.1 Quasi Newton-Raphson algorithm To begin with, quasi Newton-
Raphson is an iterative routine that is used to either find zeroes or local maxima
and minima of functions, as an alternative to Newton’s method. It can be used
if the Jacobian or Hessian is unavailable or is too expensive to compute at every
iteration.
We want to maximize log(L(N1i, N2i|ν)) over every coefficient in parameter ν. So,
for log(L(N1i, N2i|ν)) = 0 we need every partial derivative on ν in order to form
the Jacobian matrix J.

J =


∂2 logL
∂ν12

∂2 logL
∂ν1ν2

... ∂2 logL
∂ν1νk

∂2 logL
∂ν2ν1

∂2 logL
∂ν22

... ∂2 logL
∂ν2νk

... ... ... ...
∂2 logL
∂νkν1

... ... ∂2 logL
∂νk2

 (9)

for k equals the number of coefficients of the parameter vector ν.
Quasi-Newton methods are a generalization of the secant method (finite difference
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method) to find the root of the first derivative for multidimensional problems. In
multiple dimensions the secant equation is under-determined, and quasi-Newton
methods differ in how they constrain the solution, typically by adding a simple
low-rank update to the current estimate of the Jacobian matrix.

In our analysis we optimize log-likelihood function by a simple finite difference
method. In numerical analysis, the secant method is a root-finding algorithm that
uses a succession of roots of secant lines to better approximate a root of a function
f. The secant method can be thought of as a finite-difference approximation of
Newton’s method. To conclude, by giving initial values to every parameter of
our models, we extract the parameter vector that maximizes our function. As
starting values we use a random guess and then, after implementing iteratively the
algorithm, we end up with the convergence point. It is important to mention that
the implementation of quasi Newton-Raphson method is done in R programming
with nlm function.

3.3.2.2 EM algorithm The second optimization algorithm we use is called
expectation maximization algorithm. One of the main disadvantages for using
bivariate regression models is that the log-likelihood is complicated, thus its max-
imization needs a special effort. For some models we use an EM algorithm for
maximum likelihood estimation (ML) as proposed by Karlis (2001, 2005).
To specify, this EM type algorithm is easy to use for finding the MLEs of the
model’s parameters, since we do not use derivative based optimization.
The EM algorithm, Dempster, Laird and Rubin (1977), in general is a powerful
algorithm for maximum likelihood estimation for data containing missing values or
being considered as containing missing values. The EM algorithm is an iterative
approach that cycles between two modes. The first mode attempts to estimate
the missing or latent variables, called the expectation-step or E-step. The second
mode attempts to optimize the parameters of the model that best explain the data,
called the maximization-step or M-step.
E-Step : Estimate the missing variables in the dataset.
M-Step : Maximize the parameters of the model in the missing data.

We choose initial values for EM algorithm, by optimizing parameters for N1 and
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N2 independently. In other words, we fit two univariate regression models, with the
appropriate response every time, based on the related distribution. We optimize
parameters with NR algorithm and then we use these optimized values as initials
in our EM algorithm. We go in further details in EM algorithm in next sections
of our analysis in mixture models, where we explain all steps of this routine that
is also implemented in R programming.

3.3.3 Akaike (AIC)

AIC is a penalized-likelihood criterion. It is sometimes used for choosing best
predictor subsets in regression and often used for comparing nonnested models,
like BIC value, which ordinary statistical tests cannot do. The AIC value for a
model is usually written in the form:

AIC = −2 logL+ 2p (10)

where L is the likelihood function, p is the number of parameters in the model.
AIC is an estimate of a constant plus the relative distance between the unknown
true likelihood function of the data and the fitted likelihood function of the model,
so that a lower AIC means a model is considered to be closer to the truth. Akaike
information criterion (AIC) (Akaike, 1974) is a fined technique based on in-sample
fit to estimate the likelihood of a model to predict/estimate the future values. A
good model is the one that has minimum AIC among all the other models.
In every model we use, we compute AIC criterion in order to rank them and find
the most efficient models.
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3.4 Models

Modeling insurance count claims is a very challenging issue and lots of interensting
results can be derived. As we mentioned earlier we have two different categories
of claims, third-party liability guarantees and the rest. So, for 6000 different
policyholders we have a bivariate response variable that counts the number of
claims for each type in a period of time. Moreover, we have explanatory variables
in our dataset that characterize every policyholder and are used in our models.

Our analysis begins with Poisson distribution as the probability distribution of the
response variable, in many versions in order to overcome difficulties that occur.
We continue with, mixed Poisson distribution like negative binomial distribution
and then we end using generalised Poisson distribution. Methods that are used in
every probability distribution may vary between techniques we mentioned above.
Poisson models refer to homogeneous populations, a fact that does not exist in
insurance applications. Our population given all the characteristics that we use
as explanatory variables in our models is discriminated based on several criteria.
Every insured is unique, with different driving abilities and habits, a fact that
highlights the heterogeneity of our sample.

As a result this big problem that arises in automobile insurance applications is
called unobserved heterogeneity due to the reasons we mentioned above.
In count data models, one consequence of this heterogeneity is overdispersion which
practically is the case, when the observed variance exceeds that implied by the as-
sumed model.
Eventhough, we know that in Poisson distribution the mean equals the variance
and our data are overdispersed, it is quite interesting to examine the fit of Poisson
models despite the fact that equidisperision assumption is not valid and propose
alternatives to overcome this issue.
Furthermore, one other consequence is the excess of zeros, which practically hap-
pens because some policyholders avoid to report some accidents. Therefore, it is
interesting to find the appropriate models to overcome these difficulties. Poisson
models cannot deal with overdispersion since the variance equals the mean, so neg-
ative binomial models are introduced. Zero-inflation occurs when the proportion of
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zeros in a sample exceeds what would be expected from the assumed distribution.

All the models implemented are parametric, since probabilities are known functions
depending on finite and real valued parameters. Therefore, they are estimated via
maximum likelihood method. As we go through our analysis, we attempt to model
count claims and their dependence through various techniques.

3.4.1 Poisson distribution

The Poisson distribution, Poisson (1837), is the most important we will go through.
It is a probability distribution of the number of occurencies of an event that hap-
pens rarely but has many opportunities to happen. It is used for independent
events which occur at a constant rate within a given interval of time. Under this
definition, it is obvious that it has various applications as a distribution since
anyone can model the number of traffic accidents at a particular intersection, the
number of house fire claims per month that are received by an insurance company
or for example the number of people who are infected with the AIDS virus in a
certain neighborhood. In a binomial distribution, if the number of trials, n, gets
larger and larger as the probability of success, p, gets smaller and smaller, we
obtain a Poisson distribution.
The Poisson probability distribution function is given by:

P (Nj i = ni) =
θj
nie−θ

ni!
(11)

where ni = 0, 1, 2, ..., j = 1, 2, i = 1, 2, ..., 6000. A basic property of Poisson is
the equality between its mean and variance E[Nj] = V ar[Nj] = θj for j = 1, 2.
Moreover each event is independent from all other events. This function refers to
the univariate case and it would be useful if we were trying to model separately
N1 (number of third-liability claims) and N2 (number of the rest claims), using as
θj the expected number of count claims.
In order to model these response variables and using what we mentioned above we
are lead to Poisson regression.
Poisson regression is a generalized linear model form of regression analysis used
to model count data and contingency tables. It assumes the response variable Nj
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has a Poisson distribution, and assumes the logarithm of its expected value can
be modeled by a linear combination of explanatory variables. In our case, these
explanatory variables were explained earlier and describe all the characteristics of
a policyholder.
In our problem the univariate Poisson regression model is given by:

log(θj i) = xj
T
i βj (12)

where θj i=E(Nj i|xj i) , βj denotes the regression coefficient , j = 1, 2 and i =

1, 2, ..., 6000.

The regression coefficient βj is a vector of coefficients for all explanatory variables
we use, for every type of guarantee. The xj i is a vector of values from explanatory
variables, for each observation i and each type of guarantee j.

Constructing a univariate generalised Poisson linear model seems simple. But, in
our case, bivariate Poisson models are not a task as easy as in the univariate case.
In order to serve our purposes we will introduce the bivariate version of the Poisson
distribution and regression using different techniques because count variables are
correlated and we want them to be estimated jointly.

The bivariate Poisson is the most widely used model for bivariate counts. It was
proposed by Holgate (1964) and presented by Johnson and Kotz (1969). The
definition of the bivariate Poisson distribution is not unique. Several approaches
have been discussed by Kocherlakota and Kocherlakota (1992). Here, the first
method we adopt to construct the distribution is the trivariate reduction method,
Johnson et al., (1997).
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3.4.1.1 Bivariate Poisson regression using trivariate reduction method
In order to construct bivariate Poisson, we use trivariate reduction method, we
explained earlier. The bivariate Poisson distribution is a typical example given
from Kocherlakota and Kocherlakota (1992, Ch.4) and it is very useful when it
comes to modeling pairs of count data that correlation exists.

Our first model is a bivariate Poisson model proposed by Bermudez (2009).
Let N1 and N2 be the claims for third-party liability and rest of the guarantees
respectively.
We consider Xi, i = 1, 2, 3 independent random variables that follow Poisson dis-
tribution with rate θi respectively.
Then, through trivariate reduction N1 = X1 +X3 and N2 = X2 +X3 follow jointly
a bivariate Poisson distribution denoted as:
(N1, N2) ∼ BP (θ1, θ2, θ3) with joint probability mass function:

P (N1 = n1, N2 = n2) = e−(θ1+θ2+θ3) θ
n1
1

n1!

θn2
2

n2!
×

min(n1,n2)∑
i=0

(
n1

i

)(
n2

i

)
i!(

θ3

θ1θ2

)i (13)

Bivariate Poisson distribution allows positive dependence between N1 and N2 with
Cov(N1, N2) = θ3>0, which is always positive in our case.

As a matter of fact, if θ3 = 0 our random variables are independent and the model
reduces to a product of two Poisson marginals with rate θ1 and θ2 respectively
known as Double Poisson, Kocherlakota and Kocherlakota (1992).
Furthermore, since E[Nj] = θj + θ3 and V [Nj] = θj + 2θ3, j = 1, 2. If θ3 > 0 then
overdispersion exists because variance exceeds the mean.

The most interesting part lies on modeling θj with covariates.
Let’s assume thatN1i andN2i are the random of variables of each type of guarantee
for the i-th policyholder. Then:
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(N1i, N2i) ∼ BP (θ1i, θ2i, θ3i) (14)

log(θ1i) = x1i
Tβ1

log(θ2i) = x2i
Tβ2

log(θ3i) = x3i
Tβ3

where i = 1, 2, ..., n denotes the policyholder, xj i is a vector of explanatory vari-
ables and βj is the regression coefficient for j = 1, 2, 3.

As we noticed earlier, from Table 2, the proportion of zero pairs of (N1i, N2i) is
greater than any other combination.
Therefore, the simple bivariate Poisson regression model we just described may
does not fit well the data, since zero pairs are more than expected from Poisson
distribution. Over 80% of the total number of pairs is a zero pair (0,0) so it is
necessary to introduce zero-inflation as an alternative model.

3.4.1.2 Zero-inflation We briefly had a look at the structure of a regular
bivariate Poisson model under trivariate reduction. If we modify appropriately
this model, we construct a new one that can handle the excess of zero counts.
Normally, we assume that there is some underlying process that is producing the
observed pairs of counts as per the bivariate Poisson probability mass function:
P (N1i = n1i, N2i = n2i). The intuition behind zero-inflation is that there is a
second underlying process that is determining whether a pair of counts is zero or
non-zero. This process allows for frequent zero-valued observations. It is important
to mention, that we use inflation only at (0,0) point.
In our situation, we will use a bivariate zero inflated Poisson model (ZIBP) with
probability function:

fZIBP (n1i, n2i) =

{
p+ (1− p)fBP (0, 0|θ1i, θ2i, θ3i), n1i = n2i = 0

(1− p)fBP (n1i, n2i|θ1i, θ2i, θ3i), otherwise
(15)

where fBP (n1i, n2i|θ1i, θ2i, θ3i) is the bivariate Poisson probability mass function
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as mentioned in (13), with p determined in [0,1] and θj i linked with covariates
under a log-linear relationship.

A great advantage of zero inflated model is that it allows for overdispersion since
marginals are not Poisson distributed.
Mean and variance of N1:

EZIBP [N1] = (1− p)(θ1 + θ3) (16)

VZIBP [N1] = (1− p)((θ1 + θ3) + p(θ1 + θ3)2)

(17)

In order to implement these models, we use an EM algorithm proposed by Karlis
and Ntzoufras (2003) through R programming. This model was proposed by Karlis
and Ntzoufras (2003, 2005) in order to allow for overdispersion of the corresponding
marginal distributions. It was applied by Wang et al. (2003) to analyze two
types of occupational injuries and by Bermúdez (2009) in the automobile insurance
context for a bivariate case.

As we mentioned in another section the expectation–maximization (EM) algorithm
is an iterative method to find (local) maximum likelihood or maximum a posteri-
ori (MAP) estimates of parameters in statistical models, where the model depends
on unobserved latent variables. The EM iteration alternates between performing
an expectation (E) step, which creates a function for the expectation of the log-
likelihood evaluated using the current estimate for the parameters and a maximiza-
tion (M) step, which computes parameters maximizing the expected log-likelihood
found on the E step. These parameter-estimates are then used to determine the
distribution of the latent variables in the next E step.
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3.4.1.3 Bivariate Poisson Regression (BPR) with multiplicative factor
Our first approach in this type of modeling is based on Lakshminarayana’s (1999)
bivariate Poisson with multiplicative factor model. The correlation between the
two variables can be either positive or negative, depending on the value chosen for
the parameter in the above multiplicative factor.
The extension lies on the assumption that the marginal means of the bivariate
model are functions of the explanatory variables. Moreover, we assume that the
relationship between marginal means and the explanatories is log-linear.
The probability function of this model is given as:

PBPR(n1, n2) =
θn1

1 θn2
2 e−θ1−θ2 [1 + α(e−n1 − e−sθ1)(e−n2 − e−sθ2)]

n1!n2!
(18)

where n1,n2=0,1,2,.. and s = 1− e−1.
The marginal distribution of Nj (j=1,2) is Poisson with mean θj. The covari-
ance between N1 and N2 is αθ1θ2s

2e−s(θ1+θ2) , so the correlation coefficient is
ρ = α

√
θ1θ2s

2e−m(θ1+θ2).
It is obvious that the correlation can be zero, positive or negative depending on
the value of α.
We assumed that log(θj) = µj i, where µj i = xj i

Tβj for i = 1, 2..., n and j = 1, 2

with βj the regression coefficient vector and xj i the covariates’ vector for every
observation.
The log-likelihood of BPR, a quantity we use in order to compare all models effi-
ciency is given:

l(θ1, θ2;n1, n2) =
n∑
i=1

2∑
j=1

[nj i log(θj i)−θij−log(nj i!)]+
n∑
i=1

log(1+α(e−n1i−e−sθ1i)(e−n2i−e−sθ2i))

(19)
where α is the correlation parameter.
Although, we introduced a method that allows every kind of correlation between
counts of claims, we still face the problem of overdispersion. Due to this fact we
use zero inflation once again in order to improve our regression model.
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3.4.1.4 Bivariate Zero-Inflated Poisson Regression (BZIPR) with mul-
tiplicative factor One way to deal with overdispersion is constructing models
with distributions which have an additional parameter that explains dispersion
like negative binomial and generalised Poisson.

However, we have to face another phenomenon, the occurence of more zero counts
than expected under a standard Poisson model. In our case, such a situation is
common, since many policyholders, due to conditions in their policies, they are
discouraged to report small claims.
Taking all the previous under consideration, we implement a zero-inflated bivariate
Poisson model Li et al. (1999), Wang et al. (2003), Faroughi (2017).

For our model we will use bivariate Poisson model(BPR), as defined from Laksh-
minarayana (1999) and we will extend it to its zero inflated version.
The regression model comes as a result of mixing BPR regression model with a
distribution degenerate at zero. The joint probability mass function of BZIPR
regression model is:

PBZIPR(n1i, n2i) =

{
p+ (1− p)[

∏2
j=1 e

−θji ][1 + α
∏2

j=1(1− e−sθji)], n1i = n2i = 0

(1− p)PBPR(n1i, n2i), otherwise
(20)

where 0 ≤ p < 1 is the zero-inflation parameter, s = 1− e−1, α is the correlation
parameter and PBPR(n1i, n2i) is the joint p.m.f of BPR regression model shown in
Equation (18).
The covariates can be included using log links, log(θj i) = xj

T
i βj, j=1,2 but no

covariates will be used for the inflation parameter.
The marginal mean is E(Nj i) = (1−p)θj i and the marginal variance is V ar(Nj i) =

E(Nj i)(1 + pθj i).
From marginal variances it is obvious that if p = 0, then BZIPR reduces to BPR.
When α is positive or negative, we have same correlations (positive or negative).
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The log-likelihood function is given once again by:

logL =

{ ∑n
i=1 log(p+ (1− p)[

∏2
j=1 e

−θji ][1 + α
∏2

j=1(1− e−sθij)]), n1i = n2i = 0∑n
i=1 log((1− p)PBPR(n1i, n2i)), otherwise

(21)

3.4.1.5 Bivariate Poisson Regression using copulas Besides trivariate re-
duction and multiplicative factors we analyzed a third method of modeling,copulas.
The approach has attracted considerable attention, Genest and Rivest (1993), Joe
(1997), Nelsen (1999), Caperaa et al. (2000). In this paragraph, we introduce a
bivariate Poisson model using Frank’s and Clayton’s copula which take the form
of Equation (5) and (6) respectively.
For our case, suppose F (n1i, n2i) is a joint distribution with corresponding mar-
ginal distributions F1(n1i) and F2(n2i). Then F (n1i, n2i) can be expressed as:

F (n1i, n2i) = C(F1(n1i), F2(n2i); ξ) (22)

where C is a parametric copula function and ξ is a dependence parameter meas-
uring dependence between the two random variables.
Both Fj i, for i = 1, 2, ..., n and j = 1, 2, will be univariate Poisson distributions.
We add covariates to the mean through θj i = exp(xj

T
i βj) for i = 1, 2, ..., n and

j = 1, 2.

If our response variables were continuous then, we could derive the joint probability
mass function by partially derive the cumulative function with respect to our two
response variables. Since we are in the discrete case, we obtain the joint probability
mass function of N1i and N2i,using finite differences, Cameron et al. (2004).

f(n1i, n2i) = F (n1i, n2i)−F (n1i−1, n2i)−F (n1i, n2i−1)+F (n1i−1, n2i−1) (23)

where f is the Poisson density function as mentioned in (13) and F the Poisson
distribution function as the summation of each density over each observation.
Therefore as F1(n1i) and F2(n2i) we use the following form Gj i:

Gj i =

{ ∑nji
k=0 fP ois(k; θj i),for Poisson distribution

p+ (1− p)
∑nji

k=0 fP ois(k; θj i),for zero-inflated Poisson distribution
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where pj is the inflation parameter for j = 1, 2 and G1i = u and G2i = v.

Therefore,the log-likelihood function is given by:

logL =
n∑
i=1

log(CFR(G1i, G2i)−CFR(G1i−1, G2i)−CFR(G1i, G2i−1)+CFR(G1i−1, G2i−1)).

(24)

where CFR is the Frank’s copula (5), but the same holds for Clayton’s (6) with the
appropriate form. Cameron et al. (2004) and So et al. (2011) proposed Poisson
and zero-inflated negative binomial models using Frank’s copula function.

3.4.2 Mixed Poisson Distributions

The second part of our analysis is focused on mixed Poisson models that deal with
problems mentioned above.
Our interest lies on bivariate negative binomial, inverse Gaussian and Poisson
lognormal regression models like Ghitany, Karlis et al. (2012) proposed in the
multivariate case though.

In our case we have two Poisson random variables N1 and N2 with means α′θ1 and
α′θ2 respectively. Random variable α′, from a mixing distribution, is common for
both random variables.
Mixing distribution introduces overdisperision and common α′ for N1,N2 intro-
duces correlation.
Furthermore, we will use covariates for our modeling through log-link:

log(θj i) = xj i
Tβj (25)

for j = 1, 2 and i = 1, 2, ..., n, where βj is the regression coefficient vector, xj i is
the covariate one and E[α′] = 1 in order to achieve identifiability of the model.

Let Nj i ∼ P (α′iθj i) with i = 1, 2, ..., n and j = 1, 2.
α′ is an independent identically distributed random variable from a mixing distri-
bution G(α′;φ),where φ is a vector of parameters.
We allow for regressors using a log-link, through Equation (25).
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The joint probability mass function of the model is:

P (n1i, n2i;φ) =

∫ ∞
0

2∏
j=1

exp(−α′θj)(α′θj)nji
xj i!

g(α′;φ)dα′ (26)

g(α′;φ) is the probability density function of α′.

Some important properties to mention are: both count variables have the same
mixed Poisson distribution, the variance of Nj i is V ar(Nj i) = θj i(1 + θj iσ

2) for
j = 1, 2, i = 1, 2, ..., n and Cov(N1i, N2i) = θ1iθ2iσ

2,where σ2 is the variance of
g(α′;φ).
We will implement three different mixed Poisson models as mentioned earlier al-
lowing for regressors with log(θj i) = xj i

Tβj.

3.4.2.1 EM algorithm for Poisson Mixtures One of the main disadvant-
ages for using bivariate mixed Poisson regression models is that the log-likelihood
is complicated, thus its maximization needs a special effort. For all three models
we use an EM algorithm for maximum likelihood estimation (ML) as proposed by
Karlis (2001, 2005).
To specify, this EM type algorithm is easy to use for finding the MLEs of the
model’s parameters, since we do not use derivative based optimization. The EM
algorithm in general is a powerful algorithm for maximum likelihood estimation for
data containing missing values or being considered as containing missing values.
This formulation is particularly suitable for distributions arising as mixtures since
the mixing operation can be considered as producing missing data. The unobserved
quantities are simply the realizations α′i of the unobserved mixing parameter for
the i-th observation. Hence, at the E-step one needs to calculate the conditional
expectation of some functions of α′i’s and then to maximize the likelihood of the
complete model which reduces to maximizing the likelihood of the mixing density.
For more details, see Karlis (2001, 2005).

Let’s describe EM algorithm for the bivariate negative binomial model:
For the gamma mixing distribution, the posterior distribution of α′|x is a gamma
distribution with parameters γ +

∑2
j=1 nj i and γ +

∑2
j=1 θj i, for i = 1, 2, ..., 6000.
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The posterior distribution is proportional to prior distribution multiplies by the
likelihood function, Bayes (1763).

f(α′i|nj i) ∝ f(nj i|α′i)f(α′i) (27)

Therefore, if Nj i, for i = 1, 2, ..., n and j = 1, 2, which are our counts of claims
response variables follow Poisson distribution with parameter θj i and α′i follows a
Gamma(γ, γ) then:

f(α′i|nj i) ∝
γγ

Γ(γ)
θj i

γ−1 exp(−γθj i) exp(−
n∑
i=1

θj i)θj i
∑n
i=1 nji

∝ θj i
∑n
i=1 nji+γ−1 exp(−(

n∑
i=1

θj i + γ))

which is a G(γ +
∑2

j=1 nj i, γ +
∑2

j=1 θj i) distribution.

For the E-step, we use the posterior mean to compute E(α′i|nj i) and we use the
posterior distribution to compute E(logα′i|nj i). The EM-algorithm,in this case, is
as follows:
• E-step: Calculate for i = 1, 2, ..., 6000, the estimates Sj i in order to form pseudo-
values Bj i.

Sj i = E(α′i|nj i) =
γ +

∑2
j=1 nj i

γ +
∑2

j=1 θj i
(28)

Bj i = E(log(α′i)|nj i) = Ψ(γ +
2∑
j=1

nj i)− log(γ +
2∑
j=1

θj i) (29)

where Ψ(.) is the digamma function and θj i = exp(xj i
Tβj), i = 1, 2, ..., n and

j = 1, 2, are obtained using the current values of βj
• M-step: Update the regression parameters βj, j=1,2,...,p, using the pseudo-values
Bj i as offset values and by fitting a simple Poisson regression model.
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Update γ by

γnew = γold −
Ψ(γold)− log(γold)−B + S − 1

Ψ′(γold)− 1/γold
(30)

where Ψ’(.) denotes the trigamma function, S and B are the sample means of
Sj1, Sj2, ..., Sjn and Bj1, Bj2, ..., Bjn,respectively. This is the one step ahead New-
ton iteration. For further details see Karlis (2001, 2005).
We consider as complete data (N1i, N2i, α

′
i), the observed data with the unobserved

value of mixing distribution.
Then, the loglikelihood function is:

lC(Θ) =
n∑
i=1

2∑
j=1

(−α′iθj i + nj i log(α′iθj i)− log(nj i!)) +
n∑
i=1

log(g(α′i;φ)) (31)

where Θ stands for all parameters of the model.

3.4.2.2 Bivariate Negative Binomial Since we explained the way of mixing
distributions in order to from bivariate cases, it is essential to present how this
method could be applied.
Our first mixture regression model is the bivariate negative binomial regression.
There are many different ways to define negative binomial distribution, but we
will present two of them.
Firstly, as the number of successes in a sequence of independent and identically
distributed Bernoulli trials before a specified (and fixed) number of failures occurs.
Secondly, the negative binomial distribution can be viewed as a Poisson distribu-
tion where the Poisson parameter is itself a random variable, distributed according
to a Gamma distribution. Thus, the negative binomial distribution is known as
a Poisson-Gamma mixture. Negative binomial regression can be used for overd-
ispersed count data, that is when the conditional variance exceeds the conditional
mean. It can be considered as a generalization of Poisson regression since it has
the same mean structure as Poisson regression and it has an extra parameter to
model the overdispersion.
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For our analysis, we need the bivariate negative binomial regression, since we want
to model two different count variables.
The bivariate negative binomial can be easily derived if we choose gamma distribu-
tion as the mixing one with density function. We assume that Nj i ∼ Poisson(α′θj)

for j = 1, 2, while θj is the realization of our random variables. Since α′i follows
G(φ, φ):

g(α′i;φ) =
φφ

Γ(φ)
α′i
φ−1exp(−φα′i) (32)

where φ>0. Then the joint probability mass function is, for more information see
Johnson(1997):

PG(n1i, n2i;φ) =
Γ(n1i + n2i + φ)

Γ(φ)n1i!n2i!

(
φ

φ+ θ1 + θ2

)φ(
θ1

φ+ θ1 + θ2

)n1i
(

θ2

φ+ θ1 + θ2

)n2i

(33)
In order to introduce the correlation coefficient between two marginals for indi-
vidual i, we have to include the exposure of each individual Ej i, for i = 1, ..., n

and j = 1, 2.
Then, correlation coefficient for individual i is:

corr(N1i, N2i) =

√
E1iθ1iE2iθ2i

(E1iθ1i + α′i)(E2iθ2i + α′i)
(34)

which is a positive quantity for given N1i, N2i.

3.4.2.3 Bivariate Negative Binomial Regression (BNBR) with multi-
plicative factor Another model we will use in order to deal with overdispersion
is the negative binomial one combined with a multiplicative factor. One special
characteristic is that it allows for more flexible correlation structure.

Following the Lakshminarayana’s technique in the bivariate Poisson model (BPR),
Famoye (2010) defined the negative binomial regression with covariates, modeling
θj through loglinear functions for µj i, for i = 1, 2, ..., n and j = 1, 2.
In our analysis, the multiplicative factor α and the dispersion parameter of the
negative binomial distribution mj will not be functions of covariates. Therefore,
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working as earlier, this model is a product of two negative binomial marginals with
multiplicative factor.
The joint probability mass function is given by:

P (n1i, n2i) =
2∏
j=1

(
m−1
j + nj i − 1

nj i

)(
µj i

m−1
j + µj i

)nji (
m−1
j

m−1
j + µj i

)m−1
j

[1+α
2∏
j=1

(e−nji−cj)]

(35)
where cj = [(1 − θj)/(1 − θje−1)]m

−1
j with θj = µj i/(m

−1
j + µj i) for i = 1, 2, ..., n

and j = 1, 2.

When mj → 0,then there is no dispersion and the model reduces to bivariate
Poisson.
The marginal distributions of Nj is a negative binomial with mean µj = m−1

j
θj

1−θj

and variance σ2
j = m−1

j
θj

(1−θj)2 . The correlation coefficient depends on the value of
α, the multiplicative factor parameter and it is given by:

ρ = α
E(e−N1)E(e−N2)A1A2

σ1σ2

(36)

where Aj =
m−1
j θje

−1

(1−θje−1)
− m−1

j θj

1−θj for j = 1, 2. As a result, if α equals to zero, then our
variables are independent, if it is positive, they have positive dependence and if it is
negative, they have negative dependence. For more information about correlation
structure, see Famoye (2009).

The log-likelihood function is given by:

logL =
n∑
i=1

[
2∑
j=1

[nj i log µj i −m−1
j logmj − (nj i +m−1

j ) log(µj i +m−1
j )− log nj i!

+

nji−1∑
k=0

log(m−1
j + k)] + log[1 + α

2∏
j=1

(e−nji − cj)]]

(37)
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where cj = (1 + sµj imj)
−1/mj , with s = 1− e−1, i = 1, 2, ..., n and j = 1, 2, while

k is a positive integer counter that take values from zero to nj i − 1.

3.4.2.4 Bivariate zero-inflated Negative Binomial Regression (BZINBR)
with a multiplicative factor An alternative to the previous model can be a
zero-inflated negative binomial regression model.
This model is obtained by mixing a distribution digenerate at zero and the NB
distribution. We will present two types of ZINB models that can be found in
Ridout et al. (2004).

The models we will use was proposed by Faroughi (2017) and they are similar to
generalised Poisson models proposed by Zamani (2012) that we will explain later.
These negative binomial models have different forms with respect to the functional
parameter, Shi and Valdez (2012).The advantages of these models are firstly that,
they are nested models.Secondly, they allow of additional overdispersion and flex-
ible forms of mean-variance relationship.

The probability mass function of the univariate negative binomial-P regression
model is:

PBN−P (ni) =
Γ(ni +m−1µ2−P

i )

ni!Γ(m−1µ2−P
i )

(
m−1µ2−P

i

m−1µ2−P
i + µi

)m−1µ2−Pi
(

µi

m−1µ2−P
i + µi

)ni
(38)

where m is the dispersion parameter and P is the functional one.
P is a functional parameter that makes our models nested. This functional para-
meter, takes values from 1 to P, while P is a positive number greater than 1. Using
this parameter, anyone can do statistical tests of these parametric forms. If we
replace P with 1 or 2 we have the NB-1 and NB-2 models respectively. Therefore,
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from now on model NB-1 will be a negative binomial model with functional para-
meter equals to one, NB-2 a negative binomial model with functional parameter
equals to two and NB-P, a negative binomial model with parameter equals to P,
that we can treat later as unknown and as a result, through optimization we can
find the value that corresponds to the lowest value of the likelihood function .
Similar to the derivation of the other bivariate models, the joint probability mass
function of the BNB-P model, bivariate negative binomial model with functional
parameter P, can be derived from the product of two NB-P marginals with a
multiplicative factor, Zamani (2012).

PBNBP (n1i, n2i) = [
2∏
j=1

Γ(nj i +m−1
j µj

2−Pj
i )

nj i!Γ(m−1
j µj

2−Pj
i )

(
m−1
j µj

2−Pj
i

m−1
j µj

2−Pj
i + µj i

)m−1
j µj

2−Pj
i

×

(
µj i

m−1
j µj

2−Pj
i + µj i

)nji

][1 + α
∏
j=1

2(e−nji − cj i)]

(39)

where cj i = E(e−nji) = (1 − θj i/1 − θj ie−1)m
−1
j µi

2−Pj
j with θj i = µj i/m

−1
j µj

2−Pj
i +

µj i, for j = 1, 2 where mj are the dispersion parameters, Pj are the functional
parameters and α the multiplicative factor for the model.

It is easy to observe from Equation (39), when α = 0, the response variables N1i

and N2i are independent, each follows negative binomial distribution, with func-
tional parameter P. The reason why, they are independent is that the probability
function of our bivariate response variable becomes a product of two separate mar-
ginals univariate negative binomial distributed (NB-P). When α < 0 or α > 0 we
have negative or positive correlation respectively.

If we mix the BNB-P regression model with a distribution degenerate at zero, we
have the zero-inflated extension (BZINB-P), with joint probability mass function:
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PBZINB(n1i, n2i) =



p+ (1− p)[
2∏
j=1

(
m−1
j µj

2−Pj
i

m−1
j µj

2−Pj
i + µj i

)m−1
j µj

2−Pj
i

]

×[1 + α
2∏
j=1

(1− cj i)], N1i = N2i = 0

(1− p)PBNBP (n1i, n2i), otherwise

(40)

where 0 ≤ p ≤ 1 is the zero-inflation parameter, mj is the dispersion one, Pj the
functional parameters and α the multiplicative factor and j = 1, 2.
cj i and θj i are the same as in BNB-P model, mentioned above.
Covariates are included using log-links, log(θj i) = xj

T
i βj, j = 1, 2, where xj i is the

vector of explanatory variables and βj is the vector of regression coefficients.
The log-likelihood for the BZINB-P regression model is given by:

logL =
n∑
i=1

In1i=0,n2i=0[log[p+ (1− p)[
2∏
j=1

(
m−1
j µj

2−Pj
i

m−1
j µj

2−Pj
i + µj i

)m−1
j µj

2−Pj
i

][1 + α
2∏
j=1

(1− cj i)]]]

+
n∑
i=1

[1− In1i=0,n2i=0][log(1− p) +
2∑
j=1

[log µj i +m−1
j µj

2−Pj
i log(−1

j µj
2−Pj
i )

−Nj i log(m−1
j µj

2−P−j
i + µj i)−m−1

j µj
2−Pj
i

× log(m−1
j µj

2−Pj
i ) +

nji−1∑
k=0

log(m−1
j µj

2−Pj+k
i )] + log(1 + α(e−n1i − c1i)(e

−n2i − c2i))

(41)
where every quantity is defined in j.p.m.f above.

3.4.2.5 Bivariate Negative binomial using copulas and common shocks
Our last modeling technique for negative binomial distribution is based on common
shock variables and copula functions.
A classic way to induce correlation among variables is to employ common shock
variables. Using this formulation, we will model dependence through negative
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binomial regression.
Copula functions are also a great tool to model bivariate count data and we will
use Frank’s and Clayton’s copulas as previously.

For our purpose, we will use Poisson regression model and two forms of negative
binomial regression models (NB-1 and NB-2), with their zero-inflated extensions.
The probability function of the Poisson model was Equation (13). When it comes
to the negative binomial regression model, we will use two forms that
Shi and Valdez (2012) proposed,the NB-1 and NB-2.

A count variable Nj i for i = 1, 2, ..., 6000 and j = 1, 2 is known to follow a negative
binomial distribution if its probability function can be expressed as:

P (Nj i = nj i) =
Γ(θj + nj i)

Γ(θj)Γ(nj i + 1)

(
1

1 + t

)θj ( t

1 + t

)nji
(42)

for nj i = 0, 1, 2, ... and λ, t > 0.
Including covariates, the NB-1 form is obtained for θj = σ−2exp(xj i

Tβj) and its
probability function is:

fNB−1(nj i|xj i; βj, σ2) =
Γ(σ−2exp(xj i

Tβj) + nj i)

Γ(σ−2exp(xj iTβj))Γ(nj i + 1)

(
1

1 + σ2

)σ−2exp(xji
T βj)( σ2

1 + σ2

)nji
(43)

where σ2 is the variance of nj i, βj denotes the vector of regression coefficients and
xj i is the vector of explanatory variables.

The NB-2 model is obtained for θj = σ−2 and takes the form:

fNB−2(nj i|xj i; βj, σ2) =
Γ(σ−2 + nj i)

Γ(σ−2)Γ(nj i + 1)

(
1

1 + σ2exp(xj iTβj)

)σ−2 (
σ2exp(xj i

Tβj)

1 + σ2exp(xj iTβj)

)nji
(44)

Both models assume the same mean structure of the count variable but differ in
terms of the dispersion parameter, due to θj form.
Their zero-inflated version is formed by mixing these distributions with a digener-
ate function at zero.

For our first approach in this section we use a common covariance term through
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the following construction:
Nj i = Uj i +U0i for i = 1, 2, ..., n and j = 1, 2. Uj i ∼ NB(θj, tj i) and all marginals
follow negative binomial distribution with
Nj i ∼ NB(θ, tj i + t0i).
The key assumption is the common parameter λ for both variables and we add cov-
ariates through θj i = exp(xj

T
i βj) for j = 1, 2. Only the NB-1 model is appropriate

for this method.

Under these assumptions the vector Ni = (N1i, N2i) follows a bivariate negative
binomial regression model with j.p.m.f:

fi(n1, n2|xi) =

min(n1,n2)∑
s′=0

f0(s′)f1(n1 − s′|x1i)f2(n2 − s′|x2i) (45)

where xi = (x1i, x2i),f0(·) = fNB−1(·|1; log θ0, σ
2) and fj(·|xj i) = fNB−1(·|xj i; βj, σ2)

for j = 1, 2.

The common shock variable U0i has the role of the random effect, implying an
identical positive correlation for all the pairs of claim type. The log-likelihood of
this model is given by:

logL =
n∑
i=1

log(

min(n1i,n2i)∑
s′=0

f0(s′)f1(n1i − s′|x1i)f2(n2i − s′|xii))

(46)

For our analysis we use two copula functions,Frank’s and Clayton’s copulas again.
As u and v in Equations (5) and (6) we will use univariate negative binomial and
zero-inflated negative binomial marginals for both response variables. We add
covariates to the mean through θj i = exp(xj

T
i βj) for i = 1, 2, ..., n and j = 1, 2.

Since our marginal distributions are discrete, we obtain the joint probability mass
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function of N1i and N2i, using finite differences.

f(n1i, n2i) = F (n1i, n2i)− F (n1i − 1, n2i)− F (n1i, n2i − 1) + F (n1i − 1, n2i − 1).

(47)

This method lies on the difference of our count variables.
Suppose, for the case of discrete random variables, the variable of interest is the
difference wi = n1in2i, for i = 1, 2, ..., n. We present a simple approach using
copulas to derive the distribution of wi.
The joint probability mass function (pmf) is derived by taking finite differences:

c(F (n1i), F (n2i); ξ) = C(F (n1i), F (n2i); ξ)− C(F (n1i1), F (n2i); ξ)

− C(F (n1i), F (n2i1); ξ) + C(F (n1i1), F (n2i1); ξ)

where lower-case c denotes the pmf of the copula function.
With the transformation wi = n1in2i, the joint pmf can be equivalently expressed
in terms of wi and n2i as:

c(F (wi + n2i), F (n2i); ξ) (48)

The pmf of wi,denoted q(wi), is obtained by summing over all possible values of
n2i : q(wi) =

∑∞
n2i=0 c(F (wi + n2i), F (n2i); ξ)(49)

For any value of w, (49) gives the corresponding probability mass. The cdf of q(wi)
is calculated by accumulating masses at each point wi:

Q(wi) =

wi∑
t=−∞

q(t) (50)

Both q(wi) and Q(wi) characterize the full distribution of wi so that inference
can be made regarding the difference between two count variables. This method
can also be applied to any discrete or continuous variables when the marginal
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distribution of the components of the differences is parametrically specified.

In conclusion, we will use as marginals of the copula j.p.m.f, function Gj i using
two different forms like in Poisson section (paragraph 3.4.1.5):

Gij =

{ ∑nji
k=0 fNB−2(k; θj i),for negative binomial distribution

p+ (1− p)
∑nji

k=0 fNB−2(k; θj i),for zero-inflated negative binomial distribution

where pj is the inflation parameter for i = 1, 2..., n and j = 1, 2 and probability
distribution functions as defined earlier.

Therefore,the log-likelihood function is given by:

logL =
n∑
i=1

log(CFR(G1i, G2i)−CFR(G1i−1, G2i)−CFR(G1i, G2i−1)+CFR(G1i−1, G2i−1)).

(51)

where CFR is the Frank’s copula, but the same holds for Clayton with the appro-
priate form.

3.4.2.6 Bivariate Inverse Gaussian Following the same technique as in
Poisson-Gamma mixture we want to derive a bivariate inverse Gaussian regression
model, Kocherlakota (1986). The inverse Gaussian is a skewed, two-parameter
continuous distribution whose density is similar to the Gamma distribution with
greater skewness and a sharper peak. It is used as the mixing distribution with
density function:

g(α′;φ) =
φ√
2π
exp(φ2)α′

−3
2 exp(−φ

2

2
(

1

α′
+ α′)) (52)

α′, φ > 0. As φ tends to infinity, the inverse Gaussian distribution becomes more
like a normal (Gaussian) distribution. The inverse Gaussian distribution has sev-
eral properties analogous to a Gaussian distribution.
The joint probability function is:
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PIG(n1, n2;φ) =
2φexp(φ2)√

2π
K∑2

j=1 nj−1/2(φ∆)

(
φ

∆

)∑2
j=1 nj−1/2 2∏

j=1

θ
nj
j

nj!
(53)

where ∆ =
√
φ2 + 2

∑2
j=1 θj and Kr(x) is the modified Bessel function of the third

kind of order r, Bessel (1824).

Using the same EM algorithm as previously we optimize the complete data log-
likelihood function given as:

lC(Θ) =
n∑
i=1

2∑
j=1

(−α′iθj i + nj i log(α′iθj i)− log(nj i!)) +
n∑
i=1

log(g(α′i;φ)) (54)

where Θ stands for all parameters of the model.

3.4.2.7 Bivariate Poisson Lognormal A log-normal (or lognormal) distri-
bution is a continuous probability distribution of a random variable whose log-
arithm is normally distributed. Thus, if the random variable X is log-normally
distributed, then Y = log(X) has a normal distribution.
The Poisson-lognormal model, Stewart (1994), assumes that the intensity para-
meter of a Poisson process has a lognormal distribution in a sample of observations.
This model can yield highly skewed, discrete distributions, but must be estimated
by numerical methods.
For the bivariate Poisson lognormal regression model, we use lognormal as the
mixing distribution with density function:

g(α′;φ) =
1√

2πφα′
exp

(
−(log(α′) + φ2/2)2

2φ2

)
(55)

α′, φ > 0. The joint probability function has no closed form so:

PLN(n1, n2;φ) =

∫ ∞
0

2∏
j=1

exp(−α′θj)(α′θj)nj
nj!

exp
(
−(log(α′)+φ2/2)2

2φ2

)
√

2πφα′
dα′ (56)

For the bivariate Poisson lognormal model we have to switch to Monte Carlo EM
algorithm because numerical integration is needed due to likelihood’s lack of closed
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form.
The Monte Carlo EM (MCEM) algorithmm Wei and Tanner (1990), is a modi-
fication of the EM algorithm where the expectation in the E-step is computed
numerically through Monte Carlo simulations. The most flexible and generally
applicable approach to obtaining a Monte Carlo sample in each iteration of an
MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as
the Gibbs, Geman (1984), and Metropolis-Hastings, Rosenbluth and Teller (1953),
samplers.

3.4.3 Generalised Poisson distribution

Going further to our analysis, we examined what improvements we have from using
negative binomial distribution and mixing distributions in general.
It is well-known that, by construction, the mean of a Poisson distribution equals its
variance. Equivalently, its variance-to-mean ratio equals one, a measure also known
as statistical dispersion. Accordingly, a Poisson distribution can be expected to fit
only poorly to an empirical distribution whose dispersion differs considerably from
unity. In applied statistics generally, attention has largely focused on the need to
account for overdispersion, that is, distributions with dispersion considerably larger
than one. The generalized Poisson (GP) distribution is of interest for modeling
count data because it includes the Poisson distribution as a special case, and over
the range where the second parameter is positive, it is overdispersed relative to
Poisson with a variance to mean ratio exceeding 1.
Despite the fact that both negative binomial distribution and generalised Poisson
one can be used to deal with overdispersion and provide us with similar results,
they differ a lot.
The GP distribution has one extra parameter than standard Poisson, the so-called
dispersion parameter λ. A random variable N is said to have a generalised Poisson
distribution if its probability density function is given by, Consul (1989):

f(n; θ, λ) = θ(θ + nλ)n−1e−θ−nλ/n! (57)

for n = 0, 1, 2, ...

The GPD reduces to the Poisson model when λ=0 and possesses the property of
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over-dispersion for all values of λ>0 and the property of under-dispersion for all
values of λ<0.

It is very useful for our purpose to introduce generalised Poisson regression under
a mean parametrization.Since the mean µ for the GPD is given by µ = θ(1−λ)−1,
one can write corresponding generalized Poisson regression (GPR) model in the
form:

P (N = n|µ,Φ) = µ(µ+ (Φ− 1)n)n−1Φ−n
e−(µ+(Φ−1)n)/Φ

n!
(58)

where n = 0, 1, 2, ... and Φ = (1− λ)−1.

This distribution form holds for λ > 0. If λ < 0 and n > M , when M is the largest
positive integer for which θ + Mλ > 0 when λ is negative, then P (N = n|µ,Φ)

equals to zero.
The difference between the fits of the GP and NB distributions is most apparent
for count data with long right tails (heavily right-skewed), Joe and Zhu (2005).
Besides, the NB distribution seems to have larger mass at zero than the GP dis-
tribution (when the first two moments are fixed). This means their zero-inflated
variations tend to have larger discrepancy. However, the fits of their zero-inflated
variations may differ when there is a large zero fraction.

3.4.3.1 Bivariate Generalised Poisson Regression (BGPR) Bivariate
generalised Poisson distribution has an extra parameter, that can handle over
or underdispersion. Similar to the previous model, we define the joint mass prob-
ability function of the bivariate generalised Poisson regression model (BGPR) as
a product of univariate generalised Poisson marginals with a multiplicative factor,
Famoye (2010), also we present several forms of this model, Zamani et al (2016).
The advantages of Zamani’s model are firstly that these models can be fitted to
bivariate count data with zero, positive or negative correlation.
Secondly, the models allow for under or overdispersion and finally they allow flex-
ible mean-variance relationship. Its probability mass function can be given by:
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P (n1i, n2i) = [
2∏
j=1

µj i

(
µj i + λjµj

Pj−1
i nj i

)nji−1

(
1 + λjµj

Pj−1
i

)nji
nj i!

e
−
µji+λjµj

Pj−1

i
nji

1+λjµj
Pj−1

i ][1+α
2∏
j=1

(e−nji−cij)]

(59)
where λj, j = 1, 2, is the dispersion parameters, α is the multiplicative factor, Pj
is the functional parameter that provide us these different forms,

cj i = E(e−nji) = e

µji

1+λjµj
Pj−1

i

(sj−1)

, θj i = µj i(1−λj) and log sj− λjµj
Pj−1

i

1+λjµj
Pj−1

i

(sj−1)+

1 = 0, j = 1, 2.
When λj becomes 0 then BGPD reduces to simple bivariate Poisson (BP).
If α=0, then N1 and N2 are independent response variables. Furthermore, when
α > 0 and α < 0 then we have positive or negative correlations respectively.
Moreover, if λj > 0, then our model handles overdispersion and if λj < 0 it allows
underdispersion.
Finally, when P1 = P2 = 1 and P1 = P2 = 2,then our model reduces from BGPR-P
to BGPR-1 and BGPR-2 respectively.
Since we want to add covariates again in our model, we assume that µj i = βTj xj i

for i = 1, 2..., n and j = 1, 2 with βj the regression coefficient vector and xj i the
covariates’ vector for every observation.

The log-likelihood function for BGPR-P is given by:

logL =
n∑
i=1

2∑
j=1

[log(
µj i

(
µj i + λjµj

Pj−1
i nj i

)nji−1

(
1 + λjµj

Pj−1
i

)nji
nj i!

e
−
µji+λjµj

Pj−1

i
nji

1+λjµj
Pj−1

i )] +
n∑
i=1

log[1 + α
2∏
j=1

(e−nji − cj i)]

(60)
when Pj = 1 or Pj = 2 for j=1,2 we can derive BGPR-1 and BGPR-2 log-likelihood
functions respectively. As we have seen in bivariate negative binomial section,
paragraph 3.4.2.4, we use a functional parameter Pj in order to acquire all forms
of BGPR model, through Equation (59), for Pj equals to one or two respectively.

3.4.3.2 Bivariate Sarmanov regression with a multiplicative factor (BSP-
BSGP) The last models we will present it this section are two models based on
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Sarmanov distributions, bivariate Poisson and generalised Poisson regression mod-
els through a multiplicative factor.
Sarmanov’s bivariate distribution was introduced in the literature by Sarmanov
(1966). One of the main interesting properties of the Sarmanov is that the bivari-
ate distribution can support a wide range of marginals, such as in this case,the
Poisson and generalised Poisson distributions.

We will go through, the bivariate generalised Poisson regression model that Hofer
and Leitner (2012) proposed and we will show that the bivariate Poisson is a special
case of the first one.

We select the marginal distributions to be:
N1 ∼ GP (θ1, λ1) and N2 ∼ GP (θ2, λ2).
The expected values of the response variables are E(N1) = θ1 and E(N2) = θ2 and
the variances are V ar(N1) = λ2

1θ1 and V ar(N2) = λ2
2θ2.

When λ1 = λ2 = 1 we have the bivariate Poisson case.
In order to acquire a closed form for the probability function we need the expected
values E(e−N1) and E(e−N2). We can derive them, from the moment generating
function of the GP distribution as it is described from Ambagaspitiya and Bal-
akrishnan (1994).
Therefore, the moment generating function M(t|θ, λ) for a GP (θ, λ) with λ > 1

takes the form:
M(t|θ, λ) = exp(− θ

λ−1
[W (−(1− 1/λ)exp(−1 + 1/λ+ t)) + 1− 1/λ])

where W is the Lambert W function, Lambert (1758), defined as W (x)eW (x) = x.

As a result the probability function of BSGP is obtained as:

PBSGP (n1i, n2i) =
θ1i(θ1i + (λ1 − 1)n1i)

n1i−1

n1i!λ
n1i
1 exp((θ1i + (λ1 − 1)n1i)λ

−1
1 )

θ2i(θ2i + (λ2 − 1)n2i)
n2i−1

n2i!λ
n2i
2 exp((θ2i + (λ2 − 1)n2i)λ

−1
2 )

∆

(61)
where ∆ = (1+α(e−n1i−c1i)(e

−n2i−c2i)) and cj i = M(−1|θj i, λj) for i = 1, 2, ..., n

and j = 1, 2.

We can include covariates exactly like the previous models through log-links and
the bivariate Poisson case is obtained when the dispersion parameters λ1, λ2 are
equal to 1.
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The log-likelihood of the model is given by:

logL =
n∑
i=1

log(
θ1i(θ1i + (λ1 − 1)n1i)

n1i−1

n1i!λ
n1i
1 exp((θ1i + (λ1 − 1)n1i)λ

−1
1 )

θ2i(θ2i + (λ2 − 1)n2i)
n2i−1

n2i!λ
n2i
2 exp((θ2i + (λ2 − 1)n2i)λ

−1
2 )

∆)

(62)
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4 Results

4.1 Main findings

All models used in our analysis were presented in the previous section and our
purpose is to compare them and find which of them has a better fit for our data. In
order to find the best model, we will use maximum likelihood estimation plus AIC
quantity. The models with the smallest price in these quantities have a better fit
for our dataset. We split our models to categories. First category contains models
based on Poisson distribution, second one contains mixed Poisson distribution
models, like negative binomial models, inverse Gaussian and Poisson lognormal.
The third one contains generalised Poisson models. Even though, we presented
our models based on the distribution function, it is more interesting to compare
them based on modeling technique and distribution function at the same time.

For every model, we present all coefficients for each explanatory variable plus the
intercept. Next to estimated quantities of trivariate reduction models there is a
standard error between brackets derived from standard bootstrap methods using
boot in R programming language. In order to reach our goal we chose a sample
size for bootstrap method that equals to 150. Then for each bootstrap sample,
we fit our models and we estimate all quantities of interest. Finally, we calcu-
late the standatd deviation of the sample of our model’s quantities estimates. For
all the other models, mixed Poisson, multiplicative factor-based or copula-based
models we obtain standard errors with nlm function in R programming language.
The same holds for the commmon shock model. To be more specific, we obtain
standard errors from the Hessian matrix. After implementing the optimization
algorithm, Newton-Raphson algorithm, we compute the Hessian matrix. Continu-
ously, we compute the square root of diagonal elements of inverse Hessian matrix
and these values are our standard errors.
Extra parameters for zero-inflated versions are mentioned and at the bottom any-
one can see log-likelihood quantities with the appropriate AIC. It is reasonable
that between regression models based on different distribution functions there are
differences, but under the same modeling method, results are quite similar.
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Therefore, we present Tables for our models based on trivariate reduction, mixed
Poisson models, multiplicative factor based, copula-based models and models using
common shock variables.

Table 3: Models summary

Model Name Method Citation
Double Poisson DP Trivariate reduction Kocherlakota and Kocherlakota (1992)
Bivariate Poisson BP-1 Trivariate reduction Bermudez (2009)
Bivariate Poisson BP-2 Trivariate reduction Bermudez (2009)
Bivariate zero inflated Poisson BZIP-1 Trivariate reduction Bermudez (2009)
Bivariate zero-inflated Poisson BZIP-2 Trivariate reduction Bermudez (2009)
Bivariate negative binomial BNB Mixed Poisson Ghitany, Karlis et al. (2012)
Bivariate inverse Gaussian BIG Mixed Poisson Ghitany, Karlis et al. (2012)
Bivariate Poisson lognormal BLN Mixed Poisson Ghitany, Karlis et al. (2012)
Bivariate Poisson BPR Multiplicative factor Lakshminarayana (1999)
Bivariate negative binomial BNBR Multiplicative factor Famoye (2012)
Bivariate Sarmanov Poisson BSPR Multiplicative factor Hofer and Leitner (2012)
Bivariate Sarmanov Generalised Poisson BSGPR Multiplicative factor Hofer and Leitner (2012)
Bivariate Generalised Poisson BGPR-1 Multiplicative factor Zamani et al. (2016)
Bivariate Generalised Poisson BGPR-2 Multiplicative factor Zamani et al. (2016)
Bivariate Generalised Poisson BGPR-P Multiplicative factor Zamani et al. (2016)
Bivariate zero inflated Poisson BZIPR Multiplicative factor Faroughi (2017)
Bivariate zero inflated negative binomial BZINBR-1 Multiplicative factor Faroughi (2017)
Bivariate zero inflated negative binomial BZINBR-2 Multiplicative factor Faroughi (2017)
Bivariate zero inflated negative binomial BZINBR-P Multiplicative factor Faroughi (2017)
Bivariate Poisson Frank copula BPFR Copula Cameron et al. (2004)
Bivariate zero inflated Poisson Frank copula BZIPFR Copula Cameron et al. (2004)
Bivariate negative binomial Frank copula BNBFR Copula So et al. (2011)
Bivariate zero inflated binomial Frank copula BZINBFR Copula So et al. (2011)
Bivariate negative binomial Common Shocks CS Common shocks Shi and Valdez (2012)

Firstly we present in Table 3, all models implemented with the approriate names
and citations, in order to clarify to which model we are reffered to every time. As
anyone can observe, the first column describes the model, the second one denotes
the appropriate shortcut name, then we present a column that explains modeling
technique and last column shows the author of the paper that this model has
been used. Secondly, we present in Table 4 all models combined with statistics
of interest, AIC in descending order and maximum loglikelihood. Based on these
two criteria, we compare all models and modeling techniques in order to find the
model that fit our data the best.
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Table 4: Models statistics - Comparison of loglik and AIC

Model Name loglik AIC
Double Poisson DP -4423.78 8875.56
Bivariate Sarmanov Poisson BSPR -4356.92 8743.85
Bivariate Poisson BPR -4354.85 8739.70
Bivariate Poisson Frank copula BPFR -4352.95 8735.91
Bivariate Poisson BP-2 -4334.63 8711.27
Bivariate Poisson BP-1 -4338.53 8707.06
Bivariate zero-inflated Poisson BZIP-2 -4098.60 8247.21
Bivariate zero inflated Poisson BZIP-1 -4101.66 8241.32
Bivariate zero inflated Poisson BZIPR -4098.16 8228.32
Bivariate negative binomial BNBR -4092.78 8203.56
Bivariate zero inflated negative binomial BZINBR-1 -4092.78 8203.56
Bivariate zero inflated Poisson Frank copula BZIPFR -4085.11 8202.22
Bivariate Poisson lognormal BLN -4074.18 8178.36
Bivariate inverse Gaussian BIG -4067.57 8165.14
Bivariate Generalised Poisson BGPR-2 -4063.92 8161.84
Bivariate negative binomial BNB -4064.73 8159.46
Bivariate Generalised Poisson BGPR-1 -4061.63 8156.68
Bivariate zero inflated negative binomial BZINBR-2 -4061.59 8141.18
Bivariate negative binomial Common Shocks CS -4053.91 8139.83
Bivariate zero inflated negative binomial BZINBR-P -4046.59 8133.46
Bivariate zero inflated binomial Frank copula BZINBFR -4048.13 8132.26
Bivariate negative binomial Frank copula BNBFR -4045.39 8125.70
Bivariate Sarmanov Generalised Poisson BSGPR -4040.78 8115.56
Bivariate Generalised Poisson BGPR-P -4038.45 8114.90

It is a matter of interest, that the improvement in terms of AIC from the first
model to the last is impressive. From the Double Poisson model that assumes
independence between response variables, with an AIC equals to 8875.56, to the
bivariate generalised Poisson model BGPR-1 with an AIC equals to 8114.90, that
fits way better our data.

As we explained earlier, it is more efficient to present results from our models based
on modeling technique. Although, explaining based on distribution is important in
order to describe how the model assumptions change, when the modeling method
changes, presenting models in the following way, gives us the opportunity to ex-
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amine every difference between different distributions based on the same modeling
method. Table 5, shows all models based on trivariate reduction, bivariate Pois-
son, double Poisson and zero-inflated Poisson. The double Poisson model, has the
highest AIC and the lowest likelihood value, so it is the worst model for our data
and as an explanation we can give, that it assumes that response variables N1 and
N2 are independent. The difference between BP-1 and BP-2 and between BZIP-1
and BZIP-2 respectively, is that the first model does not allow for regressors in λ3,
while the second one allows this condition. In terms of AIC BP-1 and BZIP-1 are
better models than BP-1 and BZIP-2 accordingly and the reason is that AIC, is
a quantity based on the number of variables, therefore since λ3 has regressors in
the second case, AIC value is smaller. Nevertheless, in terms of likelihood these
models, fit worse our data, since these values are lower for BP-1 and BZIP-1.
Finally, zero-inflated models, BZIP-1 and BZIP-2 are way better that the other
models, a fact that is explained from the high frequency of zeros in both response
variables. AIC values are much lower in zero-inflated models, equal to 8241.32
and 8247.21 for BZIP-1 and BZIP-2. while for BP-1 and BP-2, these values are
equal to 8707.06 and 8711.27 respectively. We can easily see that variables ZON,
LOY and AGE have a significant role when it comes to third party guarantees. In
addition, all variables have a big effect when it comes to the rest of guarantees.
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Table 5: Trivariate reduction - Optimized models results and standard errors

Var θi Parameter DP BP-1 BP-2 BZIP-1 BZIP-2
N1

θ1 Intercept -2.512(0.175) -2.743(0.177) -2.745(0.211) -1.236(0.103) -1.167(0.093)
GEN 0.024(0.147) 0.028(0.138) 0.030(0.173) -0.021(0.078) -0.083(0.081)
URB 0.024(0.116) 0.028(0.129) 0.025(0.156) 0.005(0.056) -0.023(0.071)
ZON 0.082(0.110) -0.002(0.104) -0.036(0.127) 0.119(0.066) 0.067(0.068)
LOY 0.008(0.144) 0.106(0.146) 0.137(0.168) 0.098(0.074) -0.011(0.071)
AGE -0.021(0.093) -0.018(0.086) -0.012(0.111) -0.080(0.046) -0.024(0.047)
POW 0.032(0.112) -0.029(0.112) -0.049(0.139) 0.009(0.052) 0.023(0.070)

N2

θ2 Intercept -2.316(0.163) -2.480(0.152) -2.478(0.159) -1.004(0.081) -0.955(0.089)
GEN 0.149(0.099) 0.170(0.102) 0.171(0.109) 0.115(0.057) 0.150(0.053)
URB 0.219(0.087) 0.251(0.096) 0.249(0.099) 0.186(0.051) 0.115(0.046)
ZON -0.211(0.093) -0.325(0.089) -0.351(0.097) -0.174(0.046) -0.153(0.053)
LOY -0.209(0.136) -0.190(0.122) -0.174(0.130) -0.131(0.066) 0.272(0.062)
AGE 0.233(0.076) 0.268(0.076) 0.272(0.085) 0.152(0.039) 0.163(0.040)
POW 0.321(0.097) 0.321(0.095) 0.305(0.106) 0.288(0.047) -0.254(0.058)

θ3 Intercept - -4.073(3.773) -4.248(0.886) -5.873(5.308) -53.321(16.268)
GEN - - -0.005(0.407) - 0.155(5.081)
URB - - 0.022(0.274) - 15.079(7.947)
ZON - - 0.500(0.293) - 13.429(7.786)
LOY - - - - 5.186(7.965)
AGE - - -0.431(0.561) - 0.201(6.297)
POW - - -0.054(0.851) 16.772(7.684)

p - - - 0.73 0.73
logL -4423.78 -4338.53 -4334.63 -4101.66 -4098.60
AIC 8875.56 8707.06 8711.27 8241.32 8247.21

Table 6 shows three models based on mixture poisson modeling. The first one
is a bivariate negative binomial, the second one a bivariate inverse Gaussian and
the last one a Poisson lognormal. The model with the greatest value of loglikeli-
hood and the lowest value of AIC at the same time is the negative binomial one.
Obviously, mixture models provide us with similar results. Coefficients for every
variable is pretty similar for every model, as anyone can observe from the table.
Standard errors from inverse Hessian matrix are also similar. Likelihood values are
slightly different, while the Poisson lognormal model seems to be the worst one.
It is important to notice the difference in the random variable α that introduces
correlation between response variables. This variable in the BLN model is one unit
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Table 6: Mixed Poisson Models - Optimized models results and standard errors

Var Parameter BNB BIG BLN
N1

Intercept -2.511(0.206) -2.499(0.209) -2.459(0.228)
GEN 0.024(0.136) 0.026(0.138) 0.152(0.138)
URB 0.023(0.106) 0.040(0.107) 0.059(0.113)
ZON 0.083(0.124) 0.072(0.126) 0.105(0.130)
LOY 0.008(0.134) -0.016(0.135) 0.017(0.149)
AGE -0.019(0.166) 0.020(0.167) -0.071(0.164)
POW 0.032(0.157) 0.026(0.159) -0.055(0.157)

N2

Intercept -2.306(0.185) -2.299(0.188) -2.398(0.202)
GEN 0.157(0.115) 0.160(0.117) 0.227(0.113)
URB 0.212(0.094) 0.232(0.095) 0.342(0.099)
ZON -0.207(0.114) -0.219(0.116) -0.206(0.120)
LOY -0.214(0.110) -0.241(0.112) -0.187(0.119)
AGE 0.234(0.133) 0.279(0.135) 0.370(0.129)
POW 0.316(0.147) 0.315(0.149) 0.296(0.144)

α′ 0.267(0.020) 0.475(0.023) 1.453(0.048)
logL -4064.73 -4067.57 -4074.18
AIC 8159.46 8165.14 8178.36

greater than the others, a fact that may occured from difficutlies in optimization
of Poisson lognormal distribution, due to its form that it is not closed.
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Table 7: Multiplicative factor models - Optimized models results and standard
errors

Var Parameter BPR BNBR BSPR BSGPR
N1

Intercept -2.496(0.181) -2.330(0.513) -2.512(0.181) -2.464(0.208)
GEN 0.028(0.118) -0.215(0.135) 0.024(0.118) 0.009(0.136)
URB 0.025(0.092) 0.111(0.106) 0.024(0.092) 0.045(0.107)
ZON 0.085(0.107) 0.022(0.120) 0.082(0.107) 0.142(0.122)
LOY 0.009(0.116) -0.091(0.133) 0.008(0.116) -0.011(0.134)
AGE -0.026(0.144) -0.826(0.156) -0.021(0.144) 0.068(0.161)
POW 0.044(0.136) 0.242(0.149) 0.032(0.137) -0.039(0.153)
m1 - 1.152(0.188) - 1.295(0.037)

N2

Intercept -2.272(0.153) -1.884(0.497) -2.316(0.155) -2.205(0.171)
GEN 0.141(0.092) -0.113(0.102) 0.149(0.092) 0.114(0.105)
URB 0.201(0.078) 0.057(0.086) 0.219(0.078) 0.183(0.087)
ZON -0.189(0.095) -0.271(0.104) -0.211(0.095) -0.131(0.105)
LOY -0.217(0.087) -0.325(0.093) -0.209(0.087) -0.296(0.096)
AGE 0.216(0.104) 0.311(0.112) 0.233(0.105) 0.260(0.116)
POW 0.315(0.124) 0.502(0.136) 0.321(0.124) 0.285(0.139)
m2 - 2.021(0.239) - 1.225(0.025)

α 4.692(0.466) 0.815(5.333) 4.861(0.518) 4.849(0.516)
logL -4354.85 -4092.78 -4356.92 -4040.78
AIC 8739.70 8203.56 8743.85 8115.56

Next table, Table 7, shows four models based on a multiplicative factor. The
first and third models are a bivariate Poisson and a bivariate Poisson based on
Sarmanov distribution, the second one a bivariate negative binomial and the last
is bivariate generalised Poisson based on Sarmanov distribution. Multiplicative
factors of Poisson models, after optimization, are quite similar as we can see from
the table. Bivariate negative binomial has a small multiplicative factor equals to
0.815, but it has a standard error equal to 5.333. Coefficients for all explanat-
ory variables are close for Poisson models and differ from the negative binomial
one. Standard errors are obtained from every model’s Hessian matrix. AIC and
loglikelihood values are nearly the same for the Poisson models, while the other
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two models fit better the data. Probably, the reason is that they assume an extra
dispersion parameter for both response variables, m1 and m2. The best model out
of these four, is the bivariate generalised Poisson Sarmanov model, BSGPR, with
AIC equals to 8115.56 and loglikelihood equals to -4040.78.

Table 8: Multiplicative factor models - Optimized models results and standard
errors

Var Parameter BGPR-1 BGPR-2 BGPR-P
N1

Intercept -2.884(0.231) -2.513(0.233) -2.518(0.210)
GEN 0.119(0.138) -0.008(0.156) 0.163(0.123)
URB 0.034(0.110) 0.096(0.121) 0.014(0.106)
ZON -0.028(0.132) 0.045(0.142) 0.131(0.124)
LOY 0.061(0.141) 0.072(0.152) -0.051(0.133)
AGE -0.080(0.175) -0.226(0.190) -0.035(0.150)
POW 0.281(0.178) -0.088(0.180) 0.074(0.143)
λ1 0.257(0.031) 3.635(0.411) 0.473(0.043)
P1 - - 1.170(0.062)

N2

Intercept -2.363(0.184) -2.105(0.199) -2.190(0.163)
GEN 0.004(0.113) 0.191(0.123) 0.192(0.099)
URB 0.165(0.089) 0.096(0.099) 0.231(0.085)
ZON -0.261(0.111) -0.321(0.122) -0.197(0.102)
LOY -0.291(0.099) -0.524(0.122) -0.255(0.096)
AGE 0.142(0.125) 0.051(0.145) 0.402(0.107)
POW 0.454(0.152) 0.506(0.157) 0.159(0.130)
λ2 0.208(0.023) 2.218(0.239) 0.250(0.013)
P2 - - 1.028(0.070)

α 2.304(0.405) 2.612(0.430) 5.062(0.592)
logL -4061.63 -4063.92 -4038.45
AIC 8156.68 8161.84 8114.90

Table 8 presents three bivariate generalised Poisson regression models based on a
multiplicative factor, Zamani et al. (2016). The best model in terms of AIC and
loglikelihood is the BGPR-P. AIC and loglikelihood have values equal to 8114.90
and -4038.45 respectively. This model fits better our data, because BGPR-P allow
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for an extra parameter to be optimized, the functional one. BGPR-1 and BGPR-2
have P1 and P2 equal to 1 or 2 respectively. BGPR-P has functional parameters
with values 1.170 and 1.028 that give us the best results. Since these values are
closer to 1, it is reasonable, BGPR-1 to fit better our data than BGPR-2.

Table 9: Multiplicative factor models - Optimized models results and standard
errors

Var Parameter BZIPR BZINBR-1 BZINBR-2 BZINBR-P
N1

Intercept -1.064(0.201) -2.330(0.513) -2.093(0.360) -2.297(0.357)
GEN 0.005(0.129) -0.215(0.135) -0.206(0.156) -0.003(0.148)
URB -0.022(0.102) 0.111(0.106) -0.226(0.118) 0.066(0.115)
ZON 0.121(0.119) 0.022(0.120) 0.009(0.140) 0.098(0.133)
LOY 0.064(0.126) -0.091(0.133) -0.169(0.147) 0.022(0.145)
AGE -0.123(0.155) -0.826(0.156) -0.024(0.184) 0.124(0.173)
POW 0.033(0.151) 0.242(0.149) 0.247(0.181) 0.143(0.172)
m1 - 1.152(0.188) 0.197(0.077) 2.150(0.728)
P1 - - - 1.612(0.258)

N2

Intercept -0.857(0.179) -1.884(0.497) -1.928(0.335) -1.813(0.323)
GEN 0.125(0.104) -0.113(0.102) 0.102(0.115) 0.117(0.114)
URB 0.162(0.089) 0.057(0.086) 0.229(0.095) 0.174(0.094)
ZON -0.163(0.108) -0.271(0.104) -0.203(0.114) -0.298(0.117)
LOY -0.135(0.099) -0.325(0.093) -0.281(0.110) -0.267(0.118)
AGE 0.112(0.118) 0.311(0.112) 0.109(0.134) 0.303(0.134)
POW 0.292(0.139) 0.502(0.136) 0.269(0.145) 0.242(0.143)
m2 - 2.021(0.239) 0.408(0.166) 1.902(0.288)
P2 - - - 1.887(0.365)

α -1.087(0.250) 0.815(5.333) 1.495(0.792) 2.926(1.387)
p 0.766(0.011) 0.245(0.851) 0.252(0.209) 0.291(0.202)

logL -4098.16 -4092.78 -4061.59 -4046.73
AIC 8228.32 8203.56 8141.18 8133.46

Table 9 shows four models based on multiplicative factor also. Four zero-inflated
models, the first one is a bivariate Poisson and the other are bivariate negative
binomial models with a functional parameter like BGPR. The Poisson inflated
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model is worse than the rest in terms of AIC and likelihood. Obviously, negative
binomial distribution seems to fit better our data than Poisson, due to the extra
parameter that explains dispersion of variables. BZINBR-P is the best model
with AIC equals to 8133.46 and loglikelihood equals -4046.73. Coefficients for all
quantities differ for every of these models. The functional parameter is optimized
at 1.612 and 1.887, closer to 2. Therefore, BZINBR-2 gives better results that
BZINBR-1, due to this parameter P .

Table 10: Frank copula models - Optimized models results and standard errors

Var Parameter BPFR BNBFR BZIPFR BZINBFR CS
N1

Intercept -2.516(0.131) -2.646(0.227) -0.967(0.210) -2.123(0.205) -2.757(0.236)
GEN 0.052(0.111) 0.049(0.152) -0.080(0.139) 0.028(0.151) -0.103(0.156)
URB 0.043(0.036) 0.057(0.118) -0.082(0.106) -0.014(0.118) 0.087(0.122)
ZON 0.065(0.039) 0.108(0.138) 0.147(0.123) 0.111(0.138) 0.027(0.143)
LOY 0.033(0.036) 0.023(0.148) 0.114(0.134) 0.007(0.146) 0.108(0.158)
AGE -0.005(0.139) -0.013(0.184) -0.111(0.166) -0.080(0.184) 0.090(0.183)
POW 0.047(0.130) 0.056(0.175) 0.083(0.158) -0.072(0.172) -0.088(0.169)
θ1 - 0.124(0.015) - 0.185(0.026) -

N2

Intercept -2.329(0.077) -2.368(0.184) -0.802(0.184) -2.290(0.261) -2.397(0.189)
GEN 0.167(0.087) 0.156(0.114) 0.147(0.108) 0.161(0.113) 0.139(0.112)
URB 0.230(0.040) 0.218(0.093) 0.145(0.091) 0.162(0.093) 0.223(0.095)
ZON -0.210(0.048) -0.201(0.113) -0.141(0.109) -0.120(0.111) -0.254(0.118)
LOY -0.176(0.083) -0.244(0.109) -0.037(0.103) -0.088(0.107) -0.261(0.105)
AGE 0.240(0.102) 0.204(0.132) 0.112(0.123) 0.306(0.129) 0.285(0.125)
POW 0.313(0.118) 0.344(0.145) 0.276(0.143) 0.490(0.150) 0.335(0.152)
θ2 - 0.258(0.030) - 0.407(0.021) -

ξ 3.940(0.331) 3.890(0.404) 3.775(0.436) 3.913(0.408) -
p - - 0.793(0.010) 0.230(0.019) -
σ2 - - - - 0.510(0.046)
θ12 - - - - 0.015(0.002)
logL -4352.95 -4045.39 -4085.11 -4048.13 -4053.91
AIC 8735.91 8125.70 8202.22 8132.26 8139.83

Last table, Table 10, shows bivariate Poisson and negative binomial models and
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their zero-inflated versions, using Frank’s copula. Also, a bivariate negative bi-
nomial model using common shocks is presented also. We present Frank’s copula
only, because Clayton’s copula gives similar but worse results than Frank’s. Coef-
ficients for copula models are quite similar, while the most of them are statistically
significant, due to their low standard error, compared to the optimal value of the
variable. Especially, intercepts have small standard error, as we can see from the
table. Bivariate negative binomial model has the lowest AIC, equals to 8125.70
and the greatest loglikelihood value, equals to -4045.39. The bivariate Poisson
model, gives the worst results, while its zero-inflated version improves a lot model’s
efficiency in terms of AIC and loglikelihood. An interesting issue, is that the zero-
inflated negative binomial model, gives slightly higher value of AIC and lower for
loglikelihood than the standard bivariate negative binomial, in contradiction to
other modeling techniques, that holds exactly the opposite. Finally, the common
shocks model gives also good results, close to the BNBFR model.

4.2 Summary

After implementation of all models using Poisson, generalised Poisson and negative
binomial distributions with different modeling methods, it is obvious that Poisson
regression models give the worst results. However, this fact seems reasonable, since
the other distributions have an extra parameter that measures dispersion.
Variance exceeds the mean and as a result Poisson distribution cannot explain very
well our data. In parallel, generalised Poisson and negative binomial distributions
allow us to relax this condition, so this is the reason we observe huge differences
between AIC values, for example BP has an AIC value that equals to 8739, while
BNB’s equals to 8203.
Zero-inflation helps us overcome such difficulties and improves a lot our models,
every zero-inflated Poisson model gives far better results than simple Poisson one.

Nevertheless, there are differences between modeling techniques also. Models con-
structed via trivariate reduction method give worse results than models based on
multiplicative factor.
The explanation stands on the fact that some methods like trivariate reduction
have some important limits. For example, only positive correlation between re-
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sponse variables is allowed, however our response variables have positive correla-
tion.

The best model among all is the bivariate generalised Poisson model with a func-
tional parameter and a multiplicative factor (BGPR-P). Its’ AIC value equals 8114
and it has the highest log-likelihood value equals -4038. Although, it assumes two
extra parameters, one for dispersion and the functional one, it fits much better our
data than Poisson regression models and zero-inflated versions and slightly better
than negative binomial regression models. Furthermore, it allows for both positive
and negative correlation through the multiplicative factor and it has a simpler form
than copula-based models. Finally, through the functional parameter it allows for
several tests since BGPR models are nested and as a result it is easy to notice
which variables are statistically significant.

4.3 Insurance ratemaking

In this section, we will consider a credibility model superimposed on an a priori
risk classification. The main task is to design a tariff structure in order to fairly
distribute the burden of claims among policyholders. Rate making or insurance
pricing, is the determination of what rates, or premiums, to charge for insurance.
A rate is the price per unit of insurance for each exposure unit, which is a unit of
liability or property with similar characteristics. Building homogeneous classes of
policyholders is quite difficult since heterogeneity exists. This fact lies on drivers’
behaviour and this is difficult to measure.

Pricing of individual risks is an actuarial principle. The pure premium approach,
Denuit et al. (2007), defines the price of an insurance policy as the ratio of the
estimated costs of all future claims against the coverage provided by the insurance
policy while it is in effect to the risk exposure, plus expenses. An insurance
premium is the monthly or annual payment you make to an insurance company to
keep your policy active. As we mentioned, in order to avoid lapses in a competitive
market, actuaries have to design a tariff structure that will fairly distribute the
burden of claims among policyholders. Premiums for automobile liability coverage
often vary by individual characteristics like the use of vehicle or the territory that
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it is driven. If the policyholders misrepresent any of these classification variables
in their declaration, they are subject to loss of coverage when they are involved in
a claim. Our first task is to construct representative profiles from the portfolio.
Therefore, we segment policyholders in five categories: Best-Good-Average-Bad-
Worst drivers, regarding the lowest mean score of the number of claims. First
category has the lowest mean score and so on. In order to give an example, let
us assume the bivariate negative binomial model based on a multiplicative factor,
BNBR. It’s mean and variance are given as:

µj = m−1
j

θj
1− θj

(63)

σ2
j = m−1

j

θj
(1− θj)2

(64)

Using as values, all values that we got from optimization method we obtain mean
and variance for the model. Then, we select appropriate combinations of explan-
atory variables in order to construct profiles with the lowest mean score. For
example, if we select variables ZON and LOY that are equal to one and all the
other categorical variables equal to zero, then we have the best combination that
gives the lowest mean. Following this method, we obtained all mean scores for our
models, for different drivers’ profiles.

Table 11: Profiles of policyholders

Profile Kind GEN URB ZON LOY AGE POW
1 Best 0 0 1 1 0 0
2 Good 0 0 0 1 0 1
3 Average 1 0 0 1 0 1
4 Bad 1 1 0 0 1 0
5 Worst 1 1 0 0 0 1

In order to continue to insurance pricing, we will present mean scores of the most
representative models considered for the profiles that we constructed above.

Firstly for trivariate reduction modeling, then for mixed Poisson models,models
with a multiplicative factor and finally for common shock and copula-based models.
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After calculation of the premium for each model, we derive the most efficient
models from each category.

Table 12: A priori ratemaking for different profiles

Model Profiles
1st 2nd 3rd 4th 5th

DP 0.153 0.194 0.214 0.263 0.284
BP-1 0.148 0.183 0.184 0.233 0.242
BP-2 0.144 0.179 0.199 0.244 0.251
BZIP-1 0.170 0.203 0.215 0.226 0.256

BNB 0.154 0.194 0.215 0.265 0.285
BIG 0.150 0.191 0.211 0.285 0.293
BLN 0.154 0.183 0.229 0.315 0.330

BP 0.159 0.200 0.209 0.264 0.289
BSP 0.153 0.194 0.210 0.279 0.284
BSGP 0.171 0.189 0.225 0.283 0.288

BGPR-1 0.111 0.189 0.199 0.188 0.197
BZIP 0.175 0.210 0.226 0.223 0.265

BZINB-1 0.130 0.175 0.189 0.220 0.261

BP 0.155 0.199 0.224 0.272 0.291
BNB 0.140 0.180 0.201 0.244 0.275
BZINB 0.167 0.202 0.225 0.232 0.262
CS 0.127 0.162 0.171 0.239 0.242
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From this table, the difference between using a bivariate Poisson model and two
independent Poisson models for each type of guarantee is visible.
All of the models produce higher means for good risks and lower means for bad
risks. In most models average risks have quite similar means.
Moreover, it is important to notice that zero-inflation has a significant impact due
to the difference between simple bivariate Poisson and zero-inflated version in all
profiles. Especially, when it comes to the first category of best drivers the mean
for BZIP-1 is 0.170 and for BP-1 is 0.148.
Our best model in terms of log-likelihood value is the bivariate generalised Poisson
model, that produce the lowest mean scores of all models implemented (BGPR-1),
but average risks have the highest mean scores.
Futhermore, Poisson model using common shocks gives really interesting results
as it allocates low scores of mean for the best drivers and quite high for bad ones.
To conclude, assumption of independence between types of claims clearly does not
hold, since correlation affects the premium for each guarantee. Excess of zeros also
has a significant role, therefore inflated models give different results than simple
bivariate models regardless of distributions. The extra parameter that negative
binomial and generalised Poisson distributions have, explains the heterogeneity
between our response variables and as a result they produce similar results and
quite better than simple bivariate Poisson distribution gives.
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5 Discussion

In our analysis, we presented several models based on different methods of model-
ing and different distribution functions. Firstly, we implemented Poisson models
and then, we continued with mixed Poisson models. Modeling methods varied
among our analysis. Starting from a simple trivariate reduction technique and its’
strict assumptions and continuing with multiplicative factor models and copula-
based. We explained advantages and drawbacks for each method and each model.
After implementation of a variety of models, we came to the conclusion that the
bivariate generalised Poisson model (BGPR-P) is the model that fit our data the
best, giving the lowest AIC and the highest loglikelihood value. Implementation
of bivariate models is only the top of the iceberg of modeling count data. There is
a lot of space for improvements and extensions. Literature for handling univariate
models is wide, however, when it comes to bivariate models, like these models we
used, everything becomes more difficult and complex. One interesting extension
is examining these models’ behaviour using multivariate count data. Models com-
plexity becomes greater, but relationship of more types of guarantees in insurance
applications is a great goal to discover. Insurance claims may come from several
reasons, but only if we add one more category, our models become multivariate and
their complexity becomes greater. Probability functions may do not have closed
forms, therefore optimization can be really hard to be carried out. Furthermore,
it would be interesting to enrich our models with more explanatory variables, in
order to characterize with greater precision every client’s profile.

Moreover, a matter of great interest is the dependence of our claim counts vari-
ables. In our analysis we had to face positive dependence between response vari-
ables. Even if we stick to bivariate models, negative correlation betweem claim
counts would be a great challenge for modeling. For example, trivariate reduction
method is not a feasible method of modeling negative dependence. In this case,
probably we could use different modeling methods, like copulas, also different dis-
tributions that can handle better this situation. For copulas and multiplicative
factor based models, an interesting extension could be a bivariate response vari-
able with marginals that follow different distributions. To be more specific, we can
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assume that N1 is explained better with Poisson distributions as N2 with lognor-
mal distribution. Since, these modeling methods allow for different marginals, it
is interesting to observe how these models fit our data.

The existence of many zero claims is an additional issue for our analysis. It is
common in insurance applications, since many policyholders avoid to report small
claims due to conditions in their contract. Zero-inflated models improve a lot
our models’ fit, regardless the distribution we use. Especially, the zero-inflated
negative binomial one explains heterogeneity among policyholders and type of
claims and deals with overdispersion. In a priori ratemaking, some profiles have
to be constructed segmenting policyholders in categories. For this purpose, five
different profiles are constructed based on claims mean values, from best drivers to
worst. Best drivers’ profile is characterized from driving in high risk regions and
they are loyal to the insurance company (more than 5 years). Vehicle’s horsepower
has an important role in our analysis, since if it is greater than 5500 cc, then more
claims are reported. All these profiles were made based on mean scores of our
models. Changing the method of insurance pricing could be another extension of
our analysis. For example, a retrospective rating method.

Finally, since we mentioned that multivariate modeling could be an extension of
great interest, new optimizing methods have to be used. If we assume three or
more response variables, different categories of count claims, that are correlated,
then standard methods we used in this analysis, probably will not work. Cor-
relation matrix of multivariate variables is way more complicated and due to its
higher dimension, optimizing tools like Newton-Raphson method seem to be time-
consuming and difficult to be implemented methods. Therefore, machine learning
techniques for optimization seem to be a great tool for multivariate modeling.
Last but not least, a great method for optimizing multivariate count data models
parameters of likelihood function is by the inference function of margins, which
is divided to two steps. Let assume that we have a multivariate copula model.
At the first step of this method the univariate log-likelihoods are maximized inde-
pendently of the copula parameter and at the second step the joint log-likelihood
maximized over the vector of copula parameter with univariate parameters fixed
as estimated at the first step of the method. Estimation by this method becomes
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more popular as the dimension increases and computational problems arise, for
details see Karlis and Nikoloulopoulos (2009).
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