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Abstract

Nikolaos Papadimitriou

Dealing with missing values on variables using multiple imputation methods to

Cox regression analysis

December 2020

In the field of Survival Analysis, where the complete case analysis is the common

method, we exclude cases with missing values. In order to take advantage of the whole

dataset, we propose multiple imputation methods to cope with missing data. To implement

these methods, a fully observed variable is necessary to exist in the dataset. This fully

observed variable offers closest to the real values estimations of the other variable with

missing values. More specifically, the proposed multiple imputation methods in this thesis

are the following: the semi-parametric predictive mean matching and the non-parametric

nearest neighbor multiple imputation. In order to evaluate the performance of the afore-

mentioned methods, Cox regression analysis is employed. In the end, the methods are

compared in terms of efficiency, robustness and consistency.
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Περίληψη

Νι̹όλαος Παπαδημητρίου

Αντιμετωπίζοντας ελλειπούσες τιμές σε μεταβλητές χρησιμοποιώντας μεϑό-
δους πολλαπλής απόδοσης τιμών στην παλινδρόμηση Cox

Δε̹έμβριος 2020

Στο πεδίο της Ανάλυσης Επιβίωσης, όπου η complete case analysis είναι η ̹οινή

μέϑοδος, απο̹λείουμε παρατηρήσεις με ελλειπούσες τιμές. Προ̹ειμένου να ε̹μετ-

αλλευτούμε ολό̹ληρο το σύνολο δεδομένων, προτείνουμε πολλαπλές μεϑόδους από-

δοσης τιμών για την αντιμετώπιση των δεδομένων που λείπουν. Για την εφαρμογή

αυτών των μεϑόδων, απαιτείται μια πλήρως παρατηρούμενη μεταβλητή στο σύνολο

δεδομένων. Αυτή η πλήρως παρατηρούμενη μεταβλητή προσφέρει πλησιέστερες

ε̹τιμήσεις των πραγματι̹ών τιμών της άλλης μεταβλητής με τις ελλειπούσες τιμές.

Πιο συγ̹ε̹ριμένα, οι προτεινόμενες μέϑοδοι πολλαπλού ̹αταλογισμού σε αυτή τη

διπλωματι̹ή εργασία είναι οι εξής: η ημι-παραμετρι̹ή predictive mean matching ̹αι η

μη παραμετρι̹ή nearest neighbor multiple imputation. Προ̹ειμένου να αξιολογηϑεί η

απόδοση των προαναφερϑεισών μεϑόδων, χρησιμοποιείται ανάλυση παλινδρόμησης

Cox. Εν τέλει, οι μέϑοδοι συγ̹ρίνονται ως προς την αποτελεσματι̹ότητα, την ευρω-

στία ̹αι τη συνέπεια.
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Chapter 1

Introduction

One of the most popular ways to specify the relationship between survival time and vari-

ables is Cox regression analysis. It estimates the coefficients of the model using the partial

likelihood function without the need of specifying the baseline hazard function. The es-

timators are normally distributed, consistent and semi-parametrically efficient. In case of

time-independent variables, Cox regression has the proportional hazards property. There

are often situations though, in which variables are not fully observed. If complete case

analysis is implemented, excluding the cases which the variable has missing data, it has

been shown that Cox regression loses efficiency and also leads to biased regression co-

efficient estimates. When missingness depends on the survival outcome and some fully

observed variables, missing mechanism is considered as missing at random (MAR).When

missingness does not depend on failure time (failure ignorable MAR), complete case anal-

ysis can produce some valid results. But, when missingness does not depend on censoring

time but may depend on failure time, complete case analysis fails to produce valid results.

To deal with missing data manymethods have been developed in order to produce valid

results when performing Cox regression analysis. The methods developed are categorized

as parametric, semi-parametric and non-parametric. We will use two multiple imputation

methods. Predictive mean matching, which is a semi-parametric method based on mul-

tiple imputation by chain equations and nearest neighbor multiple imputation, which is a

non-parametric method where two working models are used, one for the missing probabil-

ity and one for the missing value, in order to create an imputation set with possible donors

for the missing data of the variable. In this study, we will not implement a misspecified

situation for the predictive mean matching method. We will investigate the performance

of nearest neighbor multiple imputation method, as well as the performance of nearest

neighbor multiple imputation when the model of the missing probability is misspecified.

The purpose of this study is to compare the performance of Complete Case analysis, Pre-

dictive Mean Matching and Nearest Neighbor multiple imputation methods on different

situations and compare their results.

The structure of this study will be the following: In chapter 2, there is a review of

survival analysis. What is survival analysis, definitions and theory of what we will use in

this study. In chapter 3, we give brief definitions of the missing mechanisms. In chapter

4, we review the methods we will implement in this study.First, we present the parametric

complete case analysis. Subsections 4.2.1, 4.2.2 introduce the semi-parametric and non-

parametric methods respectively, the predictive mean matching and the nearest neighbor

multiple imputation. In chapter 5, we apply all the previous methods to real data, which

have to do with a case of a heart transplant and a simulated study is conducted to evaluate
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CHAPTER 1. INTRODUCTION

the proposed methods. Lastly in chapter 6, there is a brief discussion about the results of

the simulation as well as some thoughts for future researching.
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Chapter 2

Survival Analysis

Survival analysis is a collection of data from different independent individuals for which

the outcome variable of interest is time until an event occurs. Time is a continuous variable

and takes values depending on the experiment or the study we want to conduct. Time

could be hours, days, months or years from the beginning of follow-up of an individual

until an event occurs. Event is an incidence or experience of interest that may happen to

an individual. By event we mean death, recovery, disease incidence, disease recession etc.

In a survival analysis, we refer to the time variable as survival time, because it shows us

the time of an individual during some follow-up period. We also refer to the event as a

failure, because an individual failed to "survive" and the event of interest happened.

What makes survival analysis unique from other forms of analyses are the so called

censored data. In short, censoring happens to our collection of data when we have some

information about individual survival time, but we don’t know the exact time when the

event occurred during the follow-up period. There are three types of censored data. Right-

censored, left-censored and interval-censored. Most survival data is right-censored. Right-

censoring happens when for some individuals, the failure times have not been observed

even though the follow-up period has ended. They may reach the event after the follow-up

period. As a result, these observed data are censored. Left-censoring is the exact oppo-

site of right-censoring. The event of interest of some individuals has occurred before the

follow-up period starts. Lastly, interval-censoring happens when during the follow-up pe-

riod, the event occurs within a time interval (t1, t2). There are three assumptions about cen-

soring for survival data: independent censoring, random censoring and non-informative

censoring. Independent censoring means that within any subgroup of interest, the subjects

who are censored at time t should be representative of all the subjects in that subgroup

who remained at risk at time t with respect to their survival experience. The assumption

of independence is the most useful of the three types for drawing correct inferences that

compare the survival experience of two or more groups. Random censoring means that

subjects who are censored at time t should be representative of all the study subjects who
remained at risk at time twith respect to their survival experience. Random censoring is a

stronger assumption and more restrictive than independent censoring. Lastly, we consider

the assumption of non-informative censoring. Whether censoring is non-informative or

informative depends on two distributions: 1) the distribution of the time-to-event random

variable and 2) the distribution of time-to-censorship random variable. Non-informative

censoring occurs if the distribution of survival times T provides no information about the

distribution of censoring times C and vice versa. Otherwise, the censoring is informative.

The assumption of non-informative censoring is justifiable when censoring is independent

3



CHAPTER 2. SURVIVAL ANALYSIS

and/or random. Nevertheless, these three assumptions are not equivalent.

We introduce basic mathematical terminology and notation for survival analysis. We

denote by a capital T the random variable for an individual’s survival time. T can any

number equal to or greater than zero. By a small letter t we denote any specific value of

interest for the random variable T . Finally, we denote by δt the indicator function to define
if we have failure or censorship. Meaning, δt = 1 for failure or δt = 0 for censorship. We

next introduce two quantitative functions widely used in survival analysis. These are the

survival function, denoted by S(t) and the hazard function, denoted by h(t). The survival
function S(t) gives us the probability that a person survives longer than some specified

time t; S(t) = P (T > t). The survival function is fundamental, because obtaining sur-

vival probabilities for different values of t is crucial and important for survival analysis.

In most cases, we are more interested in how long the individuals in a study live, than how

quickly they die. We continue with the hazard function, denoted by h(t), which is given

by the following formula:

h(t) = lim∆t→0
P (t ≤ T < t+∆t|T ≥ t)

∆t

.

The interpretation of the hazard function in practical terms is not an easy task. In essence,

the hazard function h(t) gives the instantaneous potential per unit time for the event to

occur, given that the individual has survived up to time t. For instance, you are driving

your car and the speedometer shows 100kmh. It means that if you continue driving this

way, then in one hour you cover 100km. This is not absolute though, because if you slow

down or speed up or even stop at some point you may or may not cover that distance in

one hour. That is what potential really means. Note here, that the survival function’s main

focus is not failing in contrast to the hazard function which is the event occurring. Thus,

the hazard function gives us the opposite side of information of the survival function. The

relationship between the two can be described from the following formulas:

S(t) = exp
[

−
∫ t

0
h(u)du

]

& h(t) = −
[

dS(t)/dt

S(t)

]

.

The modeling for the survival data though, is rather challenging and difficult. The

main problems are the nature of data, meaning that there is an inherent aging process

when subjects are followed over time and the presence of censoring data. The hazard

function described above captures the essence of the aging process. Thus, a regression

like model is built around the hazard function. The hazard function is a rate, so it must be

strictly positive. However, for a statistical model we need a property to be parameterized

in a way that the allowable range of parameter values is infinite. This also helps for the

estimation of the parameters. To fix this problem we parameterize the hazard function as

h(t) = eβ0 ,

where β0 = ln(θ0) and is thus unconstrained. Given the above form, we include variables

by being additive on the log scale as follows:

ln[h(t, x)] = β0 + β1x

and the hazard function is

h(t, x) = eβ0+β1x.

4



CHAPTER 2. SURVIVAL ANALYSIS

A fully parametric model accomplishes two goals simultaneously. It describes the ba-

sic underlying distribution of survival time (which is called the error component) and it

characterizes how that distribution changes as a function of the variables (which is called

the systematic component). It is favorable to have a model which accomplishes both goals

but in our case we are interested in the systematic component. This categorizes the above

model as a semi parametric regression model. The baseline hazard function h0(t) makes

the the model semiparametric. the baseline hazard function is a generalization of the in-

tercept or constant term found in parametric regression models. Consequently, the hazard

function is the product of two functions:

h(t, x, β) = h0(t)r(x, β).

The function h0(t) characterizes how the hazard function changes as a function of sur-

vival time. The other function r(x, β), characterizes how the hazard function changes as a

function of subject variables. The above model is called Cox regression model because it

was proposed by Cox in 1972. The semiparametric property is what makes the Cox model

popular. Even though the baseline hazard function is unspecified, the Cox model pro-

duces good regression coefficient estimates, hazard ratios of interest and survival curves

for a wide variety of data situations. In other words, the Coxmodel is a robust model which

the results will approximate the results of the correct parametric model. The measure of

effect, which is the hazard ratio is calculated without having to estimate the baseline haz-

ard function. The hazard ratio for two subjects with variable values denoted x1 and x2

is:

HR(t, x1, X0) =
h(t, x1, β)

h(t, x0, β)
HR(t, x1, x0) =

h0(t)r(x1, β)

h0(t)r(x0, β)
=

r(x1, β)

r(x0, β)
.

Cox model is also referred to as Cox proportional hazards model. The term proportional

hazards refers to the fact that the hazard functions are multiplicatively related, meaning

their ratio is constant over survival time. This is a very important assumption and there are

methods assessing its validity and existence in the model. Other parameterizations exist

like the additive relative hazard model whose function is

h(t, x, β) = h0(t)(1 + xβ)

but will not be included and referred to further in this study.

We stated above that the distribution of survival time can be specified through the

hazard function. Now that we have specified the hazard function we can use it to specify

the survival function, so we have

S(t, x, β) = e−H(t,x,β),

where H(t, x, β) is the cumulative hazard function at time t for a subject with variable x.
We assume that the survival time is continuous so

H(t, x, β) =
∫ t

0
h(u, x, β)du = r(x, β)

∫ t

0
h0(u)du = r(x, β)H0(t).

Combining the two equations we have the following:

S(t, x, β) = e−r(x,β)H0(t) = [e−H0(t)]r(x,β) = [S0(t)]
r(x,β),

where S0(t) = e−H0(t) is the baseline survival function.

5



CHAPTER 2. SURVIVAL ANALYSIS

We proceed with the estimation method of the model parameters. As with logistic

regression, the maximum likelihood (ML) estimates of the Cox model parameters are de-

rived by maximizing a likelihood function, usually denoted as L. The likelihhood function
is a mathematical expression which describes the joint probability of obtaining the data

observed on the subjects in the study as a function of the unknown parameters in the model

being considered. The likelihood method proposed by Cox for estimating the model pa-

rameters is a little different. The method proposed by Cox takes into consideration the

probabilities for each subject who fails and does not consider probabilities for subjects

who are censored. That is the reason for the method’s name, which is called "partial"

likelihood instead of (complete) likelihood. The full likelihood, under the assumption of

independent observations, is obtained by multiplying the respective contributions of the

observed (t, β, x), a value of f(t, β, x) for a non censored observation (c=1) and a value

of S(t, β, x) for censored observations (c=0). The expression is the following:

[f(t, β, x)]c × [S(t, β, x)]1−c,

where c = 0 or c = 1. Thus, the likelihood function, because of the independence as-

sumption, is the following:

L(β) =
n
∏

i=1

{[f(ti, β, xi)]
ci × [S(ti, β, xi)]

1−ci}.

To obtain the maximized likelihood with respect to the parameter of interest β, we maxi-

mize the log-likelihood function:

ln(L(β)) =
n
∑

i=1

{ciln[f(ti, β, xi)] + (1− ci)ln[S(ti, β, xi)]}.

The log function is monotone, so the maximum value of β is the same. However, com-

puting the maximum with the log function is simpler. The partial likelihood proposed by

Cox is given from the following expression:

Lp(β) =
n
∏

i=1

[

exiβ

∑

j∈R(ti) e
xjβ

]ci

,

where the sum in the denominator is over all subjects in the risk set at time ti, denoted by
R(ti). For the same reasons as mentioned above, we use the log function to calculate the

maximum from the following expression:

ln(Lp(β)) =
m
∑

i=1

{

xiβ − ln

[

∑

j∈R(ti)

exjβ

]}

.

We obtain the maximum partial likelihood estimator by differentiating the log partial like-

lihood function with respect to β, setting the derivative equal to zero and solving for the

unknown parameter. The derivative with respect to β is

∂Lp(β)

∂β
=

m
∑

i=1

{

xi −

∑

j∈R(ti) xje
xjβ

∑

j∈R(ti) e
xjβ

}

=
m
∑

i=1

{

xi −
∑

j∈R(ti)

wij(β)xj

}

=
m
∑

i=1

{xi − xwi
},

where

wij(β) =
exjβ

∑

j∈R(ti) e
xjβ

6



CHAPTER 2. SURVIVAL ANALYSIS

and

xwi
=

∑

j∈R(ti)

wij(β)xj,

which we denote as β̂.
The estimator of the variance of the estimator of the coefficient is obtained from the

inverse of the negative of the second derivative of the log partial likelihood as shown in

the following expression:

∂2Lp(β)

∂β2
= −

m
∑

i=1

{

[

∑

j∈R(ti) e
xjβ

][

∑

j∈R(ti) x
2
je

xjβ

]

−
[

∑

j∈R(ti) xje
xjβ

]2

[

∑

j∈R(ti) e
xjβ

]2

}

,

which can be simplified by using the definition of wij(β) and becomes:

∂2Lp(β)

∂β2
= −

m
∑

i=1

∑

j∈R(ti)

wij(β)(xj − xwi
)2.

The negative of the second derivative of the log partial likelihood is called the observed

information and we will denote it as

I(β) = −
∂2Lp(β)

∂β2
.

If the model contains more than one variable then the result is called observed information

matrix. The variance of the estimated coefficient β̂ is

ˆV ar(β̂) = I(β̂)−1.

7
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Chapter 3

Missing Mechanisms

Missing data or missing values occur when no data value is stored for the variable in an

observation. Rubin classified missing data into three categories. In his theory every datum

has some likelihood of being missing. Missingness can then be categorised as missing

at random (MAR), missing completely at random (MCAR) and missing not at random

(MNAR). Missing data can be handled similarly as censored data.

The terms missing at random and missing completely at random are used to describe

assumptions about missing data that are needed for standard implementations of multiple

imputation, but the meanings of these terms are often confused. Whenwe have themissing

completely at random mechanism (MCAR), means that the missing observations are a

random subset of all observations. Thus, the missing and observed values will have similar

distributions. There is nothing systematic going on that makes some data more likely

to be missing than others. Missing at random (MAR) means there might be systematic

differences between the missing and observed values, but these can be explained by other

observed variables which are fully observed. On the other hand, the missing not at random

(MNAR) has a systematic relationship between the missing values and the missing data

which must be considered.

Missing completely at random (MCAR) and missing at random (MAR) are considered

ignorablemechanisms, becausewe don’t have to include any information about themissing

data when we deal with the missing data. Missing not at random (MNAR) mechanism is

considered non-ignorable, because the missing data have to be modeled and you have to

figure out the reasons why the data are missing and predict their possible values. In this

study the missing at random (MAR) mechanism will be used.

9
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Chapter 4

Review of Methods

4.1 Complete Case Analysis

The complete case (CC) analysis uses only the observations which have all the variables

observed and is based on the partial likelihood to estimate B = (βx, βz). Let ri(B, t) =

eβxXi+βzZi ≡ r
(0)
i (B, t) and r

(1)
i = (XiZi)

tri(B, t). The estimators are the solution from

the following equations

Ucc =
n
∑

i=1

[

δtiδxi

{

XiZi −
S(1)
cc (B, Ti)

S
(0)
cc (B, Ti)

}]

= 0

where δt = I[T ≤ C] is the censoring indicator, δx is the missing indicator (δx = 1

if X is observed; otherwise 0), S(m)
cc (B, Ti) = n−1 ∑n

j=1 δxi
I(Tj ≥ Ti)r

(m)
j (B, Ti) for

m = 0, 1. The CC analysis is simple to implement and is widely used. It does perform

fairly well when the missingness depends on Z and the missing rate is not greater than

25%. Its inconsistency may also be caused when missingness depends on failure time T
or censoring indicator δt.

11
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4.2 Multiple Imputation Methods

4.2.1 Predictive Mean Matching

Predictive mean matching (PMM) is a semi-parametric imputation method. It is very

close to the regression method in a sense except that for each missing value it fills in a

value randomly among the observed donor values from an observation whose regression-

predicted values are closest to the regression-predicted value for the missing value from

the simulated regression model[2].

Predictive mean matching is a quite easy and versatile method to use. It performs

fairly well even when the target variable is transformed, meaning that log(Y ) often yields
to similar results as exp(Y ). The method can be also used for categorical data. The fact

that there is no need to define an explicit model for the distribution of the missing values

makes the method less vulnerable to model misspecification to some extent.

For univariate X with missing values we denote as Zobs the subset of n1 rows of pre-

dictor variable Z for which X is observed and as Zmis the complementing subset of n0

rows of Z for which X is missing. The vector containing the n1 observed data in X is

denoted asXobs and the vector of n0 imputed values inX is indicated as Ẋ . The bootstrap

multiple imputation model Ẋ = β̇0 +Xmisβ̇1 + ǫ̇, where ǫ̇ ∼ N(0, σ̇2) and β̇0, β̇1, σ̇ are

the least squares estimates calculated from a bootstrap sample taken from the observed

data, is estimated from the following steps:

1. Draw a bootstrap sample (Ẋobs, Żobs) of size n1 from (Xobs, Zobs).

2. Calculate the cross-product matrix Ṡ = ŻT
obsŻobs.

3. Calculate V̇ = (Ṡ + diag(Ṡ)κ)−1, with some small κ.

4. Calculate regression weights β̇ = V̇ ŻT
obsẊobs.

5. Calculate σ̇2 = (Ẋobs − Żobsβ̇)
T (Ẋobs − Żobsβ̇)/(n1 − q − 1).

6. Draw n0 independent N(0, 1) variates in vector ċ2.

7. Calculate the n0 values Ximp = Zmisβ̇ + ċ2σ̇.

According to Andridge and Little[3] there are four distinguished methods to select

a donor once the metric has been defined. Although various metrics exist to define the

distance between cases, Rubin[4] and Little[5] proposed the predictive mean matching

metric.

Let ŷi denote the predicted value of the rows with an observed yi where i = 1, ..., n1.

Likewise, let ŷj denote the predicted value of the rows with missing yj where j = 1, ...n0.

1. Choose a threshold η, and take all i for which |X̂i − X̂j| < η as candidate donors

for imputing j. Randomly sample one donor from the candidates and take its yi as
replacement value.

2. Take the closest candidate, i.e the case i for which |X̂i−X̂j| is minimal as the donor.

This is known as "nearest neighbor hot deck" or "closest predictor".

3. Find the d candidates for which |X̂i− X̂j| is minimal and sample on of them. Usual

values for d are 3, 5 and 10. There is also an adaptive method to specify the number

of donors[6].
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4. Sample one donor with a probability that depends on |X̂i − X̂j|[7].

Additionally, we distinguish four types of matching:

• Type 0 : X̂ = Zobsβ̂ is matched to X̂j = Zmisβ̂;

• Type 1 : X̂ = Zobsβ̂ is matched to Ẋj = Zmisβ̇;

• Type 2 : Ẋ = Zobsβ̇ is matched to Ẋj = Zmisβ̇;

• Type 3 : Ẋ = Zobsβ̇ is matched to Ẍj = Zmisβ̈.

The estimate of β is denoted as β̂ and β̇ is a value randomly drawn from the posterior

distribution of β. Sampling variability is ignored with Type 0 matching, which leads to

improper imputations. Type 2 solves this, but it is insensitive to the process of taking

random draws of β if there are only a few variables. In the extreme case, with a single Z,
the set of candidate donors based on |Ẋi−Ẋj| remains unchanged under different values of

β̇, so the same donor(s) get selected too often. A small adaptation of the matching distance

that seems to alleviate the problem is type 1. The difference between Type 0, Type 2 and

Type 1 is that in Type 1 matching only Zmisβ̇ varies stochastically and does not cancel out

any more. Type 3 creates two draws for β, one for the donor set and one for the recipient

set.

13
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4.2.2 Nearest Neighbor Multiple Imputation

Themultiple imputation that Rubin[8] proposes is a parametric method using the posterior

distribution of the variable with missing data to create the imputing set. Here, we present

a non parametric multiple imputation method using two generalized linear models one for

the missing probability and one for the missing values of the missing variable and a metric

in order to create the imputing sets. The two models will be fitted on a non-parametric

bootstrap sample of the original dataset in order to embody the uncertainty of parameter

estimates from the working models. This results in proper multiple imputation[8][11].

1. Estimation of the predictive scores on a bootstrap sample.

Instead of using a parametric distribution we use all the variables we have avail-

able Y, δt, Z including the variable with the missing data X to create a bootstrap

sample[9]. We continue by estimating the baseline hazard function H0(t) using the
Nelson-Aalen estimator[10] on the bootstrap sample. The Nelson-Aalen estimator

is a non-parametric estimator of the cumulative hazard rate function in case of cen-

sored or incomplete data and is qiven by ˆH0(t) =
∑

ti≤t
ai
ni
, with ai the number of

events at ti and ni the total individuals at risk at ti.

Then we fit a logistic regression model with variables Y, δt and Z as the variables

to the missing indicator δx to derive a predictive score for missingness. This score

shows the relationship between the missingness and Y, δt and Z. We standardize the

fitted values by subtracting the mean and by dividing with the standard deviation

and denote the standardized score by S
c(B)
δx

.

We continue by fitting generalized linear model withH0(t), δt andZ as the variables

to the variables with missing data X . This score shows the relationship between X
and H0(t), δt, Z. We also standardize the fitted values by subtracting the mean and

by dividing with the standard deviation and denote the standardized score by Sc(B)
x .

2. Using the Euclidean metric to define the imputing set.

For each missing subject in the original dataset, two predictive standardized scores

are derived from the two regression models obtained from the bootstrap sample.

Implementing the Euclidean metric, the distance between subject j in the original

dataset and subject k in the bootstrap sample is then defined as:

d(j, k) =

√

w1[Sc
x(j)− S

c(B)
x (k)]2 + w2[Sc

δx
(j)− S

c(B)
δx

(k)]2,

where w1 and w2 are non negative weights that sum to one. The set is consisted of

by subjects who have their X observed and have a small distance from subject j in
terms of the metric d considering the two predictive scores.

3. Random draw from the imputing set.

When the imputing set is created, a value for the variable with missing data X is

randomly drawn from the imputing set. Meaning that NNMI(NN, w1, w2) method

imputes values to X only from the subjects with X observed.

4. Repeat Steps 1 to 3 independently M times.

The imputation will be complete after repeating the above steps M times. Each

time an imputed is derived from a different bootstrap sample. Once the M imputed

14
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datasets are obtained, the MI analysis established by Rubin[8] is implemented. On

our study, a Cox regression analysis with X and Z as the variables is conducted

on the M imputed datasets to estimate the Cox regression coefficients βx and βz.

For both βx and βz the estimate is the average of the M corresponding regression

coefficients denoted as β̂x, β̂z and the final variance denoted as var(β̂) is the sum
of the sample variances of the M regression coefficient estimates and the average

denoted as Uβ of the M variance estimates of β̂. The quantity [β̂ − β]/
√

var(β̂)

approximately follows a t-distribution with degrees of freedom ν = (M − 1)
[

1 +
{

UβM

M+1

}

/Bβ

]2

. We use a value of 10 or higher for M.
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Chapter 5

Use of Methods

5.1 Real Data

We demonstrate the above methods on dataset that contained 184 heart transplant cases in

1980 with 27 cases missing (15%missing rate). The dataset is extracted from the Stanford

Heart Transplant data. The survival time is measured from the date of transplant in days

with the censoring status. The additional variables collected are the age, which is the

patient age at first transplant measured in years and a mismatch score variable which is

subject to missing.

Table 5.1: Description of the Heart Transplant Data

Variable Mean Standard Deviation Missing

Age 41.092 11.035 0

Mismatch Score 1.116 0.577 27

We will make use the previous methods on the Heart Transplant dataset and compare

the results for the CC, PMM and NNMI methods. We examine how close the results are

for each method. The missing rate is 15% so we expect all three methods to perform fairly

well.

All three methods have a non significant p-value for the mismatch score variable and

a highly significant p-value for the age variable. All three methods produce very similar

results, but PMM and NNMI offer tighter confidence intervals for the variables compared

always to complete case analysis.
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Table 5.2: Cox regression estimation

Variable Estimation 95% Confidence Interval p-value

Complete Case Analysis

Age 0.170 (-0.188, 0.529) 0.352

Mismatch Score 0.029 (0.007, 0.051) 0.009

Predictive Mean Matching

Age 0.169 (-0.188, 0.527) 0.223

Mismatch Score 0.029 (0.008, 0.049) 0.006

Nearest Neighbor Multiple Imputation

Age 0.169 (-0.188, 0.526) 0.225

Mismatch Score 0.028 (0.008, 0.049) 0.006
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5.2 Simulated Data

In this section we will perform simulation studies to compare CC, PMM and NNMI meth-

ods when performing Cox regression with two independent variables which one is subject

to missing and the other is a fully observed variable predictive to the missing one. We

investigate the performance of each method on different situations such as sample size,

mis-specification of one of the working models in NNMI and increasing missing rate from

10% up to 65% under a situation of dependent censoring. We used R to write the simu-

lation program implementing the following R libraries: The libraries survminer, survival

for the Cox regression, the library mice for the predictive mean matching method (PMM)

using the functions mice and complete and the library NNMIS for the nearest neighbor

multiple imputation method (NNMI) using the functions NNMIS and coxph.pool . For

the PMMmethod, the functionmicewill detect which variables in the dataset havemissing

values. We then choose the multiple imputation by chained equations method we want and

the number of imputations. Then, using the function complete our missing cases are filled

with imputed values presenting us a complete dataset. For the NNMI method, theNNMIS

function performs the algorithm we mentioned in section 6 and the function coxph.pool

estimates Cox regression model, taking into account the additional uncertainty that arises

due to a finite number of imputations of the missing data.

The variables for each of the 1000 independent datasets are generated from the fol-

lowing distributions:Z, which is the predictive variable to the missing variable, is gen-

erated from a U(0, 1) distribution. The variable X subject to missing is generated from

a Bernoulli[p(Z)] distribution, where p(Z) is based on a logit link p(Z) = 1
1+eα0+αzZ .

The failure times T,C are generated either from an exponential distribution with hazard

rate eβxX+βzZ or a Weibull distribution with a hazard rate of (eβxX+βzZ)τtτ−1. We de-

fine Y to be the minimum between the two failure times, Y = min(T,C) and censoring

indicator to be δt = I(T ≤ C). The missing indicator δx(δx = 1 if X is observed is

generated from a Bernoulli[p(Z, Y )] distribution , where p(Z, Y ) is based on a logit link
p(Z, Y ) = 1

1+eη0+ηzZ+ηyY . The coefficients are selected to give the desired censoring rate

and missing rate.

The fully-observed analysis (FO) will be used before any missingness is applied and

we obtain the Cox regression coefficients for each simulated dataset . The FO analysis is

implemented for us to have it as a comparison measure for the other methods. In CC we

obtain the Cox regression coefficients after missingness has been applied on the simulated

datasets.

In PMM method we estimate β̇ and β̂ by a bootstrap sample under the normal linear

model, then we calculate η̇(i, j) = |Zobs
i β̂ − Zmis

j β̇| with i = 1, ..., n1 and j = 1, ..., n0.

We construct n0 sets Aj , each containing d = 5 candidate donors, from Xobs such that
∑

d η̇(i, j) is minimum for all j = 1, ..., n0 (ties are broken randomly). We draw one donor

ij fromAj randomly for j = 1, ..., n0. Afterwards, we calculate the imputations Ẋj = Xi,

for j = 1, ..., n0. We use type 1 stochastic matching distance for the imputations.

For the NNMImethod, a logistic regression model will be fitted toX , withZ, δt, Ĥ0(t)
as the variables, to derive the conditional distribution of X given the observed data and

the predictive score of X . Another logistic regression model will be fitted to the missing

indicator δx, with Z, Y as the variables, to derive the missing probability and the pre-

dictive score of δx. For NNMI, we will investigate how the method performs when the

logistic regression model for the missing probability is misspecified. When there is no

misspecification the method is denoted as NNMI1. When the variable Y is missing from
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the model, the method is denoted as NNMI2 and is denoted as NNMI3 when the variable

Z is missing from the model. We set the number of imputations M = 10, the nearest

neighbor imputation sets to contain five imputed values NN = 5 and the weights w1, w2

to be either (0.8,0.2) or (0.2,0.8).

Themeasures we examine in this simulation are:root mean square mean error (RMSE),

coverage rate (CR), standard errors (SD,SE) and the estimates (EST) from Cox regression

model. Our coefficient estimates are the average of 1000 point estimates. The (SD) is the

empirical standard error produced by computing the standard error of the 1000 previous

estimates and the (SE) is the average of the estimated standard errors produced from the

Cox regression models. The RMSE is defined as the standard deviation of the residuals

(prediction errors). Residuals are a measure of how far from the regression line data points

are; RMSE is a measure of how spread out these residuals are. In other words, it tells

you how concentrated the data is around the line of best fit. Root mean square error is

commonly used in climatology, forecasting, and regression analysis to verify experimental

results. In our case RMSE =
√

bias2 + SD2. The CR is the proportion of the 1000

samples for which the known population parameter is contained in the confidence interval.

That proportion is an estimate for the empirical coverage probability for the CI.

All the tables of the simulation study can be found in the appendices from 3 to 10. The

FO analysis without missing values has the lowest root mean square error (RMSE) and

produces coverage rates near the nominal level 95%. The CC analysis as expected pro-

duces biased cox regression coefficient estimates with large RMSE for the coefficient βz

and the coverage rate is lower most of the times than NNMI and PMM. PMM outperforms

NNMI on the situations when the sample size is small, but NNMI performs excellently

on all situations when the sample is large, producing accurate estimates with small RMSE

and coverage rates close to nominal level. NNMI produces more accurate estimates of

the coefficients when the weights are w1 = 0.2, w2 = 0.8. As the missing rate increases,

the coefficients from CC analysis produce more bias as expected (Table 6). The PMM,

as the missing rate increases, does not produce coverage rates close to the nominal level

especially for the coefficient βx. NNMI on the other hand produces coverage rates close

to nominal level and is more consistent in all missing rates except for the situation with

missing rate at 45% (Table 5), where the produced standard errors when N = 100 are

too large. When the working logistic regression model is misspecified, without the vari-

able Z, it produces better estimates for both coefficients compared to the other form of

misspecification.

When the failure and censoring times are generated fromWeibull distributions (Tables

7-10), all methods produce similar results to those generated with exponential failure and

censoring times. This is reasonable, because PMM and NNMI do not need to specify the

underlying distribution of failure and censoring times while performing estimation.

PMM and NNMI manage variables with missing data with high missing rate better

than standard CC analysis. They produce more accurate coefficient estimates with reason-

able standard errors. Also, NNMI proved to be quite robust to misspecification when the

working logistic regression model for missing probability was misspecified either with Z
or Y missing.
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Chapter 6

Conclusion

In this study we investigated the performance of complete case analysis and two multiple

imputation methods on various missing rates. The simulation results showed that CC

analysis breaks down at about 30% missing rate, PMM breaks down at about 45% and

NNMI seems to be the most consistent method in all missing rates. On lower missing

rates and when having small sample situations, PMM estimates were better than those of

NNMI. NNMI estimates were precise enough even when the working logistic regression

model for missing probability was misspecified. Furthermore, both multiple imputation

methods had no problem estimating values either fromExponential or fromWeibull failure

and censoring times, performing the same.

The sample depends on how high the missing rate will be. The sample affects the num-

ber of donors for the multiple imputation methods for each missing variable observation.

Increasing missing rate means an increase also on the size of the sample. Nevertheless, we

need to see how the methods perform even in small sample sizes in order for us to evaluate

the performance of PMM and NNMI.

Themissingnessmechanism assumed in this study depends on the observed data (MAR

mechanism). In some cases the missingness may very well depend on some unobserved

data (MNAR mechanism). A possible way to figure the impact of the unobserved data is

by performing sensitivity analysis. The results will indicate which mechanism should be

followed in the study. Violation of the MAR assumption in this study may not affect the

results because of the nature of the multiple imputation methods being semi-parametric

(PMM) and non-parametric (NNMI).

Although, can be quite challenging and tough, a study can be conducted comparing

complete case analysis (CC), predictive mean matching PMM and nearest neighbor mul-

tiple imputation (NNMI) to show if the same results stand when more than one variable is

subject to missing under the MAR mechanism.
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Appendix A

Matrices with Exponential Times

Table A.1: Z ∼ Uniform[0, 1], T ∼ Exponential[eln(2)X−1.2Z ], C ∼
Exponential[e−3X+0.1Z ], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+eln(5.3)+3.5Z−0.8Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.701 0.309 0.294 0.309 0.939 -1.256 0.492 0.471 0.496 0.944

CC 0.735 0.324 0.310 0.327 0.952 -1.340 0.526 0.504 0.544 0.943

NNMI1(0.8, 0.2) 0.815 0.322 0.316 0.344 0.900 -1.182 0.497 0.485 0.497 0.896

NNMI2(0.8, 0.2) 0.814 0.315 0.314 0.338 0.917 -1.184 0.498 0.485 0.499 0.895

NNMI3(0.8, 0.2) 0.803 0.326 0.311 0.344 0.915 -1.168 0.505 0.479 0.506 0.877

NNMI1(0.2, 0.8) 0.817 0.322 0.316 0.345 0.933 -1.182 0.502 0.485 0.502 0.896

NNMI2(0.2, 0.8) 0.820 0.300 0.311 0.326 0.932 -1.189 0.505 0.482 0.505 0.895

NNMI3(0.2, 0.8) 0.793 0.325 0.314 0.341 0.933 -1.158 0.503 0.480 0.505 0.879

PMM 0.730 0.322 0.295 0.324 0.925 -1.206 0.473 0.470 0.473 0.948

N=500

FO 0.694 0.133 0.128 0.133 0.945 -1.198 0.197 0.202 0.197 0.957

CC 0.715 0.139 0.134 0.141 0.940 -1.271 0.211 0.215 0.223 0.941

NNMI1(0.8, 0.2) 0.686 0.142 0.135 0.142 0.942 -1.193 0.184 0.206 0.184 0.974

NNMI2(0.8, 0.2) 0.686 0.141 0.134 0.141 0.941 -1.196 0.183 0.206 0.183 0.985

NNMI3(0.8, 0.2) 0.674 0.140 0.134 0.141 0.941 -1.181 0.183 0.204 0.184 0.972

NNMI1(0.2, 0.8) 0.689 0.141 0.138 0.141 0.962 -1.187 0.184 0.206 0.185 0.973

NNMI2(0.2, 0.8) 0.692 0.138 0.135 0.139 0.942 -1.196 0.183 0.205 0.183 0.979

NNMI3(0.2, 0.8) 0.660 0.136 0.134 0.140 0.949 -1.169 0.182 0.203 0.185 0.978

PMM 0.695 0.145 0.128 0.145 0.907 -1.185 0.207 0.202 0.208 0.947

Note:Censoring rate:0.35; Missing rate:0.10.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Table A.2: Z ∼ Uniform[0, 1], T ∼ Exponential[eln(2)X−1.2Z ], C ∼
Exponential[e−3X+0.1Z ], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+eln(5.3)+2Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.701 0.309 0.294 0.309 0.939 -1.256 0.492 0.471 0.496 0.944

CC 0.836 0.362 0.348 0.389 0.941 -1.155 0.613 0.571 0.615 0.940

NNMI1(0.8, 0.2) 0.737 0.398 0.389 0.401 0.936 -1.155 0.491 0.503 0.493 0.946

NNMI2(0.8, 0.2) 0.736 0.380 0.376 0.383 0.967 -1.172 0.503 0.507 0.503 0.947

NNMI3(0.8, 0.2) 0.722 0.399 0.384 0.400 0.944 -1.151 0.495 0.501 0.498 0.946

NNMI1(0.2, 0.8) 0.711 0.402 0.408 0.402 0.940 -1.132 0.484 0.501 0.489 0.947

NNMI2(0.2, 0.8) 0.743 0.351 0.362 0.354 0.980 -1.173 0.495 0.505 0.496 0.951

NNMI3(0.2, 0.8) 0.687 0.416 0.397 0.416 0.946 -1.116 0.489 0.499 0.496 0.946

PMM 0.777 0.441 0.298 0.449 0.820 -1.151 0.501 0.469 0.504 0.931

N=500

FO 0.694 0.133 0.128 0.133 0.945 -1.198 0.197 0.202 0.197 0.957

CC 0.824 0.149 0.148 0.198 0.862 -1.124 0.244 0.242 0.256 0.938

NNMI1(0.8, 0.2) 0.708 0.173 0.174 0.174 0.959 -1.151 0.210 0.216 0.216 0.937

NNMI2(0.8, 0.2) 0.710 0.154 0.159 0.155 0.955 -1.176 0.214 0.218 0.215 0.944

NNMI3(0.8, 0.2) 0.689 0.162 0.167 0.162 0.964 -1.142 0.211 0.213 0.218 0.928

NNMI1(0.2, 0.8) 0.685 0.192 0.192 0.192 0.954 -1.121 0.205 0.212 0.220 0.921

NNMI2(0.2, 0.8) 0.723 0.148 0.154 0.151 0.953 -1.178 0.211 0.216 0.212 0.943

NNMI3(0.2, 0.8) 0.651 0.179 0.179 0.183 0.939 -1.115 0.206 0.209 0.222 0.919

PMM 0.697 0.172 0.127 0.172 0.866 -1.148 0.215 0.201 0.221 0.925

Note:Censoring rate:0.35; Missing rate:0.30.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Table A.3: Z ∼ Uniform[0, 1], T ∼ Exponential[eln(2)X−1.2Z ], C ∼
Exponential[e−3X+0.1Z ], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+e1.3+0.5Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.701 0.309 0.294 0.309 0.939 -1.256 0.492 0.471 0.496 0.944

CC 0.862 0.425 0.402 0.458 0.936 -0.873 0.716 0.664 0.787 0.901

NNMI1(0.8, 0.2) 0.825 0.495 0.458 0.512 0.957 -1.223 0.515 0.534 0.515 0.976

NNMI2(0.8, 0.2) 0.828 0.498 0.461 0.516 0.957 -1.239 0.534 0.544 0.536 0.975

NNMI3(0.8, 0.2) 0.820 0.506 0.457 0.521 0.956 -1.221 0.514 0.537 0.515 0.995

NNMI1(0.2, 0.8) 0.761 0.490 0.472 0.495 0.998 -1.170 0.495 0.525 0.495 0.975

NNMI2(0.2, 0.8) 0.809 0.431 0.420 0.446 0.979 -1.230 0.500 0.545 0.500 0.997

NNMI3(0.2, 0.8) 0.726 0.500 0.477 0.501 0.977 -1.155 0.490 0.521 0.492 0.975

PMM 0.829 0.541 0.300 0.558 0.707 -1.134 0.518 0.470 0.523 0.927

N=500

FO 0.694 0.133 0.128 0.133 0.945 -1.198 0.197 0.202 0.197 0.957

CC 0.846 0.168 0.169 0.228 0.866 -0.844 0.289 0.276 0.458 0.719

NNMI1(0.8, 0.2) 0.750 0.203 0.204 0.210 0.955 -1.132 0.218 0.224 0.228 0.943

NNMI2(0.8, 0.2) 0.755 0.184 0.182 0.194 0.941 -1.161 0.220 0.229 0.223 0.957

NNMI3(0.8, 0.2) 0.742 0.198 0.200 0.204 0.959 -1.128 0.214 0.223 0.226 0.948

NNMI1(0.2, 0.8) 0.702 0.223 0.225 0.223 0.980 -1.091 0.207 0.217 0.233 0.924

NNMI2(0.2, 0.8) 0.760 0.172 0.175 0.185 0.950 -1.152 0.211 0.223 0.216 0.961

NNMI3(0.2, 0.8) 0.686 0.216 0.217 0.216 0.962 -1.091 0.207 0.216 0.234 0.915

PMM 0.731 0.205 0.127 0.209 0.788 -1.129 0.223 0.201 0.234 0.901

Note:Censoring rate:0.35; Missing rate:0.45.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Table A.4: Z ∼ Uniform[0, 1], T ∼ Exponential[eln(2)X−1.2Z ], C ∼
Exponential[e−3X+0.1Z ], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+e1.5+1.5Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.701 0.309 0.294 0.309 0.939 -1.256 0.492 0.471 0.496 0.944

CC 0.748 1.357 1.354 1.358 0.942 -2.065 0.973 0.912 1.302 0.874

NNMI1(0.8, 0.2) 1.075 2.044 4.105 2.079 0.959 -1.207 0.537 0.499 0.537 0.938

NNMI2(0.8, 0.2) 1.120 2.026 4.101 2.070 0.960 -1.238 0.531 0.499 0.532 0.940

NNMI3(0.8, 0.2) 1.045 2.043 4.106 2.073 0.982 -1.195 0.536 0.499 0.536 0.938

NNMI1(0.2, 0.8) 0.764 1.062 2.694 1.065 0.982 -1.179 0.517 0.491 0.517 0.959

NNMI2(0.2, 0.8) 0.960 1.660 3.802 1.681 0.963 -1.237 0.522 0.497 0.523 0.949

NNMI3(0.2, 0.8) 0.793 1.544 3.521 1.547 0.959 -1.159 0.522 0.491 0.523 0.948

PMM 0.965 1.471 2.396 1.496 0.712 -1.226 0.514 0.473 0.515 0.926

N=500

FO 0.694 0.133 0.128 0.133 0.945 -1.198 0.197 0.202 0.197 0.957

CC 0.639 0.259 0.232 0.264 0.915 -1.819 0.364 0.357 0.718 0.592

NNMI1(0.8, 0.2) 0.708 0.262 0.249 0.263 0.937 -1.191 0.203 0.213 0.203 0.965

NNMI2(0.8, 0.2) 0.728 0.231 0.223 0.234 0.956 -1.202 0.200 0.211 0.200 0.976

NNMI3(0.8, 0.2) 0.707 0.255 0.244 0.256 0.931 -1.190 0.201 0.212 0.202 0.976

NNMI1(0.2, 0.8) 0.694 0.272 0.255 0.272 0.935 -1.178 0.200 0.212 0.201 0.975

NNMI2(0.2, 0.8) 0.766 0.217 0.209 0.229 0.933 -1.214 0.199 0.211 0.200 0.972

NNMI3(0.2, 0.8) 0.685 0.260 0.244 0.260 0.948 -1.177 0.197 0.211 0.198 0.977

PMM 0.752 0.274 0.131 0.280 0.662 -1.214 0.218 0.203 0.218 0.931

Note:Censoring rate:0.35; Missing rate:0.65.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Appendix B

Matrices with Weibull Times

Table B.1: Z ∼ Uniform[0, 1], T ∼ Weibull[eln(2)X−1.2Z , 1.5], C ∼
Weibull[e−3X+0.1Z , 1.4], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+e2.8+3Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.702 0.304 0.293 0.304 0.941 -1.227 0.483 0.463 0.484 0.939

CC 0.849 0.312 0.306 0.349 0.927 -1.237 0.527 0.502 0.528 0.946

NNMI1(0.8, 0.2) 0.766 0.327 0.323 0.336 0.959 -1.222 0.486 0.480 0.486 0.951

NNMI2(0.8, 0.2) 0.768 0.311 0.315 0.320 0.960 -1.236 0.484 0.482 0.485 0.957

NNMI3(0.8, 0.2) 0.739 0.322 0.316 0.326 0.955 -1.205 0.483 0.474 0.483 0.955

NNMI1(0.2, 0.8) 0.756 0.332 0.336 0.338 0.972 -1.196 0.479 0.483 0.479 0.955

NNMI2(0.2, 0.8) 0.778 0.299 0.316 0.311 0.968 -1.232 0.480 0.483 0.481 0.957

NNMI3(0.2, 0.8) 0.726 0.337 0.326 0.339 0.949 -1.178 0.479 0.476 0.479 0.959

PMM 0.748 0.338 0.293 0.342 0.921 -1.207 0.489 0.465 0.490 0.943

N=500

FO 0.692 0.133 0.128 0.133 0.944 -1.208 0.201 0.200 0.201 0.953

CC 0.828 0.142 0.133 0.196 0.816 -1.217 0.226 0.216 0.226 0.940

NNMI1(0.8, 0.2) 0.699 0.136 0.138 0.136 0.954 -1.169 0.206 0.203 0.208 0.930

NNMI2(0.8, 0.2) 0.711 0.135 0.135 0.136 0.945 -1.190 0.206 0.215 0.206 0.945

NNMI3(0.8, 0.2) 0.686 0.131 0.135 0.131 0.952 -1.161 0.202 0.202 0.209 0.919

NNMI1(0.2, 0.8) 0.690 0.142 0.163 0.142 0.950 -1.149 0.204 0.203 0.210 0.922

NNMI2(0.2, 0.8) 0.726 0.132 0.134 0.136 0.947 -1.197 0.206 0.205 0.206 0.944

NNMI3(0.2, 0.8) 0.672 0.133 0.137 0.134 0.954 -1.149 0.204 0.201 0.210 0.920

PMM 0.706 0.137 0.127 0.137 0.923 -1.200 0.211 0.200 0.211 0.945

Note:Censoring rate:0.35; Missing rate:0.10.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Table B.2: Z ∼ Uniform[0, 1], T ∼ Weibull[eln(2)X−1.2Z , 1.5], C ∼
Weibull[e−3X+0.1Z , 1.4], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+e2+Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.702 0.304 0.293 0.304 0.941 -1.227 0.483 0.463 0.484 0.939

CC 0.911 0.350 0.340 0.413 0.920 -0.992 0.596 0.563 0.631 0.923

NNMI1(0.8, 0.2) 0.877 0.194 0.365 0.267 0.994 -1.295 0.488 0.482 0.497 0.995

NNMI2(0.8, 0.2) 0.869 0.177 0.327 0.250 0.994 -1.321 0.504 0.485 0.519 0.995

NNMI3(0.8, 0.2) 0.867 0.210 0.328 0.273 0.993 -1.286 0.484 0.475 0.491 0.997

NNMI1(0.2, 0.8) 0.895 0.229 0.373 0.305 0.996 -1.283 0.455 0.484 0.462 0.995

NNMI2(0.2, 0.8) 0.853 0.153 0.321 0.222 0.996 -1.317 0.507 0.485 0.521 0.993

NNMI3(0.2, 0.8) 0.799 0.270 0.336 0.290 0.991 -1.208 0.465 0.470 0.465 0.995

PMM 0.821 0.402 0.293 0.422 0.839 -1.187 0.499 0.462 0.499 0.943

N=500

FO 0.692 0.133 0.128 0.133 0.944 -1.208 0.201 0.200 0.201 0.953

CC 0.893 0.151 0.146 0.251 0.722 -0.957 0.251 0.239 0.349 0.799

NNMI1(0.8, 0.2) 0.727 0.137 0.155 0.141 0.962 -1.162 0.169 0.207 0.173 0.985

NNMI2(0.8, 0.2) 0.748 0.128 0.145 0.139 0.951 -1.199 0.166 0.212 0.166 0.985

NNMI3(0.8, 0.2) 0.720 0.134 0.151 0.137 0.962 -1.162 0.169 0.206 0.0.173 0.986

NNMI1(0.2, 0.8) 0.704 0.141 0.165 0.141 0.969 -1.136 0.170 0.206 0.181 0.964

NNMI2(0.2, 0.8) 0.770 0.120 0.143 0.143 0.961 -1.197 0.171 0.212 0.171 0.985

NNMI3(0.2, 0.8) 0.703 0.140 0.164 0.141 0.984 -1.142 0.171 0.206 0.180 0.965

PMM 0.731 0.161 0.126 0.166 0.871 -1.192 0.202 0.200 0.202 0.942

Note:Censoring rate:0.35; Missing rate:0.30.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Table B.3: Z ∼ Uniform[0, 1], T ∼ Weibull[eln(2)X−1.2Z , 1.5], C ∼
Weibull[e−3X+0.1Z , 1.4], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+e1.4+0.5Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.702 0.304 0.293 0.304 0.941 -1.227 0.483 0.463 0.484 0.939

CC 0.922 0.403 0.381 0.464 0.914 -0.893 0.691 0.638 0.756 0.906

NNMI1(0.8, 0.2) 0.862 0.413 0.401 0.446 0.939 -1.183 0.414 0.504 0.414 0.966

NNMI2(0.8, 0.2) 0.891 0.376 0.386 0.425 0.941 -1.233 0.437 0.520 0.438 0.976

NNMI3(0.8, 0.2) 0.850 0.408 0.399 0.438 0.940 -1.176 0.417 0.505 0.418 0.966

NNMI1(0.2, 0.8) 0.853 0.436 0.428 0.464 0.933 -1.140 0.405 0.500 0.409 0.975

NNMI2(0.2, 0.8) 0.859 0.343 0.375 0.381 0.981 -1.204 0.420 0.522 0.420 0.977

NNMI3(0.2, 0.8) 0.849 0.434 0.428 0.461 0.953 -1.131 0.408 0.499 0.413 0.974

PMM 0.884 0.478 0.296 0.515 0.778 -1.195 0.520 0.464 0.520 0.923

N=500

FO 0.692 0.133 0.128 0.133 0.944 -1.208 0.201 0.200 0.201 0.953

CC 0.916 0.169 0.162 0.280 0.717 -0.846 0.269 0.267 0.444 0.715

NNMI1(0.8, 0.2) 0.758 0.160 0.179 0.172 0.990 -1.177 0.211 0.213 0.212 0.970

NNMI2(0.8, 0.2) 0.776 0.141 0.154 0.163 0.950 -1.213 0.206 0.220 0.206 0.970

NNMI3(0.8, 0.2) 0.748 0.159 0.172 0.168 0.970 -1.177 0.212 0.212 0.0.213 0.951

NNMI1(0.2, 0.8) 0.734 0.175 0.198 0.180 0.998 -1.139 0.204 0.210 0.212 0.949

NNMI2(0.2, 0.8) 0.790 0.127 0.152 0.160 0.942 -1.209 0.208 0.218 0.209 0.970

NNMI3(0.2, 0.8) 0.726 0.173 0.191 0.177 0.988 -1.133 0.206 0.210 0.214 0.971

PMM 0.753 0.118 0.126 0.188 0.816 -1.176 0.213 0.200 0.215 0.922

Note:Censoring rate:0.35; Missing rate:0.45.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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Table B.4: Z ∼ Uniform[0, 1], T ∼ Weibull[eln(2)X−1.2Z , 1.5], C ∼
Weibull[e−3X+0.1Z , 1.4], X ∼ Bernoulli[p(Z) = 1

1+e0.25−0.5Z ], δx =

Bernoulli[p(Z, Y ) = 1
1+e2+0.5Z−2Y ]

Method ESTa SDb SEc RMSEd CRe EST SD SE RMSE CR

N=100

FO 0.702 0.304 0.293 0.304 0.941 -1.227 0.483 0.463 0.484 0.939

CC 0.800 2.107 9.868 2.110 0.932 -1.714 0.992 0.897 1.118 0.923

NNMI1(0.8, 0.2) 0.691 0.516 0.689 0.516 0.991 -1.235 0.438 0.486 0.440 0.997

NNMI2(0.8, 0.2) 0.794 0.513 0.585 0.523 0.946 -1.250 0.439 0.479 0.442 0.998

NNMI3(0.8, 0.2) 0.695 0.500 0.680 0.500 0.991 -1.234 0.436 0.490 0.437 0.997

NNMI1(0.2, 0.8) 0.578 0.49 0.655 0.505 0.946 -1.209 0.443 0.487 0.443 0.997

NNMI2(0.2, 0.8) 0.700 0.429 0.524 0.429 0.952 -1.251 0.423 0.583 0.426 0.998

NNMI3(0.2, 0.8) 0.588 0.490 0.656 0.501 0.994 -1.206 0.443 0.481 0.443 0.996

PMM 0.846 0.420 0.293 0.447 0.821 -1.166 0.483 0.463 0.484 0.938

N=500

FO 0.692 0.133 0.128 0.133 0.944 -1.208 0.201 0.200 0.201 0.953

CC 0.544 0.263 0.251 0.302 0.885 -1.577 0.373 0.358 0.530 0.817

NNMI1(0.8, 0.2) 0.706 0.262 0.268 0.262 0.946 -1.194 0.199 0.210 0.199 0.967

NNMI2(0.8, 0.2) 0.740 0.226 0.239 0.231 0.967 -1.208 0.202 0.210 0.202 0.962

NNMI3(0.8, 0.2) 0.704 0.256 0.266 0.256 0.945 -1.193 0.199 0.209 0.0.199 0.969

NNMI1(0.2, 0.8) 0.701 0.270 0.272 0.270 0.949 -1.182 0.197 0.208 0.198 0.962

NNMI2(0.2, 0.8) 0.799 0.218 0.229 0.242 0.946 -1.222 0.203 0.209 0.205 0.962

NNMI3(0.2, 0.8) 0.696 0.261 0.271 0.261 0.948 -1.181 0.195 0.208 0.196 0.968

PMM 0.743 0.162 0.126 0.169 0.851 -1.170 0.214 0.199 0.216 0.932

Note:Censoring rate:0.35; Missing rate:0.65.
aAverage of 1000 point estimates.
bEmpirical standard deviation.
cAverage estimated standard error.
dRoot mean square error:square root of bias+SD2.
eCoverage rate of 1000 95% confidence intervals.
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