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Abstract

Nikolaos Papadimitriou

Dealing with missing values on variables using multiple imputation methods to
Cox regression analysis

December 2020

In the field of Survival Analysis, where the complete case analysis is the common
method, we exclude cases with missing values. In order to take advantage of the whole
dataset, we propose multiple imputation methods to cope with missing data. To implement
these methods, a fully observed variable is necessary to exist in the dataset. This fully
observed variable offers closest to the real values estimations of the other variable with
missing values. More specifically, the proposed multiple imputation methods in this thesis
are the following: the semi-parametric predictive mean matching and the non-parametric
nearest neighbor multiple imputation. In order to evaluate the performance of the afore-
mentioned methods, Cox regression analysis is employed. In the end, the methods are
compared in terms of efficiency, robustness and consistency.
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Sdovg morhastig atodoong Tumv oty taivdpounon Cox

Agxéupprog 2020

210 medio g Availvong EmiPioong, émov 1 complete case analysis ival 1 xowvy)
uévodog, amorietovue TopatnENoelg ue ehheltovoeg TES. TTpoxelwévoy va expeT-
olevtovpe 0AO®ANPO TO 0VVOALO dedouévav, Tpoteivouue ToMMamAég uedddovg amo-
S00M¢g TWMV YLOL TNV AVIETOTLON TV dedouévov tov Aelmovv. Ia v epapuoym
QVTOV TOV HeYOSMV, ATALTETL (WO TTANOME TOPATNOOVUEVT] UETOPANTY) 0TO OVVOLO
dedopévov.  Avti) | TANPWOS TOPATNOEOVUEVY UETOPANTY) TOOOPEPEL TTANOLEOTEPES
EXTIUOELS TOV TTOOYUOTIXMV TUWMV TS GAANG UETAPANTYS UE TIG EALELTTOVOES TLUEG.
Mo ovyxrexpéva, ol mpotevoueveg uEYodoL TOAATAOU RATAAOYLOUOV O QUTI) TN
Suthmpotinn epyaotia eival oL ENg: N Nu-topauetoxt predictive mean matching xow
un TOPOUETOLRY) nearest neighbor multiple imputation. ITpoxeévov va agloloynidet 1
artddoon Tmv mpoavagepUelomv uedodmv, yonouomoteitor avdivon Tolvépounong
Cox. Ev téheL, ot pédodol ouyrpivovtal mg Tpog TV ATOTEAECUATIXOTNTO, TV EVOM-
OTloL %O T1) CUVETELL.
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Chapter 1

Introduction

One of the most popular ways to specify the relationship between survival time and vari-
ables is Cox regression analysis. It estimates the coefficients of the model using the partial
likelihood function without the need of specifying the baseline hazard function. The es-
timators are normally distributed, consistent and semi-parametrically efficient. In case of
time-independent variables, Cox regression has the proportional hazards property. There
are often situations though, in which variables are not fully observed. If complete case
analysis is implemented, excluding the cases which the variable has missing data, it has
been shown that Cox regression loses efficiency and also leads to biased regression co-
efficient estimates. When missingness depends on the survival outcome and some fully
observed variables, missing mechanism is considered as missing at random (MAR). When
missingness does not depend on failure time (failure ignorable MAR), complete case anal-
ysis can produce some valid results. But, when missingness does not depend on censoring
time but may depend on failure time, complete case analysis fails to produce valid results.

To deal with missing data many methods have been developed in order to produce valid
results when performing Cox regression analysis. The methods developed are categorized
as parametric, semi-parametric and non-parametric. We will use two multiple imputation
methods. Predictive mean matching, which is a semi-parametric method based on mul-
tiple imputation by chain equations and nearest neighbor multiple imputation, which is a
non-parametric method where two working models are used, one for the missing probabil-
ity and one for the missing value, in order to create an imputation set with possible donors
for the missing data of the variable. In this study, we will not implement a misspecified
situation for the predictive mean matching method. We will investigate the performance
of nearest neighbor multiple imputation method, as well as the performance of nearest
neighbor multiple imputation when the model of the missing probability is misspecified.
The purpose of this study is to compare the performance of Complete Case analysis, Pre-
dictive Mean Matching and Nearest Neighbor multiple imputation methods on different
situations and compare their results.

The structure of this study will be the following: In chapter 2, there is a review of
survival analysis. What is survival analysis, definitions and theory of what we will use in
this study. In chapter 3, we give brief definitions of the missing mechanisms. In chapter
4, we review the methods we will implement in this study.First, we present the parametric
complete case analysis. Subsections 4.2.1, 4.2.2 introduce the semi-parametric and non-
parametric methods respectively, the predictive mean matching and the nearest neighbor
multiple imputation. In chapter 5, we apply all the previous methods to real data, which
have to do with a case of a heart transplant and a simulated study is conducted to evaluate
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the proposed methods. Lastly in chapter 6, there is a brief discussion about the results of
the simulation as well as some thoughts for future researching.



Chapter 2

Survival Analysis

Survival analysis is a collection of data from different independent individuals for which
the outcome variable of interest is time until an event occurs. Time is a continuous variable
and takes values depending on the experiment or the study we want to conduct. Time
could be hours, days, months or years from the beginning of follow-up of an individual
until an event occurs. Event is an incidence or experience of interest that may happen to
an individual. By event we mean death, recovery, disease incidence, disease recession etc.
In a survival analysis, we refer to the time variable as survival time, because it shows us
the time of an individual during some follow-up period. We also refer to the event as a
failure, because an individual failed to "survive" and the event of interest happened.

What makes survival analysis unique from other forms of analyses are the so called
censored data. In short, censoring happens to our collection of data when we have some
information about individual survival time, but we don’t know the exact time when the
event occurred during the follow-up period. There are three types of censored data. Right-
censored, left-censored and interval-censored. Most survival data is right-censored. Right-
censoring happens when for some individuals, the failure times have not been observed
even though the follow-up period has ended. They may reach the event after the follow-up
period. As a result, these observed data are censored. Left-censoring is the exact oppo-
site of right-censoring. The event of interest of some individuals has occurred before the
follow-up period starts. Lastly, interval-censoring happens when during the follow-up pe-
riod, the event occurs within a time interval (¢, t2). There are three assumptions about cen-
soring for survival data: independent censoring, random censoring and non-informative
censoring. Independent censoring means that within any subgroup of interest, the subjects
who are censored at time ¢ should be representative of all the subjects in that subgroup
who remained at risk at time t with respect to their survival experience. The assumption
of independence is the most useful of the three types for drawing correct inferences that
compare the survival experience of two or more groups. Random censoring means that
subjects who are censored at time ¢ should be representative of all the study subjects who
remained at risk at time ¢ with respect to their survival experience. Random censoring is a
stronger assumption and more restrictive than independent censoring. Lastly, we consider
the assumption of non-informative censoring. Whether censoring is non-informative or
informative depends on two distributions: 1) the distribution of the time-to-event random
variable and 2) the distribution of time-to-censorship random variable. Non-informative
censoring occurs if the distribution of survival times I’ provides no information about the
distribution of censoring times C' and vice versa. Otherwise, the censoring is informative.
The assumption of non-informative censoring is justifiable when censoring is independent
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and/or random. Nevertheless, these three assumptions are not equivalent.

We introduce basic mathematical terminology and notation for survival analysis. We
denote by a capital 7' the random variable for an individual’s survival time. 7' can any
number equal to or greater than zero. By a small letter £ we denote any specific value of
interest for the random variable 7'. Finally, we denote by 9, the indicator function to define
if we have failure or censorship. Meaning, §; = 1 for failure or ¢; = 0 for censorship. We
next introduce two quantitative functions widely used in survival analysis. These are the
survival function, denoted by S(¢) and the hazard function, denoted by A(t). The survival
function S(t) gives us the probability that a person survives longer than some specified
time ¢; S(t) = P(T" > t). The survival function is fundamental, because obtaining sur-
vival probabilities for different values of ¢ is crucial and important for survival analysis.
In most cases, we are more interested in how long the individuals in a study live, than how
quickly they die. We continue with the hazard function, denoted by h(t), which is given
by the following formula:

Pt<T<t+ AT >1)
Ay

]’L(t) = lllmAt_ﬂ) .
The interpretation of the hazard function in practical terms is not an easy task. In essence,
the hazard function h(t) gives the instantaneous potential per unit time for the event to
occur, given that the individual has survived up to time ¢. For instance, you are driving
your car and the speedometer shows 100kmh. It means that if you continue driving this
way, then in one hour you cover 100km. This is not absolute though, because if you slow
down or speed up or even stop at some point you may or may not cover that distance in
one hour. That is what potential really means. Note here, that the survival function’s main
focus is not failing in contrast to the hazard function which is the event occurring. Thus,
the hazard function gives us the opposite side of information of the survival function. The
relationship between the two can be described from the following formulas:

_/Ot h(U)du] & h(t) :_[W |

The modeling for the survival data though, is rather challenging and difficult. The
main problems are the nature of data, meaning that there is an inherent aging process
when subjects are followed over time and the presence of censoring data. The hazard
function described above captures the essence of the aging process. Thus, a regression
like model is built around the hazard function. The hazard function is a rate, so it must be
strictly positive. However, for a statistical model we need a property to be parameterized
in a way that the allowable range of parameter values is infinite. This also helps for the
estimation of the parameters. To fix this problem we parameterize the hazard function as

S(t) = exp

h(t) = e,

where 3y = [n(6y) and is thus unconstrained. Given the above form, we include variables
by being additive on the log scale as follows:

Infh(t, x)] = o + Sz

and the hazard function is
h(t,z) = ePhe,

4
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A fully parametric model accomplishes two goals simultaneously. It describes the ba-
sic underlying distribution of survival time (which is called the error component) and it
characterizes how that distribution changes as a function of the variables (which is called
the systematic component). It is favorable to have a model which accomplishes both goals
but in our case we are interested in the systematic component. This categorizes the above
model as a semi parametric regression model. The baseline hazard function hg(t) makes
the the model semiparametric. the baseline hazard function is a generalization of the in-
tercept or constant term found in parametric regression models. Consequently, the hazard
function is the product of two functions:

h(t,l‘,ﬁ) = h()(t)r(xaﬁ)

The function hg(t) characterizes how the hazard function changes as a function of sur-
vival time. The other function r(x, [3), characterizes how the hazard function changes as a
function of subject variables. The above model is called Cox regression model because it
was proposed by Cox in 1972. The semiparametric property is what makes the Cox model
popular. Even though the baseline hazard function is unspecified, the Cox model pro-
duces good regression coeflicient estimates, hazard ratios of interest and survival curves
for a wide variety of data situations. In other words, the Cox model is a robust model which
the results will approximate the results of the correct parametric model. The measure of
effect, which is the hazard ratio is calculated without having to estimate the baseline haz-
ard function. The hazard ratio for two subjects with variable values denoted x; and z»

is:
h(t,z1, 3) ~ ho@r(z,8)  r(z1,B)

h(t, xo, B) ho(t)r (w0, B)  7(x0,8)

Cox model is also referred to as Cox proportional hazards model. The term proportional
hazards refers to the fact that the hazard functions are multiplicatively related, meaning
their ratio is constant over survival time. This is a very important assumption and there are
methods assessing its validity and existence in the model. Other parameterizations exist
like the additive relative hazard model whose function is

h(t,x, B) = ho(t)(1 + )

HR(t,l’l,Xo) = HR(t,l'l,iUo)

but will not be included and referred to further in this study.

We stated above that the distribution of survival time can be specified through the
hazard function. Now that we have specified the hazard function we can use it to specify
the survival function, so we have

S(t,z,p) = e~ HE2.0)

where H (¢, x, ) is the cumulative hazard function at time ¢ for a subject with variable z.
We assume that the survival time is continuous so

t

t
H(t,z,B) = / hu, z, B)du = r(z, §) / ho(w)du = (z, B) Ho(t).
0 0
Combining the two equations we have the following:

S(t,z, ) = e~ (@B Ho(t) — [efHo(t)]r(a:,,B) _ [So(t)]r(x’ﬁ),

—Ho(t)

where Sy(t) = e is the baseline survival function.
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We proceed with the estimation method of the model parameters. As with logistic
regression, the maximum likelihood (ML) estimates of the Cox model parameters are de-
rived by maximizing a likelihood function, usually denoted as L. The likelihhood function
is a mathematical expression which describes the joint probability of obtaining the data
observed on the subjects in the study as a function of the unknown parameters in the model
being considered. The likelihood method proposed by Cox for estimating the model pa-
rameters is a little different. The method proposed by Cox takes into consideration the
probabilities for each subject who fails and does not consider probabilities for subjects
who are censored. That is the reason for the method’s name, which is called "partial”
likelihood instead of (complete) likelihood. The full likelihood, under the assumption of
independent observations, is obtained by multiplying the respective contributions of the
observed (t, 3, x), a value of f(¢, 5, x) for a non censored observation (c=1) and a value
of S(t, 3, z) for censored observations (c=0). The expression is the following:

[f(t.B,2))° x [S(t, B,2)]" ",

where ¢ = 0 or ¢ = 1. Thus, the likelihood function, because of the independence as-
sumption, is the following:

n

L(B) = [T{[f (ti, B, )] x [S(ts, B, )]}

=1

To obtain the maximized likelihood with respect to the parameter of interest 5, we maxi-
mize the log-likelihood function:

In(L() = S fednl 1 B,0)] + (1= einlS e, 5,2

The log function is monotone, so the maximum value of 3 is the same. However, com-
puting the maximum with the log function is simpler. The partial likelihood proposed by
Cox is given from the following expression:

n

6%‘5 Ci
L) =1 |
p .
o1 L2_jeRt) el |
where the sum in the denominator is over all subjects in the risk set at time ¢;, denoted by
R(t;). For the same reasons as mentioned above, we use the log function to calculate the
maximum from the following expression:

ln(Lp(B)):i{mzﬂ—lnl > e%ﬂ”.

i=1 JER(t:)

We obtain the maximum partial likelihood estimator by differentiating the log partial like-
lihood function with respect to /3, setting the derivative equal to zero and solving for the
unknown parameter. The derivative with respect to [ is

aLp - Z'G t; e’ - .- T

i=1 2 jeR(t:) i=1 JER(t;)

where
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and
Tw; = Z wi;(B)z;,
JER(t;)
which we denote as B .
The estimator of the variance of the estimator of the coefficient is obtained from the
inverse of the negative of the second derivative of the log partial likelihood as shown in
the following expression:

Y

2
= - > :

which can be simplified by using the definition of w;;(3) and becomes:

0*L m
pgﬁ) = _Z Z wl](ﬂ)(x] _Twi)Q'
8/8 =1 jER(t;)

The negative of the second derivative of the log partial likelihood is called the observed
information and we will denote it as

PL(5)

18) = -5

If the model contains more than one variable then the result is called observed information
matrix. The variance of the estimated coefficient [ is

Var(p) =1(3)"






Chapter 3

Missing Mechanisms

Missing data or missing values occur when no data value is stored for the variable in an
observation. Rubin classified missing data into three categories. In his theory every datum
has some likelihood of being missing. Missingness can then be categorised as missing
at random (MAR), missing completely at random (MCAR) and missing not at random
(MNAR). Missing data can be handled similarly as censored data.

The terms missing at random and missing completely at random are used to describe
assumptions about missing data that are needed for standard implementations of multiple
imputation, but the meanings of these terms are often confused. When we have the missing
completely at random mechanism (MCAR), means that the missing observations are a
random subset of all observations. Thus, the missing and observed values will have similar
distributions. There is nothing systematic going on that makes some data more likely
to be missing than others. Missing at random (MAR) means there might be systematic
differences between the missing and observed values, but these can be explained by other
observed variables which are fully observed. On the other hand, the missing not at random
(MNAR) has a systematic relationship between the missing values and the missing data
which must be considered.

Missing completely at random (MCAR) and missing at random (MAR) are considered
ignorable mechanisms, because we don’t have to include any information about the missing
data when we deal with the missing data. Missing not at random (MNAR) mechanism is
considered non-ignorable, because the missing data have to be modeled and you have to
figure out the reasons why the data are missing and predict their possible values. In this
study the missing at random (MAR) mechanism will be used.
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Chapter 4

Review of Methods

4.1 Complete Case Analysis

The complete case (CC) analysis uses only the observations which have all the variables
observed and is based on the partial likelihood to estimate B = (f3,, 3,). Let r;(B,t) =
ePaXith:Zi = OB, t) and r" = (X;Z;)'r:(B, t). The estimators are the solution from
the following equations

n (1) )
U = Z [5“5%{)(12@. _ WH =0
=1 cc <B7 7—;)

where §; = I[T" < (] is the censoring indicator, ¢, is the missing indicator (0, = 1
if X is observed; otherwise 0), S&™(B,T;) = n~' Y0, 05, 1(T; > Ti)r](-m)(B,Y}) for
m = 0, 1. The CC analysis is simple to implement and is widely used. It does perform
fairly well when the missingness depends on Z and the missing rate is not greater than
25%. Its inconsistency may also be caused when missingness depends on failure time 7'

or censoring indicator 9.

11
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4.2 Multiple Imputation Methods

4.2.1 Predictive Mean Matching

Predictive mean matching (PMM) is a semi-parametric imputation method. It is very
close to the regression method in a sense except that for each missing value it fills in a
value randomly among the observed donor values from an observation whose regression-
predicted values are closest to the regression-predicted value for the missing value from
the simulated regression model[2].

Predictive mean matching is a quite easy and versatile method to use. It performs
fairly well even when the target variable is transformed, meaning that log(Y") often yields
to similar results as ezp(Y’). The method can be also used for categorical data. The fact
that there is no need to define an explicit model for the distribution of the missing values
makes the method less vulnerable to model misspecification to some extent.

For univariate X with missing values we denote as Z,, the subset of 1, rows of pre-
dictor variable Z for which X is observed and as Z,,;s the complementing subset of ng
rows of Z for which X is missing. The vector containing the n; observed data in X is
denoted as X, and the vector of ny imputed values in X is indicated as X. The bootstrap
multiple imputation model X = Sy + X,nis01 + ¢, where é ~ N (0,6?) and Bo, b1, & are
the least squares estimates calculated from a bootstrap sample taken from the observed
data, is estimated from the following steps:

1. Draw a bootstrap sample (Xobs, Zobs) of size ny from (Xo,ps, Zops)-
Calculate the cross-product matrix S = Z'g;,sz'obs.

Calculate V = (S + diag(S)x) ™", with some small &.

Calculate regression weights ﬁ = VZg;,SXObS.

Calculate 62 = (Xops — Zops )T (Xops — Zons3) /(01 — ¢ — 1).

Draw ng independent N (0, 1) variates in vector ¢s.

A A

Calculate the ng values X, = misﬁ + Co0.

According to Andridge and Little[3] there are four distinguished methods to select
a donor once the metric has been defined. Although various metrics exist to define the
distance between cases, Rubin[4] and Little[S] proposed the predictive mean matching
metric.

Let ¢; denote the predicted value of the rows with an observed y; where : = 1, ..., n;.
Likewise, let ; denote the predicted value of the rows with missing y; where j = 1, ...nq.

1. Choose a threshold 7, and take all ¢ for which |)A(Z - X ;| < n as candidate donors
for imputing j. Randomly sample one donor from the candidates and take its y; as
replacement value.

2. Take the closest candidate, i.e the case 7 for which |)A(Z -X ;| is minimal as the donor.
This is known as "nearest neighbor hot deck" or "closest predictor".

3. Find the d candidates for which | X; — X ;| is minimal and sample on of them. Usual
values for d are 3, 5 and 10. There is also an adaptive method to specify the number
of donors[6].

12
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4. Sample one donor with a probability that depends on |X, - X SI71.
Additionally, we distinguish four types of matching:

e Type 0: X = Zs/3 is matched to X]’ = Zmis

e Type 1: X = ZobsB is matched to Xj = Zomis3;

e Type 2 : X = ZobsB 1s matched to X]’ = misB;

e Type 3 : X = ZobSB is matched to Xj = mwﬁ

The estimate of (3 is denoted as B and 6 is a value randomly drawn from the posterior
distribution of 3. Sampling variability is ignored with Type O matching, which leads to
improper imputations. Type 2 solves this, but it is insensitive to the process of taking
random draws of (3 if there are only a few variables. In the extreme case, with a single 7,
the set of candidate donors based on | X; — X ;| remains unchanged under different values of
£, so the same donor(s) get selected too often. A small adaptation of the matching distance
that seems to alleviate the problem is type 1. The difference between Type 0, Type 2 and
Type 1 is that in Type 1 matching only Z,,;,(3 varies stochastically and does not cancel out
any more. Type 3 creates two draws for 3, one for the donor set and one for the recipient
set.

13
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4.2.2 Nearest Neighbor Multiple Imputation

The multiple imputation that Rubin[8] proposes is a parametric method using the posterior
distribution of the variable with missing data to create the imputing set. Here, we present
a non parametric multiple imputation method using two generalized linear models one for
the missing probability and one for the missing values of the missing variable and a metric
in order to create the imputing sets. The two models will be fitted on a non-parametric
bootstrap sample of the original dataset in order to embody the uncertainty of parameter
estimates from the working models. This results in proper multiple imputation[8][11].

1. Estimation of the predictive scores on a bootstrap sample.

Instead of using a parametric distribution we use all the variables we have avail-
able Y, d;, Z including the variable with the missing data X to create a bootstrap
sample[9]. We continue by estimating the baseline hazard function Hy(t) using the
Nelson-Aalen estimator[10] on the bootstrap sample. The Nelson-Aalen estimator
is a non-parametric estimator of the cumulative hazard rate function in case of cen-
sored or incomplete data and is given by Hy(t) = >4, <, Z—, with a; the number of
events at ¢; and n; the total individuals at risk at ¢;.

Then we fit a logistic regression model with variables Y, d; and Z as the variables
to the missing indicator ¢, to derive a predictive score for missingness. This score
shows the relationship between the missingness and Y, d;, and Z. We standardize the
fitted values by subtracting the mean and by dividing with the standard deviation
and denote the standardized score by SE(B) .

We continue by fitting generalized linear model with Hy(t), d; and Z as the variables
to the variables with missing data X. This score shows the relationship between X
and Hy(t), 0;, Z. We also standardize the fitted values by subtracting the mean and
by dividing with the standard deviation and denote the standardized score by S¢(),

2. Using the Euclidean metric to define the imputing set.

For each missing subject in the original dataset, two predictive standardized scores
are derived from the two regression models obtained from the bootstrap sample.
Implementing the Euclidean metric, the distance between subject j in the original
dataset and subject & in the bootstrap sample is then defined as:

405, K) = ur[85) — SEP R + a5, () — S5 )P

where w; and w, are non negative weights that sum to one. The set is consisted of
by subjects who have their X observed and have a small distance from subject j in
terms of the metric d considering the two predictive scores.

3. Random draw from the imputing set.

When the imputing set is created, a value for the variable with missing data X is
randomly drawn from the imputing set. Meaning that NNMI(NN, w;, wy) method
imputes values to X only from the subjects with X observed.

4. Repeat Steps 1 to 3 independently M times.

The imputation will be complete after repeating the above steps M times. Each
time an imputed is derived from a different bootstrap sample. Once the M imputed
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CHAPTER 4. REVIEW OF METHODS  4.2. MULTIPLE IMPUTATION METHODS

datasets are obtained, the MI analysis established by Rubin[8] is implemented. On
our study, a Cox regression analysis with X and Z as the variables is conducted
on the M imputed datasets to estimate the Cox regression coefficients 5, and [3,.
For both 3, and (3, the estimate is the average of the M corresponding regression
coeflicients denoted as B} BZ and the final variance denoted as var(B) is the sum
of the sample variances of the M regression coefficient estimates and the average

denoted as Uj of the M variance estimates of 5. The quantity [3 — 3]/\/var(f)
approximately follows a t-distribution with degrees of freedom v = (M — 1) [1 +

2
{%}/35} . We use a value of 10 or higher for M.
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Chapter 5
Use of Methods

5.1 Real Data

We demonstrate the above methods on dataset that contained 184 heart transplant cases in
1980 with 27 cases missing (15% missing rate). The dataset is extracted from the Stanford
Heart Transplant data. The survival time is measured from the date of transplant in days
with the censoring status. The additional variables collected are the age, which is the
patient age at first transplant measured in years and a mismatch score variable which is
subject to missing.

Table 5.1: Description of the Heart Transplant Data

Variable Mean Standard Deviation Missing
Age 41.092 11.035 0
Mismatch Score 1.116 0.577 27

We will make use the previous methods on the Heart Transplant dataset and compare
the results for the CC, PMM and NNMI methods. We examine how close the results are
for each method. The missing rate is 15% so we expect all three methods to perform fairly
well.

All three methods have a non significant p-value for the mismatch score variable and
a highly significant p-value for the age variable. All three methods produce very similar
results, but PMM and NNMI offer tighter confidence intervals for the variables compared
always to complete case analysis.
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5.1. REAL DATA CHAPTER 5. USE OF METHODS

Table 5.2: Cox regression estimation

Variable Estimation 95% Confidence Interval p-value

Complete Case Analysis

Age 0.170 (-0.188, 0.529) 0.352
Mismatch Score 0.029 (0.007, 0.051) 0.009
Predictive Mean Matching
Age 0.169 (-0.188, 0.527) 0.223
Mismatch Score 0.029 (0.008, 0.049) 0.006
Nearest Neighbor Multiple Imputation
Age 0.169 (-0.188, 0.526) 0.225
Mismatch Score 0.028 (0.008, 0.049) 0.006

18



CHAPTER 5. USE OF METHODS 5.2. SIMULATED DATA

5.2 Simulated Data

In this section we will perform simulation studies to compare CC, PMM and NNMI meth-
ods when performing Cox regression with two independent variables which one is subject
to missing and the other is a fully observed variable predictive to the missing one. We
investigate the performance of each method on different situations such as sample size,
mis-specification of one of the working models in NNMI and increasing missing rate from
10% up to 65% under a situation of dependent censoring. We used R to write the simu-
lation program implementing the following R libraries: The libraries survminer, survival
for the Cox regression, the library mice for the predictive mean matching method (PMM)
using the functions mice and complete and the library NNMIS for the nearest neighbor
multiple imputation method (NNMI) using the functions NNMIS and coxph.pool . For
the PMM method, the function mice will detect which variables in the dataset have missing
values. We then choose the multiple imputation by chained equations method we want and
the number of imputations. Then, using the function complete our missing cases are filled
with imputed values presenting us a complete dataset. For the NNMI method, the NNMIS
function performs the algorithm we mentioned in section 6 and the function coxph.pool
estimates Cox regression model, taking into account the additional uncertainty that arises
due to a finite number of imputations of the missing data.

The variables for each of the 1000 independent datasets are generated from the fol-
lowing distributions:Z, which is the predictive variable to the missing variable, is gen-
erated from a U(0, 1) distribution. The variable X subject to missing is generated from
a Bernoulli[p(Z)] distribution, where p(Z) is based on a logit link p(Z) = {osvazz-
The failure times 7', C' are generated either from an exponential distribution with hazard
rate ¢’+X*+P:Z or a Weibull distribution with a hazard rate of (e’=X+%:2)rt7=1 We de-
fine Y to be the minimum between the two failure times, Y = min (7, C') and censoring
indicator to be 9, = I(T" < (C'). The missing indicator J,(0, = 1 if X is observed is
generated from a Bernoulli[p(Z,Y)] distribution , where p(Z, Y") is based on a logit link
p(Z,)Y) = W The coeflicients are selected to give the desired censoring rate
and missing rate.

The fully-observed analysis (FO) will be used before any missingness is applied and
we obtain the Cox regression coefficients for each simulated dataset . The FO analysis is
implemented for us to have it as a comparison measure for the other methods. In CC we
obtain the Cox regression coeflicients after missingness has been applied on the simulated
datasets.

In PMM method we estimate (3 and B by a bootstrap sample under the normal linear
model, then we calculate 7(7, j) = |ZbeB — ZJ"”SB| withi =1,...,nyand j = 1, ..., ny.
We construct ng sets A;, each containing d = 5 candidate donors, from X, such that
>an(i,7) is minimum for all j = 1, ..., ng (ties are broken randomly). We draw one donor
i; from A; randomly for j = 1, ..., ng. Afterwards, we calculate the imputations X; = X,
for j =1, ...,n9. We use type 1 stochastic matching distance for the imputations.

For the NNMI method, a logistic regression model will be fitted to X, with Z, d;, ﬁo(t)
as the variables, to derive the conditional distribution of X given the observed data and
the predictive score of X. Another logistic regression model will be fitted to the missing
indicator §,, with Z,Y as the variables, to derive the missing probability and the pre-
dictive score of d,. For NNMI, we will investigate how the method performs when the
logistic regression model for the missing probability is misspecified. When there is no
misspecification the method is denoted as NNMI;. When the variable Y is missing from
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5.2. SIMULATED DATA CHAPTER 5. USE OF METHODS

the model, the method is denoted as NNMI, and is denoted as NNMI; when the variable
Z 1s missing from the model. We set the number of imputations M = 10, the nearest
neighbor imputation sets to contain five imputed values NN = 5 and the weights wy, wo
to be either (0.8,0.2) or (0.2,0.8).

The measures we examine in this simulation are:root mean square mean error (RMSE),
coverage rate (CR), standard errors (SD,SE) and the estimates (EST) from Cox regression
model. Our coeflicient estimates are the average of 1000 point estimates. The (SD) is the
empirical standard error produced by computing the standard error of the 1000 previous
estimates and the (SE) is the average of the estimated standard errors produced from the
Cox regression models. The RMSE is defined as the standard deviation of the residuals
(prediction errors). Residuals are a measure of how far from the regression line data points
are; RMSE is a measure of how spread out these residuals are. In other words, it tells
you how concentrated the data is around the line of best fit. Root mean square error is
commonly used in climatology, forecasting, and regression analysis to verify experimental

results. In our case RMSE = \/bias® + SD?. The CR is the proportion of the 1000
samples for which the known population parameter is contained in the confidence interval.
That proportion is an estimate for the empirical coverage probability for the CI.

All the tables of the simulation study can be found in the appendices from 3 to 10. The
FO analysis without missing values has the lowest root mean square error (RMSE) and
produces coverage rates near the nominal level 95%. The CC analysis as expected pro-
duces biased cox regression coefficient estimates with large RMSE for the coefficient 3,
and the coverage rate is lower most of the times than NNMI and PMM. PMM outperforms
NNMI on the situations when the sample size is small, but NNMI performs excellently
on all situations when the sample is large, producing accurate estimates with small RMSE
and coverage rates close to nominal level. NNMI produces more accurate estimates of
the coefficients when the weights are w; = 0.2, w, = 0.8. As the missing rate increases,
the coefficients from CC analysis produce more bias as expected (Table 6). The PMM,
as the missing rate increases, does not produce coverage rates close to the nominal level
especially for the coefficient 5,. NNMI on the other hand produces coverage rates close
to nominal level and is more consistent in all missing rates except for the situation with
missing rate at 45% (Table 5), where the produced standard errors when N = 100 are
too large. When the working logistic regression model is misspecified, without the vari-
able Z, it produces better estimates for both coefficients compared to the other form of
misspecification.

When the failure and censoring times are generated from Weibull distributions (Tables
7-10), all methods produce similar results to those generated with exponential failure and
censoring times. This is reasonable, because PMM and NNMI do not need to specify the
underlying distribution of failure and censoring times while performing estimation.

PMM and NNMI manage variables with missing data with high missing rate better
than standard CC analysis. They produce more accurate coeflicient estimates with reason-
able standard errors. Also, NNMI proved to be quite robust to misspecification when the
working logistic regression model for missing probability was misspecified either with Z
or Y missing.
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Chapter 6

Conclusion

In this study we investigated the performance of complete case analysis and two multiple
imputation methods on various missing rates. The simulation results showed that CC
analysis breaks down at about 30% missing rate, PMM breaks down at about 45% and
NNMI seems to be the most consistent method in all missing rates. On lower missing
rates and when having small sample situations, PMM estimates were better than those of
NNMI. NNMI estimates were precise enough even when the working logistic regression
model for missing probability was misspecified. Furthermore, both multiple imputation
methods had no problem estimating values either from Exponential or from Weibull failure
and censoring times, performing the same.

The sample depends on how high the missing rate will be. The sample affects the num-
ber of donors for the multiple imputation methods for each missing variable observation.
Increasing missing rate means an increase also on the size of the sample. Nevertheless, we
need to see how the methods perform even in small sample sizes in order for us to evaluate
the performance of PMM and NNMI.

The missingness mechanism assumed in this study depends on the observed data (MAR
mechanism). In some cases the missingness may very well depend on some unobserved
data (MNAR mechanism). A possible way to figure the impact of the unobserved data is
by performing sensitivity analysis. The results will indicate which mechanism should be
followed in the study. Violation of the MAR assumption in this study may not affect the
results because of the nature of the multiple imputation methods being semi-parametric
(PMM) and non-parametric (NNMI).

Although, can be quite challenging and tough, a study can be conducted comparing
complete case analysis (CC), predictive mean matching PMM and nearest neighbor mul-
tiple imputation (NNMI) to show if the same results stand when more than one variable is
subject to missing under the MAR mechanism.
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Appendix A

Matrices with Exponential Times

Table A.1l:

A

~Y

Uniform[0,1],T

~Y

Exponential [¢™?)

X—1.2Z]7 C

~Y

Ezponential[e X012 X ~  Bernoullilp(Z) = Toommosz) 0 =
Bernoulli[p(Z, Y) - 1+eln(5.3)-10—3ASZ—OA8Y]

Method EST* SD? SE¢ RMSE? CR® EST SD SE  RMSE CR
N=100

FO 0.701 0.309 0.294 0.309 0939 -1.256 0.492 0471 0496 0.944
CC 0.735 0.324 0310 0.327 0952 -1.340 0.526 0.504 0.544 0.943
NNMI,; (0.8,0.2) 0.815 0322 0316 0344 0900 -1.182 0.497 0485 0.497 0.896
NNMI,(0.8,0.2) 0.814 0.315 0.314 0.338 0917 -1.184 0.498 0.485 0.499 0.895
NNMI;(0.8,0.2) 0.803 0326 0311 0344 0915 -1.168 0.505 0.479 0.506 0.877
NNMI,;(0.2,0.8) 0.817 0322 0316 0345 0933 -1.182 0.502 0485 0.502 0.896
NNMI,(0.2,0.8) 0.820 0.300 0.311 0.326 0932 -1.189 0.505 0.482 0.505 0.895
NNMI;(0.2,0.8) 0.793 0325 0314 0341 0933 -1.158 0.503 0.480 0.505 0.879
PMM 0.730 0.322 0.295 0.324 0925 -1.206 0.473 0.470 0473 0.948
N=500

FO 0.694 0.133 0.128 0.133 0945 -1.198 0.197 0.202 0.197 0.957
CC 0.715 0.139 0.134 0.141 0940 -1.271 0.211 0.215 0.223 0.941
NNMIL;(0.8,0.2) 0.686 0.142 0.135 0.142 0942 -1.193 0.184 0.206 0.184 0.974
NNMI(0.8,0.2) 0.686 0.141 0.134 0.141 0941 -1.196 0.183 0.206 0.183 0.985
NNMI;(0.8,0.2) 0.674 0.140 0.134 0.141 0.941 -1.181 0.183 0.204 0.184 0.972
NNMI,;(0.2,0.8) 0.689 0.141 0.138 0.141 0962 -1.187 0.184 0.206 0.185 0.973
NNMI;(0.2,0.8) 0.692 0.138 0.135 0.139 0942 -1.196 0.183 0.205 0.183 0.979
NNMI;5(0.2,0.8) 0.660 0.136 0.134 0.140 0949 -1.169 0.182 0.203 0.185 0.978
PMM 0.695 0.145 0.128 0.145 0907 -1.185 0.207 0.202 0.208 0.947

Note:Censoring rate:0.35; Missing rate:0.10.
@ Average of 1000 point estimates.

bEmpirical standard deviation.

¢ Average estimated standard error.
dRoot mean square error:square root of bias+S.D2.
¢Coverage rate of 1000 95% confidence intervals.
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Table A.2:

Z

~Y

Uniforml0,1],T

Y

Exponentialle

ln(2)X—1.2Z]’ C

~

Ezponential[e3XT02] X~ Bernoulli[p(Z) = ooz Oa =
Bernoullilp(Z,Y) = —msarez=ay]

Method EST* SD? SE¢ RMSEY CR® EST SD SE RMSE CR
N=100

FO 0.701 0.309 0.294 0.309 0939 -1.256 0.492 0.471 0.496 0.944
CC 0.836 0.362 0.348 0.389 0941 -1.155 0.613 0.571 0.615 0.940
NNMIL(0.8,0.2) 0.737 0.398 0.389 0.401 0936 -1.155 0.491 0.503 0.493 0.946
NNMI,(0.8,0.2) 0.736 0.380 0.376 0383 0.967 -1.172 0.503 0.507 0.503 0.947
NNMI;(0.8,0.2) 0.722 0399 0.384 0.400 0.944 -1.151 0495 0.501 0.498 0.946
NNMI,;(0.2,0.8) 0.711 0.402 0408 0.402 0.940 -1.132 0.484 0.501 0.489 0.947
NNMI;(0.2,0.8) 0.743 0351 0362 0.354 0980 -1.173 0495 0505 0.496 0.951
NNMI;(0.2,0.8) 0.687 0.416 0.397 0.416 0946 -1.116 0.489 0.499 0.496 0.946
PMM 0.777 0.441 0.298 0449 0.820 -1.151 0.501 0.469 0.504 0.931
N=500

FO 0.694 0.133 0.128 0.133 0945 -1.198 0.197 0.202 0.197 0.957
CC 0.824 0.149 0.148 0.198 0.862 -1.124 0.244 0.242 0.256 0.938
NNMI,;(0.8,0.2) 0.708 0.173 0.174 0.174 0.959 -1.151 0.210 0.216 0.216 0.937
NNMI,(0.8,0.2) 0.710 0.154 0.159 0.155 0955 -1.176 0.214 0.218 0.215 0.944
NNMI;(0.8,0.2) 0.689 0.162 0.167 0.162 0.964 -1.142 0.211 0.213 0.218 0.928
NNMI,;(0.2,0.8) 0.685 0.192 0.192 0.192 0.954 -1.121 0.205 0.212 0.220 0.921
NNMI;(0.2,0.8) 0.723 0.148 0.154 0.151 0.953 -1.178 0.211 0.216 0.212 0.943
NNMI;(0.2,0.8) 0.651 0.179 0.179 0.183 0.939 -1.115 0.206 0.209 0.222 0.919
PMM 0.697 0.172 0.127 0.172 0.866 -1.148 0.215 0.201 0.221 0.925

Note:Censoring rate:0.35; Missing rate:0.30.
@ Average of 1000 point estimates.

YEmpirical standard deviation.

¢ Average estimated standard error.
@Root mean square error:square root of bias+SD?.
¢Coverage rate of 1000 95% confidence intervals.
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Table A.3:

A

~

Uniforml0,1],T

Y

Exponential ¢!

n(2)X—1.QZ] C

~J

Exponential[e ** 0] X~ Bernoullilp(Z) =  i{raom=sz)i0e =
Bernoulli[p(Z,Y) = froravosz=ar]

Method EST® SD’ SE¢ RMSE? CR® EST SD SE RMSE CR
N=100

FO 0.701 0.309 0.294 0.309 0939 -1.256 0.492 0471 0496 0.944
CC 0.862 0.425 0402 0458 0936 -0.873 0.716 0.664 0.787 0.901
NNMIL;(0.8,0.2) 0.825 0.495 0458 0.512 0957 -1.223 0.515 0.534 0.515 0.976
NNMI;(0.8,0.2) 0.828 0.498 0461 0516 0.957 -1.239 0.534 0.544 0.536 0.975
NNMI3(0.8,0.2) 0.820 0.506 0.457 0.521 0956 -1.221 0.514 0.537 0.515 0.995
NNMI;(0.2,0.8) 0.761 0.490 0472 0.495 0.998 -1.170 0.495 0.525 0.495 0.975
NNMI,(0.2,0.8) 0.809 0.431 0420 0.446 0979 -1.230 0.500 0.545 0.500 0.997
NNMI;5(0.2,0.8) 0.726 0.500 0477 0.501 0977 -1.155 0490 0.521 0492 0.975
PMM 0.829 0.541 0.300 0.558 0.707 -1.134 0.518 0.470 0.523 0.927
N=500

FO 0.694 0.133 0.128 0.133 0945 -1.198 0.197 0.202 0.197 0.957
CC 0.846 0.168 0.169 0.228 0.866 -0.844 0.289 0.276 0458 0.719
NNMIL;(0.8,0.2) 0.750 0.203 0.204 0.210 0955 -1.132 0.218 0.224 0.228 0.943
NNMI;(0.8,0.2) 0.755 0.184 0.182 0.194 0.941 -1.161 0.220 0.229 0.223 0.957
NNMI3(0.8,0.2) 0.742 0.198 0.200 0.204 0959 -1.128 0.214 0.223 0.226 0.948
NNMI;(0.2,0.8) 0.702 0.223 0.225 0.223 0980 -1.091 0.207 0.217 0.233 0.924
NNMI,(0.2,0.8) 0.760 0.172 0.175 0.185 0950 -1.152 0.211 0.223 0.216 0.961
NNMI5(0.2,0.8) 0.686 0.216 0.217 0.216 0962 -1.091 0.207 0.216 0.234 0.915
PMM 0.731 0.205 0.127 0.209 0.788 -1.129 0.223 0.201 0.234 0.901

Note:Censoring rate:0.35; Missing rate:0.45.
@ Average of 1000 point estimates.

bEmpirical standard deviation.

¢ Average estimated standard error.
4Root mean square error:square root of bias+S.D?.
¢Coverage rate of 1000 95% confidence intervals.
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Table A.4:

Z

~

Uniforml0,1],T

~

Exponentialle

ln(2)X—1.2Z]7 C

~

Exponentialle”>**97] X~ Bernoullilp(Z) =  i{raom=osz)0e =
Bernoulli[p(Z,Y) = W]

Method EST* SD! SE¢ RMSE? CR® EST SD SE  RMSE CR
N=100

FO 0.701 0.309 0.294 0.309 0939 -1.256 0.492 0471 0496 0.944
CC 0.748 1.357 1354 1.358 0942 -2.065 0973 0912 1302 0.874
NNMIL(0.8,0.2) 1.075 2.044 4.105 2.079 0959 -1.207 0.537 0.499 0.537 0.938
NNMI;(0.8,0.2) 1.120 2.026 4.101 2.070 0.960 -1.238 0.531 0.499 0.532 0.940
NNMI3(0.8,0.2) 1.045 2.043 4.106 2.073 0982 -1.195 0.536 0.499 0.536 0.938
NNMI;(0.2,0.8) 0.764 1.062 2.694 1.065 0.982 -1.179 0.517 0491 0.517 0.959
NNMI,(0.2,0.8) 0.960 1.660 3.802 1.681 0963 -1.237 0.522 0.497 0.523 0.949
NNMI3(0.2,0.8) 0.793 1.544 3.521 1.547 0959 -1.159 0.522 0.491 0.523 0.948
PMM 0.965 1471 239 1496 0.712 -1.226 0.514 0.473 0.515 0.926
N=500

FO 0.694 0.133 0.128 0.133 0945 -1.198 0.197 0.202 0.197 0.957
CC 0.639 0.259 0.232 0.264 00915 -1.819 0.364 0.357 0.718 0.592
NNMIL(0.8,0.2) 0.708 0.262 0.249 0.263 0937 -1.191 0.203 0.213 0.203 0.965
NNMI,(0.8,0.2) 0.728 0.231 0.223 0.234 0.956 -1.202 0.200 0.211 0.200 0.976
NNMI;3(0.8,0.2) 0.707 0.255 0.244 0.256 0931 -1.190 0.201 0.212 0.202 0.976
NNMI;(0.2,0.8) 0.694 0.272 0.255 0.272 0935 -1.178 0.200 0.212 0.201 0.975
NNMI;(0.2,0.8) 0.766 0.217 0.209 0.229 0933 -1.214 0.199 0.211 0.200 0.972
NNMI;3(0.2,0.8) 0.685 0.260 0.244 0.260 0948 -1.177 0.197 0.211 0.198 0.977
PMM 0.752 0.274 0.131 0.280 0.662 -1.214 0.218 0.203 0.218 0.931

Note:Censoring rate:0.35; Missing rate:0.65.
@ Average of 1000 point estimates.

bEmpirical standard deviation.

¢ Average estimated standard error.
dRoot mean square error:square root of bias+SD?.
¢Coverage rate of 1000 95% confidence intervals.
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Appendix B

Matrices with Weibull Times

Table B.1: Z ~ Uniform[0,1],T ~ Weibull[e™®X-12Z 15| C ~
Weibull[e™3X1012 1.4], X ~  Bernoullijp(Z) =  ——5=052),02 =

14€0-25—0.5Z

Bernoulli[p(Z,Y) = W]

Method EST® SD® SE° RMSE? CR® EST SD SE  RMSE CR
N=100

FO 0.702 0.304 0.293 0.304 0941 -1.227 0.483 0.463 0.484 0.939
CC 0.849 0.312 0.306 0.349 0927 -1.237 0.527 0.502 0.528 0.946

NNMI,;(0.8,0.2) 0.766 0.327 0.323 0336 0959 -1.222 0.486 0.480 0.486 0.951
NNMI,(0.8,0.2) 0.768 0.311 0.315 0320 0960 -1.236 0.484 0.482 0.485 0.957
NNMI;3(0.8,0.2) 0.739 0.322 0316 0326 0955 -1.205 0.483 0.474 0.483 0.955
NNMI,; (0.2,0.8) 0.756 0.332 0336 0338 0972 -1.196 0479 0.483 0479 0.955
NNMI(0.2,0.8) 0.778 0.299 0316 0311 0.968 -1.232 0480 0.483 0.481 0.957
NNMI3(0.2,0.8) 0.726 0.337 0326 0339 0949 -1.178 0479 0476 0.479 0.959

PMM 0.748 0.338 0.293 0342 0921 -1.207 0.489 0.465 0.490 0.943
N=500

FO 0.692 0.133 0.128 0.133 0944 -1.208 0.201 0.200 0.201 0.953
CC 0.828 0.142 0.133 0.196 0.816 -1.217 0.226 0.216 0.226 0.940

NNMI,;(0.8,0.2) 0.699 0.136 0.138 0.136 0954 -1.169 0.206 0.203 0.208 0.930
NNMIy(0.8,0.2) 0.711 0.135 0.135 0.136 0945 -1.190 0.206 0.215 0.206 0.945
NNMI;3(0.8,0.2) 0.686 0.131 0.135 0.131 0952 -1.161 0.202 0.202 0.209 0.919
NNMI,;(0.2,0.8) 0.690 0.142 0.163 0.142 0950 -1.149 0.204 0.203 0.210 0.922
NNMI,(0.2,0.8) 0.726 0.132 0.134 0.136  0.947 -1.197 0.206 0.205 0.206 0.944
NNMI;(0.2,0.8) 0.672 0.133 0.137 0.134 0954 -1.149 0.204 0.201 0.210 0.920
PMM 0.706 0.137 0.127 0.137 0923 -1.200 0.211 0.200 0.211 0.945

Note:Censoring rate:0.35; Missing rate:0.10.

@ Average of 1000 point estimates.

bEmpirical standard deviation.

¢ Average estimated standard error.

4Root mean square error:square root of bias+SD?.
¢Coverage rate of 1000 95% confidence intervals.
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Table B.2:

Z

~Y

Uniform|0,1],T  ~

Weibull[em?X-122 15] C  ~

Weibull[e7X*017 14], X~ Bernoullilp(Z) =  i7gm=osz)i0e =
Bernoulli[p(Z,Y) = W]

Method EST* SD! SE¢ RMSE? CR® EST SD SE RMSE CR
N=100

FO 0.702 0.304 0.293 0304 0941 -1.227 0.483 0.463 0.484 0.939
CC 0911 0.350 0.340 0413 0920 -0.992 0.596 0.563 0.631 0.923
NNMIL(0.8,0.2) 0.877 0.194 0365 0.267 0994 -1.295 0488 0.482 0.497 0.995
NNMI,(0.8,0.2) 0.869 0.177 0.327 0.250 0994 -1.321 0.504 0.485 0.519 0.995
NNMI;3(0.8,0.2) 0.867 0.210 0.328 0.273 0993 -1.286 0.484 0475 0491 0.997
NNMI;(0.2,0.8) 0.895 0.229 0373 0305 0.996 -1.283 0455 0484 0462 0.995
NNMI;(0.2,0.8) 0.853 0.153 0.321 0.222 0996 -1.317 0.507 0.485 0.521 0.993
NNMI;3(0.2,0.8) 0.799 0.270 0336 0.290 0991 -1.208 0.465 0470 0.465 0.995
PMM 0.821 0.402 0.293 0422 0.839 -1.187 0499 0462 0.499 0.943
N=500

FO 0.692 0.133 0.128 0.133 0944 -1.208 0.201 0.200 0.201 0.953
CC 0.893 0.151 0.146 0.251 0.722 -0.957 0.251 0.239 0.349 0.799
NNMIL(0.8,0.2) 0.727 0.137 0.155 0.141 0962 -1.162 0.169 0.207 0.173  0.985
NNMI,(0.8,0.2) 0.748 0.128 0.145 0.139 0951 -1.199 0.166 0.212 0.166 0.985
NNMI;3(0.8,0.2) 0.720 0.134 0.151 0.137 0962 -1.162 0.169 0.206 0.0.173 0.986
NNMI,(0.2,0.8) 0.704 0.141 0.165 0.141 0969 -1.136 0.170 0.206 0.181 0.964
NNMI;(0.2,0.8) 0.770 0.120 0.143 0.143 0961 -1.197 0.171 0.212 0.171 0.985
NNMI;3(0.2,0.8) 0.703 0.140 0.164 0.141 0984 -1.142 0.171 0.206 0.180 0.965
PMM 0.731 0.161 0.126 0.166 0.871 -1.192 0.202 0.200 0.202 0.942

Note:Censoring rate:0.35; Missing rate:0.30.
@ Average of 1000 point estimates.

bEmpirical standard deviation.

¢ Average estimated standard error.

dRoot mean square error:square root of bias+SD?.

¢Coverage rate of 1000 95% confidence intervals.
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Table B.3:

Z

~

Uniforml[0,1],T ~

Weibull[em?X =122 15] ¢~

Weibull[e7?X*017 14], X~ Bernoullilp(Z) =  irgm=osz)i0a =
Bernoulli[p(Z,Y) = frorarosz=ar]

Method EST* SD’ SE¢ RMSE? CR® EST SD SE RMSE CR
N=100

FO 0.702 0.304 0.293 0.304 0941 -1.227 0.483 0.463 0.484 0.939
CC 0.922 0403 0381 0464 0914 -0.893 0.691 0.638 0.756 0.906
NNMIL;(0.8,0.2) 0.862 0.413 0401 0446 0939 -1.183 0414 0.504 0414 0.966
NNMI;(0.8,0.2) 0.891 0376 0386 0.425 0941 -1.233 0437 0520 0438 0.976
NNMI;3(0.8,0.2) 0.850 0.408 0.399 0438 0940 -1.176 0.417 0.505 0.418 0.966
NNMI;(0.2,0.8) 0.853 0436 0428 0464 0.933 -1.140 0405 0.500 0.409 0.975
NNMI,(0.2,0.8) 0.859 0.343 0.375 0381 0981 -1.204 0.420 0.522 0420 0.977
NNMI3(0.2,0.8) 0.849 0.434 0428 0461 0953 -1.131 0408 0.499 0413 0.974
PMM 0.884 0478 0.296 0.515 0.778 -1.195 0.520 0.464 0.520 0.923
N=500

FO 0.692 0.133 0.128 0.133 0944 -1.208 0.201 0.200 0.201 0.953
CC 0916 0.169 0.162 0.280 0.717 -0.846 0.269 0.267 0.444 0.715
NNMIL(0.8,0.2) 0.758 0.160 0.179 0.172 0990 -1.177 0.211 0.213 0.212 0.970
NNMI;(0.8,0.2) 0.776 0.141 0.154 0.163 0.950 -1.213 0.206 0.220 0.206 0.970
NNMI3(0.8,0.2) 0.748 0.159 0.172 0.168 0970 -1.177 0.212 0.212 0.0.213 0.951
NNMI,(0.2,0.8) 0.734 0.175 0.198 0.180 0.998 -1.139 0.204 0.210 0.212 0.949
NNMI,(0.2,0.8) 0.790 0.127 0.152 0.160 0942 -1.209 0.208 0.218 0.209 0.970
NNMI3(0.2,0.8) 0.726 0.173 0.191 0.177 0988 -1.133 0.206 0.210 0.214 0.971
PMM 0.753 0.118 0.126 0.188 0.816 -1.176 0.213 0.200 0.215 0.922

Note:Censoring rate:0.35; Missing rate:0.45.
@ Average of 1000 point estimates.

bEmpirical standard deviation.

¢ Average estimated standard error.

4Root mean square error:square root of bias+S.D?.

¢Coverage rate of 1000 95% confidence intervals.

29



Table B.4:

Z

~Y

Uniforml[0,1],T

~Y

Weibull[e™#X-1-22 1.5] C

~

Weibull[e 3X 1017 1 4], X ~ Bernoulli[p(Z) = ooz Oa =
Bernoulli[p(Z,Y) = W]

Method EST* SD’ SE¢ RMSE? CR® EST SD SE RMSE CR
N=100

FO 0.702 0.304 0.293 0304 0941 -1.227 0.483 0.463 0.484 0.939
CC 0.800 2.107 9.868 2.110 0932 -1.714 0.992 0.897 1.118 0.923
NNMI,;(0.8,0.2) 0.691 0516 0.689 0.516 0.991 -1.235 0438 0486 0.440 0.997
NNMI,(0.8,0.2) 0.794 0.513 0.585 0.523 0946 -1.250 0.439 0479 0.442 0.998
NNMI3(0.8,0.2) 0.695 0.500 0.680 0.500 0.991 -1.234 0436 0490 0.437 0.997
NNMI,;(0.2,0.8) 0.578 0.49 0.655 0.505 0.946 -1.209 0.443 0.487 0.443 0.997
NNMI;(0.2,0.8) 0.700 0.429 0.524 0.429 0.952 -1.251 0423 0.583 0426 0.998
NNMI;(0.2,0.8) 0.588 0.490 0.656 0.501 0.994 -1.206 0.443 0.481 0.443 0.996
PMM 0.846 0.420 0.293 0447 0.821 -1.166 0.483 0.463 0.484 0.938
N=500

FO 0.692 0.133 0128 0.133 0944 -1208 0201 0200 0201 0953
CC 0.544 0.263 0.251 0302 0.885 -1.577 0.373 0.358 0.530 0.817
NNMI;(0.8,0.2) 0.706 0.262 0.268 0.262 0.946 -1.194 0.199 0.210 0.199 0.967
NNMI,(0.8,0.2) 0.740 0.226 0.239 0.231 0967 -1.208 0.202 0.210 0.202 0.962
NNMI;(0.8,0.2) 0.704 0.256 0.266 0.256 0.945 -1.193 0.199 0.209 0.0.199 0.969
NNMIL,;(0.2,0.8) 0.701 0.270 0.272 0.270 0.949 -1.182 0.197 0.208 0.198 0.962
NNMI;(0.2,0.8) 0.799 0.218 0.229 0.242 0.946 -1.222 0.203 0.209 0.205 0.962
NNMI;(0.2,0.8) 0.696 0.261 0.271 0.261 0.948 -1.181 0.195 0.208 0.196 0.968
PMM 0.743 0.162 0.126 0.169 0.851 -1.170 0.214 0.199 0.216 0.932

Note:Censoring rate:0.35; Missing rate:0.65.
@ Average of 1000 point estimates.

YEmpirical standard deviation.

¢ Average estimated standard error.
4Root mean square error:square root of bias+S.D?2.
¢Coverage rate of 1000 95% confidence intervals.
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