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Introduction

Randomized clinical trials are considered the gold standard for comparing
two or more treatments, regarding an outcome of clinical interest, but they
are typically expensive in terms of time and money.

To mitigate this cost, the efficiency of clinical trials can be improved by
incorporating baseline information.

The aim of this Master’s dissertation is to showcase the use of machine
learning algorithms in order to augment the simple unadsjusted treatment
estimator, by involving a function of baseline covariates.
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Introduction to Clinical Trials

Clinical trials are considered one of the best experimental approaches to
compare two or more medical treatments. The main goal of a randomized
clinical trial, is to assess the effectiveness of an intervention (treatment),
as well as to identify possible harms that may arise, as a result of this
intervention (Friedman, et al., 2015).

The analysis of clinical trial data is primarily based on the outcome
and the treatment indicator.

The methods for the analysis of clinical trial data, differ regarding the
nature of the outcome variable, such as difference in the means for
continuous response, Log-Odds ratio for binary response, Survival
Analysis etc.

Along with them, many baseline covariates may be records for each
subject which may have a high association with the outcome.

In these cases, we can improve the precision and efficiency by
adjusting our estimators, using this information.
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Introduction to Clinical Trials - Key Aspects

A clinical trial refers to an experiment that it is being performed, in the
sense that there must be implemented one or more intervention techniques
(in contrast to observational studies). The key aspects of a typical clinical
trial study are:

The comparison of the effect measure is performed between two or
more different groups of subjects, out of which one is the control
group and the others are the treatment groups on which the
intervention is being performed.

A randomization process takes place, based on which each one of the
participants of the study, are assigned to the different groups of
control and treatment.

The number of participants that will participate in the clinical trial
sample size.The calculation of the sample size plays an important role
in the design of the study, as without a proper sample size, the study
lacks the statistical power to detect the effects of the intervention
(Friedman, et al., 2015).
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Introduction to Clinical Trials - Baseline Information

In clinical trials, baseline refers as the status of a participant patient,
before the start of the intervention (Friedman, et al., 2015).

The 4 basic uses of baseline data, as described by (Friedman, et al., 2015)
are:

1 Description of trial participants: refers to the need to determine to
which population the findings of the clinical trial study apply.

2 Baseline Comparability: refers to the need to evaluate whether the
study groups were comparable before the start of the intervention.

3 Controlling for imbalances in the Analysis: refers to the need to
“balance out” prognostic factors that are not controlled in the
randomization process.

4 Subgrouping: refers to the need to analyze data on the basis of a
specific subgroup that may benefit more / less from the intervention.
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Statistical Framework

We will consider a typical randomized clinical trial which aims to identify
the treatment effect, comparing 2 separate groups (control and
treatment). To our context, the point of interest is the analysis of a
continuous response outcome. As a result, we base our inference on the
difference between the means of each group.

Let Y denote the continuous response variable of the clinical trial.

Let T denote the treatment indicator where T = 1 refers to
treatment, with success probability π, and T = 0 refers to the control
group with probability 1− π.

Let X denote a vector of baseline covariates, including a baseline
measurement of Y .

Note that due to the randomization process T and X are independent
of each other, denoted by T ⊥ X.
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Statistical Framework

In that respect, for a clinical trial with n participants, we can express the
observed data as (Yi ,Ti ,Xi ) and i = 1, ..., n independent and identically
distributed across i.

Let θ denote the marginal effect measure of T = 1 versus T = 0, which is
the main interest of the analysis.

Under this framework, a common choice for θ is the difference in the
group means noted as

θ = µ1 − µ0

Where
µt = E (Y |T = t), t = 0, 1
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Statistical Framework

The main question that arises is how can we estimate θ in a consistent and
efficient way.

An initial thought is to estimate the mean difference

θ0 = E (Y |T = 1)− E (Y |T = 0)

or
E (Y |T ) = β1 + β2I (T = 1)

where
β1 = E (Y |T = 0)

, and and the comparison of the difference in means of each treatment is
represented directly by β2 and I (.) is the indicator function, and the
treatment effect β2 is defined as the unconditional effect of treatment
relative to control.
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Statistical Framework

A natural choice for an estimator like described above is the simple
unadjusted estimator:

Where π = P(T = 1) and , which is a consistent estimate of θ0
The standard error of the unadjusted estimator can be estimated as
follows:
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Covariate Adjustment Methods

The unadjusted estimator method provides an unbiased and consistent
estimate of the treatment effect, although it is a widely accepted method
among the international bibliography, many authors have proposed other
methods in order to obtain a more efficient estimator for θ0 by adjusting
the estimator with the use of baseline covariates.

First, we do not make any assumption about the join distribution of
(Yi ,Ti ,Xi ), i = 1, ..., n such as normality, equal variances etc.

The only assumption which is the basis for further development is, as we
mentioned earlier, that T and X are independent T ⊥ X.
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Covariate Adjustment Methods

By using the semiparametric theory, (Tsiatis, 2008) showed that all
conistent and asymptotically normal estimators θ̂ can by demonstrated by:

√
n(θ̂ − θ) =

1√
n

n∑
i=1

ψ(Ti ,Yi ) + op(1) (1)

where ψ is the influence function, which does not involve any information
about the baseline covariates (independent). In addition, for such an
estimator, the influence function can be demonstrated by:

ψ(T ,Y ) =
T (Y − µ1)

π
− (1− T )(Y − µ0)

1− π
(2)
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Covariate Adjustment Methods

Bases on the semiparametric theory, (Tsiatis, et al., 2008) and (Tian, et
al., 2012) showed than an augmented estimator for θ can be obtained by:

θ̂(α) = θ̃ − 1

n

n∑
i=1

(Ti − π)α(Xi ) (3)

where α(X) is any arbitrary function of X, for which E (α(X))2 <∞

In this context, one can view α(X) as augmenting the simple unadjusted
estimator. In addition, due to randomization (Tsiatis et at., 2008) showed
in the Appendix that the augmentation term converges in probability to
zero, and as a result, the augmented estimator θ̂(α) is consistent for θ for
any function of α(X)
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Covariate Adjustment - Defining the Optimal Estimator

Having defined the form of an augmented estimator, the next step is to
find an optimal augmented estimator, where the optimality can be
expressed as the estimator with the smaller variance.

Among all the estimators which are estimators which are equal or
asymptotically equivalent to (3), the estimator with the smallest variance
can be obtained when α(Xi ) is assumed to be a linear function like:

α(t)(Xi ) = E (Yi |Ti = t,Xi ), t = 0, 1 (4)

In this context, the optimal estimator can be derived from the true
regression relationship of Y on X for each treatment
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Covariate Adjustment - Learning the Optimal Estimator

Having defined the form of the optimal estimator, a logical question that
arises is how can we estimate the optimal function αopt .

As (Zhang & Ma, 2019) pointed, in reality, “the optimal function is
unknown and must be estimated from the data”, and showed that under
some mild regularity conditions:

√
n(θ̂(α̂)− θ) =

1√
n

n∑
i=1

{ψ(Ti ,Yi )− (Ti − π)α∗(Xi )}+ op(1) (5)

Where α̂ is a generic estimator with probability limit α∗, althoughα∗ is not
equal to αopt . Based on this asymptotic result, one can find different ways
to estimate α̂.
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Covariate Adjustment - Learning the Optimal Estimator

Following the previous results (Zhang & Ma, 2019) suggested that we
obtain α̂, by using the regression expression:

α(X) = η(1, x)− η(0, x) (6)

Where
η(t, x) = E{ψ(T ,Y )|T = t,X = x} (7)

Due to the fact that this regression function is complicated as the
ψ(T ,Y ) is not fully observed and depends on unknown parameters (µ1
and µ0). One possible solution to this problem, is to obtain an estimate
ψ̂(T ,Y ) using the empirical estimates of (µ1 and µ0).
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Covariate Adjustment - Learning the Optimal Estimator

In order to estimate η̂(t, x), we can use various machine learning
algorithms, treating (Ti ,Xi ) as input, and ψ̂(T ,Y ) as the response
(Zhang & Ma, 2019)

Once η̂(t, x) is obtained, the corresponding estimate of the augmentation
term is

α̂(X) = η̂(1, x)− η̂(0, x) (8)
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Covariate Adjustment - Asymptotic Variance

Based on the above formulation, the asymptotic variance of the
augmented estimator θ̂(α) can be epressed as:

E{ψ(T ,Y )− (T − π)α(X)}2 (9)

Having a sample version which follows:

N∑
i=1

{ψ̂(Ti ,Yi )− (Ti − π)α(Xi )}2 (10)
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Clinical Trial Study ACTG175

To demonstrate the covariate augmentation methods we described earlier,
we used a dataset which is based on the real clinical trial study ACTG175
(Hammer et al., 1996).

The aim of the study was to evaluate 4 different treatments in adults
with HIV-1, with CD4 cell counts between 200 and 500 per cubic
millimeter

The primary study end point was a >50 percent decline in the CD4
cell count, an event indicating progression to the acquired
immunodeficiency syndrome (AIDS), or death.

The response outcome is CD4 cell count at 20± 5 weeks (cd420).

Baseline covariates are: CD4, CD8 cell count , age, weight, Karnofksy
Performance Scale Index, hemophilia, homosexual activity (homo),
race, history of intravenous drug use, gender, antiretroviral history
and symptomatic indicator.
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Clinical Trial Study ACTG175

The result of the study were:

Antiretroviral Therapy can improve survival in patients with CD4 cells
below 500 per cubic millimeter

All three treatments were superior to the control (treatment with
zidovudine alone), but there weren’t any significant differences
between the 3.

Based on the above result, and following the example of (Tsiatis et al.,
2008), we will consider 2 different treatment groups: zidovudine
monotherapy (ZDV) with n0 = 532 patients, and all the other groups
combined n1 = 1607 patients (π = 0.75).
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Exploratory Data Analysis ACTG175

The ACTG175 dataset is freely available via the R package speff2trial.
The dataset consists of 2139 patients, who n0 = 532 patients are assigned
in the control group, and n1 = 1607 patients are assigned to all the other
treatments combined.

We focus on the analysis of the difference in the means of the outcome
variable CD420. Below, we present a table with some summary statistics
of the response variable:

Table: Summary Statistics of Response Varialbe

Group N Mean SD Median

All 2139 371.31 144.63 353

Treatment 1607 382.95 147.08 364
Control 532 336.14 130.96 330.5

Dimitrios Moliotis (AUEB) MSc in Statistics - Dissertation September 30, 2020 21 / 40



Exploratory Data Analysis ACTG175

Based on the summary statistics, it is obvious that there exists some skew
between the different groups, while, there are evidence of differences
between the means.

We can calculate the simple unadjusted estimator as: θ̂unadjusted = 46.81
and se = 6.76
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Augmentation Algorithms - 1

Below we briefly present the augmentation method settings which we
fitted on the ACTG175 dataset.

LM: Linear Models including all terms

Backward - 2 : Fit linear models including all terms, squared terms
and two-way interactions and then used backward stepwise to select
the best models.

Lasso Regression: Fit lasso regression including all terms using the
GLMNET package (10 folds cross-validation).

Ridge Regression: Fit ridge regression including all terms using the
GLMNET package (10 folds cross-validation).
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Augmentation Algorithms - 2

Below we briefly present the augmentation method settings which we
fitted on the ACTG175 dataset.

Rpart: Fit recursive partitioning tree models including all terms using
the Rpart package.

Random Forest: Fit random forest models including all terms using
the RandomForest package (100 trees, 4 variables to randomly select
for each split).

Super Learner: Fit superlearner models including all terms using the
Super Learner package, and include models (LM, Lasso, Ridge, RPart,
Random Forest).
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Model Fitting

Below we briefly present the model fitting procedure, which is based on
(Tsiatis et al 2008), and follows the steps:.

1 Partition the data into the two sets determined by the randomized
treatment groups.

2 Based on each of group separately, develop models which try to
capture the true relationship of the data.

3 For each separate model, obtain the predicted values using the whole
dataset, η̂(t, x).

4 Calculate the augmented estimator using equation

α̂(X) = η̂(1, x)− η̂(0, x)
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Numerical Results - Present

Using the various augmentation algorithms we described earlier, we present
the table with the numerical results. The Relative Efficiency of each
estimator was calculated using:

Relative Efficiency =
(SE of unadjusted estimator)2

(SE of augmented estimator)2

Table: Numerical Results of Augmentation Algorithms on ACTG175 data

Estimator Estimate Standard Error Relative Efficiency

Unadjusted 46.810 6.760 1
LM - All terms 49.818 5.101 1.755
Backward - 2 53.647 4.896 1.906
Lasso – 10 folds – all terms 49.579 5.118 1.744
Ridge – 10 folds – all terms 49.637 5.108 1.751
Rpart – all terms 52.133 4.982 1.84
Random Forest, 4 variables, 100 trees 52.045 3.690 3.354
Super Learner 51.02 4.68 2.07
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Numerical Results - Remarks

Based on the above numerical results of the various covariate adjustment
techniques, we conclude that:

All of the proposed methods offer significant efficiency boost over the
unadjusted estimator.

The methods which used linear models (LM, and Backward) despite
the being more efficient that the unadjusted estimator, the
assumption of the models do not hold, which may result on
misleading SE.

The Random Forest Method, has the higher relative efficiency, but we
suspect that the result may be misleading as RF tends to product
overfitted models.

The real world application of such methods means that we can attain
the same level of precision, while reducing the sample size, even by
reducing it in half (RE ' 2).
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Simulation Study - Setup

In order to empirically evaluate and access the different covariate
adjustment methods, we performed a simulation study.

Our data simulation generating algorithm is based on the bootstrap
technique (Efron Tibshirani, 1986).

We took as the support set of the simulation to be the collection of
observed values (X,Y ) .

We consider a population of patients of N = 2139 with potential
outcomes Y (0) ≡ Y (1) and X the vector of baseline covariates with a
discrete joint probability distribution F as

F =
N∑
i=1

pi
δi

where pi ≥ 0 and
∑N

i=1 pi = 1
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Simulation Study - Setup

We consider a random sample of size nObs = 400 based on the above
population.

We denote Ti as the randomized treatment indicator for the ith
subject where

T ∼ Bernoulli(π)

and T ⊥ X

Our analysis will be based on nSim = 1000 simulations.
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Performance Measures - 1

In order to best compare the various agmentation techniques, we will
estimate some performance measures, as presented below:
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Performance Measures - 2
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Numerical Results - Present

We present the numerical results of the various augmentation algorithms
we described earlier, which were fitted in the simulated datasets. To
compare the methods, our main points of interest are the Bias of each
method, the Relative Efficiency RE, and the coverage probability CP
compared to the unadjusted estimator.

Table: Numerical Result of Simulation Data

Estimator Bias SE of Bias Emp SE RE CP

Unadjusted 0.122 0.442 13.997 1.000 0.948
LM - All terms 3.025 0.349 11.046 1.606 0.936
Lasso – 10 folds – all terms 2.651 0.347 10.982 1.624 0.939
Ridge – 10 folds – all terms 2.750 0.349 11.056 1.603 0.933
Rpart – all terms 4.190 0.359 11.364 1.517 0.927
Random Forest, mtry = 4, ntree= 100 3.781 0.347 10.999 1.619 0.938
Super Learner 3.569 0.484 10.822 1.672 0.938
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Numerical Results - Remarks

All of the augmentation techniques are at least 1.5 times more
efficient that the simple unadjusted estimator.

All of the proposed methods produce biased estimates when
compared to the unadjusted estimator.

The Super Learner algorithms produces the most efficient estimator.

Possible solutions to reduce the bias of the estimates, is to further
increase the number of simulations, as well as to incorporate another
external cross validation procedure, as showcased by (Zhang & Ma,
2019).
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Conclusion - Remarks A

We reviewed some covariate adjustment techniques which aim to
improve the efficiency of a randomized clinical trial, by incorporating
auxiliary baseline covariates.

The various methods include linear models (including stepwise
procedures), as well as machine learning algorithms like recursive
partitioning, Random Forest and the Super Learner algorithm.

Based on the application of these techniques on a real example
dataset, we saw that that they offered a great efficiency boost.

We examined the performance of these methods by performing a
simulation analysis.
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Conclusion - Remarks B

The two best methods on the real data, were Random Forest and
Super Learner, which offered a relative efficiency > 2.

The simulation analysis that we could achieve at least 1.5 gain in
efficiency by leveraging baseline covariate information

The Simulation analysis suggested that all of these techniques suffer
from high bias.
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Thank you for your attention !
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