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ABSTRACT

The rapid increase in the volume of the data, in recent years, makes the notion of
clustering and the extraction of useful information through it all the more important.
A special kind of data, which is applied to many fields such as politics, elections,
psychology, sports, market research, etc., is the ranking data. In particular, we are
going to work with partial ranking data, which is a very interesting and challenging
type of ranking data.

The main purpose of this Thesis, is the clustering of the voters of the FIFA Ballon
d’Or partial ranking datasets for the period 2010 — 2015. Our goal is to separate them
in different groups according to their preferences, for each one of the years in the
period under study. Moreover, we are going to attempt to distinguish possible voting
behavioral patterns through further analysis of the clustering results, and extrinsic
factors that could have affected the final preference of a voter. Also, we are going to
present the fundamental notions in the context of ranking data and provide ways for
visualizing and modeling partial ranking data.
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Chapter 1

Introduction

As we move forward in time, the data driven view has been introduced and adopted
from many industries throughout the planet. It is also observed, that this turn to data
and analytics, is making determined steps in the sports industry. The combination of
statistical methods with the usage of technology and big data tools, accompanied with
the knowledge of the sport, that is under research, can create insights of great
importance that are very helpful for the sports organizations. The last years more and
more teams and organizations are hiring data scientists in order to improve performance
and decision making that are about concerns around the matches (which player to put
in the game, which one should be substituted during the match, etc.) but also financial
concerns (players that are overpaid according to their performance, price of tickets,
segmentation of the fans in order to attract them in a better way, etc.). Examples of
leading sports associations and leagues, that are in the process of adopting the data
driven view, are the FIFA, NBA, American Association of Professional Baseball,
Premier League, Bundesliga, etc.

1.1 Fifa Ballon d’Or Voting System

One of the highest honor for a football player, is to be awarded with the FIFA Ballon
d’Or award. The Ballon d’Or is an annual football award presented by French news
magazine ‘France Football’. It is one of the oldest since it has been awarded back in
1956 and is considered as the most prestigious individual award for football players
[75]. The name of the award has been changed to FIFA Ballon d’Or , due to the
agreement that was made with FIFA for the merge of the Ballon d’Or with the ‘FIFA
World Player of the Year’. The agreement was made in 2010 and ended in 2016, when
the award reverted to its first name [75]. Since the period that we are going to examine
is 2010 — 2015, we refer to the award as FIFA Ballon d’Or.

The award is based on a voting procedure, from which the winner is declared. At first,
out of the professional football players that exist, FIFA selects 23 players, who thinks
that are the best 23 players in the world for this specific year that the competition takes
place. After that, this list of players is presented to the eligible voters and is made public.
The people who are entitled to vote are divided into three categories [18]:

1) the coaches of the national teams,
2) the captain of each registered country and
3) a group of journalists, limited to one per country.

Each of the three categories has the same electoral weight, notwithstanding the actual
sizes of the classes the voters represent [18]. There is not any restriction on whom an
eligible voter is able to vote, except the one that states that if a candidate is also eligible
to vote, he is prohibited to vote for himself. The eligible voters must choose the top 3
players out of the list in order of their preference. For each vote, the corresponding
points are given to the preferred player. The distribution of those points is the following:
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5 points for the first player, 3 points for the second player and 1 point for the third
player. Thus, the smaller the rank the more points that a player receives. Finally, the
player who receives the most points is awarded with the Ballon d’or. In case of draw,
the player with the most first — place votes gets the award. As someone can observe, we
start mention the word ‘rank’ and this is the kind of the data that we are going to work
with.

1.2 Ranking Data

Ranking data commonly arise from situations where it is desired to rank a set of
individuals or objects in accordance with some criterion [45]. This kind of data can be
observed directly or as a result from a ranking of a set of assigned or as a transformation
of continuous/discrete data. Examples of ranking data, in the literature, can be found in
politics, voting and elections, psychology, market research, medical treatments, house
reviews, horse racing, etc.

A definition of ranking of n objects, can be the following :

A ranking or permutation of n distinct objects is a vector of length n, with each
component corresponding to an object, and the value of each component being the rank
of that object, namely the quantity 1+ the number of other objects that are considered
superior, in either a qualitative or quantitative sense [66]. We use

n = [n(1),...,m(n)]

to denote this ranking or permutation. In terms of preference, an object that receives the
lowest rank is the most preferred among the others. The inverse situation of a ranking
is the ordering [66].

It is very important to make clear the difference between these two notions, because it
is essential to have data in the correct notation, ranking or ordering, that each modeling
algorithm needs as input. A definition of ordering could be the following :

An ordering or inverse permutation of n objects, labeled 1 to n, is a vector of length n,
with each component i giving the label of the object that has rank i,i = 1,...,n [66].
The ordering or inverse permutation associated with z is specified by the mapping
nl(G)=i if m(@) =j,i=1,...,n,j = 1,...,n [66]. In other words, it is a
permutation which, given an array of size n of integers in range from 1 to n, is obtained
by inserting position of an element at the position specified by the element value in the
array.

The ranking data can be partitioned to complete and incomplete rankings.

A complete ranking is a permutation, in which all the n objects of the set are ranked by
the judges. In the case of FIFA Ballon d’Or data, in case of a complete ranking, all the
23 players of the list should be assigned with a rank from the voters.

In some cases, though, incomplete ranking data are observed, especially when the
evaluation of an object is time consuming or takes much effort. In that case, instead of
ranking all objects of the set, each individual may be asked to rank the top q objects
only for g < t, called top q partial rankings [45]. This is exactly the case that we have
to face in analyzing the FIFA Ballon d’Or datasets. Since the voters are asked to rank



only the top 3 out of 23 players of the list, the ranking datasets that we are going to
work with, are typical top 3 partial rankings.

The presence of partial ranking data makes the analysis more challenging, in
comparison with the case of complete ranking data. First of all, the literature and the
software regarding incomplete ranking data is limited, in comparison with the
corresponding research and software for complete ranking data. This makes the
detection and implementation of algorithms, that can suit to this kind of data, more
difficult. It has to be pointed out that the missing positions in an incomplete permutation
are not missing data. In terms of interpretation purposes, they can be viewed as an
expression of preference, since they represent the non — preference of a judge to a
specific object. Thus, they have to be handled in such a way when the ranking is trying
to be interpreted. But, in what concerns clustering purposes or different kind of analysis,
the researcher has to detect appropriate methods for the estimation of the missing
positions in order to conduct inference.

Such algorithms, which have been constructed and presented in the literature, are in
great use on cases where incomplete rankings exist. These algorithms sometimes may
be complex and difficult to use, in compare with the classic non parametric approaches
for clustering complete ranking datasets. Also, some of such algorithms have a
computational burden, in terms of the needed time for the simulation and estimation of
the missing positions, which adds an extra challenge in the context of modeling partial
ranking datasets. Furthermore, the presence of partially ranked data is a very
challenging issue, in terms of visualizing them. This happens due to the fact that the
traditional methods for visualizing ranking data can note be used. Thus, we have to find
alternative ways and methods in order to achieve the graphical representation of such
rankings. Besides that, in analysis (e.g clustering) methods that require the use of
distance, the presence of such data is an obstacle since many distance metrics are not
able to be used because of the scaling. Thus, alternative paths of imputation of the
missing positions or different distance metrics have to be used.

1.3 The notion of Clustering

After presenting the type of data that we are going to work with, it is time to get a brief
overview of clustering, since this is the main purpose of the analysis that will take place.
There are plenty of definitions that try to explain what clustering is about:

We could define clustering as a technique which goal is, given a set of data points, to
find groups of observations which they ‘look similar’ within the cluster and are
‘different” from observations of different groups [36].

Clustering has an enormous amount of uses in a variety of industries. Some common
applications for clustering include marketing segmentation, social network analysis,
anomaly detection, image segmentation, search result grouping, etc. In the context of
ranking data, cluster analysis is performed usually in consumer questionnaires, voting
forms or other inquiries of preferences [41],[45]. Its main goal is to identify typical
groups of rank choices. After that, the further exploration, for trying to find
relationships that are based on the common characteristics that objects of the same
group have, lies on the researcher’s hand.



1.4 The Aims of Thesis

This Thesis contains eight chapters. In the second chapter, the fundamental classes of
models for ranking data are going to be described. Clustering models and models
regarding partial rankings, will be emphasized. In the third chapter, the transformation
of the raw ‘FIFA Ballon D’or’ datasets to partial rankings, are going to be presented.
Moreover, the fundamental descriptive statistics that are applied in such data are going
to be presented and implemented, in order to get a better understanding of the data. In
Chapter 4, we are going to present visualizations methods for ranking data. We start by
describing fundamental approaches for complete ranking data (e.g permutation
polytope) and consequently we present visualizations methods for partial ranking data
such as metric multidimensional scaling, multidimensional unfolding technique,
multidimensional preference analysis and we implement the non - metric
multidimensional scaling technique in order to graphically represent our data. The
fundamental objective of this Thesis is the clustering of the FIFA Ballon d’Or voters,
for each specific year of the period 2010 — 2015. Thus, in Chapters 5,6,7 we present
different clustering algorithms that can be applied to the data. In each of these chapters
there are two main sections. The first section contains the theoretical framework of the
method that is going to be used and in the second section, we apply the method on the
datasets for each year of the period under study. The goal of the applications is to detect
how these algorithms work out and to create groups of voters that have common
characteristics, in terms of preference. Through the clusters that are going to be created,
we will try to identify trends of preference for players, possible voting behavioral
patterns which can characterize the way that a player is voted and possible ascendance
of certain players that can be recognized in a cluster.

Furthermore, we will try to detect if external factors (the word ‘external’ is used due to
the fact that these factors are not included in the model) affect the vote decisions of
persons. The examined factors are the continent where a voter comes from and the job
of the voter. Through this extra analysis we will attempt to understand if, for example,
the fact that a voter and a player come from the same continent, plays a vital role in the
voter’s final preference. It would be very interesting to reveal such a pattern because
this would be a strong indication of the existence of such a relationship, which many
football fans assume. In the closing chapter we will present the work and the main
discoveries that the research will have advanced, with the hope that the results are going
to inspire researchers to delve deeper into this subject.



Chapter 2
Models for Ranking Data

In this chapter we are going to present the fundamental classes of models for ranking
data. In the analysis of a ranking dataset, in order to make inference on the preferences
of the voters, modeling of the data is needed. In the next sections, there will be presented
general models for ranking data but, also, models which concern the clustering of such
datasets. It has to be pointed out that most of the following classes of models are used
for clustering purposes. Here, we present the general terminology and methodology of
these methods. The more specialized theoretical framework of each method, that is used
for the clustering implementation on the FIFA datasets, is presented as a separate
section before the application part of the method. In the following lines of this chapter
we are going to snapshot the general picture of ranking data models and features of
those models that make them more preferable than the others, based on the purposes of
the analysis.

2.1 Probability models for Ranking Data

The probability modelling for ranking data can be described as an efficient way to
understand people’s perception and preference on different objects [45]. We are going
to present the probability models that have been developed, through the four categories
that Critchlow et.al classified them, in 1991 [17]. These four groups of probability
models are [45]:

a) Order statistics models,

b) Paired comparison models,
c) Distance — based models and
d) Multistage models.

In the section 2.5, we are going to present the Finite Mixtures model which is also a
fundamental class of probability models. It is very interesting to describe these models
and their properties, since the Insertion Sorting Rank algorithm and the Bayesian
approach of the Plakett — Luce model, that are going to be implemented in the next
chapters, are model based clustering algorithms that are founded on probability models.
Thus, it is important to describe the fundamental concepts and the properties of such
models.

2.1.1 Order Statistics Models

The sense of order statistics models has been introduced from Louis Leon Thurstone,
in 1927 [68]. The American psychologist, who was instrumental in the development of
psychometrics and statistical techniques for the analysis of performance on
psychological tests, published a paper in which the ranking of two objects was
considered. The fundamental idea of his proposal was that the final ranking of a judge,



on a set of objects, is determined by the ordering of random variables that represent the
tastes of a judge. Since these tastes can fluctuate, according to the understanding of the
judge to each object, they cannot be predicted. Thus, they are random variables. The
probability of observing a ranking m; under the class of such a model can be described

from the following formula :

P(”j) = P(Y[l]jj > Y > > Y[t]jj);nn €S,

where m; is the ranking of ¢ objects, the set ([1];,[2];, ..., [t];j is the ordering of objects
corresponding to the ranking m; such that the judge j assigns rank i to object [i]; [45].
The set yy;, ¥2j,...,y:; represents the random utilities from which the ranking is
dependent. The term S in which every ranking belongs to, is the set of all ¢! possible
rankings. In order to make the model simpler, some probabilistic structures on the
random utilities are assumed. Also, Critchlow et al. (1991) [17], observed that if these
utilities are allowed to have arbitrary dependencies, any probability distribution can be
expressed as in the upon formula [45]. Such type of models that can be presented
through this formula are referred to as Thurstone order statistics models (Yellot 1977
[77], Critchlow et al. 1991 [17]). The two most famous Thurstone models, that have
been further developed in the following years, are the Thurstone model (Thurstone 1927
[68], Daniels 1950 [19], Mosteller 1951 [9]) and the Luce model (Bradley and Terry
1952 [5], Luce 1959 [40]).

The ranking probability in the Luce model can be expressed as a function of top — choice
probabilities only. Also, the model satisfies the Independence of Irrelevant Alternatives
(I1A) axiom, which introduced by the mathematical psychologist Tversky in 1972 [35].
The axiom states that the choice of a judge between two objects, depends on the
preferences between these two objects only and is irrelevant to another object. The
axiom is also being satisfied from extensions of the Luce model, such as the Rank —
Order Logit models, which include judge — specific covariates, object — specific
covariates and their interactions. It has to be mentioned at this point that the Plackett —
Luce model, thus the Bayesian approach of the model that is going to be used as a
clustering method later, is based on this Luce’s axiom of choice.

The main drawback of this axiom is that is impractical because the correlation among
the errors is not included in the models and this can lead to unrealistic patterns in many
real life ranking problems. Thus, some order statistics models that do not satisfy the I1A
property have been developed. An example of such a model is the Multivariate
(Generalized) Extreme Value model (GEV), which was introduced by McFadden
(1978) [47]. The model assumes that the error terms of the simplified probabilistic
structures, that have been mentioned previously, follow a generalized extreme value
distribution with the following cumulative distribution function :

F(gll LA St) = eXp [_H(e_gl, ey e_gt)],

where H is t — dimensional and all the univariate marginal distributions are Gumbel
distributed [20]. The key pros of the GEV model is that it is able to fit many different
types of ranking data, as Joe (2001) [32] stated.

2.1.2 Paired Comparison Models




The notion of ‘Paired Comparison models’ was first introduced from Babington Smith
(1950) [4], whose proposal was about a family of probability models for ranking data
based on the paired comparisons idea. By assuming mutual independence of these
paired comparisons, the probability of observing a ranking r;, under the Smith model,
is given by the formula :

P(T[f) =C H{(a,b):nj(a)<nj(b)} Pab »

where the constant C is appropriately selected in order to make the probabilities sum to
1 and p,,;, is the probability of object a being preferred to object b.

Based on this model, Mallows (1957) [42] proposed the addition of constraints on the
{pap} term. His idea lead to two subclasses of the Smith model : the Mallows — Bradley
— Terry model and the Mallows model. The Mallows model (1957) [42] came after the
work of Bradley and Terry (1952) [5], and it was a try for simplification of their model.
The Mallows work is also crucial, as it was introduced in the ranking literature the
notion of modal ranking.

Definition: A probability model is said to be strongly unimodal with modal ranking 7,
, iIf its ranking probability has the unique maximum at = = m,, [45] .

Also, based on [30] , the modal ranking rule is supremely robust to noise, in the sense
of being correct in the face of any ‘reasonable’ type of noise. At this point, before
presenting the general formula of the Mallows model, we have to define the Kendall
and Spearman distances. For any permutation m,c the Kendall distance is defined as :

Dy (m,0) = Xicj I {[n(D) — m(N][e (D) — a(j)] < O},

where I{-} is the indicator function taking values 1 or O depending on whether the
statement in brackets holds or not [59].

Moreover, the Spearman distance is defined as :
1 . .
Ds(m,0) =5 Bia[m(i) — o(D]? [59]
Based on the above, the formula of the Mallows model is the following :
P(m;) = c(8, ¢)%s™m0) pdx(mmo) |

where c(0, @) is selected in order to make the probabilities sum to 1, dg(m, ) is the
Spearman distance and dg (m, ) is the Kendall distance between = and n, [30]. The
model states that as the distance from = to the modal ranking increases, the ranking
probability decreases geometrically according to this increase.

It has to be pointed out, that the Paired Comparison models satisfy many properties of
the ranking models. In specific, Marley (1968) [44] showed that the class of these
models satisfy the reversibility property, which states that the reversing of a ranking
7 has no effect on the probability models, based on the reverse function y(z) =t + 1 —
7. Moreover, it satisfies the property of L — decomposability which states that the
ranking of ¢ objects can be decomposed into ¢t — 1 stages. There are more properties that
are fulfilled from this type of models, but with some conditions that have to be
activated.



2.1.3 Distance — Based Models

A class of distance — based models was developed by Diaconis (1988) [21]. His work
rests on the idea that a distance function can measure the discrepancy between two
rankings and the fact that is reasonable to assume most of the judges to have rankings
close to the modal ranking 7,. The general form of the distance — based model can be
described as

e—/ld(n,cr)

P(T[IA, T[O) = W '

where A > 0 is the dispersion parameter and d(m, o) is an arbitrary right - invariant
distance. It has to be mentioned at this point that it is required for the selected distance
to satisfy the property of right invariance. This is a property that is explained in further
sections and ensures that a possible relabeling of the ranking objects does not affect the
distance. Examples of such distances are the Spearman Footrule, the Spearman distance
and the Kendall distance. In that case where the Kendall distance is used as the distance
function in the formula, the model is called the Mallow’s ¢ — model and is a proved
relationship between the distance — based models and the paired — comparison models
(Critchlow et.al., 1991). The Mallow’s ¢ — model is also a special case of the ¢ —
components models class, which has been introduced from Flinger and Verducci (1986)
[22]. Their work was mainly based on an extension of the distance — based models, by
decomposing the distance metric d(m, o) into t — 1 objects, where t is the number of the
ranked objects. Regarding the general formula that has been presented above, the
ranking probability in a distance — based model holds the largest value at the modal
ranking m, and at the same time it declines when it is away from =, . The decline rate
of the ranking probability is dependent on the dispersion parameter A. Thus, if the value
of 2 is small, the distribution of rankings will be more concentrated around modal
ranking and vice versa. To get a better understanding of this fact, we have to analyze

. —Ad(m,0)
the general formula of the distance — based models. The term £ 0
1

Ad(m,0) 1

c(d) Cc(A)erd(mo) *
the value of the dispersion parameter 2 is large, it leads the denominator of the term to
increase, which causes the value of the fraction to getting smaller. On the other hand,
if the value of 2 is small, the value of the term is getting larger. Thus, we can observe
that when the dispersion parameter is large the ranking probability is small, which
means that is away from the modal ranking and vice versa. The maximum likelihood
estimator (MLE) 1, can be found by solving different equation if the modal ranking is
a known value and if it is an unknown value.

can be converted

to which is equal to Based on the last term, it can be noticed that if

We have to point out that the distance — based models satisfy both the reversibility and
the label invariance properties, that have been mentioned previously. Besides that, this
class of model is able to handle partial ranking data, with the implementation of some
modifications on the used distance measures. The estimation of the model parameters
using the EM algorithm, was introduced by Beckett (1993) [7]. Contrarily, an approach
which does not include the EM algorithm was proposed by Adkins and Flinger (1998)
[45], who showed a non — iterative maximum likelihood estimation procedure for the
Mallow’s ¢ — model. Moreover, the mixture models have also be considered for the



class of distance — based models. Specifically, Murphy and Martin (2003) [51] extended
their use, in order to describe the presence of heterogeneity among the judges of a
dataset. Their work was proved very helpful, because they smoothed the assumption of
the homogeneous population in the distance — based models.

2.1.3.1 Weighted Distance — Based Models

Despite the fact of the great usefulness of the ¢ — component models that have been
mentioned above, some distance properties are not satisfied in specific cases of such
class of models. Thus, Lee and Yu (2012) [39], provided the notion of weighted
distance measures which are able to retain all the required properties of a distance and
also allow different weights for different ranks, which enhance the model flexibility.

Thus, many distances that are used in the distance — based models (like Kendall,
Spearman, Spearman Footrule), were introduced in a weighted format. For example,
the Spearman weighted distance formula is

ds(m,0;w) = Xy Wry iy [1(@) — o (D]? .

In general, the probability of observing a ranking = under the weighted distance — based
ranking model is [45]

e—d(n,no;w)

P(mlw,my) = o)

Based on this formula, the value of weight can be interpreted in three ways. At first, in
the case of a large value of w;, is a supporting factor to the assumption that the ranking
of the object i is close in 7, . Secondly, if the value of w; is close to zero, then a change
in the rank of the object ranked i will not have a serious impact on the distance. Finally,
if the value of weight is zero, then the model is uniform. Besides these, Lee and Yu
(2012) [39] motivated from the work of Murphy and Martin (2003) [51], and took into
account the finite mixtures to the weighted distance — based models. In order to estimate
the model parameters they applied the EM algorithm, by computing for each
observation the probability of belonging to every subpopulation and maximizing the
conditional expected log — likelihood, given the estimates in the first step. In order to
derive the EM algorithm, they defined a latent variable, which indicated if an
observation belonged to the specific subpopulation.

2.1.4 Multistage Models

In 1988, Flinger and Verducci [23] introduced the class of multistage models.
Multistage ranking models, including the popular Plackett-Luce distribution (PL), rely
on the assumption that the ranking process is performed sequentially, by assigning the
positions from the top to the bottom one (forward order) [13]. The general idea of this
class of models was to decompose the ranking process into a sequence of independent
stages.

For example, if t objects are about to be ranked, the ranking process can be decomposed
into t — 1 stages, where at stage i, the ith object is chosen. In specific, the most preferred
item is selected at the first stage, the best of the remaining items at the second stage and
this procedure keeps going until the least preferred object is selected. Flinger and



Verducci (1988) [23] proposed a general multistage model with ““= parameters and

three more specialized models. These models are named as the free model, the strongly
unimodal model and the exponential factor model. The main difference between these
three models is the number of constraints that each of the model has.

The free model, as its name indicates, has the least constraints while in the exponential
factor model some conventions are required in order to run. Besides these models, that
Flinger and Verducci proposed, another multistage model was also proposed, in Hu
(2000). He showed the decomposition of the ranking process can be also done for
(t — 1)% parameters c;;, where both i and j = 1,2,...,t — 1 . The parameters ¢;; are used
in order to determine which object will be selected in each stage. Furthermore, finite
mixtures of multistage models have been introduced in the literature. These mixtures
can provide interesting adequacy power, for the assessment of the modeling. On the
other hand, if we compare them with the mixtures of distance — based models, the
adequacy power of the distance — based may not provide a powerful assessment but
they have more meaningful parameters and, also, are easier to be implemented.

2.1.4.1 Connection with Plackett — Luce Ranking Model

It has to be pointed out that under the decomposition process that was described above,
the Luce models and the ¢ — component models can also belong to the class of
multistage models. This is very important, if we consider that one of the three clustering
approaches that are implemented in this Thesis is the Bayesian finite mixture of Plackett
— Luce model. As it is going to be described in the corresponding section, the Plackett
— Luce model is a powerful stagewise model for analyzing partial ranking data. Based
on the decomposition process of ranking data, we consider a set of items, and a set of
choice probabilities that satisfy the Luce’s axiom. Next, we consider a pick of one
object at a time out of the set, according to the choice probabilities. Such samples give
a total ordering of objects, which can be considered as a sample from a distribution over
all possible rankings [33]. The form of such a distribution was first considered by
Plackett (1975) in order to model probabilities in a K — horse race [33]. The most
important aspect of the Plackett — Luce model, is the fact that it is applicable either each
observation is provided by a complete ranking of all items, or a partial ranking of some
items. Because the data we are analyzing are partial rankings, a multistage model such
as the Plackett — Luce, is a very appropriate choice for clustering our data.

2.1.5 Finite Mixture Models for Ranking Data

The finite mixture models were first introduced by Newcomb (1886) [52] who used
them in order to model outliers. Since then this class of models has definitely gained
ground in the literature, as it has been researched and developed on a great scale. A
basic interpretation of a finite mixture model is that it provides a natural representation
of heterogeneity in a finite number of latent classes. The heterogeneity concerns the
effects on different groups of observations [54]. The general formula of a finite mixture
model density with parameter vector 6 = (n',0',,68',,...,8')" is the following :

f(x;0) = Ik(=17'[kfk(x; Or),

10



where m;, represents the kth mixing proportion or the probability that the observation x;
belongs to the kth subpopulation with corresponding density fi (x) [48]. The term K
represents all the number of components with = = (4,75, ..., k)" ,\Where 0 <7, <1
and YX_,m, =1 . The most general form of a mixture is to suppose that f;'s are a
parametric form which is known e.g f,(x) = fi(x; 8;), where in that case only 6 has to
be estimated. But when K is also not provided, the number of components in the mixture
have to be additionally estimated.

In general, the clustering approaches that depend on probability models are more and
more being developed and used in the literature. There are many times that the data
from such models are considered to come from finite mixture probability distributions.
Moreover, in the finite mixture model framework, each group is assumed to have its
own distribution and corresponding probability of representation [48]. It is observed,
also, that the finite mixture models and the context of model — based clustering is
preferred over distance — based approaches or more heuristic approaches (e.g
hierarchical clustering), due to the more statistical oriented view of the clustering
problem, the various types of ranking data that these models can analyze, the more
robust answers in questions such as the number of clusters etc.

In respect of the clustering goals, after the mixture model has already been fitted, is
being used in order to identify any grouping that is probably exist in the data. For
example, if a four component model has been fitted, we would want to detect any
pattern that can be identified between these groups. Thus, the overall target of the usage
of mixture models in the clustering context is to separate the data into a number of
groups — components, in which the objects in each group would have common
characteristics but the objects of different groups would differ. When the finite mixture
models are used for clustering purposes, there is one initiative that has been introduced
in this approach. This is about the assignments of data points to the different clusters,
which is the fundamental information that concerns a clustering problem, and is missing
from the observed sample.

In order to deal with this issue, in the finite mixture models clustering approach, a
random variable which can be noted as z;,, is introduced. This random variable can take
the following values : z;, = 1, if a data point y; belongs to a population p and z;,, = 0,
otherwise. These variables can also be referred as latent variables, because they are not
directly observed but inferred through a model. We assume that the conditional density
of Y; , where Y; is a random vector of data points, given Z;; = 1is f(y;; 6;), where 6; is
an unknown vector of parameters for the ith component of the mixture. Also, we make
the assumption that the random variables {z;}are independent as Picard proposed in
[56]. Based on these two assumptions, the random variable z;, can be seen as a
categorical variable that indicates whether the data point belongs to a specific group or,
in other words, the labeling of the data points. Thus, this posterior probability of the
variable z;, given the observed value of y;, will play the most important role in what
concerns the clustering purposes.

2.1.5.1 Brief Introduction to EM Algorithm

Since the label of each data point is not known, because the random variables that
previously mentioned are latent, the estimation of the mixture parameters can be
obtained through the observed data. A fundamental approach in the estimation
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methodology, which has been made very important progress through the years, is the
maximum likelihood method. One of the main reasons that this method had such an
advance, was the development of the EM algorithm.

The Expectation — Maximization (EM) algorithm is an iterative process which goal is
to approximate the maximum likelihood function. Its fundamental idea, is to connect a
complete data model with the observed incomplete model, in order to make the
computation of the maximum likelihood estimates less complex. Thus. it is often used
in the case of incomplete/missing data, or in the case of existence of latent variables.
The EM algorithm achieves, through its iterative process to fill the gap of maximum
likelihood estimation which does not achieve to approach the ‘best fit’ of a model, when
incomplete data exist.

The algorithm consists of two steps, as its name indicates, Expectation (E) and
Maximization (M). In the first — Expectation step, it estimates the missing or latent
variables, by computing the expected value of the complete — data log likelihood
1(6; X,Y), where 0 is the unknown parameter vector, given the observed data and the
current parameter estimate [29]. The second — Maximization step consists of
maximizing the parameters of the model over the expectation computed in the E step.
The process is repeated until the sequence of the maximized 6’s parameters converges.
In the case that the log — likelihood function has multiple local maximums then the
algorithm should be put in run for many times, by using a different starting value for
the unknown parameter 6 , at each iteration [29]. This helps the algorithm not to end up
with a local maxima, that will probably not be close to the global one, but after many
restarts to arrive to the greatest maximum likelihood.

2.2 Probit models for Ranking Data

The notion of ‘Probit models’ for ranking data is based on models of choice
probabilities, that use a set of random utilities. Choice probabilities are derived from
two distributions of the random terms : the extreme value, i.e Logit, and the multivariate
normal, i.e Probit [53]. In the next two paragraphs we are going to present the two
fundamental classes of probit models, the Multivariate Normal Order Statistics and the
Factor Analysis.

2.2.1 Multivariate Normal Order Statistics Models (MVNQS)

This class of models, as their name indicates, are very similar with the Thurstone order
statistics models that have been described in section 2.1, in the sense that both classes
of models assume that the ranking that a judge gives to a set of objects is determined
by the ordering of the corresponding latent utilities for the objects assigned by the judge.
The fundamental difference between them, is that the Thurstone models assume
independent utilities, in contrast with the Multivariate normal order statistics models
that the utilities are possibly correlated.

The probability of a ranking r; that is given by judge j can be described with the
following formula :

P(m) = P (Y11, > Yzl > = > Vel ) »
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where [1];,...,[t]; is the ordering of the ¢ objects corresponding to the ranking =;.
Furthermore, the latent utility vector y; = (y,, ..., y;;)" of judge j is supposed to follow
multivariate normal distribution with mean utility vector u; = (uy;, ..., ue;)". A great
example where the MVVNOS model used for the modeling and clustering of judges, was
the Analysis of the APA Election Data. In 1980, the American Psychological
Association (APA) conducted an election in which five candidates (A, B, C, D, E) were
running for president and voters were asked to rank all of the candidates [45]. Among
those voters, 5738 gave complete rankings and those complete rankings were
considered in the MVVNOS clustering implementation. The results indicated separate
groups of voters, where each one had a distinct characteristic.

At this point, it has to be mentioned that the MVNOS model allow the presence of
covariates that are associated with the judges and the objects that are modeled. For
example, in the case that the FIFA Ballon D’ Or data were complete so we could
implement the MVNOS model, a possible judge — specific and object — specific
covariate could be the country that the judge and the player come from, because this
could affect the vote of a judge. Thus, in the MVNOS class of models, a linear model
is imposed in order to include these covariates. This linear model is imposed for the
mean utility vector y; in the following manner : u; = Z;8 , where Z; isat x p matrix of
covariates associated with judge j and £ is a p x 1 vector of unknown parameters [45].
Then, as previously mentioned, someone could study the impact that the covariates
associated with the judge and the objects have in the preferences of the judges. In
specific, if we define as s; the country of the judge and as a; the country that the ranked
player comes from, we would obtain the following model :

/'l'ij = a’i]/ +Slj5i ,i = 1, v,

where the parameter vector y represents the effect of the player’s country to all the
voters and the vector §; represents the country which the voters come from, and may
affect their preference to the player i .

In order to test the adequacy of the presented models, a general solution is to group the
rankings into a small number of subgroups and examine the fit for each subgroup. The
fit can be tested by comparing the observed frequency with the expected frequency of
each ranking. In case that the expected frequencies match the observed frequencies, the
researcher can claim that the MVNOS model appropriately fits the data.

2.2.2 Factor Analysis

In general, factor analysis is a technique that is used to reduce a large number of
variables into fewer number of meaningful factors. It is widely used in social sciences,
economic sciences, marketing research etc., for the identification of common
characteristics and the construction of groups based on these characteristics, among a
set of variables. For the ranking context, by adopting the MVVNOS framework with the
latent utilities satisfying the general factor model, this model can be generalized in order
to be able to analyze ranking data.

So, let’s assume that there is a random sample of n individuals that each one is asked
to rank t objects. Within the MVVNQOS framework, the ranking of the ¢ objects given by
the individual j in the factor model is determined by the ordering of the ¢ latent utilities
Y1j, -, Yj Which satisfies a more general d — factor model :
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yij=Z'jai+bi+sij, j=1,...,n; i=1,...,t(> d) [20]

The terms of the above are explained as follows : b; = (by, ..., b,)" is the mean utility
vector which depicts the relative significance of the ¢ objects, a; = (aj, ..., aiq)’
represents the factor loadings which provide the variance explained by a variable on
that particular factor, z; = (zy, ..., z,,) are the latent common factors which are assumed
to be independent and identically distributed according to the standard d — variate
normal distribution, ¢;; is the error term which represents the unique factor that is
assumed to follow a N(0,4?) distribution, independent of the latent factors z’s. The
unobservable response utilities and the latent common factors are simulated through the
Monte Carlo Expectation — Maximization Algorithm, where the E- step is implemented
through the Gibbs sampler.

The d — factor model was proposed concerning complete rankings. But the model can
be extended also when incomplete rankings exist. Thus, in the case of top q partial
rankings, we can assign objects with ranks respectively, and assign the midrank value
to those objects that have not been ranked. The notion of midrank value is going to be
described on a great scale in further section. As a small note, its formula is

[(q+ D)+ +tl/(t—q),

where t are the objects that are about to ranked and g are the objects actually ranked.
The result of this formula is replaced in every missing position of an incomplete
ranking, in the context of factor analysis for partial ranking data. Moreover, when top
g partial rankings exist, the process of Monte Carlo Expectation — Maximization
Algorithm is implemented for the top g objects and the rest of the objects are simulated
by N(z'ja;,0%)) .

2.3 Decision Tree Models for Ranking Data

Besides the various types of probability models and the two fundamental types of probit
models that have been presented up to know, there is one extra class that is going to be
mentioned. The name of this class of models is ‘Decision Trees models’. These types
of models come to solve the issue of the difficult interpretation of the fitted models
coefficients, when nonlinearity or higher — order interactions exist, due to the
interaction covariates. The use of decision trees can provide a powerful nonparametric
model capable of automatically detecting nonlinear and interaction effects [45]. This
could serve, also, as a complement to existing parametric models for ranking data [45].
Thus, since the main advantage of such models is the easiness in the interpretation, they
are popular in problems that concern classification or regression. In our case, since the
interpretation is not a key fact for clustering, this class of models is not used.

The reason that the decision tree models got this name, is due to the fact that they can
be constructed by a set of conditions displayed in a treelike structure. The common
procedure for the construction of a decision tree is to start from the root node, that is
the entire dataset, and separate the data into two or more child nodes, in a repetitive
way. The goal is the new class of nodes to have better performance than the previous —
parent node. Thus, in order to make the appropriate split that would achieve this target,
in each iteration, a splitting criterion has to be chosen. In what concerns this splitting
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criterion there are two fundamental approaches. The first approach is the partition based
on an impurity function. As ‘impurity’ we could define a metric of how often a
randomly selected object from a set would be wrongly labeled, if we assume that it was
labeled according to the distribution of labels in the subset. Such functions are the Gini
index and the entropy. The second approach is a statistical oriented approach, which
does the splitting by applying a statistical test of homogeneity to test whether the split
can make the child nodes with significant different distributions of the data [45]. Such
independence tests are the chi — square test and the likelihood ratio test.

After mentioned the two main approaches for the splitting of nodes, we will briefly
present the two stages for the construction of a decision tree. In a general manner, based
on the CART (classification and regression tree) method of Yu et al.(2010), a decision
tree is constructed through two stages. The first stage is called ‘tree growing’ and the
second stage is called ‘tree pruning’. Before starting the construction of the tree, the
ranking dataset is randomly partitioned into a training set and test set. Then, in the ‘tree
growing’ stage, the algorithm starts from the whole training set (root node) and through
the iterative process that has been described previously, partitions each node to detect
the best split according to Gini index or entropy, or according to a statistical test of
independence. The procedure stops at the time that some stopping criteria are met.

Someone, can notice that this fact explains the name of the first stage because when
these criteria are met, the tree has finally been built. In the ‘tree pruning’ stage, is
measured the significant improvement that each branch, of the previously built tree,
makes. The branches that show the less significant improvement are removed from the
tree. The significance is measured through a cost — complexity metric, based on a ten —
fold cross — validation [45]. In order to assess the performance of the decision tree, a
very widely used measure is the area under the receiver operating characteristic or ROC
curve. Its values fall within the range 0.5 — 1.0, where 0.5 denotes a random prediction
and 1.0 indicates perfect accuracy of the prediction. Despite the fact that ROC curve
can be implemented only for binary data, Yu et al. generalized the notion into ranking
data.
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Chapter 3

Manipulation and Exploration of the Datasets

In this chapter, the datasets that are used for the clustering processes are explored.
Moreover, the cleaning process and the transformation into compatible ranking format
for the use of the clustering algorithms is presented. Finally, some descriptive statistics
are given, in order to get a better understanding of the data.

3.1 Presentation of the Datasets

The datasets used for this thesis were retrieved from
https://data.opendatasoft.com/explore/dataset/fifa-ballon-dor-2010-2015%40public/table/
,0n 22/09/2019. There were retrieved 6 datasets, as .csv files, each one corresponding
to a year of period 2010 — 15. The content of the datasets has to do with the FIFA Ballon
d’Or votes for this period. Each one of the datasets contain the 6 following columns:

1) Year : The year of period 2010 — 15 for which the dataset is about.

2) Vote : The kind of relationship that the voter has with football. This column can
have the three following values : Coach, Captain and Media.

3) Country : The country origin of each voter.
4) Name : The name of the voter.

5) Position : The position that the voter ranked the corresponding player. This column
can have three values : First (if the voter ranked first the corresponding player ), Second
(if the voter ranked second the corresponding player) or Third (if the voter ranked third
the corresponding player). Next to each one of these values, there are written off the
equivalent points for each of the vales, in a parenthesis. These are : 1 point for the Third
rank, 3 points for the Second rank and 5 points for the First rank.

6) Player : The player that is ranked from the corresponding voter in the same row.
Some of the players have next to their names a backslash and the country they come
from.

The datasets differ in term of the number of rows each one contains. Because the
number of players does not change, as it is always 23, that means that only the number
of voters changes every year. In particular, the first dataset (2010) consists of 1275
rows, the second (2011) consists of 1387 rows, the third (2012) consists of 1513 rows,

17


https://data.opendatasoft.com/explore/dataset/fifa-ballon-dor-2010-2015%40public/table/

the fourth (2013) consists of 1623 rows, the fifth (2014) consists of 1632 rows and the
sixth dataset (2015) consists of 1494 rows.

3.2 Data Cleaning Process

The process of cleaning the raw data prior to analysis is necessary and an important
before implementing any part of the analysis. The cleaning process that has been
implemented, is approximately the same for the 6 datasets because all of them appeared
to have similar issues.

The first step is to read the datasets. For this purpose, the function ‘fread’ from the
‘data.table’ package has been used. Thus, we read each of the datasets as data frames
and, by using the function ‘fread’, the delimiter of the csv file is detected automatically.
Also, we read the datasets with the “‘UTF-8’ encoding, in order to not face any issue
with special characters that probably exist in the names of the players or voters.

Then, we check the dataset in order to detect problems that need to be repaired. The
columns do not face any concerning issue, except the ‘Player’ column. When we try to
crosscheck the number of unique players that exist in this column, the number of players
is not 23. Thus, this column needs cleaning in all of the 6 datasets. The names of the
players are presented by character vectors. First of all, as it has been mentioned in the
‘Presentation of the Datasets’ section, the names of some of the players are written of
with their country and a backslash between the two characters. This leads to the
presence of the same player more than one time e.g "Messi Lionel" and "Messi Lionel
/ Argentina". We deal with this issue by erasing the country and the backslash from
each one of the character vectors, by using the ‘gsub’ function. After performing this
step, we check again in order to ensure that exist 23 unique names of players, but we
observe that there are more than 23 names in the column. By taking a closer look, it is
noticed the presence of duplicates. This is due to the format of the character vectors.
The main issue is the presence of a space in the tail of a player’s name and the non —
presence of a space in the same name, in the list e.g "Sneijder Wesley " and "Sneijder
Wesley". Also, there exist double spaces inside the character vector because of the
removal of the country and the backslash. These issues are solved by removing the
white space in the tail of each character vector through the ‘trimws’ function and by
replacing the double whitespace with one space through the ‘gsub’ function. Moreover,
in order to ensure that all the character vectors have the same format, we apply the
‘format’ function the ‘Player’ column. After applying these steps, the unique names of
players decrease, but still do not reach the 23. The reason is that in the rows of the
dataset there is a player’s name which is called ‘invalid vote’. This character, as the
name implies, is a vote that does not correspond to any player. The number of rows that
contain this value is below 10 in all of the datasets. Thus, we are going to exclude the
rows that contain this value in order to not affect the final result.

3.3 Data Transformation Process
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After implementing the cleaning process, the next step is to create matrices from the
original data, which are going to have the format that is required in the packages that
deal with ranking data.

At first, we break the column ‘Position’ of the original data, by creating two new
columns. The first one is called ‘Points’ and it contains the points that each voter
assigned to the corresponding player and is the number of the part being in the
parenthesis of ‘Position’ column, e.g First (5 Points) : Points = 5 . The second one is
called ‘Ranks’ and it contains the value that each voter ranked the corresponding player
and is the number of the part outside the parenthesis of the ‘Position’ column, e.g First
(5 Points) : Ranks =1..

After constructing the columns ‘Points’ and ‘Ranks’, a Matrix is constructed. The
dimensions of the Matrix are the number of unique voters, for the rows, and the number
of unique players, for the columns, which always is 23. Thus, it is a Matrix where in
the columns are the ranked players and in the rows are the judges. Now, the goal is to
assign the exact rankings that a player received from the corresponding voter. To be
more specific, the values (1,2,3) that a voter — row has given to three players — columns
must be appear in the cells of the Matrix where this voter - row and these players —
columns are met. The other positions in this row are going to be filled by NA value.
After constructing the Matrix the NA’s are replaced with zero values, because this is
the format that most of the packages that deal with ranking data, require the missing
ranks of a partial ranking to be denoted.

At this point, the target is to assign the correct values to the cells of the Matrix. To
achieve that, we write SQL queries, inside our R script, through the ‘sqldf” function.
More specifically, we select the columns ‘Name’, ‘Player’ and ‘Ranks’ from the
transformed dataset for each one of the 23 players, by adding the SQL statement
‘Where’ in the query. This process is done for the 23 players separately and each one
of the results is assigned to a unique data frame. Thus, each of these data frames contain
the name of the voter and the corresponding rank, for every row of the transformed data
that this player exists. Next, we convert the class of the Matrix from ‘matrix’ to ‘data
frame’, in order to be able to use the dollar sign. At this point, for each one of the players
— columns of the Matrix, we match the names of the voters to the voters — rows of the
Matrix through the ‘match’ function and we assign the ‘Ranks’ of the corresponding
player from the Player’s SQL query, that has been stored as data frame in the previous
step. Thus, the final Matrix consists of the rankings that each player — columns received
from the corresponding voter — row. A snapshot of the first 5 rows and the first 9
columns of such a matrix, for the year 2010 is the following :

Guyan Sneijder Maicon Villa Alves Forlan Xavi Iniesta Casillas
Asamoah Wesley David Daniel Diego Andres lker
Chamroeun Ung 3 0 0 0 0 0 0 0 1
Patoommawatana 0 1 0 0 0 0 2 3 0
Urai
Jonuz Mirsad 0 2 3 0 0 0 1 0 0
Ouk Mic 0 0 0 3 0 0 0 0 1
Colome Jaine 0 0 0 0 3 0 0 0 0
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Table 1 : Example of ranking table , with the first 5 rows and 9 columns, for Year 2010.

3.4 Descriptive Statistics

Descriptive statistics present an overall picture of ranking data. It is recommended to
be considered before any analysis, in order for the researcher to have a better
understanding of the data. The target, in descriptive statistics for ranking data, is to find
ways to describe the central tendency of people’s preferences through their ranks. In
our case, the goal is to describe the central tendency of the voters preferences to players.

There are three common statistics, that are used to describe ranking data. We start with
the mean rank, which is a standard measure to present the central tendency of ranking
data.

The mean rank of an object can be defined as
m; = §'=1 n; v;(i)/n,

where m; is the mean rank of object i, v;, j = 1,2,...,t! represents all the possible
rankings of the t objects, v; (i) is the rank score given to object i in ranking j, n; is the
observed frequency of ranking j and n = Z§=1 n;.

Another metric that is also commonly used is the pairwise frequencies measure, that is,
the frequency with which object i is more preferred than object j for every possible
object pairs (i, j). In the matrix that represents the ranking data, this can be defined as
the number of observations which the first item (row) has been ranked higher than the
second item (column). These pairwise frequencies can be summarized in a matrix. Let’s
suppose that someone would like to make the comparison of received votes between
three players (Player 1, Player 2 and Player 3) and Player 1 has ranked higher than
Player 2, Player 3 from 9 and 7 voters, correspondingly. Also, we assume that Player 2
has ranked higher than Player 1, Player 3 from 5 and 4 voters, correspondingly. Finally,
the Player 3 has ranked higher than Player 1, Player 2 from 12 and 14 voters,
correspondingly. Then, based on the above example, the matrix that represents the
pairwise frequencies of the three players will be the following :

Player 1 Player 2 Player 3
Player 1 0 9 7
Player 2 5 0 4
Player 3 12 14 0

Table 2 : Example of pairwise frequencies table.

In addition to mean ranks and pairwise frequencies, we can look for further insights in
the ranking data by studying the marginal distribution of the items. Marden (1995) [43]
, defined a matrix with t x t dimensions, in which the (a, b)th entry equals to

May = S8y myl[v;(a) = b,
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where M,,, is the frequency of object a being ranked bth and v;(a) is the rank score

given to object a in ranking j [45]. Marden named such a matrix as ‘marginal matrix’
because the ath row gives the observed marginal distribution of the ranks assigned to
the object a and the bth column gives the marginal distribution of objects given the
rank b [45]. In the matrix of ranking data, this can be described as the number of
observations which the item i (row) has been ranked j (column).

Based on these statistics we are going to get insights for our datasets. Because of the
large size of the datasets, we are going to provide results for some of the years. Before
obtaining the results of the descriptive statistics, we have first to define the midrank
imputations for the incomplete rankings of the datasets. Because the problem under
examination is a ‘top 3 out of 23 objects’ partial ranking problem, the values ‘1°, ‘2’
and ‘3’ have been assigned from the judges to the most, second and third preferred
player, respectively. Regarding the less important items, we are going to define the

midrank as their rank. Midrank is defined as ﬁ [(g + 1)+..+t], where t is the total

amount of objects that are about to be ranked and g is the amount of objects that are

actually ranked. Thus, in our case, the midrank in all of the 6 datasets can be defined as

ﬁ[(3+1)+---+23] = %:13.5 . So, the summary statistics is going to be

computed based on the incomplete rankings with their midrank imputations (13.5).

It is necessary to implement this process before moving to the calculation of the
statistics, because the measures will provide results that will not have sense, if the
computations would include the zero values. Let’s take as example the ranks of Player
1 and Player 2, and assume the Player 1 has been ranked from 10 voters and Player 2
from 200 voters. Because the Player 2 has been preferred much more times than the
Player 1, his mean rank is going to be much greater, which implies that he has been
ranked lower than Player 2! This is completely wrong and the reason it happens is the
fact that, in the calculation of central tendency measures, the votes frequencies of the
two players have the same number of rows as numerator, despite the fact that most of
the rows of Player 1 contain zero values. To eliminate this phenomenon, we make use
of the midranks in the positions of incomplete rankings. Now, the biggest percentage
of the numerator of Player 1 will contain the sum of 13.5, instead of zero values, thus
his final mean rank is going to be a large value in compare with Player’s 2 mean rank
which is going to be much smaller. By implementing this process before the
calculations of the descriptive statistics we ensure the credibility of their results. We
are going to make use of the imputation of incomplete rankings with the midrank value,
also in the construction of visualizations of the partial ranking data and in a clustering
method that we implement, afterwards.

3.5 Descriptive Statistics — Application

After presenting the measures that will be used for the exploration of the datasets, we
are going to provide results for some of the year of period 2010 — 15. For this purpose,
we use the function ‘destat’ from the ‘pmr’ package. Before calling ‘destat’ we
transform the input data in an aggregated format, as it is required from the function. To
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do so, we make use of the ‘unit to freq’ function, which constructs the frequency
distribution of the distinct observed sequences, from the ‘PLMIX’ package.

The tables below, provide the mean rank for the Top — 6 players, in terms of rankings,
for the period 2010 — 15. The tables are sorted by the mean rank value of each player,
in descending order. It has to be pointed out, that the position of the players are not the
same as at the results. For example, in 2010, Xavi was in the final Top — 3, but as we
can see from the table of Year 2010 he is 4" in terms of central tendency. This fact
could possibly mean that Sneijder has been ranked more times than Xavi, but Xavi
ranked in better positions than Sneijder, which means more points. We evaluate this
assumption by looking at the marginal distribution of the ranking matrix for Year 2010
(A.1). We observe from the Matrix that Sneijder — row, column 2 has been ranked first
59 times, second 74 times and third 49 times. On the other hand, Xavi — row, column 7
has been ranked first 88 times, second 51 times and third 36 times. We can notice that,
even though Sneijder has been preferred from 7 more voters than Xavi, the Spanish
player has received 29 more first - place votes than the Dutch. That is the reason why
Sneijder has lower value of mean rank than Xavi, but the second win the third - place
in the final results.

Mean Rank for Year 2010 Mean Rank for Year 2011

Players Mean Rank Players Mean Rank
Messi Lionel 6.825 Messi Lionel 1.989
Iniesta Andres 8.025 Ronaldo Cristiano | 5.603
Sneijder Wesley | 8.551 Xavi 9.386

Xavi 8.642 Iniesta Andres 10.67
Forlan Diego 9.88 Rooney Wayne 11.997
Ronaldo Cristiano | 12.104 Suarez Luis 12.53

Mean Rank for Year 2012

Mean Rank for Year 2013

Players Mean Rank Players Mean Rank
Messi Lionel 2.578 Ronaldo Cristiano | 4.604
Ronaldo Cristiano | 5.247 Messi Lionel 5.38
Iniesta Andres 9.01 Ribery Franck 6.561
Falcao Radamel 11.611 Ibrahimovic Zlatan | 11.099
Xavi 11.771 Neymar 12.155
Casillas Iker 12.248 Van Persie Robin 12.716

Mean Rank for Year 2014

Mean Rank for Year 2015

Players Mean Rank
Players — Mean Rank Messi Lionel 3.101
RonaI.d(.) Cristiano | 3.716 Ronaldo Cristiano A5
Messi Lionel 7.496 Neymar 9.35
Neuer Manuel 8.179 Lewandowski 11.645
Robben Arjen 10.511 Robert
Muller Thomas 11.289 Suarez Luis 11781
Lahm Phillip 12.266 Muller Thomas 12.277
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Table 3 : Tables of mean ranks for the players in the period 2010 — 15 .

A remarkable fact which can someone observes in the tables above, is the presence of
the dipole ‘Lionel Messi — Cristiano Ronaldo’ in 5 out of 6 years of the period under
study. The two players are the most preferred in all these years and in some of these
years with great difference from the others (2011,2012,2014).

The Year 2011 is the year of Messi’s domination. The Argentinian concentrated the
47.88 % of the total votes. If we take a look at the pairwise frequencies between Messi
—row 6 and the other players, for this year (A.2) we observe that the lowest number of
voters that preferred Messi against another player is 405 out of 435 and the opponent
is Cristiano Ronaldo. This large difference between Messi and the other players, in Year
2011, is displayed in the following bubble plot. The plot represents the mean ranks of
the players as bubbles and it uses a different scale and colour, depending on the value
of mean rank. As value getting small, the size of the bubble that represents this player
getting smaller and its colour getting deep blue. In the x axis of the plot are the mean
ranks and in the y axis are the names of the players.

Mean Rank of Year 2011

Xabi Alonso -

Villa David -

Suarez Luis -

Sneijder Wesley -

Schweinsteiger Bastian - Mean Rank

Rooney Wayne - L] 25
0o -

Pique Gerard -
Ozil Mesut - . 75

Neymar -
100

Nani -

Muller Thomas - . 125

Players

Messi Lionel -

Iniesta Andres - . Mean_20118"Mean Rank’

Forlan Diego - 125

10.0
Fabregas Cesc-

75

0 S el-
Eto Samuel 50

Dani Alves - 25

Cristiano Ronaldo - .

Casillas Iker-
Benzema Karim -
Aguero Sergio -

Abidal Eric-

Mean Rank

Figure 1 : Bubble plot representing the mean ranks of the players in Year 2011.
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As someone can observe from Figure 1, the blue dot that represents Messi can not even
be characterized as bubble, because of its very small size, that depicts the tremendous
span between Messi and the other players.

Year 2012, does not differ much from 2011, in terms of the winner of the trophy. Lionel
Messi wins the award for the third consecutive year and, as in 2011, with large distance
from the others. The difference in 2012 is that players that were in the Top-6 in the
previous years, like Xavi, Ozil and Casillas, have been ranked in lowest positions.

One could say that 2013 is a very interesting year in the FIFA Ballon d’Or rankings.
This is because, after three years of Messi’s ascendancy, Cristiano Ronaldo wins the
award. It is a year that three players (Ronaldo, Messi, Ribery) are strongly arrogated
for gaining the trophy, as we can see from the central tendency of these three players in
the table ‘Mean Rank of Year 2013°. We can observe that the mean ranks of the Top —
3 players are almost one unit away from each other, in terms of absolute difference. The
presence of Frank Ribery in this Top — 3 is not a surprise, if we consider his contribution
in the win of Champions League trophy from Bayern Munich, in 2013. It is also
observed a big difference of 4.6 units between the mean rank of the third (Frank Ribery)
and the fourth (Zlatan Ibrahimovic) player, which does not exist in any of the other
years. This is a strong indication, that the first three players have been ranked from the
most of the voters. This is ascertained if we take a look at the table of marginal
distributions (A.3). It can be noticed that Cristiano has not been preferred from 128
voters, Messi from 162 and Ribery from 222, in the same time that almost all of the
other players have not been preferred from more than 500 voters.

In 2014, Ronaldo wins the award again. It is noteworthy the fact that for the first time,
in the period under study, there is a goalkeeper in the Top — 3 rankings. Manuel Neuer
helped a lot, with his saves, the national team of Germany to win the World Cup of
2014 in Brazil. Moreover, he was awarded with the ‘Golden Glove’, which is given to
the best goalkeeper of the tournament. That’s why, it is not a surprise to be in the Top
— 3 rankings, for the FIFA Ballon d’Or rankings of this year. From the table containing
the marginal distributions we can claim that, despite the fact that Neuer — row, column
1 received more first - place votes (85) than Messi — row, column 5 (55) (A.4) , the
Argentinian has a much larger amount on second and third - place votes. Also, Messi
has been preferred from more voters, in total, than Neuer. That is the reason that the he
has smaller mean rank, thus more dense central tendency, and takes the second - place.

Finally, in 2015, Messi made his comeback by winning the award from Cristiano. Once
again, it is outstanding the phenomenon of the total amount of votes that the dipole
received. By having a look at the marginal matrix of 2015 (A.5), ones can observe that
Messi — row, column 1 has been preferred in the Top — 3 rankings from 425 out of 498
voters and Ronaldo — row, column 4 has been preferred from 386 out of 498 voters.
These numbers indicate that, once again, a typical rank in the two first positions is Messi
— Ronaldo.
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Chapter 4

Visualization Techniques for Ranking data

Visualization of ranking data is an issue of discussion and concern among the
statisticians who are involved with the ranking domain. The most basic reason is that
the elements of the permutations of the items that are about to be ranked, do not have a
natural linear ordering. Thus, traditional methods such as barplots or histograms are not
appropriate in this case. Moreover, the size of data in real life examples forbids the
drawing of conclusions through descriptive statistics, but a general brief of the data
structure. Consequentially, there is a need of visualization methods that tackle such
issues and be compatible with the peculiarities of ranking data. These types of methods
are going to be presented in these section. More specifically, we are going to describe
the permutation polytope method, the multidimensional unfolding technique and the
multidimensional preference analysis. Special and more detailed reference is going to
be given in the classical — metric and the non — metric multidimensional scaling, since
the second is the method that we implement for the visualizations of our data.

First of all, it is important to make clear what questions one expects to answer when
implements graphical methods for this kind of data. Types of such questions are :

a) What is the typical ranking of the ranked objects? By typical ranking, we mean the
general preference that a ranked object has, in the dataset.

b) How large is the dispersion of votes among the judges? This question is asked in
order to provide the agreement among the voters.

¢) What are the similarity and dissimilarity among the objects?

So, these are examples of questions that are about to be answered when visualizations
of ranking data are implemented. Let’s go through these methods in order to understand
how they work.

4.1 Permutation Polytope

The idea of using a permutation polytope to visualize ranking data was first proposed
by Shulman (1979) [62] and was considered later by McCullagh and Thompson (1993)
[46] [69] , who initiated the use of permutation polytopes to display the frequencies of
a set of rankings in analogy with histograms for continuous data [45]. If t are the ranked
objects, then permutation polytope could be defined as convex hull of t! points in
Euclidian space Rt~1, which are formed by the set of all ¢! Rankings [45]. We have to
mention at this point that the rankings of these t objects have the ability to be presented
as points in the Rt 1,
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Before explain what we mean by convex hull, we have to define the word convex in
terms of geometry.

Definition: A subset of Euclidean space is convex if, with any two points, it contains
the whole line segment between these two points and additionally it is able to join them.
As line segment, is defined, a part of line that is bounded by two distinct end points and
contains every point on the line between its endpoints.

Based on the permutation polytope technique, the frequencies of complete rankings can
be visualized as the vertices of such a polytope. On the other hand, partial rankings are
represented as a permutation of t non distinct numbers. This is because of the
imputation of the incomplete positions.

For example, the top-3 partial ranking (2, 1, - , -, 3), where hyphen denotes a missing
position, it can be represented by (2, 1, 4.5, 4.5, 3), and 4.5 is the midrank of this ranking

representation ( ﬁ [@+1D)+ -+t = ;—3 [(3+4 1) + 5] =4.5) . This makes the

permutation polytope not applicable for representing partial ranking data. In order to
deal with this issue, Thompson (1993) defined a generalized permutation polytope
which coordinates are not points in the Euclidian space Rt~1, but permutations of ¢ non
distinct numbers [45]. In this case, the frequencies of partial rankings can be visualized
on the vertices of the generalized permutation polytope.

One could say that this approach could tackle the issue of partial representation, but the
drawback in drawing such polytopes is that the generalized permutation polytope has
to be drawn in asphere ina (t — 1) — dimensional subspace of the set of permutations.
In our case, t = 23, which means that we have to implement the visualization in a 22-
dimensional space, which is not possible to do. In general, despite the fact that the
permutation polytopes describe the data from a geometrically point of view, they are
not so commonly used because of the difficulties in drawing them.

After navigating the permutation polytope, we are going to present a different class of
methods for visualizing ranking data, the Multidimensional class.

4.2 Multidimensional Methods

Multidimensional Scaling or MDS is a big family of graphical methods for representing
data which are in the form of measures that provide the proximity or “closeness”
between each pair of objects. Examples of such measures are similarity or dissimilarity
measures. The basic idea behind MDS, is to search for a low — dimensional space,
usually Euclidean, in which each object is represented by a point in the space, such that
the distances between the points match as well as possible with the original
dissimilarities [45]. Thus, the goal is to find points in a low — dimensional space, that
can represent the distances in such a way. This is the main issue in the multidimensional
techniques for visualizing such types of data, like ranking data.

Many approaches have been developed, in order to deal with this issue. One approach
is to address it like an optimization problem and found the values to formulate the MDS,
by minimizing a loss function which is called stress value. We are going to define later.
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on the stress value and the information it provides. Such methods that work with stress
value are the metric — classic multidimensional scaling and the non — metric
multidimensional scaling, which will be discussed in further section. Another approach
that is suitable for the context of ranking data is Kidwell’s approach. Kidwell (2008)
[37] suggested to use the Kendall distance for the computation of the dissimilarity
between two rankings, complete or partial, and then to apply MDS in order to find an
integration of a dataset of n rankings assigned by n judges in a two — or three —
dimensional space.

Now, let’s have a look at the fundamental multidimensional techniques for visualizing
ranking data, by presenting in a more explanatory way the metric and non — metric
multidimensional scaling methods, which will be implemented for the visualizations of
FIFA’s datasets.

4.2.1 The Multidimensional Unfolding technigue

The unfolding technique was first formulated by Coombs, in 1950 [16], and it belongs
to the family of Multidimensional Scaling techniques, for representing ranking data.
We are going to see later on the Multidimensional Scaling techniques, in detail, but at
this point we will focus on the unfolding one.

The method attempts to visualize a set of points in a low Euclidean space with both
judges and objects being represented by the points in the same space [45]. This is the
main difference with the other methods that belong to the MDS family, which attempt
to visualize only the set of judge points in a low-dimensional Euclidean space. The
points that are used for the representation of the rankings are obtained in such a way
that the ranked order of the distances from a point representing a judge to the points
representing the objects, match as close as possible with the actual rankings that have
been assigned from the judge to the objects. Thus, based on the Euclidean distance

dij = J(xi - xj)’(xi - Xj) '

the goal of multidimensional unfolding method is to find x and y, such that the
distances match as much as possible with the ranks of objects given by the judges.

In the case when d;; = 1, the unfolding becomes unidimensional unfolding for which
objects and judges are represented by points on a straight line. The technique’s name,
unfolding, has been termed because of the fact that when this straight line is folded
from one side to the other side at any judge point, the judge’s rankings can be observed.

4.2.2 Multidimensional Preference Analysis

The Multidimensional Preference Analysis method or MDPREF, was introduced by
Carroll (1972) [12]. Its fundamental idea is similar to the Multidimensional Unfolding
technique. Thus it displays the relationships between judges and the ranked items by
reducing the dimensionality of the data, while retaining the main features as many as
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possible. Moreover, like in MDU, the MDPREF method assumes that the ranking
assigned by each judge can be represented in terms of the ordering of distances and
projections. The difference with the MDU is that, in the MDPREF’s case, the points
are replaced from vectors for the representation of judges, in a low dimensional space.
The objects are represented, as in previous, by points in the same space. As in all MDS
methods, the vectors — judges and the points — objects are chosen in such a way that the
projections of the objects to the vector of judges is as closely as possible with the actual
rankings of the judges.

4.2.3 Classical — Metric & Non — Metric Multidimensional Scaling

As it has been referred in above section, these are two of the most basic approaches that
try to solve the MDS issue. The first is called Metric or Classical, because it attempts
to reproduce the original metric or distances of the rankings. The second technique, is
called Non — Metric and assumes that only the ranks of the distances are known and not
the actual distances. Thus, the Non — Metric approach creates a map which tries to
reproduce these ranks.

We are going to explore the two methods separately, starting from the Metric approach.

4.2.3.1 Classical — Metric Multidimensional Scaling

The classical MDS procedures were first introduced from Torgerson (1952) [71].
According to him, the goal in these procedures is to compute a distance matrix which
IS going to approximate the interpoint distances of a configuration of points X in a low
— dimensional space. The interpoint distance is normally taken to be the Euclidean
distance, but sometimes we may use the Manhattan distance

d(xq, %) = 2?:1 | X1j — x2j| .

The classical solution is optimal in the least square sense. That means that when the
distance matrix that is used is Euclidean, the solution that is obtained minimizes the
sum of squared differences between the elements of the distance matrix. In other words,
we could say that the solution minimizes the value of a loss function, called stress value.

Stress value is a goodness-of-fit statistic, for the MDS models, which is based on the
differences between the actual distances and their predicted values. The way that the
stress value is calculated differs between metric and non - metric approach. For the
classical approach, the stress is calculated from the following formula :

Y(dij—dy;))?

stress = ,
Y d;j?

where d;; is the actual distance and c/l:] is the predicted distance between two points,
based on the MDS model. In the case of metric approach, the predicted values depend
on the number of dimensions kept and the distance that is used for the calculation of
the measure.
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We have to mention at this point that the optimal solution always has to be sought in
terms of balance between accuracy and parsimony. Thus, an equilibrium point between
the smallest stress value and the number of dimensions that are possible for
interpretation, has to be reached. It is obvious that, when the dimensionality increases
the stress value decreases but, in parallel, the ability of interpretation decreases also.

In order to be able to assess the fit of an MDS model, by interpreting the output of the
model’s stress values, Kruskal (1964) [38] released a paper which contained a table
about the interpretation of stress values, in terms of goodness-of-fit purposes, based on
his experience. The table provides the information that stress values below 0.05 indicate
a very good fit of the model (0.05 - Good, 0.025 - Excellent, 0 - Perfect) and values
above 0.05 indicate a not so good fit of the MDS model, as the values increase (0.1 >
Fair , 0.2 = Poor). Kruskal’s paper faced backlashes from recent articles, which
mentioned that acceptable values of stress depend only from the quality of the distance
matrix and the number of objects that are ranked in the matrix [45].

Another way, to check how well the MDS model produces the predicted values in
compare with the actual values is the Shepard diagram. The Shepard diagram, like the
stress values, can be implemented in both metric and non — metric case.

The Shepard diagram is a scatterplot of the distances between points in the MDS plot
against the observed dissimilarities (or similarities). The points in the plot should adhere
to a curve or straight line. The plot compares how far apart are the data points before
and after the transformation in a scatterplot. A completely straight line is a strong
indication that the fitting of the points in a lower dimensional space through MDS is
accurate. However, in real life examples since a lot of the information that the data carry
is lost during the dimension reduction, Shepard diagrams rarely look completely
straight.

4.2.3.2 Non — Metric Multidimensional Scaling

In the above section the classical MDS solution was presented, which assumes that the
configuration of points is an Euclidean distance matrix. However, in real life cases, it
is more often to use less strict assumptions between the true distances and the observed
distances. In such cases, an error parameter is added in order to denote the distortions.
Moreover, the distribution is assumed to be unknown and monotonically increasing
function. Because of these two reasons, instead of using the actual numerical values of
the dissimilarities, the rank order of the dissimilarities between the objects is used.

When the Non — Metric Multidimensional Scaling (NMDYS) is used, the configuration
between the points is a dissimilarity matrix and not an actual distance matrix. The main
difference between the two matrices is that dissimilarity matrices do not require their
values (dissimilarities) to be symmetric, in compare with the distance matrices which
require for the differences they store to by symmetric.

Thus, the NMDS can be defined as an indirect gradient analysis approach, which
produces an ordination based on a dissimilarity matrix [45]. As the classic MDS, the
technique attempts to represent as closely as possible the pairwise dissimilarity between
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objects in a low — dimensional space, but this time, in terms of rank — based approach.
It is a robust technique, with tolerance in missing pairwise distances. Also, it is able to
use quantitative, qualitative or mixed data. We could claim that, NMDS is more
appropriate in our case, because of the fact that it should be used when ordering is more
appropriate than actual distances. Moreover, it is preferred when the dataset or the
number of ranked items in the dataset is large.

As it was referred in the above section, NMDS makes use of stress values and Shepard
diagrams for assessing the goodness of fit. The difference with the classic MDS exists
in the formula that the two approaches use for the calculation of stress values. For the
non — metric approach, the stress is calculated from the following formula :

_ 2 x)=d)?
stress = /—Zdz ,

where x denotes the vector of proximities, f(x) a monotonic transformation of x, and
d the point distances. The object of NMDS is the same as the metric MDS, to found
the coordinates that minimize the stress function. On the other hand, like in MDS, the
increase of dimensionality leads to decrease of interpretation capability. Low —
dimensional projections are often better to interpret and are preferable for interpretation
issues. Thus, an equilibrium point has to be found, between the goof fit of the original
dissimilarities and the interpretation of the dimensions.

At this point, after capturing the theory of the basic methods for visualizing ranking
data we are going to present some fundamental R libraries and functions that are
appropriate for visualizing ranking data. Furthermore, we will capture the process of
implementing visualizations through these functions. At last, visualizations of the
ranking datasets that are processed in this thesis, are going to be presented.

4.3 Non — Metric Multidimensional Scaling for Ranking data -Application

We are going to apply Non — Metric Multidimensional Scaling, in order to visualize the
ranking matrices that have been obtained from FIFA Ballon d’Or voting datasets, for
the period 2010 — 2015. The reason we apply NMDS is that, as have been discussed in
the previous chapter, this technique is resorted to when the data are of type that have
been observed on a scale (categorical, ranking, etc.) and also, in the case that the ranking
between the observations is the important to be computed and not the actual differences.
We will provide the results for the year 2010, as an application example of partial
rankings visualization, in order to explain the methods and the results.

Before starting the visualization process, the appropriate distance which will be used
for the computation of the distance matrix, has to be selected. It is important to choose
the correct distance in order to calculate the matrix because the technique is sensitive
in the distance that is chosen. It has to be pointed out that, as in the descriptive statistics
chapter, the zero values have been replaced by the midrank value, which is 13.5 .
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4.3.1 Kendall distance for computing the distance matrix of the rankings

As a starting point, in order to implement NMDS, one has to calculate the distance
matrix between the rankings. Thus, the appropriate distance for the calculation of the
matrix has to be chosen. One thought could be the Euclidean distance, but it is not a
preferable measure when high dimensional data (e.g. partial ranking scores) are
analyzed due to the distance’s sensitivity to noise of such data. A calculation of the
FIFA matrices dissimilarities, based on the Euclidean distance, won’t provide a good
description of the data, since the rows — rankings containing a bunch of zeros, in our
case the whole dataset, will be similar to each other without pointing out the real
dissimilarity due to the computational properties of Euclidean distance.

Another option, could be the, commonly used in the context of visualization of high
dimensional data, Bray — Curtis distance [8]. The Bray — Curtis or Sorensen distance is
a distance measure commonly used in botanology, ecology and environmental sciences.
It is a modified Manhattan measurement, where the summed differences between the
variables are standardized by the summed variables of the objects. Bray — Curtis is a
powerful dissimilarity measure when there is an abundance of dimensions. However, if
the objects that are measured are in zero coordinates, the distance is undefined. Zero
values, have been imputed by 13.5 and indicate the voter’s non — preference for a player.
Despite the fact that zero values, have been imputed by the midrank value in the
calculation of the distance matrix, we are not going to use Bray — Curtis. Thus, we are
going to look for a more rank — based distance which will be able to represent in a more
representative way the partial ranks.

Thompson (1993), discovered that Kendall’s and Spearman’s distance are very
powerful in measuring the distances between two rankings. This is due to the fact that
these distances are able to provide natural geometric interpretation of the rankings.
More specifically, during the initial implementation processes of the permutation
polytope, he showed that the minimum number of edges that must be drawn to get from
one vertex of a permutation polytope to another reflects the Kendall distance between
the two rankings labeled by the two vertices [45]. Furthermore, he showed that the
Euclidean distance between any two vertices of a polytope is proportional to the
Spearman distance between the two rankings corresponding to the two vertices. Thus,
these two distances can be considered as the most suitable for computing the distance
matrix of ranking data. Both distances could be used in the computation of distance
matrix but, Cabilo and Tiley (1999) [10] observed that when there were no missing
observations, Spearman’s distance was more powerful than Kendall’s. On the other
hand, in the incomplete case Kendall’s statistic i1s much more strong, in terms of
accuracy of distance calculations and detection of patterns. Thus, Kendall’s distance is
going to be used for the computation of the distance matrices of our datasets. Based on
the fact that, the Kendall’s distance counts the pairwise disagreements between the
voters in the datasets of FIFA, the pair can be characterized as dissimilar, in terms of
preference for the best players, if the computed distance is large in compare with other
distances. Thus, the larger the distance between a pair of voters, the more dissimilar
preference have these two voters. We are going to give a detailed description of
Kendall’s distance in further section, where it is going to be used for clustering
purposes.
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4.3.2 Non — Metric Multidimensional Scaling Process

The starting point of a Non — Metric Multidimensional Scaling Process, is the
computation of distance matrix between the rankings. For the reasons explained in the
previous section, the optimal distance choice in our case is Kendall distance. Thus, in
order to construct it, we make use of the function ‘Dist” from the ‘amap’ package. The
function computes the distance matrix, by taking as input the matrix for which the
distances are going to computed and a specified distance.

Choose the number of dimensions

After the computation of the distance matrix, the next step is to determine the number
of ordination dimensions with which we are going to present the data. Thus, we plot
the stress value for a number of tested dimensions, in order to obtain the optimal
number. Such plots are called stress plots or scree plots. Stress plots show the decrease
in ordination stress with an increase in the number of ordination dimensions. As it has
been discussed in a previous section, stress value depends on dimensionality and it is
decreasing with increasing dimensionality. However, higher dimensionality leads to
incapability in interpretation, because low — dimensional are often better to interpret
and so preferable for interpretation issues. Thus, a stress plot explores both
dimensionality and interpretative value and provides dimension — dependent
estimations which give indices for meaningful stress reduction in increasing
dimensionality.

In order to construct the stress plot, for the year 2010, we are going to call the
‘dimcheckMDS’ function, from the ‘goeveg’ package. This function provides a plot of
stress values for a given number of tested dimensions in NMDS. We will make use of
the default choice for the tested dimensions, which is 6. The function takes as input, the
computed distance matrix and the distance which was used for the computation of the
distance matrix. For the year 2010, the stress plot is the following :
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Figure 2 : Stress plot of 6 tested dimensions for the year 2010.

From the stress plot obtained, we observe that stress value surpasses the threshold of
0.20 (when the fit can be characterized as poor but acceptable), in 3 dimensions.
Moreover, the absolute differences between the stress values, as the dimensions
increase, are not as large as the absolute difference (0.065) from 2 to 3 dimensions.
Also, a visualization with 3 dimensions can be interpreted in a more sufficient way, in
contrast to visualizations which are constructed with more dimensions. Thus, this is a
strong indication to implement NMDS with 3 dimensions.

Implement NMDS with the ‘metaMDS’ function

After choosing the number of dimensions, let’s take a brief look to the way the NMDS
works. The algorithm begins by constructing an initial configurations of the samples in
the k dimensions. The initial configuration could be based on another ordination or it
could consist of an entirely random placement of the samples [67]. The final ordination
is partly dependent on the initial configuration, so a variety of approaches are used to
avoid the issue of local minimum. One of the approaches is to perform several
ordinations, each starting from a different random placement of points, and select the
ordination with the best fit [67]. This is how the function that we use for the
implementation of NMDS works.

The function’s name is ‘metaMDS’ and is called from the ‘vegan’ package. It is a
wrapper function, that calls several other functions to implement Non — Metric
Multidimensional Scaling into one command. The function performs NMDS and tries
to find a stable solution using several random starts. For this purpose, it calls the
‘monoMDS’ function from the same package. It performs several other jobs, but we
focus on the implementation of the approach discussed in the previous paragraph. The
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process of the NMDS by this approach is iterative and can be described as follows. The
strategy of ‘metaMDS’ is to first run NMDS with the result of metric scaling as the
starting value (it can reach a good solution but often close to the local minimum), or
use the option to start searches from a previous solution and take it as a standard. We
choose the second option by setting previous.best = True. Then, ‘metaMDs’ starts
NMDS from several random starts. If a solution has lower stress than the previous
standard, it is taken as the new standard. If the solution is better or close to a standard,
‘metaMDS’ compares these two solutions by the use of Procrustes analysis. Procrustes
analysis, is a statistical method which compares a collection of multidimensional shapes
by attempting to transform them into a state of maximal superimposition. It does so by
attempting to minimise the sum of squared distances between corresponding points in
each shape through rotation of their coordinate matrices. It is commonly used in
ordination techniques such as NMDS, PCA etc. Back in the NMDS algorithm, if the
reached solutions are very similar in their Procrustes rmse and the largest residual is
very small, the solutions are regarded as convergent and the better one is taken as the
new standard. By this way, the ‘metaMDS’ finds a stable solution and avoids to stuck
on a local maximum.

Assessment of the NMDS result

After performing NMDS to 3 dimensions in the distance matrix obtained by the use of
the Kendall distance for the partial ranking matrix, of year 2010, we are going to
evaluate the result of the ordination algorithm. For this purpose, the Shepard diagram
IS used.

The Shepard diagram, represents the actual or transformed proximities versus the
predicted proximities. It is a scatterplot of distances between data points. In other way,
it could be described as a plot of ordination distances, in the y axis, and monotone or
linear fit, line against original dissimilarities, in the x axis. It is analogous to an Actual
by Predicted plot, which is a typical plot of the actual response versus the predicted
response. Ideally, the points, which are shown in blue, fall on the Y = X line, which is
shown in red. The Shepard diagram, also displays two statistics for the evaluation of
the fit of the graph. The linear fit is the squared correlation between the fitted values
and ordination distances, and the Non — metric fit is based on the stress value and is
defined as R?> = 1 — $2, where S is the obtained stress value. High values in the
nonmetric fit indicates high correlation between the observed dissimilarities and the
ordination distances. The Shepard plot for the result of the NMDS for year 2010 is the
following :
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Shepard diagram for Year 2010
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Figure 3 : Shepard diagram for the evaluation of Year’s 2010 NMDS result.

As we can observe from the Shepard diagram, the points do not fall exactly on the red
line, but are not noticed big deviations from the line. Moreover, the Non — metric fit is
near 1 (97.4 %) which indicates high rank correlation between the observed
dissimilarities and the ordination distances, thus, good fit of NMDS. We could claim
that this confirms the fact that NMDS maintain the distance ranking.

4.3.3 Visualizations based on the results of NMDS

After obtaining the NMDS results for year 2010, we are going to implement
visualizations of the ranking data in the dimensional — space, that was reached from the
results of NMDS. Thus, because the number of ordination dimensions is 3, we will
construct 3D plots, in order to explore the data visually. The packages that are used for
the implementation of the 3d visualizations are: the ‘MASS’ package, the ‘vegan3d’
package, the ‘rgl’ package and the ‘scatterplot3d’ package.

Before beginning the constructions of the visualizations, we have to make groundwork
for some of the input parameters that will be used in the functions. First of all, we create
references for the resulting points of each one of the 3 dimensions, in order to be used
as input data in the implementation of the visuals. The other step of the preprocessing,
is to convert the columns — Players of the input matrix which contains the imputed
partial rankings to factors and their rankings as levels, in order to be able to make use
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of colors based on the ranks. After making these steps we are ready to present some
visualizations.

The first visualization we provide is a 3D Scatterplot which represents the ranks of
Messi by different color, based on the ranks. The plot was constructed through the
function ‘plot3d’ of the ‘rgl’ package.

Messi Ranks for Year 2010 Nawds O
Rawde 1
* Raowdk 2
* R 3
data x
Figure 4 : Static 3D Scatterplot of Messi ranks for year 2010.
As we can observe, in the scatterplot exist white, green, black and red spheres. The

white spheres indicate the voters that did not preferred Messi in their Top -3 rankings,
the green spheres indicate those who voted him first, the black spheres the judges that
voted him second and the red spheres those who preferred him third. By looking at the
plot, someone can notice than more than half of the voters have preferred Messi at least
one time, because colored spheres appear to be little more than whites. This can be
confirmed by checking at the original dataset, where 241 out of 425 judges have put
Messi in their Top — 3, at least one time. After taking a closer look at the plot it can be
marked that, the green spheres are much more than the red or black spheres. In addition,
the red spheres appear to be more than the blacks. Thus, from the total of the voters that
rank Messi, the majority ranked him first, a big proportion of voters ranked him second
and a little amount of them ranked him third. In order to understand, the importance of
the big amount of first votes in Messi’s plot, we are going to provide the same plot for
the player that has been ranked second in the final rankings, Andres Iniesta.
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Figure 5 : Static 3D Scatterplot of Iniesta ranks for year 2010.

By taking a careful look at Figure 5, we can observe that the white spheres are more
than those in the scatterplot of Messi, which means that more voters preferred Messi in
their Top — 3 than Iniesta. The proportion of first, second and third position votes don’t
seem to differ much in compare with Messi’s votes. We notice a large amount of green
spheres, in compare with the amount of red and black. The big difference between the
two 3D scatterplots is the fact that the one representing the votes that Messi received,
has lesser white spheres than the one representing Iniesta’s votes. In addition, if we
take into account that the proportion of the 1%, 2" and 3™ ranks between the two players
do not differ much, we can claim that Messi wins the trophy because of the numerous
amount of voters that preferred him in their top — 3 and not because of the number of
first position votes he received, in compare with the other players.

It has to be mentioned at this point that, if someone wants to take a better vision of the
actual positions of every sphere in the above scatterplots, the interactive version of the
static plots can be used. We observe from the two plots that there are some spheres that
are very closed to each other, which may lead to not accurate conclusions if someone
does not observe the plots in a careful manner. That is why the interactive 3D
scatterplots are also proposed, for a reader who wants to change the orientation of the
plots, zoom on it and get a real feeling of the 3D visual. In that case, the functions
‘play3d’ and ‘spin3d’ from the ‘rgl’ package can be used, which allow to reset the
viewpoint for a specific number of seconds, set by the user.

Another interesting thing to visualize is the difference in votes between Lionel Messi
and Cristiano Ronaldo. The year 2010 can be considered as the beginning of the big
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rivalry between these two players, in terms of FIFA Ballon d’Or, because Messi won
his inaugural award. Having won 11 FIFA Ballon d’Or awards (6 for Messi and 5 for
Cristiano), both are widely regarded as the two greatest players of all time. Thus, it
would be interesting to have a look at the votes that these two players have received in
a different plot than the previous one. Thus, we are going to construct 3d Scatterplots,
where the ranks of each player are going to be represented with points. Also, a bar is
added in each point in order to visualize the amount of the total ranks and colour of
each point in a clearer way. It has to be mentioned that, these plots do not show the
votes of the total amount of judges, as in previous, but they provide only the preferences
that were in the Top — 3 of the voters, in order to make more clear the difference
between the amount of votes and the kind of votes each player received.
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Figure 6 : 3D Scatterplots with bars, comparing Messi and Cristiano ranks for year
2010.

Point and bar with grey colour indicates a 3" place vote, yellow indicates a 2" place
vote and blue indicates a 1% place vote. The plots were implemented through the
function ‘scatterplot3d’ from the homonym package.

From the Figure 6, we can observe that the preference of the voters is clear for the
question ‘Who is the best’ for the year 2010. The bars of Messi are far away more than
Cristiano’s bars, which demonstrates the fact that Cristiano has been preferred from a
very small amount of voters in their Top — 3 players list. Moreover, in Ronaldo’s
scatterplot one can notice the presence of many yellow bars, in proportion to the total
amount of bars, which implies that those who preferred Cristiano have ranked him in
the third - place mostly. On the other hand, Messi has a lot of blue bars and the yellow
bars follow, in terms of amount. Thus, this comparison helps to come to a conclusion.
It is not only the fact that Messi is the winner of the award in this year, but this wide
margin between those two in this path of their career is remarkable. It is a confirming
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indication of how far away were the two players in their early career stages, in terms of
quality, if we also count that Messi won the award for the next two consecutive years.
One the other hand, it is strong demonstration of the hard work Cristiano has done, in
order to reach the class of the Argentinian and surpass him for some years.
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Chapter 5

Cluster Analysis on the Data with Bayesian mixture of Plackett — Luce
models

In this chapter, the problem of clustering partial ranking data, has been approached by
a Bayesian point of view. In specific, we are going to present a Bayesian finite mixture
of Plackett — Luce model, in order to deal with the partial ranked data. Inference is
conducted with the combination of the Expectation — Maximization (EM) algorithm for
the maximum a posteriori estimation and the Gibbs sampling iterative procedure. The
implementation of this approach contains a data augmentation step, with the latent
group structure, which allows for approaching the partial top — ordering by a model
based aspect. Recent works considering Bayesian mixture modelling based on the PL
are Gormley and Murphy (2008) [27], who deal with a grade of membership model
where, at each stage of the sequential ranking process, each sample unit has a specific
partial membership of each component [49]. Also, Caron et al. (2014), extended their
initial work which have been implemented in 2012, and was a Bayesian nonparametric
PL based on a Gamma process to account for infinite number of items, to the mixture
context in order to cluster partially ranking data. The goal of Caron et al. work was to
identify and characterize possible group of rankers with similar preferences/attitude.
We could say that the approach that is being presented in this chapter is very similar
with the Caron et al. extension, but two main differences are spotted. The first
difference is that in the parametric setting of our model, each single component is a
standard PL for finite orderings whereas in the Caron et al. approach the ordering of the
number of items that are modelled is random [49]. The second difference is that the
cardinality of the mixture models, in our case, is finite whereas on the other model is
infinite [49]. A fundamental pros of this model in comparison with the MLE frequentist
approach, is the ability of addressing the estimation uncertainty in a straightforward
way, without relying on large sample approximations. Furthermore, it is much more
efficient in terms of the computational time needed for the implementation of the whole
process.

5.1 Theoretical Framework of the Method

5.1.1 The Plackett — Luce model

The Plackett — Luce model is one of the most popular and frequently applied parametric
distributions to analyse rankings of a finite set of items. Also, it is one of the most
successful stagewise models for analysing partial ranking data. The model’s process
could be summarized as a random sampling without replacement from an urn, where at
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each stage the most — liked item is specified among the alternatives not selected at the
previous stages.

The model depends on the Luce’s axiom of choice (Luce 1959) [40], which states that
the odds of choosing an item over another do not depend on the set of items from which
the choice is made [72]. At first, one assumes that there is a set S of K items, S =
{i1, i3, ... ,ix}. Then, under the Luce’s axiom, the probability of selecting a k item from
S is given by

Wi

Yies Wi

P(kl|S) = ,
where w; represents the ‘worth’ of item i, in terms of ordering. In Plackett — Luce model
the ranking of these K items, can be viewed as a sequence of choices, where first is
chosen the item with the biggest ‘worth’ among the items, then is chosen the second
ranked item from the remaining items and this process is iterated until all the items
being ranked. The ‘worth’ of each item of the set S is represented by the corresponding
support parameter p; which belongs to the set of the support parameters p =
(pi,,--»py,), that parametrize the PL model. These support parameters represent a
positive constant associated to each item and the higher the value of the support
parameter of an item the greater the probability for this item to be preferred at the
selection stage. For the final ordering of the items, the probability of the ranking i; >

. a . .
i, >+ > i, is equal to [IK_, Zie;kai , Where A, is the set of alternatives
k

{ix, ix+1, -, ig} , from which the item k is chosen [72].

It can be observed that the ranking probability under such a model can be expressed as
a function of top — choice probabilities only. Such samples, that occur from picking one
item at a time, out of a set of choice probabilities that satisfy the Luce’s axiom, provide
a total ordering of items which can be considered as samples from a distribution over
all possible orderings. The form of such a distribution was first considered by Plackett
(1975) in order to model probabilities in a horse race [33]. Thus, the name of the model
has been derived from the independent work by Luce (1959) [40] and Plackett (1975)
[57].

At this point, it has to be remarked that, the Luce model satisfies the Independence of
Irrelevant Alternatives (I1A) property (Tversky, 1972 [35]) which, in simple words,
claims that the choice of a judge between two objects , depends on the preferences of
the judge to these objects only and it is irrelevant to the preference on another object.
But I1A is not such a good property because, it ignores the fact that a preference of a
judge to an object is natural to depend on judge’s preference on similar objects. Thus,
by ignoring this fact, the estimations of the choice probabilities, that the model obtains,
are expected not to be unbiased.

5.1.2 Model’s Specification
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Based on the PL model that has been discussed above, we are going to conduct
inference through the Bayesian approach that was introduced from Caron and Doucet,
in 2012 [11]. As it was referred in the introduction, the method has a fundamental step
which is the data augmentation step. The data augmentation step, where the Bayesian
perspective is taken into account, can be described as follows : Let’s suppose that we
get a random sample (7 ~1), of partial top orderings, drawn from a G — component PL
mixture. The representation of the sample in symbols is

Ty, Ty lp,w ~ Y5=1wg PPL(ns_llgg)’

where =1 = {m~1,}Y, represents a random sample consisting of N partial top
orderings of the form ;1 = (m71(1), ..., w5 1 (n,)) [45] . The parameter ng represents
the number of objects ranked by the unit s in the top ng positions. Thus, ng is going to
be always 3 since 3 out of 23 players are ranked from all of the judges of the datasets.
The term pg, is the support parameter vector of the g-th PL mixture components. Thus,
the term Pp, (s~ *|py), is the PL likelihood function of the N top partial orderings
given the corresponding support parameters. This term multiplied by g, which
represents the corresponding weight, is summed for every component of the G —
component PL mixture.

After defining the sample of top partial orderings, we introduce the latent feature z, ,
which receives the value 1 if the unit s belongs to the g-th mixture component and the
value O otherwise. Since, the latent feature follows a Bernoulli distribution, then the
vector zg = (244, ..., Zsg) » Which represents the values of these features for each one of
the G values, follows a multinomial distribution with the same weight for each
component because the number of ranked players is the same for each judge. These
latent features represent the unobserved group labels for each group of judges that
probably exists in the dataset. Thus, we include the unobserved group labels z in such
a way so that the labels determine the cluster — specific support parameters on the
underlying quantitative variables of the model. These underlying quantitative variables
represent the observed variables of the model given by the N partial top orderings (z 1),
the unobserved group labels (z), the support parameters (p) and the corresponding

weights (w). Because there exist both observed and latent variables in the model, we
have to elicit the joint prior distribution for the unknown parameters. The most
straightforward way is to choose prior distributions with independent support
parameters and weights, so that f (p, 9) =f (p)f(g), which can be calculated. In our

case, we are going to recover the MLE approach as a special case of the non —
informative Bayesian approach, by using flat priors, which means that the priors are
going to have negligible information.

5.1.3 MAP Estimation through EM algorithm

After introducing the unobserved group labels, we construct an EM algorithm in order
to discover the posterior mode (MAP estimate) and, in general, to optimize the posterior
distribution. The EM algorithm was originally introduced by Dempster et al. (1977)
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[20] and since then it has been the subject of great research. In general, it is an iterative
maximum likelihood procedure, which is usually used in order for the parameters of a
mixture model to be estimated. Theoretically, increases in the likelihood function are
guaranteed as the algorithm iteratively improves upon previously derived parameter
estimates. The iterative procedure is considered to converge when all parameters
become stable and no further upgrades can be made to the likelihood value.

The implementation of the EM algorithm includes the iteration of Expectation (E) step
and Maximization (M) step. The E — step, which relies on the conditional joint
distribution of all the latent variables is given by

P(y,zlz ™ p,w)=f(ylnhz,p,w)P(zlz hp,w)

and returns the objective function with respect to the support parameter and the
corresponding weight, where the posterior membership probabilities Zs, are obtained
after the proper calculations [29]. The M — step maximizes the proper objective

function each time, with respect to (B' g). The abiding differentiation of the objective

function, with respect to each support parameter of the g — th mixture model, yields the
updated support parameters of the M — step. Also, the same process of optimization of
the objective function yields the updated mixture weights, with respect to the
corresponding weights of the g — th mixture model and the constraint Zgzl wg =1.
The E- and M- step are repeated alternatively, until there is no further improvement in
the likelihood value.

After obtaining the MAP estimations we implement the process of Gibbs sampling in
order to learn about the uncertainty associated to the final estimates by drawing a
sample from the joint posterior distribution. This is achieved by deriving the full joint
density and the posterior conditionals for each of the random variables in the model and
simulating samples from the posterior joint distribution based on these posterior
conditionals. The Gibbs sampling algorithm is going to be presented in the section of
the theoretical framework of the Insertion Sorting Rank method.

5.1.4 Determing the number of components

After performing a separate inference on PL mixtures on different number of
components, we are going to choose the model that satisfies in better way among the
competing models the corresponding criteria. The Bayesian criteria that are used for the
selection of the best model are the Deviance Information Criterion or DIC
(Spiegelhalter et al. , 2002) [64], the Bayesian Information Criterion — Monte Carlo or
BICM (Raftery et al. , 2007) [60] and the Predictive Information Criterion or BPIC
(Ando, 2007) [3]. The main goal for a model to be selected is to minimize those criteria.
We consider two alternative versions for each of the criteria, in order to have more
variety in the selection criteria and also prevent overfitting. In the next paragraph, where
the application of the theory is taking place, we present the 6 different versions — criteria
in detailed way. We have to make clear at this point, that the results of the selection
criteria may lead to different models as the best choice. This is because some criteria
may minimize their value in a specific number of components but other criteria may
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not with the same number of components. For this reason, we are going to search for
the model that does not only minimizes some of the criteria, but also satisfies the
purposes of clustering and is able to provide meaningful and useful insights. Thus, the
best model has to satisfy simultaneously most of the quantitative selection criteria and
the qualitative selection criteria which are going to provide the number of clusters that
are going to be useful for the analysis.

5.2 Application of the Method

5.2.1 Package Overview

The approach that is going to be presented for clustering the voters of FIFA Ballon
d’Or datasets for the period 2010 — 15 is the Bayesian one, where the finite mixtures of
the Plackett — Luce model are taken into account by assuming the Bayesian inferential
perspective. The method is implemented with the help of PLMIX package. The PLMIX
package was first released in 21/12/2016, as the only R package to deal with partial
rankings/orderings by obtains inference based on the Bayesian Estimation. In terms of
computational time, the PLMIX package outbalances the next application for clustering
partial ranking data, the Rankcluster package, as its framework takes into account the
computational issues that arise from partial rankings due to complexity of this kind of
ranking data structures.

5.2.2 Data Input Format

First of all, it is a need to transform the input data into the proper notation that PLMIX
works with. The proper notation for the input data in the PLMIX functions is the
ordering notation. This is because, in applications like the one is advanced in this
section, there is a lack of ranking elicitation to manage the complexity of ranking
sequence when a number of items, which can be considered large, is ranked. If k is the
total number of items to be ranked (23 in our case) and t is the number of items that are
actually ranked from the voters (3 in our case), the remaining k-t alternatives which
have not been ranked by the judges are tactically assumed to be ranked lower. Thus,
this is the format that is going to be used in the implementation of clustering with the
extensions of Plackett — Luce models, by assuming the inferential perspective, and is
called top — t partial ordering. It can be noticed at this point, that this comes in contrast
with the Ranklucster package’s input notation (ranking notation),which will be used in
order to implement the ISR models in Chapter 8. On the other hand, the missing
positions of the matrices are denoted in the same way like in ISR models, thus with
zero entries. Moreover, Rank = 1 indicate the most — liked alternative, Rank = 2 indicate
the second most preferred item and Rank = 3 the third item in the order of preference.

5.2.3 Estimation of Models

5.2.3.1 MAP Procedure
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After transforming the format of input data to the appropriate notation in order to be
compatible with the input that the functions of PLMIX require, the next step is to start
the procedure of fitting the Baysian G — components Plackett — Luce (PL) mixtures
according to Maximum A Posteriori (MAP) estimation procedure via EM algorithm
and Gibbs sampling. The functions that are going to be used in order to obtain the
models are the following: 1) mapPLMIX_multistart , which maximizes the posterior
distribution through EM algorithm and returns the MAP point estimate of the PL
mixture parameters. The function works by initializing the algorithm many times, with
different starting values, in order to address the issue of possible local maxima in the
posterior distribution. 2) gibbsPLMIX , which implements the MCMC posterior
simulation via Gibbs sampling, having the goal to quantify the estimation uncertainty
from a fully Baysian perspective. The two functions are going to be applied in sequence,
which means that at first, the MAP procedure through ‘mapPLMIX multistart’
function is going to be launched and then the resulting MAP estimate is going to be
utilized in order to initialize the MCMC chain, via ‘gibbsPLMIX’ function. The above
procedure is going to be implemented for every year of the period under analysis (2010
—15).

Let’s begin with the MAP estimation through the ‘mapPLMIX multistart’ function.
The arguments that are going to be used as input are :

e pi_inv : A data matrix of class ‘top ordering’, which contains the partial
orderings .

e K The number of alternatives that are going to be ranked .

e G : The number of mixture components .

e n_start : The number of different starting values .

e n_iter : The maxim number of EM algorithm iterations .

e centered_start : A logical value which is used to constraint the random starting
values to be centered around the observed relative frequency that each
alternative has been ranked first .

e parallel : A logical value which is set to true in order to be able the
parallelization .

In particular :

v' As pi_inv, it is used the matrix with the partial orderings for each specific year
of the period 2010 - 15 .

v' As K, the number of columns — Players that are ranked from the judges (there
are 23 number of alternatives in all years) .

v' As G, the number of mixture components for the obtained model. For each year
have been tried models with 2 components to 8 components .

v' As n_start are used large numbers in order to let the algorithm intiallize the
procedure many times .

v As n_iter, are used also large numbers in order to run the EM algorithm many
times, so to shrink the probability of find a local maxima and not the global
maxima .

v centered_start : True

v’ parallel : True
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At this point, it should be emphasized that it is not being put in the input an argument
that can be supported from the function, but at the same time, it is not included in the
input argument of the function in purpose. The argument is : hyper, which is a list of
named objects with hyperparameter values that are used for the prior information
specification. If the prior setting is noninformative or flat, as it is in this case, the EM
algorithm for MAP estimation performs frequentist inference, which means that the
MAP solution for estimation coincided with the MLE solution and the best model in
terms of maximized posterior distribution is returned.

The output of the function is an object of class ‘mapPLMIX’ and is the following :

= mod : A list of named objects describing the best model in terms of maximized
posterior distribution. Two of the derivatives of this argument are used for the
Gibbs sampling. These are mod$P_map, which is a numeric matrix with the
MAP estimates of the component specific support parameters and
mod$class_map, which is a numeric vector of the mixture component
memberships that are based on MAP allocation of the matrix of estimated
posterior component membership probabilities. Furthermore, mod$P_map and
mod$W_map, which is a numeric vector with the MAP estimates of the G
mixture weights, are used for the comparison of the models obtained with
different number of components .

= max_objective : Numeric vector of the maximized objective function values for
each initialization .

= convergence : A binary vector which, for each iteration, indicates if
convergence has been achieved (1 if convergence has been achieved, 0
otherwise) .

= call : The matched call .

5.2.3.2 Gibbs Sampling

After obtaining MAP estimations for the PL mixtures via EM algorithm, the results of
the procedure are going to be used in order for the MCMC chain to be initialized.
The goal of the Gibbs sampling, in this stage of the procedure, is to approximate the
joint posterior distribution in order to assess the uncertainty of the parameters estimates.
This 1s achieved through ‘gibbsPLMIX’ function which, as had been referred in the
previous paragraph, implements the MCMC posterior simulation via Gibbs sampling.

The input arguments of the function that are going to be used in the implementation of
the MCMC chains are the following:

e pi_inv, K, G are the same arguments as in MAP procedure .

e init: Itisa list of named objects which takes two initialization values . 1)
p : A numeric matrix which contains the binary mixture component
memberships, 2) z : A numeric G x K matrix of component — specific support
parameters ,which is constructed by using the command binary_group_ind .
The command constructs the binary group membership matrix from the
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multinomial classification vector and takes as input a numeric vector with the
class memberships and the number of classes .

e n_iter: The total number of MCMC iterations .

e n_burn : The number of initial burn — in drawings removed from the returned
MCMC sample .

It has to be pointed out, that for the ‘n_iter’ arguments big values were chosen, in order
to have large difference with the values used for the ‘n_burn’ arguments. The reason is
that the difference between ‘n_iter’ and ‘n_burn’ is equal to the size of the final MCMC
sample, thus if we want to have large final sample such a difference between these
arguments has to be given for input values. Thus, for every model that the Gibbs
sampling is performed, the values of ‘n_iter’ and ‘n burn’ are 22000 and 2000
correspondingly. Another fact that has to be referred is that, in the MAP procedure, the
list of named objects with hyperparameter values for the conjugate prior specification
is not initialized, in order to not have an informative prior setting.

The output of the Gibbs’s sampling procedure provide the following arguments :

= W : A numeric matrix which contain the MCMC samples of the mixture
weights. The dimensions of the matrix are LxG, where L is the size of the final
MCMC sample and G is the number of mixture components that used for this
model.

= P A numeric matrix with MCMC samples of the component-specific support
parameters. The dimensions of the matrix are Lx(G*K).

= log_lik : Numeric vector of L porsterior log — likelihood values.

= deviance : Numeric vector of L posterior deviance values, thus -2*log_lik.

= objective : Numeric vector of L objective function values. These values are the
kernel of the log — posterior distribution.

= call : The matched call.

5.2.3.3 Comparison of the Models

After implementing Gibbs sampling for each of the model obtained from the MAP
allocation, for number of components from 2 to 8, it is appropriate to select the best
model among the performed fitted models. The model that is going to be selected, will
provide the clustering results for the year under study. In order to choose the appropriate
one, every model has to be tested according to specific criteria. Thus, the function
selectPLMIX from PLMIX package is going to be used in order to compute Bayesian
selection criteria with the range of the number of components that were used in the
implementation of the models.

The input arguments of the ‘selectPLMIX’ function that are going to be used are:

e pi_inv: The matrix which contains the partial orderings of the year under study.

e seq_G : A numeric vector which contains the number of components of the PL
mixtures to be compared. Because the models have been implemented in the
range of [2,8] components the numeric vector, in the function, is going to be
seq G =238.
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e MAPestP : A list which size is the length of seq_G and contains the MAP
estimates of the component specific parameters.

e MAPestW : A list which size is the length of seq_G and contains the MAP
estimates of the G mixture weights.

e deviance : A list which size is the length of seq_G and contains the posterior
deviance values obtained from the Gibbs sampling methods for the different
number of components.

A table with the six model selection criteria is returned. These are DIC1, DIC2, BPIC1,
BPIC2, BICM1, BICM2 . Based on these criteria, we select the estimation with the
components that minimize these metrics. The criteria used for the model selection are
based on the principle of the trade — off between the fit of the data and the corresponding
complexity of the model. Spiegelhalter et al (2002) [64], proposed a model comparison
criteria that combined these characteristics. This is DIC (Deviance Information
Criterion), which is defined as DIC = ‘goodness of fit” + ‘model complexity’. The fit is
measured through deviance, which is defined as D(8) = —2logL(data|@) and the
complexity is measured through the ‘effective number of parameters’, which is defined
as pp = the posterior mean deviance minus the deviance evaluated at the posterior mean
of the parameters. An alternative measure in model complexity which works with
negligible prior information is the p, = Var(D)/2. In that case, half the variance of
the deviance is an estimate of the number of the free parameters in the model. This
estimate, in cases of weak prior information, turns out to be very robust and accurate.
Thus, DIC1 corresponds to DIC with pp, as measure of complexity and DIC2
corresponds to DIC with p,, as measure of complexity. BPIC1 and BPIC2 are obtained
from the DIC1 and DIC2, respectively. Their difference is that they double the penalty
term, in order to prevent the DIC’s tendency to overfit. The last two metrics, BICM1
and BICM2, are the Bayesian variants of the BIC. Their difference is that BICML1 is
entirely based on the MCMC sample and, in contrast, BICM2 involves the MAP
estimate without the need of its approximation from the MCMC sample. We are looking
for the components that minimize these metrics and simultaneously providing a number
of clusters that is going to be useful for the analysis.

5.2.3.4 Evaluation of the Models

Sometimes, the criteria do not provide a clear result for the optimal number of
components. In that case, we are going to decide the number, based on the p-values of
the assessment of the MAP estimates. In specific, we are going to evaluate the mixture
— models adequacy, by computing the posterior predictive checks. This is achieved, by
making use of the ppcheckPLMIX function from the PLMIX package. The function
takes as input the pi_inv, seq_G of the previous functions and two lists, one containing
the MCMC samples of the component specific parameters and one containing the
MCMC samples of the mixture weights. It returns two posterior predictive p-values,
based on two chi — squared discrepancy variables involving : the top — item frequencies
and the paired comparison frequencies. The posterior predictive p-values can be
compared with a nominal probability, typically set to 0.05, to conclude about the
adequacy of the model. VValues smaller that 0.05 are typically considered as indication
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of model’s lack of fit. Thus, as much greater than 0.05 is a p-value, it is an indication
of proper fit for this specific model. Based on this assumption, we are going to make
use of the p-values in order to obtain the optimal number of components when the
model selection criteria will provide a not clear result. In particular, when the number
of clusters is going to be chosen between models with similar results, the p-values of
the adequacy’s assessment of these models are going to be used in order to obtain the
choice of clusters.

5.3 Results
5.3.1 Year 2010

In 2010, the criteria for the comparison of the models with different number of
components are presented in the following table.

Models DIC1 DIC2 BPIC1 BPIC2 BICM1 BICM2
2- 2037.593 5705.357 -1576.845 5758.678 5920.916 9588.678
Components

3- 5708.9859 5691.243 5805.616  5770.131 @ 6010.157  5992.415
Components

4- 5782.0772 5698.763 5950.898 5784.27 6044.437  5961.123
Components

5- 5833.9357 5701.83 6053.337  5789.125 | 6054.731 5922.625
Components

6- 5885.1377 5705.104 6154.534 5794.466 6066.363 5886.329
Components

7- 5920.8521 5707.823 6224.838 5798.779  6075.526 | 5862.497
Components

8- 441.8131  5712.939 | -4735.025 5807.227 6094.111  11365.237
Components

Table 4 : The criteria used to obtain the proper number of components, for Year 2010.

Based on Table 3, we reject the MAP estimations with 2 and 8 components, due to their
enormous high values in BICM2 and the negative values in BPIC1 which is an
indication of a not good estimation. If we check the DIC1 values for the models with
these two components, we can observe the DIC tendency to overfit, because of the
extremely small values it obtains. Thus, among the rest of the models, the metrics
indicate that the appropriate model is the one with 3 components. Moreover, by
checking the table (A.6) with the p-values for the models assessment, we notice that the
p-value of the ‘paired’ discrepancy variable, for the 3 — components model, is the
greatest among the others.

The 3 — components model provide the following number of observations in each
cluster. Cluster 1: 121 observations, Cluster 2 : 142 observations and Cluster 3 : 162
observations. In (B.1), someone can observe that the separation between the first and
the second cluster is very good but the points of the third cluster are not so concentrated
within the cluster and well separated from the other two clusters. Each of the three
clusters have a player who is the central person in the cluster. The (A.7) shows that
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Cluster 1 belongs to Messi with 86 out of 121 first - place votes, while on the same
group his two opponents for the first - place , Iniesta and Xavi, have not been preferred
so much from the voters. In Cluster 2 (A.8), it is noticed that there is a strong stream of
judges that support Xavi, as he has been preferred in the Top — 3 from all of them. The
third Cluster (A.9), belongs to Iniesta because he has received an amount of points that
is much greater than his other two opponents. A visualization of the points that each of
the three players received in his cluster is presented in the following plot.

Frequency of Votes for the winner of each Cluster
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Figure 7 : Bar plot that presents the ranks for each cluster’s winner.

From Figure 7, we observe that Messi has been taken a strong lead with a very large
amount of 5 — points votes, in the cluster that he was the top vote receiver. On the other
hand, one could wonder why Iniesta has been ranked second in the final rankings,
despite the fact that he is not such strong as Xavi in his own cluster. The main reason
is that the proportion of votes is not the same for Cluster 3 (Iniesta’s Cluster) and Cluster
2 (Xavi’s cluster). The second is smaller which means that the amount of votes that
Iniesta received is bigger than it seems to be, if we consider the actual size of his cluster.
Another reason is that Xavi is very weak in Cluster 1 and Cluster 3, by concentrating
all his power in Cluster 2. On the other hand, Iniesta has received a respectable amount
of votes in the clusters that did not win.

5.3.2 Year 2011

Based on (A.10) we observe that, if we except the models with 2 and 8 components for
the same reason as in previous year, the indications for the appropriate model converge
to the 4 — components model. Moreover the p-value (A.11) for the ‘paired’ discrepancy
variable, indicates a good fit, as it is 0.43 and surpasses the threshold of 0.05.
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From the 4 clusters obtained, the largest and the smallest are the more interesting. Thus,
the largest cluster is apart from 232 out of 465 voters of the complete dataset. It is a
very well representative of the enormous difference that the winner of the award
(Messi) has to the second player (Cristiano), in terms of votes. Also, it represents the
difference from the second - place (Cristiano) to the third - place (Xavi), because of the
huge amount of second - place votes that Ronaldo received. Someone can observe from
the (B.2), that the 93% of the judges in this cluster have voted Messi first and the 91%
have voted Cristiano second. One could say that this denotes the start of the greatest
rivalry in the history of modern football.

On the other hand, Cluster 4 which apart from 37 observations is also very interesting,
but from different scope. The reason is that this cluster could be characterized as a ‘Anti
— Cristiano’ cluster, since Ronaldo has not been preferred in the Top — 3 neither from
one voter and in the same time Messi has been ranked first from all of the voters. It
could be very interesting to have a more deep look at the kind of relationship that these
voters have with football and also the continents that are come from, in order to search
for possible patterns.

Exploration of voters for Anti-Cristiano Cluster
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Figure 8 : Stacked bar plot with the job and the continent of the voters in the ‘Anti —
Cristiano’ cluster.

Figure 8, provides insights about the job of the voters and the continent they come from.
The continent that each voter comes from, has been obtained by making use of the
‘countrycode’ function from the ‘countrycode’ package. Someone can observe from
Figure 8, that Media have strong presence on this cluster. On the other hand the players
that belong in the cluster are few. We notice that there are not so many European judges
in the cluster, in compare with the amount of voters from other continents. This is not
a surprise if we take under consideration the origins of the two players (Cristiano from
Portugal and Messi from Argentina). On the other hand, there is a strong attendance of
African and American voters in the ‘Media’ bar. It makes sense for American press to
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prefer Messi than Ronaldo for winner of the FIFA Ballon D’Or, if we consider the
origins factor, but the large number of African voters is a surprise. An explanation could
be, the influence of Barcelona in Africa, as brand name, in compare with Real Madrid
or the assumption that African people would prefer Messi than Ronaldo because the
first is a teammate of the great African striker Samuel Eto’o.

5.3.3 Year 2012

In 2012, we perform the clustering with 4 clusters, as the (A.12) and the (A.13) tables
indicate. The distribution of the observations in the corresponding clusters is the
following, Cluster 1 : 36 observations, Cluster 2 : 213 observations, Cluster 3 : 27
observations, Cluster 4 : 229 observations. We notice that there are two clusters with a
large amount of voters and two clusters with a tiny amount.

In Cluster 1 (A.14), Ronaldo has not been ranked neither from one voter while Messi
has a large amount of first votes, but without having a head start against his opponent.
In Cluster 3 (A.15), the remarkable fact is that the dipole has not been preferred a lot in
the first three positions from the voters. On the other hand, in this cluster there is a
strong presence of Iniesta. Cluster 2, despite the fact that is the second largest cluster,
does not provide an apparent winner. As someone can observe from (A.16), the sum of
total points, which obtained from the ranks received, for the two contenders of the
award does not differ a lot between them. What Cluster 2 affords to the analysis, is that
consolidates the fact that there are only two competitive candidates for this title. Thus,
everything depends from the votes exist in Cluster 4. There is no doubt that this cluster
is full of voters that nominated Messi as the best football player in 2012. The
Argentinian has received the extraordinary amount of 229 first - place votes out of the
229 voters in this cluster. Thus, it is natural corollary for this cluster to be characterized
as the ‘Total Messi’s Cluster’. On the other hand, Ronaldo has ensured the second -
place, as he has been ranked in the second position from 139 voters. It is also remarkable
the fact that 139 judges out of 229 have been ranked Messi first and Ronaldo second. It
would be very interesting to dive into this cluster and search for possible patterns for
the voters of this cluster. By obtaining the stacked bar plot (B.3), we do not detect a
specific pattern of voters, in terms of continent or the voters job, which could mean that
Messi had the vast acceptance of the football audience, no matter other factors.

5.3.4 Year 2013

It is the first year, in the period under study, that the total points of the first three
competitors are very close to each other. Also, after three consecutive years of Messi’s
dominance, Ronaldo wins the award. Another interesting point is the fact that, there is
a huge points difference between the third (Frank Ribery) and the fourth (Zlatan
Ibrahimovic), in the final rankings. The model comparison criteria (A.17) do not
provide an apparent result for choosing the model with the appropriate number of
components. Thus, our choice is going to be based on the p-value obtained for the
‘paired’ discrepancy variables of the models. From (A.18), we can observe that the
biggest p-value, thus the best fit among the models, is obtained from the 3 — components
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estimation. So, we are going to use the 3 — components model for the clustering of
voters.

The clusters obtained reveal a voting pattern for the three frontrunners (Ronaldo, Messi,
Ribery). Cluster 1 (A.19), which contains 113 observations is a very balanced cluster,
in terms of Top — 3 ranks, between Ronaldo and Messi. On the other hand, we notice
that Ribery’s presence is very ‘weak’ in this cluster as he has been preferred in the Top
— 3, just from 7 out of 113 judges. In Cluster 2 (A.20), which represents the 52% of the
total dataset, Messi does not lose his ranking power but Ronaldo makes the difference
which indicates that he could be the possible winner on this run. In particular, Cristiano
has been preferred in the first three positions from 251 out of 282 voters and especially
in the first - place , from 143 voters. On the other side, Messi, has been preferred in the
first three places 184 times and from them the 63 are first - place positions. Ribery, has
increased his rates in this cluster, but the small boost he received does not enable him
to reach the other two candidates. The (B.4) provides a visualization of the second
cluster’s results. After analysing the outcomes of the first two clusters, one could say
that Ronaldo is the winner with small difference from Messi and with an enormous
difference of both from the third player. But after looking at the third cluster the
conclusions are very different. Cluster 3 (A.21), contains the supporters of Ribery and
could be characterized as a ‘Ribery — centric’ cluster. The French player has received
the enormous proportion of 137 first - place votes out of the 149 voters included in this
cluster. It seems strange for a player, which is outside of the dipole, to receive such an
amount of votes but we have to take under consideration that this group of voters
rewarded Ribery for the outstanding performance he had in that specific year and for
his enormous contribution in the conquering of the Champions League trophy from
Bayern Munich. In (B.5), someone can observe that the most of the voters in this cluster
are journalists. Also, there are many Europeans and Asians in the ‘Captain’ and the
‘Media’ bar and not so many from Africa.

To conclude, someone could argue that two voting types have been detected in this
year. Ronaldo and Messi had a consistent and dense amount of votes in the first two
clusters (almost 70% of the dataset in total), with the difference that Cristiano had much
more first position ranks and that’s the reason he won the award. On the other hand,
Ribery has an extreme ranking behaviour if we consider that he has very small presence
in the biggest part of the dataset, without receiving a respectable amount of second or
third - place ranks, and has been ranked first from a whole cluster. Thus, the largest
percentage of his ranks are either 0 or 1. Based on the final rankings, we could argue
that the consistent ranking behaviour of Messi is preferred than Ribery’s extreme
ranking behaviour.

5.3.5 Year 2014

In 2014, Ronaldo wins his second consecutive award, with a large difference from
Messi. Moreover, this year is very interesting because the difference of points between
the second and third - place is negligible.
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Based on (A.22), we notice that the largest absolute difference, between different
number of components, exists in the 6 — component model. Moreover, the p-value
(0.504) (A.23), of the model’s assessment indicates a very good fit. Thus, we are going
to work with the 6 — component model for the clustering. The observations are
distributed raggedly in the clusters. More specifically, Cluster 1 : 93 observations,
Cluster 2 : 163 observations, Cluster 3 : 54 observations, Cluster 4 : 44 observations,
Cluster 5 : 15 observations and Cluster 6 : 175 observations. We are going to present
the clusters that provide interesting insights, in terms of the analysis.

Cluster 1 could be characterized as ‘Anti — Messi’ cluster, since the Argentinian has not
been preferred neither from one voter in the cluster. On the other hand, Cristiano has
been voted first, 83 times. It would be interesting to have a look at the people that apart
this cluster. Based on (B.6), we can not observe a special group of voters. On the other
hand, it is a surprise the strong presence of American voters in the cluster, which was
not expected, if we consider the origins of Messi and the votes of people from this
continent in previous years. Cluster 2 is also very interesting, since it is the first time in
the period 2010 — 15, that a goalkeeper receives so many votes in a cluster. From (A.24),
we can notice that Neuer is the winner in this group, by overcoming even Ronaldo. In
contrast with the voters in Cluster 1, where we could not justify the dense presence of
American people, there is a pattern that someone could investigate in Cluster 2. By
looking at (B.7), we are able to notice the strong presence of European people and the
fact that are very few voters from Africa or America. We could assume that Neuer does
not reach so much audience in Africa and America, because people in these continents
like offensive football so they would prefer a striker than a goalkeeper. Small, but
interesting, is the fourth cluster where Cristiano has not been preferred from any voter
despite his big win. From (B.7), we can observe that mostly coaches exist in this cluster.
Also, we can observe that are very few Europeans in the cluster. Finally, Cluster 6
(A.25), is the largest group of voters in 2014. It is a cluster that represents the breadth
of Ronaldo’s win, who receives 168 first - place ranks out of 175. It is noticed that
Neuer has not been preferred from a large amount of voters in the Top — 3. On the other
hand, Messi may not have been ranked first, in the total dataset, as many times as Neuer
has, but his presence in the Top — 3 ranking is more frequent and robust than the
German’s. This reminds us the previous year where Ribery had similar ranking
behaviour with Neuer, while Messi had a more consistent ranking behaviour. In both
cases, the final result is that, Messi ranked above his opponents.

5.3.6 Year 2015

In 2015, Messi makes his comeback by receiving almost the half of the total points and
winning the award. The second - place belongs to Ronaldo with a large difference from
the third, Neymar.

The output of the model comparison (A.26), is very clear and provides the 2 —
components model, as the best one among the others. After obtaining the results of
clustering with the 2 — components model, we observe two clusters with 385 and 113
observations, respectively. Cluster 1, which constitutes the 77 % of the dataset, provides
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a typical representation of the final result. The following plot is presented in order to
visualize this representation.

Frequency of Votes for Top-3 Players in Year 2015 (77% of the dataset)
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Figure 9 : Bar plot for the frequency of Top — 3 rankings, that apart the 77% of the total
dataset, in Year 2015.

As we can notice from Figure 9, the proportion of first position votes for Messi, 81.04
%, is enormous and indicates his domination against the other players. Moreover, the
proportions of second - place ranks for Ronaldo and third - place ranks for Neymar, are
also indicate the players that are in the final second and third - place, respectively. We
could say that this cluster does not reveal any peculiar pattern, but captures the vox pop
of 2015. In the second cluster, Ronaldo has received more points than Messi but without
making any change in the final result. Also, there are some players like Lewandowski,
Muller and Benzema that have received little more points in compare with Cluster 1.
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Chapter 6

Cluster Analysis on the Data with K — medoids algorithm

In this chapter, it is presented an alternative approach for the clustering of the FIFA
Ballon D’Or datasets. In specific, we separate and group the voters, based on their
preferences on the players that are about to be ranked, through the k — medoids or
partitioning around medoids clustering method. The distance metric that is used in order
to calculate the distance between the points — voters, is the Kendall’s distance. The
implementation of the k — medoids method contains two steps (Build and Swap), which
are repeated until there is no change in the clusters. Thus, in this chapter, we present a
distance — based clustering method, where the similarity quantification between the
ranking objects is based on the Kendall’s distance. As already been said in the previous
chapter, the more similar objects in terms of preference, have a closer distance and vice
versa. So, after the distance is defined a partitioning algorithm is applied, in order to
achieve the clustering purpose.

6.1 Theoretical Framework of the Method
6.1.1 K — medoids or PAM algorithm

One of the most popular partitioning algorithm, in the unsupervised learning field, is
the k — means algorithm. The key idea of this algorithmic approach is to partition the
sample space in separate parts. Someone could describe the k — means algorithm as an
iterative procedure, where at each iteration each observation is assigned to the closest
cluster and afterwards the cluster centers are updated. The assignment of the
observations to the clusters is based on Euclidean distance. The number of clusters in
k—means have to be known, before the start of the iterative process. Thus, the final
clustering results depend on the initial values.

However, the k — means algorithm are not appropriate when the data that are about to
be clustered are categorical. This is due to the fact that, it has no sense to calculate the
distance between two categorical variables with the Euclidean distance. The point is
that the k — means algorithm use numerical distances (e.g Euclidean distance), so the
result would consider close two probably distant objects that would have been assigned
two close numbers. Thus, in our case, the k — means method is not applicable, as the
data are categorical. Moreover, it is not wise to consider the option of transforming our
categorical data to numerical data in order to perform k — means.

Thus a solution in order to perform the clustering, in such cases, lies in the k—medoids
or partition around medoids (PAM) algorithm. The PAM algorithm is a well — known
clustering algorithm, which aims to find k medoids and assigns every point to the
nearest medoid that is the point with the shortest distance to the other points in the
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cluster. In k — medoids algorithm the data objects are chosen to be the medoids, in
compare with the k — means algorithm where the means are chosen to be the centroids.
A medoid can be defined as that object of a cluster, whose average dissimilarity to all
the objects in the cluster is the minimum one [73]. Medoids are similar in concept to
means or centroids, but medoids are always members of the dataset.

6.1.2 K — medoids procedure

The fundamental idea of the algorithm is to first define the ‘centers’ of the clusters,
which are the medoids. After finding the set of medoids, each object of the dataset is
assigned to the medoid from which has the shortest distance, according to the used
distance measure. So, in other words, object i is put into cluster v;, when medoid muv;
is nearest than any other medoid m,, where k indicates the number of medoids that
have been defined [63]. The procedure of the algorithm can be described in two steps :
1) the ‘Build’ step and 2) the ‘Swap’ step. In the first — ‘Build’ step, k centrally located
objects are chosen, sequentially, to be used as initial medoids. These k objects of the
dataset are chosen randomly. In the second — ‘Swap’ step, the non — chosen objects are
assigned to the nearest representative objects according to a distance metric [63]. In our
approach, the distance metric is the Kendall’s distance. After that, for each pair of non
— selected object and selected object, the total swapping cost is calculated. If the total
swapping cost is smaller than 0, the initially selected point is replaced by the initially
non — selected. This procedure is repeated until there is no change of the medoids.

6.1.3 Kendall’s distance

The distance metric that is used in this approach in order to calculate the distance
between the objects of the dataset, is the Kendall’s distance. As discussed in the ‘Non
-Metric Multidimensional Scaling’ section , the Kendall’s distance is very powerful, in
compare with other distances that are proper for the calculation of dissimilarities
between ranking data, when missing data exist.

Someone could define the Kendall’s distance as the metric that counts the pairwise
disagreements between rankings. Thus, the larger the distance the more dissimilar are
the preferences of the two voters, and vice versa. It is also a metric distance. That means
that it satisfies the triangle inequality, which states that the sum of the lengths of any
two sides of a triangle is greater than the length of the remaining side or (d(y,v) <=
d(u,0) + d(o,v)) [45]. Because we want to find the ‘shortest paths’ between the data
points, the distances that capture the notion of triangle inequality enable to define these
distances to be the length of the ‘shortest path’ without having to define things like path,
or length of a path. Another important property that the Kendall’s distance captures is
the right — invariance property. A distance measure is defined as right — invariant if for
any permutation of the rankings o, i, v the following property is satisfied : d(u,v) =
d(uoa,voa), where uo (i) = u(a(i)) [45]. More specifically, right invariance
assures that the distances which have this property remain immutable under any
possible permutation relabeling of the objects.
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If a distance measure is right invariant, for a set of permutations, it allows us to rewrite
the ranking tables in a different, more convenient way.

Nne—ng
m . The
term n. is the number of concordant pairs and the terms n,; is the number of discordant
pairs. The term n(n — 1)/2 is the normalizing term of the distance, where n is the
number of the listed ranked objects — players. A concordant pair can be defined as a
pair of players that both have been ranked in the same order, or in other words that they
both moved in the same direction. For example, Lionel Messi and Gyan Asamoah are
a concordant pair of players because Messi was consistently ranked higher than
Asamoah. Conversely, two players can be characterized as discordant because the
voters have ranked them in opposite directions. Such an example of discordant players
are Messi and Ronaldo, because other voters rank higher Messi than Ronaldo and vice
versa.

The Kendall’s distance is calculated by the following formula : T =

There are also other distance metrics that are appropriate for ranking datasets and satisfy
the above properties (triangle inequality, right invariance), such as Spearman distance
or Hamming distance. The reasons that the Kendall’s distance has been chosen for the
calculations of dissimilarities between the preferences of the voters, lie on the fact that
it satisfies the above properties and, also, it is very powerful when the dataset contains
partial rankings. As has been discussed in previous chapter, it has been proved from
Tilley and Cabilio in 1999, that when there exist missing observations the Kendall’s
statistic has more power, in compare with other distances, in identifying more patterns.

6.1.4 Determine and Assess the final model

6.1.4.1 Average Silhouette Value

After obtaining the method for different number of clusters, we are going to select and
assess the final model with the help of the Silhouette method . Silhouette refers to a
method of interpretation and validation of clusters of data. The technique provides a
succinct graphical representation of how well each object lies within its cluster. The
measure that is going to determine the number of clusters and to provide how
appropriately all the data has been clustered, is the average silhouette value [36]. A high
average silhouette indicates a good clustering. The optimal number of clusters k is the
one that maximizes the average silhouette value over a range of possible clusters. Thus,
if there are a lot of ‘secure’ clustered values, it is expected a big average silhouette
value.

The definition of silhouette value for a datum i is

N _ bd-a®
s =14 @b}
and the possible outcome lies in the range of [-1,1]. The term b (i) represents the lowest
average dissimilarity of the datum i to any other cluster which i is not a member. The
average dissimilarity of a datum i to a cluster c can be defined as the average of the
distance from i to points in ¢ [36]. The term a(i) represents the average dissimilarity
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of i with all other data within the same cluster [36]. A value of +1 indicates that the
sample is far away from its neighboring cluster and very close to the cluster its assigned.
Similarly, value of -1 indicates that the point is close to its neighboring cluster than to
the cluster its assigned. And, a value of 0 means its at the boundary of the distance
between the two cluster. Thus, it can be followed that the value of 1 is ideal and the
value of -1 is least preferred.

6.1.4.2 Elbow Method

Besides the average silhouette value, the Elbow method [70] is going to play a helpful
role in choosing the optimal number of clusters for the model of each year. The Elbow
method is a very well known method in which the sum of squares at each number of
clusters is calculated and graphed. Based on this graph, a steep change of slope, that
looks like an ‘elbow’, indicates where the optimal number of clusters might be. It is
logical that as the number of clusters increase, the fit is improved because more of the
overall variation is explained. In the same time, since more clusters are added to the
model there is the danger of overfit. Thus, the method tries to identify a ‘knee point’
where the variation that is explained from the model’s parameters is acceptable and the
increasing of the parameters is not going to reflect to the predictive ability of the model
to other data. So, it is expected that the first clusters are necessary since they explain a
lot of the variation and the data consist of that many groups. But at the time that the
number of added parameters exceeds the actual number of groups in the data, the added
information will drop sharply, since it separates the actual groups. Based on this fact, it
is assumed to be a knee point in the graph of explained variation versus the clusters,
since the line is going to increase rapidly and then increase slowly. It has to be said at
this point, that the Silhouette method is going to play the conclusive role in determine
the optimal number of clusters and the Elbow method is going to be used for
confirmation or reconsideration of the ‘appropriate’ number.

6.2 Application of the Method

6.2.1 Package Overview

In this chapter, we put into practice the theoretical framework that has been provided
in the previous chapter. First of all, we have to mention the packages that are used in
the application of the method. So, in order to compute the distance matrix between the
points of each dataset, we make use of the ‘amap’ package and the ‘Dist’ function. The
‘Dist’ function computes and returns the distance matrix computed by using the
specified distance measure, which is the Kendall’s distance in this case, to compute the
distances between the rows of a data matrix. Afterwards, for the implementation of the
partitioning around medoids, based on the computed distance matrix, is used the ‘pam’
function from the ‘cluster’ package. This function partitions the data into the number
of cluster that the user specifies, around the medoids. We are going to see in detail the
input that the function requires. Finally, in order to determine the optimal number of
components for the model of each year and evaluate it, we make use of the ‘silhouette’
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function from the ‘cluster’ package and the ‘fviz_nbclust’ function from the ‘factoextra’
package for the Elbow method.

6.2.2 Data Input Format

Before starting the implementation of the clustering process, we have to transform the
input data in order to be compatible with the requirements of the package and
meaningful, in terms of the analysis purposes. Thus, before computing the distance
matrix, with Kendall’s distance as the distance measure, the positions that have not been
ranked are going to be imputed by the midrank. The notion of midrank has been
discussed in the Chapters 2,3 and 4, as an appropriate way for imputing missing
positions in partial ranking data. It has to be pointed out that in the previous method,
the missing positions were part of the estimation process. Thus, the first reason of the
midrank imputation in the k — medoids method is the fact that it is a suboptimal choice
to ignore the missing data when testing for trend. Besides that, the function ‘pam’ from
the ‘cluster’ package, that is going to be used for the clustering process, does not allow
the presence of missing data when the input matrix is a dissimilarity matrix. It has been
stated that the whole procedure starts with the computation of the dissimilarity matrix
with the Kendall’s distance as the distance measure, and this matrix is used as input for
the ‘pam’ algorithm.

6.2.3 Estimation of Models

As previously been stated we are going to perform the clustering around medoids with
the help of ‘pam’ function. The function implements the process of the pam algorithm,
which means that tries to look for k objects or medoids among the observations of the
dataset, which are representative of the structure of the data. After finding these k
medoids, it assigns each observation to the nearest medoid in order to construct k
separate clusters. The overall target is to find k representative objects which minimize
the sum of dissimilarities of the observations of the dataset to their closest
representative object. The whole process is implemented though the Build and Swap
phases that described in the theoretical part of the method.

Let’s have a look at the input parameters that are required in any case :

e X : A data matrix, data frame or dissimilarity matrix, depending on the value of
the diss argument that follows. In case of a dissimilarity matrix, the missing
values are not allowed.

e k: A positive integer specifying the number of clusters. It is important that the
user is able to specify the number of clusters under examination, without a
restriction. The clusters have to be less than the number of observations.

e diss: Itis alogical flag that plays the most important role in the output because
it is determined if the input object is a dissimilarity object or not. If TRUE, then
the input matrix is considered as a dissimilarity matrix. If FALSE, the input
matrix is considered as a matrix of observations by variables.
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e metric : A character string that specifies the metric to be used for calculating
dissimilarities between the observations. If x is already a dissimilarity matrix,
the argument is ignored.

e medoids : A length k — vector of integer indices, which specifies initial medoids
instead of using the ‘Build’ algorithm. The default choice is NULL.

e stand : A logical value, that in case it is TRUE, the measurements in the input
matrix are standardized before calculating the dissimilarities. If the input matrix
is already a dissimilarity matrix, the argument is ignored.

These are the basic input arguments that the ‘pam’ function requires in order to be
implemented. Based on these arguments, the input values that have been given to the
function in order to run the algorithm for our case, are the following :

v' As input matrix X, is used the dissimilarity matrix that has been computed
with the help of ‘Dist’ function. Thus, the diss argument has been set to
TRUE and the metric, stand arguments have been ignored.

v For the number of clusters k, it has been chosen a vector of 2:10 clusters
for the algorithm to run. This is due to the fact that there is no restriction
for the number of clusters that the algorithm can take, so it is feasible to
test a big number of clusters.

v" For the medoids argument, the value has been set to the default (NULL),
in order for the algorithm not to have specified initial medoids and be able
to run the first — Build phase of the process.

The output of the function is an object of class ‘pam’ and provides information about
various aspects regarding the results of the clustering process. A typical example is a
matrix where each row corresponds to numerical information for a cluster e.g the
number of observations, the maximum and average dissimilarity between the
observations in the cluster and the cluster’s medoid, etc. Another useful object provided
in the output is a clustering vector with the number of observations in each cluster, a
list with the silhouette information, a total dissimilarity matrix between the objects of
the dataset, a vector with the medoids or representative objects of the clusters, etc.

6.3 Results
6.3.1 Year 2010

As in the previous methods, we are going to present the results of the clustering for
each specific year of the period 2010 — 15, starting from the Year 2010. In the average
silhouette plot (B.8) someone can observe that the silhouette values, for the examined
clusters, vary from 0.19 to 0.23. Despite the fact that the largest average silhouette value
is in the model with the 6 components, we spot the largest difference of value between
the models of 2 and 3 components. In particular, the model with 2 clusters has a value
below 0.2 and the 3 — clusters model has an average silhouette value between 0.22 and
0.23. Thus, because the difference in average silhouette value between the two models
is very small, we are going to select the model with 3 clusters, in order to prevent
overfitting by separating the data in more groups. Moreover, in the plot of Elbow
method (B.9), it cannot be spotted a ‘breakpoint’ where the total within sum of square
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is minimized sharply. The silhouette plot for the 3 different clusters of the final model,
is presented below. We can notice that the third cluster is the most appropriate clustered,
as it has no point below zero and also having the largest average silhouette value (0.47).
On the other hand, some points seem that have wrongly been placed in the first cluster.
The second cluster, which has the most observations, seems more robust than the first
but it includes points that are not appropriately clustered.

Silhouette plot of (x = pam_fit_2010%clustering, dist = kendall_dist_2010)
n=425 3 clusters C;
17 njlaveg s

1: 170 ] 015

2: 2041023
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Average silhouette width - 0.23

Figure 10 : Silhouette plot for each cluster of the final 3 — components model.

The above observations can be confirmed by looking at the visualization of the
clustered data, that is presented in (B.10).

Now let’s have a look at some information about the clusters. The first one contains
170, the second 204 and the third 51 observations. As previously stated, through the
‘silinfo’ function, can be provided information about the clusters such as the medoids
of each cluster. In Cluster 1, the object that represents the votes in this cluster is Van
Marwijk Bert, who has voted Messi and Xavi in the two of the three places, as his third
vote was invalid. As we can see from (A.27), Messi and Xavi are the players with the
most votes in Cluster 1. In Cluster 2, the medoid turns out to be Danilevicius Tomas.
The former Lithuanian player has ranked first Iniesta, second Sneijder and third Forlan,
which is interesting because the preferences of Cluster’s 2 medoid are quite similar with
the final results of Cluster 2. In specific, from (A.28), someone can observe that the
player with the most first - place votes is Iniesta, the one with the most second - place
votes is Xavi and the player with the most third - place votes is Diego Forlan. What is
really strange in this cluster is the fact that Messi has been ranked from 36 out of 204
voters and only 7 times first. If we take under consideration that the Argentinian won
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the trophy that year, these rankings are peculiar. Thus, it would be interesting to check
the composition of this voting group.

Cluster 2 : Job and Continent of Voters
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. Oceania
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Figure 11 : Job and Continent of Voters for Cluster 2 in Year 2010.

From Figure 11, it can be observed that journalists are the main population of this group
and many of them are from Africa. On the other hand, the percentage of coaches that
constitutes this cluster is small, while the bar of players is also relative small but not
that minor as the one of coaches.

Cluster 3 (A.29) could be characterized as the Messi’s group, because 47 of the 51
voters have preferred the Argentinian and 31 of them have ranked him first. After a
more careful look, Cluster 3 could be characterized as a ‘Messi — Cristiano’ cluster
because it is observed that it is the first group in 2010 that the Portuguese receives a
respectable amount of votes. Moreover, if we dig into the structure of the voting group,
the pattern that was detected in the second cluster where Media have not preferred
Messi too much in 2010 is confirmed. More specifically, it can be observed from the
(B.11) that the presence of Media in this cluster is fractional, while the presence of
coaches and players is very strong. One could say that the two bar plots are completely
opposite.

6.3.2 Year 2011

In 2011, the average silhouette plot (B.12) indicates very clear that the optimal number
of clusters is 2, since it has the largest value (0.4) and after that the line falls very sharply
and starts to increase in a very slow manner. Thus, we fit the model with two clusters.

This year could be described as the first year that Messi starts to branch off his
opponents. From the total rankings that are displayed in (A.30, A.31), it can be easily
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observed that Messi has received a tremendous amount of votes and the largest
proportion of this amount are first - place votes. Besides that, 2011 is the year that starts
to be configured the dipole Messi — Ronaldo, which conquers in the wins of the trophy
the next years, as it is the first year that Cristiano receives a respectable amount of votes
that ranked him second with a large difference behind Messi. It would be interesting to
observe the two clusters that occurred and to spot their differences.

Cluster 1 is consisted of 322 observations of the total 465 that apart the dataset of Year
2011. Based on the cluster’s information, the voter that represents this voting group, in
the best way, is Anthony Griffith. His preferences were : Lionel Messi first, Cristiano
Ronaldo second and Xavi third. Someone could say that the medoid is very accurate if
the total preferences of the voters in Cluster 1 be taken under consideration. A graphical
representation of these preferences is presented in the next figure.

Frequency of Votes for the Dipole in Year 2011 (70% of the dataset)
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Figure 12 : Frequency of Votes for Messi and Ronaldo in Cluster 1, Year 2011.

Based on Figure 12, we can observe that the 83% of the Messi’s votes are first - place
votes and the 69% of Cristiano’s votes are second - place votes. Thus, it is obvious the
ascendance of Messi in this group, which composes the 70% of the dataset.

The Cluster 2 is consisted of 143 voters. The preferences regarding the winner are not
different in compare with the first group, since Messi has been ranked first from 96 out
of 143 voters. This is depicted also from the medoid, Ernst Hasler, who has ranked also
Messi. The difference between the two groups is that in the second one Cristiano has
not been preferred even from one voter. Also, Xavi and Iniesta have larger percentages
of votes in compare with Cluster 1. Thus, in Cluster 2, is observed a preference in
Barcelona, which has been spotted also in the Bayesian approach in 2011. If we search
the job and the continent of this voting group (B.13), it is not noticed any specific
pattern except the fact that it contains many journalists from Africa and coaches from
Asia.

6.3.3 Year 2012

65



Year 2012 is the second consecutive year that Lionel Messi wins the trophy, having a
great lead from his opponents. Based on the average silhouette plot (B.14) is indicated
clearly that the optimal number of components for the clustering model is 4. This is due
to the fact that the average silhouette width when the line reaches 4 number of
components, is 0.56 which is the highest value of the line chart. Thus, the clustering in
2012 takes place on a 4 components model. It can be observed from the silhouette plot
(B.15) that most of the observations are appropriately clustered as the average silhouette
value for each specific cluster is the following : Cluster 1 (0.54), Cluster 2 (0.66),
Cluster 3 (0.58) and Cluster 4 (0.67). It has to be mentioned at this point that it is
reasonable for Cluster 1 to have smaller silhouette value than the rest of the groups, as
it is the largest one by having 410 observations, when Cluster 2 holds 52, Cluster 3
holds 25 and Cluster 4 holds 18 observations. Thus, the smaller clusters are most solid
since they have a common characteristic, in compare with a bigger cluster which is
reasonable to contain some noise.

The first cluster constitutes the 68% of the total dataset. Thus, its information is very
important. By having look in the frequency table obtained for the votes of Cluster 1
(A.32) it is obvious that Messi has the absolute control of the rankings. In particular, he
has been voted 256 times first out of 410 and he has not been preferred from any voter
only 33 times. On the other side, his opponent Cristiano, has been voted with 5 points
from 70 judges and he has not been ranked 103 times. Moreover, the fact that he has
been preferred in the second - place from 160 voters is a strong indication for the
possession of the second - place in the final rankings. In (B.16), it is presented a
graphical representation of these conclusions for Cluster 1.

After observing the rest of the clusters someone can notice that the main preferences of
the voters are not different than those of Cluster 1. Again, in these clusters Messi
receives the largest amount of first votes among his opponents. What is really
interesting in those clusters is the fact that all of them have been created depending on
a specific player, for each one of the three, who has not ranked in such high positions
in the final rankings. That means that each of these three clusters can be characterized
based on the corresponding player. To be more specific, in Cluster 2 (A.33), Andrea
Pirlo has been preferred from all of the judges and he received 5 first - place votes, 15
second - place votes and 28 third - place votes. Moreover, this has been indicated from
the medoid of Cluster 2, Siamak Rahmani, who ranked the Italian legend in the second
- place. Cluster 3 (A.34) could be characterized as Zlatan’s cluster. Zlatan Ibrahimovic
has been preferred from all of the 25 objects of the cluster and has been ranked 5 times
first, 6 times second and 14 times third. Also, in this cluster, the representative voter,
Rat Razvan, has ranked Ibrahimovic second. In the final group of voters, someone can
observe the strong presence of Neymar. The Brazilian football player has been ranked
5 times second and 13 times third and he has been chosen in the rankings from all of
the voters. Felipe Baloy, who is the medoid of Cluster 4 can be an strong indication as
he has ranked Neymar third.

It would be very interesting to dig into the clusters and trying to identify a possible
pattern between the vote of a judge to a player that is not such possible to win the Ballon
D’ Or. Thus, the attempt is to spot a relationship between the job or the continent of the
voter and his vote, in such cases. After observing the stacked bar charts, which represent
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the job and the continent for each specific cluster, we are able to identify a pattern
between the continent that a voter comes from and his vote. More specifically, in Pirlo’s
cluster (B.17), someone can observe that the largest proportion of voters, regarding the
actual size of the continent, comes from Europe. Moreover, in Ibrahimovic’s cluster
(B.18), someone can notice that more than a half of the voters come from Europe.
Finally, in Neymar’s cluster (B.19), it is easy to observe that the 2/3 of the voters come
from America. If we take under consideration that Pirlo is Italian, Ibrahimovic is
Swedish and Neymar is Brazilian, we can state that it is observed a pattern between the
vote, the continent of the player and the continent that the voter comes from.

6.3.4 Year 2013

The average silhouette plot for the different number of examined clusters (B.20)
indicates that the 3 — components model is the most appropriate, in terms of the criteria
that have been discussed. This is due to the fact that the value in the 3 clusters is slight
larger than the one of the 2 clusters and the largest among the values. Moreover, the
line drops suddenly from 3 to 4 clusters. Besides that, the plot of the Elbow method
(B.21) indicates an ‘angle’ from 3 to 4 clusters, where the fall of within sum square
starts to be smoother. Thus, based on these indications we are going to implement the
clustering process with 3 groups.

Year 2013 was the first year that Cristiano Ronaldo won the award. Besides that, it was
the first year among the examined period, that the margins between the first, the second
and third - place were such small. The table of the results of Cluster 1 (A.35) indicate
a voting pattern that exists in this group. In specific, the first group is consisted of 468
observations, from which the 395 voters have preferred either Cristiano or Ribery or
Messi in the first - place (B.22). Because of the size of this group (86% of the dataset),
it is obvious that the voting pattern that this group provides is a very strong indication
for the final rankings. The peculiar here is that Ribery has been preferred first more
times than Cristiano, despite the fact that he has been placed third in the final rankings.
This can be occurred from this cluster’s medoid, Cunliffe Jason, who ranked Cristiano
first, Ribery second and Messi third. The reason why the Frenchman has been finally
ranked third is the ‘extreme’ ranking behavior that the Ribery’s voters have, which has
been presented also in the Bayesian approach in the same year. By looking at the tables
of the Clustering results and sum the first - place votes for each of the two players, it
occurs that Messi has received in total 119 first - place votes and Ribery 163 first -
place votes. But if we sum the total second - place votes that each one has received, it
occurs that Messi has received 175 second - place votes and Ribery 78. The third - place
rankings are quite similar with the previous case. Thus, it is observed that the total
voters that preferred Messi are more than those who preferred Ribery. As in the
Bayesian approach, the voters of Messi are observed to be more robust and have been
split in first and second - place, in contrast to Ribery’s voters who have been gathered
in first - place without a mass participation in the second one. Since this specific ranking
behavior and its results are confirmed also in this approach, it would be interesting for
someone to implement a research in such ranking behaviors in more topics like
elections that make use of rankings, surveys etc.
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Besides Clusterl, the results of the third cluster are also interesting. Despite the fact
that Cluster 3 is small (37 observations), Messi receives more first - place votes than
his two opponents (A.36) and also the key player in this cluster is Iniesta who has been
preferred first from 12 voters, second from 9 voters and third from 16 voters despite the
fact that he has been placed 17" in the final rankings. Thus, someone could state that
this is a group of Barcelona fans. By looking at the stacked bar chart in (B.23), that the
presence of Media in this groups is negligible. Also, most of the voters are coaches that
come from Africa, America and players that come from Asia.

6.3.5 Year 2014

It is the second consecutive year that Cristiano Ronaldo is awarded with the ‘FIFA
Ballon D’Or’ trophy, with a great lead to the other challengers of the title. Beside that
it is the first year that we are going to perform clustering with many groups. In specific,
the portioning around the medoids is going to be implemented for 9 groups. This occurs
from the line chart of the average silhouette vale for the corresponding clusters (B.24),
which peak is in the 9 components having almost 0.4 as value. It can not be observed
any ‘breakpoint’ before the 9 components, in order to perform the clustering with less
number of groups, thus it is going to be performed with the number of components that
have the highest silhouette value. Moreover, the Elbow method (B.25) does not provide
us either with a sufficient ‘breakpoint’, except a small one in the point of two clusters.

After performing the k — medoids algorithm, we observe that the output provides one
large cluster which contains 280 observations, a smaller one which contains 97
observations and seven other small clusters. The visualization of the clustered points is
provided in (B.26) accompanied with the silhouette plot of each specific cluster (B.27),
with the average silhouette value being 0.39 .

After observing the created clusters and the medoids of them, someone can notice that
there is one big cluster (A.37) that consists the 50% of the total dataset and is the
depiction of the win of Cristiano against his opponents. A graphical representation of
this cluster is presenting in the following bar chart.
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Frequency of Votes for Top-3 Players in Year 2014 (51% of the dataset)
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Figure 13 : Frequency of Votes for the first three ranked players in Cluster 1, for the
Year 2011.

In Figure 13, it can be observed that Cristiano holds the lion’s share in terms of the
overall and first - place votes. Also in this figure it can be noticed that Neuer has been
preferred in the first - place from exactly the double voters than Messi. If the final
rankings, where Messi placed 2" and Neuer 3 would be taken under consideration
we could obtain that it is noted a similar ranking behavior like this one in 2013 between
Messi and Ribery. More specifically, in the other 8 small groups Messi receives much
more second - place votes than Neuer, who keeps having more first - place votes than
the Argentinian. In the overall sum Messi ends up with more points than Neuer, as his
votes are more normally distributed than the German goalkeeper’s whose votes are
mainly skewed in the first - place . Thus, the conclusion in both cases (2013 and 2014)
is that Messi is almost always in the top three, despite the actual rank, while on the other
hand Neuer and Ribery have not high voting frequency in 2" and 3" place.

Besides Cluster 1, in the remaining 8 clusters a player holds a key role for the creation
of each cluster. Thus, in each cluster there is always a player that have been preferred
in the Top — 3 from all the voters of the cluster. Because this case is quite similar to the
case of the small clusters in 2012, it would be very interesting to identify if the pattern
between the origins of the player and the origins of the voter, that has been observed in
2012, is applied also in 2014. After implementing the stacked bar charts for each of the
8 remaining clusters, we observe that this allegation is also applied in most of these
clusters. To be more specific, in Cluster 3 (A.38), the key player is Neymar who comes
from Brazil. If someone looks on (B.28), it is evident that most of the voters come from
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America. Moreover, in Cluster 5 (A.39), the key player is James Rodriguez who comes
from Colombia. By observing the (B.29) , one can observe that despite the job each one
has, almost the 2/3 of the voters come from America. Exactly the same thing happens
in Cluster 6 (B.30), where the key player is the Argentinian midfielder Di Maria. Also,
almost the total amount of votes that Yaya Toure got in Cluster 7 (B.31) are from people
that come from Africa. Finally, in Cluster 8 (B.32), the German Bastian Schweinsteiger,
has been ranked mainly from Europeans. Thus, from all the above mentioned, there is
a strong evidence which indicates that when a big cluster, which provides the
information about the winner of the year exists, then the remaining small clusters are
shaped driven by the origins relationship between the player to be ranked and the voter.

6.3.6 Year 2015

In 2015, both the Silhouette method and the EIbow method provide the information that
the optimal number of clusters is 2. This is due to the fact that in the point of 2 clusters
the average silhouette plot (B.33) for the different number of components indicates the
highest value (0.51) and the line chart of the Elbow method (B.34) indicates a
‘breakpoint’ in 2 clusters. Thus, we are going to analyze the clustering results of the
two components model.

The average silhouette plot for each specific cluster (B.35), denotes a good clustering
(Cluster 1 : 0.50, Cluster 2 : 0.62). On the other hand, the two clusters are completely
different in terms of the size. Cluster 1, consists of 473 observations and Cluster 2, 25
observations. In Cluster 1, which is the 95% of the total dataset, is displayed the
absolute ascendance of Lionel Messi and his return to the awards. In (B.36), someone
can observe that the green bar which represents the first - place votes that Messi has
received, is more than 3 times bigger than Cristiano’s green bar. In specific, the 64.69%
of the total votes that the Argentinian player has received were first - place , in compare
to the 19.45% of Cristiano. Thus, the figure that represents the votes of Cluster 1 for
the Top — 3 does not allow for any doubt about the winner of trophy. Messi is the
complete preponderant of the competition. The other cluster of the final output is very
small and not able to figure a different result. But it has to be pointed out that it reveals
a pattern for a specific group of voters who have preferred Alexis Sanchez. The Chilean
footballer, was selected in the Top — 3 from all of the persons that exist in Cluster 2. In
specific, he received 2 first — place votes, 10 second — place votes and 13 third — place
votes, while his position in the final rankings was the 10" . Thus, this cluster has been
curved with Alexis Sanchez at its center. This is also confirmed from the medoid of
Cluster 2, Mahamud Raihan, who has ranked third Alexis Sanchez behind Messi and
Cristiano Ronaldo.
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Chapter 7

Cluster Analysis on the Data with the Insertion Sorting Rank (ISR)
algorithm

Jacques and Biernacki (2012) [13], proposed an alternative model, which scope is much
more wider than the algorithms that were presented before. The Insertion Sorting Rank
(ISR) is an algorithm, with a model - based approach, which has a very wide application
scope in the context of clustering ranking data. The ISR model is set up by modelling
the ranking generating process, assumed to be a sorting algorithm in which a stochastic
event has been introduced at each comparison between two objects [14].

Like the methods that have been presented up to now, the ISR algorithm is about
clustering data that they are not able to be modelled in a straight forward nonparametric
way. Such categories are the ranking data that occur from heterogeneous populations
(different political meaning, different strategies in marketing research, etc.), partial and
multivariate ranking data. The purpose of this algorithm is to cluster ranking datasets
which contain complete or incomplete ranking, multivariate or univariate. In our case,
there exist partial ranking data. The missing entries, in the case of partial ranking data,
are considered as missing values and inferred in the estimation process. In the case of
multivariate ranking data, the algorithm is based on an extension of the ISR model,
which allows the presence of multivariate ranking data under a conditional
independence assumption on the components of these data. The algorithm was first
introduced for univariate rankings and by using of the extension of ISR and the
conditional assumption can take into account the multivariate case, where many
dimensions are tanking part in the analysis.

7.1 Theoretical Framework of the Method

7.1.1 Model based algorithms, Finite Mixture Models, Latent Class Models

It was referred in the above paragraph, that the ISR model is a model — based clustering
approach. This is for the multivariate case of ranking data, because in that case a finite
mixture model is taken under consideration. In the Finite Mixture Models method, the
distribution f of the variable X is considered as a mixture of K distributions (f3, ... , fx)
f(x,0) = YX_ mefi(x,6;) , where 8 is a vector of parameters 8 = (n', 65, ... ,6;)’
, Ty IS a proportion of k;;, distribution in the mixture and 6, is a parameter of f
distribution [54]. So, in this case the clusters are not being found by a chosen distance
measure, like in distance — based models, but a probabilistic model is obtained to
describe the structure of the ranking data. Thus, the name of this approach is “model —
based clustering”. We are going to see, in the multivariate instance of ranking data, the
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way that the analysis is going to be performed with the use of the Finite Mixture Models
approach.

The finite mixtures models, as have been described in a previous section, are type of
latent variable models, where the heterogeneity of the population is assumed to be
resulted from the existence of two or more distinct homogeneous subgroups or latent
classes. The latent class model, is a specific case of multivariate discrete categorical
data, where a set of observed multivariate discrete categorical variables is related to a
set of latent variables [48]. The latent class analysis, tries to find patterns, groups or
subtypes of cases in such data (e.g multivariate ranking data). A class is characterized
by a pattern of conditional probabilities that indicate the chance that variables take on
certain values.

7.1.2 Univariate and Multivariate ISR model

Let’s first explain the difference between univariate and multivariate ranking data in
the case of the FIFA Ballon d’or data. In the case of clustering the judges — voters for
each specific year we construct a matrix which represents the ranking of each player
that was assigned by the corresponding voter each time, for this specific year (e.g Year
2010). In this instance, the analysis is under the univariate ranking data case because
the preferences of one year are taken into account in the analysis. In contrast, if the
purpose of the analysis was to detect patterns, in a period of years (e.g 2010 - 15) and
not for one specific year, then the ranking dataset that is going to be analyzed is
composed of multivariate rankings, where each dimension represents a year and the
input dataset contains the rankings for each dimension.

7.1.2.1 The Univariate case

The ISR model for the case of univariate ranking data is obtained when the assumption
that a rank datum is the result of sorting algorithms based on pair comparisons, is taken
under consideration. Then the formula of the ISR model is the following :

. 1 o1 ; )y A(z.y)—C .
]:}[\l]‘:lit'e }T} — _] Z 13[5‘-'|y: [T =— ,‘,‘_I'..-[kr.y.;t._nlll _ T::I.l[a.yj {4[-‘5@-#.-"
.
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In order to make clear the formula of ISR model for univariate rankings, the
explanation of the parameters of the formula has to be given.

x = (x%,.., x™) € P,, where x is the ordering representation of the resulting ranking
of the objects 0, , ..., O, .

P,, is the set of permutations of the first m integers.

u € B, is the modal ranking or reference/central ranking. Modal ranking is the
sequence of ranks that has the highest probability to occur. If we denote the modal
ranking as m, , the rankings that are most observed in a dataset are close to m, .

T E [% , 1] is the probability of good pair comparison according to u .
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The sum over y € P, represents all the possible initial presentations orders to rank ,
with identical prior probabilities equal to 1/m! .

G (x,y,u) is equal to the number of good paired comparisons during the sorting
process

A (x,y) corresponds to the total number of paired comparisons that have been
implemented .

7.1.2.2 The Multivariate case

In the case of multivariate ranking data, the multivariate rank x = (x1,... ,xP)is a
vector where each component of the multivariate rank is a vector x/ =
(xfl, ,xfmf), 1 <j <p which corresponds to the ranking of each one of the p
dimensions. The conditional independence assumption of the ISR model for
multivariate ranking data is that the population of the multivariate ranks is composed
of K groups in proportions p;, where the sum of the proportions to the K groups is
equal to 1 [15]. Thus, based on this assumption, the components of x can be assumed
to be sampled from independent ISR distributions with a corresponding modal ranking
and good paired comparison probability for each one of the p dimensions [15] . This
conditional independence assumption is called latent class model and it can be
considered such as, since rankings are a specific category of categorical data, as we
have seen in previous paragraph.

7.1.3 Estimation of the Model

The ISR model, uses Maximum Likelihood Estimation (MLE) in order to obtain
inference. The MLE method, estimates the parameters of the probability distribution by
maximizing a likelihood function, so that under the statistical model that is assumed in
this specific case, the observed data are most probable.

In the case of multivariate rankings, we can approach the estimation of the groups by
assuming a binary latent variable which records the group membership of the
observations of the dataset and takes the value 1 if the observation belongs to a certain
group and 0 otherwise [13]. So, for each one of the observations of a set there is a latent
variable which demonstrates if the observation belongs or not to a specific group. Let’s
assume that x = {xy, ... ,x,,} is a sample of multivariate rankings, z = (z%, ... ,z¥) is
the set of the corresponding latent variables for K groups and y = {y4, ... , ¥»} , Where
yi =Wl .,y € Pn, X .. X By, ,are the presentation orders of the objects for

the i, observation [13]. Assuming the triplets (x;, y;, z;) arise independently, the data
log likelihood model is obtained. The problem is that the maximization of this
likelihood is not easy to be done, because of missing data. Then, a solution in order to
deal with the missing data, is to consider an Expectation — Maximization (EM)
algorithm. The EM algorithm has the advantage of stability in terms of occurrence of
missing data and it requires the computation of the conditional expectation of the
complete — data log — likelihood function given the observed data, at E step, and then
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the maximization of the likelihood function with respect to the parameters of interest,
at M step [29]. But, the complete log — likelihood function is not linear for the types of
X;, Vi, Zi , Which is an obstacle for the Expectation step of EM algorithm.

7.1.4 SEM — Gibbs algorithm

In order to overcome the issue in the E step of EM algorithm, the SEM — Gibbs
algorithm is used. The SEM algorithm, generates the latent variables y;, z; and the
unobserved positions of x; (X;)from the conditional probabilities that were computed in
E step, in the stochastic step (S step). The advantage of the SEM — Gibbs algorithm in
contrast to the EM algorithm, is that these latent variables are generated without
calculating conditional probabilities at E step, which leads to reducing the
computational complexity by removing the complicated use of the products of missing
data. The algorithm achieves this result because of the use of a Gibbs sampling.

Gibbs sampling is a randomized algorithm, which is used especially when the direct
sampling is not a straightforward process and consists of drawing samples (X;, v;, z; )
consecutively from the full conditional posterior probabilities [31]. The generic idea is
to resample one variable at a time conditional to the others, by initializing the
algorithms with random numbers. It is a Markov chain Monte Carlo algorithm
(MCMC), for obtaining a sequence of observation which are approximately from a
specified multivariate probability distribution [31].

So, the SEM -Gibbs algorithm consists of two steps (SE — Gibbs step and M step), from
which the first step is consisted of three sub — steps . In the first step (SE — Gibbs step),
is considered a Gibbs sampler generating a chain e.g for generating y;, the chain is

Y7190y R in which the last value y! " is retained for /1" . In order for the
yl.j R} \alue to be retained, the size of R;has to be greater than w , Which is

the maximum Kendall distance between two ranks of size m;, so that any rank of P,
can be reached with non — null probability for any arbitrary initialization. Starting from
1% = 1973 the Gibbs sampler generates r € {1, ... , R;} sequences y/ ™. Thus,
for the incomplete rankings, which are considered as missing data in the algorithm’s
procedure, the corresponding full rankings are estimated by using this Gibbs chain. The
algorithm runs for a number of iterations. The same process is followed for the other
two sub — steps, for y; and X; . The second step (M step) of the algorithm consists in
computing the parameter value 8{%} which maximizes the completed log — likelihood
computed at the previous step. The parameter value 614} is defined as 6@ =
argmaxgeolc(8; {x, 219}, '8, 219%), where 214,34, 714 are simulated in the first
step (E step) .

7.1.5 Determine the final model
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The total procedure is going to run for a number of clusters in order to choose among
the models with the different clusters which model is more ‘appropriate’, for each
specific year. In other words, the number of groups that will separate the voters, have
to be defined. Thus, in order to detect the optimal number of clusters, the Bayesian
Information Criterion is going to be used.

The Bayesian Information Criterion or BIC is a very well-known criterion for model
selection among a finite set of models. When fitting models, in order to increase the
likelihood, it is possible to add more parameters in the model which may lead to overfit.
The BIC introduces a penalty term for the number of parameters that exist in a model,
in order to protect it by overfitting. It is closely related to Akaike Information Criterion
or AIC, as they both are penalized — likelihood criteria. The AIC measure tries to
balance between the model accuracy and model complexity, as it uses the maximum
likelihood estimate and the number of parameters, in order to estimate the information
lost in the model. It can be observed that the goal of the two criteria is pretty similar, as
both try to prevent from overfitting. The BIC measure can be defined as BIC =
—2In(L) + In(n) k , where L is the maximized value of the likelihood function of the
model, n is the number of data points and k is the number of free parameters to be
estimated [58]. In order to detect the optimal number of clusters for the models, we are
going to create line plots where in the X — axis are going to be the number of examined
clusters and in the y — axis are going to be the values of BIC. The classical decision, in
terms of the BIC value, is to choose the number of clusters that minimize the BIC value.
But it has to be pointed out that the choice of the number of clusters for each year’s
model has to be an integration of small BIC and proper number of groups, in terms of
the interpretation of the voting behavior. In other words, if a model with 2 groups has
slight smaller BIC value than a model with 3 groups, we are not going to select the
model with the 2 groups as a straightforward process, because the model with 3 groups
could reveal one more pattern of voting behavior which may be useful for the analysis.
For that reason, in such cases where the absolute differences of the values between
models of different number of components are not great, we will try to find a ‘knee —
point” where after this point the BIC values will increase more sharply, in compare with
the previous number of groups. Thus, in such cases we will based on this point and to
a number of components that will be helpful for the voting patterns detection.

7.2 Application of the Method

7.2.1 Package Overview

In this chapter, is presented the Application of the model — based approach that has
been discussed in the previous section. Thus, in order to implement the Insertion Sorting
Rank algorithm in the FIFA Ballon d’Or data, for the period 2010 — 15, we make use
of the ‘Rankcluster’ package. The ‘Rankcluster’ package, was first released in
02/09/2013 as a package that could take into account both multivariate and partial
ranking data, through the implementation of a model — based clustering algorithm. The
algorithm is working by taking into account the heterogeneity of the rank population
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that is modelled. This is achieved with a conditional independence assumption that is
considered for the multivariate rankings.

7.2.2 Data Input Format

The input data of the ‘Rankcluster’ package, have to be given in specific representation.
The ranking representation r = (14, ..., 1, ), Where 1, is the rank of the m — th object,
contains the ranks assigned to the objects from one judge, and means that the i — th
object is in the r; — th position. In Rankcluster’s functions, ranks have to be given in
the ranking notation. Thus, the input data parameter must be a matrix, with every row
corresponding to a rank. The missing positions that occurred because of the partial
ranks, should be denoted by 0. Also, 1 indicates the most — liked alternative, 2 indicates
the second most — liked object and 3 denotes the third most — preferred player.

7.2.3 Estimation of the Model

In order to perform this model — based clustering method to the partial ranking data and
obtain estimations for the potential group that each voter belongs to, based on a mixture
of ISR model that was proposed in the theoretical part of the application, we are going
to use the ‘rankclust’ function from the ‘Rankcluster’ package.

The arguments that are used in the function, in order to obtain the result, are the
following :

e data: A data matrix, where each row is a ranking and the missing elements are
denoted with 0 or NA. As it has been already mentioned previously, the data
must be in the ranking notation.

e m: The number of columns of the data matrix.

e K: Aninteger or a vector of integers with the number of clusters that are going
to be obtained. The algorithm is going to obtain clustering results for each one
of the number of desired clusters.

e criterion : The penalty criterion that is going to be used in order to the
appropriate number of cluster being chosen. The possible choices are the ‘BIC’
and the ‘ICL’ criterion.

e Qsem : The total number of iterations for which the SEM algorithm is going to
be repeated.

e Bsem : The value of burn — in period for SEM algorithm. As burn — in period
is described the practice of throwing away some iterations, before the algorithm
is going to run normally by using each iteration in the calculations [7]. The
name ‘burn — in’ comes from electronics, where many electronic components
fail quickly and those which don’t, is a more reliable subset. Thus, a burn
—in is done in the factory to eliminate the worst ones [7].

e QI : The number of iterations of the Gibbs sampler for estimation of log —
likelihood.

e Bl : The burn —in period for the estimation of the log — likelihood.
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e maxTry : The maximum number that the algorithm is being put for restart, in
case of non convergence.

e run : The number of runs of the algorithm for each number of clusters is given
by the value of K.

In our case, the values that are being set as input are the following :

v As data, has been set the matrix with the partial rankings of the players, for each
of the years 2010 — 15. The matrix that is used each time, corresponds to the
year for which the algorithm is implemented.

v' As K, we set the vector 1:5. That means that the algorithm is going to obtain
results for 1 cluster, 2 clusters, etc., up to 5 clusters. The reason that these
integers have been selected, is the computational burden of the algorithm. As
the number of clusters, that are included in the runs, increases, the computation
of the results tends to become slower and the endurance of the machine used for
the computation decreases. Thus the number of times - number of clusters that
the ISR algorithm is going to run, should be in compliance with these
constraints.

v The criterion that has been chosen for the selection of the best model, among
the models with the different number of clusters, is the BIC penalty criterion.

v For the rest of the arguments, have been used values that are compiled with the
restricted resources due to the computational complexity of the algorithm and,
at the same time, are able to produce results that correspond to the goals of the
analysis. The algorithm has been put to run 2 times, for each specific number of
clusters. Also, the algorithm has been set to restart up to 3 times, in case of non
convergence.

The output of the run is stored in a different variable, for each of the years 2010 — 15.
These outputs contain a bunch of information for the clustering results and the different
distances between the estimations and the current values, and can be approached from
the slots of the output’s class. Among this information, the summary of the clustering
result contains the observations with the highest probability and highest entropy, for
each cluster. The probability is estimated by using the last simulation of the presentation
orders used for the likelihood approximation and its output exhibits the best
representative of each cluster. On the other hand, the entropy output illustrates the less
confidence in the clustering of each observation. Thus, the observations with the highest
probability can be considered as the voting representatives of the rest of the voters in
the cluster and the observations with the highest entropy can be considered as the less
confident and representative voters in that specific cluster.

7.2.4 Computational Time
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Before providing the algorithm’s obtained results, it has to be mentioned the
computational time needed for the implementation of the ISR method. This stands for
the general evaluation of the clustering method by taking under consideration the
difficulties in the implementation of the algorithm, in terms of the machine e.g
execution time, requirements of machine’s capabilities.

From the computational point of view, the FIFA Ballon D’Or datasets are challenging
since the size of objects that are about to be ranked is large (= 23) and the presence of
partial rankings is also sizeable (the percentage of the ranking elements, that is missing,
is greater than 80% of each dataset). For this reason, a small number of iterations (Qsem
=100, QI = 300) has been chosen with a respectively 1:5 clusters, in order to eliminate
the computational time and the sources that were required for the drawing of the results.
With these iteration numbers and clusters that the algorithm run for, took about 8 — 9
hours per run (laptop 1.30GHz CPU). At the same time, the implementation of another
process in the machine while the algorithm was still running, was very slow and almost
unachievable.

Most of this computing time is consumed in the likelihood approximation, at each run
of the algorithm. The reason is the high proportion of missing elements, which leads to
a large number of different modal rankings, simulated during the SEM — Gibbs
algorithm and then to a large number of likelihood approximations. It has to be
mentioned at this point that, the retained parameters at the end of the estimation
algorithm are those leading the highest approximated likelihood. Another fact that is
has to be referred is that the small number of iterations probably makes the
implementation of the algorithm feasible but, at the same time, the variabilities of
parameters estimations are expected to be larger.

7.3 Results

7.3.1 Year 2010

In Year 2010, the plot of BIC for the different number of groups is the following :
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Plot of BIC value on the number of clusters for Year 2010
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Figure 14 : The BIC plot used to determine the final model’s number of clusters.

By having a look on the Figure 14, someone can observe that the model with 4
components provides the smallest BIC value. Moreover, we can notice that the absolute
differences between the values of BIC for different number of components are small.
Based on the smallest value of BIC, the 4 — components model is going to be selected
as the final model.

The proportion of observations in each cluster is the following: Cluster 1 — 6.35% (23
observations), Cluster 2 — 34% (150 observations), Cluster 3 — 15.06% (65
observations) and Cluster 4 — 44.47% (187 observations). It has to be mentioned that,
Year 2010 is very different in compare with other years. It is the only year, in the period
under study, that the dipole Messi — Ronaldo did not exist and Cristiano was not even
in the Top — 5 players. This is the reason that justifies the presence of players that are
not in the Top —3 in most of the remaining years. An example of such a player is Diego
Forlan, who has been ranked fifth in the final rankings of 2010, and has received the
largest amount of votes in Cluster 1 (A.40).

By looking at the tables that represent the votes in this year, someone can observe that
the voting difference between the three claimants of the title is small. This can be also
viewed by observing the four different clusters that have been shaped and illustrate the
preferences of the voters. Especially, in the bar chart that represents the percentages of
votes for Messi, Iniesta and Xavi in Cluster 4 (B.37), is depicted the small difference
in votes. The group that displays the win of Messi is the second (B.38), where the
Argentinian has much bigger proportion of first - place votes in compare with his
opponents, while the amount of second and third - place votes are not such different
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between them. Besides the fact that the winner of the trophy was a Barcelona player,
2010 is a year that all the Top — 3 players were playing for Barcelona. The preference
stream for Barcelona players is not a surprise if someone considers that the season 2009
— 10, was a very good seasons for the Catalan team. This can be asserted also from the
fact that in all the plots that represent the job of the voters and the continent that the
voters come from, has not been detected a pattern that reveals any relationship between
the vote and someone of these two factors (B.39, B.40, B.41, B.42). This can be
interpreted as a strong indication for the assumption that in year 2010, the job and the
origins of the voters did not affect their final preferences.

7.3.2 Year 2011

Based on the BIC plot of Year 2011 (B.43), for the different number of components,
we conclude that the optimal number of clusters to fit the model is 2, because the line
reaches the smallest value of BIC when the examined groups are two. Thus, we perform
the ISR approach for two clusters.

The lead of Messi, in terms of votes, in this year is extraordinary. In the following figure
is presented the distribution of votes for the Top - 6 nominees for the 2011 FIFA Ballon
D’Or. The plot has been constructed to describe the Cluster 2 which consists the 73%
of the total dataset.

Frequency of Votes for Top-6 Players in Year 2011 (73% of the dataset)
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Figure 15 : Frequency of Votes for the Top - 6 in Cluster 2, Year 2011.

From Figure 15, someone can observe that Messi has got an amount of first - place
votes which is more than the lion’s share. The orange bar of Cristiano Ronaldo
illustrates that he has been ranked after Messi from almost the 50% of the Cluster.
Moreover, the black bars of the rest 4 players indicate that, despite the fact that they
frame the Top — 6, the sum of total points they have got is very poor. The ascendancy
of Messi in Year 2011 is confirmed also from the objects that have the highest
probability and highest entropy. It is observed that, despite the fact that the voters with
highest probability are the most representative objects of a cluster and the voters with
highest entropy are the less representative objects of a cluster, the 4 different objects
that have the highest probability and entropy for each of the two groups contain the
same values in the first two positions and differ in the third. Not surprisingly, in the
first position is ranked Lionel Messi and in the second one Cristiano Ronaldo. This
indicates that the influence of Messi in the first position and Cristiano in the second, is
that big, that neither the less representative object of a cluster has voted in a different
way for these two places.

7.3.3 Year 2012

As in previous years, in order to decide the appropriate number of clusters for which
we are going to implement the Insertion Sorting Rank algorithm, we observe the plot
of BIC versus the candidate components. Based on it (B.44), the model is fit in 3
clusters. This happens because from the point of 3 clusters to the one of the 4 clusters
it is observed a sharp increase of the BIC value, which becomes sharper from the point
of 4 clusters to the one of 5 clusters. Thus, we choose the 3 components model as the
best, in terms of the BIC increase.

It has been seen also in the previous approaches that, 2012 was the third consecutive
year that Lionel Messi won the award and the second in a row with such a big lead from
his opponents. Besides that, the dipole Messi — Ronaldo is getting more and more stable
in the first two positions of the final rankings. By looking at the tables (A.41, A.42,
A.43) that present the votes for all the players in each cluster, it is very easy to observe
that the captain of Barcelona is first in the preferences in all of these clusters and
Cristiano is also the second choice for the largest amount of voters. Moreover, from the
bar charts that present the votes frequency for each of the Top — 4 players (B.45, B.46,
B.47), in every cluster, it can be seen that the amount of voters that preferred a player
in the first - place , second - place, etc. and the amount of those that they did not prefer
a player in the first three positions, are proportionally similar in all the three clusters.
What is really remarkable in this year, is the fact that the people that prefer a player
who is outside the dipole are very few. Even the black bars of Iniesta and Xavi, who
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were ranked, correspondingly, third and fourth in the final rankings, are very large.
Especially the amount of voters that did not prefer Xavi (4™ in the final rankings) is
greater than 80% of the total voters, in each cluster. This fact accompanied with the
astonishing amount of first - place votes for Messi, in second consecutive year, bare
the lack of competition between the dipole and the rest of the players.

7.3.4 Year 2013

As in the previous years, on the line chart that exists in the Appendix (B.48), is
presented the change of BIC value while the number of clusters are increasing. Based
on this figure, the line that depicts the trend of the BIC value through the different
number of components, is track to have a sharp decrease from the point of 2 clusters to
the one of 3 clusters and after this point starts to increase again. Thus, it is observed a
‘knee point’ when the line approaches the 3 clusters, which provides an indication that
the optimal number of groups for fitting the ISR algorithm, is 3. For that reason, we
implement the clustering of the voters on 3 clusters.

The results of the clustering show that the voters in 2013 are separated in 2 large groups,
that consist almost the 93% of the dataset, and 1 small group. More specifically, the
first cluster contains the 43.8% of the dataset (235 observations), the second cluster
contains the 6.83% of the dataset (43 observations) and the third cluster contains the
49.35% of the dataset (263 observations). It is clear from the results of the first cluster
(A.44), that the difference in the first - place votes between Ronaldo and Ribery is very
small. On the other hand, the Frenchman has much fewer votes than Cristiano and
Messi, in terms of second - place votes. Let’s have a look of the votes on the third
cluster.
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Frequency of Votes for Top-3 Players in Year 2013 (49.35% of the dataset)
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Figure 16 : Frequency of Votes for the Top - 3 in Cluster 3, Year 2013.

The same voting behavior pattern that we have spotted in the first cluster, is revealed
also in the third cluster. From the above figure, someone could assume that the main
reason that Ribery did not win the trophy was the large amount of voters that did not
prefer him in compare with his opponents, despite the fact that he overcomes the other
two candidates in first — place votes, in this cluster. At this point, it has to be reminded
to the reader that Cristiano Ronaldo won the award in 2013, with very small lead of
points to the second Lionel Messi and the third Franck Ribery. Thus, in such a year
when the competition is that fragile every vote matters. This bar chart is an earmark of
such a situation, because it can be observed that even Ribery had the most first - place
votes, he came third because he had also the largest percentage of voters that did not
rank him at all. At the same time, despite the fact that Lionel Messi has a small lead in
first - place and second - place votes, he got left behind in third - place votes, in compare
with the corresponding votes of Cristiano and that is the reason he remained second.

As in previous methods, Cluster 3 has been chosen on purpose for presentation because
it does not depicts a clear ascendance of a player and ,thus, it is a great confirmation of
the theory which claims that when the difference of points between some candidates is
marginal, the candidate who would have been preferred from larger amount of voters,
wins the award, no matter the genre (1% place, 2" place, 3" place) of the vote.
Moreover, the fact that Ribery has been preferred many times first and very few times
in the second or third - place, is a strong indication of how difficult is for a player to
break the dipole apart and make his position more robust throughout the years. It is also
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a verification of the voting behavior that has been detected in the previous methods, for
the same year.

7.3.5 Year 2014

Based on the BIC plot for 2014 (B.51), it is observed that the smallest BIC value is in
2 clusters. Furthermore, in that point, the line starts to increase, so it can be considered
also as a ‘knee point’ of a small BIC value. We are able to notice, at this point, that the
approach of ISR provides us with a model which number of clusters are relatively small,
in compare to the Bayesian and the K — medoids model which have provided a large
number of clusters, with an individual information in each one. This is an indication
that ,probably, should have been examined more clusters in the fit of the model, in the
ISR approach for 2014, which have not been examined due to the computational burden
of many clusters in this method.

Besides that, it is clear that the voting behavior that has been detected in the previous
methods, for Neuer’s voters, is ascertained also in this approach. If Cristiano Ronaldo
would be excluded from the analysis of the two clusters, as his proportions of votes are
similar in the two groups, we are able to spot the difference that works as the ‘separation
cause’ between the two groups and that is the votes for Messi and Nuer. From the bar
chart that represents the preferences for the Top — 3 in the first cluster (B.52), which
consists the 75.73% of the dataset, someone can observe that the first — place votes that
were assigned to the two players are equal, but Messi has been voted much more times
in the other two places in compare with the German player. On the other hand, in Cluster
2 (B.53), itis observed a clear preference to the goalkeeper of Bayern Munich. The first
— place votes for Neuer were the 21% of the total first — place votes, while on the same
time, the corresponding votes for Messi were 6%. Furthermore, this can be evaluated
from the votes of the most representative objects of the two clusters that have got the
highest probability value. For the first cluster, Mahamud Raihan ranked first Cristiano,
second Messi and third Neuer. Contrarily in the second cluster, Vladimir Petkovic has
ranked first Cristiano, second Neuer and third Messi. Based on the bar plots,
accompanied with the votes of the most representative objects for each cluster, the
difference in the two clusters is evident. But, despite the fact that Neuer is more
p