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                                          ABSTRACT 
 

The rapid increase in the volume of the data, in recent years, makes the notion of 

clustering and the extraction of useful information through it all the more important. 

A special kind of data, which is applied to many fields such as politics, elections, 

psychology, sports, market research, etc., is the ranking data. In particular, we are 

going to work with partial ranking data, which is a very interesting and challenging 

type of ranking data.  

The main purpose of this Thesis, is the clustering of the voters of the FIFA Ballon 

d’Or partial ranking datasets for the period 2010 – 2015. Our goal is to separate them 

in different groups according to their preferences, for each one of the years in the 

period under study. Moreover, we are going to attempt to distinguish possible voting 

behavioral patterns through further analysis of the clustering results, and extrinsic 

factors that could have affected the final preference of a voter. Also, we are going to 

present the fundamental notions in the context of ranking data and provide ways for 

visualizing and modeling partial ranking data.   
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Chapter 1 

Introduction 

As we move forward in time, the data driven view has been introduced and adopted 

from many industries throughout the planet. It is also observed, that this turn to data 

and analytics, is making determined steps in the sports industry. The combination of 

statistical methods with the usage of technology and big data tools, accompanied with 

the knowledge of the sport, that is under research, can create insights of great 

importance that are very helpful for the sports organizations. The last years more and 

more teams and organizations are hiring data scientists in order to improve performance 

and decision making that are about concerns around the matches (which player to put 

in the game, which one should be substituted during the match, etc.) but also financial 

concerns (players that are overpaid according to their performance, price of tickets, 

segmentation of the fans in order to attract them in a better way, etc.). Examples of  

leading sports associations and leagues, that are in the process of adopting the data 

driven view, are the FIFA, NBA, American Association of Professional Baseball, 

Premier League, Bundesliga, etc.  

 

       1.1   Fifa Ballon d’Or Voting System 

One of  the highest honor for a football player, is to be awarded with the FIFA Ballon 

d’Or award. The Ballon d’Or is an annual football award presented by French news 

magazine ‘France Football’. It is one of the oldest since it has been awarded back in 

1956 and is considered as the most prestigious individual award for football players 

[75]. The name of the award has been changed to FIFA Ballon d’Or , due to the 

agreement that was made with FIFA for the merge of the Ballon d’Or with the ‘FIFA 

World Player of the Year’. The agreement was made in 2010 and ended in 2016, when 

the award reverted to its first name [75]. Since the period that we are going to examine 

is 2010 – 2015, we refer to the award as FIFA Ballon d’Or. 

The award is based on a voting procedure, from which the winner is declared. At first, 

out of the professional football players that exist, FIFA selects 23 players, who thinks 

that are the best 23 players in the world for this specific year that the competition takes 

place. After that, this list of players is presented to the eligible voters and is made public. 

The people who are entitled to vote are divided into three categories [18]:  

1) the coaches of the national teams,  

2) the captain of each registered country and  

3) a group of journalists, limited to one per country. 

Each of the three categories has the same electoral weight, notwithstanding the actual 

sizes of the classes the voters represent [18]. There is not any restriction on whom an 

eligible voter is able to vote, except the one that states that if a candidate is also eligible 

to vote, he is prohibited to vote for himself. The eligible voters must choose the top 3 

players out of the list in order of their preference. For each vote, the corresponding 

points are given to the preferred player. The distribution of those points is the following: 
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5 points for the first player, 3 points for the second player and 1 point for the third 

player. Thus, the smaller the rank the more points that a player receives. Finally, the 

player who receives the most points is awarded with the Ballon d’or. In case of draw, 

the player with the most first – place votes gets the award. As someone can observe, we 

start mention the word ‘rank’ and this is the kind of the data that we are going to work 

with. 

 

      1.2   Ranking Data 

Ranking data commonly arise from situations where it is desired to rank a set of 

individuals or objects in accordance with some criterion [45]. This kind of data can be 

observed directly or as a result from a ranking of a set of assigned or as a transformation 

of continuous/discrete data. Examples of ranking data, in the literature, can be found in 

politics, voting and elections, psychology, market research, medical treatments, house 

reviews, horse racing, etc. 

A definition of ranking of n objects, can be the following :  

A ranking or permutation of n distinct objects is a vector of length n, with each 

component corresponding to an object, and the value of each component being the rank 

of that object, namely the quantity 1+ the number of other objects that are considered 

superior, in either a qualitative or quantitative sense [66]. We use 

π =  [π(1), . . . , π(n)]   

to denote this ranking or permutation. In terms of preference, an object that receives the 

lowest rank is the most preferred among the others. The inverse situation of a ranking 

is the ordering [66].  

It is very important to make clear the difference between these two notions, because it 

is essential to have data in the correct notation, ranking or ordering, that each modeling 

algorithm needs as input. A definition of ordering could be the following :  

An ordering or inverse permutation of n objects, labeled 1 to n, is a vector of length n, 

with each component i giving the label of the object that has rank i, i =  1, . . . , n [66]. 

The ordering or inverse permutation associated with π is specified by the mapping 

 π−1(j) = i  if  π(i)  =  j,  i =  1, . . . , n,  j =  1, . . . , n [66]. In other words, it is a 

permutation which, given an array of size n of integers in range from 1 to n, is obtained 

by inserting position of an element at the position specified by the element value in the 

array.  

The ranking data can be partitioned to complete and incomplete rankings.  

A complete ranking is a permutation, in which all the n objects of the set are ranked by 

the judges. In the case of FIFA Ballon d’Or data, in case of a complete ranking, all the 

23 players of the list should be assigned with a rank from the voters.  

In some cases, though, incomplete ranking data are observed, especially when the 

evaluation of an object is time consuming or takes much effort. In that case, instead of 

ranking all objects of the set, each individual may be asked to rank the top q objects 

only for q ≤ t, called top q partial rankings [45]. This is exactly the case that we have 

to face in analyzing the FIFA Ballon d’Or datasets. Since the voters are asked to rank 
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only the top 3 out of 23 players of the list, the ranking datasets that we are going to 

work with, are typical top 3 partial rankings.  

The presence of partial ranking data makes the analysis more challenging, in 

comparison with the case of complete ranking data. First of all, the literature and the 

software regarding incomplete ranking data is limited, in comparison with the 

corresponding research and software for complete ranking data. This makes the 

detection and implementation of algorithms, that can suit to this kind of data, more 

difficult. It has to be pointed out that the missing positions in an incomplete permutation 

are not missing data. In terms of interpretation purposes, they can be viewed as an 

expression of preference, since they represent the non – preference of a judge to a 

specific object. Thus, they have to be handled in such a way when the ranking is trying 

to be interpreted. But, in what concerns clustering purposes or different kind of analysis, 

the researcher has to detect appropriate methods for the estimation of the missing 

positions in order to conduct inference.  

Such algorithms, which have been constructed and presented in the literature, are in 

great use on cases where incomplete rankings exist. These algorithms sometimes may 

be complex and difficult to use, in compare with the classic non parametric approaches 

for clustering complete ranking datasets. Also, some of such algorithms have a 

computational burden, in terms of the needed time for the simulation and estimation of 

the missing positions, which adds an extra challenge in the context of modeling partial 

ranking datasets. Furthermore, the presence of partially ranked data is a very 

challenging issue, in terms of visualizing them. This happens due to the fact that the 

traditional methods for visualizing ranking data can note be used. Thus, we have to find 

alternative ways and methods in order to achieve the graphical representation of such 

rankings. Besides that, in analysis (e.g clustering) methods that require the use of 

distance, the presence of such data is an obstacle since many distance metrics are not 

able to be used because of the scaling. Thus, alternative paths of imputation of the 

missing positions or different distance metrics have to be used.  

 

       1.3   The notion of Clustering 

After presenting the type of data that we are going to work with, it is time to get a brief 

overview of clustering, since this is the main purpose of the analysis that will take place. 

There are plenty of definitions that try to explain what clustering is about: 

We could define clustering as a technique which goal is, given a set of data points, to 

find groups of observations which they ‘look similar’ within the cluster and are 

‘different’ from observations of different groups [36].  

Clustering has an enormous amount of uses in a variety of industries. Some common 

applications for clustering include marketing segmentation, social network analysis, 

anomaly detection, image segmentation, search result grouping, etc. In the context of 

ranking data, cluster analysis is performed usually in consumer questionnaires, voting 

forms or other inquiries of preferences [41],[45]. Its main goal is to identify typical 

groups of rank choices. After that, the further exploration, for trying to find 

relationships that are based on the common characteristics that objects of the same 

group have, lies on the researcher’s hand. 
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       1.4   The Aims of Thesis 

This Thesis contains eight chapters. In the second chapter, the fundamental classes of 

models for ranking data are going to be described. Clustering models and models 

regarding partial rankings, will be emphasized. In the third chapter, the transformation 

of the raw ‘FIFA Ballon D’or’ datasets to partial rankings, are going to be presented. 

Moreover, the fundamental descriptive statistics that are applied in such data are going 

to be presented and implemented, in order to get a better understanding of the data. In 

Chapter 4, we are going to present visualizations methods for ranking data. We start by 

describing fundamental approaches for complete ranking data (e.g permutation 

polytope) and consequently we present visualizations methods for partial ranking data 

such as metric multidimensional scaling, multidimensional unfolding technique, 

multidimensional preference analysis and we implement the non – metric 

multidimensional scaling technique in order to graphically represent our data. The 

fundamental objective of this Thesis is the clustering of the FIFA Ballon d’Or voters, 

for each specific year of the period 2010 – 2015. Thus, in Chapters 5,6,7 we present 

different clustering algorithms that can be applied to the data. In each of these chapters 

there are two main sections. The first section contains the theoretical framework of the 

method that is going to be used and in the second section, we apply the method on the 

datasets for each year of the period under study. The goal of the applications is to detect 

how these algorithms work out and to create groups of voters that have common 

characteristics, in terms of preference. Through the clusters that are going to be created, 

we will try to identify trends of preference for players, possible voting behavioral 

patterns which can characterize the way that a player is voted and possible ascendance 

of certain players that can be recognized in a cluster.  

Furthermore, we will try to detect if external factors (the word ‘external’ is used due to 

the fact that these factors are not included in the model) affect the vote decisions of 

persons. The examined factors are the continent where a voter comes from and the job 

of the voter. Through this extra analysis we will attempt to understand if, for example,  

the fact that a voter and a player come from the same continent, plays a vital role in the 

voter’s final preference. It would be very interesting to reveal such a pattern because 

this would be a strong indication of the existence of such a relationship, which many 

football fans assume. In the closing chapter we will present the work and the main 

discoveries that the research will have advanced, with the hope that the results are going 

to inspire researchers to delve deeper into this subject. 
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Chapter 2 

Models for Ranking Data 

 

In this chapter we are going to present the fundamental classes of models for ranking 

data. In the analysis of a ranking dataset, in order to make inference on the preferences 

of the voters, modeling of the data is needed. In the next sections, there will be presented 

general models for ranking data but, also, models which concern the clustering of such 

datasets. It has to be pointed out that most of the following classes of models are used 

for clustering purposes. Here, we present the general terminology and methodology of 

these methods. The more specialized theoretical framework of each method, that is used 

for the clustering implementation on the FIFA datasets, is presented as a separate 

section before the application part of the method. In the following lines of this chapter 

we are going to snapshot the general picture of ranking data models and features of 

those models that make them more preferable than the others, based on the purposes of 

the analysis.  

 

2.1   Probability models for Ranking Data 

The probability modelling for ranking data can be described as an efficient way to 

understand people’s perception and preference on different objects [45]. We are going 

to present the probability models that have been developed, through the four categories 

that Critchlow et.al classified them, in 1991 [17]. These four groups of probability 

models are [45]:  

a) Order statistics models,  

b) Paired comparison models,  

c) Distance – based models and  

d) Multistage models.  

In the section 2.5, we are going to present the Finite Mixtures model which is also a 

fundamental class of probability models. It is very interesting to describe these models 

and their properties, since the Insertion Sorting Rank algorithm and the Bayesian 

approach of the Plakett – Luce model, that are going to be implemented in the next 

chapters, are model based clustering algorithms that are founded on probability models. 

Thus, it is important to describe the fundamental concepts and the properties of such 

models. 

 

        2.1.1   Order Statistics Models      

The sense of order statistics models has been introduced from Louis Leon Thurstone, 

in 1927 [68]. The American psychologist, who was instrumental in the development of 

psychometrics and statistical techniques for the analysis of performance on 

psychological tests, published a paper in which the ranking of two objects was 

considered. The fundamental idea of his proposal was that the final ranking of a judge, 
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on a set of objects, is determined by the ordering of random variables that represent the 

tastes of a judge. Since these tastes can fluctuate, according to the understanding of the 

judge to each object, they cannot be predicted. Thus, they are random variables. The 

probability of observing a ranking 𝜋𝑗 under the class of such a model can be described 

from the following formula :  

𝑃(𝜋𝑗) = 𝑃(𝑦[1]𝑗𝑗 >  𝑦[2]𝑗𝑗 > ⋯ > 𝑦[𝑡]𝑗𝑗), 𝜋𝑛 ∈ 𝑆 ,  

where 𝜋𝑗 is the ranking of 𝑡 objects, the set ([1]𝑗, [2]𝑗, … , [𝑡]𝑗𝑗 is the ordering of objects 

corresponding to the ranking  𝜋𝑗 such that the judge 𝑗 assigns rank 𝑖 to object [𝑖]𝑗 [45]. 

The set 𝑦1𝑗, 𝑦2𝑗, … , 𝑦𝑡𝑗 represents the random utilities from which the ranking is 

dependent. The term 𝑆 in which every ranking belongs to, is the set of all 𝑡!  possible 

rankings. In order to make the model simpler, some probabilistic structures on the 

random utilities are assumed. Also, Critchlow et al. (1991) [17], observed that if these 

utilities are allowed to have arbitrary dependencies, any probability distribution can be 

expressed as in the upon formula [45]. Such type of models that can be presented 

through this formula are referred to as Thurstone order statistics models (Yellot 1977 

[77], Critchlow et al. 1991 [17]). The two most famous Thurstone models, that have 

been further developed in the following years, are the Thurstone model (Thurstone 1927 

[68], Daniels 1950 [19], Mosteller 1951 [9])  and the Luce model (Bradley and Terry 

1952 [5], Luce 1959 [40]). 

The ranking probability in the Luce model can be expressed as a function of top – choice 

probabilities only. Also, the model satisfies the Independence of Irrelevant Alternatives 

(IIA) axiom, which introduced by the mathematical psychologist Tversky in 1972 [35]. 

The axiom states that the choice of a judge between two objects, depends on the 

preferences between these two objects only and is irrelevant to another object. The 

axiom is also being satisfied from extensions of the Luce model, such as the Rank – 

Order Logit models, which include judge – specific covariates, object – specific 

covariates and their interactions. It has to be mentioned at this point that the Plackett – 

Luce model, thus the Bayesian approach of the model that is going to be used as a 

clustering method later, is based on this Luce’s axiom of choice. 

The main drawback of this axiom is that is impractical because the correlation among 

the errors is not included in the models and this can lead to unrealistic patterns in many 

real life ranking problems. Thus, some order statistics models that do not satisfy the IIA 

property have been developed. An example of such a model is the Multivariate 

(Generalized) Extreme Value model (GEV), which was introduced by McFadden 

(1978) [47]. The model assumes that the error terms of the simplified probabilistic 

structures, that have been mentioned previously, follow a generalized extreme value 

distribution with the following cumulative distribution function :         

       𝐹(𝜀1, … , 𝜀𝑡) = exp [−𝐻(𝑒−𝜀1 , … , 𝑒−𝜀𝑡)],  

where 𝐻 is 𝑡 – dimensional and all the univariate marginal distributions are Gumbel 

distributed [20]. The key pros of the GEV model is that it is able to fit many different 

types of ranking data, as Joe (2001) [32] stated. 

 

 2.1.2   Paired Comparison Models 
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The notion of ‘Paired Comparison models’ was first introduced from Babington Smith 

(1950) [4], whose proposal was about a family of probability models for ranking data 

based on the paired comparisons idea. By assuming mutual independence of these 

paired comparisons, the probability of observing a ranking 𝜋𝑗, under the Smith model, 

is given by the formula : 

 𝑃(𝜋𝑗) = 𝐶 ∏ 𝑝𝑎𝑏{(𝑎,𝑏):𝜋𝑗(𝑎)<𝜋𝑗(𝑏)}  ,  

where the constant 𝐶 is appropriately selected in order to make the probabilities sum to 

1 and 𝑝𝑎𝑏 is the probability of object 𝑎 being preferred to object 𝑏. 

Based on this model, Mallows (1957) [42] proposed the addition of constraints on the 

{𝑝𝑎𝑏} term. His idea lead to two subclasses of the Smith model : the Mallows – Bradley 

– Terry model and the Mallows model. The Mallows model (1957) [42] came after the 

work of Bradley and Terry (1952) [5], and it was a try for simplification of their model. 

The Mallows work is also crucial, as it was introduced in the ranking literature the 

notion of modal ranking.  

Definition: A probability model is said to be strongly unimodal with modal ranking 𝜋0 

, if its ranking probability has the unique maximum at 𝜋 =  𝜋0 [45] .  

 

Also, based on [30] , the modal ranking rule is supremely robust to noise, in the sense 

of being correct in the face of any ‘reasonable’ type of noise. At this point, before 

presenting the general formula of the Mallows model, we have to define the Kendall 

and Spearman distances. For any permutation π,σ the Kendall distance is defined as :        

𝐷𝐾(𝜋, 𝜎) = ∑ 𝐼 {[𝜋(𝑖) − 𝜋(𝑗)][𝜎(𝑖) − 𝜎(𝑗)]𝑖<𝑗 < 0},  

where 𝐼{∙}  is the indicator function taking values 1 or 0 depending on whether the 

statement in brackets holds or not [59].  

Moreover, the Spearman distance is defined as : 

 𝐷𝑆(𝜋, 𝜎) =
1

2
 ∑ [𝜋(𝑖) − 𝜎(𝑖)]2𝑡

𝑖=1  [59] 

 Based on the above, the formula of the Mallows model is the following : 

𝑃(𝜋𝑗) = 𝑐(𝜃, 𝜑)𝜃𝑑𝑆(𝜋,𝜋0)𝜑𝑑𝐾(𝜋,𝜋0) , 

where 𝑐(𝜃, 𝜑) is selected in order to make the probabilities sum to 1, 𝑑𝑆(𝜋, 𝜋0) is the 

Spearman distance and 𝑑𝐾(𝜋, 𝜋0) is the Kendall distance between 𝜋 and 𝜋0 [30]. The 

model states that as the distance from 𝜋 to the modal ranking increases, the ranking 

probability decreases geometrically according to this increase.  

It has to be pointed out, that the Paired Comparison models satisfy many properties of 

the ranking models. In specific, Marley (1968) [44] showed that the class of these 

models satisfy the reversibility property, which states that the reversing of a ranking 

𝜋 has no effect on the probability models, based on the reverse function 𝛾(𝜋) = 𝑡 + 1 −
𝜋. Moreover, it satisfies the property of  L – decomposability which states that the 

ranking of 𝑡 objects can be decomposed into 𝑡 – 1 stages. There are more properties that 

are fulfilled from this type of models, but with some conditions that have to be 

activated.  
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2.1.3  Distance – Based Models 

Α class of distance – based models was developed by Diaconis (1988) [21]. His work 

rests on the idea that a distance function can measure the discrepancy between two 

rankings and the fact that is reasonable to assume most of the judges to have rankings 

close to the modal ranking 𝜋0. The general form of the distance – based model can be 

described as  

𝑃(𝜋|𝜆, 𝜋0) =
𝑒−𝜆𝑑(𝜋,𝜎)

𝐶(𝜆)
 , 

where 𝜆 ≥ 0 is the dispersion parameter and 𝑑(𝜋, 𝜎) is an arbitrary right - invariant 

distance. It has to be mentioned at this point that it is required for the selected distance 

to satisfy the property of right invariance. This is a property that is explained in further 

sections and ensures that a possible relabeling of the ranking objects does not affect the 

distance. Examples of such distances are the Spearman Footrule, the Spearman distance 

and the Kendall distance. In that case where the Kendall distance is used as the distance 

function in the formula, the model is called the Mallow’s 𝜑 – model and is a proved 

relationship between the distance – based models and the paired – comparison models 

(Critchlow et.al., 1991). The Mallow’s 𝜑 – model is also a special case of the 𝜑 – 

components models class, which has been introduced from Flinger and Verducci (1986) 

[22]. Their work was mainly based on an extension of the distance – based models, by 

decomposing the distance metric 𝑑(𝜋, 𝜎) into t – 1 objects, where t is the number of the 

ranked objects. Regarding the general formula that has been presented above, the 

ranking probability in a distance – based model holds the largest value at the modal 

ranking 𝜋0 and at the same time it declines when it is away from 𝜋0 . The decline rate 

of the ranking probability is dependent on the dispersion parameter 𝜆. Thus, if the value 

of 𝜆 is small, the distribution of rankings will be more concentrated around modal 

ranking and vice versa. To get a better understanding of this fact, we have to analyze 

the general formula of the distance – based models. The term   
𝑒−𝜆𝑑(𝜋,𝜎)

𝐶(𝜆)
  can be converted 

to 

1

𝑒𝜆𝑑(𝜋,𝜎)

𝐶(𝜆)
  which is equal to 

1

𝐶(𝜆)𝑒𝜆𝑑(𝜋,𝜎) . Based on the last term, it can be noticed that if 

the value of the dispersion parameter 𝜆 is large, it leads the denominator of the term to 

increase, which causes the value of the fraction to getting smaller. On the other hand, 

if the value of 𝜆 is small, the value of the term is getting larger. Thus, we can observe 

that when the dispersion parameter is large the ranking probability is small, which 

means that is away from the modal ranking and vice versa.  The maximum likelihood 

estimator (MLE) 𝜆̂ , can be found by solving different equation if the modal ranking is 

a known value and if it is an unknown value.  

We have to point out that the distance – based models satisfy both the reversibility and 

the label invariance properties, that have been mentioned previously. Besides that, this 

class of model is able to handle partial ranking data, with the implementation of some 

modifications on the used distance measures. The estimation of the model parameters 

using the EM algorithm, was introduced by Beckett (1993) [7]. Contrarily, an approach 

which does not include the EM algorithm was proposed by Adkins and Flinger (1998) 

[45], who showed a non – iterative maximum likelihood estimation procedure for the 

Mallow’s 𝜑 – model. Moreover, the mixture models have also be considered for the 
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class of distance – based models. Specifically, Murphy and Martin (2003) [51] extended 

their use, in order to describe the presence of heterogeneity among the judges of a 

dataset. Their work was proved very helpful, because they smoothed the assumption of 

the homogeneous population in the distance – based models.   

 

      2.1.3.1   Weighted Distance – Based Models 

Despite the fact of the great usefulness of the φ – component models that have been 

mentioned above, some distance properties are not satisfied in specific cases of such 

class of models. Thus, Lee and Yu (2012) [39], provided the notion of weighted 

distance measures which are able to retain all the required properties of a distance and 

also allow different weights for different ranks, which enhance the model flexibility. 

Thus, many distances that are used in the distance – based models (like Kendall, 

Spearman, Spearman Footrule), were introduced in a weighted format. For example, 

the Spearman weighted distance formula is  

  𝑑𝑆(𝜋, 𝜎; 𝑤) = ∑ 𝑤𝜋0(𝑖)[𝜋(𝑖) − 𝜎(𝑖)]2𝑡
𝑖=1  . 

In general, the probability of observing a ranking 𝜋 under the weighted distance – based 

ranking model is  [45] 

𝑃(𝜋|𝑤, 𝜋0) =
𝑒−𝑑(𝜋,𝜋0;𝑤)

𝐶(𝑤)
 . 

Based on this formula, the value of weight can be interpreted in three ways. At first, in 

the case of a large value of 𝑤𝑖, is a supporting factor to the assumption that the ranking 

of the object i is close in 𝜋0 . Secondly, if the value of 𝑤𝑖 is close to zero, then a change 

in the rank of the object ranked i will not have a serious impact on the distance. Finally, 

if the value of weight is zero, then the model is uniform. Besides these, Lee and Yu 

(2012) [39] motivated from the work of Murphy and Martin (2003) [51], and took into 

account the finite mixtures to the weighted distance – based models. In order to estimate 

the model parameters they applied the EM algorithm, by computing for each 

observation the probability of belonging to every subpopulation and maximizing the 

conditional expected log – likelihood, given the estimates in the first step. In order to 

derive the EM algorithm, they defined a latent variable, which indicated if an 

observation belonged to the specific subpopulation.  

 

 2.1.4   Multistage Models 

In 1988, Flinger and Verducci [23] introduced the class of multistage models. 

Multistage ranking models, including the popular Plackett-Luce distribution (PL), rely 

on the assumption that the ranking process is performed sequentially, by assigning the 

positions from the top to the bottom one (forward order) [13]. The general idea of this 

class of models was to decompose the ranking process into a sequence of independent 

stages.  

For example, if t objects are about to be ranked, the ranking process can be decomposed 

into t – 1 stages, where at stage i, the ith object is chosen. In specific, the most preferred 

item is selected at the first stage, the best of the remaining items at the second stage and 

this procedure keeps going until the least preferred object is selected. Flinger and 
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Verducci (1988) [23] proposed a general multistage model with 
𝑡(𝑡−1)

2
  parameters and 

three more specialized models. These models are named as the free model, the strongly 

unimodal model and the exponential factor model. The main difference between these 

three models is the number of constraints that each of the model has.  

The free model, as its name indicates, has the least constraints while in the exponential 

factor model some conventions are required in order to run. Besides these models, that 

Flinger and Verducci proposed, another multistage model was also proposed, in Hu 

(2000). He showed the decomposition of the ranking process can be also done for 

(𝑡 − 1)2 parameters 𝑐𝑖𝑗, where both 𝑖 and 𝑗 = 1,2, … , 𝑡 − 1 . The parameters 𝑐𝑖𝑗 are used 

in order to determine which object will be selected in each stage. Furthermore, finite 

mixtures of multistage models have been introduced in the literature. These mixtures 

can provide interesting adequacy power, for the assessment of the modeling. On the 

other hand, if we compare them with the mixtures of distance – based models, the 

adequacy power of the distance – based may not provide a powerful assessment but 

they have more meaningful parameters and, also, are easier to be implemented.  

 

        

        2.1.4.1  Connection with Plackett – Luce Ranking Model 

It has to be pointed out that under the decomposition process that was described above, 

the Luce models and the φ – component models can also belong to the class of 

multistage models. This is very important, if we consider that one of the three clustering 

approaches that are implemented in this Thesis is the Bayesian finite mixture of Plackett 

– Luce model. As it is going to be described in the corresponding section, the Plackett 

– Luce model is a powerful stagewise model for analyzing partial ranking data. Based 

on the decomposition process of ranking data, we consider a set of items, and a set of 

choice probabilities that satisfy the Luce’s axiom. Next, we consider a pick of one 

object at a time out of the set, according to the choice probabilities. Such samples give 

a total ordering of objects, which can be considered as a sample from a distribution over 

all possible rankings [33]. The form of such a distribution was first considered by 

Plackett (1975) in order to model probabilities in a K – horse race [33]. The most 

important aspect of the Plackett – Luce model, is the fact that it is applicable either each 

observation is provided by a complete ranking of all items, or a partial ranking of some 

items. Because the data we are analyzing are partial rankings, a multistage model such 

as the Plackett – Luce, is a very appropriate choice for clustering our data.  

         

       2.1.5   Finite Mixture Models for Ranking Data 

The finite mixture models were first introduced by Newcomb (1886) [52] who used 

them in order to model outliers. Since then this class of models has definitely gained 

ground in the literature, as it has been researched and developed on a great scale.  A 

basic interpretation of a finite mixture model is that it provides a natural representation 

of heterogeneity in a finite number of latent classes. The heterogeneity concerns the 

effects on different groups of observations [54]. The general formula of a finite mixture 

model density with parameter vector 𝜃 = (𝜋′, 𝜃′
1, 𝜃′

2, … , 𝜃′
𝛫)′  is the following : 

                                 𝑓(𝑥; 𝜃) = ∑ 𝜋𝑘𝑓𝑘(𝑥; 𝜃𝑘)𝐾
𝑘=1 ,                                                           
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where 𝜋𝑘 represents the 𝑘th mixing proportion or the probability that the observation 𝑥𝑖 

belongs to the 𝑘th subpopulation with corresponding density 𝑓𝑘(𝑥) [48]. The term 𝐾 

represents all the number of components with 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝐾)′ ,where 0 ≤ 𝜋𝑘 ≤ 1 

and ∑ 𝜋𝑘 = 1𝐾
𝑘=1  . The most general form of a mixture is to suppose that 𝑓𝑘′s are a 

parametric form which is known e.g 𝑓𝑘(𝑥) = 𝑓𝑘(𝑥; 𝜃𝑘), where in that case only 𝜃 has to 

be estimated. But when 𝐾 is also not provided, the number of components in the mixture 

have to be additionally estimated.  

In general, the clustering approaches that depend on probability models are more and 

more being developed and used in the literature. There are many times that the data 

from such models are considered to come from finite mixture probability distributions. 

Moreover, in the finite mixture model framework, each group is assumed to have its 

own distribution and corresponding probability of representation [48].  It is observed, 

also, that the finite mixture models and the  context of model – based clustering is 

preferred over distance – based approaches or more heuristic approaches (e.g 

hierarchical clustering), due to the more statistical oriented view of the clustering 

problem, the various types of ranking data that these models can analyze, the more 

robust answers in questions such as the number of clusters etc. 

In respect of the clustering goals, after the mixture model has already been fitted, is 

being used in order to identify any grouping that is probably exist in the data. For 

example, if a four component model has been fitted, we would want to detect any 

pattern that can be identified between these groups. Thus, the overall target of the usage 

of mixture models in the clustering context is to separate the data into a number of 

groups – components, in which the objects in each group would have common 

characteristics but the objects of different groups would differ. When the finite mixture 

models are used for clustering purposes, there is one initiative that has been introduced 

in this approach. This is about the assignments of data points to the different clusters, 

which is the fundamental information that concerns a clustering problem, and is missing 

from the observed sample.  

In order to deal with this issue, in the finite mixture models clustering approach, a 

random variable which can be noted as 𝑧𝑗𝑝 is introduced. This random variable can take 

the following values :   𝑧𝑗𝑝 = 1, if a data point 𝑦𝑗 belongs to a population 𝑝 and 𝑧𝑗𝑝 = 0, 

otherwise. These variables can also be referred as latent variables, because they are not 

directly observed but inferred through a model. We assume that the conditional density 

of 𝑌𝑗 , where 𝑌𝑗 is a random vector of data points, given 𝑍𝑗𝑖 = 1 is 𝑓(𝑦𝑗; 𝜃𝑖), where  𝜃𝑖 is 

an unknown vector of parameters for the 𝑖th component of the mixture. Also, we make 

the assumption that the random variables {𝑧𝑗}are independent as Picard proposed in 

[56]. Based on these two assumptions, the random variable 𝑧𝑗, can be seen as a 

categorical variable that indicates whether the data point belongs to a specific group or, 

in other words, the labeling of the data points. Thus, this posterior probability of the 

variable 𝑧𝑗, given the observed value of 𝑦𝑗, will play the most important role in what 

concerns the clustering purposes.  

 

            2.1.5.1    Brief Introduction to EM Algorithm 

Since the label of each data point is not known, because the random variables that 

previously mentioned are latent, the estimation of the mixture parameters can be 

obtained through the observed data. A fundamental approach in the estimation 
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methodology, which has been made very important progress through the years, is the 

maximum likelihood method. One of the main reasons that this method had such an 

advance, was the development of the EM algorithm. 

The Expectation – Maximization (EM) algorithm is an iterative process which goal is 

to approximate the maximum likelihood function. Its fundamental idea, is to connect a 

complete data model with the observed incomplete model, in order to make the 

computation of the maximum likelihood estimates less complex. Thus. it is often used 

in the case of incomplete/missing data, or in the case of existence of latent variables. 

The EM algorithm achieves, through its iterative process to fill the gap of maximum 

likelihood estimation which does not achieve to approach the ‘best fit’ of a model, when 

incomplete data exist. 

The algorithm consists of two steps, as its name indicates, Expectation (E) and 

Maximization (M). In the first – Expectation step, it estimates the missing or latent 

variables, by computing the expected value of the complete – data log likelihood  

𝑙(𝜃; 𝑋, 𝑌), where θ is the unknown parameter vector, given the observed data and the 

current parameter estimate [29]. The second – Maximization step consists of 

maximizing the parameters of the model over the expectation computed in the E step. 

The process is repeated until the sequence of the maximized 𝜃’s parameters converges. 

In the case that the log – likelihood function has multiple local maximums then the 

algorithm should be put in run for many times, by using a different starting value for 

the unknown parameter 𝜃 , at each iteration [29]. This helps the algorithm not to end up 

with a local maxima, that will probably not be close to the global one, but after many 

restarts to arrive to the greatest maximum likelihood.  

 

          2.2   Probit models for Ranking Data 

The notion of ‘Probit models’ for ranking data is based on models of choice 

probabilities, that use a set of random utilities. Choice probabilities are derived from 

two distributions of the random terms : the extreme value, i.e Logit, and the multivariate 

normal, i.e Probit [53]. In the next two paragraphs we are going to present the two 

fundamental classes of probit models, the Multivariate Normal Order Statistics and the 

Factor Analysis.  

 

       2.2.1   Multivariate Normal Order Statistics Models (MVNOS) 

This class of models, as their name indicates, are very similar with the Thurstone order 

statistics models that have been described in section 2.1, in the sense that both classes 

of models assume that the ranking that a judge gives to a set of objects is determined 

by the ordering of the corresponding latent utilities for the objects assigned by the judge. 

The fundamental difference between them, is that the Thurstone models assume 

independent utilities, in contrast with the Multivariate normal order statistics models 

that the utilities are possibly correlated.  

The probability of a ranking 𝜋𝑗 that is given by judge 𝑗 can be described with the 

following formula :  

𝑃(𝜋𝑗) = 𝑃 (𝑦[1]𝑗,𝑗 > 𝑦[2]𝑗,𝑗 > ⋯ > 𝑦[𝑡]𝑗,𝑗) , 
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where [1]𝑗 , … , [𝑡]𝑗  is the ordering of the 𝑡 objects corresponding to the ranking 𝜋𝑗. 

Furthermore, the latent utility vector 𝑦𝑗 = (𝑦1𝑗 , … , 𝑦𝑡𝑗)′ of judge 𝑗 is supposed to follow 

multivariate normal distribution with mean utility vector 𝜇𝑗 = (𝜇1𝑗, … , 𝜇𝑡𝑗)′. A great 

example where the MVNOS model used for the modeling and clustering of judges, was 

the Analysis of the APA Election Data. In 1980, the American Psychological 

Association (APA) conducted an election in which five candidates (A, B, C, D, E) were 

running for president and voters were asked to rank all of the candidates [45]. Among 

those voters, 5738 gave complete rankings and those complete rankings were 

considered in the MVNOS clustering implementation. The results indicated separate 

groups of voters, where each one had a distinct characteristic.  

At this point, it has to be mentioned that the MVNOS model allow the presence of 

covariates that are associated with the judges and the objects that are modeled. For 

example, in the case that the FIFA Ballon D’ Or data were complete so we could 

implement the MVNOS model, a possible judge – specific and object – specific 

covariate could be the country that the judge and the player come from, because this 

could affect the vote of a judge. Thus, in the MVNOS class of models, a linear model 

is imposed in order to include these covariates. This linear model is imposed for the 

mean utility vector 𝜇𝑗 in the following manner : 𝜇𝑗 = 𝑍𝑗𝛽 , where 𝑍𝑗 is a t x p  matrix of 

covariates associated with judge j and β is a p x 1 vector of unknown parameters [45]. 

Then, as previously mentioned, someone could study the impact that the covariates 

associated with the judge and the objects have in the preferences of the judges. In 

specific, if we define as 𝑠𝑗 the country of the judge and as 𝑎𝑖 the country that the ranked 

player comes from, we would obtain the following model : 

 𝜇𝑖𝑗 = 𝑎′𝑖𝛾 + 𝑠′𝑗𝛿𝑖  , 𝑖 = 1, … , 𝑡,  

 where the parameter vector γ represents the effect of the player’s country to all the 

voters and the vector 𝛿𝑖 represents the country which the voters come from, and may 

affect their preference to the player i .  

In order to test the adequacy of the presented models, a general solution is to group the 

rankings into a small number of subgroups and examine the fit for each subgroup. The 

fit can be tested by comparing the observed frequency with the expected frequency of 

each ranking. In case that the expected frequencies match the observed frequencies, the 

researcher can claim that the MVNOS model appropriately fits the data.  

 

           2.2.2   Factor Analysis 

In general, factor analysis is a technique that is used to reduce a large number of 

variables into fewer number of meaningful factors. It is widely used in social sciences, 

economic sciences, marketing research etc., for the identification of common 

characteristics and the construction of groups based on these characteristics, among a 

set of variables. For the ranking context, by adopting the MVNOS framework with the 

latent utilities satisfying the general factor model, this model can be generalized in order 

to be able to analyze ranking data.  

So, let’s assume that there is a random sample of 𝑛 individuals that each one is asked 

to rank 𝑡 objects. Within the MVNOS framework, the ranking of the 𝑡 objects given by 

the individual 𝑗 in the factor model is determined by the ordering of the 𝑡 latent utilities 

𝑦1𝑗, … , 𝑦𝑡𝑗 which satisfies a more general 𝑑 – factor model : 
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 𝑦𝑖𝑗 = 𝑧′𝑗𝑎𝑖 + 𝑏𝑖 + 𝜀𝑖𝑗  ,    𝑗 = 1, … , 𝑛 ;   𝑖 = 1, … , 𝑡(> 𝑑)  [20]          

The terms of the above are explained as follows : 𝑏𝑖 = (𝑏1, … , 𝑏𝑡)′  is the mean utility 

vector which depicts the relative significance of the 𝑡 objects, 𝑎𝑖 = (𝑎𝑖1, … , 𝑎𝑖𝑑)′ 

represents the factor loadings which provide the variance explained by a variable on 

that particular factor, 𝑧𝑗 = (𝑧1, … , 𝑧𝑛) are the latent common factors which are assumed 

to be independent and identically distributed according to the standard 𝑑 −  variate 

normal distribution, 𝜀𝑖𝑗 is the error term which represents the unique factor that is 

assumed to follow a 𝑁(0, 𝜎2) distribution, independent of the latent factors 𝑧’s. The 

unobservable response utilities and the latent common factors are simulated through the 

Monte Carlo Expectation – Maximization Algorithm, where the E- step is implemented 

through the Gibbs sampler. 

The 𝑑 – factor model was proposed concerning complete rankings. But the model can 

be extended also when incomplete rankings exist. Thus, in the case of top q partial 

rankings, we can assign objects with ranks respectively, and assign the midrank value 

to those objects that have not been ranked. The notion of midrank value is going to be 

described on a great scale in further section. As a small note, its formula is 

 [(𝑞 + 1) + ⋯ + 𝑡]/(𝑡 − 𝑞) , 

 where 𝑡 are the objects that are about to ranked and 𝑞 are the objects actually ranked. 

The result of this formula is replaced in every missing position of an incomplete 

ranking, in the context of factor analysis for partial ranking data. Moreover, when top 

q partial rankings exist, the process of Monte Carlo Expectation – Maximization 

Algorithm is implemented for the top q objects and the rest of the objects are simulated 

by  𝑁(𝑧′
𝑗𝑎𝑖 , 𝜎2

𝑖) . 

 

             

           2.3   Decision Tree Models for Ranking Data 

Besides the various types of probability models and the two fundamental types of probit 

models that have been presented up to know, there is one extra class that is going to be 

mentioned. The name of this class of models is ‘Decision Trees models’.  These types 

of models come to solve the issue of the difficult interpretation of the fitted models 

coefficients, when nonlinearity or higher – order interactions exist, due to the 

interaction covariates. The use of decision trees can provide a powerful nonparametric 

model capable of automatically detecting nonlinear and interaction effects [45]. This 

could serve, also, as a complement to existing parametric models for ranking data [45]. 

Thus, since the main advantage of such models is the easiness in the interpretation, they 

are popular in problems that concern classification or regression. In our case, since the 

interpretation is not a key fact for clustering, this class of models is not used.  

The reason that the decision tree models got this name, is due to the fact that they can 

be constructed by a set of conditions displayed in a treelike structure. The common 

procedure for the construction of a decision tree is to start from the root node, that is 

the entire dataset, and separate the data into two or more child nodes, in a repetitive 

way. The goal is the new class of nodes to have better performance than the previous – 

parent node. Thus, in order to make the appropriate split that would achieve this target, 

in each iteration, a splitting criterion has to be chosen. In what concerns this splitting 
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criterion there are two fundamental approaches. The first approach is the partition based 

on an impurity function. As ‘impurity’ we could define a metric of how often a 

randomly selected object from a set would be wrongly labeled, if we assume that it was 

labeled according to the distribution of labels in the subset. Such functions are the Gini 

index and the entropy. The second approach is a statistical oriented approach, which 

does the splitting by applying a statistical test of homogeneity to test whether the split 

can make the child nodes with significant different distributions of the data [45]. Such 

independence tests are the chi – square test and the likelihood ratio test.   

After mentioned the two main approaches for the splitting of nodes, we will briefly 

present the two stages for the construction of a decision tree. In a general manner, based 

on the CART (classification and regression tree) method of Yu et al.(2010), a decision 

tree is constructed through two stages. The first stage is called ‘tree growing’ and the 

second stage is called ‘tree pruning’. Before starting the construction of the tree, the 

ranking dataset is randomly partitioned into a training set and test set. Then, in the ‘tree 

growing’ stage, the algorithm starts from the whole training set (root node) and through 

the iterative process that has been described previously, partitions each node to detect 

the best split according to Gini index or entropy, or according to a statistical test of 

independence. The procedure stops at the time that some stopping criteria are met.  

Someone, can notice that this fact explains the name of the first stage because when 

these criteria are met, the tree has finally been built. In the ‘tree pruning’ stage, is 

measured the significant improvement that each branch, of the previously built tree, 

makes. The branches that show the less significant improvement are removed from the 

tree. The significance is measured through a cost – complexity metric, based on a ten – 

fold cross – validation [45]. In order to assess the performance of the decision tree, a 

very widely used measure is the area under the receiver operating characteristic or ROC 

curve. Its values fall within the range 0.5 – 1.0, where 0.5 denotes a random prediction 

and 1.0 indicates perfect accuracy of the prediction. Despite the fact that ROC curve 

can be implemented only for binary data, Yu et al. generalized the notion into ranking 

data.  
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Chapter 3 

Manipulation and Exploration of the Datasets 

 

In this chapter, the datasets that are used for the clustering processes are explored.     

Moreover, the cleaning process and the transformation into compatible ranking format 

for the use of the clustering algorithms is presented. Finally, some descriptive statistics 

are given, in order to get a better understanding of the data. 

 

     3.1    Presentation of the Datasets 

The datasets used for this thesis were retrieved from 

https://data.opendatasoft.com/explore/dataset/fifa-ballon-dor-2010-2015%40public/table/ 

, on 22/09/2019.   There were retrieved 6 datasets, as .csv files, each one corresponding 

to a year of period 2010 – 15. The content of the datasets has to do with the FIFA Ballon 

d’Or votes for this period. Each one of the datasets contain the 6 following columns: 

1) Year : The year of period 2010 – 15 for which the dataset is about. 

 2) Vote : The kind of relationship that the voter has with football. This column can 

have the three following values : Coach, Captain and Media. 

 3) Country : The country origin of each voter. 

 4) Name : The name of the voter. 

5) Position : The position that the voter ranked the corresponding player. This column 

can have three values : First (if the voter ranked first the corresponding player ), Second 

(if the voter ranked second the corresponding player) or Third (if the voter ranked third 

the corresponding player). Next to each one of these values, there are written off the 

equivalent points for each of the vales, in a parenthesis. These are : 1 point for the Third 

rank, 3 points for the Second rank and 5 points for the First rank.  

6) Player : The player that is ranked from the corresponding voter in the same row. 

Some of the players have next to their names a backslash and the country they come 

from.  

The datasets differ in term of the number of rows each one contains. Because the 

number of players does not change, as it is always 23, that means that only the number 

of voters changes every year. In particular, the first dataset (2010) consists of 1275 

rows, the second (2011) consists of  1387 rows, the third (2012) consists of  1513 rows, 

https://data.opendatasoft.com/explore/dataset/fifa-ballon-dor-2010-2015%40public/table/
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the fourth (2013) consists of  1623 rows, the fifth (2014) consists of 1632 rows and the 

sixth dataset (2015) consists of  1494 rows.  

 

  

       3.2    Data Cleaning Process 

The process of cleaning the raw data prior to analysis is necessary and an important 

before implementing any part of the analysis. The cleaning process that has been 

implemented, is approximately the same for the 6 datasets because all of them appeared 

to have similar issues. 

The first step is to read the datasets. For this purpose, the function ‘fread’ from the 

‘data.table’ package has been used. Thus, we read each of the datasets as data frames 

and, by using the function ‘fread’, the delimiter of the csv file is detected automatically. 

Also, we read the datasets with the ‘UTF-8’ encoding, in order to not face any issue 

with special characters that probably exist in the names of the players or voters. 

Then, we check the dataset in order to detect problems that need to be repaired. The 

columns do not face any concerning issue, except the ‘Player’ column. When we try to 

crosscheck the number of unique players that exist in this column, the number of players 

is not 23. Thus, this column needs cleaning in all of the 6 datasets. The names of the 

players are presented by character vectors. First of all, as it has been mentioned in the 

‘Presentation of the Datasets’ section, the names of some of the players are written of 

with their country and a backslash between the two characters. This leads to the 

presence of the same player more than one time e.g "Messi Lionel" and "Messi Lionel 

/ Argentina". We deal with this issue by erasing the country and the backslash from 

each one of the character vectors, by using the ‘gsub’ function. After performing this 

step, we check again in order to ensure that exist 23 unique names of players, but we 

observe that there are more than 23 names in the column. By taking a closer look, it is 

noticed the presence of duplicates. This is due to the format of the character vectors. 

The main issue is the presence of a space in the tail of a player’s name and the non – 

presence of a space in the same name, in the list e.g  "Sneijder Wesley " and "Sneijder 

Wesley". Also, there exist double spaces inside the character vector because of the 

removal of the country and the backslash. These issues are solved by removing the 

white space in the tail of each character vector through the ‘trimws’ function and by 

replacing the double whitespace with one space through the ‘gsub’ function. Moreover, 

in order to ensure that all the character vectors have the same format, we apply the 

‘format’ function the ‘Player’ column. After applying these steps, the unique names of 

players decrease, but still do not reach the 23. The reason is that in the rows of the 

dataset there is a player’s name which is called ‘invalid vote’. This character, as the 

name implies, is a vote that does not correspond to any player. The number of rows that 

contain this value is below 10 in all of the datasets. Thus, we are going to exclude the 

rows that contain this value in order to not affect the final result. 

         3.3    Data Transformation Process 
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After implementing the cleaning process, the next step is to create matrices from the 

original data, which are going to have the format that is required in the packages that 

deal with ranking data.  

At first, we break the column ‘Position’ of the original data, by creating two new 

columns. The first one is called ‘Points’ and it contains the points that each voter 

assigned to the corresponding player and is the number of the part being in the 

parenthesis of ‘Position’ column, e.g First (5 Points) : Points = 5 . The second one is 

called ‘Ranks’ and it contains the value that each voter ranked the corresponding player 

and is the number of the part outside the parenthesis of the ‘Position’ column, e.g First 

(5 Points) : Ranks = 1 .  

After constructing the columns ‘Points’ and ‘Ranks’, a Matrix is constructed. The 

dimensions of the Matrix are the number of unique voters, for the rows, and the number 

of unique players, for the columns, which always is 23. Thus, it is a Matrix where in 

the columns are the ranked players and in the rows are the judges. Now, the goal is to 

assign the exact rankings that a player received from the corresponding voter. To be 

more specific, the values (1,2,3) that a voter – row has given to three players – columns 

must be appear in the cells of the Matrix where this voter -  row and these players – 

columns are met. The other positions in this row are going to be filled by NA value. 

After constructing the Matrix the NA’s are replaced with zero values, because this is 

the format that most of the packages that deal with ranking data, require the missing 

ranks of a partial ranking to be denoted.  

At this point, the target is to assign the correct values to the cells of the Matrix.         To 

achieve that, we write SQL queries, inside our R script, through the ‘sqldf’ function. 

More specifically, we select the columns ‘Name’, ‘Player’ and ‘Ranks’ from the 

transformed dataset for each one of the 23 players, by adding the SQL statement 

‘Where’ in the query. This process is done for the 23 players separately and each one 

of the results is assigned to a unique data frame. Thus, each of these data frames contain 

the name of the voter and the corresponding rank, for every row of the transformed data 

that this player exists. Next, we convert the class of the Matrix from ‘matrix’ to ‘data 

frame’, in order to be able to use the dollar sign. At this point, for each one of the players 

– columns of the Matrix, we match the names of the voters to the voters – rows of the 

Matrix through the ‘match’ function and we assign the ‘Ranks’ of the corresponding 

player from the Player’s SQL query, that has been stored as data frame in the previous 

step. Thus, the final Matrix consists of the rankings that each player – columns received 

from the corresponding voter – row. A snapshot of the first 5 rows and the first 9 

columns of such a matrix, for the year 2010 is the following : 

 Guyan 
Asamoah 

Sneijder 
Wesley 

Maicon Villa 
David 

Alves 
Daniel 

Forlan 
Diego 

Xavi Iniesta 
Andres 

Casillas 
Iker 

Chamroeun Ung 3 0 0 0 0 0 0 0 1 
Patoommawatana 
Urai 

0 1 0 0 0 0 2 3 0 

Jonuz Mirsad 0 2 3 0 0 0 1 0 0 
Ouk Mic 0 0 0 3 0 0 0 0 1 
Colome Jaine 0 0 0 0 3 0 0 0 0 
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Table 1 : Example of ranking table , with the first 5 rows and 9 columns, for Year 2010. 

 

        3.4    Descriptive Statistics 

Descriptive statistics present an overall picture of ranking data. It is recommended to 

be considered before any analysis, in order for the researcher to have a better 

understanding of the data. The target, in descriptive statistics for ranking data, is to find 

ways to describe the central tendency of people’s preferences through their ranks. In 

our case, the goal is to describe the central tendency of the voters preferences to players. 

There are three common statistics, that are used to describe ranking data. We start with 

the mean rank, which is a standard measure to present the central tendency of ranking 

data.  

The mean rank of an object can be defined as 

𝑚𝑖 = ∑ 𝑛𝑗
𝑡!
𝑗=1 𝑣𝑗(𝑖)/𝑛 , 

where 𝑚𝑖 is the mean rank of object 𝑖, 𝑣𝑗 ,   𝑗 = 1,2,…,t! represents all the possible 

rankings of the 𝑡 objects, 𝑣𝑗(𝑖) is the rank score given to object 𝑖 in ranking 𝑗, 𝑛𝑗  is the 

observed frequency of ranking 𝑗 and 𝑛 = ∑ 𝑛𝑗
𝑡
𝑗=1 .  

Another metric that is also commonly used is the pairwise frequencies measure, that is, 

the frequency with which object 𝑖 is more preferred than object 𝑗 for every possible 

object pairs (𝑖, 𝑗). In the matrix that represents the ranking data, this can be defined as 

the number of observations which the first item (row) has been ranked higher than the 

second item (column). These pairwise frequencies can be summarized in a matrix. Let’s 

suppose that someone would like to make the comparison of received votes between 

three players (Player 1, Player 2 and Player 3) and Player 1 has ranked higher than 

Player 2, Player 3 from 9 and 7 voters, correspondingly. Also, we assume that Player 2 

has ranked higher than Player 1, Player 3 from 5 and 4 voters, correspondingly. Finally, 

the Player 3 has ranked higher than Player 1, Player 2 from 12 and 14 voters, 

correspondingly. Then, based on the above example, the matrix that represents the 

pairwise frequencies of the three players will be the following : 

 Player 1 Player 2 Player 3 
Player 1 0 9 7 
Player 2 5 0 4 
Player 3 12 14 0 

 

Table 2 : Example of pairwise frequencies table. 

In addition to mean ranks and pairwise frequencies, we can look for further insights in 

the ranking data by studying the marginal distribution of the items. Marden (1995) [43] 

, defined a matrix with 𝑡 𝑥 𝑡 dimensions, in which the (𝑎, 𝑏)th entry equals to  

𝑀𝑎𝑏 =  ∑ 𝑛𝑗𝐼[𝑣𝑗(𝑎) = 𝑏]𝑡!
𝑗=1 , 
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where 𝑀𝑎𝑏 is the frequency of object 𝑎 being ranked 𝑏th and 𝑣𝑗(𝑎) is the rank score 

given to object 𝑎 in ranking 𝑗 [45]. Marden named such a matrix as ‘marginal matrix’ 

because the 𝑎th row gives the observed marginal distribution of the ranks assigned to 

the object 𝑎 and the 𝑏th column gives the marginal distribution of objects given the 

rank 𝑏 [45]. In the matrix of ranking data, this can be described as the number of 

observations which the item 𝑖 (row) has been ranked 𝑗 (column). 

Based on these statistics we are going to get insights for our datasets. Because of the 

large size of the datasets, we are going to provide results for some of the years. Before 

obtaining the results of the descriptive statistics, we have first to define the midrank 

imputations for the incomplete rankings of the datasets. Because the problem under 

examination is a ‘top 3 out of 23 objects’ partial ranking problem, the values ‘1’, ‘2’ 

and ‘3’ have been assigned from the judges to the most, second and third preferred 

player, respectively. Regarding the less important items, we are going to define the 

midrank as their rank. Midrank is defined as  
1

𝑡−𝑞
[(𝑞 + 1)+. . +𝑡] , where 𝑡 is the total 

amount of objects that are about to be ranked and 𝑞 is the amount of objects that are 

actually ranked. Thus, in our case, the midrank in all of the 6 datasets can be defined as 
1

23−3
[(3 + 1) + ⋯ + 23] =  

270

20
= 13.5 . So, the summary statistics is going to be 

computed based on the incomplete rankings with their midrank imputations (13.5).  

It is necessary to implement this process before moving to the calculation of the 

statistics, because the measures will provide results that will not have sense, if the 

computations would include the zero values. Let’s take as example the ranks of   Player 

1 and Player 2, and assume the Player 1 has been ranked from 10 voters and Player 2 

from 200 voters. Because the Player 2 has been preferred much more times than the 

Player 1, his mean rank is going to be much greater, which implies that he has been 

ranked lower than Player 2! This is completely wrong and the reason it happens is the 

fact that, in the calculation of central tendency measures, the votes frequencies of the 

two players have the same number of rows as numerator, despite the fact that most of 

the rows of Player 1 contain zero values. To eliminate this phenomenon, we make use 

of the midranks in the positions of incomplete rankings. Now, the biggest percentage 

of the numerator of Player 1 will contain the sum of 13.5, instead of zero values, thus 

his final mean rank is going to be a large value in compare with Player’s 2 mean rank 

which is going to be much smaller. By implementing this process before the 

calculations of the descriptive statistics we ensure the credibility of their results. We 

are going to make use of the imputation of incomplete rankings with the midrank value, 

also in the construction of visualizations of the partial ranking data and in a clustering 

method that we implement, afterwards. 

 

        3.5    Descriptive Statistics – Application 

After presenting the measures that will be used for the exploration of the datasets, we 

are going to provide results for some of the year of period 2010 – 15. For this purpose, 

we use the function ‘destat’ from the ‘pmr’ package. Before calling ‘destat’ we 

transform the input data in an aggregated format, as it is required from the function. To 
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do so, we make use of the ‘unit_to_freq’ function, which constructs the frequency 

distribution of the distinct observed sequences, from the ‘PLMIX’ package. 

The tables below, provide the mean rank for the Top – 6  players, in terms of rankings, 

for the period 2010 – 15. The tables are sorted by the mean rank value of each player, 

in descending order. It has to be pointed out, that the position of the players are not the 

same as at the results. For example, in 2010, Xavi was in the final Top – 3, but as we 

can see from the table of Year 2010 he is 4th in terms of central tendency. This fact 

could possibly mean that Sneijder has been ranked more times than Xavi, but Xavi 

ranked in better positions than Sneijder, which means more points. We evaluate this 

assumption by looking at the marginal distribution of the ranking matrix for Year 2010 

(A.1). We observe from the Matrix that Sneijder – row, column 2 has been ranked first 

59 times, second 74 times and third 49 times. On the other hand, Xavi – row, column 7 

has been ranked first 88 times, second 51 times and third 36 times. We can notice that, 

even though Sneijder has been preferred from 7 more voters than Xavi, the Spanish 

player has received 29 more first - place  votes than the Dutch. That is the reason why 

Sneijder has lower value of mean rank than Xavi, but the second win the third - place 

in the final results.   

Mean Rank for Year 2010                                               Mean Rank for Year 2011 

Players Mean Rank 

Messi Lionel 6.825 

Iniesta Andres 8.025 

Sneijder Wesley 8.551 

Xavi 8.642 

Forlan Diego 9.88 

Ronaldo Cristiano 12.104 

 

Mean Rank for Year 2012                                           Mean Rank for Year 2013 

Players  Mean Rank 

Messi Lionel 2.578 

Ronaldo Cristiano 5.247 

Iniesta Andres 9.01 

Falcao Radamel 11.611 

Xavi 11.771 

Casillas Iker 12.248 

 

Mean Rank for Year 2014                                         Mean Rank for Year 2015 

Players  Mean Rank 

Ronaldo Cristiano 3.716 

Messi Lionel 7.496 

Neuer Manuel 8.179 

Robben Arjen 10.511 

Muller Thomas  11.289 

Lahm Phillip 12.266 

 

Players  Mean Rank 

Messi Lionel 1.989 

Ronaldo Cristiano 5.603 

Xavi 9.386 

Iniesta Andres 10.67 

Rooney Wayne 11.997 

Suarez Luis  12.53 

Players  Mean Rank 

Ronaldo Cristiano 4.604 

Messi Lionel 5.38 

Ribery Franck 6.561 

Ibrahimovic Zlatan 11.099 

Neymar 12.155 

Van Persie Robin 12.716 

Players  Mean Rank 

Messi Lionel 3.101 

Ronaldo Cristiano 4.5 

Neymar 9.35 

Lewandowski 
Robert 

11.645 

 Suarez Luis 11.781 

Muller Thomas 12.277 
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Table 3 : Tables of mean ranks for the players in the period 2010 – 15 . 

 

A remarkable fact which can someone observes in the tables above, is the presence of 

the dipole ‘Lionel Messi – Cristiano Ronaldo’ in 5 out of 6 years of the period under 

study. The two players are the most preferred in all these years and in some of these 

years with great difference from the others (2011,2012,2014).   

The Year 2011 is the year of Messi’s domination. The Argentinian concentrated the 

47.88 % of the total votes. If we take a look at the pairwise frequencies between Messi 

– row 6 and the other players, for this year (A.2) we observe that the lowest number of 

voters that preferred Messi against another player is 405 out of 435  and the opponent 

is Cristiano Ronaldo. This large difference between Messi and the other players, in Year 

2011, is displayed in the following bubble plot. The plot represents the mean ranks of 

the players as bubbles and it uses a different scale and colour, depending on the value 

of mean rank. As value getting small, the size of the bubble that represents this player 

getting smaller and its colour getting deep blue. In the x axis of the plot are the mean 

ranks and in the y axis are the names of the players. 

 

 

Figure 1 : Bubble plot representing the mean ranks of the players in Year 2011. 
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As someone can observe from Figure 1, the blue dot that represents Messi can not even 

be characterized as bubble, because of its very small size, that depicts the tremendous 

span between Messi and the other players. 

Year 2012, does not differ much from 2011, in terms of the winner of the trophy. Lionel 

Messi wins the award for the third consecutive year and, as in 2011, with large distance 

from the others. The difference in 2012 is that players that were in the Top-6 in the 

previous years, like Xavi, Ozil and Casillas, have been ranked in lowest positions. 

One could say that 2013 is a very interesting year in the FIFA Ballon d’Or rankings.  

This is because, after three years of Messi’s ascendancy, Cristiano Ronaldo wins the 

award. It is a year that three players (Ronaldo, Messi, Ribery) are strongly arrogated 

for gaining the trophy, as we can see from the central tendency of these three players in 

the table ‘Mean Rank of Year 2013’. We can observe that the mean ranks of the Top – 

3 players are almost one unit away from each other, in terms of absolute difference. The 

presence of Frank Ribery in this Top – 3 is not a surprise, if we consider his contribution 

in the win of Champions League trophy from Bayern Munich, in 2013. It is also 

observed a big difference of 4.6 units between the mean rank of the third (Frank Ribery) 

and the fourth (Zlatan Ibrahimovic) player, which does not exist in any of the other 

years. This is a strong indication, that the first three players have been ranked from the 

most of the voters. This is ascertained if we take a look at the table of marginal 

distributions (A.3). It can be noticed that Cristiano has not been preferred from 128 

voters, Messi from 162 and Ribery from 222, in the same time that almost all of the 

other players have not been preferred from more than 500 voters.   

In 2014, Ronaldo wins the award again. It is noteworthy the fact that for the first time, 

in the period under study, there is a goalkeeper in the Top – 3 rankings. Manuel Neuer 

helped a lot, with his saves, the national team of Germany to win the World Cup of 

2014 in Brazil. Moreover, he was awarded with the ‘Golden Glove’, which is given to 

the best goalkeeper of the tournament. That’s why, it is not a surprise to be in the Top 

– 3 rankings, for the FIFA Ballon d’Or rankings of this year. From the table containing 

the marginal distributions we can claim that, despite the fact that Neuer – row, column 

1 received more first - place  votes (85)  than Messi – row, column 5 (55) (A.4) , the 

Argentinian has a much larger amount on second and third - place votes. Also, Messi 

has been preferred from more voters, in total, than Neuer. That is the reason that the he 

has smaller mean rank, thus more dense central tendency, and takes the second - place.  

Finally, in 2015, Messi made his comeback by winning the award from Cristiano. Once 

again, it is outstanding the phenomenon of the total amount of votes that the dipole 

received. By having a look at the marginal matrix of 2015 (A.5), ones can observe that 

Messi – row, column 1 has been preferred in the Top – 3 rankings from 425 out of 498 

voters and Ronaldo – row, column 4  has been preferred from 386 out of 498 voters. 

These numbers indicate that, once again, a typical rank in the two first positions is Messi 

– Ronaldo. 
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Chapter 4 

Visualization Techniques for Ranking data  

 

Visualization of ranking data is an issue of discussion and concern among the 

statisticians who are involved with the ranking domain. The most basic reason is that 

the elements of the permutations of the items that are about to be ranked, do not have a 

natural linear ordering. Thus, traditional methods such as barplots or histograms are not 

appropriate in this case. Moreover, the size of data in real life examples forbids the 

drawing of conclusions through descriptive statistics, but a general brief of the data 

structure. Consequentially, there is a need of visualization methods that tackle such 

issues and be compatible with the peculiarities of ranking data. These types of methods 

are going to be presented in these section. More specifically, we are going to describe 

the permutation polytope method, the multidimensional unfolding technique and the 

multidimensional preference analysis. Special and more detailed reference is going to 

be given in the classical – metric and the non – metric multidimensional scaling, since 

the second is the method that we implement for the visualizations of our data. 

First of all, it is important to make clear what questions one expects to answer when 

implements graphical methods for this kind of data. Types of such questions are :        

a) What is the typical ranking of the ranked objects? By typical ranking, we mean the 

general preference that a ranked object has, in the dataset. 

b) How large is the dispersion of votes among the judges? This question is asked in 

order to provide the agreement among the voters. 

c) What are the similarity and dissimilarity among the objects? 

So, these are examples of questions that are about to be answered when visualizations 

of ranking data are implemented. Let’s go through these methods in order to understand 

how they work. 

 

         4.1    Permutation Polytope 

The idea of using a permutation polytope to visualize ranking data was first proposed 

by Shulman (1979) [62] and was considered later by McCullagh and Thompson (1993) 

[46] [69] , who initiated the use of permutation polytopes to display the frequencies of 

a set of rankings in analogy with histograms for continuous data [45]. If 𝑡 are the ranked 

objects, then permutation polytope could be defined as convex hull of 𝑡! points in 

Euclidian space ℝ𝑡−1, which are formed by the set of all 𝑡! Rankings [45]. We have to 

mention at this point that the rankings of these 𝑡 objects have the ability to be presented 

as points in the ℝ𝑡−1.   
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Before explain what we mean by convex hull, we have to define the word convex in 

terms of geometry.   

Definition: A subset of Euclidean space is convex if, with any two points, it contains 

the whole line segment between these two points and additionally it is able to join them. 

As line segment, is defined, a part of line that is bounded by two distinct end points and 

contains every point on the line between its endpoints.  

Based on the permutation polytope technique, the frequencies of complete rankings can 

be visualized as the vertices of such a polytope. On the other hand, partial rankings are 

represented as a permutation of  𝑡 non distinct numbers. This is because of the 

imputation of the incomplete positions.  

For example, the top-3 partial ranking (2, 1, - , - , 3), where hyphen denotes a missing 

position, it can be represented by (2, 1, 4.5, 4.5, 3), and 4.5 is the midrank of this ranking 

representation  (  
1

𝑡−𝑞
[(𝑞 + 1) + ⋯ + 𝑡  = 

1

5−3
 [(3 + 1) + 5] = 4.5) . This makes the 

permutation polytope not applicable for representing partial ranking data. In order to 

deal with this issue, Thompson (1993) defined a generalized permutation polytope 

which coordinates are not points in the Euclidian space ℝ𝑡−1, but permutations of 𝑡 non 

distinct numbers [45]. In this case, the frequencies of partial rankings can be visualized 

on the vertices of the generalized permutation polytope.  

One could say that this approach could tackle the issue of partial representation, but the 

drawback in drawing such polytopes is that the generalized permutation polytope has 

to be drawn in a sphere in a ( 𝑡 − 1 ) – dimensional subspace of the set of permutations. 

In our case, 𝑡 = 23 , which means that we have to implement the visualization in a 22-

dimensional space, which is not possible to do. In general, despite the fact that the 

permutation polytopes describe the data from a geometrically point of view, they are 

not so commonly used because of the difficulties in drawing them.  

After navigating the permutation polytope, we are going to present a different class  of 

methods for visualizing ranking data, the Multidimensional class. 

 

      4.2    Multidimensional Methods 

Multidimensional Scaling or MDS is a big family of graphical methods for representing 

data which are in the form of measures that provide the proximity or “closeness” 

between each pair of objects. Examples of such measures are similarity  or dissimilarity 

measures. The basic idea behind MDS, is to search for a low – dimensional space, 

usually Euclidean, in which each object is represented by a point in the space, such that 

the distances between the points match as well as possible with the original 

dissimilarities [45]. Thus, the goal is to find points in a low – dimensional space, that 

can represent the distances in such a way. This is the main issue in the multidimensional 

techniques for visualizing such types of data, like ranking data.  

Many approaches have been developed, in order to deal with this issue. One approach 

is to address it like an optimization problem and found the values to formulate the MDS, 

by minimizing a loss function which is called stress value. We are going to define later 
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on the stress value and the information it provides. Such methods that work with stress 

value are the metric – classic  multidimensional scaling and the non – metric 

multidimensional scaling, which will be discussed in further section. Another approach 

that is suitable for the context of ranking data is Kidwell’s approach. Kidwell (2008) 

[37] suggested to use the Kendall distance for the computation of the dissimilarity 

between two rankings, complete or partial, and then to apply MDS in order to find an 

integration of a dataset of n rankings assigned by n judges in a two – or  three – 

dimensional space.  

Now, let’s have a look at the fundamental multidimensional techniques for visualizing 

ranking data, by presenting in a more explanatory way the metric and non – metric 

multidimensional scaling methods, which will be implemented for the visualizations of  

FIFA’s datasets.  

 

      4.2.1    The Multidimensional Unfolding technique  

The unfolding technique was first formulated by Coombs, in 1950 [16], and it belongs 

to the family of Multidimensional Scaling techniques, for representing ranking data. 

We are going to see later on the Multidimensional Scaling techniques, in detail, but at 

this point we will focus on the unfolding one.  

The method attempts to visualize a set of points in a low Euclidean space with both 

judges and objects being represented by the points in the same space [45]. This is the 

main difference with the other methods that belong to the MDS family, which attempt 

to visualize only the set of judge points in a low-dimensional Euclidean space. The 

points that are used for the representation of the rankings are obtained in such a way 

that the ranked order of the distances from a point  representing a judge to the points 

representing the objects, match as close as possible with the actual rankings that have 

been assigned from the judge to the objects. Thus, based on the Euclidean distance  

𝑑𝑖𝑗 =  √(𝑥𝑖 −  𝑥𝑗)′(𝑥𝑖 −  𝑥𝑗) , 

 the goal of multidimensional unfolding method is to find 𝑥 and 𝑦, such that the 

distances match as much as possible with the ranks of objects given by the judges.  

In the case when 𝑑𝑖𝑗 = 1, the unfolding becomes unidimensional unfolding for which 

objects and judges are represented by points on a straight line. The technique’s name,    

unfolding, has been termed because of the fact that when this straight line is folded 

from one side to the other side at any judge point, the judge’s rankings can be observed. 

 

       4.2.2    Multidimensional Preference Analysis 

The Multidimensional Preference Analysis method or MDPREF, was introduced by 

Carroll (1972) [12]. Its fundamental idea is similar to the Multidimensional Unfolding 

technique. Thus it displays the relationships between judges and the ranked items by 

reducing the dimensionality of  the data, while retaining the main features as many as 
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possible. Moreover, like in MDU, the MDPREF method assumes that the ranking 

assigned by each judge can be represented in terms of the ordering of distances and 

projections. The difference with the MDU is that, in the MDPREF’s case, the points 

are replaced from vectors for the representation of judges, in a low dimensional space. 

The objects are represented, as in previous, by points in the same space. As in all MDS 

methods, the vectors – judges and the points – objects are chosen in such a way that the 

projections of the objects to the vector of judges is as closely as possible with the actual 

rankings of the judges. 

 

        4.2.3   Classical – Metric & Non – Metric  Multidimensional Scaling 

As it has been referred in above section, these are two of the most basic approaches that 

try to solve the MDS issue. The first is called Metric or Classical, because it attempts 

to reproduce the original metric or distances of the rankings. The second technique, is 

called Non – Metric and assumes that only the ranks of the distances are known and not 

the actual distances. Thus, the Non – Metric approach creates a map which tries to 

reproduce these ranks. 

We are going to explore the two methods separately, starting from the Metric approach. 

 

     4.2.3.1    Classical – Metric Multidimensional Scaling 

The classical MDS procedures were first introduced from Torgerson (1952) [71]. 

According to him, the goal in these procedures is to compute a distance matrix which 

is going to approximate the interpoint distances of a configuration of points X in a low 

– dimensional space. The interpoint distance is normally taken to be the Euclidean 

distance, but sometimes we may use the Manhattan distance  

            𝑑(𝑥1, 𝑥2) =  ∑ |𝑝
𝑗=1 𝑥1𝑗 − 𝑥2𝑗| .  

The classical solution is optimal in the least square sense. That means that when the 

distance matrix that is used is Euclidean, the solution that is obtained minimizes the 

sum of squared differences between the elements of the distance matrix. In other words, 

we could say that the solution minimizes the value of a loss function, called stress value. 

Stress value is a goodness-of-fit statistic, for the MDS models, which is based on the 

differences between the actual distances and their predicted values. The way that the 

stress value is calculated differs between metric and non -  metric approach. For the 

classical approach, the stress is calculated from the following formula : 

                                𝑠𝑡𝑟𝑒𝑠𝑠 =  √
∑(𝑑𝑖𝑗−𝑑𝑖𝑗)̂2

∑ 𝑑𝑖𝑗
2  ,  

where 𝑑𝑖𝑗 is the actual distance and 𝑑𝑖𝑗̂ is the predicted distance between two points, 

based on the MDS model. In the case of metric approach, the predicted values depend 

on the number of dimensions kept and the distance that is used for the calculation of 

the measure.  
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We have to mention at this point that the optimal solution always has to be sought in 

terms of balance between accuracy and parsimony. Thus, an equilibrium point between 

the smallest stress value and the number of dimensions that are possible for 

interpretation, has to be reached. It is obvious that, when the dimensionality increases 

the stress value decreases but, in parallel, the ability of interpretation decreases also.  

In order to be able to assess the fit of an MDS model, by interpreting the output of the 

model’s stress values, Kruskal (1964) [38] released a paper which contained a table 

about the interpretation of stress values, in terms of goodness-of-fit purposes, based on 

his experience. The table provides the information that stress values below 0.05 indicate 

a very good fit of the model (0.05 → Good, 0.025 → Excellent, 0 → Perfect) and values 

above 0.05 indicate a not so good fit of the MDS model, as the values increase   (0.1 → 

Fair , 0.2 → Poor). Kruskal’s paper faced backlashes from recent articles, which 

mentioned that acceptable values of stress depend only from the quality of the distance 

matrix and the number of objects that are ranked in the matrix [45]. 

Another way, to check how well the MDS model produces the predicted values in 

compare with the actual values is the Shepard diagram. The Shepard diagram, like the 

stress values, can be implemented in both metric and non – metric case. 

The Shepard diagram is a scatterplot of the distances between points in the MDS plot 

against the observed dissimilarities (or similarities). The points in the plot should adhere 

to a curve or straight line. The plot compares how far apart are the data points before 

and after the transformation in a scatterplot. A completely straight line is a strong 

indication that the fitting of the points in a lower dimensional space through MDS is 

accurate. However, in real life examples since a lot of the information that the data carry 

is lost during the dimension reduction, Shepard diagrams rarely look completely 

straight. 

 

        4.2.3.2   Non – Metric Multidimensional Scaling 

In the above section the classical MDS solution was presented, which assumes that the 

configuration of points is an Euclidean distance matrix. However, in real life cases, it 

is more often to use less strict assumptions between the true distances and the observed 

distances. In such cases, an error parameter is added in order to denote the distortions. 

Moreover, the distribution is assumed to be unknown and monotonically increasing 

function. Because of these two reasons, instead of using the actual numerical values of 

the dissimilarities, the rank order of the dissimilarities between the objects is used.  

When the Non – Metric Multidimensional Scaling (NMDS) is used, the configuration 

between the points is a dissimilarity matrix and not an actual distance matrix. The main 

difference between the two matrices is that dissimilarity matrices do not require their 

values (dissimilarities) to be symmetric, in compare with the distance matrices which 

require for the differences they store to by symmetric. 

Thus, the NMDS can be defined as an indirect gradient analysis approach, which 

produces an ordination based on a dissimilarity matrix [45]. As the classic MDS, the 

technique attempts to represent as closely as possible the pairwise dissimilarity between 
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objects in a low – dimensional space, but this time, in terms of rank – based approach. 

It is a robust technique, with tolerance in missing pairwise distances. Also, it is able to 

use quantitative, qualitative or mixed data. We could claim that, NMDS is more 

appropriate in our case, because of the fact that it should be used when ordering is more 

appropriate than actual distances. Moreover, it is preferred when the dataset or the 

number of ranked items in the dataset is large.  

As it was referred in the above section, NMDS makes use of stress values and Shepard 

diagrams for assessing the goodness of fit. The difference with the classic MDS exists 

in the formula that the two approaches use for the calculation of stress values. For the 

non – metric approach, the stress is calculated from the following formula :        

                                  𝑠𝑡𝑟𝑒𝑠𝑠 =  √
∑(𝑓(𝑥)−𝑑)2

∑ 𝑑2  , 

where 𝑥 denotes the vector of proximities, 𝑓(𝑥) a monotonic transformation of 𝑥, and 

𝑑  the point distances. The object of NMDS is the same as the metric MDS, to found 

the coordinates that minimize the stress function. On the other hand, like in MDS, the 

increase of dimensionality leads to decrease of interpretation capability. Low – 

dimensional projections are often better to interpret and are preferable for interpretation 

issues. Thus, an equilibrium point has to be found, between the goof fit of the original 

dissimilarities and the interpretation of the dimensions. 

At this point, after capturing the theory of the basic methods for visualizing ranking 

data we are going to present some fundamental R libraries and functions that are 

appropriate for visualizing ranking data. Furthermore, we will capture the process of 

implementing visualizations through these functions. At last, visualizations of the 

ranking datasets that are processed in this thesis, are going to be presented. 

 

       4.3   Non – Metric Multidimensional Scaling for Ranking data -Application  

We are going to apply Non – Metric Multidimensional Scaling, in order to visualize the 

ranking matrices that have been obtained from FIFA Ballon d’Or voting datasets, for 

the period 2010 – 2015. The reason we apply NMDS is that, as have been discussed in 

the previous chapter, this technique is resorted to when the data are of type that have 

been observed on a scale (categorical, ranking, etc.) and also, in the case that the ranking 

between the observations is the important to be computed and not the actual differences. 

We will provide the results for the year 2010, as an application example of partial 

rankings visualization, in order to explain the methods and the results.  

Before starting the visualization process, the appropriate distance which will be used 

for the computation of the distance matrix, has to be selected. It is important to choose 

the correct distance in order to calculate the matrix because the technique is sensitive 

in the distance that is chosen. It has to be pointed out that, as in the descriptive statistics 

chapter, the zero values have been replaced by the midrank value, which is 13.5 . 
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     4.3.1   Kendall distance for computing the distance matrix of the rankings 

As a starting point, in order to implement NMDS, one has to calculate the distance 

matrix between the rankings. Thus, the appropriate distance for the calculation of the 

matrix has to be chosen. One thought could be the Euclidean distance, but it is not a 

preferable measure when high dimensional data (e.g. partial ranking scores) are 

analyzed due to the distance’s sensitivity to noise of such data. A calculation of the 

FIFA matrices dissimilarities, based on the Euclidean distance, won’t provide a good 

description of the data, since the rows – rankings containing a bunch of zeros,  in our 

case the whole dataset, will be similar to each other without pointing out the real 

dissimilarity due to the computational properties of Euclidean distance.  

Another option, could be the, commonly used in the context of visualization of high 

dimensional data, Bray – Curtis distance [8]. The Bray – Curtis or Sorensen distance is 

a distance measure commonly used in botanology, ecology and environmental sciences. 

It is a modified Manhattan measurement, where the summed differences between the 

variables are standardized by the summed variables of the objects. Bray – Curtis is a 

powerful dissimilarity measure when there is an abundance of dimensions. However, if 

the objects that are measured are in zero coordinates, the distance is undefined. Zero 

values, have been imputed by 13.5 and indicate the voter’s non – preference for a player. 

Despite the fact that zero values, have been imputed by the midrank value in the 

calculation of the distance matrix, we are not going to use Bray – Curtis. Thus, we are 

going to look for a more rank – based distance which will be able to represent in a more 

representative way the partial ranks. 

Thompson (1993), discovered that Kendall’s and Spearman’s distance are very 

powerful in measuring the distances between two rankings. This is due to the fact that 

these distances are able to provide natural geometric interpretation of the rankings. 

More specifically, during the initial implementation processes of the permutation 

polytope, he showed that the minimum number of edges that must be drawn to get from 

one vertex of a permutation polytope to another reflects the Kendall distance between 

the two rankings labeled by the two vertices [45]. Furthermore, he showed that the 

Euclidean distance between any two vertices of a polytope is proportional to the 

Spearman distance between the two rankings corresponding to the two vertices. Thus, 

these two distances can be considered as the most suitable for computing the distance 

matrix of ranking data. Both distances could be used in the computation of distance 

matrix but, Cabilo and Tiley (1999) [10] observed that when there were no missing 

observations, Spearman’s distance was more powerful than Kendall’s. On the other 

hand, in the incomplete case Kendall’s statistic is much more strong, in terms of 

accuracy of distance calculations and detection of patterns. Thus, Kendall’s distance is 

going to be used for the computation of the distance matrices of our datasets. Based on 

the fact that, the Kendall’s distance counts the pairwise disagreements between the 

voters in the datasets of FIFA, the pair can be characterized as dissimilar, in terms of 

preference for the best players, if the computed distance is large in compare with other 

distances. Thus, the larger the distance between a pair of voters, the more dissimilar 

preference have these two voters. We are going to give a detailed description of 

Kendall’s distance in further section, where it is going to be used for clustering 

purposes. 
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      4.3.2    Non – Metric Multidimensional Scaling Process 

The starting point of a Non – Metric Multidimensional Scaling Process, is the 

computation of distance matrix between the rankings. For the reasons explained in the 

previous section, the optimal distance choice in our case is Kendall distance. Thus, in 

order to construct it, we make use of the function ‘Dist’ from the ‘amap’ package. The 

function computes the distance matrix, by taking as input the matrix for which the 

distances are going to computed and a specified distance. 

Choose the number of dimensions 

After the computation of the distance matrix, the next step is to determine the number 

of ordination dimensions with which we are going to present the data. Thus, we plot 

the stress value for a number of tested dimensions, in order to obtain the optimal 

number. Such plots are called stress plots or scree plots. Stress plots show the decrease 

in ordination stress with an increase in the number of ordination dimensions. As it has 

been discussed in a previous section, stress value depends on dimensionality and it is 

decreasing with increasing dimensionality. However, higher dimensionality leads to 

incapability in interpretation, because low – dimensional are often better to interpret 

and so preferable for interpretation issues. Thus, a stress plot explores both 

dimensionality and interpretative value and provides dimension – dependent 

estimations which give indices for meaningful stress reduction in increasing 

dimensionality.   

In order to construct the stress plot, for the year 2010, we are going to call the 

‘dimcheckMDS’ function, from the ‘goeveg’ package. This function provides a plot of 

stress values for a given number of tested dimensions in NMDS. We will make use of 

the default choice for the tested dimensions, which is 6. The function takes as input, the 

computed distance matrix and the distance which was used for the computation of the 

distance matrix. For the year 2010, the stress plot is the following : 
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Figure 2 : Stress plot of 6 tested dimensions for the year 2010. 

 

From the stress plot obtained, we observe that stress value surpasses the threshold of 

0.20 (when the fit can be characterized as poor but acceptable), in 3 dimensions. 

Moreover, the absolute differences between the stress values, as the dimensions 

increase, are not as large as the absolute difference (0.065) from 2 to 3 dimensions. 

Also, a visualization with 3 dimensions can be interpreted in a more sufficient way, in 

contrast to visualizations which are constructed with more dimensions. Thus, this is a 

strong indication to implement NMDS with 3 dimensions.  

Implement NMDS with the ‘metaMDS’ function 

After choosing the number of dimensions, let’s take a brief look to the way the NMDS 

works. The algorithm begins by constructing an initial configurations of the samples in 

the k dimensions. The initial configuration could be based on another ordination or it 

could consist of an entirely random placement of the samples [67]. The final ordination 

is partly dependent on the initial configuration, so a variety of approaches are used to 

avoid the issue of local minimum. One of the approaches is to perform several 

ordinations, each starting from a different random placement of points, and select the 

ordination with the best fit [67]. This is how the function that we use for the 

implementation of NMDS works. 

The function’s name is ‘metaMDS’  and is called from the ‘vegan’ package. It is a 

wrapper function, that calls several other functions to implement Non – Metric 

Multidimensional Scaling into one command. The function performs NMDS and tries 

to find a stable solution using several random starts. For this purpose, it calls the 

‘monoMDS’ function from the same package. It performs several other jobs, but we 

focus on the implementation of the approach discussed in the previous paragraph.  The 
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process of the NMDS by this approach is iterative and can be described as follows. The 

strategy of ‘metaMDS’ is to first run NMDS with the result of metric scaling as the 

starting value (it can reach a good solution but often close to the local minimum), or 

use the option to start searches from a previous solution and take it as a standard. We 

choose the second option by setting previous.best = True. Then, ‘metaMDs’ starts 

NMDS from several random starts. If a solution has lower stress than the previous 

standard, it is taken as the new standard. If the solution is better or close to a standard, 

‘metaMDS’ compares these two solutions by the use of Procrustes analysis. Procrustes 

analysis, is a statistical method which compares a collection of multidimensional shapes 

by attempting to transform them into a state of maximal superimposition. It does so by 

attempting to minimise the sum of squared distances between corresponding points in 

each shape through rotation of their coordinate matrices. It is commonly used in 

ordination techniques such as NMDS, PCA,etc. Back in the NMDS algorithm, if the 

reached solutions are very similar in their Procrustes rmse and the largest residual is 

very small, the solutions are regarded as convergent and the better one is taken as the 

new standard. By this way, the ‘metaMDS’ finds a stable solution and avoids to stuck 

on a local maximum.  

Assessment of the NMDS result 

After performing NMDS to 3 dimensions in the distance matrix obtained by the use of 

the Kendall distance for the partial ranking matrix, of year 2010, we are going to 

evaluate the result of the ordination algorithm. For this purpose, the Shepard diagram 

is used. 

The Shepard diagram, represents the actual or transformed proximities versus the 

predicted proximities. It is a scatterplot of distances between data points. In other way, 

it could be described as a plot of ordination distances, in the y axis, and monotone or 

linear fit, line against original dissimilarities, in the x axis.  It is analogous to an Actual 

by Predicted plot, which is a typical plot of the actual response versus the predicted 

response. Ideally, the points, which are shown in blue, fall on the Y = X line, which is 

shown in red. The Shepard diagram, also displays two statistics for the evaluation of 

the fit of the graph. The linear fit is the squared correlation between the fitted values 

and ordination distances, and the Non – metric fit is based on the stress value and is 

defined as 𝑅2 = 1 − 𝑆2, where S is the obtained stress value. High values in the 

nonmetric fit indicates high correlation between the observed dissimilarities and the 

ordination distances. The Shepard plot for the result of the NMDS for year 2010 is the 

following : 
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Figure 3 : Shepard diagram for the evaluation of Year’s 2010 NMDS result. 

 

As we can observe from the Shepard diagram, the points do not fall exactly on the red 

line, but are not noticed big deviations from the line. Moreover, the Non – metric fit is 

near 1 (97.4 %) which indicates high rank correlation between the observed 

dissimilarities and the ordination distances, thus, good fit of NMDS. We could claim 

that this confirms the fact that NMDS maintain the distance ranking.  

  

      4.3.3   Visualizations based on the results of NMDS  

After obtaining the NMDS results for year 2010, we are going to implement 

visualizations of the ranking data in the dimensional – space, that was reached from the 

results of NMDS. Thus, because the number of ordination dimensions is 3, we will 

construct 3D plots, in order to explore the data visually. The packages that are used for 

the implementation of the 3d visualizations are: the ‘MASS’ package, the ‘vegan3d’ 

package, the ‘rgl’ package and the ‘scatterplot3d’ package.  

Before beginning the constructions of the visualizations, we have to make groundwork 

for some of the input parameters that will be used in the functions. First of all, we create 

references for the resulting points of each one of the 3 dimensions, in order to be used 

as input data in the implementation of the visuals. The other step of the preprocessing, 

is to convert the columns – Players of the input matrix which contains the imputed 

partial rankings to factors and their rankings as levels, in order to be able to make use 
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of colors based on the ranks. After making these steps we are ready to present some 

visualizations. 

The first visualization we provide is a 3D Scatterplot which represents the ranks of 

Messi by different color, based on the ranks. The plot was constructed through the 

function ‘plot3d’ of the ‘rgl’ package.  

 

 

Figure 4 : Static 3D Scatterplot of Messi ranks for year 2010. 

As we can observe, in the scatterplot exist white, green, black and red spheres.          The 

white spheres indicate the voters that did not preferred Messi in their Top -3 rankings, 

the green spheres indicate those who voted him first, the black spheres the judges that 

voted him second and the red spheres those who preferred him third. By looking at the 

plot, someone can notice than more than half of the voters have preferred Messi at least 

one time, because colored spheres appear to be little more than whites. This can be 

confirmed by checking at the original dataset, where 241 out of 425 judges have put 

Messi in their Top – 3, at least one time. After taking a closer look at the plot it can be 

marked that, the green spheres are much more than the red or black spheres. In addition, 

the red spheres appear to be more than the blacks. Thus, from the total of the voters that 

rank Messi, the majority ranked him first, a big proportion of voters ranked him second 

and a little amount of them ranked him third. In order to understand, the importance of 

the big amount of first votes in Messi’s plot, we are going to provide the same plot for 

the player that has been ranked second in the final rankings, Andres Iniesta. 
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Figure 5 : Static 3D Scatterplot of Iniesta ranks for year 2010. 

 

By taking a careful look at Figure 5, we can observe that the white spheres are more 

than those in the scatterplot of Messi, which means that more voters preferred Messi in 

their Top – 3 than Iniesta. The proportion of first, second and third position votes don’t 

seem to differ much in compare with Messi’s votes. We notice a large amount of green 

spheres, in compare with the amount of red and black. The big difference between the 

two 3D scatterplots is the fact that the one representing the votes that Messi received, 

has lesser white spheres than the one representing Iniesta’s votes.  In addition, if we 

take into account that the proportion of the 1st, 2nd and 3rd ranks between the two players 

do not differ much, we can claim that Messi wins the trophy because of the numerous 

amount of voters that preferred him in their top – 3 and not because of the number of 

first position votes he received, in compare with the other players. 

It has to be mentioned at this point that, if someone wants to take a better vision of the 

actual positions of every sphere in the above scatterplots, the interactive version of the 

static plots can be used. We observe from the two plots that there are some spheres that 

are very closed to each other, which may lead to not accurate conclusions if someone 

does not observe the plots in a careful manner. That is why the interactive 3D 

scatterplots are also proposed, for a reader who wants to change the orientation of the 

plots, zoom on it and get a real feeling of the 3D visual. In that case, the functions 

‘play3d’ and ‘spin3d’ from the ‘rgl’ package can be used, which allow to reset the 

viewpoint for a specific number of seconds, set by the user. 

Another interesting thing to visualize is the difference in votes between Lionel Messi 

and Cristiano Ronaldo. The year 2010 can be considered as the beginning of the big 
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rivalry between these two players, in terms of FIFA Ballon d’Or, because Messi won 

his inaugural award. Having won 11 FIFA Ballon d’Or awards (6 for Messi and 5 for 

Cristiano), both are widely regarded as the two greatest players of all time. Thus, it 

would be interesting to have a look at the votes that these two players have received in 

a different plot than the previous one. Thus, we are going to construct 3d Scatterplots, 

where the ranks of each player are going to be represented with points. Also, a bar is 

added in each point in order to visualize the amount of the total ranks and colour of 

each point in a clearer way. It has to be mentioned that, these plots do not show the 

votes of the total amount of judges, as in previous, but they provide only the preferences 

that were in the Top – 3 of the voters, in order to make more clear the difference 

between the amount of votes and the kind of votes each player received. 

 

 

Figure 6 : 3D Scatterplots with bars, comparing Messi and Cristiano ranks for year 

2010. 

 

Point and bar with grey colour indicates a 3rd place vote, yellow indicates a 2nd place 

vote and blue indicates a 1st place vote. The plots were implemented through the 

function ‘scatterplot3d’ from the homonym package.  

From the Figure 6, we can observe that the preference of the voters is clear for the 

question ‘Who is the best’ for the year 2010. The bars of Messi are far away more than 

Cristiano’s bars, which demonstrates the fact that Cristiano has been preferred from a 

very small amount of voters in their Top – 3 players list. Moreover, in Ronaldo’s 

scatterplot one can notice the presence of many yellow bars, in proportion to the total 

amount of bars, which implies that those who preferred Cristiano have ranked him in 

the third - place mostly. On the other hand, Messi has a lot of blue bars and the yellow 

bars follow, in terms of amount. Thus, this comparison helps to come to a conclusion. 

It is not only the fact that Messi is the winner of the award in this year, but this wide 

margin between those two in this path of their career is remarkable. It is a confirming 
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indication of how far away were the two players in their early career stages, in terms of 

quality, if we also count that Messi won the award for the next two consecutive years. 

One the other hand, it is strong demonstration of the hard work Cristiano has done, in 

order to reach the class of the Argentinian and surpass him for some years. 
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Chapter 5 

Cluster Analysis on the Data with Bayesian mixture of Plackett – Luce 

models 

 

In this chapter, the problem of clustering partial ranking data, has been approached by 

a Bayesian point of view. In specific, we are going to present a Bayesian finite mixture 

of Plackett – Luce model, in order to deal with the partial ranked data. Inference is 

conducted with the combination of the Expectation – Maximization (EM) algorithm for 

the maximum a posteriori estimation and the Gibbs sampling iterative procedure. The 

implementation of this approach contains a data augmentation step, with the latent 

group structure, which allows for approaching the partial top – ordering by a model 

based aspect. Recent works considering Bayesian mixture modelling based on the PL 

are Gormley and Murphy (2008) [27], who deal with a grade of membership model 

where, at each stage of the sequential ranking process, each sample unit has a specific 

partial membership of each component [49]. Also, Caron et al. (2014), extended their 

initial work which have been implemented in 2012, and was a Bayesian nonparametric 

PL based on a Gamma process to account for infinite number of items, to the mixture 

context in order to cluster partially ranking data. The goal of Caron et al. work was to 

identify and characterize possible group of rankers with similar preferences/attitude. 

We could say that the approach that is being presented in this chapter is very similar 

with the Caron et al. extension, but two main differences are spotted. The first 

difference is that in the parametric setting of our model, each single component is a 

standard PL for finite orderings whereas in the Caron et al. approach the ordering of the 

number of items that are modelled is random [49]. The second difference is that the 

cardinality of the mixture models, in our case, is finite whereas on the other model is 

infinite [49]. A fundamental pros of this model in comparison with the MLE frequentist 

approach, is the ability of addressing the estimation uncertainty in a straightforward 

way, without relying on large sample approximations. Furthermore, it is much more 

efficient in terms of the computational time needed for the implementation of the whole 

process. 

 

       

     5.1   Theoretical Framework of the Method 

     5.1.1   The Plackett – Luce model 

The Plackett – Luce model is one of the most popular and frequently applied parametric 

distributions to analyse rankings of a finite set of items. Also, it is one of the most 

successful stagewise models for analysing partial ranking data. The model’s process 

could be summarized as a random sampling without replacement from an urn, where at 
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each stage the most – liked item is specified among the alternatives not selected at the 

previous stages. 

The model depends on the Luce’s axiom of choice (Luce 1959) [40], which states that 

the odds of choosing an item over another do not depend on the set of items from which 

the choice is made [72]. At first, one assumes that there is a set S of 𝐾 items, 𝑆 = 

{𝑖1, 𝑖2, … , 𝑖𝑘}. Then, under the Luce’s axiom, the probability of selecting a 𝑘 item from 

𝑆 is given by   

𝑃( 𝑘|𝑆 ) =  
𝑤𝑘

∑  𝑤𝑖𝑖∈𝑆
 , 

where 𝑤𝑖 represents the ‘worth’ of item 𝑖, in terms of ordering. In Plackett – Luce model 

the ranking of these 𝐾 items, can be viewed as a sequence of choices, where first is 

chosen the item with the biggest ‘worth’ among the items, then is chosen the second 

ranked item from the remaining items and this process is iterated until all the items 

being ranked. The ‘worth’ of each item of the set 𝑆 is represented by the corresponding 

support parameter 𝑝𝑖 which belongs to the set of the support parameters 𝑝 =

(𝑝𝑖1
, . . , 𝑝𝑖𝑘

), that parametrize the PL model. These support parameters represent a 

positive constant associated to each item and the higher the value of the support 

parameter of an item the greater the probability for this item to be preferred at the 

selection stage. For the final ordering of the items, the probability of the ranking 𝑖1 >

𝑖2 > ⋯ >  𝑖𝑘  is equal to  ∏
𝑎𝑖𝑘

∑ 𝑎𝑖𝑖∈𝐴𝑘

𝐾
𝑘=1  , where 𝐴𝑘 is the set of alternatives 

{𝑖𝑘, 𝑖𝑘+1, … , 𝑖𝐾}  , from which the item 𝑘 is chosen [72].  

It can be observed that the ranking probability under such a model can be expressed as 

a function of top – choice probabilities only. Such samples, that occur from picking one 

item at a time, out of a set of choice probabilities that satisfy the Luce’s axiom, provide 

a total ordering of items which can be considered as samples from a distribution over 

all possible orderings. The form of such a distribution was first considered by Plackett 

(1975) in order to model probabilities in a horse race [33]. Thus, the name of the model 

has been derived from the independent work by Luce (1959) [40] and Plackett (1975) 

[57].  

At this point, it has to be remarked that, the Luce model satisfies the Independence of 

Irrelevant Alternatives (IIA) property (Tversky, 1972 [35]) which, in simple words, 

claims that the choice of a judge between two objects , depends on the preferences of 

the judge to these objects only and it is irrelevant to the preference on another object. 

But IIA is not such a good property because, it ignores the fact that a preference of a 

judge to an object is natural to depend on judge’s preference on similar objects. Thus, 

by ignoring this fact, the estimations of the choice probabilities, that the model obtains, 

are expected not to be unbiased.  

 

      

       5.1.2   Model’s Specification 
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Based on the PL model that has been discussed above, we are going to conduct 

inference through the Bayesian approach that was introduced from Caron and Doucet, 

in 2012 [11]. As it was referred in the introduction, the method has a fundamental step 

which is the data augmentation step. The data augmentation step, where the Bayesian 

perspective is taken into account, can be described as follows : Let’s suppose that we 

get a random sample (𝜋−1), of partial top orderings, drawn from a G – component PL 

mixture. The representation of the sample in symbols is 

𝜋−1
1, … , 𝜋−1

𝛮|𝑝, 𝜔 ~ ∑ 𝜔𝑔
𝐺
𝑔=1 𝑃𝑃𝐿(𝜋𝑠

−1|𝑝𝑔), 

where 𝜋−1 = {𝜋−1
𝜅}𝑠=1

𝑁  represents a random sample consisting of N partial top 

orderings of the form 𝜋𝑠
−1 = (𝜋𝑠

−1(1), … , 𝜋𝑠
−1(𝑛𝑠)) [45] . The parameter 𝑛𝑠 represents 

the number of objects ranked by the unit 𝑠 in the top 𝑛𝑠 positions. Thus, 𝑛𝑠 is going to 

be always 3 since 3 out of 23 players are ranked from all of the judges of the datasets.  

The term 𝑝𝑔, is the support parameter vector of the 𝑔-th PL mixture components. Thus, 

the term 𝑃𝑃𝐿(𝜋𝑠
−1|𝑝𝑔),   is the PL likelihood function of the N top partial orderings 

given the corresponding support parameters. This term multiplied by 𝜔𝑔, which 

represents the corresponding weight, is summed for every component of the G – 

component PL mixture.  

After defining the sample of top partial orderings, we introduce the latent feature 𝑧𝑠𝑔 , 

which receives the value 1 if the unit 𝑠 belongs to the 𝑔-th mixture component and the 

value 0 otherwise. Since, the latent feature follows a Bernoulli distribution, then the 

vector 𝑧𝑠 = (𝑧𝑠1, … , 𝑧𝑠𝐺) , which represents the values of these features for each one of 

the G values, follows a multinomial distribution with the same weight for each 

component because the number of ranked players is the same for each judge. These 

latent features represent the unobserved group labels for each group of judges that 

probably exists in the dataset. Thus, we include the unobserved group labels 𝑧𝑠 in such 

a way so that the labels determine the cluster – specific support parameters on the 

underlying quantitative variables of the model. These underlying quantitative variables 

represent the observed variables of the model given by the N partial top orderings (𝜋−1), 

the unobserved group labels (𝑧), the support parameters (𝑝) and the corresponding 

weights (𝜔). Because there exist both observed and latent variables in the model, we 

have to elicit the joint prior distribution for the unknown parameters. The most 

straightforward way is to choose prior distributions with independent support 

parameters and weights, so that 𝑓 (𝑝, 𝜔) = 𝑓 (𝑝) 𝑓(𝜔), which can be calculated. In our 

case, we are going to recover the MLE approach as a special case of the non – 

informative Bayesian approach, by using flat priors, which means that the priors are 

going to have negligible information.     

   

      5.1.3   MAP Estimation through EM algorithm 

After introducing the unobserved group labels, we construct an EM algorithm in order 

to discover the posterior mode (MAP estimate) and, in general, to optimize the posterior 

distribution. The EM algorithm was originally introduced by Dempster et al. (1977) 
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[20] and since then it has been the subject of great research. In general, it is an iterative 

maximum likelihood procedure, which is usually used in order for the parameters of a 

mixture model to be estimated. Theoretically, increases in the likelihood function are 

guaranteed as the algorithm iteratively improves upon previously derived parameter 

estimates. The iterative procedure is considered to converge when all parameters 

become stable and no further upgrades can be made to the likelihood value. 

The implementation of the EM algorithm includes the iteration of Expectation (E) step 

and Maximization (M) step. The E – step, which relies on the conditional joint 

distribution of all the latent variables is given by 

 𝑃( 𝑦 , 𝑧 | 𝜋−1, 𝑝 , 𝜔 ) = 𝑓( 𝑦 | 𝜋−1, 𝑧 , 𝑝 , 𝜔 ) 𝑃( 𝑧 | 𝜋−1, 𝑝 , 𝜔 )  

and returns the objective function with respect to the support parameter and the 

corresponding weight, where the posterior membership probabilities 𝑧̂𝑠𝑔 are obtained 

after the proper calculations [29].  The M – step maximizes the proper objective 

function each time, with respect to (𝑝, 𝜔). The abiding differentiation of the objective 

function, with respect to each support parameter of the 𝑔 – th mixture model, yields the 

updated support parameters of the M – step. Also, the same process of optimization of 

the objective function yields the updated mixture weights, with respect to the 

corresponding weights of the   𝑔 – th mixture model and the constraint  ∑ 𝜔𝑔
𝐺
𝑔=1 =1 . 

The E- and M- step are repeated alternatively, until there is no further improvement in 

the likelihood value. 

After obtaining the MAP estimations we implement the process of Gibbs sampling in 

order to learn about the uncertainty associated to the final estimates by drawing a 

sample from the joint posterior distribution. This is achieved by deriving the full joint 

density and the posterior conditionals for each of the random variables in the model and 

simulating samples from the posterior joint distribution based on these posterior 

conditionals. The Gibbs sampling algorithm is going to be presented in the section of 

the theoretical framework of the Insertion Sorting Rank method.  

 

      5.1.4   Determing the number of components 

After performing a separate inference on PL mixtures on different number of 

components, we are going to choose the model that satisfies in better way among the 

competing models the corresponding criteria. The Bayesian criteria that are used for the 

selection of the best model are the Deviance Information Criterion or DIC 

(Spiegelhalter et al. , 2002) [64], the Bayesian Information Criterion – Monte Carlo or 

BICM (Raftery et al. , 2007) [60] and the Predictive Information Criterion or BPIC 

(Ando , 2007) [3]. The main goal for a model to be selected is to minimize those criteria. 

We consider two alternative versions for each of the criteria, in order to have more 

variety in the selection criteria and also prevent overfitting. In the next paragraph, where 

the application of the theory is taking place, we present the 6 different versions – criteria 

in detailed way. We have to make clear at this point, that the results of the selection 

criteria may lead to different models as the best choice. This is because some criteria 

may minimize their value in a specific number of components but other criteria may 
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not with the same number of components. For this reason, we are going to search for 

the model that does not only minimizes some of the criteria, but also satisfies the 

purposes of clustering and is able to provide meaningful and useful insights. Thus, the 

best model has to satisfy simultaneously most of the quantitative selection criteria and 

the qualitative selection criteria which are going to provide the number of clusters that 

are going to be useful for the analysis.  

 

     5.2    Application of the Method 

    5.2.1   Package Overview 

The approach that is going to be presented for clustering the voters of  FIFA Ballon 

d’Or datasets for the period 2010 – 15 is the Bayesian one, where the finite mixtures of 

the Plackett – Luce model are taken into account by assuming the Bayesian inferential 

perspective. The method is implemented with the help of PLMIX package. The PLMIX 

package was first released in 21/12/2016, as the only R package to deal with partial 

rankings/orderings by obtains inference based on the Bayesian Estimation. In terms of 

computational time, the PLMIX package outbalances the next application for clustering 

partial ranking data, the Rankcluster package, as its framework takes into account the 

computational issues that arise from partial rankings due to complexity of this kind of 

ranking data structures.  

 

      5.2.2   Data Input Format 

First of all, it is a need to transform the input data into the proper notation that PLMIX 

works with. The proper notation for the input data in the PLMIX functions is the 

ordering notation. This is because, in applications like the one is advanced in this 

section, there is a lack of ranking elicitation to manage the complexity of ranking 

sequence when a number of items, which can be considered large, is ranked. If k is the 

total number of items to be ranked (23 in our case) and t is the number of items that are 

actually ranked from the voters (3 in our case), the remaining k-t alternatives which 

have not been ranked by the judges are tactically assumed to be ranked lower. Thus, 

this is the format that is going to be used in the implementation of clustering with the 

extensions of Plackett – Luce models, by assuming the inferential perspective, and is 

called top – t partial ordering. It can be noticed at this point, that this comes in contrast 

with the Ranklucster package’s input notation (ranking notation),which will be used in 

order to implement the ISR models in Chapter 8. On the other hand, the missing 

positions of the matrices are denoted in the same way like in ISR models, thus with 

zero entries. Moreover, Rank = 1 indicate the most – liked alternative, Rank = 2 indicate 

the second most preferred item and Rank = 3 the third item in the order of preference. 

 

        5.2.3     Estimation of Models  

       5.2.3.1   MAP Procedure 
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After transforming the format of input data to the appropriate notation in order to be 

compatible with the input that the functions of PLMIX require, the next step is to start 

the procedure of fitting the Baysian G – components Plackett – Luce (PL) mixtures 

according to Maximum A Posteriori (MAP) estimation procedure via EM algorithm 

and Gibbs sampling. The functions that are going to be used in order to obtain the 

models are the following: 1) mapPLMIX_multistart , which maximizes the posterior 

distribution through EM algorithm and returns the MAP point estimate of the PL 

mixture parameters. The function works by initializing the algorithm many times, with 

different starting values, in order to address the issue of possible local maxima in the 

posterior distribution. 2) gibbsPLMIX , which implements the MCMC posterior 

simulation via Gibbs sampling, having the goal to quantify the estimation uncertainty 

from a fully Baysian perspective. The two functions are going to be applied in sequence, 

which means that at first, the MAP procedure through ‘mapPLMIX_multistart’ 

function is going to be launched and then the resulting MAP estimate is going to be 

utilized in order to initialize the MCMC chain, via ‘gibbsPLMIX’ function. The above 

procedure is going to be implemented for every year of the period under analysis (2010 

– 15). 

Let’s begin with the MAP estimation through the ‘mapPLMIX_multistart’ function. 

The arguments that are going to be used as input are :  

• pi_inv : A data matrix of class ‘top_ordering’, which contains the partial 

orderings . 

• K : The number of alternatives that are going to be ranked . 

• G : The number of mixture components . 

• n_start : The number of different starting values . 

• n_iter : The maxim number of EM algorithm iterations . 

• centered_start : A logical value which is used to constraint the random starting 

values to be centered around the observed relative frequency that each 

alternative has been ranked first . 

• parallel : A logical value which is set to true in order to be able the 

parallelization . 

In particular : 

✓ As pi_inv, it is used the matrix with the partial orderings for each specific year 

of the period 2010 – 15 . 

✓ As K, the number of columns – Players that are ranked from the judges (there 

are 23 number of alternatives in all years) . 

✓  As G, the number of mixture components for the obtained model. For each year 

have been tried models with 2 components to 8 components . 

✓ As n_start  are used large numbers in order to let the algorithm intiallize the 

procedure many times .  

✓ As n_iter, are used also large numbers in order to run the EM algorithm many 

times, so to shrink the probability of find a local maxima and not the global 

maxima . 

✓ centered_start : True 

✓ parallel : True 
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At this point, it should be emphasized that it is not being put in the input an argument 

that can be supported from the function, but at the same time, it is not included in the 

input argument of the function in purpose. The argument is : hyper, which is a list of 

named objects with hyperparameter values that are used for the prior information 

specification. If the prior setting is noninformative or flat, as it is in this case, the EM 

algorithm for MAP estimation performs frequentist inference, which means that the 

MAP solution for estimation coincided with the MLE solution and the best model in 

terms of maximized posterior distribution is returned.  

The output of the function is an object of class ‘mapPLMIX’ and is the following : 

▪ mod  : A list of named objects describing the best model in terms of maximized 

posterior distribution. Two of the derivatives of this argument are used for the 

Gibbs sampling. These are mod$P_map, which is a numeric matrix with the 

MAP estimates of the component specific support parameters and 

mod$class_map, which is a numeric vector of the mixture component 

memberships that are based on MAP allocation of the matrix of estimated 

posterior component membership probabilities. Furthermore, mod$P_map  and  

mod$W_map, which is a numeric vector with the MAP estimates of the G 

mixture weights, are used for the comparison of the models obtained with 

different number of components . 

▪ max_objective : Numeric vector of the maximized objective function values for 

each initialization . 

▪ convergence : A binary vector which, for each iteration, indicates if 

convergence has been achieved (1 if convergence has been achieved, 0 

otherwise) . 

▪ call : The matched call .  

 

      5.2.3.2   Gibbs Sampling 

After obtaining MAP estimations for the PL mixtures via EM algorithm, the results of 

the procedure are going to be used in order for the MCMC chain to be initialized.        

The goal of the Gibbs sampling, in this stage of the procedure, is to approximate the 

joint posterior distribution in order to assess the uncertainty of the parameters estimates. 

This is achieved through ‘gibbsPLMIX’ function which, as had been referred in the 

previous paragraph, implements the MCMC posterior simulation via Gibbs sampling.  

The input arguments of the function that are going to be used in the implementation of 

the MCMC chains are the following: 

• pi_inv, K, G  are the same arguments as in MAP procedure . 

• init : It is a list of named objects which takes two initialization values .            1) 

p : A numeric matrix which contains the binary mixture component 

memberships, 2) z : A numeric G x K matrix of component – specific support 

parameters ,which is constructed by using the command binary_group_ind . 

The command constructs the binary group membership matrix from the 
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multinomial classification vector and takes as input a numeric vector with the 

class memberships and the number of classes .   

• n_iter : The total number of MCMC iterations .  

• n_burn : The number of initial burn – in drawings removed from the returned 

MCMC sample . 

It has to be pointed out, that for the ‘n_iter’ arguments big values were chosen, in order 

to have large difference with the values used for the ‘n_burn’ arguments. The reason is 

that the difference between ‘n_iter’ and ‘n_burn’ is equal to the size of the final MCMC 

sample, thus if we want to have large final sample such a difference between these 

arguments has to be given for input values. Thus, for every model that  the Gibbs 

sampling is performed, the values of ‘n_iter’ and ‘n_burn’ are 22000 and 2000 

correspondingly. Another fact that has to be referred is that, in the MAP procedure, the 

list of named objects with hyperparameter values for the conjugate prior specification 

is not initialized, in order to not have an informative prior setting.  

The output of the Gibbs’s sampling procedure provide the following arguments : 

▪ W  : A numeric matrix which contain the MCMC samples of the mixture 

weights. The dimensions of the matrix are LxG, where L is the size of the final 

MCMC sample and G is the number of mixture components that used for this 

model.  

▪ P : A numeric matrix with MCMC samples of the component-specific support 

parameters. The dimensions of the matrix are Lx(G*K). 

▪ log_lik : Numeric vector of L porsterior log – likelihood values. 

▪ deviance : Numeric vector of L posterior deviance values, thus -2*log_lik. 

▪ objective : Numeric vector of L objective function values. These values are the 

kernel of the log – posterior distribution. 

▪ call : The matched call.  

 

         5.2.3.3   Comparison of the Models 

After implementing Gibbs sampling for each of the model obtained from the MAP 

allocation, for number of components from 2 to 8, it is appropriate to select the best 

model among the performed fitted models. The model that is going to be selected, will 

provide the clustering results for the year under study. In order to choose the appropriate 

one, every model has to be tested according to specific criteria. Thus, the function 

selectPLMIX from PLMIX package is going to be used in order to compute Bayesian 

selection criteria with the range of the number of components that were used in the 

implementation of the models. 

The input arguments of the ‘selectPLMIX’ function that are going to be used are: 

• pi_inv : The matrix which contains the partial orderings of the year under study. 

• seq_G : A numeric vector which contains the number of components of the PL 

mixtures to be compared. Because the models have been implemented in the 

range of [2,8] components the numeric vector, in the function, is going to be 

seq_G = 2:8 . 
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• MAPestP : A list which size is the length of seq_G and contains the MAP 

estimates of the component specific parameters. 

• MAPestW : A list which size is the length of seq_G and contains the MAP 

estimates of the G mixture weights. 

• deviance :   A list which size is the length of seq_G and contains the posterior 

deviance values obtained from the Gibbs sampling methods for the different 

number of components. 

A table with the six model selection criteria is returned. These are DIC1, DIC2, BPIC1, 

BPIC2, BICM1, BICM2 . Based on these criteria, we select the estimation with the 

components that minimize these metrics. The criteria used for the model selection are 

based on the principle of the trade – off between the fit of the data and the corresponding 

complexity of the model. Spiegelhalter et al (2002) [64], proposed a model comparison 

criteria that combined these characteristics. This is DIC (Deviance Information 

Criterion), which is defined as DIC = ‘goodness of fit’ + ‘model complexity’. The fit is 

measured through deviance, which is defined as 𝐷(𝜃) = −2𝑙𝑜𝑔𝐿(𝑑𝑎𝑡𝑎|𝜃) and the 

complexity is measured through the ‘effective number of parameters’, which is defined 

as 𝑝𝐷 = the posterior mean deviance minus the deviance evaluated at the posterior mean 

of the parameters. An alternative measure in model complexity which works with 

negligible prior information is the 𝑝𝑉 = 𝑉𝑎𝑟(𝐷)/2. In that case, half the variance of 

the deviance is an estimate of the number of the free parameters in the model. This 

estimate, in cases of weak prior information, turns out to be very robust and accurate. 

Thus, DIC1 corresponds to DIC with 𝑝𝐷 as measure of complexity and DIC2 

corresponds to DIC with 𝑝𝑉 as measure of complexity. BPIC1 and BPIC2 are obtained 

from the DIC1 and DIC2, respectively. Their difference is that they double the penalty 

term, in order to prevent the DIC’s tendency to overfit. The last two metrics, BICM1 

and BICM2, are the Bayesian variants of the BIC. Their difference is that BICM1 is 

entirely based on the MCMC sample and, in contrast, BICM2 involves the MAP 

estimate without the need of its approximation from the MCMC sample. We are looking 

for the components that minimize these metrics and simultaneously providing a number 

of clusters that is going to be useful for the analysis.  

 

      5.2.3.4   Evaluation of the Models 

Sometimes, the criteria do not provide a clear result for the optimal number of 

components. In that case, we are going to decide the number, based on the p-values  of 

the assessment of the MAP estimates. In specific, we are going to evaluate the mixture 

– models adequacy, by computing the posterior predictive checks. This is achieved, by 

making use of the ppcheckPLMIX function from the PLMIX package. The function 

takes as input the pi_inv , seq_G  of the previous functions and two lists, one containing 

the MCMC samples of the component specific parameters and one containing the 

MCMC samples of the mixture weights. It returns two posterior predictive p-values, 

based on two chi – squared discrepancy variables involving : the top – item frequencies 

and the paired comparison frequencies. The posterior predictive p-values can be 

compared with a nominal probability, typically set to 0.05, to conclude about the 

adequacy of the model. Values smaller that 0.05 are typically considered as indication 
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of model’s lack of fit. Thus, as much greater than 0.05 is a p-value, it is an indication 

of proper fit for this specific model. Based on this assumption, we are going to make 

use of the p-values in order to obtain the optimal number of components when the 

model selection criteria will provide a not clear result. In particular, when the number 

of clusters is going to be chosen between models with similar results, the p-values of 

the adequacy’s assessment of these models are going to be used in order to obtain the 

choice of clusters. 

 

     5.3   Results   

  5.3.1   Year 2010 

In 2010, the criteria for the comparison of the models with different number of 

components are presented in the following table. 

Models DIC1 DIC2 BPIC1 BPIC2 BICM1 BICM2 

2-

Components 

2037.593 5705.357 -1576.845 5758.678 5920.916 9588.678 

3-

Components 

5708.9859 5691.243 5805.616 5770.131 6010.157 5992.415 

4-

Components 

5782.0772 5698.763 5950.898 5784.27 6044.437 5961.123 

5-

Components 

5833.9357 5701.83 6053.337 5789.125 6054.731 5922.625 

6-

Components 

5885.1377 5705.104 6154.534 5794.466 6066.363 5886.329 

7-

Components 

5920.8521 5707.823 6224.838 5798.779 6075.526 5862.497 

8-

Components 

441.8131 5712.939 -4735.025 5807.227 6094.111 11365.237 

 

Table 4 : The criteria used to obtain the proper number of components, for Year 2010. 

Based on Table 3, we reject the MAP estimations with 2 and 8 components, due to their 

enormous high values in BICM2 and the negative values in BPIC1 which is an 

indication of a not good estimation. If we check the DIC1 values for the models with 

these two components, we can observe the DIC tendency to overfit, because of the 

extremely small values it obtains. Thus, among the rest of the models, the metrics 

indicate that the appropriate model is the one with 3 components. Moreover, by 

checking the table (A.6) with the p-values for the models assessment, we notice that the 

p-value  of the ‘paired’ discrepancy variable, for the 3 – components model, is the 

greatest among the others. 

The 3 – components model provide the following number of observations in each 

cluster. Cluster 1: 121 observations, Cluster 2 : 142 observations and Cluster 3 : 162 

observations. In (B.1), someone can observe that the separation between the first and 

the second cluster is very good but the points of the third cluster are not so concentrated 

within the cluster and well separated from the other two clusters. Each of the three 

clusters have a player who is the central person in the cluster. The (A.7) shows that 
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Cluster 1 belongs to Messi with 86 out of 121 first - place  votes, while on the same 

group his two opponents for the first - place , Iniesta and Xavi, have not been preferred 

so much from the voters. In Cluster 2 (A.8), it is noticed that there is a strong stream of 

judges that support Xavi, as he has been preferred in the Top – 3 from all of them. The 

third Cluster (A.9), belongs to Iniesta because he has received an amount of points that 

is much greater than his other two opponents. A visualization of the points that each of 

the three players received in his cluster is presented in the following plot. 

   

Figure 7 : Bar plot that presents the ranks for each cluster’s winner. 

From Figure 7, we observe that Messi has been taken a strong lead with a very large 

amount of 5 – points votes, in the cluster that he was the top vote receiver. On the other 

hand, one could wonder why Iniesta has been ranked second in the final rankings, 

despite the fact that he is not such strong as Xavi in his own cluster. The main reason 

is that the proportion of votes is not the same for Cluster 3 (Iniesta’s Cluster) and Cluster 

2 (Xavi’s cluster). The second is smaller which means that the amount of votes that 

Iniesta received is bigger than it seems to be, if we consider the actual size of his cluster. 

Another reason is that Xavi is very weak in Cluster 1 and Cluster 3, by concentrating 

all his power in Cluster 2. On the other hand, Iniesta has received a respectable amount 

of votes in the clusters that did not win. 

 

        5.3.2   Year 2011 

Based on (A.10) we observe that, if we except the models with 2 and 8 components for 

the same reason as in previous year, the indications for the appropriate model converge 

to the 4 – components model. Moreover the p-value (A.11) for the ‘paired’ discrepancy 

variable, indicates a good fit, as it is 0.43 and surpasses the threshold of 0.05.  
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From the 4 clusters obtained, the largest and the smallest are the more interesting. Thus, 

the largest cluster is apart from 232 out of 465 voters of the complete dataset. It is a 

very well representative of the enormous difference that the winner of the award 

(Messi) has to the second player (Cristiano), in terms of votes. Also, it represents the 

difference from the second - place (Cristiano) to the third - place (Xavi), because of the 

huge amount of second - place votes that Ronaldo received. Someone can observe from 

the (B.2), that the 93% of the judges in this cluster have voted Messi first and the 91% 

have voted Cristiano second. One could say that this denotes the start of the greatest 

rivalry in the history of modern football.  

On the other hand, Cluster 4 which apart from 37 observations is also very interesting, 

but from different scope. The reason is that this cluster could be characterized as a ‘Anti 

– Cristiano’ cluster, since Ronaldo has not been preferred in the Top – 3 neither from 

one voter and in the same time Messi has been ranked first from all of the voters. It 

could be very interesting to have a more deep look at the kind of relationship that these 

voters have with football and also the continents that are come from, in order to search 

for possible patterns.  

 

Figure 8 : Stacked bar plot with the job and the continent of the voters in the ‘Anti – 

Cristiano’ cluster. 

Figure 8, provides insights about the job of the voters and the continent they come from. 

The continent that each voter comes from, has been obtained by making use of the 

‘countrycode’ function from the ‘countrycode’ package. Someone can observe from 

Figure 8, that Media have strong presence on this cluster. On the other hand the players 

that belong in the cluster are few. We notice that there are not so many European judges 

in the cluster, in compare with the amount of voters from other continents. This is not 

a surprise if we take under consideration the origins of the two players (Cristiano from 

Portugal and Messi from Argentina). On the other hand, there is a strong attendance of 

African and American voters in the ‘Media’ bar. It makes sense for American press to 
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prefer Messi than Ronaldo for winner of the FIFA Ballon D’Or, if we consider the 

origins factor, but the large number of African voters is a surprise. An explanation could 

be, the influence of Barcelona in Africa, as brand name, in compare with Real Madrid 

or the assumption that African people would prefer Messi than Ronaldo because the 

first is a teammate of the great African striker Samuel Eto’o.  

 

           5.3.3   Year 2012 

In 2012, we perform the clustering with 4 clusters, as the (A.12) and the (A.13) tables 

indicate. The distribution of the observations in the corresponding clusters is the 

following, Cluster 1 : 36 observations, Cluster 2 : 213 observations, Cluster 3 : 27 

observations, Cluster 4 : 229 observations. We notice that there are two clusters with a 

large amount of voters and two clusters with a tiny amount.  

In Cluster 1 (A.14), Ronaldo has not been ranked neither from one voter while Messi 

has a large amount of first votes, but without having a head start against his opponent. 

In Cluster 3 (A.15), the remarkable fact is that the dipole has not been preferred a lot in 

the first three positions from the voters. On the other hand, in this cluster there is a 

strong presence of Iniesta. Cluster 2, despite the fact that is the second largest cluster, 

does not provide an apparent winner. As someone can observe from (A.16), the sum of 

total points, which obtained from the ranks received, for the two contenders of the 

award does not differ a lot between them. What Cluster 2 affords to the analysis, is that 

consolidates the fact that there are only two competitive candidates for this title. Thus, 

everything depends from the votes exist in Cluster 4. There is no doubt that this cluster 

is full of voters that nominated Messi as the best football player in 2012. The 

Argentinian has received the extraordinary amount of 229 first - place  votes out of the 

229 voters in this cluster. Thus, it is natural corollary for this cluster to be characterized 

as the ‘Total Messi’s Cluster’. On the other hand, Ronaldo has ensured the second - 

place, as he has been ranked in the second position from 139 voters. It is also remarkable 

the fact that 139 judges out of 229 have been ranked Messi first and Ronaldo second. It 

would be very interesting to dive into this cluster and search for possible patterns for 

the voters of this cluster. By obtaining the stacked bar plot (B.3), we do not detect a 

specific pattern of voters, in terms of continent or the voters job, which could mean that 

Messi had the vast acceptance of the football audience, no matter other factors.  

 

      5.3.4   Year 2013 

It is the first year, in the period under study, that the total points of the first three 

competitors are very close to each other. Also, after three consecutive years of Messi’s 

dominance, Ronaldo wins the award. Another interesting point is the fact that, there is 

a huge points difference between the third (Frank Ribery) and the fourth (Zlatan 

Ibrahimovic), in the final rankings. The model comparison criteria (A.17)  do not 

provide an apparent result for choosing the model with the appropriate number of 

components. Thus, our choice is going to be based on the p-value obtained for the 

‘paired’ discrepancy variables of the models. From (A.18), we can observe that the 

biggest p-value, thus the best fit among the models, is obtained from the 3 – components 
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estimation. So, we are going to use the 3 – components model for the clustering of 

voters.  

The clusters obtained reveal a voting pattern for the three frontrunners (Ronaldo, Messi, 

Ribery). Cluster 1 (A.19), which contains 113 observations is a very balanced cluster, 

in terms of Top – 3 ranks, between Ronaldo and Messi. On the other hand, we notice 

that Ribery’s presence is very ‘weak’ in this cluster as he has been preferred in the Top 

– 3, just from 7 out of 113 judges. In Cluster 2 (A.20), which represents the 52% of the 

total dataset, Messi does not lose his ranking power but Ronaldo makes the difference 

which indicates that he could be the possible winner on this run. In particular, Cristiano 

has been preferred in the first three positions from 251 out of 282 voters and especially 

in the first - place , from 143 voters. On the other side, Messi, has been preferred in the 

first three places 184 times and from them the 63 are first - place positions.  Ribery, has 

increased his rates in this cluster, but the small boost he received does not enable him 

to reach the other two candidates. The (B.4) provides a visualization of the second 

cluster’s results. After analysing the outcomes of the first two clusters, one could say 

that Ronaldo is the winner with small difference from Messi and with an enormous 

difference of both from the third player. But after looking at the third cluster the 

conclusions are very different. Cluster 3 (A.21), contains the supporters of Ribery and 

could be characterized as a ‘Ribery – centric’ cluster. The French player has received 

the enormous proportion of 137 first - place  votes out of the 149 voters included in this 

cluster. It seems strange for a player, which is outside of the dipole, to receive such an 

amount of votes but we have to take under consideration that this group of voters 

rewarded Ribery for the outstanding performance he had in that specific year and for 

his enormous contribution in the conquering of the Champions League trophy from 

Bayern Munich. In (B.5), someone can observe that the most of the voters in this cluster 

are journalists. Also, there are many Europeans and Asians in the ‘Captain’ and the 

‘Media’ bar and not so many from Africa. 

To conclude, someone could argue that two voting types have been detected in this 

year. Ronaldo and Messi had a consistent and dense amount of votes in the first two 

clusters (almost 70% of the dataset in total), with the difference that Cristiano had much 

more first position ranks and that’s the reason he won the award. On the other hand, 

Ribery has an extreme ranking behaviour if we consider that he has very small presence 

in the biggest part of the dataset, without receiving a respectable amount of second or 

third - place ranks, and has been ranked first from a whole cluster. Thus, the largest 

percentage of his ranks are either 0 or 1. Based on the final rankings, we could argue 

that the consistent ranking behaviour of Messi is preferred than Ribery’s extreme 

ranking behaviour. 

 

        5.3.5   Year 2014 

In 2014, Ronaldo wins his second consecutive award, with a large difference from 

Messi. Moreover, this year is very interesting because the difference of points between 

the second and third - place is negligible. 
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Based on  (A.22), we notice that the largest absolute difference, between different 

number of components, exists in the 6 – component model. Moreover, the p-value 

(0.504) (A.23),  of the model’s assessment indicates a very good fit. Thus, we are going 

to work with the 6 – component model for the clustering. The observations are 

distributed raggedly in the clusters. More specifically, Cluster 1 : 93 observations, 

Cluster 2 : 163 observations, Cluster 3 : 54 observations, Cluster 4 : 44 observations, 

Cluster 5 : 15 observations and Cluster 6 : 175 observations. We are going to present 

the clusters that provide interesting insights, in terms of the analysis.  

Cluster 1 could be characterized as ‘Anti – Messi’ cluster, since the Argentinian has not 

been preferred neither from one voter in the cluster. On the other hand, Cristiano has 

been voted first, 83 times. It would be interesting to have a look at the people that apart 

this cluster. Based on (B.6), we can not observe a special group of voters. On the other 

hand, it is a surprise the strong presence of American voters in the cluster, which was 

not expected, if we consider the origins of Messi and the votes of people from this 

continent in previous years. Cluster 2 is also very interesting, since it is the first time in 

the period 2010 – 15, that a goalkeeper receives so many votes in a cluster. From (A.24), 

we can notice that Neuer is the winner in this group, by overcoming even Ronaldo. In 

contrast with the voters in Cluster 1, where we could not justify the dense presence of 

American people, there is a pattern that someone could investigate in Cluster 2. By 

looking at (B.7), we are able to notice the strong presence of European people and the 

fact that are very few voters from Africa or America. We could assume that Neuer does 

not reach so much audience in Africa and America, because people in these continents 

like offensive football so they would prefer a striker than a goalkeeper. Small, but 

interesting, is the fourth cluster where Cristiano has not been preferred from any voter 

despite his big win. From (B.7), we can observe that mostly coaches exist in this cluster. 

Also, we can observe that are very few Europeans in the cluster. Finally, Cluster 6 

(A.25),  is the largest group of voters in 2014. It is a cluster that represents the breadth 

of Ronaldo’s win, who receives 168 first - place  ranks out of 175. It is noticed that 

Neuer has not been preferred from a large amount of voters in the Top – 3. On the other 

hand, Messi may not have been ranked first, in the total dataset, as many times as Neuer 

has, but his presence in the Top – 3 ranking is more frequent and robust than the 

German’s. This reminds us the previous year where Ribery had similar ranking 

behaviour with Neuer, while Messi had a more consistent ranking behaviour. In both 

cases, the final result is that, Messi ranked above his opponents.  

 

         5.3.6   Year 2015 

In 2015, Messi makes his comeback by receiving almost the half of the total points and 

winning the award. The second - place belongs to Ronaldo with a large difference from 

the third, Neymar. 

The output of the model comparison (A.26),  is very clear and provides the 2 – 

components model, as the best one among the others. After obtaining the results of 

clustering with the 2 – components model, we observe two clusters with 385 and 113 

observations, respectively. Cluster 1, which constitutes the 77 % of the dataset, provides 
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a typical representation of the final result. The following plot is presented in order to 

visualize this representation. 

 

Figure 9 : Bar plot for the frequency of Top – 3 rankings, that apart the 77% of the total 

dataset, in Year 2015. 

 

As we can notice from Figure 9, the proportion of first position votes for Messi, 81.04 

%, is enormous and indicates his domination against the other players. Moreover, the 

proportions of second - place ranks for Ronaldo and third - place ranks for Neymar, are 

also indicate the players that are in the final second and third - place, respectively. We 

could say that this cluster does not reveal any peculiar pattern, but captures the vox pop 

of 2015. In the second cluster, Ronaldo has received more points than Messi but without 

making any change in the final result. Also, there are some players like Lewandowski, 

Muller and Benzema that have received little more points in compare with Cluster 1. 
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Chapter 6 

Cluster Analysis on the Data with K – medoids algorithm 

 

In this chapter, it is presented an alternative approach for the clustering of the FIFA 

Ballon D’Or datasets. In specific, we separate and group the voters, based on their 

preferences on the players that are about to be ranked, through the k – medoids or 

partitioning around medoids clustering method. The distance metric that is used in order 

to calculate the distance between the points – voters, is the Kendall’s distance. The 

implementation of the k – medoids method contains two steps (Build and Swap), which 

are repeated until there is no change in the clusters. Thus, in this chapter, we present a 

distance – based clustering method, where the similarity quantification between the 

ranking objects is based on the Kendall’s distance. As already been said in the previous 

chapter, the more similar objects in terms of preference, have a closer distance and vice 

versa. So, after the distance is defined a partitioning algorithm is applied, in order to 

achieve the clustering purpose.  

       

      6.1   Theoretical Framework of the Method 

     6.1.1   K – medoids or PAM algorithm 

One of the most popular partitioning algorithm, in the unsupervised learning field, is 

the k – means algorithm. The key idea of this algorithmic approach is to partition the 

sample space in separate parts. Someone could describe the k – means algorithm as an 

iterative procedure, where at each iteration each observation is assigned to the closest 

cluster and afterwards the cluster centers are updated. The assignment of the 

observations to the clusters is based on Euclidean distance. The number of clusters in 

k–means have to be known, before the start of the iterative process. Thus, the final 

clustering results depend on the initial values. 

However, the k – means algorithm are not appropriate when the data that are about to 

be clustered are categorical. This is due to the fact that, it has no sense to calculate the 

distance between two categorical variables with the Euclidean distance. The point is 

that the k – means algorithm use numerical distances (e.g Euclidean distance), so the 

result would consider close two probably distant objects that would have been assigned 

two close numbers. Thus, in our case, the k – means method is not applicable, as the 

data are categorical. Moreover, it is not wise to consider the option of transforming our 

categorical data to numerical data in order to perform k – means.   

Thus a solution in order to perform the clustering, in such cases, lies in the k–medoids 

or partition around medoids (PAM) algorithm. The PAM algorithm is a well – known 

clustering algorithm, which aims to find k medoids and assigns every point to the 

nearest medoid that is the point with the shortest distance to the other points in the 
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cluster. In k – medoids algorithm the data objects are chosen to be the medoids, in 

compare with the k – means algorithm where the means are chosen to be the centroids. 

A medoid can be defined as that object of a cluster, whose average dissimilarity to all 

the objects in the cluster is the minimum one [73]. Medoids are similar in concept to 

means or centroids, but medoids are always members of the dataset.  

 

       6.1.2    K – medoids procedure 

The fundamental idea of the algorithm is to first define the ‘centers’ of the clusters, 

which are the medoids. After finding the set of medoids, each object of the dataset is 

assigned to the medoid from which has the shortest distance, according to the used 

distance measure. So, in other words, object 𝑖 is put into cluster 𝑣𝑖, when medoid 𝑚𝑣𝑖 

is nearest than any other medoid 𝑚𝑘, where 𝑘 indicates the number of medoids that 

have been defined [63]. The procedure of the algorithm can be described in two steps : 

1) the ‘Build’ step and 2) the ‘Swap’ step. In the first – ‘Build’ step, 𝑘 centrally located 

objects are chosen, sequentially, to be used as initial medoids. These 𝑘 objects of the 

dataset are chosen randomly. In the second – ‘Swap’ step, the non – chosen objects are 

assigned to the nearest representative objects according to a distance metric [63]. In our 

approach, the distance metric is the Kendall’s distance. After that, for each pair of non 

– selected object and selected object, the total swapping cost is calculated. If the total 

swapping cost is smaller than 0, the initially selected point is replaced by the initially 

non – selected. This procedure is repeated until there is no change of the medoids.  

 

       6.1.3   Kendall’s distance 

The distance metric that is used in this approach in order to calculate the distance 

between the objects of the dataset, is the Kendall’s distance. As discussed in the ‘Non 

-Metric Multidimensional Scaling’ section , the Kendall’s distance is very powerful, in 

compare with other distances that are proper for the calculation of dissimilarities 

between ranking data, when missing data exist.  

Someone could define the Kendall’s distance as the metric that counts the pairwise 

disagreements between rankings. Thus, the larger the distance the more dissimilar are 

the preferences of the two voters, and vice versa. It is also a metric distance. That means 

that it satisfies the triangle inequality, which states that the sum of the lengths of any 

two sides of a triangle is greater than the length of the remaining side or (d(μ, ν) <=

d(μ, σ)  +  d(σ, ν)) [45]. Because we want to find the ‘shortest paths’ between the data 

points, the distances that capture the notion of triangle inequality enable to define these 

distances to be the length of the ‘shortest path’ without having to define things like path, 

or length of a path. Another important property that the Kendall’s distance captures is 

the right – invariance property. A distance measure is defined as right – invariant if for 

any permutation of the rankings 𝜎, 𝜇, 𝜈 the following property is satisfied : 𝑑(𝜇, 𝜈) =

𝑑(𝜇 𝜊 𝜎, 𝜈 𝜊 𝜎), where 𝜇 𝜊 𝜎(𝑖) = 𝜇(𝜎(𝑖)) [45]. More specifically, right invariance 

assures that the distances which have this property remain immutable under any 

possible permutation relabeling of the objects. 
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If a distance measure is right invariant, for a set of permutations, it allows us to rewrite 

the ranking tables in a different, more convenient way. 

The Kendall’s distance is calculated by the following formula : 𝜏 =  
𝑛𝑐−𝑛𝑑

𝑛(𝑛−1)/2
 .        The 

term  𝑛𝑐  is the number of concordant pairs and the terms 𝑛𝑑  is the number of discordant 

pairs. The term 𝑛(𝑛 − 1)/2 is the normalizing term of the distance, where 𝑛 is the 

number of the listed ranked objects – players. A concordant pair can be defined as a 

pair of players that both have been ranked in the same order, or in other words that they 

both moved in the same direction. For example, Lionel Messi and Gyan Asamoah are 

a concordant pair of players because Messi was consistently ranked higher than 

Asamoah. Conversely, two players can be characterized as discordant because the 

voters have ranked them in opposite directions. Such an example of discordant players 

are Messi and Ronaldo, because other voters rank higher Messi than Ronaldo and vice 

versa.  

There are also other distance metrics that are appropriate for ranking datasets and satisfy 

the above properties (triangle inequality, right invariance), such as Spearman distance 

or Hamming distance. The reasons that the Kendall’s distance has been chosen for the 

calculations of dissimilarities between the preferences of the voters, lie on the fact that 

it satisfies the above properties and, also, it is very powerful when the dataset contains 

partial rankings. As has been discussed in previous chapter, it has been proved from 

Tilley and Cabilio in 1999, that when there exist missing observations the Kendall’s 

statistic has more power, in compare with other distances, in identifying more patterns.  

 

     6.1.4   Determine and Assess the final model 

     6.1.4.1  Average Silhouette Value 

After obtaining the method for different number of clusters, we are going to select and 

assess the final model with the help of the Silhouette method . Silhouette refers to a 

method of interpretation and validation of clusters of data. The technique provides a 

succinct graphical representation of how well each object lies within its cluster. The 

measure that is going to determine the number of clusters and to provide how 

appropriately all the data has been clustered, is the average silhouette value [36]. A high 

average silhouette indicates a good clustering. The optimal number of clusters k is the 

one that maximizes the average silhouette value over a range of possible clusters. Thus, 

if there are a lot of ‘secure’ clustered values, it is expected a big average silhouette 

value. 

The definition of silhouette value for a datum 𝑖 is  

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}
   

and the possible outcome lies in the range of [-1,1]. The term 𝑏(𝑖) represents the lowest 

average dissimilarity of the datum 𝑖 to any other cluster which 𝑖 is not a member. The 

average dissimilarity of a datum 𝑖 to a cluster 𝑐 can be defined as the average of the 

distance from 𝑖 to points in 𝑐 [36]. The term 𝑎(𝑖) represents the average dissimilarity 
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of 𝑖 with all other data within the same cluster [36]. A value of +1 indicates that the 

sample is far away from its neighboring cluster and very close to the cluster its assigned. 

Similarly, value of -1 indicates that the point is close to its neighboring cluster than to 

the cluster its assigned. And, a value of 0 means its at the boundary of the distance 

between the two cluster. Thus, it can be followed that the value of 1 is ideal and the 

value of -1 is least preferred.  

 

      6.1.4.2    Elbow Method 

Besides the average silhouette value, the Elbow method [70] is going to play a helpful 

role in choosing the optimal number of clusters for the model of each year. The Elbow 

method is a very well known method in which the sum of squares at each number of 

clusters is calculated and graphed. Based on this graph, a steep change of slope, that 

looks like an ‘elbow’, indicates where the optimal number of clusters might be. It is 

logical that as the number of clusters increase, the fit is improved because more of the 

overall variation is explained. In the same time, since more clusters are added to the 

model there is the danger of overfit. Thus, the method tries to identify a ‘knee point’  

where the variation that is explained from the model’s parameters is acceptable and the 

increasing of the parameters is not going to reflect to the predictive ability of the model 

to other data. So, it is expected that the first clusters are necessary since they explain a 

lot of the variation and the data consist of that many groups. But at the time that the 

number of added parameters exceeds the actual number of groups in the data, the added 

information will drop sharply, since it separates the actual groups. Based on this fact, it 

is assumed to be a knee point in the graph of explained variation versus the clusters, 

since the line is going to increase rapidly and then increase slowly. It has to be said at 

this point, that the Silhouette method is going to play the conclusive role in determine 

the optimal number of clusters and the Elbow method is going to be used for 

confirmation or reconsideration of the ‘appropriate’ number. 

 

        6.2    Application of the Method 

       6.2.1     Package Overview 

In this chapter, we put into practice the theoretical framework that has been provided 

in the previous chapter. First of all, we have to mention the packages that are used in 

the application of the method. So, in order to compute the distance matrix between the 

points of each dataset, we make use of the ‘amap’ package and the ‘Dist’ function. The 

‘Dist’ function computes and returns the distance matrix computed by using the 

specified distance measure, which is the Kendall’s distance in this case, to compute the 

distances between the rows of a data matrix. Afterwards, for the implementation of the 

partitioning around medoids, based on the computed distance matrix, is used the ‘pam’ 

function from the ‘cluster’ package. This function partitions the data into the number 

of cluster that the user specifies, around the medoids. We are going to see in detail the 

input that the function requires. Finally, in order to determine the optimal number of 

components for the model of each year and evaluate it, we make use of the ‘silhouette’ 
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function from the ‘cluster’ package and the ‘fviz_nbclust’ function from the ‘factoextra’ 

package for the Elbow method. 

 

         6.2.2    Data Input Format 

Before starting the implementation of the clustering process, we have to transform the 

input data in order to be compatible with the requirements of the package and 

meaningful, in terms of the analysis purposes. Thus, before computing the distance 

matrix, with Kendall’s distance as the distance measure, the positions that have not been 

ranked are going to be imputed by the midrank. The notion of midrank has been 

discussed in the Chapters 2,3 and 4, as an appropriate way for imputing missing 

positions in partial ranking data. It has to be pointed out that in the previous method,  

the missing positions were part of the estimation process. Thus, the first reason of the 

midrank imputation in the k – medoids method is the fact that it is a suboptimal choice 

to ignore the missing data when testing for trend. Besides that, the function ‘pam’ from 

the ‘cluster’ package, that is going to be used for the clustering process, does not allow 

the presence of missing data when the input matrix is a dissimilarity matrix. It has been 

stated that the whole procedure starts with the computation of the dissimilarity matrix 

with the Kendall’s distance as the distance measure, and this matrix is used as input for 

the ‘pam’ algorithm. 

 

        6.2.3    Estimation of Models 

As previously been stated we are going to perform the clustering around medoids with 

the help of ‘pam’ function. The function implements the process of the pam algorithm, 

which means that tries to look for 𝑘 objects or medoids among the observations of the 

dataset, which are representative of the structure of the data. After finding these 𝑘 

medoids, it assigns each observation to the nearest medoid in order to construct 𝑘 

separate clusters. The overall target is to find 𝑘 representative objects which minimize 

the sum of dissimilarities of the observations of the dataset to their closest 

representative object. The whole process is implemented though the Build and Swap 

phases that described in the theoretical part of the method.  

Let’s have a look at the input parameters that are required in any case : 

• x : A data matrix, data frame or dissimilarity matrix, depending on the value of 

the diss argument that follows. In case of a dissimilarity matrix, the missing 

values are not allowed. 

• k : A positive integer specifying the number of clusters. It is important that the 

user is able to specify the number of clusters under examination, without a 

restriction. The clusters have to be less than the number of observations. 

• diss : It is a logical flag that plays the most important role in the output because 

it is determined if the input object is a dissimilarity object or not. If TRUE, then 

the input matrix is considered as a dissimilarity matrix. If FALSE, the input 

matrix is considered as a matrix of observations by variables. 
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• metric : A character string that specifies the metric to be used for calculating 

dissimilarities between the observations. If  x is already a dissimilarity matrix, 

the argument is ignored. 

• medoids : A length k – vector of integer indices, which specifies initial medoids 

instead of using the ‘Build’ algorithm. The default choice is NULL. 

• stand : A logical value, that in case it is TRUE, the measurements in the input 

matrix are standardized before calculating the dissimilarities. If the input matrix 

is already a dissimilarity matrix, the argument is ignored. 

These are the basic input arguments that the ‘pam’ function requires in order to be 

implemented. Based on these arguments, the input values that have been given to the 

function in order to run the algorithm for our case, are the following : 

✓ As input matrix  x , is used the dissimilarity matrix that has been computed 

with the help of ‘Dist’ function. Thus, the diss argument has been set to 

TRUE  and the metric, stand  arguments have been ignored. 

✓ For the number of clusters k, it has been chosen a vector of 2:10 clusters 

for the algorithm to run. This is due to the fact that there is no restriction 

for the number of clusters that the algorithm can take, so it is feasible to 

test a big number of clusters. 

✓ For the medoids argument, the value has been set to the default (NULL), 

in order for the algorithm not to have specified initial medoids and be able 

to run the first – Build phase of the process. 

The output of the function is an object of class ‘pam’ and provides information about 

various aspects regarding the results of the clustering process. A typical example is a 

matrix where each row corresponds to numerical information for a cluster e.g the 

number of observations, the maximum and average dissimilarity between the 

observations in the cluster and the cluster’s medoid, etc. Another useful object provided 

in the output is a clustering vector with the number of observations in each cluster, a 

list with the silhouette information, a total dissimilarity matrix between the objects of 

the dataset, a vector with the medoids or representative objects of the clusters, etc.  

 

        6.3   Results 

     6.3.1   Year 2010 

As in the previous methods, we are going to present the results of the clustering for 

each specific year of the period 2010 – 15, starting from the Year 2010. In the average 

silhouette plot (B.8) someone can observe that the silhouette values, for the examined 

clusters, vary from 0.19 to 0.23. Despite the fact that the largest average silhouette value 

is in the model with the 6 components, we spot the largest difference of value between 

the models of 2 and 3 components. In particular, the model with 2 clusters has a value 

below 0.2 and the 3 – clusters model has an average silhouette value between 0.22 and 

0.23. Thus, because the difference in average silhouette value between the two models 

is very small, we are going to select the model with 3 clusters, in order to prevent 

overfitting by separating the data in more groups. Moreover, in the plot of Elbow 

method (B.9), it cannot be spotted a ‘breakpoint’ where the total within sum of square 
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is minimized sharply. The silhouette plot for the 3 different clusters of the final model, 

is presented below. We can notice that the third cluster is the most appropriate clustered, 

as it has no point below zero and also having the largest average silhouette value (0.47). 

On the other hand, some points seem that have wrongly been placed in the first cluster. 

The second cluster, which has the most observations, seems more robust than the first 

but it includes points that are not appropriately clustered.  

 

Figure 10 : Silhouette plot for each cluster of the final 3 – components model. 

 

The above observations can be confirmed by looking at the visualization of the 

clustered data, that is presented in (B.10). 

Now let’s have a look at some information about the clusters. The first one contains 

170, the second 204 and the third 51 observations. As previously stated, through the 

‘silinfo’ function, can be provided information about the clusters such as the medoids 

of each cluster. In Cluster 1, the object that represents the votes in this cluster is Van 

Marwijk Bert, who has voted Messi and Xavi in the two of the three places, as his third 

vote was invalid. As we can see from (A.27), Messi and Xavi are the players with the 

most votes in Cluster 1. In Cluster 2, the medoid turns out to be Danilevicius Tomas. 

The former Lithuanian player has ranked first Iniesta, second Sneijder and third Forlan, 

which is interesting because the preferences of Cluster’s 2 medoid are quite similar with 

the final results of Cluster 2. In specific, from (A.28), someone can observe that the 

player with the most first - place votes is Iniesta, the one with the most second - place 

votes is Xavi and the player with the most third - place votes is Diego Forlan. What is 

really strange in this cluster is the fact that Messi has been ranked from 36 out of 204  

voters and only 7 times first. If we take under consideration that the Argentinian won 
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the trophy that year, these rankings are peculiar. Thus, it would be interesting to check 

the composition of this voting group.  

  

Figure 11 : Job and Continent of Voters for Cluster 2 in Year 2010. 

From Figure 11, it can be observed that journalists are the main population of this group 

and many of them are from Africa. On the other hand, the percentage of coaches that 

constitutes this cluster is small, while the bar of players is also relative small but not 

that minor as the one of coaches. 

Cluster 3 (A.29) could be characterized as the Messi’s group, because 47 of the 51 

voters have preferred the Argentinian and 31 of them have ranked him first. After a 

more careful look, Cluster 3 could be characterized as a ‘Messi – Cristiano’ cluster 

because it is observed that it is the first group in 2010 that the Portuguese receives a 

respectable amount of votes. Moreover, if we dig into the structure of the voting group, 

the pattern that was detected in the second cluster where Media have not preferred 

Messi too much in 2010 is confirmed. More specifically, it can be observed from the 

(B.11) that the presence of Media in this cluster is fractional, while the presence of 

coaches and players is very strong. One could say that the two bar plots are completely 

opposite. 

 

         6.3.2   Year 2011 

In 2011, the average silhouette plot (B.12) indicates very clear that the optimal number 

of clusters is 2, since it has the largest value (0.4) and after that the line falls very sharply 

and starts to increase in a very slow manner. Thus, we fit the model with two clusters.  

This year could be described as the first year that Messi starts to branch off his 

opponents. From the total rankings that are displayed in (A.30, A.31), it can be easily 
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observed that Messi has received a tremendous amount of votes and the largest 

proportion of this amount are first - place votes. Besides that, 2011 is the year that starts 

to be configured the dipole Messi – Ronaldo, which conquers in the wins of the trophy 

the next years, as it is the first year that Cristiano receives a respectable amount of votes 

that ranked him second with a large difference behind Messi. It would be interesting to 

observe the two clusters that occurred and to spot their differences.  

Cluster 1 is consisted of 322 observations of the total 465 that apart the dataset of Year 

2011. Based on the cluster’s information, the voter that represents this voting group, in 

the best way, is Anthony Griffith. His preferences were : Lionel Messi first, Cristiano 

Ronaldo second and Xavi third. Someone could say that the medoid is very accurate if 

the total preferences of the voters in Cluster 1 be taken under consideration. A graphical 

representation of these preferences is presented in the next figure. 

 

Figure 12 : Frequency of Votes for Messi and Ronaldo in Cluster 1, Year 2011. 

Based on Figure 12, we can observe that the 83% of the Messi’s votes are first - place  

votes and the 69% of Cristiano’s votes are second - place votes. Thus, it is obvious the 

ascendance of Messi in this group, which composes the 70% of the dataset. 

The Cluster 2 is consisted of 143 voters. The preferences regarding the winner are not 

different in compare with the first group, since Messi has been ranked first from 96 out 

of 143 voters. This is depicted also from the medoid, Ernst Hasler, who has ranked also 

Messi. The difference between the two groups is that in the second one Cristiano has 

not been preferred even from one voter. Also, Xavi and Iniesta have larger percentages 

of votes in compare with Cluster 1. Thus, in Cluster 2, is observed a preference in 

Barcelona, which has been spotted also in the Bayesian approach in 2011. If we search 

the job and the continent of this voting group (B.13), it is not noticed any specific 

pattern except the fact that it contains many journalists from Africa and coaches from 

Asia. 

 

         6.3.3   Year 2012 
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Year 2012 is the second consecutive year that Lionel Messi wins the trophy, having a 

great lead from his opponents. Based on the average silhouette plot (B.14) is indicated 

clearly that the optimal number of components for the clustering model is 4. This is due 

to the fact that the average silhouette width when the line reaches 4 number of 

components, is 0.56 which is the highest value of the line chart. Thus, the clustering in 

2012 takes place on a 4 components model. It can be observed from the silhouette plot 

(B.15) that most of the observations are appropriately clustered as the average silhouette 

value for each specific cluster is the following : Cluster 1 (0.54), Cluster 2 (0.66), 

Cluster 3 (0.58) and Cluster 4 (0.67). It has to be mentioned at this point that it is 

reasonable for Cluster 1 to have smaller silhouette value than the rest of the groups, as 

it is the largest one by having 410 observations, when Cluster 2 holds 52, Cluster 3 

holds 25 and Cluster 4 holds 18 observations. Thus, the smaller clusters are most solid 

since they have a common characteristic, in compare with a bigger cluster which is 

reasonable to contain some noise. 

The first cluster constitutes the 68% of the total dataset. Thus, its information is very 

important. By having look in the frequency table obtained for the votes of Cluster 1 

(A.32) it is obvious that Messi has the absolute control of the rankings. In particular, he 

has been voted 256 times first out of 410 and he has not been preferred from any voter 

only 33 times. On the other side, his opponent Cristiano, has been voted with 5 points 

from 70 judges and he has not been ranked 103 times. Moreover, the fact that he has 

been preferred in the second - place from 160 voters is a strong indication for the 

possession of the second - place in the final rankings. In (B.16), it is presented a 

graphical representation of these conclusions for Cluster 1. 

After observing the rest of the clusters someone can notice that the main preferences of 

the voters are not different than those of Cluster 1. Again, in these clusters Messi 

receives the largest amount of first votes among his opponents. What is really 

interesting in those clusters is the fact that all of them have been created depending on 

a specific player, for each one of the three, who has not ranked in such high positions 

in the final rankings. That means that each of these three clusters can be characterized 

based on the corresponding player. To be more specific, in Cluster 2 (A.33), Andrea 

Pirlo has been preferred from all of the judges and he received 5 first - place  votes, 15 

second - place votes and 28 third - place votes. Moreover, this has been indicated from 

the medoid of Cluster 2, Siamak Rahmani, who ranked the Italian legend in the second 

- place. Cluster 3 (A.34)  could be characterized as Zlatan’s cluster. Zlatan Ibrahimovic 

has been preferred from all of the 25 objects of the cluster and has been ranked 5 times 

first, 6 times second and 14 times third. Also, in this cluster, the representative voter, 

Rat Razvan, has ranked Ibrahimovic second. In the final group of voters, someone can 

observe the strong presence of Neymar. The Brazilian football player has been ranked 

5 times second and 13 times third and he has been chosen in the rankings from all of 

the voters. Felipe Baloy, who is the medoid of Cluster 4 can be an strong indication as 

he has ranked Neymar third. 

 It would be very interesting to dig into the clusters and trying to identify a possible 

pattern between the vote of a judge to a player that is not such possible to win the Ballon 

D’ Or. Thus, the attempt is to spot a relationship between the job or the continent of the 

voter and his vote, in such cases. After observing the stacked bar charts, which represent 
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the job and the continent for each specific cluster, we are able to identify a pattern 

between the continent that a voter comes from and his vote. More specifically, in Pirlo’s 

cluster (B.17), someone can observe that the largest proportion of voters, regarding the 

actual size of the continent, comes from Europe. Moreover, in Ibrahimovic’s  cluster 

(B.18), someone can notice that more than a half of the voters come from Europe. 

Finally, in Neymar’s cluster (B.19), it is easy to observe that the 2/3 of the voters come 

from America. If we take under consideration that Pirlo is Italian, Ibrahimovic is 

Swedish and Neymar is Brazilian, we can state that it is observed a pattern between the 

vote, the continent of the player and the continent that the voter comes from.  

 

         6.3.4   Year 2013 

The average silhouette plot for the different number of examined clusters (B.20) 

indicates that the 3 – components model is the most appropriate, in terms of the criteria 

that have been discussed. This is due to the fact that the value in the 3 clusters is slight 

larger than the one of the 2 clusters and the largest among the values. Moreover, the 

line drops suddenly from 3 to 4 clusters. Besides that, the plot of the Elbow method 

(B.21) indicates an ‘angle’ from 3 to 4 clusters, where the fall of within sum square 

starts to be smoother. Thus, based on these indications we are going to implement the 

clustering process with 3 groups.  

Year 2013 was the first year that Cristiano Ronaldo won the award. Besides that, it was 

the first year among the examined period, that the margins between the first, the second 

and third - place were such small. The table of the results of Cluster 1 (A.35) indicate 

a voting pattern that exists in this group. In specific, the first group is consisted of 468 

observations, from which the 395 voters have preferred either Cristiano or Ribery or 

Messi in the first - place (B.22). Because of the size of this group (86% of the dataset),  

it is obvious that the voting pattern that this group provides is a very strong indication 

for the final rankings. The peculiar here is that Ribery has been preferred first more 

times than Cristiano, despite the fact that he has been placed third in the final rankings. 

This can be occurred from this cluster’s medoid, Cunliffe Jason, who ranked Cristiano 

first, Ribery second and Messi third. The reason why the Frenchman has been finally 

ranked third is the ‘extreme’ ranking behavior that the Ribery’s voters have, which has 

been presented also in the Bayesian approach in the same year. By looking at the tables 

of the Clustering results and sum the first - place  votes for each of the two players, it 

occurs that Messi has received in total 119 first - place  votes and Ribery 163 first - 

place  votes. But if we sum the total second - place votes that each one has received, it 

occurs that Messi has received 175 second - place votes and Ribery 78. The third - place 

rankings are quite similar with the previous case. Thus, it is observed that the total 

voters that preferred Messi are more than those who preferred Ribery. As in the 

Bayesian approach, the voters of Messi are observed to be more robust and have been 

split in first and second - place, in contrast to Ribery’s voters who have been gathered 

in first - place without a mass participation in the second one. Since this specific ranking 

behavior and its results are confirmed also in this approach, it would be interesting for 

someone to implement a research in such ranking behaviors in more topics like 

elections that make use of rankings, surveys etc.   
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 Besides Cluster1, the results of the third cluster are also interesting. Despite the fact 

that Cluster 3 is small (37 observations), Messi receives more first - place  votes than 

his two opponents (A.36) and also the key player in this cluster is Iniesta who has been 

preferred first from 12 voters, second from 9 voters and third from 16 voters despite the 

fact that he has been placed 17th  in the final rankings. Thus, someone could state that 

this is a group of Barcelona fans. By looking at the stacked bar chart in (B.23), that the 

presence of Media in this groups is negligible. Also, most of the voters are coaches that 

come from Africa, America and players that come from Asia.  

 

         6.3.5   Year 2014 

It is the second consecutive year that Cristiano Ronaldo is awarded with the ‘FIFA 

Ballon D’Or’ trophy, with a great lead to the other challengers of the title. Beside that 

it is the first year that we are going to perform clustering with many groups. In specific, 

the portioning around the medoids is going to be implemented for 9 groups. This occurs 

from the line chart of the average silhouette vale for the corresponding clusters (B.24), 

which peak is in the 9 components having almost 0.4 as value. It can not be observed 

any ‘breakpoint’ before the 9 components, in order to perform the clustering with less 

number of groups, thus it is going to be performed with the number of components that 

have the highest silhouette value. Moreover, the Elbow method (B.25) does not provide 

us either with a sufficient ‘breakpoint’, except a small one in the point of two clusters. 

After performing the k – medoids algorithm, we observe that the output provides one 

large cluster which contains 280 observations, a smaller one which contains 97 

observations and seven other small clusters. The visualization of the clustered points is 

provided in (B.26) accompanied with the silhouette plot of each specific cluster (B.27), 

with the average silhouette value being 0.39 . 

After observing the created clusters and the medoids of them, someone can notice that 

there is one big cluster (A.37) that consists the 50% of the total dataset and is the 

depiction of the win of Cristiano against his opponents. A graphical representation of 

this cluster is presenting in the following bar chart. 
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Figure 13 : Frequency of Votes for the first three ranked players in Cluster 1, for the 

Year 2011. 

In Figure 13, it can be observed that Cristiano holds the lion’s share in terms of the 

overall and first - place  votes. Also in this figure it can be noticed that Neuer has been 

preferred in the first - place  from exactly the double voters than Messi. If the final 

rankings, where Messi placed 2nd  and Neuer 3rd ,would be taken under consideration 

we could obtain that it is noted a similar ranking behavior like this one in 2013 between 

Messi and Ribery. More specifically, in the other 8 small groups Messi receives much 

more second - place votes than Neuer, who keeps having more first - place  votes than 

the Argentinian. In the overall sum Messi ends up with more points than Neuer, as his 

votes are more normally distributed than the German goalkeeper’s whose votes are 

mainly skewed in the first - place . Thus, the conclusion in both cases (2013 and 2014) 

is that Messi is almost always in the top three, despite the actual rank, while on the other 

hand Neuer and Ribery have not high voting frequency in 2nd and 3rd place.  

Besides Cluster 1, in the remaining 8 clusters a player holds a key role for the creation 

of each cluster. Thus, in each cluster there is always a player that have been preferred 

in the Top – 3 from all the voters of the cluster. Because this case is quite similar to the 

case of the small clusters in 2012, it would be very interesting to identify if the pattern 

between the origins of the player and the origins of the voter, that has been observed in 

2012, is applied also in 2014. After implementing the stacked bar charts for each of the 

8 remaining clusters, we observe that this allegation is also applied in most of these 

clusters. To be more specific, in Cluster 3 (A.38), the key player is Neymar who comes 

from Brazil. If someone looks on (B.28), it is evident that most of the voters come from 
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America. Moreover, in Cluster 5 (A.39), the key player is James Rodriguez who comes 

from Colombia. By observing the (B.29) , one can observe that despite the job each one 

has, almost the 2/3 of the voters come from America. Exactly the same thing happens 

in Cluster 6 (B.30), where the key player is the Argentinian midfielder Di Maria. Also, 

almost the total amount of votes that Yaya Toure got in Cluster 7 (B.31) are from people 

that come from Africa. Finally, in Cluster 8 (B.32), the German Bastian Schweinsteiger, 

has been ranked mainly from Europeans. Thus, from all the above mentioned, there is 

a strong evidence which indicates that when a big cluster, which provides the 

information about the winner of the year exists, then the remaining small clusters are 

shaped driven by the origins relationship between the player to be ranked and the voter.  

 

         6.3.6   Year 2015 

In 2015, both the Silhouette method and the Elbow method provide the information that 

the optimal number of clusters is 2. This is due to the fact that in the point of 2 clusters 

the average silhouette plot (B.33) for the different number of components indicates the 

highest value (0.51) and the line chart of the Elbow method (B.34) indicates a 

‘breakpoint’ in 2 clusters. Thus, we are going to analyze the clustering results of the 

two components model. 

The average silhouette plot for each specific cluster (B.35), denotes a good clustering 

(Cluster 1 : 0.50, Cluster 2 : 0.62). On the other hand, the two clusters are completely 

different in terms of the size. Cluster 1, consists of 473 observations and Cluster 2, 25 

observations.  In Cluster 1, which is the 95% of the total dataset, is displayed the 

absolute ascendance of Lionel Messi and his return to the awards. In (B.36), someone 

can observe that the green bar which represents the first - place  votes that Messi has 

received, is more than 3 times bigger than Cristiano’s green bar. In specific, the 64.69% 

of the total votes that the Argentinian player has received were first - place , in compare 

to the 19.45% of Cristiano. Thus, the figure that represents the votes of Cluster 1 for 

the Top – 3 does not allow for any doubt about the winner of trophy. Messi is the 

complete preponderant of the competition. The other cluster of the final output is very 

small and not able to figure a different result. But it has to be pointed out that it reveals 

a pattern for a specific group of voters who have preferred Alexis Sanchez. The Chilean 

footballer, was selected in the Top – 3 from all of the persons that exist in Cluster 2. In 

specific, he received 2 first – place votes, 10 second – place votes and 13 third – place 

votes, while his position in the final rankings was the 10th . Thus, this cluster has been 

curved with Alexis Sanchez at its center. This is also confirmed from the medoid of 

Cluster 2, Mahamud Raihan, who has ranked third Alexis Sanchez behind Messi and 

Cristiano Ronaldo.  
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Chapter 7 

Cluster Analysis on the Data with the Insertion Sorting Rank (ISR) 

algorithm 

 

Jacques and Biernacki (2012) [13], proposed an alternative model, which scope is much 

more wider than the algorithms that were presented before. The Insertion Sorting Rank 

(ISR) is an algorithm, with a model - based approach, which has a very wide application 

scope in the context of clustering ranking data. The ISR model is set up by modelling 

the ranking generating process, assumed to be a sorting algorithm in which a stochastic 

event has been introduced at each comparison between two objects [14].   

Like the methods that have been presented up to now, the ISR algorithm is about 

clustering data that they are not able to be modelled in a straight forward nonparametric 

way. Such categories are the ranking data that occur from heterogeneous populations 

(different political meaning, different strategies in marketing research, etc.), partial and 

multivariate ranking data. The purpose of this algorithm is to cluster ranking datasets 

which contain complete or incomplete ranking, multivariate or univariate. In our case, 

there exist partial ranking data. The missing entries, in the case of partial ranking data, 

are considered as missing values and inferred in the estimation process. In the case of 

multivariate ranking data, the algorithm is based on an extension of the ISR model, 

which allows the presence of multivariate ranking data under a conditional 

independence assumption on the components of these data. The algorithm was first 

introduced for univariate rankings and by using of the extension of ISR and the 

conditional assumption can take into account the multivariate case, where many 

dimensions are tanking part in the analysis.  

    

     7.1      Theoretical Framework of the Method   

     7.1.1   Model based algorithms, Finite Mixture Models, Latent Class Models 

It was referred in the above paragraph, that the ISR model is a model – based clustering 

approach. This is for the multivariate case of ranking data, because in that case a finite 

mixture model is taken under consideration. In the Finite Mixture Models method, the 

distribution 𝑓 of the variable 𝑋 is considered as a mixture of 𝐾 distributions (𝑓1, … , 𝑓𝑘) 

: 𝑓(𝑥, 𝜃) =  ∑ 𝜋𝑘𝑓𝑘(𝑥, 𝜃𝑘)𝛫
𝑘=1  , where 𝜃 is a vector of parameters 𝜃 = (𝜋′, 𝜃1

′ , … , 𝜃𝑘
′ )′ 

, 𝜋𝑘 is a proportion of 𝑘𝑡ℎ distribution in the mixture and 𝜃𝑘 is a parameter of 𝑓𝑘 

distribution [54]. So, in this case the clusters are not being found by a chosen distance 

measure, like in distance – based models, but a probabilistic model is obtained to 

describe the structure of the ranking data. Thus, the name of this approach is “model – 

based clustering”. We are going to see, in the multivariate instance of ranking data, the 
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way that the analysis is going to be performed with the use of the Finite Mixture Models 

approach.  

The finite mixtures models, as have been described in a previous section, are type of 

latent variable models, where the heterogeneity of the population is assumed to be 

resulted from the existence of two or more distinct homogeneous subgroups or latent 

classes. The latent class model, is a specific case of multivariate discrete categorical 

data, where a set of observed multivariate discrete categorical variables is related to a 

set of latent variables [48]. The latent class analysis, tries to find patterns, groups or 

subtypes of cases in such data (e.g multivariate ranking data). A class is characterized 

by a pattern of conditional probabilities that indicate the chance that variables take on 

certain values. 

 

      7.1.2    Univariate and Multivariate ISR model 

Let’s first explain the difference between univariate and multivariate ranking data in 

the case of the FIFA Ballon d’or data.  In the case of clustering the judges – voters for 

each specific year we construct a matrix which represents the ranking of each player 

that was assigned by the corresponding voter each time, for this specific year (e.g Year 

2010). In this instance, the analysis is under the univariate ranking data case because 

the preferences of one year are taken into account in the analysis. In contrast, if the 

purpose of the analysis was to detect patterns, in a period of years (e.g 2010 - 15) and 

not for one specific year, then the ranking dataset that is going to be analyzed is 

composed of multivariate rankings, where each dimension represents a year and the 

input dataset contains the rankings for each dimension. 

 

       7.1.2.1   The Univariate case 

The ISR model for the case of univariate ranking data is obtained when the assumption 

that a rank datum is the result of sorting algorithms based on pair comparisons, is taken 

under consideration. Then the formula of the ISR model is the following : 

 

 In order to make clear the formula of ISR model for univariate rankings, the 

explanation of the parameters of the formula has to be given. 

𝑥 = ( 𝑥1, … , 𝑥𝑚) ∈ 𝑃𝑚,  where 𝑥 is the ordering representation of the resulting ranking 

of the objects 𝑂1 , … , 𝑂𝑚 . 

𝑃𝑚   is the set of permutations of the first 𝑚 integers. 

 𝜇 ∈  𝑃𝑚  is the modal ranking or reference/central ranking. Modal ranking is the 

sequence of ranks that has the highest probability to occur. If we denote the modal 

ranking as 𝜋0 , the rankings that are most observed in a dataset are close to 𝜋0 . 

𝜋 ∈ [
1

2
 , 1]  is the probability of good pair comparison according to 𝜇 . 
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The sum over 𝑦 ∈  𝑃𝑚  represents  all the possible initial presentations orders to rank , 

with identical prior probabilities equal to 1/m! . 

𝐺 (𝑥 , 𝑦, 𝜇 )  is equal to the number of good paired comparisons during the sorting 

process 

𝐴 (𝑥, 𝑦)  corresponds to the total number of paired comparisons that have been 

implemented . 

 

     7.1.2.2  The Multivariate case 

In the case of multivariate ranking data, the multivariate rank 𝑥 = (𝑥1, … , 𝑥𝑝) is a 

vector where each component of the multivariate rank is a vector 𝑥𝑗 =

(𝑥𝑗1, … , 𝑥𝑗𝑚𝑗), 1 ≤ 𝑗 ≤ 𝑝   which corresponds to the ranking of each one of the 𝑝 

dimensions. The conditional independence assumption of the ISR model for 

multivariate ranking data is that the population of the multivariate ranks is composed 

of K groups in proportions 𝑝𝑘, where the sum of the proportions to the K groups is 

equal to 1 [15]. Thus, based on this assumption, the components of  𝑥 can be assumed 

to be sampled from independent ISR distributions with a corresponding modal ranking 

and good paired comparison probability for each one of the p dimensions [15] .  This 

conditional independence assumption is called latent class model and it can be 

considered such as, since rankings are a specific category of categorical data, as we 

have seen in previous paragraph. 

  

    7.1.3   Estimation of the Model   

The ISR model, uses Maximum Likelihood Estimation (MLE) in order to obtain 

inference. The MLE method, estimates the parameters of the probability distribution by 

maximizing a likelihood function, so that under the statistical model that is assumed in 

this specific case, the observed data are most probable.  

In the case of multivariate rankings, we can approach the estimation of the groups by 

assuming a binary latent variable which records the group membership of the 

observations of the dataset and takes the value 1 if the observation belongs to a certain 

group and 0 otherwise [13]. So, for each one of the observations of a set there is a latent 

variable which demonstrates if the observation belongs or not to a specific group.  Let’s 

assume that 𝑥 = {𝑥1, … , 𝑥𝑛} is a sample of multivariate rankings, 𝑧 = (𝑧1, … , 𝑧𝐾) is 

the set of the corresponding latent variables for K groups and 𝑦 = {𝑦1, … , 𝑦𝑛} , where 

𝑦𝑖 = (𝑦𝑖
1, … , 𝑦𝑖

𝑃)  ∈  𝑃𝑚1 × … × 𝑃𝑚𝑝
 , are the presentation orders of the objects for 

the 𝑖𝑡ℎ observation [13]. Assuming the triplets (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) arise independently, the data 

log likelihood model is obtained. The problem is that the maximization of this 

likelihood is not easy to be done, because of missing data. Then, a solution in order to 

deal with the missing data, is to consider an Expectation – Maximization (EM) 

algorithm. The EM algorithm has the advantage of stability in terms of occurrence of 

missing data and it requires the computation of the conditional expectation of the 

complete – data log – likelihood function given the observed data, at E step, and then 
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the maximization of the likelihood function with respect to the parameters of interest, 

at M step [29]. But, the complete log – likelihood function is not linear for the types of  

𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 , which is an obstacle for the Expectation step of EM algorithm.  

 

     7.1.4   SEM – Gibbs algorithm 

In order to overcome the issue in the E step of EM algorithm, the SEM – Gibbs 

algorithm is used. The SEM algorithm, generates the latent variables 𝑦𝑖 , 𝑧𝑖 and the 

unobserved positions of 𝑥𝑖 (𝑥̂𝑖)from the conditional probabilities that were computed in 

E step, in the stochastic step (S step). The advantage of the SEM – Gibbs algorithm in 

contrast to the EM algorithm, is that these latent variables are generated without 

calculating conditional probabilities at E step, which leads to reducing the 

computational complexity by removing the complicated use of the products of missing 

data. The algorithm achieves this result because of the use of a Gibbs sampling.   

Gibbs sampling is a randomized algorithm, which is used especially when the direct 

sampling is not a straightforward process and consists of drawing samples (𝑥̂𝑖, 𝑦𝑖 , 𝑧𝑖 ) 

consecutively from the full conditional posterior probabilities [31]. The generic idea is 

to resample one variable at a time conditional to the others, by initializing the 

algorithms with random numbers. It is a Markov chain Monte Carlo algorithm 

(MCMC), for obtaining a sequence of observation which are approximately from a 

specified multivariate probability distribution [31].  

So, the SEM -Gibbs algorithm consists of two steps (SE – Gibbs step and M step), from 

which the first step is consisted of three sub – steps . In the first step (SE – Gibbs step), 

is considered a Gibbs sampler generating a chain e.g for generating 𝑦𝑖, the chain is 

𝑦𝑖
𝑗{𝑞,0}

, … , 𝑦
𝑖

𝑗{𝑞,𝑅𝑗}
, in which the last value 𝑦

𝑖

𝑗{𝑞,𝑅𝑗}
 is retained for 𝑦𝑖

𝑗{𝑞}
 . In order for the 

𝑦
𝑖

𝑗{𝑞,𝑅𝑗}
  value to be retained, the size of  𝑅𝑗has to be greater than  

𝑚𝑗 (𝑚𝑗 −1)

2
 , which is 

the maximum Kendall distance between two ranks of size 𝑚𝑗, so that any rank of 𝑃𝑚𝑗
 

can be reached with non – null probability for any arbitrary initialization. Starting from  

𝑦𝑖
𝑗{𝑞,0}

 = 𝑦𝑖
𝑗{𝑞−1}

 , the Gibbs sampler generates 𝑟 ∈ {1, … , 𝑅𝑗} sequences 𝑦𝑖
𝑗{𝑞,𝑟}

. Thus, 

for the incomplete rankings, which are considered as missing data in the algorithm’s 

procedure, the corresponding full rankings are estimated by using this Gibbs chain.  The 

algorithm runs for a number of  iterations. The same process is followed for the other 

two sub – steps, for 𝑦𝑖 and 𝑥̂𝑖 . The second step (M step) of the algorithm consists in 

computing the parameter value 𝜃{𝑞} which maximizes the completed log – likelihood 

computed at the previous step. The parameter value 𝜃{𝑞} is defined as  𝜃{𝑞} =

𝑎𝑟𝑔𝑚𝑎𝑥𝜃∈𝛩𝑙𝑐(𝜃; {𝑥, 𝑥̂{𝑞}}, 𝑦{𝑞}, 𝑧{𝑞}), where 𝑥̂{𝑞}, 𝑦{𝑞}, 𝑧{𝑞} are simulated in the first 

step (E step) . 

 

        

 

        7.1.5   Determine the final model 
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The total procedure is going to run for a number of clusters in order to choose among 

the models with the different clusters which model is more ‘appropriate’, for each 

specific year. In other words, the number of groups that will separate the voters, have 

to be defined. Thus, in order to detect the optimal number of clusters, the Bayesian 

Information Criterion is going to be used. 

The Bayesian Information Criterion or BIC is a very well-known criterion for model 

selection among a finite set of models. When fitting models, in order to increase the 

likelihood, it is possible to add more parameters in the model which may lead to overfit. 

The BIC introduces a penalty term for the number of parameters that exist in a model, 

in order to protect it by overfitting. It is closely related to Akaike Information Criterion 

or AIC, as they both are penalized – likelihood criteria. The AIC measure tries to 

balance between the model accuracy and model complexity, as it uses the maximum 

likelihood estimate and the number of parameters, in order to estimate the information 

lost in the model. It can be observed that the goal of the two criteria is pretty similar, as 

both try to prevent from overfitting. The BIC measure can be defined as BIC = 

−2ln(𝐿̂) + ln(𝑛) 𝑘 , where 𝐿̂ is the maximized value of the likelihood function of the 

model, 𝑛 is the number of data points and 𝑘 is the number of free parameters to be 

estimated [58]. In order to detect the optimal number of clusters for the models, we are 

going to create line plots where in the x – axis are going to be the number of examined 

clusters and in the y – axis are going to be the values of BIC. The classical decision, in 

terms of the BIC value, is to choose the number of clusters that minimize the BIC value. 

But it has to be pointed out that the choice of the number of clusters for each year’s 

model has to be an integration of small BIC and proper number of groups, in terms of 

the interpretation of the voting behavior. In other words, if a model with 2 groups has 

slight smaller BIC value than a model with 3 groups, we are not going to select the 

model with the 2 groups as a straightforward process, because the model with 3 groups 

could reveal one more pattern of voting behavior which may be useful for the analysis. 

For that reason, in such cases where the absolute differences of the values between 

models of different number of components are not great, we will try to find a ‘knee – 

point’ where after this point the BIC values will increase more sharply, in compare with 

the previous number of groups. Thus, in such cases we will based on this point and to 

a number of components that will be helpful for the voting patterns detection.  

 

       7.2   Application of the Method 

      7.2.1   Package Overview 

In this chapter, is presented the Application of the model – based approach that has 

been discussed in the previous section. Thus, in order to implement the Insertion Sorting 

Rank algorithm in the FIFA Ballon d’Or data, for the period 2010 – 15, we make use 

of the ‘Rankcluster’ package. The ‘Rankcluster’ package, was first released in 

02/09/2013 as a package that could take into account both multivariate and partial 

ranking data, through the implementation of a model – based clustering algorithm. The 

algorithm is working by taking into account the heterogeneity of the rank population 
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that is modelled. This is achieved with a conditional independence assumption that is 

considered for the multivariate rankings.    

 

   7.2.2    Data Input Format 

The input data of the ‘Rankcluster’ package, have to be given in specific representation. 

The ranking representation 𝑟 = (𝑟1, … , 𝑟𝑚), where 𝑟𝑚 is the rank of the 𝑚 – th object, 

contains the ranks assigned to the objects from one judge, and means that the 𝑖 −  th 

object is in the 𝑟𝑖 − th position. In Rankcluster’s functions, ranks have to be given in 

the ranking notation. Thus, the input data parameter must be a matrix, with every row 

corresponding to a rank. The missing positions that occurred because of the partial 

ranks, should be denoted by 0. Also, 1 indicates the most – liked alternative, 2 indicates 

the second most – liked object and 3 denotes the third most – preferred player.  

 

     7.2.3   Estimation of the Model 

In order to perform this model – based clustering method to the partial ranking data and 

obtain estimations for the potential group that each voter belongs to, based on a mixture 

of ISR model that was proposed in the theoretical part of the application, we are going 

to use the ‘rankclust’ function from the ‘Rankcluster’ package. 

The arguments that are used in the function, in order to obtain the result, are the 

following :  

• data : A data matrix, where each row is a ranking and the missing elements are 

denoted with 0 or NA. As it has been already mentioned previously, the data 

must be in the ranking notation. 

• m : The number of columns of the data matrix. 

• K : An integer or a vector of integers with the number of clusters that are going 

to be obtained. The algorithm is going to obtain clustering results for each one 

of the number of desired clusters.  

• criterion : The penalty criterion that is going to be used in order to the 

appropriate number of cluster being chosen. The possible choices are the ‘BIC’ 

and the ‘ICL’ criterion. 

• Qsem : The total number of iterations for which the SEM algorithm is going to 

be repeated. 

• Bsem : The value of burn – in period for SEM algorithm. As burn – in period 

is described the practice of throwing away some iterations, before the algorithm 

is going to run normally by using each iteration in the calculations [7]. The 

name ‘burn – in’ comes from electronics, where many electronic components 

fail quickly and those which don’t, is a more reliable subset.        Thus, a burn 

– in is done in the factory to eliminate the worst ones [7]. 

• Ql : The number of iterations of the Gibbs sampler for estimation of log – 

likelihood. 

• Bl : The burn – in period for the estimation of the log – likelihood. 
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• maxTry : The maximum number that the algorithm is being put for restart, in 

case of non convergence. 

• run : The number of runs of the algorithm for each number of clusters is given 

by the value of K. 

In our case, the values that are being set as input are the following : 

✓ As data, has been set the matrix with the partial rankings of the players, for each 

of the years 2010 – 15. The matrix that is used each time, corresponds to the 

year for which the algorithm is implemented. 

 

✓ As K, we set the vector 1:5. That means that the algorithm is going to obtain 

results for 1 cluster, 2 clusters, etc., up to 5 clusters. The reason that these 

integers have been selected, is the computational burden of the algorithm. As 

the number of clusters, that are included in the runs, increases, the computation 

of the results tends to become slower and the endurance of the machine used for 

the computation decreases. Thus the number of times -  number of clusters that 

the ISR algorithm is going to run, should be in compliance with these 

constraints. 

 

✓ The criterion that has been chosen for the selection of the best model, among 

the models with the different number of clusters, is the BIC penalty criterion. 

 

✓ For the rest of the arguments, have been used values that are compiled with the 

restricted resources due to the computational complexity of the algorithm and, 

at the same time, are able to produce results that correspond to the goals of the 

analysis. The algorithm has been put to run 2 times, for each specific number of 

clusters. Also, the algorithm has been set to restart up to 3 times, in case of non 

convergence. 

 

The output of the run is stored in a different variable, for each of the years 2010 – 15. 

These outputs contain a bunch of information for the clustering results and the different 

distances between the estimations and the current values, and can be approached from 

the slots of the output’s class. Among this information, the summary of the clustering 

result contains the observations with the highest probability and highest entropy, for 

each cluster. The probability is estimated by using the last simulation of the presentation 

orders used for the likelihood approximation and its output exhibits the best 

representative of each cluster. On the other hand, the entropy output illustrates the less 

confidence in the clustering of each observation. Thus, the observations with the highest 

probability can be considered as the voting representatives of the rest of the voters in 

the cluster and the observations with the highest entropy can be considered as the less 

confident and representative voters in that specific cluster. 

 

 

       7.2.4   Computational Time 
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Before providing the algorithm’s obtained results, it has to be mentioned the 

computational time needed for the implementation of the ISR method. This stands for 

the general evaluation of the clustering method by taking under consideration the 

difficulties in the implementation of the algorithm, in terms of the machine e.g 

execution time, requirements of machine’s capabilities.  

 

From the computational point of view, the FIFA Ballon D’Or datasets are challenging 

since the size of objects that are about to be ranked is large (= 23) and the presence of 

partial rankings is also sizeable (the percentage of the ranking elements, that is missing, 

is greater than 80% of each dataset). For this reason, a small number of iterations (Qsem 

= 100, Ql = 300) has been chosen with a respectively 1:5 clusters, in order to eliminate 

the computational time and the sources that were required for the drawing of the results. 

With these iteration numbers and clusters that the algorithm run for, took about 8 – 9 

hours per run (laptop 1.30GHz CPU). At the same time, the implementation of another 

process in the machine while the algorithm was still running, was very slow and almost 

unachievable.  

 

Most of this computing time is consumed in the likelihood approximation, at each run 

of the algorithm. The reason is the high proportion of missing elements, which leads to 

a large number of different modal rankings, simulated during the SEM – Gibbs 

algorithm and then to a large number of likelihood approximations. It has to be 

mentioned at this point that, the retained parameters at the end of the estimation 

algorithm are those leading the highest approximated likelihood. Another fact that is 

has to be referred is that the small number of iterations probably makes the 

implementation of the algorithm feasible but, at the same time, the variabilities of 

parameters estimations are expected to be larger.  

 

 

        7.3     Results 

 

       7.3.1   Year 2010 

 

In Year 2010, the plot of BIC for the different number of groups is the following : 
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Figure 14 : The BIC plot used to determine the final model’s number of clusters. 

 

By having a look on the Figure 14, someone can observe that the model with 4 

components provides the smallest BIC value. Moreover, we can notice that the absolute 

differences between the values of BIC for different number of components are small. 

Based on the smallest value of BIC, the 4 – components model is going to be selected 

as the final model.  

 

The proportion of observations in each cluster is the following: Cluster 1 – 6.35% (23 

observations), Cluster 2 – 34% (150 observations), Cluster 3 – 15.06% (65 

observations) and Cluster 4 – 44.47% (187 observations). It has to be mentioned that, 

Year 2010 is very different in compare with other years. It is the only year, in the period 

under study, that the dipole Messi – Ronaldo did not exist and Cristiano was not even 

in the Top – 5 players. This is the reason that justifies the presence of players that are 

not in the Top – 3  in most of the remaining years. An example of such a player is Diego 

Forlan, who has been ranked fifth in the final rankings of 2010, and has received the 

largest amount of votes in Cluster 1 (A.40).  

 

By looking at the tables that represent the votes in this year, someone can observe that 

the voting difference between the three claimants of the title is small. This can be also 

viewed by observing the four different clusters that have been shaped and illustrate the 

preferences of the voters. Especially, in the bar chart that represents the percentages of 

votes for Messi, Iniesta and Xavi in Cluster 4 (B.37), is depicted the small difference 

in votes. The group that displays the win of Messi is the second (B.38), where the 

Argentinian has much bigger proportion of first - place votes in compare with his 

opponents, while the amount of second and third - place votes are not such different 
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between them. Besides the fact that the winner of the trophy was a Barcelona player, 

2010 is a year that all the Top – 3 players were playing for Barcelona. The preference 

stream for Barcelona players is not a surprise if someone considers that the season 2009 

– 10, was a very good seasons for the Catalan team. This can be asserted also from the 

fact that in all the plots that represent the job of the voters and the continent that the 

voters come from, has not been detected a pattern that reveals any relationship between 

the vote and someone of these two factors (B.39, B.40, B.41, B.42). This can be 

interpreted as a strong indication for the assumption that in year 2010, the job and the 

origins of the voters did not affect their final preferences. 

 

 

        7.3.2   Year 2011 

 

Based on the BIC plot of Year 2011 (B.43), for the different number of components, 

we conclude that the optimal number of clusters to fit the model is 2, because the line 

reaches the smallest value of BIC when the examined groups are two. Thus, we perform 

the ISR approach for two clusters.  

 

The lead of Messi, in terms of votes, in this year is extraordinary. In the following figure 

is presented the distribution of votes for the Top - 6 nominees for the 2011 FIFA Ballon 

D’Or. The plot has been constructed to describe the Cluster 2 which consists the 73% 

of the total dataset. 
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Figure 15 : Frequency of Votes for the Top - 6 in Cluster 2,  Year 2011. 

 

From Figure 15, someone can observe that Messi has got an amount of first - place  

votes which is more than the lion’s share. The orange bar of Cristiano Ronaldo 

illustrates that he has been ranked after Messi from almost the 50% of the Cluster. 

Moreover, the black bars of the rest 4 players indicate that, despite the fact that they 

frame the Top – 6, the sum of total points they have got is very poor. The ascendancy 

of Messi in Year 2011 is confirmed also from the objects that have the highest 

probability and highest entropy. It is observed that, despite the fact that the voters with 

highest probability are the most representative objects of a cluster and the voters with 

highest entropy are the less representative objects of a cluster, the 4 different objects 

that have the highest probability and entropy for each of the two groups contain the 

same values in the first two positions and differ in the third. Not surprisingly, in the 

first position is ranked Lionel Messi and in the second one Cristiano Ronaldo. This 

indicates that the influence of Messi in the first position and Cristiano in the second, is 

that big, that neither the less representative object of a cluster has voted in a different 

way for these two places.  

  

 

        7.3.3   Year 2012 

 

As in previous years, in order to decide the appropriate number of clusters for which 

we are going to implement the Insertion Sorting Rank algorithm, we observe the plot 

of BIC versus the candidate components. Based on it (B.44), the model is fit in 3 

clusters. This happens because from the point of 3 clusters to the one of the 4 clusters 

it is observed a sharp increase of the BIC value, which becomes sharper from the point 

of 4 clusters to the one of 5 clusters. Thus, we choose the 3 components model as the 

best, in terms of the BIC increase. 

 

 It has been seen also in the previous approaches that, 2012 was the third consecutive 

year that Lionel Messi won the award and the second in a row with such a big lead from 

his opponents. Besides that, the dipole Messi – Ronaldo is getting more and more stable 

in the first two positions of the final rankings. By looking at the tables (A.41, A.42, 

A.43) that present the votes for all the players in each cluster, it is very easy to observe 

that the captain of Barcelona is first in the preferences in all of these clusters and 

Cristiano is also the second choice for the largest amount of voters. Moreover, from the 

bar charts that present the votes frequency for each of the Top – 4 players (B.45, B.46, 

B.47), in every cluster, it can be seen that the amount of voters that preferred a player 

in the first - place , second - place, etc. and the amount of those that they did not prefer 

a player in the first three positions, are proportionally similar in all the three clusters. 

What is really remarkable in this year, is the fact that the people that prefer a player 

who is outside the dipole are very few. Even the black bars of Iniesta and Xavi, who 
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were ranked, correspondingly, third and fourth in the final rankings, are very large. 

Especially the amount of voters that did not prefer Xavi (4th in the final rankings) is 

greater than 80% of the total voters, in each cluster. This fact accompanied with the 

astonishing amount of first - place  votes for Messi, in second consecutive year, bare 

the lack of competition between the dipole and the rest of the players.  

 

 

           7.3.4   Year 2013 

 

As in the previous years, on the line chart that exists in the Appendix (B.48),  is 

presented the change of BIC value while the number of clusters are increasing. Based 

on this figure, the line that depicts the trend of the BIC value through the different 

number of components, is track to have a sharp decrease from the point of 2 clusters to 

the one of 3 clusters and after this point starts to increase again. Thus, it is observed a 

‘knee point’ when the line approaches the 3 clusters, which provides an indication that 

the optimal number of groups for fitting the ISR algorithm, is 3. For that reason, we 

implement the clustering of the voters on 3 clusters. 

 

The results of the clustering show that the voters in 2013 are separated in 2 large groups, 

that consist almost the 93% of the dataset, and 1 small group. More specifically, the 

first cluster contains the 43.8% of the dataset (235 observations), the second cluster 

contains the 6.83% of the dataset (43 observations) and the third cluster contains the 

49.35% of the dataset (263 observations). It is clear from the results of the first cluster 

(A.44), that the difference in the first - place  votes between Ronaldo and Ribery is very 

small. On the other hand, the Frenchman has much fewer votes than Cristiano and 

Messi, in terms of second - place votes. Let’s have a look of the votes on the third 

cluster. 



83 
 

 

Figure 16 : Frequency of Votes for the Top - 3 in Cluster 3,  Year 2013. 

 

The same voting behavior pattern that we have spotted in the first cluster, is revealed 

also in the third cluster. From the above figure, someone could assume that the main 

reason that Ribery did not win the trophy was the large amount of voters that did not 

prefer him in compare with his opponents, despite the fact that he overcomes the other 

two candidates in first – place votes, in this cluster. At this point, it has to be reminded 

to the reader that Cristiano Ronaldo won the award in 2013, with very small lead of 

points to the second Lionel Messi and the third Franck Ribery. Thus, in such a year 

when the competition is that fragile every vote matters. This bar chart is an earmark of 

such a situation, because it can be observed that even Ribery had the most first - place  

votes, he came third because he had also the largest percentage of voters that did not 

rank him at all. At the same time, despite the fact that Lionel Messi has a small lead in 

first - place  and second - place votes, he got left behind in third - place votes, in compare 

with the corresponding votes of Cristiano and that is the reason he remained second.  

 

As in previous methods, Cluster 3 has been chosen on purpose for presentation because 

it does not depicts a clear ascendance of a player and ,thus, it is a great confirmation of 

the theory which claims that when the difference of points between some candidates is 

marginal, the candidate who would have been preferred from larger amount of voters, 

wins the award, no matter the genre (1st place, 2nd place, 3rd place) of the vote. 

Moreover, the fact that Ribery has been preferred many times first and very few times 

in the second or third - place, is a strong indication of how difficult is for a player to 

break the dipole apart and make his position more robust throughout the years. It is also 
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a verification of the voting behavior that has been detected in the previous methods, for 

the same year. 

 

           7.3.5   Year 2014 

 

Based on the BIC plot for 2014 (B.51), it is observed that the smallest BIC value is in 

2 clusters. Furthermore, in that point, the line starts to increase, so it can be considered 

also as a ‘knee point’ of a small BIC value. We are able to notice, at this point, that the 

approach of ISR provides us with a model which number of clusters are relatively small, 

in compare to the Bayesian and the K – medoids model which have provided a large 

number of clusters, with an individual information in each one. This is an indication 

that ,probably, should have been examined more clusters in the fit of the model, in the 

ISR approach for 2014, which have not been examined due to the computational burden 

of many clusters in this method. 

 

Besides that, it is clear that the voting behavior that has been detected in the previous 

methods, for Neuer’s voters, is ascertained also in this approach. If Cristiano Ronaldo 

would be excluded from the analysis of the two clusters, as his proportions of votes are 

similar in the two groups, we are able to spot the difference that works as the ‘separation 

cause’ between the two groups and that is the votes for Messi and Nuer. From the bar 

chart that represents the preferences for the Top – 3 in the first cluster (B.52), which 

consists the 75.73% of the dataset, someone can observe that the first – place votes that 

were assigned to the two players are equal, but Messi has been voted much more times 

in the other two places in compare with the German player. On the other hand, in Cluster 

2 (B.53), it is observed a clear preference to the goalkeeper of Bayern Munich. The first 

– place votes for Neuer were the 21% of the total first – place votes, while on the same 

time, the corresponding votes for Messi were 6%. Furthermore, this can be evaluated 

from the votes of the most representative objects of the two clusters that have got the 

highest probability value. For the first cluster, Mahamud Raihan ranked first Cristiano, 

second Messi and third Neuer. Contrarily in the second cluster, Vladimir Petkovic has 

ranked first Cristiano, second Neuer and third Messi. Based on the bar plots, 

accompanied with the votes of the most representative objects for each cluster, the 

difference in the two clusters is evident. But, despite the fact that Neuer is more 

preferable in this cluster than Messi, the second – place and third – place points that 

have been assigned to the Argentinian are somewhat more. Thus, the voting pattern that 

has been detected in the previous chapters, for the same year but also in 2013, is 

confirmed after the analysis of the clustering findings.  
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          7.3.6   Year 2015 

 

From the plot of BIC for the Year 2015 (B.54), it is observed a ‘knee point’, where the 

value of the criterion starts to increase sharply. This event happens when the line 

approaches the 4 clusters. Thus, we fit the ISR model on 4 clusters, for 2015. 

 

After running the algorithm and looking at the output, the proportions of observations 

that each cluster has are the following : Cluster 1 → 122 observations (23.9%), Cluster 

2 → 102 observations (20.28%), Cluster 3 → 166 observations (34.13%), Cluster 4 → 

108 observations (21.68%). We notice that the observations are close to uniformly 

distributed throughout the clusters. By looking at the table of Cluster 1 (A.46), it is 

observed that Messi is the total winner in this group, by having an enormous amount of 

first – place votes. Besides him, Cristiano has been voted many times in the second - 

place. Besides the dipole, someone can notice that the ranking rates of Suarez, Muller 

and Neymar are high, in compare with the rest of the players. In Cluster 2 (A.47), Messi 

retains his outstanding power in points. Also, Cristiano’s second – place rates are 

preserved in a high level. The difference with Cluster 1, is found on the much larger 

amount votes that Neymar has received from the audience that consists this group. The 

rankings in the fourth cluster (A.48) are very similar to those of the second cluster. In 

Cluster 3 (A.49), while the rates of Top – 3 (Messi, Ronaldo, Neymar) are proportional 

to those of Cluster 2, it is observed an increase in votes of players that have not been 

preferred almost at all in the previous clusters. Such players are Neuer, Lewandowski 

and Hazard.  

 

After analyzing the results in each cluster, we construct stacked bar plots to detect 

indications of possible affect, to the preference of a group of voters, from the origins of 

these voters. By looking at the figures (B.55, B.56, B.57, B.58), we can observe that 

there has not been identified a specific pattern in any cluster. This fact supports the 

theory that has been presented in a previous section, which claims that when a player 

or some players have a great performance in a season, the votes that he is going to 

received do not depend on the country that the player comes from. It has to be reminded 

that this theory is assumed only for the players that exist in Top – 3, for each year.   
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Chapter 8 

Conclusions 

 

The purpose of this Thesis was to present the fundamental notions in the context of 

ranking data by providing ways to visualizing, modeling and clustering partial ranking 

data. Also, by applying three different clustering methods in the manipulated FIFA 

Ballon D’Or datasets in order to separate the voters in different groups, according to 

their preference, and trying to detect possible voting behavioral patterns that could 

affect the final votes.  

 

In the first Chapter it was conducted a brief description of the topics that would be 

represented in the next chapters. These were the concepts regarding the presentation of 

FIFA Ballon D’Or voting method, the notion of ranking data and clustering. Also, were 

presented the main goals of the Thesis.  

In Chapter 2, we described the basic classes of ranking data models. After presenting 

the first basic separation between probability models and probit models, we further 

expanded the frame to the basic categories of such models. Especially, the focus was 

put on the categories of probability models, which are mainly used in the clustering 

applications of the Thesis. Also, we highlighted some of the pros and cons, that these 

models have, regarding their compatibility with partially ranked data. Chapter 2 ends 

with a brief description of the decision trees for ranking data.                                                          

In the third Chapter, we presented the FIFA raw datasets in the format that were 

retrieved from the source. Moreover, we showed the cleaning and the  manipulation 

process that the datasets went through in order to be transformed in a ranking format. 

Furthermore, some fundamental descriptive statistics for ranking data were presented 

and implemented, in order to get a better understanding of the data.                                                                                   

In Chapter 4, we dealt with the concept of graphical representation for ranking data. 

This topic is very interesting and challenging, especially when partial ranking data exist 

because most of the techniques are different, in order for the missing positions to be 

‘faced’. The main techniques that were presented for visualizing ranking data are the 

permutation polytope, multidimensional methods such as the multidimensional 

unfolding technique, the multidimensional preference analysis, the classic – metric and 

the non – metric multidimensional scaling method, by mentioning also how suitable 

each method is for partially ranked datasets. We focused on the non – metric 

multidimensional scaling approach, since it was applied to the FIFA partial ranking 

datasets.  

In Chapter 5, we applied cluster analysis to the FIFA datasets based on the Bayesian 

mixture of Plackett – Luce models. In the first part of the chapter, some fundamental 
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concepts of the approach, such as the notion of Plackett – Luce model, the maximum a 

posteriori estimation of the model’s parameters through EM algorithm and Gibbs 

sampling, and the Bayesian criteria that were used for the selection of the ‘appropriate’ 

model, were covered. In the second part, we described the main features of the method’s 

application in R and in the third part, we applied the method in the FIFA datasets for 

each year of the period 2010 – 15. The structure of Chapter 5, was also followed in the 

sixth and seventh chapter. In Chapter 6, we worked with the K – medoids algorithm in 

order to cluster the voters of the FIFA datasets. In the theoretical framework of the 

method, we described the K – medoids or Partitioning Around Medoids (PAM) 

procedure. Also, the Kendall’s distance and its properties, were also presented, as it is 

the distance metric that is used in the algorithm. Besides these, we presented the 

Average Silhouette value approach and the Elbow method, in order to determine the 

‘best’ model among the candidates and evaluate it. After a description of the basic 

features of the method’s application in R, we applied it for each specific year. 

Finally, in Chapter 7, the Insertion Sorting Rank (ISR) algorithm was taken into account 

for the clustering of the voters. The univariate and multivariate ISR models, and the 

models estimation through the Maximum Likelihood Estimation approach and the SEM 

– Gibbs algorithm, were presented. Besides these, the Bayesian Information Criterion 

(BIC) was also described as a criterion for selecting the ‘appropriate’ number of clusters 

for the final model. Afterwards, as in the previous methods, we presented the main 

features of the method’s application in R and we applied the ISR clustering approach 

on the FIFA partial ranking datasets. 

 

From the clustering applications that were implemented in the above chapters, we 

managed to group the voters according to their preference, compare the results and 

abstract some very interesting conclusions. We detected a fascinating voting behavioral 

pattern, which was spotted in 2013 and 2014. In particular, it was identified that when 

two players are very close, in terms of amount of votes,  it is preferable for a player to 

be ranked in a more normal distributed way in the three places (1st ,2nd,3rd ), rather than 

ranked many times in the first - place  and simultaneously, very few times, in the other 

two places. This conclusion was distinguished in 2013 and 2014, in all the three 

methods and is about the ‘battle’ for the second - place that had been taken place 

between Messi – Ribery, in 2013, and Messi – Neuer, in 2014.  

 

Another fascinating pattern that was detected, is about the relationship between the 

origins of a voter and his final vote. More specifically, we explored the voters in many 

clusters, in terms of the continent that they come from and their job. It was observed 

that in cases where the winner of the award is obvious and is represented by a large 

cluster, the remaining smaller clusters are shaped driven by the origins relationship 

between the player that is voted and the voter. This indication was not proved 

statistically, but it was confirmed as a strong indication of pattern existence in such 

cases, through the analysis that was implemented in the corresponding years in all the 

methods.  
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Regarding the above conclusions, it would be very interesting if someone could prove 

statistically these voting behavioral patterns and the origins relationship that was 

indicated that affects the vote, in specific cases. Moreover, we encourage the reader to 

improve the above – mentioned approaches by trying to reduce the computational time 

in the ISR method or by using different distance, that is going to be compatible with 

the partial rankings, than the Kendall’s distance in the K – medoids method or by trying 

to apply visualization methods that are about complete rankings (e.g permutation 

polytope) to incomplete rankings. Finally, we hope that this Thesis is going to be a very 

useful tool for someone who wants to learn about the fundamental notions of ranking 

data and work with clustering methods in the context of partial ranking data.  
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APPENDICES 

 

APPENDIX A : TABLES 

Chapter 4 

 

 

Table A.1 : Marginal matrix of the players for Year 2010. 

 

 

Table A.2 : Matrix of the players pairwise frequencies for Year 2010. 
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Table A.3 : Marginal matrix of the players for Year 2013. 

 

 

Table A.4 : Marginal matrix of the players for Year 2014. 

 

 

Table A.5 : Marginal matrix of the players for Year 2015. 
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Chapter 5 

 

 

Table A.6 : P-values for the Bayesian PL models assessment, Year 2010 

 

  

Table A.7 : The amount of votes that each player received in Cluster 1, Year 2010. 
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Table A.8 : The amount of votes that each player received in Cluster 2, Year 2010. 

 

Table A.9 : The amount of votes that each player received in Cluster 3, Year 2010. 
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Table A.10 : Model comparison criteria values, Year 2011.  

 

 

Table A.11 : P-values for the Bayesian PL models assessment, Year 2011. 

 

 

Table A.12 : Model comparison criteria values, Year 2012. 

 

 

Table A.13 : P-values for the Bayesian PL models assessment, Year 2012. 
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Table A.14 : The amount of votes that each player received in Cluster 1, Year 2012. 

  

Table A.15 : The amount of votes that each player received in Cluster 3, Year 2012. 
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Table A.16 : The amount of votes that each player received in Cluster 2, Year 2012. 

 

 

Table A.17 : Model comparison criteria values, Year 2013. 

 

 

Table A.18 : P-values for the Bayesian PL models assessment, Year 2013. 
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Table A.19 : The amount of votes that each player received in Cluster 1, Year 2013. 
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Table A.20 : The amount of votes that each player received in Cluster 2, Year 2013. 
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Table A.21 : The amount of votes that each player received in Cluster 3, Year 2013. 

 

 

Table A.22 : Model comparison criteria values, Year 2014. 

 

 

Table A.23 : P-values for the Bayesian PL models assessment, Year 2014. 

 

  

Table A.24 : The amount of votes that each player received in Cluster 2, Year 2014. 
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Table A.25 : The amount of votes that each player received in Cluster 6, Year 2014. 

 

 

Table A.26 : Model comparison criteria values, Year 2015. 
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Chapter 6 

 

 

Table A.27 : The amount of votes that each player received in Cluster 1, Year 2010. 

 

  

Table A.28 : The amount of votes that each player received in Cluster 2, Year 2010. 
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Table A.29 : The amount of votes that each player received in Cluster 3, Year 2010. 

 

  

Table A.30 : The amount of votes that each player received in Cluster 1, Year 2011. 
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Table A.31 : The amount of votes that each player received in Cluster 2, Year 2011. 

 

 

Table A.32 : The amount of votes that each player received in Cluster 1, Year 2012. 
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Table A.33 : The amount of votes that each player received in Cluster 2, Year 2012. 
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Table A.34 : The amount of votes that each player received in Cluster 3, Year 2012. 

  

Table A.35 : The amount of votes that each player received in Cluster 1, Year 2013. 
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Table A.36 : The amount of votes that each player received in Cluster 3, Year 2013. 

 

  

Table A.37 : The amount of votes that each player received in Cluster 1, Year 2014. 
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Table A.38 : The amount of votes that each player received in Cluster 3, Year 2014. 

 

Table A.39 : The amount of votes that each player received in Cluster 5, Year 2014. 
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Chapter 7 

 

 

Table A.40 : The amount of votes that each player received in Cluster 1, Year 2010. 

 

  

Table A.41 : The amount of votes that each player received in Cluster 1, Year 2012. 
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Table A.42 : The amount of votes that each player received in Cluster 2, Year 2012. 

 

  

Table A.43 : The amount of votes that each player received in Cluster 3, Year 2012. 
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Table A.44 : The amount of votes that each player received in Cluster 1, Year 2013. 

 

 

Table A.45 : The amount of votes that each player received in Cluster 3, Year 2013. 
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Table A.46 : The amount of votes that each player received in Cluster 1, Year 2015. 

 

  

Table A.47 : The amount of votes that each player received in Cluster 2, Year 2015. 
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Table A.48 : The amount of votes that each player received in Cluster 4, Year 2015. 

 

  

Table A.49 : The amount of votes that each player received in Cluster 3, Year 2015. 
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Packages Description Citation 

data.table The package was first 

released on 01/02/2017. 

It provides fast 

aggregation on large 

datasets, fast ordered 

joins, fast modifications 

of columns by group. 

Also, it offers a natural 

and flexible syntax, for 

faster development. 

Matt Dowle and Arun Srinivasan 

(2017). data.table: Extension of 

`data.frame`. R package version 

1.10.4. https://CRAN.R-

project.org/package=data.table 

 

pmr The package was first 

released on 14/05/2010. 

It provides descriptive 

statistics (mean rank, 

pairwise frequencies, 

marginal matrix), 

probability models 

(Luce models, distance 

– based models, rank – 

ordered logit models) 

and visualization with 

multidimensional 

preference analysis, for 

ranking data. Currently, 

only complete rankings 

are supported by this 

package. 

Paul H. Lee and Philip L. H. Yu 

(2015). pmr: Probability Models 

for Ranking Data. R package 

version 1.2.5.https://CRAN.R-

project.org/package=pmr 

 

PLMIX The package was first 

released on 21/12/2016. 

It provides functions to 

fit and analyze finite 

mixtures of Plackett – 

Luce models, for partial 

top rankings/orderings 

within the Bayesian 

framework. It provides 

MAP estimates via EM 

algorithm and posterior 

MCMC simulations via 

Gibbs sampling. It also 

fits MLE as a special 

case of the 

noninformative 

Bayesian analysis with 

negligible priors. 

Mollica, C., Tardella, L. (2016). 

Bayesian Plackett-Luce mixture 

models for partially ranked data. 

Psychometrika 

amap The package was first 

released on 17/12/2014. 

Antoine Lucas (2014). amap: 

Another Multidimensional 

https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=pmr
https://cran.r-project.org/package=pmr


115 
 

It includes standard 

hierarchical clustering 

and k – means. It 

optimizes the 

implementation, with a 

parallelized hierarchical 

clustering, and allows 

the possibility of using 

different distances like 

Euclidean or Spearman 

(rank – based metric). It 

also offers the 

implementation of 

principal component 

analysis.  

Analysis Package. R package 

version 0.8-14.https://CRAN.R-

project.org/package=amap 

goeveg The package was first 

released on 24/01/2017. 

It can be described as a 

collection of functions 

useful in (vegetation) 

community analyses. It 

includes automatic 

species for ordination 

diagrams, species 

response curves and 

rank – abundance curves 

as well as calculation 

and sorting of synoptic 

tables.   

Friedemann Goral and Jenny 

Schellenberg (2017). goeveg: 

Functions for Community Data 

and Ordinations. R package 

version 0.3.3. https://CRAN.R-

project.org/package=goeveg 

vegan The package was first 

released on 17/01/2017. 

It provides tools for 

descriptive community 

ecology. It contains 

fundamental functions 

of diversity analysis, 

community ordination 

and dissimilarity 

analysis. Most of its 

multivariate tools can be 

used for other data types 

as well. 

Jari Oksanen, F. Guillaume 

Blanchet, Michael Friendly, 

Roeland Kindt, Pierre Legendre, 

Dan McGlinn, Peter R.Minchin, 

R. B. O'Hara, Gavin L. Simpson, 

Peter Solymos, M. Henry H. 

Stevens, Eduard Szoecs and 

Helene Wagner (2017). vegan: 

Community Ecology Package. R 

package version 2.4-2. 

https://CRAN.R-

project.org/package=vegan 

vegan3d The package was first 

released on 15/06/2016. 

It provides static and 

dynamic 3D plots to be 

used with ordination 

results and in diversity 

analysis, especially with 

the vegan package. 

Jari Oksanen, Roeland Kindt and 

Gavin L. Simpson (2016). 

vegan3d: Static and Dynamic 3D 

Plots for the 'vegan' Package. R 

package version 1.0-1. 

https://CRAN.R-

project.org/package=vegan3d 

https://cran.r-project.org/package=amap
https://cran.r-project.org/package=amap
https://cran.r-project.org/package=goeveg
https://cran.r-project.org/package=goeveg
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan3
https://cran.r-project.org/package=vegan3
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MASS The package was first 

released on 10/11/2015. 

It contains functions and 

datasets to support 

Venables and Ripley, 

‘Modern Applied 

Statistics with S’. 

Venables, W. N. & Ripley, B. D. 

(2002) Modern Applied Statistics 

with S. Fourth Edition. Springer, 

New York. ISBN 

rgl The package was first 

released on 08/03/2017. 

It provides medium to 

high level functions for 

3D interactive graphics, 

including functions 

modelled on base 

graphics (plot3d(), etc.), 

as well as functions for 

constructing 

representations of 

geometric objects 

(cube3d(), etc.). Output 

may be on screen using 

OpenGL, or to various 

standard 3D formats. 

Daniel Adler, Duncan Murdoch 

and others (2017). rgl: 3D 

Visualization Using OpenGL. R 

package version 0.98.1. 

https://CRAN.R-

project.org/package=rgl 

scatterplot3d The package was first 

released on 05/01/2017. 

It provides the ability of 

plotting a three 

dimensional (3D) point 

cloud perspectively (3D 

scatterplot).  

Ligges, U. and Machler, M. 

(2003). Scatterplot3d - an R 

Package for Visualizing 

Multivariate Data. Journal of 

Statistical Software 8(11), 1-20. 

Rankcluster The package was first 

released on 21/07/2016. 

It provides the 

implementation of a 

model – based clustering 

algorithm for ranking 

data, where multivariate 

rankings and partial 

rankings are also taken 

into account. The 

algorithm is based on an 

extension of the 

Insertion Sorting Rank 

(ISR) model for ranking 

data.  

Quentin Grimonprez and Julien 

Jacques (2016). Rankcluster: 

Model-Based Clustering for 

Multivariate Partial Ranking 

Data. R package version 0.94. 

https://CRAN.R-

project.org/package=Rankcluster 

countrycode The package was first 

released on 06/02/2017. 

The package can convert 

country names and 

country codes. The 

Vincent Arel-Bundock (2017). 

countrycode: Convert Country 

Names and Country Codes. R 

package version 

https://cran.r-project.org/package=rgl
https://cran.r-project.org/package=rgl
https://cran.r-project.org/package=Rankcluster
https://cran.r-project.org/package=Rankcluster
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fundamental property is 

the one that standardizes 

country names, converts 

them into one of 40 

different coding 

schemes and assign 

region descriptors. It 

uses regular expressions 

to convert country 

names into any of those 

coding schemes , or into 

standardized country 

names in several 

languages. It can create 

variables with the name 

of the continent and 

several regional 

groupings to which each 

country belongs.  

0.19.https://CRAN.R-

project.org/package=countrycode 

cluster The package was first 

released on 16/09/2016. 

It implements different 

methods for cluster 

analysis (Hierarchical 

methods, Fuzzy 

analysis, Clustering 

large applications, etc.). 

Maechler, M., Rousseeuw, P., 

Struyf, A., Hubert, M., Hornik, 

K.(2016).cluster: Cluster 

Analysis Basics and Extensions. 

R package version 2.0.5. 

 

factoextra The package was first 

released on 08/01/2017. 

It provides some easy – 

to – use functions to 

extract and visualize the 

output of multivariate 

data analyses, including 

many kind of analyses 

(e.g ‘PCA’), by 

combining functions 

from different R 

packages. It contains 

also functions for 

simplifying some 

clustering analyses steps 

and provides ‘ggplot2’ – 

based data visualization.  

Alboukadel Kassambara and 

Fabian Mundt (2017). factoextra: 

Extract and Visualize the Results 

of Multivariate Data Analyses. R 

package version 1.0.4. 

https://CRAN.R-

project.org/package=factoextra 

sqldf The package was first 

released on 31/10/2014. 

Its main purpose is to 

run SQL statements on 

R data frames. The user 

specifies an SQL 

G. Grothendieck (2014). sqldf: 

Perform SQL Selects on R Data 

Frames. R package version 0.4-

10.https://CRAN.R-

project.org/package=sqldf 

https://cran.r-project.org/package=countrycode
https://cran.r-project.org/package=countrycode
https://cran.r-project.org/package=factoextra
https://cran.r-project.org/package=factoextra
https://cran.r-project.org/package=sqldf
https://cran.r-project.org/package=sqldf
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statement in R using 

data frame names in 

place of table names, a 

database with 

appropriate table 

schema is automatically 

created, the data frames 

are automatically loaded 

into the database, the 

specified SQL statement 

is performed, the result 

is read back into R and 

the database is deleted 

all automatically, 

making the database’s 

transparent to the user 

who only specifies the 

SQL statement.  
 

Table A.50 : The R packages that are mentioned in the main report of the Thesis. 
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APPENDIX B : FIGURES 

 

Chapter 5 

 

 

Figure B.1 : 2 – D representation of the observations distribution in each cluster,      

Year 2010. 
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Figure B.2 : Bar plot, representing the percentage of places that Cristiano Ronaldo and 

Lionel Messi have been ranked in Cluster 1, Year 2011. 

 

 

Figure B.3 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 2, Year 2012.  
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Figure B.4 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Lionel Messi and Ribery Franck have been ranked in Cluster 2, Year 2013. 

 

 

Figure B.5 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2013. 
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Figure B.6 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 1, Year 2014. 

 

 

 

Figure B.7 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 2, Year 2014. 
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Chapter 6 

 

 

Figure B.8 : Average silhouette plot for the different number of components, Year 

2010. 

 

 

Figure B.9 : The Elbow method using the Total Within Sum of Square for the different 

number of components, Year 2010. 
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Figure B.10 : t – SNE graphical representation of the three clusters, Year 2010. 

 

 

Figure B.11 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2010. 
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Figure B.12 : Average silhouette plot for the different number of components, Year 

2011. 

 

 

Figure B.13 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 2, Year 2011. 
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Figure B.14 : Average silhouette plot for the different number of components, Year 

2012. 

 

 

Figure B.15 : Silhouette plot for each cluster of the final 4 – components model, Year 

2012. 
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Figure B.16 : Bar plot, representing the percentage of places that Cristiano Ronaldo 

and Lionel Messi have been ranked in Cluster 1, Year 2012. 

 

 

Figure B.17 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 2, Year 2012. 
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Figure B.18 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2012. 

 

 

Figure B.19 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 4, Year 2012. 
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Figure B.20 : Average silhouette plot for the different number of components, Year 

2013. 

 

 

Figure B.21 : The Elbow method using the Total Within Sum of Square for the different 

number of components, Year 2013. 
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Figure B.22 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Lionel Messi and Ribery Franck have been ranked in Cluster 1, Year 2013. 

 

 

Figure B.23 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2013. 
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Figure B.24 : Average silhouette plot for the different number of components, Year 

2014. 

 

 

Figure B.25 : The Elbow method using the Total Within Sum of Square for the different 

number of components, Year 2014. 
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Figure B.26 : t – SNE graphical representation of the nine clusters, Year 2014. 

 

 

Figure B.27 : Silhouette plot for each cluster of the final 9 – components model, Year 

2014. 
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Figure B.28 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2014. 

 

 

Figure B.29 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 5, Year 2014. 
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Figure B.30 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 6, Year 2014. 

 

 

Figure B.31 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 7, Year 2014. 
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Figure B.32 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 8, Year 2014. 

 

 

Figure B.33 : Average silhouette plot for the different number of components, Year 

2015. 
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Figure B.34 : The Elbow method using the Total Within Sum of Square for the different 

number of components, Year 2015. 

 

 

Figure B.35 : Silhouette plot for each cluster of the final 2 – components model, Year 

2015. 
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Figure B.36 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Lionel Messi and Neymar have been ranked in Cluster 1, Year 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

Chapter 7 

 

 

Figure B.37 : Bar plot, representing the percentage of places that Iniesta Andres, Messi 

Lionel and Xavi have been ranked in Cluster 4, Year 2010. 
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Figure B.38 : Bar plot, representing the percentage of places that Iniesta Andres, Messi 

Lionel and Xavi have been ranked in Cluster 2, Year 2010. 

 

 

Figure B.39 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 1, Year 2010. 

 

 

Figure B.40 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 2, Year 2010. 
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Figure B.41 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2010. 

 

 

Figure B.42 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 4, Year 2010. 
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Figure B.43 : Plot of the BIC value on the different number of components, Year 2011. 

 

  

Figure B.44 : Plot of the BIC value on the different number of components, Year 2012. 
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Figure B.45 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Iniesta Andres, Lionel Messi and Xavi have been ranked in Cluster 1, Year 2012. 

 

 

Figure B.46 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Iniesta Andres, Lionel Messi and Xavi have been ranked in Cluster 2, Year 2012. 
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Figure B.47 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Iniesta Andres, Lionel Messi and Xavi have been ranked in Cluster 3, Year 2012. 

 

 

Figure B.48 : Plot of the BIC value on the different number of components, Year 2013. 
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Figure B.49 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 1, Year 2013. 

 

 

Figure B.50 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2013. 
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Figure B.51 : Plot of the BIC value on the different number of components, Year 2014. 

 

 

Figure B.52 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Iniesta Andres, Lionel Messi and Xavi have been ranked in Cluster 1, Year 2014. 
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Figure B.53 : Bar plot, representing the percentage of places that Cristiano Ronaldo, 

Iniesta Andres, Lionel Messi and Xavi have been ranked in Cluster 2, Year 2014. 

 

 

Figure B.54 : Plot of the BIC value on the different number of components, Year 2015. 
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Figure B.55 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 1, Year 2015. 

 

 

Figure B.56 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 2, Year 2015. 
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Figure B.57 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 3, Year 2015. 

 

 

Figure B.58 : Stacked bar plot, representing the job and the continent where the voters 

come from in Cluster 4, Year 2015. 
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