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ABSTRACT

Anastasia Pitsari

Statistical models for count time series
with excess zero

August 2020

This thesis deals with count time series with excess zero. The first category of
models that would fit in this case is the zero inflated models to which the
observation-driven and parameter-driven models belongs. We illustrate this
approach but also the next ones using a real data set on injuries of hospital
cleaners in a hospital. We start by applying a zero inflated Poisson model with
autoregressive process. After that, we analyze another category of models
known as Hidden Markov models (HMMs). A hidden Markov model is a
statistical model in which the system being modelled is assumed to be a Markov
process with unobservable states (hidden). The state process of an HMM is
usually discrete and this is the first case we apply to injury data. However,
sometimes it is useful in assuming a continuous state and these models are
known as state space models (SSMs). SSMs have more difficult statistical
techniques and demanding algorithms and in addition require extra calculations
because there is no direct computation formula for the likelihood. Therefore,
after the approach to zero inflated Poisson we apply a Poisson HMM and then
we consider a continuous SSM model in which presented with two different
implementations. Finally, we calculate the information criteria (AIC and BIC)
and compare the models in order to arrive at the most appropriate for the injury

data but also for the simulation data.
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HNEPIAHYH

Avaoctacio [Titoapn

YTOTIOTIKG HOVTELQ Y10 YPOVOGELPES

ILE TEPIOGELD UTOEVIKAOV
Avyovotog 2020

2V Tapovcd OIMA®UOTIKY| EneCepyalOlOoTE LOVTELQ Y10 YPOVOGELPEG TOV TEPLEXOVY
TOALG unodevikd. H mpdtn katnyopion povtéAwv mov ovaivovpe kot toiptalel oto
dedopEVO LG ETVOL TO UNOEVIKA-QPOVCKOUEVE LOVTELN GTO OTTOT0L AVIIKOVV TOL LLOVTEAQL
TAPOTNPNONG AALG KO TOL LOVTEAD TTOPAUETP@V. [l var avadeiEovpe avTd Tor LOVTEA
OAAG KOl TO. EMOMEVO TTOV OvOAVOVHE Bo ypnotpomomoovpe Stakpitd dedopéva
TPOVUATIGUAOV OV Aapfavouy yopo oe €va voookoueio kot yivovior omd Tovg
VIOAANAOVG Kabopiopoy. Eekivaue v availvon pog epappolovtag Eva Poisson
UNOEVIKO-OVCK®MUEVO HovTéAo pall pe avtomoiivopopo poviého tdéemg éva. Ztnv
OCUVEXELN, TTPOYMPALE GTNV OVOALOT HOG PE oKOUN pio Katnyopio LOVTEA®Y T Oomoia
Aéyovtar  kpuvmtopopkofrovd  povtéda. Ta  kpumtopapkofioavd  poviéda  givon
OTOTIOTIKA POVTEAN oTO omoia 1) dtadikacia Tov BELOLLE VO LOVTEAOTOMGOVE Elvar
pio Mapkofiavr] oAvoida pe Un mTopatnpiolles KatooTdoels (kpuppéveg). Ot
KOTOOTACELS TOV KPLTTOUOPKOPLvAV HOVTIEA®V givar cuvinBmg Olaxkpltég Tuyaieg
petaPAntég kot ovtn Oa elval kol  TpdTN TEpinT®OoN mov o epapudsovE oTO
O€dOUEVA TPOVUATICUAOV. Q6TOG0, HEPIKES POPEG Elvat XpNGLLO Vo VTTOBEGOLLE OTL O1
KOTOOTACELS OVTEG efvol cuveyelc Kot ovtd To HovTEAX givol yvootd o¢ povtéla
YDPOV-KOTACTAGEMV Kot £xovV akpiPmg TV 101a doun pe to kpvrropapkofiavd. Ta
HOVTELQ YDOPOV-KATAGTAGEMY TAPOLSLALOVV T10 OVGKOAES CTATIGTIKES TEYVIKEG KOIL TTLO
AToLTNTIKOVG OAYOPIBOVG KOOMDE Kot EMITAEOV VTOAOYIGLOVG O10TL OEV LITAPYEL AUEGOG
TPOTOG VILOAOYIGHOV TNG TTBavoedvelnc. Emopévmg, HeTd TV Qaproyn TOL Undevikd
@oVoK®EEVOL Poisson povtélov, epappolovpe éva Poisson  kpumtopapkofiovo

HOVTELO KO GTNV GLVEYELD £VOL LOVIEAO YMDPOVL-KOTACTACEDV UE OVO OLOUPOPETIKEG

Vil



viomowmoels. Téhog, vmoroyilovpe ta kprrpu wAnpoeopiag (AIC kot BIC) wot
OLYKPIVOLLE TO HOVTEAD TPOKEWMEVOD VO (PTAGOVUE OTO KOTOAANAOTEPO TOL Vo
TEPLYPAPEL TO OEGOUEVO TPOVUOTIGUAOV OALL KOt TO OEGOUEVO TOV TEPAUATOG TNG

TPOGOUOIMGONG.

Vil
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Chapter 1

Introduction

Time series data involving counts are frequently encountered in many applications such
as biomedical and general to health. In specific cases, the observed counts contain a
high frequency of zeros (zero-inflation) and cannot be well accommodated by the
widely used Poisson or Negative Binomial model. In general, there are two types of
time series models: observation-driven models and parameter-driven models. In
observation-driven models, the temporal correlation between adjacent observations is
directly modeled through a function of past responses. In contrast, an unobserved latent
process is employed in parameter-driven models to account for the serial correlation.
In this thesis, we develop both observation-driven models and parameter-driven models
for count time series with excess zeros. Also, another type of models that we will
analyze, is Hidden Markov models which allow the probability distribution of each
observation to depend on the unobserved (hidden) state of a Markov chain. We present
the importance of hidden Markov models and we use a real data set on injuries at a
hospital. Firstly, we will fit a hidden Markov model with discrete latent value and by
extension we consider the use of this modeling methodology to fit general state-space
models (SSMs). SSMs have almost the same features with HMMs but have the essential
difference that the latent variable can be continuous. For this reason, we consider the
use of two discretization approaches related to approximate an SSM likelihood. In
addition, we quote the use of two packages of R which are called “ZIM Package” and
“HHMpa Package”.



Chapter 2

Injury data series

In this thesis, we will use the occupational injury data from hospital cleaners to illustrate
our methodologies. The injury data shown in Table 2.1 and includes of monthly (4-
week) counts of work-related injuries that are routinely reported at an aggregate
population level from July 1988 to October 1995. [6]

39032203020024200103024312100392224040638633
30100002301101002010002300003000201003100000
00002320

Table 2.1: Weekly injuries of hospital cleaners

Also, Table 2.2, provides summary statistics of the data, including the mean and the

variance of the counts.

T Mean Var Min Max
96 1.46875 3.8305921 0 9
Table 2.2: Summary Statistics of the injury data

As we can observe, the values range from 0 to 9 that is in a range of positive numbers.
For this reason, we could use the Poisson distribution to describe the injury data, but it
seems that the variance of the data is larger than the mean and this is not applicable to
Poisson distribution. More specifically, we can note that the data is displayed
overdispersion. [11] Negative binomial regressionis a popular generalization of
Poisson regression because it loosens the highly restrictive assumption that the variance

is equal to the mean made by the Poisson model but and this model may not be the right



one to describe our data due to the large presence of zeros as we can see from Table
2.1. In addition, we should note that a participatory ergonomics intervention was
introduced in the middle of the study in November 1992 and we can observe the
reduction in the injury count as shown in the Figure 2.1 and we observed a different

pattern after the 57" week.

Pre-intervention Post-intervention

Injury Count

Time

Figure 2.1: Weekly injuries of hospital cleaners before and after intervention

All the above leads us to the conclusion that mixture models and more specifically zero

inflated models are the best choice for the description of the injury data.

2.1 Time series for injuries

Time series theory could be useful to present our data characteristics in a better way
since we observe, in Figure 2.1, that they present trend and seasonality. [12] The data
were collected sequentially over a period of T = 96 weeks. The trend shows the

general tendency of the data to increase or decrease during a long period of time



and seasonality is the presence of variations that occur at specific regular intervals less

than a year, such as weekly, monthly, or quarterly.

2.2 Autocorrelation function

The autocorrelation function (ACF) reveals how the correlation between any two
values of the signal changes as their separation changes. In simple terms, it describes
how well the present value of the series is related with its past values. Let {X,} be a
random process, and t be any point in time (¢t may be an integer for a discrete-time
process or a real number for a continuous-time process). Then X, is the value (or
realization) produced by a given run of the process at time t. Then the definition of the

auto-correlation function between times t; and t, is
R,y (t1,t3) = E[X¢1 X¢]
where E is the expected value operator.[13] In our example X, will declare the weekly

injuries of the hospital cleaners at time t. The ACF of X, is shown in Figure 2.2. The

y-axis should be the correlation coefficient and x-axis should be the lag.


https://www.sciencedirect.com/topics/computer-science/autocorrelation-function

Series injury
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Figure 2.2: Injury data ACF

As we can observe in Figure 2.2, the autocorrelation function decay slowly and for this
reason we suggest an autoregressive AR (p) for p = 1 model which is a representation
of a type of random process. Also, for Figure 2.2, it is obvious that the observations are

serially dependent and the correlation for the most lags is positive.

2.3 Partial Autocorrelation function

The partial autocorrelation function (PACF) gives the partial correlation of a stationary
time series with its own lagged values, regressed the values of the time series at all
shorter lags. It contrasts with the autocorrelation function, which does not control for

other lags.

Given a time series X;, the partial autocorrelation of lag k, denoted a(k), is the
autocorrelation between X; and X, with the linear dependence of X; on X, through
X:+1+1 removed; equivalently, it is the autocorrelation between X, and X, that is not

accounted for by lags 1 through k — 1, inclusive.


https://en.wikipedia.org/wiki/Random_process
https://en.wikipedia.org/wiki/Partial_correlation
https://en.wikipedia.org/wiki/Autocorrelation_function

a(1) = corr(Xe41, Xe), fork =1,
a(k) = corr(Xesr — Xevio Xe — X2), fork =2

Where X, is the best linear predictor X4 x = @r—11Xe41 + "+ Or—1 k-1 Xt 4k-1-
Similarly, Xy = @r-11Xe-1 + - + Qr—15-1Xt—k+1-

The quantity ¢  is called the partial autocorrelation of the process {X,} at lag k since
it equals the partial correlation between the variables X,,, and X, adjusted for the

intermediate variables X1, X; 42, ..., Xt4+1—1 (Or the correlation between X, and X; is
not accounted for X;,1, X412, » Xerk—1)- [14]

Series injury

02

0.1

Partial ACF
00

-0.1

02
|

Figure 2.3: Injury data PACF

As we can observe, in Figure 2.3 there is a significant correlation at lag 1 and followed

from correlation that are not significant. This pattern indicates an autoregressive term
of order 1: AR(1).



Chapter 3

Observation-driven models

3.1 Definitions and properties

In statistics, a mixture model is a probabilistic model for representing the presence
of subpopulations within an overall population, without requiring that an observed data
set should identify the sub-population to which an individual observation belongs.
Formally a mixture model corresponds to the mixture distribution that represents
the probability distribution of observations in the overall population. Consider, the
injury data and assume that the counts are identically distributed but there is no serial
correlation in the series we can assume that injury data are independent counts. When
we have independent unbounded counts, we can say that the Poisson distribution is
suitable to describe our data and is presented that:

AXe=*

x!

flA) = x=01,..,

However, as we have shown in Table 2.2 the sample mean (x = 1.4688) and the sample
variance (s? = 3.8305) are not equal as usual in the Poisson distribution and the injury
data admit more variability than expected under the assumed distribution. For this
reason, the Poisson distribution appears unlikely to be appropriate for this data. More
specifically, as we have mentioned after the 57" week a participatory ergonomics took
place and the injuries of the hospital cleaners were dramatically reduced. So, the injury

data can be divided into groups, for example high accident rate and low accident rate.

Furthermore, as we can observe from Figure 3.1, another characteristic that appears in
injury data, is the large number of zeros about 50% of all observations. This can lead
to incorrect parameter estimation. One way of dealing with the overdispersion of data

and the large number of zeros is to use a mixture model. [3]


https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Subpopulation
https://en.wikipedia.org/wiki/Mixture_distribution
https://en.wikipedia.org/wiki/Probability_distribution

Barplot of injury data
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Figure 3.1: Bar plot of injury data

3.2 Zero-inflated Poisson

The first mixture model that we can use in injury data is the Zero-Inflated Poisson
model which concerns a random event containing excess zero-count data in unit time.
The Zero-Inflated Poisson (ZIP) model mixes two zero generating processes. The first
process generates zeros. The second process is governed by a Poisson distribution that
generates counts, some of which may be zero. The ZIP distribution with parameters ;

and y;, denoted by ZIP (m;, i;), has the following probability mass function:

T + (1 —mexp(—py), if yi=0
pi .
(1- T[i)exp(_ﬂi)ﬁ, if yi>0

i-

fQilm, ) =

where 0 < m; < 1and y; > 0.


https://en.wikipedia.org/wiki/Poisson_distribution

The parameter 7 gives the extra probability thrust at the value 0.
The mean and variance of ZIP (m;, u;) are
E(Y) =u(1—m)
V() = (1 —m) (1 + pym;)

However, we will not proceed with further estimation of the parameters because this
model does not solve the problem of overdispersion (variance much larger than the
mean). For this reason, we will introduce another type of models which no longer
assume that the counts are independent but that they are dependent and contain a serial

correlation.

3.3 Observation-driven ZIP models

Considering the injury data which belong to the category of count time series, there is
a better and more effective model with which we can describe our data. This model
belongs to the category of observation-driven models and more specifically because of
the number of zeros in the group of observation-driven ZIP models. Also, with these
models we can deal with the overdispersion and temporal correlation that is
characteristic of count time series. With observation-driven models, temporal
correlation between adjacent observations is directly characterized as a function of past
responses. So, we can analyze and introduce an autoregressive model for Poisson time
series with excess zeros based on an observation-driven approach. We maintain the
same model structure as that introduced in Section 3.2 to account for the Poisson
mixture and moreover, we employ lagged responses as covariates to deal with the

temporal correlation.

Let y, declare the response series, composed of discrete count data. Define the

information set

Fioy = 0Ye-1,Ye-2) s Xt

so as to impersonate all that is known at time t about the dependent variable (response)
and any relevant covariate processes. In this way, the vector x; impersonate an

assortment of past and possibly present time-dependent covariates that are observed at



time t — 1. Given the information F,_;, we assume the count series is conditionally

distributed as ZIP (A, w;) with probability mass function defined as follows:

Yt

fYt()’t|Ft—1i we, Ae) = Wely,=0) + (1 - wp)exp(—4,) (3.4)

t
V!
or equivalently

we + (1 —w)exp(=A), if y¢=0

GelFoor 00 20) = LA +o
fre el Fe—1; 0e, A¢ (1—wt)€xp(_’1t)ﬁ' if y¢>0 55)
t-

As before, A, introduce the intensity parameter of the baseline Poisson distribution and

U the zero-inflated parameter.

Also, we can observe that the ZIP distribution described by (3.4) or (3.5) can be defined
as a two-component mixture of Poisson distribution with a dichotomous variable u,
indicating whether the observed variable y, comes from the degenerate distribution

(u; = 1) or the ordinary Poisson distribution (u; = 0). [8]

So, we have the following hierarchical model:

U |Fe_q1~Bernoulli(w;) (3.6)

Ye|ug, Fr_q1~Poisson((1 — uy)As) (3.7)

For any non-negative integer m, the cumulative distribution function (c.d.f.) of Y;|F;_;

is given by:

m
Fy,(m|Fi_) = Pr(Y, < m|F;_,) = Z fr. el Fe-1)
yt=0
Atyt

V!

m
= w¢ + (1 — wp)exp(—4p) Z
yt=0

10



According to the equations (3.6) and (3.7), the mean of Y;|F;_, can be expressed as

E(Y{|F-1) = /1t(1 - (‘)t)
Proof.

E(Y;|Fi—1) = E{E(Yi|up Fe—1)} = E{(1 —up)A¢|Femq} = 2:(1 — @)

and the variance of Y;|F;_, can be written as:
Var(Yi|Fi-1) = (1 — w)(1 + A, w¢)
Proof.

Var(Y|Fi—1) = E{Var(Ye|ue, Fr—1)} + Var{E (Yelue, Fe—1)}
= E{(1 —up)A¢|Froq} + Var{(1 — ug)A¢|Fe—q1}
=21 - w) + 10,1 - 0) = (1 — w)(1 + Awp)

At this point, we can also observe the difference that exist in relation to the Section 3.2.
Both parameters are modeled via log-linear and logistic link functions and are presented

below:

ne = log(A) = x.1"B (3.8)

and

$e = logit(w,) = Zt—1TY (3.9)

where x;_; = (Xt_11,--, X¢—1)" and Ze_y = (Zg_11,..-,2t—14)" are sets of time-

dependent explanatory variables for the corresponding vectors of regression

coefficients B and y. Also, B =[B,, ...,Bp]T (3.8)and y = [y, ...,yq]T(3.9) are the

regression coefficients for the log-linear and logistic part, respectively. [8]

11



3.4 Partial likelihood

The estimation of model parameters is usually performed by the method of maximum
likelihood (ML) and the case of mixture distribution is not different. The likelihood
function plays an important role in the process of estimating the unknown parameters.
Also, likelihood function is defined as the joint probability density function of the data,
viewed as a function of the parameters. Generally, for a random sample y,, ..., y, the
likelihood of a mixture model and more specifically the likelihood of an observation-
driven zero inflated model we can express it through partial likelihood. Concretely,
partial likelihood estimation uses the product of conditional densities as the density of

the joint conditional distribution.

The partial data likelihood of the observed series is:

PL(O) = | [ fu Gl
j=1

where 8 = [BT,yT]T is the (p + q) —dimensional vector of unknown parameters. The
partial likelihood does not demand the derivation of the joint distribution of the
response and the covariates. Also, is largely simplified relative to the full likelihood.
This approach expedites conditional inference for a large class of transitional processes
where the response depends on its past values.

For the observation-driven ZIP model is convenient to take the logarithm of the

likelihood, known as the log partial likelihood function which is given below:

N
logPL(8) = ) logfy, (elFer)
t=1

N
y Yt
> toglwndiyemo) + (1 - w)e(-2) 2

I
e Yt

In general, the maximization of a mixture likelihood is possible to perform analytically
and we must resort to numerical methods and the vector 8 gained by maximizing the

partial likelihood is called the maximum partial likelihood estimator (MPLE). [8]

12



3.5 Parameter estimation for observation-driven ZIP
model

To get the MPLE, we must maximize logPL(@). More specifically, we must solve the

equation Sy (0) = 0, where the equation Sy (0) is defined as follows:

N
9]
Sw(8) =55 logPL(8) = ) C._,v,(6)
t=1

with C;_, and v,(0) given by:

X1 O

and
[ A -ody=0) ]
) = [171,t(9) _ | Ve w; + (1 — wp)exp(—As)
v.(0) = v,0(0) ] ~ [w Iiye=0) 1 J
‘ wr + (1 — w)exp(—2;)

Due to the nonlinear nature of the problem, there is no closed-form solution to the
partial score equation. For this reason, we will use iterative algorithms for parameters

estimation. [8]

3.5 Simulation Study

In this chapter, we want to present a simulation study and more specifically, we
investigate the finite sample behavior of the MPLE. As we have mentioned, we assume

that the time series data is generated by the following model:

Ne = log(At) = Bo + Bily,_,>0)
and

$e = logit(we) =vo + Y1l(y,_,>0)

13



Then, we consider 8 = (Bo, B1, Yo, ¥1)T = (1.2,0.6,0.4,—0.8)7 is the true parameter

vector.

Table 3.1 summarizes the finite sample results of the MPLE under three different
sample sizes N = (100,200, 500).

Simulation Results
N ] 0 Bias SE
Bo 0.92 0.28 0.17
100 b1 0.71 -0.11 0.19
Yo 0.37 0.03 0.35
Y1 -0.38 0.42 0.43
Bo 1.23 -0.03 0.10
200 b1 0.58 0.02 0.11
Yo 0.57 -0.17 0.22
Y1 -0.74 0.06 0.29
Bo 1.08 0.12 0.06
500 B1 0.75 -0.15 0.07
Yo 0.55 -0.15 0.14
71 -0.92 -0.12 0.18

Table 3.1: Finite sample results of the MPLE simulated independently from ZIP
model

As we can observe from the results in the Table 3.1 the bias of the estimated parameters
decreases as the sample increases. Note here, that the bias of an estimator is the
difference between this estimator’s expected value and the true value of the parameter
being estimated. Also, bias shows to us how accurate is an estimator and in this sense
means that it is neither an overestimate nor an underestimate. If an overestimate or
underestimate does happen, the mean of the difference is called a “bias”. Furthermore,
in the next column of the Table 3.1 we can see the standard error values. The standard
error of the estimate is a measure of the accuracy of predictions. From the results we

see that the standard error decreases as the samples increases. In addition, the values
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between the initial values of the parameters in relation to the estimated, we can be seen

to be very close.

3.6 Observation-driven model for injury data

Back to injury data, we can adjust the model accordingly and, in this way, estimate our
parameters. Then we have the model in which we get the first equation when we have
zero accidents to the hospital cleaners and the other equation when we have several

accidents greater than zero.

Atyt

Ve!

fro el Feo1s 06, A) = 0ely,=0) + (1 — wp)exp(—4,)
Also, we represent both parameters and we use an autoregressive model of order p =
1, abbreviated AR(1). Therefore, we have the following equations:
Ne =log(At) = Bo + Bily,_,>0) + B2X¢
and
¢ = logit(we) = vo + v1X¢

Here, x; = Ttoo represents the deterministic linear trend, which is always forced in the

model since characterizing the trend is the primary objective of the study.

ZIP Model
(AIC = 306.21)

0 Estimate SE P-Value
Bo(Intercept) 1.01 0.22 <0.05
B1(AR1) 0.38 0.19 0.05
B2 (Trend) -7.45 4.16 0.07
Yo(Intercept) -1.16 0.50 0.02
Y1(Trend) 17.68 9.41 0.06

Table 3.2: Final ZIP autoregression on observation-driven model for the injury data
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Table 3.2 displays the regression output for the observation-driven model. As we can
see the p-values of the coefficients are less than 0.05 and this tells us that they are
statistically significant as the standard errors seem to be relatively small except for the
trend parameter. The Akaike criterion has a similar value to the parameter-driven model

which we analyze in Chapter 4.
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Chapter 4

Parameter-driven models

4.1 Definition

In this chapter, we focus on parameter-driven models for zero-inflated time series.
Firstly, we can mention that the parameter-driven model is an extension of the
traditional linear model. Also, in time series, there are some cases with a high frequency
of zeros and in this situation, we introduce a class of parameter-driven models for count
time series in which the parameter estimation can be performed with a Monte Carlo EM
(MCEM) algorithm.

4.2 Dynamic ZIP Model

In this section, we propose a dynamic ZIP model to accommodate zero-inflation in
count time series. Specifically, we assume there is a stationary AR (p) process {z;} such
that

Zt = Q12+ T QpZep T &

where &, is a white noise process with mean 0 and variance ¢2. Conditioning on the

current state z,, we assume that the observation y, has a ZIP distribution with

probability mass function

w+ (1 -wlexp(=4), ify,=0
Yt

AL w) = A
freelze; Ar, w) 1- w)exp(—/lt)#' if ye >0
t-

We use the following log-linear model to characterize the intensity parameter A,:

log(A) = log(w) + xtTﬁ + Z,
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where x; is a set of explanatory variables and B is the vector of regression coefficients.
In addition, log(w,) is referred to as the offset variable and let 8 = (w, BT @, 0)7
denote the vector of unknown parameters. For simplicity, the zero-inflation parameter
w 1s considered as constant but if we want, we can represent it with a separate logistic
model. [6]

The dynamic ZIP model can be written in the following state-space form:

St ISe-1 ~ Np(Ps¢-1,2) (3.1)
u;~Bernouli(w) (3.2)
Velse,up ~ Poisson((1 — up)iy), (3.3)

where s, = (zt, ...,zt_pﬂ)T is a p-dimensional state vector and u, is an unobservable
membership indicator. The initial state s, is assumed to be normally distributed with

mean pu, and covariance matrix X,. Here @ and X are p X p matrices defined as

follows:
N (02 0 - 00
1 0 0 0 0 0 0 0
=09 1 --- 0 o0 |.X=
o o0 --- 00
0 0 10 00 0 0 |

Note that the covariance matrix X is not positive definite. Figure 4.1 illustrates the
dynamic ZIP model that is defined by (3.1) - (3.3).
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Figure 4.1: Graphical illustration of the state evolution and data generation in the
dynamic ZIP model.

4.3 Likelihood

Based on the state-space representation (analytically in Chapter 7) and with the same
methodology as in the previous Chapter to find the estimated parameters of the
parameter-driven ZIP model, we will decompose the complete-data likelihood as

follows:

Lc(8) =f (so) [Tt=1 f (selse—1) ITe=q £ Cue) [E=1 f Oelse, ue)
Also, the complete-data log-likelihood is given by:

1-(0) = %loga2

n
1
- Fz(zt - ‘PTSt—l)Z
t=1

n

+ Z{utlogw + (1 —u)log(l — w)}

t=1

+ D (A= u)ex” B — weexp(x" B + 2}

For the implementation of the EM algorithm, we need to compute the expectation of
[-(0@) given the observed data but there is no analytical form for the conditional

expectation due to the non-normality of the data. For this reason, for the approximation
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of the conditional expectation we use Monte Carlo extensions that called Kalman
methods. [6]

4.4 Simulation Study

In this section, we assume that the time series data are simulated from a parameter-
estimation ZIP model from which we suppose z; is an AR(1) autoregressive process
such that

Zy = QZt_q1 T &,

where ¢, is a white noise process with mean 0 and standard deviation o = 0.5.
Furthermore, we will set ¢ = 0.8 to ensure that the AR(1) autoregressive process is

stationary.

Conditioning on the current state z,, we assume the observation y, has a ZIP

distribution with probability mass function by:

w+(1-wlexp(=4), ify, =0
Yt

Ay ) = A
fr Welze; A, w) (1- a))exp(—/lt)%. if ye >0
t-

where we have log(4;) = By + z; with B, = 0.2. Thus, summarizing all the above we

will have the follow true parameters in the generating model.
e Parameter-driven ZIP Model

w=0.68,=02¢=08and o = 0.5.

Also, the sample sizes (i.e., length of the series) is set to be 100, 200 and 500.
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Simulation Results
w Bo 4 o
True 0.60 0.20 0.80 0.50
ZIP-100 0.65 0.75(0.25) 0.65(0.26) 0.64
ZIP-200 053  0.15(0.21)  0.78(0.08)  0.95
ZIP-500 061  0.18(0.14) 0.86(0.04) 0.91

Table 4.1: True and estimated parameters (with standard errors) for the simulated
examples.

In Table 4.1 we present the estimates of the parameters from the simulation experiment
under three different sample sizes N = (100, 200, 500). In the first line we can see the
real value of the parameters and in the next ones we obtain their estimates together with
the standard errors. Also, the MCEM algorithm is used to fit models and to reduce time
requirements we set N = 500 and R = 500 and we stopped the MCEM algorithm after
100 iterations. From the results, we can conclude that with the increase of the sample
size the parameter estimates are closer to the real values and the standard errors are

reduced.

4.5 Parameter-driven model for injury data

We revisit the application pertaining to occupational injury data. As we have
mentioned, the application concerns the assessment of a participatory ergonomics
intervention in reducing the incidence of workplace injuries among a group of hospital
cleaners. The data consists of monthly (4-week) counts of work-related injuries that
were routinely reported at an aggregate population level from July 1988 to October
1995. During the study period, many zero counts are observed due to the heterogeneity
in risk and the dynamic worker population. Since the injury count series contain excess
zeros relative to a Poisson distribution, we modelled the data using a Zero Inflated

Poisson (ZIP) mixed autoregression.

In our analyses, we will assume that there is autocorrelation which is explained by the

simple AR (1) structure. Specifically, we employ the linear predictor
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lOg(/lt) = ﬁo + let + Zt, t = 1, ...,96,

where x; = I;~¢7 iS @ dummy variable indicating whether the time index t is greater
than the intervention time (57 months). Also, B, reverberate the reduction in injury risk
due to intervention. We consider the dynamic model structure ZIP + AR (1) and Table
4.2 shows results for this.

ZIP + AR(1)
(AIC = 309.09)
Estimate SE P-Value
w 0.29 - -
Bo 0.89 0.22 <0.05
B1 -1.00 0.31 <0.05
0] 0.41 0.26 0.11
o 0.44 0.05 -

Table 4.2: Parameter estimates (standard errors) for dynamic model fit to the injury
count series

Table 4.2 displays the regression output for the parameter-driven model. As we can
observe the coefficient g, is less than zero and this is something to be expected because
it shows us that after the ergonomics intervention the number of injuries from hospital
cleaners is decreasing. That is, the model indicates a significant reduction of work-
related injuries after the introduction of the intervention. Also, we can see that the p-
values of the coefficients are less than 0.05 and this tells us that they are statistically
significant as the standard errors seem to be relatively small. The Akaike criterion has
a similar value to the observation-driven model.
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4.6 The R Package ‘ZIM’

For all calculations that we have presented so far have been done with the help of the
ZIM package. ZIM package (Zero-Inflated Models) has developed to analyze count
time series with excess zeros. [20] We can use it in both observation-driven models and

parameter-driven model as follows:
e Observation-driven models

For this category of models and for the case of the zero-inflated Poisson which are

presented in Chapter 3 we can use the ZIM package with the following functions:

zim: The function zim is a user-friendly function to fit zero-inflated observation-driven

models. Its usage is very similar to that of the well-known function gim.
e Parameter-driven models

Compared to observation-driven models, parameter estimation in parameter-driven
models is much more challenging. The following is the function that can be used to fit
the parameter-driven ZIP model that has been proposed in Chapter 4.

dzim: The function dzim is a user-friendly function to fit zero-inflated parameter-driven

models. The default order for the autoregressive process is assumed to be one.
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Chapter 5

Markov Chains

In this section, we introduce Markov chains, a second building-block of hidden Markov
models. Our treatment is restricted to those few aspects of discrete-time Markov chains
that we need. Thus, although we shall make passing reference to properties such as
irreducibility and aperiodicity, we shall not dwell on such technical issues. A Markov
process is a stochastic process that satisfies the Markov property and more specifically,
conditional on the present state of the system, its future and past states are independent.
In simpler terms, it is a process for which predictions can be made regarding future

outcomes based solely on its present state. [15]

5.1 Definition

A Markov chain is a sequence of discrete random variables

Cl' CZ' C3,...

with the Markov property, namely that the probability of moving to the next state

depends only on the present state and not on the previous states:

P(Ct+1|C1' Cy ey Crov, Ct) = P(Ct+1|Ct)

In the other words, given the present of the process, C, , its future, C;, 4, is independent

of its past, C;_4, Ci—5, ..., Cy.

5.2 Types of Markov chains

The system's state space and time parameter index need to be specified. Table 5.1 gives
an overview of the different instances of Markov processes for different levels of state

space generality and for discrete time v. continuous time. As we can see from Table 5.1
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Markov chains can be divided into discrete time and continuous time. A discrete time
Markov chain is a sequence of random variables Cy, C,, C5 _ with the Markov property.
A continuous-time Markov chain C;, for t > 0 is defined by a finite or countable state
space S, a transition rate matrix I" with dimensions equal to that of the state space and

initial probability distribution defined on the state space. [16]

Countable state space Continuous state space

Discrete time Discrete time Markov Markov chain on a
chain on a countable or measurable state space

finite state space

Continuous time Continuous-time Markov | Any continuous stochastic
process process with the Markov
property

Table 5.1: Overview of the different instances of Markov processes

5.3 Transition probability matrix

The probabilities associated with various state changes are called transition
probabilities. The process is characterized by a state space, a transition
matrix describing the probabilities of particular transitions, and an initial state (or initial

distribution) across the state space. [1]

Important quantities associated with a Markov chain are the conditional probabilities
called transition probabilities:
Pr(Cype = jICs = 0).

If these probabilities do not depend on s, the Markov chain is called homogeneous,
otherwise nonhomogeneous. Unless there is an explicit indication to the contrary, we
shall assume that the Markov chain under discussion is homogeneous, in which case

the transition probabilities will be denoted by:
Yij(t) = Pr(Csye = jlCs = 0)
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Therefore, we can define as transition probability matrix I' for Markov chain {C;} at
time t the matrix with (i, j) element y;;(t). This means each row of the matrix is a

probability vector, and the sum of its entries is 1. So, we present a mathematical

presentation of the I,,,., transition probability matrix:

Y11 " Yim
Lnxm = : :
Ym1 = Vmm

where m denotes the number of states of the Markov chain and the row sums for each

state i, i = 1,2 ..., m are equal to 1 which we can write mathematically: [1]

Zyij =1
j=1
5.4 Stationary Markov chain

A stationary distribution § is a (row) vector, whose entries are non-negative and sum

to 1, is unchanged by the operation of transition matrix I' on it and so is defined by:
or =6

and
61 =6

where 1’ is a row vector of ones, & is a probability distribution with all requirements
(of a pdf) satisfied. [1]
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Chapter 6

Hidden Markov Models

Consider again the observed injury data series displayed in Figure 1.1 on p. 4 we have
mentioned that the observations are unbounded counts and the Poisson distribution is a
natural choice to describe them. On the other hand, as we noticed in Table 2.2, the
sample variance of the observations is substantially greater than the sample mean,
indicating overdispersion relative to the Poisson distribution. For this reason, we could
use a mixture model to describe our injury data and in fact we would avoid the
overdispersion in this way. But with this approach we will deal with the problem for
the serial dependence which there is in our data. The sample autocorrelation function,
displayed in Figure 6.1, gives a clear indication that the observations are serially
dependent. The main way we could apply, is to relax the assumption that the parameter
process is serially independent. In this situation, we can use the idea that we have a
Markov chain and we analyze the resulting model for the observations which is called
a Poisson-hidden Markov model and it belongs to the category of hidden Markov
models (HMMs). [18]

Series injury

10

ACF
04

0.2

Figure 6.1: Injury data ACF
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6.1.1 Definition

Hidden Markov Model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process — call it C; — with unobservable ("hidden™)
states. HMM assumes that there is another process X; whose behavior "depends"” on
C.. The goal is to learn about C, by observing X,. More specifically, a hidden Markov
model {X;:t € N} is a particular kind of dependent mixture. We can assume that
X1,X,, ..., X be observations and C;,C,,...,C; be the corresponding latent states
representing the state of the process at time 1 to time t respectively. One can summarize

the simplest model of this kind by:

PT(Ctlct_l, ""Cl) = PT‘(Ctlct_l), t = 2,3, e
Pr(X¢|X;—1,C) = Pr(X,|C;), t € N

If the Markov chain {C;} has m states, we call {X;} an m-state HMM. All the above,
are summarized in Figure 6.2 which is illustrated a graphical representation of an
HMM.

_—Observations

(unobserved)

. — _ —_— —_— e

17 Te
(D—E)—)— -

Figure 6.2: Directed graph of basic HMM.

Furthermore, a joint probability of an HMM is easy to be calculated of a set of discrete
or continuous observed variables X(™ = {X;, X,,..., X}, and discrete hidden variables

c™ ={C,,C,,...,C.}, for T observations that factors the joint distribution as follows:
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T-1 T
P(X(T),C(T)) = Cll—[P(Ct+1|Ct)1_[P(Xt|Ct) (D
t=1 t=1

6.2 The Likelihood

Following our analysis of the Hidden Markov models, the aim is to represent a definite
formula for the likelihood L, of T consecutive observations x;, x,, ..., x; assumed to
be generated by an m-state HMM. The likelihood shows us how probable is to observe
specific data under a certain model. Hence, we suppose there is an observation sequence

X1, X9, v, X u .
1, X2 r generated by such a model

6.2.1 Definition

The likelihood of an HMM is given as
LT - 6P(x1)FP(x2)FP(x3) ...I—'P(XT)l'. (2)

Where, P(x) is defined as the diagonal matrix with ith diagonal element p;(x), fori =
1, ..., m which is the state-dependent probability (density) function. [1] Furthermore,
this HMM has initial distribution § and transition probability matrix I". If § is the
stationary distribution of the Markov chain, then Equation 2 can be equivalently

expressed as:

Ly = 8T'P(x,)I'P(x,)'P(x3) .. P(xp)1". ©)

Proof.

We present only the case of discrete observations. First note that from Equation 1,

m
P(X™ = x™M) = Z P(x™,cM)
C1,...,CT=1
m T-1 T
= Y p@] [PCalen] [Pexic
C1pnCT=1 t=1 t=1
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As a result,

m T-1 T
L =P(x®=xD)= > pe)] [PCialco] [Pexic
t=1 t=1

CqpmCT=1
m
= Z 6C1pC1 (xl)YCl,Cz pCz (xz))/Cz,Cng3 (x3) LA yCT_l,CTpCT (xT)

= 8§P(x)IP(x,)P(x3) ...TP(xp)1’

6.3 Poisson HMM

The first model we will choose to describe our data and belongs to the category of
HMMs is a Poisson-HMM, where X, |C; has the Poisson distribution. So, we will try to
fit an m-state Poisson hidden Markov model with m = 1,2,3,4 in order to analyze the
injury data. For this process we will use optimization methods and for this reason we
need to make sure that parameters are transformed properly so as constraints will not
violated. In general, there are two groups of constraints: those that apply to the
parameters of the state-dependent distributions and those that apply to the parameters
of the Markov chain. [1]

Transformation 1: Estimated Poisson parameters A; that is, the means A; are always

non-negative

K; = log(4;)
wherei =1,..,m
Transformation 2: For initial distribution, & , in the case where § is stationary provided
that the mean Poisson A; is selected with probability §;, where i = 1, ..., m we will

transform using the logit function which is defined in interval (0,1).

logit(w;) = 6;

w; = log T—%7,5
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Transformation 3:

Define the matrix

And let g be a strictly increasing function e.g. g(x) = exp(x)

We then set
_ 9 (Tij)

y. . =
Yooxmg(ty)

So, generally for m-state

o ew(w)
Vi 1+Zﬁjexp(rij)

t = log|—Jd
y=g 1-20%%

fori #j

Parameters w;, k; and t;; are called working parameters. [1]

After making the above transformations we are able to fit the models, using the R
optimizer optim. More specifically, this can be done by numerically maximizing the
corresponding log-likelihoods. In Table 6.1 we present the results and the comparison

among 1-state, 2-state, 3-state and 4-state of the Poisson-HMM. The choice of m will

be based on AIC and BIC information criteria.

m-state -logL n AIC BIC
m=1 186.8437 1 375.6873 378.2517
m=2 157.4736 4 322.9472 333.2046
m=3 151.0059 9 320.0118 343.0910
m=4 151.6011 16 335.2023 376.2319

Table 6.1: Comparison of Poisson HMMs by AIC and BIC

31




As, we can see the 1-state and 4-state HMM have both the highest value in both criteria.
On the other hand, the 3-state HMM has the smallest AIC = 320.0118 but the 2-state
model has the smallest BIC = 333.2046. In this situation, we will choose the AIC

criterion since it is more appropriate in case of prediction. [19]

Results of a 3-state HMM:

0.42 0.49 0.09
I'={048 051 0.01

0.09 0.15 0.76

6 = (0.40,0.45,0.15)
A =(0.00,1.85,4.65)
Loglikelihood = —151.0059
AlIC = 320.0118

BIC = 343.0910

6.4 Package ‘HMMpa’

The above results are calculated with the R optimizer optim. On the other hand, there
is a package called HMMpa and it gives us the ability to perform the same calculations.
This package provides functions that we can use to estimate all the necessary

parameters and it help us to save time programming.

More specifically, first a hidden Markov model is trained to estimate the number of m
of hidden physical activity states and the model specific parameters delta (stationary
process), gamma (transition probability matrix) and the parameters of the data
distribution. Then, an algorithm decodes the trained HMM to classify each time series
count into the m hidden physical activity states. Finally, the estimated distribution mean
values (PA-levels) corresponding to the hidden physical activity states are extracted
and the time series counts are assigned by the total magnitudes of their corresponding

PA-levels to given physical activity ranges by the traditional cut-off point method. [9]
We illustrate some examples of HMMpa orders and their corresponding results:
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Results of a 3-state HMM:

0.42 0.50 0.06
I'=(046 053 0.01

0.09 0.21 0.68

5 = (0.00,8.45x107°5,1.00)
A =(0.00,1.86,4.95)
Loglikelihood = —148.8881
AIC = 331.7763

BIC = 375.3702
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Chapter 7

State space Models

7.1 Definition

State space model (SSM) refers to a class of probabilistic graphical model (Koller and
Friedman, 2009) that describes the probabilistic dependence between the latent state
variable and the observed measurement. The state or the measurement can be either
continuous or discrete. In the previous chapter, we have analyzed the HMMSs in which
the state process is discrete. However, if we go back to the injury data and assume that
we have two or three states (small or large number of injuries), then the difference
between them can be quite large in contrast to having more states and the difference
from one to the other being less noticeable. So, we will use state space models that
share the same dependence structure as HMMSs, and we want to succeed the better

estimations.

Let X; be the number of injuries to the hospital cleaners at time t and C; be the
respective latent states for t = 1,...,96. In this category of models, in contrast to
HMMs the states are continuous and more specifically are characterized by two
processes: a continuous-valued Markov state process, {C;} and an observation process

{x:}. They can be described by the following continuous distribution:

Xy = & Bexp (%), (7.1)

Ce = @Cq +ony, (7.2)
where |p| < 1,8,0 >0, n,~N(0,1) known as process noise and ,~N(0,1) known

as observation error are independent sequences of independent standard normal random

variables. [1] Here the state process, {C;} is an autoregressive process of lag 1. Equation
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(7.1) describes the relationship between the true abundance and the observations x; at
time t. Equation (7.2) describes the evolution of the unobserved state variables {C;}.[2]

Also, if we assume that
0.2
Ct~Normal (0,1_—(p2> (73)

Proof.
Cov(Cy, Cp) = Var(Cy) = Cov(@pCi_q + o, Ci_q + on) = @*Var(C,) + o2

o2
1-¢?

Therefore, Var(C,) =

Then, if we want to calculate the likelihood of a state space model, we have to integrate
all possible values of the state process at each time an observation is made because
cannot be computed explicitly in general. We adopt a discretization approach of the
state space into m states that avoid the complexity of the multiple integrals and the

model can be approximated by an HMM. [2] [5]

We will start with a finite range of C;-values by split into m equally intervals B; =

bm—bo

(bi_1,b;),i =1,...,m of equal length h =

7.2 Numerical Integration of Likelihood

The following proof provide a result for the calculation of the likelihood as we have
calculated in Chapter 6.2 but instead of a sum of products, we have a multiple integral

with respect to C; statesi = 1,...,m.

Proof.
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LTzf...J.f(x;c)dc
=f...ff(xl,...,xT,cl,...,cT)dcT...cl
=f...ff(xl,...,xT|cl,...,CT)f(cl,...,cT)dcT...01

T
= [ reor@ien ] [ redefGded der...c,
t=2

bm  bm T
< [ [ reareaten | [redenreleder...c
by  bo t=2

where f is used as a general symbol for a density.

Then, we will make the following substitutions to make computing calculation effective

and straightforward:

o The first approach is
flcler—y) = f(Ct € Bitlct—l = bit*)
fXiley) = f(thbit*)
where bit* a representative point in B;, e.g. the midpoint. [2] [5]

In more detail, the innermost integral in the multiple integrals has been approximated

as follows:
bm m
f f(erler—)f (xrler)der = Z f(CT € BiT|CT—1 = biT_l*)f(lebiT*)
bo ir=1

and using the following property:

b b
[ Aon@dr = f0) [ Hoodx

where r is a representative point in (a, b), for functions f; (x) and £, (x).

Therefore, the likelihood replaces it with:
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m m T
XD WICEENCATN] B UCEEATSCADE
D D (er € G b )f (b, )ﬂf(ct € i1, bi) by I (Xel by, ") =
i1=1 ir=1

m m
Z Z (P(er < b,) = P(biy-1 < 1)) P(a |y,")
i1=1 iT=1

~

(P(Cf = bltlblt 1) P(blt 1S Ctlblt 1 ))f(thbit*) (7.2.1)

t=2

o The second approach is:

it—1 )
f(xeley) = f(xt|bit*)

f(ctlct 1) = f(blt

where bit* a representative point e.g. a mid-point of the B;, subinterval. [4]

Therefore, the corresponding integral can be written:

| rerlerdfGerlender = 1Y flby|bi ) Grrloy,)
by iT=1

and the likelihood has been approximated as follows:

~h i i f(bi,)f (xa]bi, ) ﬁf(bit*
i1=1 ir=1 t=2

Both approaches we can rewrite with the form of a matrix product:

bit—1*)f(xt |bit*)

Ly = 86T'P(x,)TP(x,)'P(x3) ...'P(x)1’

As we have mentioned in Chapter 6 the likelihood of an HMM must contain three
elements in order to be able to express it. The transition probability matrix I, the initial
distribution 6 and the diagonal matrix P(x) which is defined as the diagonal matrix

with ith diagonal element p;(x), fori = 1, ..., m. [4] [5]
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7.3 The transition probability matrix

We define the following transition probability matrix which contains an m-state

homogenous Markov chain

Yij = P(C; =jlCq =1)

fori =1,...,mandj =1,...,m corresponds to the probability of moving from state i

(at time t — 1) to state j (at time t)

This matrix with transition probabilities from one state to another we can define it:

o For the first approach is

b; — @b;” bi_, — @b;"

o For the second approach is

vij = P(C¢ € (bj—1,bj)|Ce—1 € (bj-1, b))
Vij = P(Ce = b;"|Ceq = b;")

where b;" a representative point of the interval B; = (b;_1,b;) and @ denotes the
cumulative distribution function of the standard normal distribution. Therefore, as we

observe there corresponds to a piece of likelihood (Equation 7.2.1).

7.4 The initial distribution

Also, we define initial state distribution & with elements 6; = f(C, € B;), for i =

1,...,m and more specifically we can write as follows:
o For the first approach is

6= (f(C1 € (b11—1:bi1))»---:f(c1 € (bml—lfbml)))
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5= (P(c1 <by)=P(bi,_1 < ¢1),eee, Py < by,) = Pbpm, 1 < cl))

where f is the probability mass function and from Equation (7.3)

Ci;~Normal (0, %)

o For the second approach is

6 = (hf(by),...,hf (1))

Lo L ek O

m

5= (

7.5 The diagonal matrix

Lastly, for both approaches we define a diagonal matrix P (x,) with i-th diagonal entry
the normal density with mean 0 and variance f%exp(b;") and all diagonal elements as

follows:

filxe) = f(Xe = x|C, = b;")

In conclusion, the approximating likelihood can then be written exactly as and

constitutes the matrix form of the likelihood for HMMs:

where 17 is a column vector of ones.

7.6 Fitting an SSM to injury data

7.6.1 Transition probability matrix calculation

As we have mentioned, the first thing we are interested in HMMs is to define the
transition probability matrix. We have the same goal in SSMs models and more

specifically, as we said C; are random latent variables and transition probability matrix
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I' contains the transition probabilities of moving from one state at time ¢t — 1 to another

at time t and we can represent it with the following equation:

Yij = P(C; € Bj|C,—1 € By)

where B;, B; are the subintervals at i and j state, respectively. [4]

7.6.2 First Transition probability matrix approach

In this approach, we choose to replace C,_, with a point estimation and transition

probability matrix is represented as follow:

Yij = P(Cy € (bj—1,b))|Ceoq = b;")

From probability theory we, for a continuous random variable with cumulative
distribution F(x), it is represented that P(x € [a, b)) = F(b) — F(a). Therefore, the

transition probability matrix of approach is given by:

P(C; € (bj—1,bj)|Coe1 = b)) = P(bj_1 < C; S bj|Ce_q = b;")
= P(Ct S bjlct—l = bl*) - P(b]_l < Ctlct_l = bl*)

= FCt|Ct_1 (bj; lul’ O-) - FCt|Ct_1 (b]—l; nul' O—)

where F is the cdf of C.|C;_;, i.e. N(¢C,_1,0%) and u, = @b;".

The loglikelihood is calculated using the function optim and depends on the values m,
b, and b,,,. After several tests, we noticed that as we increase the range [b,, b,,,] and the
number of m-states the likelihood value decreases significantly. For this reason, we
choose to select m = 50 and b,, = 6 in order to avoid two major problems that may
occur. The first thing we need to note is that as m increases then the probabilities y;;
get smaller and this can lead at least one estimated transition probability to become

zero. So, it would be good not to choose a large number of states. Also, regarding the
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range [by, b,,] @ good option of subintervals is not to be big enough because this will

make the calculations more difficult and slower.

The parameter estimations we will see in Table 7.1 for the injury data.

7.6.3 Parameter Estimation

We provide the parameter estimations for the selected m = 50 and b,,, = 6

SSM (1)
Parameter Estimate SE
B 0.2374496 0.03116393
Q 0.6580702 0.00651268
o 4.6090791 0.01766361

Table 7.1. Parameter estimates and standard errors

Also, we provide and the following results:

Loglikelihood = —119.4765
AIC = 2449529

BIC = 252.646

7.6.4 Second Transition probability matrix approach

As we have mentioned, the transition probability matrix I" we can represent as follows

and for the second approach we will follow the procedure below:

Yij = P(Ct € (bj—1,bj)|C—1 € (bj-1, b))

wherei=1,...,mandj=1,...,m
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o In order to make the calculation easier and we estimate the matrix we can
replace each subinterval by a representative point such as the midpoint and the

transition probability matrix I will be written as shown below:

Yij = P(Ce = b;"|Ce—y = b;")

o Also, with this approach the computation is faster and more specifically, in the

case we choose subintervals with a small range.

Also, for this approach, the loglikelihood is calculated using the function optim and
depends on the values m, b, and b,,,. After several tests, we noticed that as we increase
the range [by, b,,] and the number of m-states the likelihood value decreases
significantly. For this reason, we choose to select m = 30 and b,,, = 5.5 .The results of

the parameter estimations we will see in Table 7.2 for the injury data.

7.6.5 Parameter Estimation

We provide the parameter estimations for the selected m = 30 and b,,, = 5.5

SSM (2)
Parameter Estimate SE
B -1.2477848 0.11969391
Q 0.6970656 0.03906823
o 4.3129098 0.20347159

Table 7.2: Parameter estimates and standard errors

Also, we provide and the following results:

Loglikelihood = —133.9979
AIC = 273.9959

BIC = 281.6889
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The computation of the standard errors resulted from the Hessian matrix as follows:

b 921
— \00,00,

where, 8 = (f5, ¢, o) are the estimated parameters of the two methods presented above

and [ is the maximum log-likelihood estimates. [21]

7.7 Simulation Study for State Space and Parameter-
Driven models

After the theoretical analysis of the HMMs models with continuous state space we will
proceed to a simulation experiment which is done between SSMs models and
parameter-driven models. The initial parameters were setat ¢ = 0.8, ¢ = 0.5and f =
0.2.

Simulation Results
Loglik AlC
100 ZIP 108.52 225.05
SSM 104.80 215.61
200 ZIP 250.30 508.60
SSM 238.87 483.75
500 ZIP 706.23 1420.46
SSM 503.32 1012.64

Table 7.3: Results from Loglikelihood and Akaike criterion for simulated data

As we can observe, from Table 7.3 we present the results from Loglikelihood and
Akaike criterion for simulated data under three different sample sizes N =
(100,200,500). It is obvious that in all cases concerning the sample size the
loglikelihood and Akaike criterion are lower in the SSMs models in relation to the
parameter-driven models. This finding can lead us to the fact that SSMs models

describe better our data and are more appropriate in cases of data with many zeros.
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Chapter 8

Model Selection

The main objective of this work is to select the appropriate model that correctly
describes our data. For this reason, we dealt with and analyzed two model cases (from
Section 3 and 4), which concern the observation-driven and parameter-driven models.
Then we analyzed three options (from Section 5 and 6) where in Section 6 we selected
the 3-state Poisson HMM and in Section 7 we implemented two approaches of a state
space model with X;, indicates the injuries of the hospital cleaners and follows a
Poisson distribution with A = Bexp(C;) and the continuous states C; correspond to an
AR (1) model. Table 8.1 present these five models and contains the log-likelihood, the
number of estimated parameters and the Akaike and Bayesian information criterion
(AIC and BIC).

e Observation-driven model: Zero inflated Poisson with AR(1).

e Parameter-driven model: Zero inflated Poisson with AR(1).

e 3-State HMM: 3-state Poisson-HMM model

e SSM1: State space model with b,,, = 5.5 (by = —5.5) and m = 30.

Computed I3q,30 transition probability matrix using interval approximation of C, and

a point approximation for C;_;.
e SSM2: State space model with b,,, = 5.5 (b, = —5.5) and m = 30.

Computed I3,30 transition probability matrix with mid-point approximation of C; and

Ct_l .
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Models
Model n Log-I AIC BIC
Observation-driven 5 -148.10 306.21 318.97
Parameter-driven 5 -147.54 305.08 317.90
3-state HMM 9 -151.00 320.01 343.09
SSM1 3 -119.47 244.95 252.64
SSM2 3 -133.99 273.99 281.68

Table 8.1: Injury data: Comparison of Observation-driven and Parameter-driven model
with hidden Markov model and two versions of a state-space model by AIC and BIC,

where n denotes the number of estimated parameters

From the Table 8.1 we can observe that the first approach of SSM1 has the smallest
AIC and BIC and for this reason we could say that it is the most appropriate.
Nevertheless, and the results from the second approach of SSMs (SSM2) are very close
and they seem to have similar performance. In addition, regarding the three remaining
models (Observation-driven, Parameter-driven and 3-state HMM), we notice that their
results are very close and we can say that they also seem to make a good adjustment to
the injury data. However, state space models provide additional information about the
hidden states and the fit of these models requires a small number of estimated

parameters (n = 3).
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Chapter 9

Conclusions

Count time series with excess zeros are often encountered in many health applications
and not only there. In this thesis, we first analyzed the injury data and tried to find the
most appropriate model. We started with observation-driven and parameter driven
models but also with Hidden Markov models with discrete state space. As shown by
the values of the AIC and BIC these three models have similar behavior and it should
be noted that among them, we probably choose the parameter-driven model due to the
smaller number of estimated parameters (n = 5). Nevertheless, in the continuation of
the analysis we proceed to the application of state space models where we aim to
include as much heterogeneity among time periods as possible. We implemented a
discretization method and we used two approaches which seem to work properly and
one of them is the best option for describing our data since it presents the lowest value
in AIC (244.95) and BIC (252.64) and has the smallest number of estimated parameters
(n = 3). After the real examples, we chose to perform a simulation experiment for each
method separately and for different sample sizes N = (100, 200,500). And for this
case we can observe that from the AIC it seems that the Space State models make a
better fit in our simulated data in different sample sizes. In conclusion, we can say that
state space models worked better as we expected, and it make sense to perform all the

statistical techniques and demanding algorithms in order to implement them.
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