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ABSTRACT 

 

 

Anastasia Pitsari 

 

 

Statistical models for count time series  

with excess zero 

  

    August 2020 

 

This thesis deals with count time series with excess zero. The first category of 

models that would fit in this case is the zero inflated models to which the 

observation-driven and parameter-driven models belongs. We illustrate this 

approach but also the next ones using a real data set on injuries of hospital 

cleaners in a hospital. We start by applying a zero inflated Poisson model with 

autoregressive process. After that, we analyze another category of models 

known as Hidden Markov models (HMMs). A hidden Markov model is a 

statistical model in which the system being modelled is assumed to be a Markov 

process with unobservable states (hidden). The state process of an HMM is 

usually discrete and this is the first case we apply to injury data. However, 

sometimes it is useful in assuming a continuous state and these models are 

known as state space models (SSMs). SSMs have more difficult statistical 

techniques and demanding algorithms and in addition require extra calculations 

because there is no direct computation formula for the likelihood. Therefore, 

after the approach to zero inflated Poisson we apply a Poisson HMM and then 

we consider a continuous SSM model in which presented with two different 

implementations. Finally, we calculate the information criteria (AIC and BIC) 

and compare the models in order to arrive at the most appropriate for the injury 

data but also for the simulation data. 
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ΠΕΡΙΛΗΨΗ 

 

Αναστασία Πίτσαρη 

 

Στατιστικά μοντέλα για χρονοσειρές  

με περίσσεια μηδενικών 
Αύγουστος 2020 

 

 

Στην παρούσα διπλωματική επεξεργαζόμαστε μοντέλα για χρονοσειρές που περιέχουν 

πολλά μηδενικά. Η πρώτη κατηγορία μοντέλων που αναλύουμε και ταιριάζει στα 

δεδομένα μας είναι τα μηδενικά-φουσκωμένα μοντέλα στα οποία ανήκουν τα μοντέλα 

παρατήρησης αλλά και τα μοντέλα παραμέτρων. Για να αναδείξουμε αυτά τα μοντέλα 

αλλά και τα επόμενα που αναλύουμε θα χρησιμοποιήσουμε διακριτά δεδομένα 

τραυματισμών που λαμβάνουν χώρα σε ένα νοσοκομείο και γίνονται από τους 

υπαλλήλους καθαρισμού. Ξεκινάμε την ανάλυση μας εφαρμόζοντας ένα Poisson 

μηδενικό-φουσκωμένο μοντέλο μαζί με αυτοπαλίνδρομο μοντέλο τάξεως ένα. Στην 

συνέχεια, προχωράμε στην ανάλυση μας με ακόμη μία κατηγορία μοντέλων τα οποία 

λέγονται κρυπτομαρκοβιανά μοντέλα. Τα κρυπτομαρκοβιανά μοντέλα είναι 

στατιστικά μοντέλα στα οποία η διαδικασία που θέλουμε να μοντελοποιήσουμε είναι 

μία Μαρκοβιανή αλυσίδα με μη παρατηρήσιμες καταστάσεις (κρυμμένες). Οι 

καταστάσεις των κρυπτομαρκοβιανών μοντέλων είναι συνήθως διακριτές τυχαίες 

μεταβλητές και αυτή θα είναι και η πρώτη περίπτωση που θα εφαρμόσουμε στα 

δεδομένα τραυματισμών. Ωστόσο, μερικές φορές είναι χρήσιμο να υποθέσουμε ότι οι 

καταστάσεις αυτές είναι συνεχείς και αυτά τα μοντέλα είναι γνωστά ως μοντέλα 

χώρου-καταστάσεων και έχουν ακριβώς την ίδια δομή με τα κρυπτομαρκοβιανά. Τα 

μοντέλα χώρου-καταστάσεων παρουσιάζουν πιο δύσκολες στατιστικές τεχνικές και πιο 

απαιτητικούς αλγορίθμους καθώς και επιπλέον υπολογισμούς διότι δεν υπάρχει άμεσος 

τρόπος υπολογισμού της πιθανοφάνειας. Επομένως, μετά την εφαρμογή του μηδενικά 

φουσκωμένου Poisson μοντέλου, εφαρμόζουμε ένα Poisson κρυπτομαρκοβιανό 

μοντέλο και στην συνέχεια ένα μοντέλο χώρου-καταστάσεων με δύο διαφορετικές 

VII 



 
 

υλοποιήσεις. Τέλος, υπολογίζουμε τα κριτήρια πληροφορίας (AIC και BIC) και 

συγκρίνουμε τα μοντέλα προκειμένου να φτάσουμε στο καταλληλότερο που να 

περιγράφει τα δεδομένα τραυματισμών αλλά και τα δεδομένα του πειράματος της 

προσομοίωσης. 
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Chapter 1 

 

Introduction 
 

Time series data involving counts are frequently encountered in many applications such 

as biomedical and general to health. In specific cases, the observed counts contain a 

high frequency of zeros (zero-inflation) and cannot be well accommodated by the 

widely used Poisson or Negative Binomial model. In general, there are two types of 

time series models: observation-driven models and parameter-driven models. In 

observation-driven models, the temporal correlation between adjacent observations is 

directly modeled through a function of past responses. In contrast, an unobserved latent 

process is employed in parameter-driven models to account for the serial correlation. 

In this thesis, we develop both observation-driven models and parameter-driven models 

for count time series with excess zeros. Also, another type of models that we will 

analyze, is Hidden Markov models which allow the probability distribution of each 

observation to depend on the unobserved (hidden) state of a Markov chain. We present 

the importance of hidden Markov models and we use a real data set on injuries at a 

hospital. Firstly, we will fit a hidden Markov model with discrete latent value and by 

extension we consider the use of this modeling methodology to fit general state-space 

models (SSMs). SSMs have almost the same features with HMMs but have the essential 

difference that the latent variable can be continuous. For this reason, we consider the 

use of two discretization approaches related to approximate an SSM likelihood. In 

addition, we quote the use of two packages of R which are called “ZIM Package” and 

“HHMpa Package”. 
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Chapter 2 

 

Injury data series 
 

 

In this thesis, we will use the occupational injury data from hospital cleaners to illustrate 

our methodologies. The injury data shown in Table 2.1 and includes of monthly (4-

week) counts of work-related injuries that are routinely reported at an aggregate 

population level from July 1988 to October 1995. [6] 

 
 

Table 2.1: Weekly injuries of hospital cleaners 

 

 

Also, Table 2.2, provides summary statistics of the data, including the mean and the 

variance of the counts. 

 

 

T Mean Var Min Max 

96 1.46875 3.8305921 0 9 

Table 2.2: Summary Statistics of the injury data 

 

As we can observe, the values range from 0 to 9 that is in a range of positive numbers. 

For this reason, we could use the Poisson distribution to describe the injury data, but it 

seems that the variance of the data is larger than the mean and this is not applicable to 

Poisson distribution. More specifically, we can note that the data is displayed 

overdispersion. [11] Negative binomial regression is a popular generalization of 

Poisson regression because it loosens the highly restrictive assumption that the variance 

is equal to the mean made by the Poisson model but and this model may not be the right 

3 9 0 3 2 2 0 3 0 2 0 0 2 4 2 0 0 1 0 3 0 2 4 3 1 2 1 0 0 3 9 2 2 2 4 0 4 0 6 3 8 6 3 3 

3 0 1 0 0 0 0 2 3 0 1 1 0 1 0 0 2 0 1 0 0 0 2 3 0 0 0 0 3 0 0 0 2 0 1 0 0 3 1 0 0 0 0 0 

0 0 0 0 2 3 2 0 
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one to describe our data due to the large presence of zeros as we can see from Table 

2.1. In addition, we should note that a participatory ergonomics intervention was 

introduced in the middle of the study in November 1992 and we can observe the 

reduction in the injury count as shown in the Figure 2.1 and we observed a different 

pattern after the 57th week.  

 
Figure 2.1: Weekly injuries of hospital cleaners before and after intervention  

 

All the above leads us to the conclusion that mixture models and more specifically zero 

inflated models are the best choice for the description of the injury data. 

 

2.1 Time series for injuries 
 

Time series theory could be useful to present our data characteristics in a better way 

since we observe, in Figure 2.1, that they present trend and seasonality. [12] The data 

were collected sequentially over a period of  𝑇 = 96 weeks. The trend shows the 

general tendency of the data to increase or decrease during a long period of time 
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and  seasonality is the presence of variations that occur at specific regular intervals less 

than a year, such as weekly, monthly, or quarterly. 

2.2 Autocorrelation function 
 

The autocorrelation function (ACF) reveals how the correlation between any two 

values of the signal changes as their separation changes. In simple terms, it describes 

how well the present value of the series is related with its past values. Let {𝑋𝑡} be a 

random process, and 𝑡 be any point in time (𝑡 may be an integer for a discrete-time 

process or a real number for a continuous-time process). Then 𝑋𝑡 is the value (or 

realization) produced by a given run of the process at time 𝑡. Then the definition of the 

auto-correlation function between times 𝑡1 and 𝑡2 is 

 

𝑅𝑥𝑥(𝑡1, 𝑡2) = 𝐸[𝑋𝑡1𝑋𝑡2] 

 

where 𝐸 is the expected value operator.[13] In our example 𝑋𝑡 will declare the weekly 

injuries of the hospital cleaners at time 𝑡. The ACF of 𝑋𝑡 is shown in Figure 2.2. The 

y-axis should be the correlation coefficient and x-axis should be the lag. 

https://www.sciencedirect.com/topics/computer-science/autocorrelation-function
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Figure 2.2: Injury data ACF 

As we can observe in Figure 2.2, the autocorrelation function decay slowly and for this 

reason we suggest an autoregressive 𝐴𝑅(𝑝) for 𝑝 = 1 model which is a representation 

of a type of random process. Also, for Figure 2.2, it is obvious that the observations are 

serially dependent and the correlation for the most lags is positive. 

 

2.3 Partial Autocorrelation function 
 

The partial autocorrelation function (PACF) gives the partial correlation of a stationary 

time series with its own lagged values, regressed the values of the time series at all 

shorter lags. It contrasts with the autocorrelation function, which does not control for 

other lags. 

Given a time series 𝑋𝑡, the partial autocorrelation of lag 𝑘, denoted 𝑎(𝑘), is the 

autocorrelation between 𝑋𝑡 and 𝑋𝑡+𝑘 with the linear dependence of 𝑋𝑡 on 𝑋𝑡+1 through 

𝑋𝑡+𝑘+1 removed; equivalently, it is the autocorrelation between 𝑋𝑡 and 𝑋𝑡+𝑘 that is not 

accounted for by lags 1 through 𝑘 − 1, inclusive. 

https://en.wikipedia.org/wiki/Random_process
https://en.wikipedia.org/wiki/Partial_correlation
https://en.wikipedia.org/wiki/Autocorrelation_function
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𝑎(1) = 𝑐𝑜𝑟𝑟(𝑋𝑡+1, 𝑋𝑡),                                𝑓𝑜𝑟 𝑘 = 1, 

𝑎(𝑘) = 𝑐𝑜𝑟𝑟(𝑋𝑡+𝑘 − 𝑋𝑡+𝑘̂, 𝑋𝑡 − 𝑋𝑡̂), 𝑓𝑜𝑟 𝑘 ≥ 2 

 

 

Where 𝑋𝑡+𝑘 is the best linear predictor 𝑋𝑡+𝑘 = 𝜑𝑘−1,1𝑋𝑡+1 + ⋯+ 𝜑𝑘−1,𝑘−1𝑋𝑡+𝑘−1.  

Similarly, 𝑋𝑡 = 𝜑𝑘−1,1𝑋𝑡−1 + ⋯+ 𝜑𝑘−1,𝑘−1𝑋𝑡−𝑘+1. 

The quantity 𝜑𝑘,𝑘 is called the partial autocorrelation of the process {𝑋𝑡} at lag 𝑘 since 

it equals the partial correlation between the variables 𝑋𝑡+𝑘 and 𝑋𝑡 adjusted for the 

intermediate variables 𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑘−1 (or the correlation between 𝑋𝑡+𝑘 and 𝑋𝑡 is 

not accounted for 𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑘−1). [14] 

 

Figure 2.3: Injury data PACF 

 

As we can observe, in Figure 2.3 there is a significant correlation at lag 1 and followed 

from correlation that are not significant. This pattern indicates an autoregressive term 

of order 1: 𝐴𝑅(1). 
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Chapter 3 

 

Observation-driven models 
 

3.1 Definitions and properties 
 

In statistics, a mixture model is a probabilistic model for representing the presence 

of subpopulations within an overall population, without requiring that an observed data 

set should identify the sub-population to which an individual observation belongs. 

Formally a mixture model corresponds to the mixture distribution that represents 

the probability distribution of observations in the overall population. Consider, the 

injury data and assume that the counts are identically distributed but there is no serial 

correlation in the series we can assume that injury data are independent counts. When 

we have independent unbounded counts, we can say that the Poisson distribution is 

suitable to describe our data and is presented that: 

𝑓(𝑥; 𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
, 𝑥 = 0,1, …, 

 

However, as we have shown in Table 2.2 the sample mean (𝑥̅ = 1.4688) and the sample 

variance (𝑠2 = 3.8305) are not equal as usual in the Poisson distribution and the injury 

data admit more variability than expected under the assumed distribution. For this 

reason, the Poisson distribution appears unlikely to be appropriate for this data. More 

specifically, as we have mentioned after the 57th week a participatory ergonomics took 

place and the injuries of the hospital cleaners were dramatically reduced. So, the injury 

data can be divided into groups, for example high accident rate and low accident rate. 

Furthermore, as we can observe from Figure 3.1, another characteristic that appears in 

injury data, is the large number of zeros about 50% of all observations. This can lead 

to incorrect parameter estimation. One way of dealing with the overdispersion of data 

and the large number of zeros is to use a mixture model. [3] 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Subpopulation
https://en.wikipedia.org/wiki/Mixture_distribution
https://en.wikipedia.org/wiki/Probability_distribution
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Figure 3.1: Bar plot of injury data 

 

 

3.2 Zero-inflated Poisson  
 

The first mixture model that we can use in injury data is the Zero-Inflated Poisson 

model which concerns a random event containing excess zero-count data in unit time. 

The Zero-Inflated Poisson (ZIP) model mixes two zero generating processes. The first 

process generates zeros. The second process is governed by a Poisson distribution that 

generates counts, some of which may be zero. The ZIP distribution with parameters 𝜋𝑖 

and 𝜇𝑖, denoted by ZIP (𝜋𝑖 , 𝜇𝑖), has the following probability mass function:  

 

𝑓(𝑦𝑖|𝜋𝑖 , 𝜇𝑖) = {

𝜋𝑖 + (1 − 𝜋𝑖)𝑒𝑥𝑝(−𝜇𝑖),            𝑖𝑓   𝑦𝑖 = 0

(1 − 𝜋𝑖)𝑒𝑥𝑝(−𝜇𝑖)
𝜇𝑖

𝑦𝑖

𝑦𝑖!
,             𝑖𝑓    𝑦𝑖 > 0

 

 

where 0 ≤ 𝜋𝑖 ≤ 1 and 𝜇𝑖 ≥ 0. 

https://en.wikipedia.org/wiki/Poisson_distribution
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The parameter 𝜋 gives the extra probability thrust at the value 0. 

The mean and variance of ZIP (𝜋𝑖, 𝜇𝑖) are 

𝐸(𝑌) = 𝜇𝑖(1 − 𝜋𝑖) 

𝑉(𝑌) = 𝜇𝑖(1 − 𝜋𝑖)(1 + 𝜇𝑖𝜋𝑖) 

However, we will not proceed with further estimation of the parameters because this 

model does not solve the problem of overdispersion (variance much larger than the 

mean). For this reason, we will introduce another type of models which no longer 

assume that the counts are independent but that they are dependent and contain a serial 

correlation. 

 

3.3 Observation-driven ZIP models 
 

Considering the injury data which belong to the category of count time series, there is 

a better and more effective model with which we can describe our data. This model 

belongs to the category of observation-driven models and more specifically because of 

the number of zeros in the group of observation-driven ZIP models. Also, with these 

models we can deal with the overdispersion and temporal correlation that is 

characteristic of count time series. With observation-driven models, temporal 

correlation between adjacent observations is directly characterized as a function of past 

responses. So, we can analyze and introduce an autoregressive model for Poisson time 

series with excess zeros based on an observation-driven approach. We maintain the 

same model structure as that introduced in Section 3.2 to account for the Poisson 

mixture and moreover, we employ lagged responses as covariates to deal with the 

temporal correlation. 

Let 𝑦𝑡 declare the response series, composed of discrete count data. Define the 

information set 

𝐹𝑡−1 = 𝜎𝑦𝑡−1, 𝑦𝑡−2, … , 𝑥𝑡 

so as to impersonate all that is known at time 𝑡 about the dependent variable (response) 

and any relevant covariate processes. In this way, the vector 𝑥𝑡 impersonate an 

assortment of past and possibly present time-dependent covariates that are observed at 
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time 𝑡 − 1. Given the information 𝐹𝑡−1, we assume the count series is conditionally 

distributed as 𝑍𝐼𝑃(𝜆𝑡, 𝜔𝑡) with probability mass function defined as follows: 

𝑓𝑌𝑡
(𝑦𝑡|𝐹𝑡−1; 𝜔𝑡, 𝜆𝑡) = 𝜔𝑡𝐼(𝑦𝑡=0) + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡)

𝜆𝑡
𝑦𝑡

𝑦𝑡!
                 (3.4) 

or equivalently 

𝑓𝑌𝑡
(𝑦𝑡|𝐹𝑡−1; 𝜔𝑡, 𝜆𝑡) = {

𝜔𝑡 + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡),      𝑖𝑓  𝑦𝑡 = 0

(1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡)
𝜆𝑡

𝑦𝑡

𝑦𝑡!
,       𝑖𝑓  𝑦𝑡 > 0

          (3.5) 

 

As before, 𝜆𝑡 introduce the intensity parameter of the baseline Poisson distribution and 

𝜇𝑡 the zero-inflated parameter.  

Also, we can observe that the ZIP distribution described by (3.4) or (3.5) can be defined 

as a two-component mixture of Poisson distribution with a dichotomous variable 𝑢𝑡 

indicating whether the observed variable 𝑦𝑡 comes from the degenerate distribution 

(𝑢𝑡 = 1) or the ordinary Poisson distribution (𝑢𝑡 = 0). [8] 

So, we have the following hierarchical model: 

 

                                               𝑢𝑡|𝐹𝑡−1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜔𝑡)                                                       (3.6) 

                                               𝑌𝑡|𝑢𝑡, 𝐹𝑡−1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛((1 − 𝑢𝑡)𝜆𝑡)                                      (3.7) 

 

For any non-negative integer 𝑚, the cumulative distribution function (c.d.f.) of 𝑌𝑡|𝐹𝑡−1 

is given by: 

𝐹𝑌𝑡
(𝑚|𝐹𝑡−1) = 𝑃𝑟( 𝑌𝑡 ≤ 𝑚|𝐹𝑡−1) = ∑ 𝑓𝑌𝑡

(𝑦𝑡|𝐹𝑡−1)

𝑚

𝑦𝑡=0

= 𝜔𝑡 + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡) ∑
𝜆𝑡

𝑦𝑡

𝑦𝑡!

𝑚

𝑦𝑡=0
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According to the equations (3.6) and (3.7), the mean of 𝑌𝑡|𝐹𝑡−1 can be expressed as 

 

𝐸(𝑌𝑡|𝐹𝑡−1) = 𝜆𝑡(1 − 𝜔𝑡) 

Proof. 

𝐸(𝑌𝑡|𝐹𝑡−1) = 𝐸{𝐸(𝑌𝑡|𝑢𝑡, 𝐹𝑡−1)} = 𝐸{(1 − 𝑢𝑡)𝜆𝑡|𝐹𝑡−1} = 𝜆𝑡(1 − 𝜔𝑡) 

 

and the variance of 𝑌𝑡|𝐹𝑡−1 can be written as: 

𝑉𝑎𝑟(𝑌𝑡|𝐹𝑡−1) = 𝜆𝑡(1 − 𝜔𝑡)(1 + 𝜆𝑡𝜔𝑡) 

Proof. 

𝑉𝑎𝑟(𝑌𝑡|𝐹𝑡−1) = 𝐸{𝑉𝑎𝑟(𝑌𝑡|𝑢𝑡, 𝐹𝑡−1)} + 𝑉𝑎𝑟{𝐸(𝑌𝑡|𝑢𝑡, 𝐹𝑡−1)}

= 𝐸{(1 − 𝑢𝑡)𝜆𝑡|𝐹𝑡−1} + 𝑉𝑎𝑟{(1 − 𝑢𝑡)𝜆𝑡|𝐹𝑡−1}

= 𝜆𝑡(1 − 𝜔𝑡) + 𝜆𝑡
2𝜔𝑡(1 − 𝜔𝑡) = 𝜆𝑡(1 − 𝜔𝑡)(1 + 𝜆𝑡𝜔𝑡) 

 

At this point, we can also observe the difference that exist in relation to the Section 3.2. 

Both parameters are modeled via log-linear and logistic link functions and are presented 

below: 

                           𝜂𝑡 = 𝑙𝑜𝑔(𝜆𝑡) = 𝒙𝑡−1
𝑇𝜷                                  (3.8) 

and 

                            𝜉𝑡 = 𝑙𝑜𝑔𝑖𝑡(𝜔𝑡) = 𝒛𝑡−1
𝑇𝜸                                 (3.9) 

 

where 𝒙𝑡−1 = (𝑥𝑡−1,1, . . . , 𝑥𝑡−1,𝑝)𝑇 and 𝒛𝑡−1 = (𝑧𝑡−1,1, . . . , 𝑧𝑡−1,𝑞)
𝑇 are sets of time-

dependent explanatory variables for the corresponding vectors of regression 

coefficients 𝛽 and 𝛾. Also,  𝜷 = [𝛽1, … , 𝛽𝑝]
𝑇
 (3.8) and 𝜸 = [𝛾1, … , 𝛾𝑞]

𝑇
(3.9) are the 

regression coefficients for the log-linear and logistic part, respectively. [8] 
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3.4 Partial likelihood 
 

The estimation of model parameters is usually performed by the method of maximum 

likelihood (ML) and the case of mixture distribution is not different. The likelihood 

function plays an important role in the process of estimating the unknown parameters. 

Also, likelihood function is defined as the joint probability density function of the data, 

viewed as a function of the parameters. Generally, for a random sample 𝑦1, … , 𝑦𝑛 the 

likelihood of a mixture model and more specifically the likelihood of an observation-

driven zero inflated model we can express it through partial likelihood. Concretely, 

partial likelihood estimation uses the product of conditional densities as the density of 

the joint conditional distribution.  

The partial data likelihood of the observed series is:  

𝑃𝐿(𝜽) = ∏𝑓𝑌𝑡
(𝑦𝑡|𝐹𝑡−1)

𝑛

𝑗=1

 

 

where 𝜽 = [𝜷𝑻, 𝜸𝑻]𝜯 is the (𝑝 + 𝑞) −dimensional vector of unknown parameters. The 

partial likelihood does not demand the derivation of the joint distribution of the 

response and the covariates. Also, is largely simplified relative to the full likelihood. 

This approach expedites conditional inference for a large class of transitional processes 

where the response depends on its past values.  

For the observation-driven ZIP model is convenient to take the logarithm of the 

likelihood, known as the log partial likelihood function which is given below: 

 

𝑙𝑜𝑔𝑃𝐿(𝜽) = ∑𝑙𝑜𝑔𝑓𝑌𝑡
(𝑦𝑡|𝐹𝑡−1)

𝑁

𝑡=1

 

∑𝑙𝑜𝑔{

𝑁

𝑡=1

𝜔𝑡𝐼(𝑦𝑡=0) + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡)
𝜆𝑡

𝑦𝑡

𝑦𝑡!
} 

In general, the maximization of a mixture likelihood is possible to perform analytically 

and we must resort to numerical methods and the vector 𝜃 gained by maximizing the 

partial likelihood is called the maximum partial likelihood estimator (MPLE). [8] 
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3.5 Parameter estimation for observation-driven ZIP 

model 
 

To get the MPLE, we must maximize 𝑙𝑜𝑔𝑃𝐿(𝜽). More specifically, we must solve the 

equation 𝑺𝑁(𝜽) = 𝟎, where the equation  𝑺𝑁(𝜽) is defined as follows: 

𝑺𝑁(𝜽) =
𝜕

𝜕𝜽
 𝑙𝑜𝑔𝑃𝐿(𝜽) = ∑𝑪𝑡−1𝒗𝑡(𝜽)

𝑁

𝑡=1

 

with 𝑪𝑡−1 and 𝒗𝑡(𝜽) given by: 

𝑪𝑡−1 = [
𝒙𝑡−1 𝟎
𝟎 𝒛𝑡−1

] 

and 

𝒗𝑡(𝜽) = [
𝑣1,𝑡(𝜽) 

𝑣2,𝑡(𝜽) 
] =

[
 
 
 
 𝑦𝑡 −

𝜆𝑡(1 − 𝜔𝑡𝐼(𝑦𝑡=0))

𝜔𝑡 + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡)

𝜔𝑡(
 𝐼(𝑦𝑡=0)

𝜔𝑡 + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡)
− 1)

]
 
 
 
 

 

Due to the nonlinear nature of the problem, there is no closed-form solution to the 

partial score equation. For this reason, we will use iterative algorithms for parameters 

estimation. [8] 

 

3.5 Simulation Study 
 

In this chapter, we want to present a simulation study and more specifically, we 

investigate the finite sample behavior of the MPLE. As we have mentioned, we assume 

that the time series data is generated by the following model:  

 

𝜂𝑡 = 𝑙𝑜𝑔(𝜆𝑡) =  𝛽0 + 𝛽1𝐼(𝑦𝑡−1>0) 

and 

𝜉𝑡 = 𝑙𝑜𝑔𝑖𝑡(𝜔𝑡) = 𝛾0 + 𝛾1𝐼(𝑦𝑡−1>0) 
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Then, we consider 𝜽 = (𝛽0,  𝛽1, 𝛾0,  𝛾1)
𝛵 = (1.2, 0.6, 0.4, −0.8)𝑇 is the true parameter 

vector.  

Table 3.1 summarizes the finite sample results of the MPLE under three different 

sample sizes 𝑁 = (100, 200, 500). 

 

Simulation Results 

𝑵                             𝜽                   𝜽̂                             Bias                         SE                    

                               𝜷𝟎              0.92                            0.28                           0.17 

 100                        𝜷𝟏              0.71                           -0.11                          0.19 

                               𝜸𝟎              0.37                            0.03                           0.35 

                               𝜸𝟏             -0.38                            0.42                          0.43 

                               𝜷𝟎              1.23                           -0.03                          0.10 

200                         𝜷𝟏              0.58                            0.02                          0.11 

                               𝜸𝟎              0.57                           -0.17                          0.22 

                               𝜸𝟏             -0.74                            0.06                          0.29 

                               𝜷𝟎              1.08                            0.12                          0.06 

500                         𝜷𝟏              0.75                           -0.15                          0.07 

                               𝜸𝟎              0.55                           -0.15                          0.14 

                               𝜸𝟏             -0.92                           -0.12                          0.18 

Table 3.1: Finite sample results of the MPLE simulated independently from ZIP 

model 

 

As we can observe from the results in the Table 3.1 the bias of the estimated parameters 

decreases as the sample increases. Note here, that the bias of an estimator is the 

difference between this estimator’s expected value and the true value of the parameter 

being estimated. Also, bias shows to us how accurate is an estimator and in this sense 

means that it is neither an overestimate nor an underestimate. If an overestimate or 

underestimate does happen, the mean of the difference is called a “bias”. Furthermore, 

in the next column of the Table 3.1 we can see the standard error values. The standard 

error of the estimate is a measure of the accuracy of predictions. From the results we 

see that the standard error decreases as the samples increases. In addition, the values 
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between the initial values of the parameters in relation to the estimated, we can be seen 

to be very close. 

 

3.6 Observation-driven model for injury data 
 

Back to injury data, we can adjust the model accordingly and, in this way, estimate our 

parameters. Then we have the model in which we get the first equation when we have 

zero accidents to the hospital cleaners and the other equation when we have several 

accidents greater than zero.  

𝑓𝑌𝑡
(𝑦𝑡|𝐹𝑡−1; 𝜔𝑡, 𝜆𝑡) = 𝜔𝑡𝐼(𝑦𝑡=0) + (1 − 𝜔𝑡)𝑒𝑥𝑝(−𝜆𝑡)

𝜆𝑡
𝑦𝑡

𝑦𝑡!
 

Also, we represent both parameters and we use an autoregressive model of order 𝑝 =

1, abbreviated 𝐴𝑅(1). Therefore, we have the following equations: 

𝜂𝑡 = 𝑙𝑜𝑔(𝜆𝑡) =  𝛽0 + 𝛽1𝐼(𝑦𝑡−1>0) + 𝛽2𝑥𝑡 

and 

𝜉𝑡 = 𝑙𝑜𝑔𝑖𝑡(𝜔𝑡) = 𝛾0 + 𝛾1𝑥𝑡 

Here, 𝑥𝑡 =
𝑡

1000
 represents the deterministic linear trend, which is always forced in the 

model since characterizing the trend is the primary objective of the study. 

 

ZIP Model 

 (AIC = 306.21) 

𝜽                                  Estimate                       SE                                 P-Value 

𝜷𝟎(𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕)             1.01                            0.22                              <0.05 

𝜷𝟏(𝑨𝑹𝟏)                        0.38                           0.19                                 0.05 

𝜷𝟐(𝑻𝒓𝒆𝒏𝒅)                  -7.45                           4.16                                 0.07 

𝜸𝟎(𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕)           -1.16                           0.50                                 0.02 

𝜸𝟏(𝑻𝒓𝒆𝒏𝒅)                   17.68                           9.41                                 0.06 

Table 3.2: Final ZIP autoregression on observation-driven model for the injury data 
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Table 3.2 displays the regression output for the observation-driven model. As we can 

see the p-values of the coefficients are less than 0.05 and this tells us that they are 

statistically significant as the standard errors seem to be relatively small except for the 

trend parameter. The Akaike criterion has a similar value to the parameter-driven model 

which we analyze in Chapter 4. 
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Chapter 4 

 

Parameter-driven models 
 

4.1 Definition 
 

In this chapter, we focus on parameter-driven models for zero-inflated time series. 

Firstly, we can mention that the parameter-driven model is an extension of the 

traditional linear model. Also, in time series, there are some cases with a high frequency 

of zeros and in this situation, we introduce a class of parameter-driven models for count 

time series in which the parameter estimation can be performed with a Monte Carlo EM 

(MCEM) algorithm. 

 

4.2 Dynamic ZIP Model 
 

In this section, we propose a dynamic ZIP model to accommodate zero-inflation in 

count time series. Specifically, we assume there is a stationary 𝐴𝑅(𝑝) process {𝑧𝑡} such 

that 

𝑧𝑡 = 𝜑1𝑧𝑡−1 + ⋯+ 𝜑𝑝𝑧𝑡−𝑝 + 𝜀𝑡 

 

where 𝜀𝑡 is a white noise process with mean 0 and variance 𝜎2. Conditioning on the 

current state 𝑧𝑡, we assume that the observation 𝑦𝑡 has a ZIP distribution with 

probability mass function 

 

𝑓𝑌𝑡
(𝑦𝑡|𝑧𝑡; 𝜆𝑡, 𝜔) = {

𝜔 + (1 − 𝜔)𝑒𝑥𝑝(−𝜆𝑡) ,        𝑖𝑓 𝑦𝑡 = 0

(1 − 𝜔)𝑒𝑥𝑝(−𝜆𝑡)
𝜆𝑡

𝑦𝑡

𝑦𝑡!
,        𝑖𝑓 𝑦𝑡 > 0

 

 

We use the following log-linear model to characterize the intensity parameter 𝜆𝑡: 

 

𝑙𝑜𝑔(𝜆𝑡) = 𝑙𝑜𝑔(𝑤𝑡) + 𝑥𝑡
𝑇𝜷 + 𝑧𝑡, 
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where 𝑥𝑡 is a set of explanatory variables and 𝜷 is the vector of regression coefficients. 

In addition, 𝑙𝑜𝑔(𝑤𝑡) is referred to as the offset variable and let 𝜽 = (𝜔, 𝜷𝑇𝝋𝑇 , 𝜎)𝛵 

denote the vector of unknown parameters. For simplicity, the zero-inflation parameter 

𝜔 is considered as constant but if we want, we can represent it with a separate logistic 

model. [6] 

The dynamic ZIP model can be written in the following state-space form: 

 

                                                        𝑠𝑡 |𝑠𝑡−1   ~   𝑁𝑝(𝜱𝑠𝑡−1, 𝜮)                                    (3.1) 

                                                          𝑢𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝜔)                                                  (3.2) 

                                                             𝑦𝑡|𝑠𝑡, 𝑢𝑡    ~   𝑃𝑜𝑖𝑠𝑠𝑜𝑛((1 − 𝑢𝑡)𝜆𝑡),                 (3.3)    

 

where 𝑠𝑡 = (𝑧𝑡, … , 𝑧𝑡−𝑝+1)
𝑇
 is a p-dimensional state vector and 𝑢𝑡 is an unobservable 

membership indicator. The initial state 𝑠0 is assumed to be normally distributed with 

mean 𝝁0 and covariance matrix 𝜮0. Here 𝜱 and 𝜮 are 𝑝 × 𝑝 matrices defined as 

follows: 

 

 

Note that the covariance matrix 𝛴 is not positive definite. Figure 4.1 illustrates the 

dynamic ZIP model that is defined by (3.1) - (3.3).  
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Figure 4.1: Graphical illustration of the state evolution and data generation in the 

dynamic ZIP model. 

 

4.3 Likelihood 
 

Based on the state-space representation (analytically in Chapter 7) and with the same 

methodology as in the previous Chapter to find the estimated parameters of the 

parameter-driven ZIP model, we will decompose the complete-data likelihood as 

follows: 

𝐿𝐶(𝜃)=𝑓(𝑠0)∏ 𝑓(𝑠𝑡|𝑠𝑡−1)
𝑛
𝑡=1 ∏ 𝑓(𝑢𝑡)∏ 𝑓(𝑦𝑡|𝑠𝑡, 𝑢𝑡)

𝑛
𝑡=1

𝑛
𝑡=1  

 

Also, the complete-data log-likelihood is given by: 

 

𝑙𝐶(𝜽) =
𝑛

2
𝑙𝑜𝑔𝜎2

−
1

2𝜎2
∑(𝑧𝑡 − 𝜑𝛵𝑠𝑡−1)

2

𝑛

𝑡=1

+ ∑{𝑢𝑡𝑙𝑜𝑔𝜔 + (1 − 𝑢𝑡)𝑙𝑜𝑔(1 − 𝜔)}

𝑛

𝑡=1

+ ∑(1 − 𝑢𝑡){𝑦𝑡𝑥𝑡
𝑇𝜷 − 𝑤𝑡𝑒𝑥𝑝(𝑥𝑡

𝑇𝜷 + 𝑧𝑡)}

𝑛

𝑡=1

. 

 

For the implementation of the EM algorithm, we need to compute the expectation of 

𝑙𝐶(𝜽) given the observed data but there is no analytical form for the conditional 

expectation due to the non-normality of the data. For this reason, for the approximation 
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of the conditional expectation we use Monte Carlo extensions that called Kalman 

methods. [6] 

 

4.4 Simulation Study 
 

In this section, we assume that the time series data are simulated from a parameter-

estimation ZIP model from which we suppose 𝑧𝑡 is an 𝐴𝑅(1) autoregressive process 

such that 

𝑧𝑡 = 𝜑𝑧𝑡−1 + 𝜀𝑡, 

where 𝜀𝑡 is a white noise process with mean 0 and standard deviation 𝜎 = 0.5. 

Furthermore, we will set 𝜑 = 0.8 to ensure that the 𝐴𝑅(1) autoregressive process is 

stationary. 

Conditioning on the current state 𝑧𝑡, we assume the observation 𝑦𝑡 has a ZIP 

distribution with probability mass function by: 

 

𝑓𝑌𝑡
(𝑦𝑡|𝑧𝑡; 𝜆𝑡, 𝜔) = {

𝜔 + (1 − 𝜔)𝑒𝑥𝑝(−𝜆𝑡) ,        𝑖𝑓 𝑦𝑡 = 0

(1 − 𝜔)𝑒𝑥𝑝(−𝜆𝑡)
𝜆𝑡

𝑦𝑡

𝑦𝑡!
,        𝑖𝑓 𝑦𝑡 > 0

 

 

where we have 𝑙𝑜𝑔(𝜆𝑡) = 𝛽0 + 𝑧𝑡 with 𝛽0 = 0.2. Thus, summarizing all the above we 

will have the follow true parameters in the generating model. 

 

• Parameter-driven ZIP Model 

𝜔 = 0.6, 𝛽0 = 0.2, 𝜑 = 0.8 and 𝜎 = 0.5. 

Also, the sample sizes (i.e., length of the series) is set to be 100, 200 and 500. 
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Simulation Results 

                                               𝝎              𝜷𝟎                      𝝋                     𝝈                                     

True                                0.60          0.20                  0.80                  0.50         

ZIP-100                          0.65         0.75(0.25)         0.65(0.26)         0.64       

ZIP-200                          0.53         0.15(0.21)         0.78(0.08)         0.95        

ZIP-500                          0.61         0.18(0.14)         0.86(0.04)         0.91        

Table 4.1: True and estimated parameters (with standard errors) for the simulated 

examples. 

 

In Table 4.1 we present the estimates of the parameters from the simulation experiment 

under three different sample sizes 𝑁 = (100, 200, 500). In the first line we can see the 

real value of the parameters and in the next ones we obtain their estimates together with 

the standard errors. Also, the MCEM algorithm is used to fit models and to reduce time 

requirements we set 𝑁 = 500 and 𝑅 = 500 and we stopped the MCEM algorithm after 

100 iterations. From the results, we can conclude that with the increase of the sample 

size the parameter estimates are closer to the real values and the standard errors are 

reduced. 

 

4.5 Parameter-driven model for injury data 
 

We revisit the application pertaining to occupational injury data. As we have 

mentioned, the application concerns the assessment of a participatory ergonomics 

intervention in reducing the incidence of workplace injuries among a group of hospital 

cleaners. The data consists of monthly (4-week) counts of work-related injuries that 

were routinely reported at an aggregate population level from July 1988 to October 

1995. During the study period, many zero counts are observed due to the heterogeneity 

in risk and the dynamic worker population. Since the injury count series contain excess 

zeros relative to a Poisson distribution, we modelled the data using a Zero Inflated 

Poisson (ZIP) mixed autoregression.  

In our analyses, we will assume that there is autocorrelation which is explained by the 

simple 𝐴𝑅(1) structure. Specifically, we employ the linear predictor 
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𝑙𝑜𝑔(𝜆𝑡) = 𝛽0 + 𝛽1𝑥𝑡 + 𝑧𝑡 ,          𝑡 = 1,… ,96, 

  

where 𝑥𝑡 = 𝐼𝑡>57 is a dummy variable indicating whether the time index 𝑡 is greater 

than the intervention time (57 months). Also, 𝛽1 reverberate the reduction in injury risk 

due to intervention. We consider the dynamic model structure ZIP + AR (1) and Table 

4.2 shows results for this. 

 

ZIP + 𝑨𝑹(𝟏)  

(AIC = 309.09) 

              Estimate                    SE                          P-Value 

𝝎            0.29                           -                                  - 

𝜷𝟎           0.89                         0.22                         <0.05 

𝜷𝟏          -1.00                         0.31                         <0.05 

𝝋             0.41                        0.26                            0.11 

𝝈             0.44                         0.05                              - 

Table 4.2: Parameter estimates (standard errors) for dynamic model fit to the injury 

count series 

 

Table 4.2 displays the regression output for the parameter-driven model. As we can 

observe the coefficient 𝛽1 is less than zero and this is something to be expected because 

it shows us that after the ergonomics intervention the number of injuries from hospital 

cleaners is decreasing. That is, the model indicates a significant reduction of work-

related injuries after the introduction of the intervention. Also, we can see that the p-

values of the coefficients are less than 0.05 and this tells us that they are statistically 

significant as the standard errors seem to be relatively small. The Akaike criterion has 

a similar value to the observation-driven model. 
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4.6 The R Package ‘ZIM’ 
 

For all calculations that we have presented so far have been done with the help of the 

ZIM package. ZIM package (Zero-Inflated Models) has developed to analyze count 

time series with excess zeros. [20] We can use it in both observation-driven models and 

parameter-driven model as follows: 

• Observation-driven models 

For this category of models and for the case of the zero-inflated Poisson which are 

presented in Chapter 3 we can use the ZIM package with the following functions: 

zim: The function zim is a user-friendly function to fit zero-inflated observation-driven 

models. Its usage is very similar to that of the well-known function glm. 

• Parameter-driven models 

Compared to observation-driven models, parameter estimation in parameter-driven 

models is much more challenging. The following is the function that can be used to fit 

the parameter-driven ZIP model that has been proposed in Chapter 4. 

dzim: The function dzim is a user-friendly function to fit zero-inflated parameter-driven 

models. The default order for the autoregressive process is assumed to be one. 
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Chapter 5 

 

Markov Chains 
 

In this section, we introduce Markov chains, a second building-block of hidden Markov 

models. Our treatment is restricted to those few aspects of discrete-time Markov chains 

that we need. Thus, although we shall make passing reference to properties such as 

irreducibility and aperiodicity, we shall not dwell on such technical issues. A Markov 

process is a stochastic process that satisfies the Markov property and more specifically, 

conditional on the present state of the system, its future and past states are independent. 

In simpler terms, it is a process for which predictions can be made regarding future 

outcomes based solely on its present state. [15] 

 

5.1 Definition 
 

A Markov chain is a sequence of discrete random variables 

𝐶1, 𝐶2, 𝐶3,...  

with the Markov property, namely that the probability of moving to the next state 

depends only on the present state and not on the previous states: 

 

𝑃(𝐶𝑡+1|𝐶1, 𝐶2, … , 𝐶𝑡−1, 𝐶𝑡) = 𝑃(𝐶𝑡+1|𝐶𝑡) 

In the other words, given the present of the process, 𝐶𝑡 , its future, 𝐶𝑡+1, is independent 

of its past, 𝐶𝑡−1, 𝐶𝑡−2, … , 𝐶1. 

 

5.2 Types of Markov chains 
 

The system's state space and time parameter index need to be specified. Table 5.1 gives 

an overview of the different instances of Markov processes for different levels of state 

space generality and for discrete time v. continuous time. As we can see from Table 5.1 

https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/State_space
https://en.wikipedia.org/wiki/Continuous_or_discrete_variable
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Markov chains can be divided into discrete time and continuous time. A discrete time 

Markov chain  is a sequence of random variables 𝐶1, 𝐶2, 𝐶3,... with the Markov property. 

A continuous-time Markov chain 𝐶𝑡, for 𝑡 ≥ 0 is defined by a finite or countable  state 

space S, a transition rate matrix 𝛤 with dimensions equal to that of the state space and 

initial probability distribution defined on the state space. [16] 

 

 Countable state space Continuous state space 

Discrete time Discrete time Markov 

chain on a countable or 

finite state space 

Markov chain on a 

measurable state space 

Continuous time Continuous-time Markov 

process  

Any continuous stochastic 

process with the Markov 

property 

Table 5.1: Overview of the different instances of Markov processes 

 

5.3 Transition probability matrix 
 

The probabilities associated with various state changes are called transition 

probabilities. The process is characterized by a state space, a transition 

matrix describing the probabilities of particular transitions, and an initial state (or initial 

distribution) across the state space. [1] 

Important quantities associated with a Markov chain are the conditional probabilities 

called transition probabilities: 

𝑃𝑟(𝐶𝑠+𝑡 = 𝑗|𝐶𝑠 = 𝑖). 

If these probabilities do not depend on s, the Markov chain is called homogeneous, 

otherwise nonhomogeneous. Unless there is an explicit indication to the contrary, we 

shall assume that the Markov chain under discussion is homogeneous, in which case 

the transition probabilities will be denoted by: 

 

𝛾𝑖𝑗(𝑡) = 𝑃𝑟(𝐶𝑠+𝑡 = 𝑗|𝐶𝑠 = 𝑖) 

 

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Transition_rate_matrix
https://en.wikipedia.org/wiki/Stochastic_matrix
https://en.wikipedia.org/wiki/Stochastic_matrix
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Therefore, we can define as transition probability matrix 𝜞 for Markov chain {𝐶𝑡} at 

time 𝑡 the matrix with (𝑖, 𝑗) element 𝛾𝑖𝑗(𝑡). This means each row of the matrix is a 

probability vector, and the sum of its entries is 1. So, we present a mathematical 

presentation of the 𝛤𝑚×𝑚 transition probability matrix: 

 

𝛤𝑚×𝑚 = (

𝛾11 ⋯ 𝛾1𝑚

⋮ ⋱ ⋮
𝛾𝑚1 ⋯ 𝛾𝑚𝑚

) 

 

where m denotes the number of states of the Markov chain and the row sums for each 

state 𝑖, 𝑖 = 1,2… ,𝑚 are equal to 1 which we can write mathematically: [1] 

∑𝛾𝑖𝑗

𝑚

𝑗=1

= 1 

 

5.4 Stationary Markov chain 

 

A stationary distribution 𝛿 is a (row) vector, whose entries are non-negative and sum 

to 1, is unchanged by the operation of transition matrix 𝜞 on it and so is defined by: 

𝛿𝜞 = 𝛿 

and  

𝛿𝟏′ = 𝛿 

where 𝟏′ is a row vector of ones, 𝛿 is a probability distribution with all requirements 

(of a pdf) satisfied. [1] 
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Chapter 6 

 

Hidden Markov Models 

 
Consider again the observed injury data series displayed in Figure 1.1 on p. 4 we have 

mentioned that the observations are unbounded counts and the Poisson distribution is a 

natural choice to describe them. On the other hand, as we noticed in Table 2.2, the 

sample variance of the observations is substantially greater than the sample mean, 

indicating overdispersion relative to the Poisson distribution. For this reason, we could 

use a mixture model to describe our injury data and in fact we would avoid the 

overdispersion in this way. But with this approach we will deal with the problem for 

the serial dependence which there is in our data. The sample autocorrelation function, 

displayed in Figure 6.1, gives a clear indication that the observations are serially 

dependent. The main way we could apply, is to relax the assumption that the parameter 

process is serially independent. In this situation, we can use the idea that we have a 

Markov chain and we analyze the resulting model for the observations which is called 

a Poisson-hidden Markov model and it belongs to the category of hidden Markov 

models (HMMs). [18] 

 

Figure 6.1: Injury data ACF 
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6.1.1 Definition 
 

Hidden Markov Model (HMM) is a statistical Markov model in which the system being 

modeled is assumed to be a Markov process – call it 𝐶𝑡 – with unobservable ("hidden") 

states. HMM assumes that there is another process 𝑋𝑡 whose behavior "depends" on 

𝐶𝑡. The goal is to learn about 𝐶𝑡 by observing 𝑋𝑡. More specifically, a hidden Markov 

model {𝑋𝑡: 𝑡 ∈ 𝑁} is a particular kind of dependent mixture. We can assume that 

𝑋1, 𝑋2, … , 𝑋𝑡 be observations and 𝐶1, 𝐶2, … , 𝐶𝑡 be the corresponding latent states 

representing the state of the process at time 1 to time 𝑡 respectively. One can summarize 

the simplest model of this kind by: 

 

𝑃𝑟(𝐶𝑡|𝐶𝑡−1, … , 𝐶1) = 𝑃𝑟(𝐶𝑡|𝐶𝑡−1),    𝑡 = 2,3, … 

𝑃𝑟(𝑋𝑡|𝑋𝑡−1, 𝐶𝑡) = 𝑃𝑟(𝑋𝑡|𝐶𝑡),    𝑡 ∈  𝑁 

If the Markov chain {𝐶𝑡} has 𝑚 states, we call {𝑋𝑡} an 𝑚-state HMM. All the above, 

are summarized in Figure 6.2 which is illustrated a graphical representation of an 

HMM. 

 

Figure 6.2: Directed graph of basic HMM. 

 

Furthermore, a joint probability of an HMM is easy to be calculated of a set of discrete 

or continuous observed variables 𝑋(𝑇) = {𝑋1, 𝑋2, . . . , 𝑋𝑡}, and discrete hidden variables 

𝐶(𝑇) = {𝐶1, 𝐶2, . . . , 𝐶𝑡}, for 𝑇 observations that factors the joint distribution as follows: 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Markov_model
https://en.wikipedia.org/wiki/Markov_process
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                                𝑃(𝑋(𝑇), 𝐶(𝑇)) = 𝐶1 ∏𝑃(𝐶𝑡+1|𝐶𝑡)∏𝑃(𝑋𝑡|𝐶𝑡)             (1)

𝑇

𝑡=1

𝑇−1

𝑡=1

 

 

6.2 The Likelihood 
 

Following our analysis of the Hidden Markov models, the aim is to represent a definite 

formula for the likelihood 𝐿𝑇 of 𝑇 consecutive observations 𝑥1, 𝑥2, … , 𝑥𝑇 assumed to 

be generated by an 𝑚-state HMM. The likelihood shows us how probable is to observe 

specific data under a certain model. Hence, we suppose there is an observation sequence 

𝑥1, 𝑥2, … , 𝑥𝑇 generated by such a model. 

 

6.2.1 Definition 
 

The likelihood of an HMM is given as  

                      𝐿𝑇 = 𝛿𝑃(𝑥1)𝛤𝑃(𝑥2)𝛤𝑃(𝑥3)…𝛤𝑃(𝑥𝛵)1´.                        (2) 

Where, 𝑃(𝑥) is defined as the diagonal matrix with 𝑖𝑡ℎ diagonal element 𝑝𝑖(𝑥), for 𝑖 =

1, … , 𝑚 which is the state-dependent probability (density) function. [1] Furthermore, 

this HMM has initial distribution 𝛿 and transition probability matrix 𝛤. If 𝛿 is the 

stationary distribution of the Markov chain, then Equation 2 can be equivalently 

expressed as: 

                    𝐿𝑇 = 𝛿𝛤𝑃(𝑥1)𝛤𝑃(𝑥2)𝛤𝑃(𝑥3)…𝛤𝑃(𝑥𝛵)1´.                     (3) 

 

Proof.  

 We present only the case of discrete observations. First note that from Equation 1, 

𝑃(𝑋(𝑇) = 𝑥(𝑇)) = ∑ 𝑃(𝑋(𝑇), 𝐶(𝑇))

𝑚

𝑐1,...,𝑐𝑇=1

= ∑ 𝑃(𝐶1)∏𝑃(𝐶𝑡+1|𝐶𝑡)∏𝑃(𝑋𝑡|𝐶𝑡)

𝑇

𝑡=1

𝑇−1

𝑡=1

𝑚

𝑐1,...,𝑐𝑇=1
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As a result,  

𝐿𝑇 = 𝑃(𝑋(𝑇) = 𝑥(𝑇)) = ∑ 𝑃(𝐶1)∏𝑃(𝐶𝑡+1|𝐶𝑡)∏𝑃(𝑋𝑡|𝐶𝑡)

𝑇

𝑡=1

𝑇−1

𝑡=1

𝑚

𝑐1,...,𝑐𝑇=1

= ∑ 𝛿𝑐1
𝑝𝑐1

(𝑥1)𝛾𝑐1,𝑐2

𝑚

𝑐1,...,𝑐𝑇=1

𝑝𝑐2
(𝑥2)𝛾𝑐2,𝑐3

𝑝𝑐3
(𝑥3)… 𝛾𝑐𝛵−1,𝑐𝛵

𝑝𝑐𝛵
(𝑥𝛵)

= 𝛿𝑃(𝑥1)𝛤𝑃(𝑥2)𝛤𝑃(𝑥3)…𝛤𝑃(𝑥𝛵)1´ 

 

6.3 Poisson HMM 
 

The first model we will choose to describe our data and belongs to the category of 

HMMs is a Poisson-HMM, where 𝑋𝑡|𝐶𝑡 has the Poisson distribution. So, we will try to 

fit an m-state Poisson hidden Markov model with 𝑚 = 1,2,3,4 in order to analyze the 

injury data. For this process we will use optimization methods and for this reason we 

need to make sure that parameters are transformed properly so as constraints will not 

violated. In general, there are two groups of constraints: those that apply to the 

parameters of the state-dependent distributions and those that apply to the parameters 

of the Markov chain. [1] 

 

Transformation 1: Estimated Poisson parameters 𝜆𝑖  that is, the means 𝜆𝑖 are always 

non-negative 

𝜅𝑖 = 𝑙𝑜𝑔(𝜆𝑖) 

where 𝑖 = 1,… ,𝑚 

Transformation 2: For initial distribution, 𝛿 , in the case where 𝛿 is stationary provided 

that the mean Poisson 𝜆𝑖 is selected with probability 𝛿𝑖, where 𝑖 = 1, … ,𝑚 we will 

transform using the logit function which is defined in interval (0,1). 

 

𝑙𝑜𝑔𝑖𝑡(𝜔𝑖) = 𝛿𝑖 

 

𝜔𝑖 = 𝑙𝑜𝑔 (
𝛿𝑖

1 − ∑ 𝛿𝑗
𝑚
𝑗=1

) 
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Transformation 3:  

Define the matrix 

𝑇 = (

− 𝜏12 𝜏13

𝜏21 − 𝜏23

𝜏31 𝜏32 −
) 

 

And let 𝑔 be a strictly increasing function e.g. 𝑔(𝑥) = 𝑒𝑥𝑝(𝑥) 

We then set  

𝛾𝑖𝑗 =
𝑔(𝜏𝑖𝑗)

∑ 𝑔(𝜏𝑖𝑗)
𝑚
𝑗=1

 

So, generally for 𝑚-state 

 

𝛾𝑖𝑗 =
𝑒𝑥𝑝(𝜏𝑖𝑗)

1 + ∑ 𝑒𝑥𝑝(𝜏𝑖𝑗)
𝑚
𝑖≠𝑗

 

𝜏𝑖𝑗 = 𝑙𝑜𝑔 (
𝛾𝑖𝑗

1 − ∑ 𝛾𝑖𝑗
𝑚
𝑖≠𝑗

) 

for 𝑖 ≠ 𝑗 

 

Parameters 𝜔𝑖, 𝜅𝑖 and 𝜏𝑖𝑗 are called working parameters. [1] 

After making the above transformations we are able to fit the models, using the R 

optimizer optim. More specifically, this can be done by numerically maximizing the 

corresponding log-likelihoods. In Table 6.1 we present the results and the comparison 

among 1-state, 2-state, 3-state and 4-state of the Poisson-HMM. The choice of m will 

be based on AIC and BIC information criteria.  

 

m-state -logL n AIC BIC 

m=1 186.8437 1 375.6873 378.2517 

m=2 157.4736 4 322.9472 333.2046 

m=3 151.0059 9 320.0118 343.0910 

m=4 151.6011 16 335.2023 376.2319 

Table 6.1: Comparison of Poisson HMMs by AIC and BIC 
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As, we can see the 1-state and 4-state HMM have both the highest value in both criteria. 

On the other hand, the 3-state HMM has the smallest 𝐴𝐼𝐶 = 320.0118 but the 2-state 

model has the smallest 𝐵𝐼𝐶 = 333.2046. In this situation, we will choose the AIC 

criterion since it is more appropriate in case of prediction. [19] 

Results of a 3-state HMM: 

𝛤 = (
0.42 0.49 0.09
0.48 0.51 0.01
0.09 0.15 0.76

) 

 

𝛿 = (0.40,0.45,0.15) 

𝜆 = (0.00,1.85,4.65) 

𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = −151.0059 

𝐴𝐼𝐶 = 320.0118 

𝐵𝐼𝐶 = 343.0910 

 

6.4 Package ‘HMMpa’ 
 

The above results are calculated with the R optimizer optim. On the other hand, there 

is a package called HMMpa and it gives us the ability to perform the same calculations. 

This package provides functions that we can use to estimate all the necessary 

parameters and it help us to save time programming.  

More specifically, first a hidden Markov model is trained to estimate the number of m 

of hidden physical activity states and the model specific parameters delta (stationary 

process), gamma (transition probability matrix) and the parameters of the data 

distribution. Then, an algorithm decodes the trained HMM to classify each time series 

count into the m hidden physical activity states. Finally, the estimated distribution mean 

values (PA-levels) corresponding to the hidden physical activity states are extracted 

and the time series counts are assigned by the total magnitudes of their corresponding 

PA-levels to given physical activity ranges by the traditional cut-off point method. [9] 

We illustrate some examples of HMMpa orders and their corresponding results: 
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Results of a 3-state HMM: 

𝛤 = (
0.42 0.50 0.06
0.46 0.53 0.01
0.09 0.21 0.68

) 

 

𝛿 = (0.00,8.45𝑥10−65, 1.00) 

𝜆 = (0.00,1.86,4.95) 

𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = −148.8881 

𝐴𝐼𝐶 = 331.7763 

𝐵𝐼𝐶 = 375.3702 
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Chapter 7 

 

State space Models 
 

7.1 Definition 
 

State space model (SSM) refers to a class of probabilistic graphical model (Koller and 

Friedman, 2009) that describes the probabilistic dependence between the latent state 

variable and the observed measurement. The state or the measurement can be either 

continuous or discrete. In the previous chapter, we have analyzed the HMMs in which 

the state process is discrete. However, if we go back to the injury data and assume that 

we have two or three states (small or large number of injuries), then the difference 

between them can be quite large in contrast to having more states and the difference 

from one to the other being less noticeable. So, we will use state space models that 

share the same dependence structure as HMMs, and we want to succeed the better 

estimations. 

Let 𝑋𝑡 be the number of injuries to the hospital cleaners at time 𝑡 and 𝐶𝑡 be the 

respective latent states for 𝑡 = 1, . . . ,96. In this category of models, in contrast to 

HMMs the states are continuous and more specifically are characterized by two 

processes: a continuous-valued Markov state process, {𝐶𝑡} and an observation process 

{𝑥𝑡}. They can be described by the following continuous distribution: 

 

                                                𝑥𝑡  = 𝜀𝑡𝛽𝑒𝑥𝑝 (
𝐶𝑡

2
),                                         (7.1) 

 

                                                 𝐶𝑡 = 𝜑𝐶𝑡−1 + 𝜎𝜂𝑡,                                          (7.2) 

 

where |𝜑| < 1 , 𝛽, 𝜎 > 0,  𝜂𝑡~𝛮(0,1) known as process noise and 𝜀𝑡~𝛮(0,1) known 

as observation error are independent sequences of independent standard normal random 

variables. [1] Here the state process, {𝐶𝑡} is an autoregressive process of lag 1. Equation 
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(7.1) describes the relationship between the true abundance and the observations 𝑥𝑡 at 

time 𝑡. Equation (7.2) describes the evolution of the unobserved state variables {𝐶𝑡}.[2]  

Also, if we assume that 

                                                   𝐶𝑡~𝑁𝑜𝑟𝑚𝑎𝑙 (0,
𝜎2

1 − 𝜑2
)                            (7.3) 

Proof. 

 

𝐶𝑜𝑣(𝐶𝑡, 𝐶𝑡) = 𝑉𝑎𝑟(𝐶𝑡) = 𝐶𝑜𝑣(𝜑𝐶𝑡−1 + 𝜎𝜂𝑡 , 𝜑𝐶𝑡−1 + 𝜎𝜂𝑡) = 𝜑2𝑉𝑎𝑟(𝐶𝑡) + 𝜎2 

 

Therefore,  𝑉𝑎𝑟(𝐶𝑡) =
𝜎2

1−𝜑2
 

 

Then, if we want to calculate the likelihood of a state space model, we have to integrate 

all possible values of the state process at each time an observation is made because 

cannot be computed explicitly in general. We adopt a discretization approach of the 

state space into 𝑚 states that avoid the complexity of the multiple integrals and the 

model can be approximated by an HMM. [2] [5] 

 

We will start with a finite range of 𝐶𝑡-values by split into m equally intervals 𝐵𝑖 =

(𝑏𝑖−1, 𝑏𝑖), 𝑖 = 1, . . . , 𝑚  of equal length ℎ =
𝑏𝑚−𝑏0

𝑚
. 

 

7.2 Numerical Integration of Likelihood 
 

The following proof provide a result for the calculation of the likelihood as we have 

calculated in Chapter 6.2 but instead of a sum of products, we have a multiple integral 

with respect to 𝐶𝑖 states 𝑖 = 1, . . . , 𝑚. 

Proof. 



 

36 
 

𝐿𝑇 = ∫. . . ∫𝑓(𝒙; 𝒄) 𝑑𝒄

= ∫. . . ∫𝑓(𝑥1, . . . , 𝑥𝑇 , 𝑐1, . . . , 𝑐𝑇) 𝑑𝑐𝑇 . . . 𝑐1

= ∫. . . ∫𝑓(𝑥1, . . . , 𝑥𝑇|𝑐1, . . . , 𝑐𝑇)𝑓(𝑐1, . . . , 𝑐𝑇) 𝑑𝑐𝑇 . . . 𝑐1

= ∫. . . ∫𝑓(𝑐1)𝑓(𝑥1|𝑐1)∏𝑓(𝑐𝑡|𝑐𝑡−1)𝑓(𝑥𝑡|𝑐𝑡)

𝑇

𝑡=2

𝑑𝑐𝑇 . . . 𝑐1

≈ ∫ . . . ∫ 𝑓(𝑐1)𝑓(𝑥1|𝑐1)∏𝑓(𝑐𝑡|𝑐𝑡−1)𝑓(𝑥𝑡|𝑐𝑡)𝑑𝑐𝑇 . . . 𝑐1

𝑇

𝑡=2

𝑏𝑚

𝑏0

𝑏𝑚

𝑏0

 

 

where f is used as a general symbol for a density. 

Then, we will make the following substitutions to make computing calculation effective 

and straightforward: 

o The first approach is 

𝑓(𝑐𝑡|𝑐𝑡−1) ≈ 𝑓(𝑐𝑡 ∈ 𝐵𝑖𝑡|𝑐𝑡−1 = 𝑏𝑖𝑡
∗) 

𝑓(𝑋𝑡|𝑐𝑡) ≈ 𝑓(𝑋𝑡|𝑏𝑖𝑡
∗) 

where 𝑏𝑖𝑡
∗
 a representative point in 𝐵𝑖𝑡 e.g. the midpoint. [2] [5] 

In more detail, the innermost integral in the multiple integrals has been approximated 

as follows: 

∫ 𝑓(𝑐𝑇|𝑐𝑇−1)𝑓(𝑥𝑇|𝑐𝑇)𝑑𝑐𝑇 ≈ ∑ 𝑓(𝑐𝑇 ∈ 𝐵𝑖𝑇|𝑐𝑇−1 = 𝑏𝑖𝑇−1

∗)𝑓(𝑥𝑇|𝑏𝑖𝑇
∗)

𝑚

𝑖𝑇=1

𝑏𝑚

𝑏0

 

and using the following property: 

∫𝑓1(𝑥)𝑓2(𝑥)𝑑𝑥 ≈ 𝑓1(𝑟)

𝑏

𝑎

∫𝑓2(𝑥)𝑑𝑥

𝑏

𝑎

 

where 𝑟 is a representative point in (𝑎, 𝑏), for functions 𝑓1(𝑥) and 𝑓2(𝑥). 

Therefore, the likelihood replaces it with: 
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𝐿𝑇 ≈ ∑. . .

𝑚

𝑖1=1

∑ 𝑓(𝑐1 ∈ 𝐵𝑖1)𝑓(𝑋1|𝑏𝑖1
∗)∏𝑓(𝑐𝑇 ∈ 𝐵𝑖𝑡|𝑏𝑖𝑡−1

∗)𝑓(𝑋𝑡|𝑏𝑖𝑡
∗)

𝑇

𝑡=2

𝑚

𝑖𝑇=1

= 

∑. . .

𝑚

𝑖1=1

∑ 𝑓(𝑐1 ∈ (𝑏𝑖1−1, 𝑏𝑖1))𝑓(𝑋1|𝑏𝑖1
∗)∏𝑓(𝑐𝑡 ∈ (𝑏𝑖𝑡−1, 𝑏𝑖𝑡)|𝑏𝑖𝑡−1

∗)𝑓(𝑋𝑡|𝑏𝑖𝑡
∗)

𝑇

𝑡=2

𝑚

𝑖𝑇=1

= 

∑. . .

𝑚

𝑖1=1

∑ (𝑃(𝑐1 ≤ 𝑏𝑖1) − 𝑃(𝑏𝑖1−1 ≤ 𝑐1))𝑃(𝑥1|𝑏𝑖1
∗)

𝑚

𝑖𝑇=1

 

                    ∏(𝑃(𝑐𝑡 ≤ 𝑏𝑖𝑡|𝑏𝑖𝑡−1
) − 𝑃(𝑏𝑖𝑡−1 ≤ 𝑐𝑡|𝑏𝑖𝑡−1

∗)) 𝑓(𝑋𝑡|𝑏𝑖𝑡
∗)

𝑇

𝑡=2

                (7.2.1) 

o The second approach is: 

𝑓(𝑐𝑡|𝑐𝑡−1) ≈ 𝑓(𝑏𝑖𝑡
∗|𝑏𝑖𝑡−1

∗) 

𝑓(𝑥𝑡|𝑐𝑡) ≈ 𝑓(𝑥𝑡|𝑏𝑖𝑡
∗) 

where 𝑏𝑖𝑡
∗
 a representative point e.g. a mid-point of the 𝐵𝑖𝑡 subinterval. [4] 

Therefore, the corresponding integral can be written: 

∫ 𝑓(𝑐𝑇|𝑐𝑇−1)𝑓(𝑥𝑇|𝑐𝑇)𝑑𝑐𝑇 ≈ ℎ ∑ 𝑓(𝑏𝑖𝑇
∗|𝑏𝑖𝑇−1

∗)𝑓(𝑥𝑇|𝑏𝑖𝑇
∗)

𝑚

𝑖𝑇=1

𝑏𝑚

𝑏0

 

and the likelihood has been approximated as follows: 

𝐿𝑇 ≈ ℎ ∑. . .

𝑚

𝑖1=1

∑ 𝑓(𝑏𝑖1
∗)𝑓(𝑥1|𝑏𝑖1

∗)∏𝑓(𝑏𝑖𝑡
∗|𝑏𝑖𝑡−1

∗)𝑓(𝑥𝑡|𝑏𝑖𝑡
∗)

𝑇

𝑡=2

𝑚

𝑖𝑇=1

 

Both approaches we can rewrite with the form of a matrix product: 

𝐿𝑇 = 𝛿𝛤𝑃(𝑥1)𝛤𝑃(𝑥2)𝛤𝑃(𝑥3)…𝛤𝑃(𝑥𝛵)1´ 

 

As we have mentioned in Chapter 6 the likelihood of an HMM must contain three 

elements in order to be able to express it. The transition probability matrix 𝛤, the initial 

distribution 𝛿 and the diagonal matrix 𝑃(𝑥) which is defined as the diagonal matrix 

with 𝑖𝑡ℎ diagonal element 𝑝𝑖(𝑥), for 𝑖 = 1, … ,𝑚. [4] [5] 
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7.3 The transition probability matrix 
 

We define the following transition probability matrix which contains an 𝑚-state 

homogenous Markov chain 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 = 𝑗|𝐶𝑡−1 = 𝑖) 

 

for 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑚 corresponds to the probability of moving from state 𝑖 

(at time 𝑡 − 1) to state 𝑗 (at time 𝑡) 

This matrix with transition probabilities from one state to another we can define it: 

o For the first approach is 

 

𝛾𝑖𝑗 = 𝛷 (
𝑏𝑗 − 𝜑𝑏𝑖

∗

𝜎
) − 𝛷 (

𝑏𝑗−1 − 𝜑𝑏𝑖
∗

𝜎
) = 𝑃(𝐶𝑡 ∈ 𝐵𝑗|𝐶𝑡−1 = 𝑏𝑖) 

 

o For the second approach is 

 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 ∈ (𝑏𝑗−1, 𝑏𝑗)|𝐶𝑡−1 ∈ (𝑏𝑗−1, 𝑏𝑗)) 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 = 𝑏𝑖
∗|𝐶𝑡−1 = 𝑏𝑖

∗) 

 

where 𝑏𝑖
∗
 a representative point of the interval 𝐵𝑖 = (𝑏𝑖−1, 𝑏𝑖) and 𝛷 denotes the 

cumulative distribution function of the standard normal distribution. Therefore, as we 

observe there corresponds to a piece of likelihood (Equation 7.2.1).  

 

7.4 The initial distribution 
 

Also, we define initial state distribution 𝛿 with elements 𝛿𝑖 = 𝑓(𝐶1 ∈ 𝐵𝑖), for 𝑖 =

1, . . . , 𝑚 and more specifically we can write as follows: 

o For the first approach is 

𝛿 = (𝑓(𝑐1 ∈ (𝑏11−1, 𝑏𝑖1)), . . . , 𝑓(𝑐1 ∈ (𝑏𝑚1−1, 𝑏𝑚1
))) 
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𝛿 = (𝑃(𝑐1 ≤ 𝑏11
) − 𝑃(𝑏11−1 ≤ 𝑐1), . . . , 𝑃(𝑐1 ≤ 𝑏𝑚1

) − 𝑃(𝑏𝑚1−1 ≤ 𝑐1)) 

 

where 𝑓 is the probability mass function and from Equation (7.3) 

𝐶1~𝑁𝑜𝑟𝑚𝑎𝑙 (0,
𝜎2

1−𝜑2).  

o For the second approach is 

 

𝛿 = (ℎ𝑓(𝑏1
∗), . . . , ℎ𝑓(𝑏1

∗)) 

𝛿 = (
𝑏𝑚 − 𝑏0

𝑚
𝑓(𝑏1

∗), . . . ,
𝑏𝑚 − 𝑏0

𝑚
𝑓(𝑏1

∗)) 

 

7.5 The diagonal matrix 
 

Lastly, for both approaches we define a diagonal matrix 𝑃(𝑥𝑡) with i-th diagonal entry 

the normal density with mean 0 and variance 𝛽2𝑒𝑥𝑝(𝑏𝑖
∗) and all diagonal elements as 

follows: 

𝑓𝑖(𝑥𝑡) = 𝑓(𝑋𝑡 = 𝑥|𝐶𝑡 = 𝑏𝑖
∗) 

In conclusion, the approximating likelihood can then be written exactly as and 

constitutes the matrix form of the likelihood for HMMs: 

𝐿𝑇 = 𝛿𝑃(𝑥1)𝛤𝑃(𝑥2)𝛤𝑃(𝑥3)…𝛤𝑃(𝑥𝛵)1´. 

where 1´ is a column vector of ones. 

 

7.6 Fitting an SSM to injury data 
 

7.6.1 Transition probability matrix calculation  

 

As we have mentioned, the first thing we are interested in HMMs is to define the 

transition probability matrix. We have the same goal in SSMs models and more 

specifically, as we said 𝐶𝑡 are random latent variables and transition probability matrix 
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𝛤 contains the transition probabilities of moving from one state at time 𝑡 − 1 to another 

at time 𝑡 and we can represent it with the following equation: 

 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 ∈ 𝐵𝑗|𝐶𝑡−1 ∈ 𝐵𝑖) 

 

where 𝐵𝑖, 𝐵𝑗 are the subintervals at 𝑖 and 𝑗 state, respectively. [4] 

7.6.2 First Transition probability matrix approach 

 

In this approach, we choose to replace 𝐶𝑡−1 with a point estimation and transition 

probability matrix is represented as follow: 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 ∈ (𝑏𝑗−1, 𝑏𝑗)|𝐶𝑡−1 = 𝑏𝑖
∗) 

 

From probability theory we, for a continuous random variable with cumulative 

distribution 𝐹(𝑥), it is represented that 𝑃(𝑥 ∈ [𝑎, 𝑏)) = 𝐹(𝑏) − 𝐹(𝑎). Therefore, the 

transition probability matrix of approach is given by: 

 

𝑃(𝐶𝑡 ∈ (𝑏𝑗−1, 𝑏𝑗)|𝐶𝑡−1 = 𝑏𝑖
∗) = 𝑃(𝑏𝑗−1 < 𝐶𝑡 ≤ 𝑏𝑗|𝐶𝑡−1 = 𝑏𝑖

∗)

= 𝑃(𝐶𝑡 ≤ 𝑏𝑗|𝐶𝑡−1 = 𝑏𝑖
∗) − 𝑃(𝑏𝑗−1 < 𝐶𝑡|𝐶𝑡−1 = 𝑏𝑖

∗)

= 𝐹𝐶𝑡|𝐶𝑡−1
(𝑏𝑗; 𝜇𝑖, 𝜎) − 𝐹𝐶𝑡|𝐶𝑡−1

(𝑏𝑗−1; 𝜇𝑖, 𝜎) 

 

where 𝐹 is the cdf of 𝐶𝑡|𝐶𝑡−1, i.e. 𝑁(𝜑𝐶𝑡−1, 𝜎
2) and 𝜇𝜄 = 𝜑𝑏𝑖

∗
. 

The loglikelihood is calculated using the function optim and depends on the values 𝑚, 

𝑏0 and 𝑏𝑚. After several tests, we noticed that as we increase the range [𝑏0, 𝑏𝑚] and the 

number of 𝑚-states the likelihood value decreases significantly. For this reason, we 

choose to select 𝑚 = 50 and 𝑏𝑚 = 6 in order to avoid two major problems that may 

occur. The first thing we need to note is that as 𝑚 increases then the probabilities 𝛾𝑖𝑗 

get smaller and this can lead at least one estimated transition probability to become 

zero. So, it would be good not to choose a large number of states. Also, regarding the 
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range [𝑏0, 𝑏𝑚] a good option of subintervals is not to be big enough because this will 

make the calculations more difficult and slower.  

 The parameter estimations we will see in Table 7.1 for the injury data. 

 

7.6.3 Parameter Estimation 

 

We provide the parameter estimations for the selected 𝑚 = 50 and 𝑏𝑚 = 6 

    SSM (1) 

Parameter                          Estimate                          SE 

         𝜷                                0.2374496                 0.03116393 

         𝝋                                0.6580702                0.00651268 

         𝝈                                4.6090791                0.01766361 

Table 7.1. Parameter estimates and standard errors 

 

Also, we provide and the following results: 

 

𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = −119.4765 

𝐴𝐼𝐶 = 244.9529 

𝐵𝐼𝐶 = 252.646 

 

 

 

7.6.4 Second Transition probability matrix approach 

 

As we have mentioned, the transition probability matrix 𝛤 we can represent as follows 

and for the second approach we will follow the procedure below:  

 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 ∈ (𝑏𝑗−1, 𝑏𝑗)|𝐶𝑡−1 ∈ (𝑏𝑗−1, 𝑏𝑗)) 

where 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑚 
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o In order to make the calculation easier and we estimate the matrix we can 

replace each subinterval by a representative point such as the midpoint and the 

transition probability matrix 𝛤 will be written as shown below: 

 

𝛾𝑖𝑗 = 𝑃(𝐶𝑡 = 𝑏𝑖
∗|𝐶𝑡−1 = 𝑏𝑖

∗) 

 

o Also, with this approach the computation is faster and more specifically, in the 

case we choose subintervals with a small range. 

Also, for this approach, the loglikelihood is calculated using the function optim and 

depends on the values 𝑚, 𝑏0 and 𝑏𝑚. After several tests, we noticed that as we increase 

the range [𝑏0, 𝑏𝑚] and the number of 𝑚-states the likelihood value decreases 

significantly. For this reason, we choose to select 𝑚 = 30 and 𝑏𝑚 = 5.5 .The results of 

the parameter estimations we will see in Table 7.2 for the injury data. 

 

7.6.5 Parameter Estimation 

We provide the parameter estimations for the selected 𝑚 = 30 and 𝑏𝑚 = 5.5 

    SSM (2) 

Parameter                          Estimate                          SE 

         𝜷                                -1.2477848                0.11969391 

         𝝋                                0.6970656                0.03906823 

         𝝈                                4.3129098                0.20347159 

Table 7.2: Parameter estimates and standard errors 

 

Also, we provide and the following results: 

 

𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = −133.9979 

𝐴𝐼𝐶 = 273.9959 

𝐵𝐼𝐶 = 281.6889 
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The computation of the standard errors resulted from the Hessian matrix as follows: 

𝐻 = −(
𝜕2𝑙

𝜕𝜃𝑖𝜕𝜃𝑗
) 

where, 𝜃 = (𝛽, 𝜑, 𝜎) are the estimated parameters of the two methods presented above 

and 𝑙 is the maximum log-likelihood estimates. [21] 

 

 7.7 Simulation Study for State Space and Parameter-

Driven models 
 

After the theoretical analysis of the HMMs models with continuous state space we will 

proceed to a simulation experiment which is done between SSMs models and 

parameter-driven models. The initial parameters were set at 𝜑 = 0.8, 𝜎 = 0.5 and 𝛽 =

0.2. 

 

Simulation Results  

                                                  𝑳𝒐𝒈𝒍𝒊𝒌                        𝑨𝑰𝑪 

100                   ZIP                 108.52                          225.05 

                       SSM              104.80                        215.61 

200                 ZIP                250.30                       508.60 

                      SSM              238.87                        483.75                        

500                 ZIP               706.23                      1420.46  

                      SSM              503.32                      1012.64 

Table 7.3: Results from Loglikelihood and Akaike criterion for simulated data 

 

As we can observe, from Table 7.3 we present the results from Loglikelihood and 

Akaike criterion for simulated data under three different sample sizes 𝑁 =

(100, 200, 500).  It is obvious that in all cases concerning the sample size the 

loglikelihood and Akaike criterion are lower in the SSMs models in relation to the 

parameter-driven models. This finding can lead us to the fact that SSMs models 

describe better our data and are more appropriate in cases of data with many zeros. 
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Chapter 8 

 

Model Selection 
 

The main objective of this work is to select the appropriate model that correctly 

describes our data. For this reason, we dealt with and analyzed two model cases (from 

Section 3 and 4), which concern the observation-driven and parameter-driven models. 

Then we analyzed three options (from Section 5 and 6) where in Section 6 we selected 

the 3-state Poisson HMM and in Section 7 we implemented two approaches of a state 

space model with 𝑋𝑡, indicates the injuries of the hospital cleaners and follows a 

Poisson distribution with 𝜆 = 𝛽𝑒𝑥𝑝(𝐶𝑡) and the continuous states 𝐶𝑡 correspond to an 

𝐴𝑅(1) model. Table 8.1 present these five models and contains the log-likelihood, the 

number of estimated parameters and the Akaike and Bayesian information criterion 

(AIC and BIC). 

 

• Observation-driven model: Zero inflated Poisson with 𝐴𝑅(1).  

• Parameter-driven model: Zero inflated Poisson with 𝐴𝑅(1).  

• 3-State HMM: 3-state Poisson-HMM model 

• SSM1: State space model with 𝑏𝑚 = 5.5 (𝑏0 = −5.5) and 𝑚 = 30. 

Computed 𝛤30𝑥30 transition probability matrix using interval approximation of 𝐶𝑡 and 

a point approximation for 𝐶𝑡−1. 

• SSM2: State space model with 𝑏𝑚 = 5.5 (𝑏0 = −5.5) and 𝑚 = 30. 

Computed 𝛤30𝑥30 transition probability matrix with mid-point approximation of 𝐶𝑡 and 

𝐶𝑡−1. 
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Models 

Model n Log-l AIC BIC 

Observation-driven 5 -148.10 306.21 318.97 

Parameter-driven 5 -147.54 305.08 317.90 

3-state HMM 9 -151.00 320.01 343.09 

SSM1 3 -119.47 244.95 252.64 

SSM2 3 -133.99 273.99 281.68 

Table 8.1: Injury data: Comparison of Observation-driven and Parameter-driven model 

with hidden Markov model and two versions of a state-space model by AIC and BIC, 

where n denotes the number of estimated parameters 

 

From the Table 8.1 we can observe that the first approach of SSM1 has the smallest 

AIC and BIC and for this reason we could say that it is the most appropriate. 

Nevertheless, and the results from the second approach of SSMs (SSM2) are very close 

and they seem to have similar performance. In addition, regarding the three remaining 

models (Observation-driven, Parameter-driven and 3-state HMM), we notice that their 

results are very close and we can say that they also seem to make a good adjustment to 

the injury data. However, state space models provide additional information about the 

hidden states and the fit of these models requires a small number of estimated 

parameters (𝑛 = 3). 
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Chapter 9 

 

Conclusions 
 

Count time series with excess zeros are often encountered in many health applications 

and not only there. In this thesis, we first analyzed the injury data and tried to find the 

most appropriate model. We started with observation-driven and parameter driven 

models but also with Hidden Markov models with discrete state space. As shown by 

the values of the AIC and BIC these three models have similar behavior and it should 

be noted that among them, we probably choose the parameter-driven model due to the 

smaller number of estimated parameters (𝑛 = 5). Nevertheless, in the continuation of 

the analysis we proceed to the application of state space models where we aim to 

include as much heterogeneity among time periods as possible. We implemented a 

discretization method and we used two approaches which seem to work properly and 

one of them is the best option for describing our data since it presents the lowest value 

in AIC (244.95) and BIC (252.64) and has the smallest number of estimated parameters 

(𝑛 = 3). After the real examples, we chose to perform a simulation experiment for each 

method separately and for different sample sizes 𝑁 = (100, 200, 500). And for this 

case we can observe that from the AIC it seems that the Space State models make a 

better fit in our simulated data in different sample sizes. In conclusion, we can say that 

state space models worked better as we expected, and it make sense to perform all the 

statistical techniques and demanding algorithms in order to implement them. 
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