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Abstract 

The selection of the optimal portfolio is a problem that concerns the financial 

science. The term “portfolio” refers to the collection of assets owned by an investor. 

An “optimal portfolio” is a specific mix of assets that optimizes a utility function. 

Nowadays, due to the development of information technology, we are able to control 

complex mathematical models and select the optimal portfolio that provides less risk 

and the highest out-of-sample risk-adjusted realized return. Based on this, many 

models such as the Single Index model, Static Latent factor model, Latent factor 

GARCH model, full-factor multivariate GARCH model, regime switching-dynamic 

correlations model have been developed. This thesis presents a multidimensional 

methodology based on the financial analysis of hedge fund returns.  

Keywords : Portfolio Construction, Dynamic covariances / correlations, Hedge fund 

portfolios  



ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 

Περίληψη 

Η επιλογή του βέλτιστου χαρτοφυλακίου είναι ένα πρόβληµα που αφορά τις χρηµατοοικονοµικές 

επιστήµες. Ο όρος "χαρτοφυλάκιο" αναφέρεται στην συλλογή περιουσιακών στοιχείων που 

ανήκουν σε έναν επενδυτή. Ένα "βέλτιστο χαρτοφυλάκιο" είναι ένα συγκεκριµένο µείγµα 

περιουσιακών στοιχείων που βελτιστοποιεί µια συνάρτηση χρησιµότητας. Σήµερα, λόγω της 

ανάπτυξης της τεχνολογίας των πληροφοριών, είµαστε σε θέση να χειριζόµαστε πολύπλοκα 

µαθηµατικά µοντέλα και να επιλέγουµε το βέλτιστο χαρτοφυλάκιο που παρέχει λιγότερο κίνδυνο 

και το υψηλότερο έξω από το δείγµα προσαρµοσµένο κινδύνο πραγµατοποιόντας απόδοση. Με 

βάση αυτό, πολλά µοντέλα, όπως το µοντέλο ενός κοινού παράγοντα (SIM), το µοντέλο 

λανθάνουντα παράγοντα (Static Latent factor model), το λανθάνον µοντέλο (Latent factor) 

GARCH, το µοντέλο GARCH πολυπαραγοντικού πολλαπλού παράγοντα, το µοντέλο δυναµικής 

συσχετισµούς που µεταλλάσσουν το καθεστώς έχουν αναπτυχθεί. Αυτή η διπλωµατική εργασία 

παρουσιάζει µια πολυδιάστατη µεθοδολογία που βασίζεται στην χρηµατοοικονοµική ανάλυση των 

αποδόσεων των αντισταθµιστικών κεφαλαίων. 
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Chapter 1 

Introduction 

Capital markets and stock exchanges are an important measure of the economic development of an 

economy which has shown growth in recent years to a large extent. The investors, who are trying to 

calibrate the cost and risk of investments every time, are constantly seeking ways and products to 

increase their profit. They want to develop effective portfolios, which are a better combination of 

risk and returns, so as to minimize the risk, that is the diversification. The diversification of the 

portfolio is essentially when the investor tries to get rid of any non-systemic risk, i.e. any risk 

eliminated by the appropriate combination of funds, portfolio and assume only the market risk. 

Harry Markowitz is the founder of the theory, who developed the corresponding theory in 1952 and 

won the Nobel Prize for his work in 1990. Markowitz developed the theory of the optimal portfolio 

based on analysis of variance and covariance between securities in order to maximize expected 

return and minimize risk. Moreover, Sharpe (1966) calculated the profit that an investor would have 

through the Sharpe index from a specific distribution of securities. He combined the expected return 

and standard deviation of portfolios to combination with the risk-free security. Because of the 

globalization of markets, risk management has been an imperative need as we understand. In fact, 

the impact of one market on the other is immediate. Thus, the fall in the prices of securities traded 

in one country could be followed by the fall in the prices of securities in another country. For this 

reason, the construction of the Mean-variance and Minimum variance portfolio were developed. 

According to this theory, the investors make the effort to maximize their wealth and to achieve 

diversification of their portfolio minimizing the potential loss from their investment. In this thesis, 

we will present and analyze econometric models applying them to financial problems. We will see 

the construction of optimal portfolios, the assessment of the performance, and the risk of financial 

capital. We will present financial models that are appropriate for financial data with their specific 

characteristics. The characteristics of financial data present the phenomenon of fat tails of returns, 

deviation from normality and variances, and covariance in returns.  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Chapter 1     Introduction

In the second chapter, we analyze the portfolio management process, the risk and return of the 

assets, and portfolio diversification. These concepts are very important for understanding the whole 

process before making optimal portfolios. The third chapter presents the problem of portfolio 

construction. From solving a problem of minimizing the variance of the portfolio under certain 

constraints, we find the optimal investment rate i.e. the weights of the assets. Also important for 

finding the optimal portfolio is the forecast of expected return and variance of the portfolio. In the 

fourth chapter, we refer to the equation of the Capital Market Line, the Capital Asset Pricing Model, 

the Arbitrage Pricing Theory, and performance measure. The use of the models is a useful tool in 

portfolio management as we receive the returns of the securities in these processes. But also the 

performance measures are very useful for making a reliable estimate of the returns of investment 

funds. In the fifth and sixth chapter describe and we develop econometric models that study the 

relationship between returns of the assets with some multivariate factor models. Furthermore, we 

apply some mentioned econometric models and techniques to an empirical financial problem.   
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Chapter 2 

Portfolio Theory 

2.1  The portfolio management process  

The portfolio management process involves a comprehensive dynamic sequence of steps 

that never stops to create and maintain an appropriate portfolio. The whole process starts 

with the initial investment of funds based on some plans that the investor has. The real work 

starts from the evaluation of the performance of the portfolio and the modification of the 

portfolio based on the needs of the investor and the changes in the financial environment 

(Reilly F. And Brown K. 2012).  

According to Reilly and Brown, this process is divided into a series of four consecutive 

steps. Initially, the first phase has to do with the policy statement which focuses on the 

needs of the investor, which may be short-term or long-term and these will be determined by 

the expectations of capital markets. This phase the investor’s target and investment 

constraints are determined, thus ensuring that the investment decisions are appropriate for 

the investor. As a result of this phase, the risks become apparent which the investor is 

willing to take over. The period time plays a very decisive role in shaping the investment 

objectives, needs, and investment constraints of an investor and should be taken into 

account. Also, the conditions are distinguished which prevails in the economic climate 

during this period analysis, as the characteristics and prospects of the various investment 

trades are configured. At this phase, estimates and forecasts of the capital market 

expectations are made.  

Following the first phase is the construction phase in which the asset allocation of the 

investor takes place within the diversity of asset classes e.g. investment bond. The asset 

allocation may have either regular or strategic character into different types of investment 

products, depending on the short-term or long-term investment policy to be followed by the  

Portfolio  Construction 3



Chapter 2   Portfolio Theory

investor. During the planning phase, it was observed that there are some securities with 

more attractive features. So, these options are selected for each type of capital investment in 

the construction phase. The portfolio optimization process is the final step in this phase 

which is based on the determination of the percentages of capital that will be invested in any 

bond. In essence, the exact determination of the percentages of capital takes place that will 

be invested in each bond. This is achieved through the use of mathematical programming. 

Jacobs and Levy (1995) introduce the terminology of portfolio engineering for this phase.  

Then, there is the evaluation phase in which is done the calculation of portfolio performance 

using risk-adjusted performance measures. This phase is a comparison with the performance 

of the other portfolios that are considered standard (benchmark portfolios) and with 

different types of market portfolios. In addition, an audit of discrepancies is carried out 

concerning the investment objectives and investment constraints which had set by the 

investor. Namely, it examines how well the planning phase was followed.  

Finally, the revision phase follows which may be a change in the choice of securities and the 

percentages of capital invested in these securities. It is also possible to differentiate the 

initial decisions concerning asset allocation in various types of investment products. These 

diversifications can be made because of the change in the prevailing conditionals at the 

market and changing investor preferences in particular within the investment objectives and 

investment constraints. There is constant monitoring of the changes either the investor’s 

policy or the market parameters and these are taken into account during the revision phase 

(Elton, E.J., Gruber, M.J., Brown, S.J. and Goetzmann W.N. 2014). 

Portfolios management is considered a recurring process, as reported by Maginn et al. 

(2007) in which is realized determining investment objectives and constraints, launching 

investment strategies, designing the composition of the portfolio, evaluating the portfolio 

performance, continual monitoring the change of its conditions market and the preferences 

of the investor and redesigning the composition of the portfolio.  
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2.2 Return and Risk 

Several factors and investment characteristics play a decisive role during the process of 

constructing the optimal portfolio. The most important of these factors are the risk and 

return to individual assets. Correlations among individual assets along with risk and return 

are important determinants of portfolio risk. An investor needs to understand the risk and 

the return of investing in creating a portfolio. The basic idea is that an investor desires to 

maximize the expected return of this portfolio for a given risk level or to minimize the risk 

of the portfolio for a particular expected return provided by Elton, Guber, Brown, and 

Goetzmann (2006). An investor will move from one portfolio to another one which has the 

same expected return but less risk, or to a portfolio which has the same risk but greater 

expected return (Fama, E. and French, 1993). 

The return of a portfolio is commensurate with the returns of its individual assets, so the 

return of a portfolio is the weighted average of the returns of its component assets. Suppose 

that a portfolio has n assets and  is the return of a asset i per year t. In addition, the 

expected return of a asset i per year t corresponds  and the variance corresponds 

. The percentage of capital invested in asset i is  with 

, so the return of a portfolio at the t is given by the relationship : 

 

where   it is the   vector of investment rate or weights and 

  is the   vector returns at time t. So, the expected return of a 

portfolio at time t is given by the relationship : 

  

    

 

                                  

Ri,t

μi,t = E(Ri,t)

σ2
i,t = V(Ri,t) wi, i = 1,....,n

wi ≥ 0,
n

∑
i=1

wi = 1

Rp,t = w1R1,t + w2R2,t + . . . . . . + wnRn,t =
n

∑
i=1

wiRi,t = w′� ⋅ Rt

w = (w1, w2, . . . , wn)′� n × 1

Rt = (R1,t, R2,t, . . . . . Rn,t)′� n × 1

E(Rp,t) = E(w1R1,t + w2R2,t + . . . . . . . + wnRn,t) =

w1E(R1,t) + w2E(R2,t) + . . . . . . + wnE(Rn,t) =
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where         is a   vector of mean returns of the asset at time 

t. The variance return of a portfolio at time t is given by the relationship : 

 

 

 

 

where  :  

From the above, it seems that the risk returns of the portfolio are determined by the risk 

returns of the individual assets and the covariance of the assets but also from the correlation 

returns of the assets. Covariance is a statistical measure and it declares how one investment 

moves with another. Observing the factors, which determine the variability of one’s return 

portfolio, we conclude that the higher is the variation of the return of the individual assets, 

the riskier will become the portfolio. The correlation coefficient measures the degree of 

correlation ranging from -1 for a perfectly negative correlation to +1 for a perfectly positive 

n

∑
i=1

wiE(Ri,t) =
n

∑
i=1

wiμi,t = w′� ⋅ μt

μt = (μ1,t, μ2,t, . . . . . . . , μn,t)′� n × 1

V(Rp,t) = V(w1R1,t + w2R2,t + . . . . + wnRn,t) =

w2
1 ⋅ V(R1,t) + . . . . . + w2

n ⋅ V(Rn,t) + 2 ⋅ w1 ⋅ w2 ⋅ Cov(R1,t, R2,t) + . . . . . + 2 ⋅ wn−1 ⋅ wn ⋅ Cov(Rn−1, Rn,t) =

n

∑
i=1

w2
i ⋅ σ2

i,t +
n

∑
i=1

n

∑
j=1, j≠i

wi ⋅ wj ⋅ σij,t =
n

∑
i=1

w2
i ⋅ σ2

i,t +
n

∑
i=1

n

∑
j=1, j≠i

wi ⋅ wj ⋅ ρij,t ⋅ σi,t ⋅ σj,t =

w′� ⋅ Σt ⋅ w = w′� ⋅ Dt ⋅ Rt ⋅ Dt ⋅ w
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•  is the covariance between the return  of asset i and the 

return  of asset j at time t 

•  is the correlation between the return  of asset i and the 

return  of asset j at time t 

•  is  a  covariance matrix of the returns of assets at time t 

•  is a  diagonal matrix with element of standard deviation  

•  is a  correlation matrix of the returns of assets  

σij,t = Cov(Ri,t, Rj,t) Ri,t

Rj,t

ρij,t = Corr (Ri,t, Rj,t) Ri,t

Rj,t

Σt n × n

Dt n × n σi,t

Rt n × n
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correlation. If the correlation coefficient is large, the covariance is also large and therefore 

the risk of the portfolio. On the contrary, if the correlation coefficient is small, the 

covariance is small and therefore the risk of the portfolio. If a portfolio has a correlation 

coefficient close to zero, it will be an uncorrelated investment pair. Note that the correlation 

coefficient of investments won’t have an exact correlation coefficient of zero. Also, the 

higher is the number of bonds in a portfolio, the lower is the risk while the difference 

portfolios compositions cause different results that determine the expected return of the 

portfolio. If there are x securities, infinite combinations can be made to each other and to 

form infinite portfolios as Wallengren and Sigurdson 2017 mentioned.  

The risk can be defined as the deviation from the expected historical returns during a given 

period time as (Bofah and McClure, 2010) mentioned. However, Markowitz’s portfolio 

selection argues that “ The risk of an asset isn’t the risk each asset individually, but the 

contribution each asset at the risk of the general portfolio ” as Royal Swedish Academy of 

Sciences, 1990 mentioned. In a portfolio, the total risk of a title can be divided into two 

categories which are systemic risk (market risk) and non-systemic risk (specific risk). 

The systemic risk or market risk cannot be limited by them, the investors. Τhe economic, 

social and political conditions that prevail in the local and international environment, such 

as unemployment. Some risk premium is sought by investors to be protected from systemic 

risk as Mangram, 2013 and Ross, Westerfield, and Jaffe, 2002 mentioned. 

The non-systemic risk or specific risk is related to the risks contained in each stock 

separately such as for example the fall in the stock price of a bank and this will not affect 

the prices of other stock owned by other banks. This specialist risk can be addressed through 

the process of diversification portfolio. If the investors increase the number of stocks 

consisting of the portfolio, the dispersion of stock is achieved and therefore its 

diversification portfolio. 
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2.3 Portfolio Diversification 

Portfolio diversification is a risk management technique where investment products are bought 

with different risk and return, in order to reduce as much as possible the risk taken and to 

normalize a significant percentage of the variability of the overall return of a portfolio. The 

effects of both systemic and non-systemic risks can be avoided by diversifying the portfolio and 

absorbing the losses or increasing the probability of profit that may result from poor returns on 

the individual investment. A rational investor will make such a distribution of assets that for a 

given level of risk, the return of the portfolio will be maximized. In other words, there will be no 

portfolio or individual investment that offers higher returns with the same level risk. The 

correlation plays an important role. If the investments are uncorrelated with each other, the total 

investment risk is reduced by investing in different categories of assets and securities of different 

publishers or even countries. The lower the degree of correlation between investments in a 

portfolio, the higher the degree of diversification achieved, and therefore the smaller the number 

of assets needed. In a diversified portfolio, the overall return may be lower but more stable than 

that of a non-diversified portfolio. There is an inverse relationship between risk and return on 

investment in an effective market. One of the easiest and most straightforward ways to diversify 

your portfolio is the purchase stocks together in hedge funds (Woohwan Kim, Young Min Kim, 

Tae-Hwan Kim and Seungbeom Bang). 

. 

Types of diversification  

  

Many options for diversifying the portfolio can be used by the investor, in a wide range of cost, 

return, and risk options. In general, if the portfolio has a high degree of diversification, this has 

low systemic and non-systemic risk. This happens because the probability decreases that the 

value of all assets is reduced at the same time, thus reducing the overall variance in the value of 

the portfolio.  
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Supposing that the assets returns are unrelated to each other, so the correlation coefficient and 

the covariance are zero, that is   , having invested the same percentage of the fund 

in each asset   for each  then : 

   

       as        

The number of assets increases and thus the risk of the portfolio diminishes, that is it goes down 

to zero.    

ρij,t = σij,t = 0

wi = 1/n i, i = 1,.....,n ,

V(Rp,t) =
n

∑
i=1

(1/n)2σ2
i,t = 1/n

n

∑
i=1

σ2
i,t /n → 0 n → ∞
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Horizontal diversification  

Vertical diversification                    

Over-diversification                       

The investment in similar financial products 

constitutes the horizontal diversification of 

the portfolio.

The investment in different financial products 

and assets is the vertical diversification which 

can be traded even in different markets. This 

greatly reduces the risk of zeroing the value 

of a portfolio, even if there is something that 

affects the whole economy.

Additional investment in a portfolio does not 

further improve its risk and return where it is 

called over-diversification. The benefit 

resulting from the acquisition of the 

investment is less than the loss of potential 

profits (diminishing returns).
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If we consider a portfolio consisting of two assets and the percentage of the fund investing in the 

first asset is    and the second asset is  , the 

expected return of the portfolio at time t, is given by : 

 




where    is the variance of the portfolio at the time t for  and . 

Still some cases : 

w1 w2 = 1 − w1, with wi ≥ 0 and
n

∑
i=1

wi = 1

E(Rp,t) = w1 ⋅ μ1,t + w2 ⋅ μ2,t

V(Rp,t) = w2
1 ⋅ σ2

1,t + w2
2 ⋅ σ2

2,t + 2 ⋅ w1 ⋅ w2 ⋅ ρ12,t ⋅ σ1,t ⋅ σ2,t

V(Rp,t) R1,t R2,t
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• If the returns of the assets are perfectly positive correlated, that is  , then the 

variance and the standard deviation are     

        

                       and       

• If the returns of the assets are perfectly negative correlated, that is  , then the 

variance and the standard deviation are 

                  

                       and     

• If the returns of the assets are uncorrelated, that is  , then the variance and the 

standard deviation are 

                   

                          and     

ρ12,t = 1

V(Rp,t) = (w1 ⋅ σ1,t + w2 ⋅ σ2,t)2 σ (Rp,t) = w1 ⋅ σ1,t + w2 ⋅ σ2,t

ρ12,t = − 1

V(Rp,t) = (w1 ⋅ σ1,t − w2 ⋅ σ2,t)2 σ (Rp,t) = |w1 ⋅ σ1,t − w2 ⋅ σ2,t |

ρ12,t = 0

V(Rp,t) = w2
1 ⋅ σ2

1,t + w2
2 ⋅ σ2

2,t σ (Rp,t) = (w2
1 ⋅ σ2

1,t + w2
2 ⋅ σ2

2,t)
1
2
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It appears that the risk of the portfolio diminishes when the returns of the assets are uncorrelated 

or negative correlated.  
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Chapter 3 

Portfolio Construction 

3.1 Minimum Variance Portfolio Construction 

A portfolio is called a minimum variance when it is a good diversification portfolio. It will make up 

of assets that alone have a high risk but when stacked the risk is low for the rate of expected return. 

The portfolio that has the least variance in a given level of expected return is considered an 

effective portfolio. Markowitz worked on this to create this portfolio with minimum variance. In 

order to build an effective portfolio, we need to implement an optimization process to determine the 

weights of assets that minimize the variance of the portfolio and to find constraints (Taras Bodnar, 

Nestor Parolya and Wolfgang Schmid 2018).  

The optimal weights of the minimum variance portfolios can be found by optimizing the following 

problem : 

 

 

where         and    is the  covariance matrix of the returns at the time t. 

Portfolio weights  can be either positive (long position) or negative (short position). In this 

problem we minimize the variance taking into account the constraint.  

The Lagrange multipliers :         

                                                 

min
w

1
2

V(Rp,t) = min{
1
2

w′ �Σtw}

s . t .
n

∑
i=1

wi = 1

w = (w1, w2, . . . . . , wn)′� Σt n xn

(wi)

min
w,λ

L (w, λ) = min{
1
2

w′ �Σtw − λ(w′�I1 − 1)}
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where        ,  

Partial derivatives of    with  respect of w and λ : 

 

 

Thus, we have     ,  where  is a  vector of ones. 

With the above relation, we can calculate the composition of the minimum variance portfolio.  

Also, a different portfolio, which is a minimum variance portfolio,  exists and produces a portfolio 

with the smallest variance under the constraint that weights are added to the unit    . Here 

,we can only use portfolio weights with long positions but the specific optimization problem can be 

solved with computer skills. This is the following : 







w′�I1 = [w1 w2 . . . wn] ⋅

1
1...
1

L (w, λ)

∂L (w, λ)
∂w

= Σtw − λ I1 = 0 ⇒ w = λΣ−1
t I1

∂L (w, λ)
∂λ

= w′�I1 − 1 = 0 ⇒ (λΣ−1
t I1)′�I1 − 1 = 0 ⇒ λ I ′�

1Σ−1
t I1 = 1 ⇒ λ =

1
I ′�

1Σ−1
t I1

w =
Σ−1

t I1

I ′�
1Σ−1

t I1
I1 n x1

n

∑
i=1

wi = 1

min
w

1
2

V(Rp,t) = min{
1
2

w′�Σtw}

wi ≥ 0,
n

∑
i=1

wi = 1
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3.2 Mean - Variance Portfolio Construction 

Markowitz’s famous Mean - Variance model is the basis of every classical approach to portfolio 

management. This model is based on the assumption that the investor maximizes the return and 

minimizes the risk of his investment. The objective of portfolio optimization is to find a 

combination of assets that is the weights of each asset in the portfolio which minimize the 

standard deviation of the portfolio’s return for any given level of expected return. The 

optimization problem usually consists of certain limitations. The first constraint supposes that the 

sum weights of the portfolio are 1 and the second constraint demand that the weight of each item 

in a portfolio is not negative, thus it only admits a long position (Hany Fahmy 2019). Taking into 

account the objective of minimizing portfolio variance for a given level of expected return 

summarizing as follows :  

  

 

                  and                

where this optimization produces a portfolio with the constraint that the expected return of the 

portfolio will be greater than or equal to some target return .  

Accordingly, we can optimize based on maximizing return as follows : 

                                                 

  

                                            and               

Where spwhere  is the variance of the portfolio and   is the variance which we want.  

min
w

1
2

V(Rp,t) = min{
1
2

w′ �Σtw}

wi ≥ 0,
n

∑
i=1

wi = 1 E(Rp,t) ≥ rTarget

(rTarget)

max
w

E(Rp,t) = ma x{
n

∑
i=1

wiμi,t}

wi ≥ 0,
n

∑
i=1

wi = 1 σ2
p ≤ σ2

0

σ2
p σ2

0
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We can also optimize based on the W.Sharpe index to find the portfolio with maximum value of 

this index as follows : 

 

 

This is a programming problem that can be easily solved using optimization tool.  is the 

expected (mean) return of the portfolio and  is the risk free rate. 

max
w

Sp =
Rp−Rf

σp

wi ≥ 0,
n

∑
i=1

wi = 1

Rp

Rf
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Chapter 4 

Portfolio Evaluation 

4.1 The equation of the Capital Market Line (CML) 

The Capital Market Line (CML) includes portfolios that combine risk and return. It is the new 

efficient set replacing Markowitz’s efficient set (Salvador Cruz Rambaud, José Garcı́a Pérez, 

Miguel Angel Sánchez Granero and Juan Evangelista Trinidad Segovia, 2005). 

  

Supposing that there is a portfolio S, then the blue slope of the line at point S is :        

The red slope of the line at point M (the slope of the market line) is :       

The slopes are equal between them because the two points are in the same line. Therefore : 

                                                 

E(Rs) − rf

σs

E(RM ) − rf

σM

E(Rs) − rf

σs
=

E(RM ) − rf

σM
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Thus, the equation of the CML is  

                                              

Where 

•   is the risk free rate 

•    is the slope of the market line (the expected return of the market portfolio). 

•   is the standard deviation of portfolio. 

•  the expected return of the portfolio. 

The relationship shows a linear and positive relationship between expected return and risk. The 

above relationship only applies to efficient portfolios. If we have a stock i, then we use the 

Capital Asset Pricing Model (CAPM). 

4.2 Capital Asset Pricing Model (CAPM) 

The first which develop the Capital Asset Pricing Model were William Sharpe (1964), John Lintner 

(1965), Jan Mossin (1966) and Eugene Fama (1970) in an effort to simplify the Markowitz model 

and expand it. The basic idea of the model is that the expected return of a security is related to its 

systemic risk. So based on the CAPM theory, reliable predictions are made with a simple and fast 

way for its connection expected return of an individual security or one portfolio at market risk 

(Sharpe, W. F., 1964).  

E(Rs) = rf +
E(RM) − rf

σM
σs

rf

E(RM) − rf

σM

σs

E(Rs)

Portfolio  Construction 17



Chapter 4       Portfolio Evaluation

The equation of the model is given by the following relation : 

                                  

                                        or 

         

where  

In the above equation, the  is the premium market risk, which depends on the 

security beta and from the premium market risk. Observing the above relationship we see that 

the return of a security is positive linear relationship with coefficient β. Namely, it has positive 

linear relationship between expected return and risk.  

4.3 Arbitrage Pricing Theory (APT) 

The model APT (Ross, 1976) is a theory that complements but also contradicts the CAPM. In other 

words, it is similar to the CAPM, that is, it also refers to the collision of the expected return of a 

stock with the systemic risk. It includes factors that cannot be eliminated by portfolio diversification 

and it does not consist of non-system risk. The CAPM deals with the expected return of a stock in  

(SML) = E(Rs) = E(Ri) = rf + βi(E(RM) − rf )

(SML) = E(Rs) = E(Ri) = rf + (
E(RM) − rf )

σ2
M

)σi,M

βi(E(RM) − rf )
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•   is the expected return of investment i 

•   is the expected return of market portfolio 

•    is the risk free rate  

•   is security beta, a measure systemic risk 

•   is the covariance of the returns of the investment i and the market portfolio 

•   is the variance of the market return 

E(Ri)

E(RM)

rf

βi =
σi,M

σ2
M

σi,M

σ2
M



Chapter 4       Portfolio Evaluation

relation to the systemic risk of the market while the APT surrounds a large number of factors that 

affect the expected return. Each factor includes a beta that plays the same role for the market as 

with the CAPM model. Here the portfolio management policy becomes more completed because we 

take into account most factors in contrast to the model of the CAPM (Ross, S. A., 1976). According 

to the APT model, the return of a stock is given by the following relation : 

                                            

   

That is, the expected return of an asset j is a linear function of the asset’s sensitivities to the n 

factors.  

E(Ri) = rf + βi1 ⋅ Rp1
+ βi2 ⋅ Rp2

+ . . . . . + βkn ⋅ Rpn
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•  is the expected return of investment i  

•  is the sensitivity of the asset or portfolio in relation to the specified factors 

•  is the risk-free rate of return 

•  is the risk premium of the specified factor

Ri

β

rf

Rp
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4.4 Performance Measure :  Treynor, Sharpe and Janson 

If an investment portfolio is considered successful, then the return must be greater than the return 

on other portfolios in the same category at a given time. In addition to the return, the risk of 

return must be calculated (Blake, C. R., Elton, E. J., and Gruber, M. J., 1993).  

Jack Treynor (1965) was the first who creates a performance evaluation measure. The return 

generated takes into account the systemic risk. So symbolizing with    the systemic risk of the 

investment i and with    the risk free rate, the Treynor performance measure calculated as 

follows : 

                                                       

This indicator considers that diversified portfolios only pose a systemic risk β. But, under certain 

conditions, computational problems can arise which Sharpe tried to solve.  

  

Sharpe (1966) replaced the measure of systemic risk of investment i (β) with the measure of the 

total risk of investment i (standard deviation of investment returns) as follows : 

  

                                                     

The index Sharpe will also include the non-systemic risk if the portfolios are not well diversified. 

If the differences between the indices Sharpe and Treynor are minimal, then the degree of 

diversification will have been achieved. The index is suitable for measuring risk at historical 

values when we have deviations in return that cannot be explained by systemic risk. On the other 

hand, the index is suitable for predicting future prices. 

βi

rf

Ti =
E(Ri)

βi
=

Ri − rf

βi

Si =
E(Ri − rf )

σI
=

Ri − rf

σi
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The indicators Treynor and Sharpe are used for the ranking of portfolios based on returns. If the 

indicators Treynor and Sharpe are large, the ranking of the return of the portfolio is large. The 

disadvantages of these indicators are that these use mean values and we cannot make statistical 

tests to compare these indicators with any other indicator. The index Jenson dealt with these 

shortcomings. 

The Jenson uses historical observations on a macroeconomic level based on the CAPM model. 

He considered that in order to evaluate the skill of the manager, it is useful to allow the 

regression equation to have a non-zero constant and we should not limit the regression estimate  

to be carried out from the beginning of the axes as follows :   

                  

As we can see from the above equation, part of the return on investment fund is explained by the 

return of the market index and another by the skill of the manager and the random factor. If the 

excess return of the index is zero in relation to the financial element without risk, then the 

constant  of the sample shows the expected return on the fund. If it found to be positive and 

statistically significant, it means that managers achieve higher returns than expected (successful 

management). If it is low and statistically significant, then we have lower returns than expected 

(failed management). On the contrary, the portfolio will have achieved exactly the expected 

return if it is not statistically significant. In the beginning, the investors evaluated the 

performance of the portfolio based on the degree of return. They knew that there was a risk but 

they did not know how to measure or quantify it. So, they couldn’t take it into account. In the 

early 1960s, investors learned how to measure risk and factors taking into account separately 

because until then no measure had been created to combine these ones. There was a grouping of 

portfolios in which there was similar risk based on some measure and then comparisons were 

made, based on the return of the grouped portfolios. These performance measures, which we 

mention, examine risk, and return within an equation.     

Ri,t − rf = ai + βi(RM,t − rf ) + εi,t, εi,t ∼ N(0,σ2
i ), i = 1,....,n , t = 1,....,T

ai
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Chapter 5 

Multivariate Multifactor Models 

5.1 Introduction 

In this section, we will analyze some multi-factor models, thus we will predict the expected return 

and covariances matrix of financial investments as a function of a limited number of risk attributes. 

Multivariate multi-factor models are used to construct asset allocation and the risk management of 

equity portfolios. These can be used to explain individual security or a portfolio of securities. If we 

use multi-factor models, we will be able to predict the return and to evaluate the variability of the 

return. One important characteristic of multi-factor models is that these divide the asset returns into 

common factors and specific factors. However, multi-factor models can be divided into three types : 

macroeconomic, fundamental and statistical factor models, and these are used to analyze and 

explain asset prices.  

Macroeconomic models : 

Macroeconomic models are the simplest models and also, they use observable economic time 

series. There are macroeconomic variables that are used as factors and these are inflation, the 

percentage change in industrial production. We call a security’s linear sensitivities to the factors as 

the factor betas of the security. Despite all the previous aspects, there is a minor drawback and it is 

that they require identification and measurement of all the pervasive sources of risk affecting 

security returns without knowing exactly what they are.  

Fundamental models : 

Fundamental models don’t use time series regression. These use observed firm or asset-specific 

attributes as factor betas. Nonetheless, the factor betas are exogenously determined specifically 

firm-specific attributes where is more the factor returns and are determined empirical random 

returns associated with these various attributes. 
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Statistical factor models : 

Statistical factor models use unobserved or latent factors. In particular, these models use maximum-

likelihood and principal-components-based factor analysis, so produce on the cross-sectional time-

series samples of security returns to identify the pervasive factors of risk within returns. 

Nevertheless, the portfolios construction has a major problem which in estimating the vector of 

expected returns and, by extension, in estimating the covariance matrix. Provided that we have a 

portfolio with n financial assets, then number of parameters is calculated   . Assuming that 

the estimate of the expected return is n whereas the estimate of the covariance matrix is      

. On conditional that we want to confront this dimensionality problem of the factors, so different 

multivariate multi-factor modes have been created.  

5.2 Single Index Model 

The single-index model has been developed by William Sharpe (1963) and it is a simple asset 

pricing model. Moreover, this is based on the hypothesis that the covariance of the financial 

return is explained through a common single factor, which is the market factor (Lei Huang, Hui 

Jiang and Huixia Wang, 2019). Also, the single-index model predicts the theoretical returns of 

the participating stocks. The basic form of the model is given by the relationship : 

            

From the above equation, the returns of financial assets are unrelated to each other at time t. The 

expected return and the variance of investment i at time t are written by : 

        

                 

n(n + 1)
2

n(n + 1)
2

Ri,t = ai + βi ⋅ RM,t + εi,t, εi,t ∼ N(0,σ2
i,ε), i = 1,.....,n , t = 1,.....,T

E(Ri,t) = E(ai + βi ⋅ RM,t + εi,t) = ai + βi ⋅ E(RM,t)

V(Ri,t) = V(ai + βi ⋅ RM,t + εi,t) = β2
i ⋅ V(RM,t) + V(εi,t) = β2

i ⋅ σ2
M + σ2

i,ε
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Furthermore, we observe that the expected return and the variance of the returns consist of a 

systemic component    and  a non-systemic component   . Also, the variance 

has similarly two parts which are the unique risk (asset specific)  and systemic risk (index 

driven) . 

The covariance of the securities returns  and   is due to only the systemic surge of risk, as 

the covariance of the securities returns  and  are given by relationships  :  

                           

            

                       

            

                                                    

and 

                           

                          

                                                                                            

                      

                                                      

(E(RM,t), σ2
M) (ai, σ2

i,ε)

σ2
i,ε

β2
i σ2

M

Ri,t Rj,t

Ri,t RM,t

Cov(Ri,t, Rj,t) = E[(Ri,t − E(Ri,t))(Rj,t − E(Rj,t))]

= E[(ai + βiRM,t + εi,t − ai − βiE(RM,t))(aj + βjRM,t + εj,t − aj − βjE(RM,t))]

= E[(βi(RM,t − E(RM,t)) + εi,t)(βj(RM,t − E(RM,t)) + εj,t)]

= E[βi βj(RM,t − E(RM,t))2 + βi(RM,t − E(RM,t))εj,t + βj(RM,t − E(RM,t))εi,t + εi,tεj,t]

= βi βjσ2
M

Cov(Ri,t, RM,t) = σiM,t = E[(Ri,t − E(Ri,t))(RM,t − E(RM,t))]

= E[(ai + βiRM,t + εi,t − ai − βiE(RM,t))(RM,t − E(RM,t))]

= E[(βi(RM,t − E(RM,t)) + εi,t)(RM,t − E(RM,t))]

= E[(βi(RM,t − E(RM,t))2 + εi,t(RM,t − E(RM,t))]

= βiσ2
M
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where : 

•  is the return of investment i at time t  

•  is the parameter to be estimated and it is independent on the market  

•  is the parameter to be estimated dependents on the market and determines the return of i 

stock since there is a change in market return 

•  is the market return at time t 

•  is the innovation term of investment i at time t 

•    and    

•   

Ri,t

ai

βi

RM,t

εi,t

Cov(εi,t, εj,t) = 0 E(εi,tεj,t) = 0

Cov(RM,t, εj,t) = 0
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From the above relationships, we observe that the covariances depend only on the market factor. 

Moreover,    is called security beta.  

• For security beta,  the returns of the financial element are changed in the same way as 

the returns of the market factor.     

• For security beta,  the returns of the financial element are changed with greater variation 

than this returns of the market index. (aggressive financial element) 

• For security beta,  the returns of the financial element are changed with smaller 

variation than this returns of the market index. (defensive financial element) 

If we have a portfolio, then the coefficient α and β are determined as the weighted averages of 

the individual α and β of the participating stocks. In particular, we have : 

Portfolio’s    :      

Portfolio’s    :      

Thus, the expected return of a portfolio and the variance of the returns of a portfolio at time t are 

given by relationships : 

  

                                        

                       

                                     

                                                                            and 

                   

                                                          

σi,M = βiσ2
M ⇒ βi =

σi,M

σ2
M

= ρi,M
σi

σM

βi = 1

βi > 1

βi < 1

ap ap =
n

∑
i=1

wiai

βp βp =
n

∑
i=1

wi βi

E(Rp,t) = E(w1R1,t + w2R2,t + . . . . + wnRn,t)

= w1E(R1,t) + w2E(R2,t) + . . . . + wnE(Rn,t) =
n

∑
i=1

wi(ai + βiE(RM,t))

=
n

∑
i=1

wiai +
n

∑
i=1

wi βiE(RM,t) = ap + βp ⋅ E(RM,t)

V(Rp,t) =
n

∑
i=1

n

∑
j=1

wiwj βi βjσ2
M +

n

∑
i=1

w2
i σ2

i,ε = (
n

∑
i=1

wi βi)(
n

∑
j=1

wj βj)σ2
M +

n

∑
i=1

w2
i σ2

i,ε

= β2
p σ2

M +
n

∑
i=1

w2
i σ2

i,ε
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In the special case where the weights are equal to each other, that is  , the equation is : 

                                                       

If we have a large number of n within the diversification portfolio, then the second term of the 

equation tends toward zero and the mean value of the variance of the residuals is equally 

eliminated. Based on this, the standard deviation of portfolio returns will be given by : 

                                                       

Indeed, we see that the portfolio return variability is determined by the term , as the factors 

does not affect the volatility of market return  . We define the effect of the non-systemic term 

as a diversifiable non-systematic risk because this can be eliminated through diversification 

portfolio or the increase in the average number of participants. On the other hand, the systemic 

term defines as a no diversifiable systemic risk because it cannot be eliminated through 

diversification portfolio or the increase in the average number of participants. 

Providing that there are n estimates of the  , n estimates of the  , n estimates of the  as well 

one parameter for the  and for the  , then the parameters must be estimated for the 

portfolio construction is  when we have n financial elements.  

5.3 Multi-Factor Model 

The methodologies to estimate multiple factor models are : 

1. Time series analysis  

2. Cross-section analysis and 

3. Statistical factor analysis 

The multi-factor model uses the following formula : 

1
n

σ2
p = β2

p σ2
M + (

1
n

n

∑
i=1

1
n

σ2
i,ε)

σp = βpσM = σM

n

∑
i=1

wi βi

βi

σM

ai βi σi,ε

E(RM,t) σ2
M

3n + 2
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where :  

•  is a  vector of the security betas  

•   is a  vector of the k factors 

•  is the specific return to security i 

We assume that the    is  stationary time series and we also assume that : 

•   and   

•   for all k, i, t, thus the residuals are unrelated to the . 

•  

Cross-section regression model :   

This is less intuitive than the time series analysis but this is an equally powerful method. The 

analyst begins by observing data concerning the sensitivity of stocks to some factors. The prices 

of the factors, which we are interested in, are calculated based on the returns of the stocks for a 

certain period of time, which we examine and the sensitivity of the stocks from the specific 

factors. These estimates are used to calculate the standard deviations and correlations of the 

factors. The regression is not performed over one stock over all periods but it is performed over a 

set of stocks in a specific period, then in a subsequent period for the same set of stocks so on. 

Several periods performed the regression as we want to obtain time series for the factor values. 

Cross-section data are to a set of observations providing that these taken from different 

individuals or groups at a single point in time.   

So, the cross section regression model is written based on the multi-factor model as following : 

                                                      

                                        

Ri,t = ai + β1,i f1,t + β2,i f2,t + . . . . . + βk,i fk,t + εi,t = ai + B′ �i ft
(1×k)(k×1)

+ εi,t

B′�i = (β1,i, . . . . . , βk,i) 1xk

ft = ( f1,t, . . . . . . . , fk,t)′� k x1

εi

ft I(0)

E( ft) = μf Cov( ft)
k×k

= E[( ft − μf )
k×1

( ft − μf )′�
1×k

] = Ωf

Cov( fk,t, εi,t) = 0 ft

Cov(εi,t, εj,s) = {σ2
j , for i=j, t=s 

0, otherwise 

Rt
N×1

= a
NX1

+ Bft
(N×k)(k×1)

+ εt
N×1
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Both the expected return and the variance of the return is computed by : 

                                      

                                                

                             

where  

Time series regression model : 

Time series analysis is the most common analysis for the estimated multi-factor models. The 

analyst assumes that their factors are influenced by stock returns. The recognition of these 

factors comes from the economic analysis of enterprises. Furthermore, historical data relating to 

a series of periods are required for the prices of these factors and the returns of the stocks 

examine after identifying these factors. Thus, the analyst can calculate the sensitivity of stock 

return, the standard deviation of the factors as well as the correlation among the factors. The 

accuracy has an important role in the collection of historical data on the values of factors in this 

method. However, it is not always easy.  

The multi-factor model can be written in a time series regression form :  

                     

                                          

                

                                                      

where     

E(Rt) = a + BE( ft) = a + Bμf

Cov(Rt) = Ω = BCov( ft)B′�+ D = BΩf B′�+ D

D = diag(σ2
i,ε)

Ri
T×1

= 1T ai
(T×1)(1×1)

+ FBi
(T×k)(k×1)

+ εi
T×1

, i + 1,....,N

E (εiε′�i )
(T×1)(1×T )

= σ2
i I

I =

1
1...
1 Tx1
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Factor analysis : 

The analyst does not know either the prices of the factor or the sensitivity of the stocks regarding 

these factors. A set of information is used on the historical returns of some stocks and thus, the 

method tries to identify one or more statistically significant factors. In fact, only historical 

returns are used for the structure of the model based on this analysis. Nonetheless, it does not 

recognize which economic variables the factors represent and this is a great weakness.  

5.4 Macroeconomics Model 

The fluctuation of the return of the stocks is explained by some variables that affect it. Each 

financial market has specificities where are observed in the economic structure of each country 

and in the sectors on which it depends. It is very reasonable for the financial market that the 

financial market affected by other producers such as factors affecting the world economy and the 

movement of other financial markets. Macroeconomic factors influence the formation of the 

stocks and are related to the predictability data in the prices of the stocks (Jaqueson K. 

Galimberti, 2019). 

The factors are directly observable and we use the regression of time series for each stock where 

we calculate the sensitivities of the stocks in these factors since we have initially selected the risk 

factors. Prices are the same for all stocks in any given period of time . We use a stratified 

regression in the returns of the stocks on the sensitivities in these factors many times in order to 

find the valuation of macroeconomic factors. The factors affect the whole market and thus, these 

alter the returns of the stocks as well as our estimates for these returns. An additional feature of 

macroeconomic factors is that the factors are unrelated to the residuals of the model.  

The basic macroeconomic models is : 

• Sharpe (1970) - Single factor model 

• Chen, Roll and Ross (1986) - Multi-factor model 
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Sharpe (1970) - Single factor model : 

Sharpe assumed that the market index is linearly related to the stock prices. This relationship 

could be used to estimate return of the stock. We calculate the risk and the return of a stock with 

this model. Based on the Sharpe model, the sensitivity factors are limited to being positive and 

concentrating on the unit. The market index is linearly related to the stock prices. This 

relationship could be used to estimate return of the stock. The risk is calculated by the rate factor 

beta which calculates the co-variance between the market portfolio and the stock price. 

Consider the Sharpe’s model (Single Index Model) : 

                                          

 where :        

                                       

The Sharpe’s model has the covariance matrix is given by : 

         

                                   

Ri,t = ai + βi ⋅ RM,t + εi,t, i = 1,....,N, t = 1,.....T

f1,t = RM,t, βk,i = 0, i = 1,.....,N, k = 2,.....K

Ω
N×N

= σ2
M ⋅ B

(N×1)(1×N )
B′�+ D
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where :  

               

Provided that we will appreciate the  and the  from regressing time series 

                                      

     

                                             

                          

                                       

                                              

                                            

Multivariate regression : 

Multivariate regression analysis is used to predict the value of the stocks and it consist of more 

responses from a set of predictors. Thus, we see the linear association between more than one 

predictor and more than one response.  

We can now formulate the multivariate multiple regression model as follows : 

  

                                              

σ2
M = Var (RM,t), B = (β1, . . . . , βN)′� =

β1

β2...
βN

, D = diag(σ2
i ), σ2

i = Var (εi),

βi σ2
i

̂σ2
M =

1
T − 1

T

∑
t=1

(RM,t − RM)2

RM =
∑T

t=1 RM,t

T

Ri,t = ̂ai + ̂βiRM,t + ̂εi,t ⇒ ̂εi,t = Ri,t − ̂ai − ̂βiRM,t

̂σ2
i =

̂ε′�i ̂εi

T − 2

Ω̂ = ̂σ2
M B̂B̂′ �+ D̂

RT
T×N

= X ⋅ Γ′�+ ET
T×N
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where:              

                                   

We estimate the regression coefficients using least squares as follows : 

    

                                        

The MLE of the covariance matrix Σ is given by : 

                      

                                       

  

Assume that the residuals matrix is given by : 

              

Chen, Roll and Ross (1986) - Multi-factor model : 

Chen, Roll and Ross (1986) produced multifactorial models which use combinations indicators 

of macroeconomics factors. Several economic variables are found to be significant which explain 

expected stock returns. The multi-factor model has k observed macroeconomic variables which 

are factors   . These variables have mean zero and standard deviation one.  

The covariance matrix is formulated as : 

                                                

where :       

            

                               

X
T×2

= (1 :. RM), Γ
2×N

′ � = (α :. B)

Γ̂′� = (X′�X )−1X′�RT

Σ̂ =
1

T − 2
̂E′�T ̂ET =

1
T − 2

(RT − X Γ̂)′�(RT − X Γ̂)

̂RT = X ⋅ Γ̂′� = X(X′�X )−1X′�RT

̂ET = RT − X Γ̂′� = RT − X(X′�X )−1X′�RT = RT[I − X(X′�X )−1X′�]

ft

Ω = BΩf B′�+ D

B = (β1, β2, . . . . . , βN)′�, Ωf = E[( ft − μt)( ft − μt)′�]
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The estimation covariance matrix is given by : 

      

                                                  

                                   

                                                  

The estimation of the covariance matrix is formulated as : 

                                        

where :                                   

5.5 Latent factor model 

The factor analysis is the oldest and most well-known statistical method to see the 

relationship involved in observable and latent variables. This examines the covariance in the 

observable variables in order to gather information for these factors. A time-series process is 

followed by the latent factors considered as a vector autoregression (A. J. O'Malley, B. H. 

Neelon, 2014).  

The dynamic factor model is given by : 

                                           

                                                      or  

                                         

Ω̂ = B̂Ω̂f B̂′�+ D̂

Ri = ̂ai1 + FB̂i + ̂εi ⇒ ̂εi = Ri − ̂ai − FB̂i

̂σ2
i =

̂ε′�i ̂εi

T − k − 1

Ω̂f =
1

T − 1

T

∑
t−1

( ft − f )( ft − f )′�

f =
∑T

t=1 ft
T

Xt
N×1

= λ(L)
N×q

ft
q×1

+ εt
N×1

ft
q×1

= Ψ(L)
q×q

ft−1 + ηt
q×1
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Assuming that the above equations are stationary.   

where : 

•    is the dynamic factor loading for i series  

•    is the common component of the i series 

Static latent factor model : 

This model is given by : 

                                           

where : 

• µ is vector of constants  

• L is matrix of factor loading  

•  is the vector of unobserved common factors 

The covariance matrix is formulated as : 

                                       

Latent factor GARCH model :  

This model reduce the dimension of financial returns which allows for a great flexibility in 

the econometric specification and in the modeling strategy. The latent factor GARCH model 

assumes that factors follow a GARCH process. 

This model is given by : 

                                        

                                        

λi(L)

λi(L)ft

yt = μ
n×1

+ LFt
(n×K )(K×1)

+ εt

Ft = ( f1,t, . . . . . , fK,t)′�

VSLF = L ΩSLF L′�+ D

yt = μ
n×1

+ LFt
(n×K )(K×1)

+ εt

σ2
k,t = ak + bk f 2

k,t−1 + gkσ2
k,t−1
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The above equation is the variance of the k common factor at time t. 

The covariance matrix of asset return at time t is given by : 

                                            

where the diagonal covariance matrix with GARCH variances is   . 

VLFG
t = L ΩLFG

t L′�+ D

ΩLFG
t
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Chapter 6 

Multivariate Heteroscedasticity 
Models 

6.1 Introduction  

The integration of the financial markets has accelerated due to the economic globalization in recent 

years. Financial markets are now much more dependent on each other since the prices of one 

market are spread to another. In that case, this requires a joint study of the markets. As a result, we 

need to assess the whole economy, when someone has a portfolio the yields of individual assets are 

considered to be interrelated. Multivariate modeling is similar to single variable modeling. The 

multivariate models have two problems which are for positive definiteness of the covariance matrix 

and the number of parameters should be estimated for the assets. 

Multivariate heteroscedasticity models have two main problems, one is a large number of 

parameters to be evaluated and the other is in the difficulty of estimating the covariance matrix 

which must be positively defined.  

Assuming that we have data of the form : 

                                                             ,          

where each   is a   vector and providing that the information is until the 

time t-1, the equation of the mean and the reserved distribution of random errors are given by : 

                                                  and      

yt t = 1,......,T

yt = (y1,t, . . . . . yN,t) N × 1

yt = μ + εt εt |Φt−1 ∼ NN(0,Σt)
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where : 

•  is a    vector of constants  

•  is a    vector with random errors 

•  is the set of information at time t-1 

•   is the    covariance matrix with elements    and  ,      ,   

  

•   is the variance of the i variables at time t 

•   is the covariance between the i and j variable at time t  

6.2 Multivariate ARCH model 

The financial series were noticed that they show strong asymmetric, curvature but also large and 

small values of the residuals tend to present within volatility clustering. There were no such models 

that address these problems. Engle (1982) was studying the inflation in Great Britain observed such 

characteristics. This demonstrated that variance has a type of heteroscedasticity and this depends on 

the previous values of the disruptive term (conditional variability). Thus, autoregressive conditional 

heteroscedasticity models such as ARCH models were created to address these problems (Diaa 

Noureldin, Neil Shephard and Kevin Sheppard, 2014).  

The variance of the disruptive term modifies in the ARCH model over time. So, we observe 

heteroscedasticity because of the variance depends on the changeability of the previous values. The 

multivariate ARCH model is given by : 

                                                           

                                                          

                                                    

Where  is a k-dimensional white noise and  is a    conditional covariance matrix of . 

μ N × 1

εt N × 1

Φt−1

Σt N × N σ2
i,t σij,t i = 1,.....,N

j = i + 1,.....,N

σ2
i,t

σij,t

yt = μ + εt

εt = Σ1/2ut

εt |Φt−1 ∼ Nn(0,Σt)

ut Σt N × N εt
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The residuals allocate independently with mean 0 and the constant standard deviation . Therefore, 

we have the conditional covariance matrix calculate as : 

   

where : 

•   is a     vector of constants. 

•  is a      coefficient matrices for  . 

• vech(.) denotes the operator which inserts the diagonal and lower triangular elements of a 

symmetrical table in a column table. 

Assuming that we consider a bivariate, that is  times series, ARCH(1) process then : 

                                        

          

We have some restrictions on the elements of the  matrices both the column and the row of the  

because of the conditional covariance matrix must be positively defined at any time and for any 

. Thus, the restrictions are as follows :  

                                          

                                       

                                       

   

Σt

vech(Σt) = γ0 + Γ1vech(εt−1ε′�t−1) + . . . . . + Γkvech(εt−1ε′�t−k) = γ0 +
p

∑
i=1

Γivech(εt−1ε′�t−1)

γ0
N(N + 1)

2
× 1

Γi
N(N + 1)

2
×

N(N + 1)
2

i = 1,....,p

N = 2

vech(Σt) = γ0 + Γ1vech(εt−1ε′�t−1) =

vech [
σ2

11,t σ21,t

σ12,t σ2
22,t] =

σ2
1,t

σ21,t

σ2
2,t

=
γ10
γ20
γ30

+
γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

×
ε2

1,t−1
ε1,t−1ε2,t−1

ε2
2,t−1

γ0 Γi

εt−1

γ10 > 0,γ30 > 0,γ10γ30 − γ2
20 > 0

γ11 ≥ 0,γ13 ≥ 0,γ11γ13 − 1/4γ2
12 ≥ 0

γ31 ≥ 0,γ33 ≥ 0,γ31γ33 − 1/4γ2
32 ≥ 0
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We have corresponding restrictions on the rows and columns from the table  for multivariate 

systems larger dimensions than . The  and  depend on the squares of the previous 

residuals and the cross product all variables of the system.  

On the other hand, we can assume that have the diagonal representation. In others words, it provides  

that each element of the covariance matrix  is only a function of past values of itself  and past 

values of  and . So, the bivariate model is defined by :    

                                                            

                                                     

where    both   with   and the intercept vector  

which be known. The variance of the diagonal structure following an  process is defined 

by : 

              

The  must be positively defined, in that case of the restrictions are as follows : 

                                       

                                       

γ11γ33 − γ2
22 ≥ 0,γ11γ31 − γ2

21 ≥ 0,γ13γ33 − γ2
23 ≥ 0

Γ1

N = 2 σ2
i,t σij,t

σij,t

εi,t εk,t

yt = β + εt

εt |Φt−1 ∼ Nn(0,Σt)

yt = (y1,t, y2,t)′ � εt = (ε1,t, ε2,t)′� E(εt) = 0 β = (β10, β20)′�

A RCH(1)

vech [
σ2

11,t σ12,t

σ21,t σ2
22,t] =

σ2
1,t

σ21,t

σ2
2,t

=
γ10
γ20
γ30

+
γ11 0 0
0 γ22 0
0 0 γ33

+
ε2

1,t−1
ε1,t−1ε2,t−1

ε2
2,t−1

Σt

γ20 > 0,γ30 > 0,γ10γ30 − γ2
20 > 0

γ11 ≥ 0,γ22 ≥ 0,γ31γ22 − γ2
21 ≥ 0
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6.3 Multivariate GARCH  

The multivariate GARCH model takes into account the possible correlation that may exist between 

the economic variables, that is, the influence of one value of the variable on the values of the other 

variables. The multivariate GARCH model will lead based on recognizing this feature to more 

empirical models than working with univariate models. Many types of multivariate GARCH models 

have been studied from time to time (Vrontos, I.D., P. Dellaportas and Politis, D.N., 2003). This 

section will be developed the Vech, the diagonal Vech, and finally the BEKK models. In particular, 

the multivariate GARCH model is written : 

                                                              

                                                     

                                                        

6.3.1 VECH - GARCH & Diagonal VECH models 

A general form of the VECH model has been proposed by Bollerslev, Engle and Wooldridge (1988)  

and is given by the following type : 

                           

where : 

•  is the    covariance matrix at time t  

• vech(.) denotes the operator which inserts the diagonal and lower triangular elements of a 

symmetrical table in a column table  

yt = μt + εt

εt |Φt−1 ∼ Nn(0,Ht)

vech(Ht) = C +
p

∑
i=1

Aivech(εt−1ε′�t−1) +
q

∑
j=1

Bjvech(Ht−j)

Ht N × N

Portfolio  Construction 40



Chapter 6     Multivariate Heteroscedasticity models

• C is a     vector  

•   and    are    matrices for   and  

In that case, we use   total number of parameters. 

Assuming that we want to evaluate the relationship of the time series between the past value of ones  

and the current value of the other, we use the bivariate model as follows : 

                           

            

 

This model contains a large number of parameters and is very general. Because of this, we will 

present the diagonal vector model which consider more successful than the vector GARCH model 

(Federico Poloni and Giacomo Sbrana, 2014). The diagonal vector model makes the terms, so as it 

will ensure that the conditional covariance is positively defined. The covariances specifically 

depend only on the previous cross products  and the previous covariances both the variances depend 

only on its previous squared residuals and the previous variances. Under those circumstances, the 

number of the parameters appears to be . Also, the options for  and   are 

limited due to the fact that they can only be diagonal matrices. Therefore, we have the conditional 

covariance matrix for  and  to be given by the following relationship :              

                             

 

N(N + 1)
2

× 1

Ai Bj
N(N + 1)

2
×

N(N + 1)
2

i = 1,......,p j = 1,......,q

N(N + 1)
2

+ (p + q)(
N(N + 1)

2
)2

vech(Ht) = C + A1vech(εt−1ε′�t−1) + B1vech(Ht−1) =

vech [
σ2

11,t σ12,t

σ21,t σ2
22,t] =

σ2
1,t

σ21,t

σ2
2,t

=
c11
c21
c22

+
a11 a12 a13
a21 a22 a23
a31 a32 a33

ε2
1,t−1

ε1,t−1ε2,t−1

ε2
2,t−1

+
β11 β12 β13

β21 β22 β23

β31 β32 β33

σ2
1,t

σ21,t

σ2
2,t

N(N + 1)
2

(p + q + 1) Ai Bj

N = 2 p = q = 1

vech(Ht) = C + A1vech(εt−1ε′�t−1) + B1vech(Ht−1) =

vech [
σ2

11,t σ12,t

σ21,t σ2
22,t] =

σ2
1,t

σ21,t

σ2
2,t

=
c11
c21
c22

+
a11 0 0
0 a22 0
0 0 a33

ε2
1,t−1

ε1,t−1ε2,t−1

ε2
2,t−1

+
β11 0 0
0 β22 0
0 0 β33

σ2
1,t

σ21,t

σ2
2,t
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The no conditional covariance matrix is given by : 

                               


The  must be positively defined but the restrictions are difficult to overcome during the 

assessment process. 

6.3.2 BEKK - GARCH & Diagonal BEKK models 

The multivariate BEKK model is an advanced form of the multivariate VECH model. This model 

have a big limitation that it contains a large number of parameters, even in series of small numbers.  

The classic process of calculating the probability of false-maximum probability is very difficult to 

assess. Thus, someone can configure or modify the BEKK model using fewer parameters and at the 

same time someone can turn toothed calculation methods. This model got its name from the initials 

of the names of the Baba, Engle, Kraft and Kroner whose it was first used (Farid Boussama, Florian 

Fuchs, and Robert Stelzer, 2011). The main reasoning is that the conditional covariance  is 

positively defined. The diagonal BEKK which we assume the matrices  and  are diagonal, the 

scalar BEKK model which is most limited form of the diagonal BEKK, in which have  and 

where the a and b are the graded quantities are some examples of reducing the numbers of 

parameters in the optimization process for the BEKK model. 

The Engle and the Kroner (1995) created a BEKK GARCH(p,q) model which the covariance has 

the following form : 

                         

where : 

•  is upper triangular matrix of parameters 

•    and    are  matrices of parameters  

•   is    matrix of the individual errors 

•  

E[vech(εt−1ε′ �t−1)] = [1 − A1 − B1]−1C

Ht

Ht

aki bki

aki = aI

bki = bI

Ht = C0CT
0 +

K

∑
k=1

q

∑
i=1

aT
kiεt−iεT

t−iaki +
K

∑
k=1

p

∑
j=1

bT
kiHt−jbki

C0

aki bki N × N

εt−iεT
t−i N × N

εt ∼ N(0,Ht)
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The positively defined  is guaranteed due to the special form taken by the right member of the 

relationship. The sum of the parameters is    where N is the number of the assets. The 

model is possible when the number of the assets is small while on the contrary it becomes 

disobedient as the number of the assets increases. The greater the number of parameters and 

securities is more likely that we have negative elements in matrices and therefore, we have negative 

variances.The elements of the  depend from all the resulting diagonals. If we have bivariate 

BEKK model with , , , then the conditional covariance can be written as : 

 

                                  

                

                                                                

Also, the conditional variance  of the first asset can be written as : 

                               

And the conditional covariance can be written as : 

  

                      

These both the rest covariances and variances depend on both the yield squares and the yield 

diagonals that arise. 

The diagonal BEKK model puts the restriction that the a and b are diagonal matrices. In this way, it 

faces the problem that we have due to the large number of parameters. In fact, the non-negativity of  

Ht

5N 2 + N
2

Ht

K = 1 p = 1 q = 0

[
h11,t h12,t

h12,t h22,t] = [c11 0
c21 c22] [c11 0

c21 c22]
′�
+

[a11 a12
a21 a22] [

ε2
1,t ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t ] [a11 a12

a21 a22]
′�
+

[b11 b12

b21 b22] [
h11,t−1 h12,t−1

h21,t−1 h22,t−1] [b11 b12

b21 b22]
′�

h11,t = c2
11 + a2

11ε
2
1t + a2

12ε2
2t + 2a11a12ε1tε2t

h12,t = c11c21 + a11a21ε2
1t + a12a22ε2

2t + (a12a21 + a11a22)ε1tε2t

Portfolio  Construction 43



Chapter 6     Multivariate Heteroscedasticity models

the matrices is more easily ensured. The covariance of the diagonal BEKK GARCH(1,1) model is 

given by : 

                         

                                           

                                          

                                                 

Therefore, the conditional covariance equation are represented as : 

                                       

                                                     

                                 

The triangular matrix contain a single element (scalar) so we assume that the coefficient is the same 

for all our securities during the calculation of the covariance and variance. Therefore, The Ding and 

Engle (2001) construct the Scalar BEKK model GARCH(1,1), which is given as : 

                                        

6.4 Constant conditional correlation model   

The constant conditional correlation model, as Bollerslev, 1990 mentioned, uses a different 

approach than the BEKK or the vector GARCH model. This model separates conditional 

covariance, in k conditional variances but fixed conditional correlation. This model has the 

advantage that it greatly reduces the parameters and thus calculation process becomes simpler 

(Begoña Fernández and Nelson Muriel, 2009). Thus, the conditional variance matrix is given by :  

[
h11,t h12,t

h21,t h22,t] = [c11 0
c21 c22] [c11 0

c21 c22]
′�
+ [a11 0

0 a22] [
ε2

1,t ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t ] [a11 0

0 a22]
′�
+

[b11 0
0 b22] [

h11,t−1 h12,t−1

h21,t−1 h22,t−1] [b11 0
0 b22]

′�

h11,t = c2
11 + a2

11ε
2
1,t−1 + b2

11h11,t−1

h12,t = c2
12 + a11a12ε1,t−1ε2,t−1 + b11b22h12,t−1

Ht = C0CT
0 + aεt−1εT

t−1 + bHt−1
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where  is a    correlation matrix, fixed time, with element   ,  ,  , 

, and    is a     diagonal matrix with time varying standard 

deviations which consist of the conditional standard deviation of the i asset of the i diagonal 

positioning. Therefore it will be of the form : 

    

                                               where     

The constant conditional correlation is given by : 

                                          

The variances    follow single variables GARCH(p,q) model : 

                                 ,            

The number of the parameters is equal with    which consist of the  ,  

 ,    and   . The variance matrix    is positive definiteness if the constant conditional  

yt = μt + εt

εt |Φt−1 ∼ Nn(0,Ht)

Ht = DtRDt( = ρij σ2
i,tσ

2
j,t)

R N × N ρij i = 1,.....,N j = 1,.....,N

i ≠ j Dt = diag(σ1,t . . . . . σN,t) N × N

Dt =

σ1,t 0 0 . . . 0
0 σ2,t 0 . . . 0
0 0 σ3,t . . . 0
. . . . .. . . . .. . . . .
0 0 0 . . . σN,t

σi,t = σ2
ii,t

R =

1 ρ12 ρ13 . . . ρ1k

ρ12 1 ρ23 . . . ρ2k

ρ13 ρ23 1 . . . ρ3k. . . . .. . . . .. . . . .
ρ1k ρ2k ρ3k . . . 1

σ2
i,t

σ2
i,t = a0i +

p

∑
j=1

aijε2
i,t−j +

q

∑
j=1

βijσ2
i,t−j i = 1,.....,N

N(N + 1)
2

+ N(1 + p + q) ρij

a0i aij βij Ht
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correlation matrix is positive definiteness and the conditional variances is positive definiteness. So, 

this is :   

                                      

When the CCC model follow GARCH(1,1) and for   then : 

                                         ,     

                                           ,   


In that case, if the    is positive definiteness, the  ,   ,    and   will be   ,  , 

 ,  and  . Also, the  will be  for   so that the 

variance is finite and there is stationarity.  

The assumption of the constant condition correlation is reasonable in some cases. Nevertheless, it 

remains restrictive because the financial data often see a change of the condition correlation of the 

financial returns over time. If the period has high variability, the correlation between markets tend 

to increase.  

Ht =

σ11,t ρ12σ1,tσ2,t ρ13σ1,tσ3,t . . . ρ1kσ1,tσk,t
ρ12σ1,tσ2,t σ22,t ρ23σ2,tσ3,t . . . ρ2kσ2,tσk,t

. . . . .. . . . .. . . . .. . . . .
ρ1kσ1,tσk,t ρ2kσ2,tσk,t ρ3kσ2,tσk,t . . . σNN,t

N = 2

σ2
i,t = a0i + ai1ε2

i,t−1 + βi1σ2
i,t−1 i = 1,2

σ12,t = ρ12(σ2
1,tσ

2
2,t)

1
2 −1 ≤ ρ12 ≤ 1

Ht ρ12 a0i ai1 βij a0i > 0 ai1 ≥ 0

βij ≥ 0 i = 1,2 −1 ≤ ρ12 ≤ 1 ai1 + βi1 ai1 + βi1 < 1 i = 1,2
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6.5 Dynamic conditional correlation model 

Many scientists consider to be strong the assumption of constant correlations but it does not 

correspond to reality. So, the DCC model extends the CCC model and the DCC model differs only 

in allowing R to be time varying (Engle, R.F., 2002).  

The estimate of the Engle (2002) consists of two steps : 

1. The estimate of the single variable model GARCH and 

2. The estimate of the conditional correlation which changes over time The dynamic conditional 

correlation model (DCC) is defined as : 

                                                          

                                                          

                                                    

                                                    

where :     

•  

•  

•  

The  is  vector of log returns of n assets at time t,  is   vector of mean-corrected 

returns of n assets at time t such that  and   ,  is    vector of the 

expected value of the conditional   ,   is   matrix of conditional variances of    at time t ,   

  is    conditional correlation matrix of    at time t,    is    vector of iid errors such 

that   and   ,   is    covariance matrix with time-varying and    is  

  diagonal matrix of conditional standard deviations of    at time t. 

From univariate GARCH models, we took the elements in the diagonal matrix   .  

yt = μt + at

at = H1/2
t εt

εt |Φt−1 ∼ Nn(0,Ht)

Ht = DtRtDt

Rt = (diag(Qt))−1/2Qt(diag(Qt))−1/2

Dt = diag( h1,t, h2,t, . . . . , hn,T )

yt n × 1 at n × 1

E(at) = 0 Cov(at) = Ht μt n × 1

yt Ht n × n yt

Rt n × n at εt n × 1

E(εt) = 0 E(εtεT
t ) = I Qt n × n Dt

n × n at

Dt
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and    is given by : 

                                           

So, the correlation matrix    is symmetric : 

                                            

  has two requirements for determining its form : 

1. The covariance matrix    has to be a positive definite so the conditional correlation matrix    

has to be positive definite and the conditional standard deviations of   ,   , has to be positive 

define since all the diagonal elements are positive. 

2. All the elements of the  must be equal to or less than one by definition. 

Thus, the dynamic conditional correlation matrix    can be written : 

                                                                 

                                                 

Dt =

h1t 0 0 . . . 0

0 h2t 0 . . . 0

0 0 h3t . . . 0
. . . . .. . . . .. . . . .
0 0 0 . . . hnt

hit

hit = ai0 +
Qi

∑
q=1

aiqa2
i,t−q +

Pi

∑
p=1

βiphi,t−p

Rt

Rt =

1 ρ12,t ρ13,t . . . ρ1k,t

ρ12,t 1 ρ23,t . . . ρ2k,t

ρ13,t ρ23,t 1 . . . ρ3k,t
. . . . .. . . . .. . . . .

ρ1k,t ρ2k,t ρ3k,t . . . 1

Rt

Ht Rt

at Dt

Rt

Rt

Rt = Q*−1
t QtQ*−1

t

Qt = (1 − a − b)Q + aεt−1εT
t−1 + bQt−1
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where : 

• The unconditional covariance matrix of the standardized error is   and 

this can be estimated as   

•   and    are parameters to be estimated and these must satisfy  ,    and   

  

The   is a diagonal matrix as follows : 

                                               

and     must apply for the second requirement. 

If we have DCC(M,N)-GERCH model then the dynamic correlation structure is given that : 

                            

6.6 Full-factor M-GARCH model     

The multivariate full factor GARCH model (FFMG) (Vrontos, I.D., Dellaportas, P. and Politis, 

D.N., 2003) is defined as : 

                                                         

                                                         

                                                    

                                                

Q = Cov(εtεT
t ) = E(εtεT

t )

Q = 1/T
T

∑
t=1

εtεT
t

a b a ≥ 0 b ≥ 0 a + b < 1

Q*t

Q*t =

q11,t 0 0 . . . 0

0 q22,t 0 . . . 0

0 0 σ3,t . . . 0
. . . . .. . . . .. . . . .
0 0 0 . . . qnn,t

|ρij | = |
qij,t

qii,tqjj,t
| ≤ 1

Qt = (1 −
M

∑
m=1

αm −
N

∑
n=1

bn)Q +
M

∑
m=1

αmεt−1εT
t−1 +

N

∑
n=1

bnQt−1

yt = μ + εt

εt = W Xt

Xt |Φt−1 ∼ Nn(0,Σt)
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where :   

• µ is a    vector of constants  

•  is a    innovation vector and this has a linear combination of the factors  

•  is a    parameter matrix  

•   is a set of information at time t-1 

•   is a    vector of factors and this consist of elements   for   

•   is a    variance covariance matrix and this has diagonal elements  

The variance covariance matrix is given by :                                          

                                        

and we calculate the  with the following relationship : 

                            with     and      

The    is the variance of the i factor and it must apply  ,    and  . GARCH(1,1) 

processes follow the factors  .  

Even if the vector  follows a conditional multivariate normal distribution, that is

,  then we find the conditional covariance  of the asset returns at time t as 

follows : 

                                 

with  

N × 1

εt N × 1 xi,t

W N × N

Φt−1

Xt N × 1 xi,t i = 1,....,N

Σt N × N

Σt =

σ2
1,t 0 0 . . . 0

0 σ2
2,t 0 . . . 0

0 0 σ2
3,t . . . 0

. . . . .. . . . .. . . . .
0 0 0 . . . σ2

N,t

σ2
i,t

σ2
i,t = ai + bix2

i,t−1 + fiσ2
i,t−1 i = 1,.....,N t = 1,.....T

σ2
i,t ai > 0 bi ≥ 0 fi ≥ 0

xi,t

εt

εt |Φt−1 ∼ N(0,Ht) Ht

Ht = W ΣtW′� = W Σ1/2
t Σ1/2

t W′ � = (W Σ1/2
t )(W Σ1/2

t )′� = Z Z′�
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The W is a below triangular matrix, that is, it is valid that    for   and    for  

. But if we want to diminish the number of parameters of the model, then we will use a 

natural restriction which is    for  . This constraints have been used by Aguilar 

and West (2000), Geweke and Zhou (1996) and Chib et al. (1998). The conditional covariance 

matrix    is defined according to the constraint    as follows : 

                       

               

If the factor variances    are well defined for  , then the variance covariance matrix     

will be positive definite such as we come to the attention of the construction of the model. 

Moreover, the    are not parameters to be estimated and these have zero idiosyncratic variances. 

Indeed, these are given by  . In the event that a model has , we have  

GARCH(1,1) .           

Σ1/2
t =

σ1,t 0 0 . . . 0
0 σ2,t 0 . . . 0
0 0 σ3,t . . . 0
. . . . .. . . . .. . . . .
0 0 0 . . . σN,t

wij = 0 j > i wii > 0

i = 1,....,N

wii = 1 i = 1,....,N

Ht wii = 1

Ht = W ΣtW′� =

h11,t h12,t h13,t . . . h1N,t

h21,t h22,t h23,t . . . h2N,t

h31,t h32,t h33,t . . . h3N,t
. . . . .. . . . .. . . . .

hN1,t hN2,t hN3,t . . . hNN,t

=

=

σ2
1,t w21σ2

1,t w31σ2
1,t . . . wN1σ2

1,t

w21σ2
1,t ∑2

i=1 w2
2iσ2

i,t ∑2
i=1 w2iw3iσ2

i,t . . . ∑2
i=1 w2iwNiσ2

i,t

w2
3iσ2

1,t ∑2
i=1 w3iw2iσ2

i,t ∑3
i=1 w2

3iσ2
i,t . . . ∑3

i=1 w3iwNiσ2
i,t

. . . . .. . . . .. . . . .
wN1σ2

1,t ∑2
i=1 wNiw2iσ2

i,t ∑3
i=1 wNiw3iσ2

i,t . . . ∑N
i=1 w2

Niσ2
i,t

σ2
i,t i = 1,....,N Ht

xi,t

Xt = W−1εt N = 1
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6.7 Regime switching dynamic correlation model 

We know that the variance and covariance of financial time series are time-varying. Many 

models face additional problems when we write a multivariate model of volatility. The 

Regime Switching Dynamic Correlation model (RSDC) is a new multivariate volatility 

model and it has better performance at capturing correlation asymmetries. A special case of 

the RSDC model with only one regime is the CCC model (Pelletier, D., 2006). The Regime 

Switching Dynamic Correlation model is defined by : 

                                                   

                                              

The covariance matrix  can be decomposed into : 

   

                                                     

where : 

•    is a diagonal matrix which contains the standard deviations   and is time-varying  

at time t  for  where K: number of time series  

•   contains the correlations which is time-varying at time t 

Moreover, the variance   calculates by : 

  

                        with     and      

However, the  follows a Markov Chain and this has different values for different regimes. 

According to a Markov chain process, the RSDC generates dynamic correlations because of 

transitioning between regimes of different correlation levels. The switch from one regime to 

another is determined by transition probabilities and these are time-varying.   

yt = μ + εt

εt |Φt−1 ∼ Nn(0,Ht)

Ht

Ht = ΣtΓtΣt

Σt σk,t

k = 1,....,K

Γt

σ2
k,t

σ2
k,t = ak + bk x2

k,t−1 + fkσ2
k,t−1 k = 1,.....,K t = 1,.....T

Γt
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The correlation matrix modeled  with based on a dynamic framework as follows : 

                                                  

where : 

•   is an unserved Markov chain process independent of  taking also N possible values 

 

• 1 is an indicator function 

•  is    correlation matrices with  for , off-diagonal elements are -1 

and 1  

The probability law governing the Markov chain process  is defined as . Also, the   

is the probability of going from regime i in period t-1 to regime j in period t and it is found  

with   [8]. Moreover, the  denote the limiting probability of 

being in regime n.  

The   and    are correlation matrix. The  contains the off-diagonal elements which are 

between -1 and 1 and the diagonal elements are 1. We must impose that  will be a 

correlation matrix and this can become with the Choleski decomposition. Thus, we have 

. Provided that the  is a lower triangular matrix and impose constraints on  for 

the purpose of getting ones on the diagonal. So, these constraints will have off diagonal 

elements between [-1,1]. The    comes to be with the Choleski decomposition as follows 

for trivariate example : 

                         

Γt

Γt =
N

∑
n=1

1(Δt=n)Γn

Δt εt

(Δt = 1,2,....,N )

Γn K × K Γn ≠ Γ′�n n ≠ n′ �

Δt Πt π i, j
t

π i, j
t = P(Δt = j |Δt−1 = i ) πn

Γn Γt Γn

Γn

Γn = PnP′�n Pn Pn

Γn

Γ =

p2
1,1 p1,1p2,1 p1,1p3,1

p1,1p2,1 p2
2,1p2

2,2 p2,1p3,1 + p2,2 p3,2

p1,1p3,1 p2,1p3,1 + p2,2 p3,2 p2
3,1 + p2

3,2 + p2
3,3
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The elements on the diagonal  are positive and the constraints  becomes  as 

follows: 

           

                                           for      

where if we have , then the sum is zero.The estimation of the RSDC model will be 

complicated by the high number of parameters with each , so we can use the EM 

algorithm which will not complicate the estimation from increasing the number of time 

series.  

Pn Γjj = 1

pj, j = 1 −
j−1

∑
i=1

p2
j,i j = 1,......,K

j = 1

Γn
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Chapter 7 

Application to real data  
 


7.1 Introduction 

In this Chapter, we use an example of real data to construct an optimal portfolio and applied some 

models in order to predict the returns of financial data and to estimate the variability and 

participation of their returns. The analysis is based on equity funds which are a type of hedge funds  

or private investment funds and these invest principally in stocks. We differently call them and as 

stock funds. A market capitalization determines the size of an equity fund and the investment style 

is also used to categorize equity hedge funds which reflected in the find’s stock holding. These 

funds are categorized whether they are domestic or international.  

We analyze below a real dataset of returns equity funds from the United States. So, in order to 

construct and create multivariate multi-factor models, we employ thirty-one years of monthly data, 

for the period 01/01/1987 to 01/01/2018. We specifically have dependent variables (monthly 

returns) which are twenty and are the following (figure 7.1) : 

• BMCAX US Equity (BlackRock Advantage Large Cap Growth Fund) 

• FDCAX US Equity (Fidelity Capital Appreciation Fund) 

• FCNTX US Equity (Fidelity Contrafund) 

• FEQIX US Equity (Fidelity Equity-Income Fund Inc) 

• FGRIX US Equity (Fidelity Growth & Income Portfolio) 

• FDFFX US Equity (Fidelity Independence Fund) 

• FMAGX US Equity (Fidelity Magellan Fund)  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• FDVLX US Equity (Fidelity Value Fund) 

• FTRNX US Equity (Fidelity Trend Fund) 

• FKGRX US Equity (Franklin Growth Fund) 

• FKDNX US Equity (Franklin DynaTech Fund) 

• PRNHX US Equity (T Rowe Price New Horizons Fund Inc) 

• PRGIX US Equity (T Rowe Price Growth & Income Fund Inc) 

• SHRAX US Equity (ClearBridge Aggressive Growth Fund) 

• LMASX US Equity (ClearBridge Small Cap Fund) 

• CHTRX US Equity (Invesco Charter Fund) 

• OPOCX US Equity (Invesco Oppenheimer Discovery Fund) 

• QUASX US Equity (AB Small Cap Growth Portfolio) 

• CABDX US Equity (AB Relative Value Fund) 

• CHCLX US Equity (AB Discovery Growth Fund Inc) 

In addition to the returns, we also have the factors that affect them. Thus, we have the following  

eight factors which are calculated following the approach by Fama and French (2015): 

• Mkt-RF (market risk premium) is the market factor which is calculated as the value weighted 

average of the returns of all stocks in the region minus the monthly returns on one-month U.S. 

• SMB (small minus big) is the average return on the small stock portfolios minus the average 

return on the big stock portfolios. 

• HML (high minus low) is the average return between the returns on diversified portfolios of high 

book-to-market  (B/M) and low book-to-market  (B/M) stocks.  

• RMW (robust minus weak) is the difference between returns on firms with robust profitability 

and weak profitability. 

• MOM is the momentum factor  

• BAB (betting-against-beta) is long leveraged low-beta assets and short high-beta assets.  

• CAR is an additional factor  

 book-to-market ratio is used to find the value of a company by comparing its book value to its 
market value   

1 1

1

B o o k − t o − M a r k e t R a t i o =
C o m m o n S h a r e h o l d e r s Eq u i t y

M a r k e t C a p
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We present an optimal minimum variance portfolios of the form: 

 

 

and mean-variance portfolios of the form:  

 

                  and                

The target return will be 0.005 on a monthly basis. We will construct portfolios for the 

out-of-sample period 1/2013 - 01/2018 (60 months). The estimation of the mean vector 

and the covariance matrix should be estimated using the following methods: Sample 

estimate of mean and covariance matrix, based on the single model, based on multivariate 

multiple regression models, based on the Constant Conditional Correlation for the 

variance-covariance matrix and based on the multivariate heteroskedastic model. As we 

have mentioned in previous chapters, the portfolio construction problem can be 

considered as a selection problem of assets, and a problem determining the portfolio 

weights. The investors want to construct portfolios that minimize the portfolio risk 

(portfolio standard deviation) for a given target return or to maximize the expected 

portfolio return given a specific portfolio risk. As it was previously stated in this chapter 

the target return is 0.005 and thus, we want to minimize the portfolio risk.  

  

min
w

1
2

V(Rp,t) = min{
1
2

w′ �Σtw}

s . t .
n

∑
i=1

wi = 1

min
w

1
2

V(Rp,t) = min{
1
2

w′ �Σtw}

wi ≥ 0,
n

∑
i=1

wi = 1 E(Rp,t) ≥ rTarget
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7.2 Sample Estimate 

The first attempt is to construct minimum variance and mean variance portfolios, 

estimating the mean vector and the covariance matrix by using the method of sample 

estimate of mean vector and covariance matrix. We remind that the out of sample period 

is 60 months and we have 20 funds. 

The weights from the method mean-variance of each funds for the first and the last month 

of the 60 out of sample months are represented in Table 7.1. 
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TABLE 7.1 : Weights from mean-variance portfolios for the 20 funds the first and the last month of out of 
sample period. 

The weights from the method minimum variance of each funds for the first and the last 

month of the 60 out of sample months are represented in Table 7.2. 

Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0 0

FDCAX US Equity 0 0

FCNTX US Equity 0.53614778 0.2501056

FEQIX US Equity 0 0

FGRIX US Equity 0 0

FDFFX US Equity 0 0

FMAGX US Equity 0 0

FDVLX US Equity 0 0

FTRNX US Equity 0 0

FKGRX US Equity 0.44449711 0.5818623

FKDNX US Equity 0 0

PRNHX US Equity 0 0

PRGIX US Equity 0 0

SHRAX US Equity 0 0

LMASX US Equity 0 0

CHTRX US Equity 0 0

OPOCX US Equity 0 0

QUASX US Equity 0 0

CABDX US Equity 0.01935511 0.1680321

EVSEX US Equity 0 0
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TABLE 7.2 : Weights from minimum variance portfolios for the 20 funds the first and the last month of out 
of sample period.

In the 1st month the fund FCNTX US Equity had the highest value in weights for the 

mean-variance portfolios, but the FKGRX US Equity had the highest value in weights for 

the minimum variance portfolios in the 60th month. We can see that the fund FKGRX US 

Equity had the highest values in weights not only for the mean-variance but as well  for 

the minimum variance portfolios. It is observed that there are many funds which have 

zero weight values.  

Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0 0

FDCAX US Equity 0 0

FCNTX US Equity 0.2104963 0.2105332

FEQIX US Equity 0 0

FGRIX US Equity 0 0

FDFFX US Equity 0 0

FMAGX US Equity 0 0

FDVLX US Equity 0 0

FTRNX US Equity 0 0

FKGRX US Equity 0.6035629 0.5987569

FKDNX US Equity 0

PRNHX US Equity 0 0

PRGIX US Equity 0 0

SHRAX US Equity 0 0

LMASX US Equity 0 0

CHTRX US Equity 0 0

OPOCX US Equity 0 0

QUASX US Equity 0 0

CABDX US Equity 0.1859408 0.1907099

CHCLX US Equity 0 0
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In Table 7.3, we present the out of sample mean return, the portfolio standard deviation 

(volatility), the cumulative returns and the conditional Sharpe Ratio.  

TABLE 7.3 : Mean return, Volatility, Cumulative return and Conditional Sharpe Ratio for the minimum 
portfolio and the mean-variance portfolio. 

The Mean Return, Volatility, Cumulative Return of the mean-variance portfolio is higher 

than the corresponding minimum variance portfolio and the Conditional Sharpe Ratio, 

too. 

In Figure 7.2, the cumulative returns of each portfolio are represented for the out of 

sample period. We conclude that until the 10th month of the out of sample period the 

cumulative returns of minimum variance and mean-variance portfolio essentially 

coincide. From then on until the 60th month of the out of sample period they are in very 

good agreement.After, these seem to identical the 47th month until the 51st month. Finally, 

these seem that until the 60th month of the out of sample period the cumulative returns of 

mean-variance portfolio  is higher than the cumulative returns of minimum variance 

portfolio again. 

Mean 
Return

Volatility Cumulative 
Return

Conditional 
Sharpe Ratio

Minimum Variance 0.01192118 0.03874101 0.7152706 0.3079726

Mean-Variance 0.01217711 0.03915046 0.7306267 0.3105148
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7.3 Based on Single Index Model 

In this section, we construct mean-variance and minimum variance portfolios, estimating 

the mean vector and the covariance matrix based on the Single Index Model. As we have 

mentioned in previous chapter, the Single Index Model is given by : 

    

                           Ri,t = ai + βi ⋅ RM,t + εi,t, εi,t ∼ N(0,σ2
i,ε), i = 1,.....,20, t = 1,.....,60
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FIGURE 7.2 : Plot of Cumulative returns for the mean-variance portfolio and for the 
minimum variance portfolio.
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The weights from the method mean-variance of each fund for the first and the last month  

of the 60 out of sample months are represented in Table 7.4. 

TABLE 7.4 : Weights from mean-variance portfolios for the 20 funds the first and the last month of out of 
sample period. 

The weights from the method minimum variance of each asset for the first and the last 

month of the 60 out of sample months are represented in Table 7.5. 

Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0 0.05599

FDCAX US Equity 0 0.04833

FCNTX US Equity 0.53463 0.08907

FEQIX US Equity 0 0.05967

FGRIX US Equity 0 0.06108

FDFFX US Equity 0 0.03397

FMAGX US Equity 0 0.04991

FDVLX US Equity 0 0.05062

FTRNX US Equity 0 0.04669

FKGRX US Equity 0.41053 0.07572

FKDNX US Equity 0.02372 0.05837

PRNHX US Equity 0 0.03889

PRGIX US Equity 0 0.07210

SHRAX US Equity 0 0.04020

LMASX US Equity 0 0.02162

CHTRX US Equity 0 0.05782

OPOCX US Equity 0 0.01898

QUASX US Equity 0 0.03047

CABDX US Equity 0.03112 0.06024

EVSEX US Equity 0 0.03025
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TABLE 7.5 : Weights from minimum variance portfolios for the 20 funds the first and the last month of out 
of sample period. 

For the mean - variance portfolio the 1st and the 60th month the fund FCNTX US Equity 

had the highest values in weights for both the mean-variance and only in the 60th month it 

had the highest values in weights for the minimum variance portfolio. However, the fund 

PRGIX US Equity is presented with the highest value in the 1st  month. 

In Table 7.6, we present the out of sample mean return, the portfolio standard deviation 

(volatility), the cumulative returns and the conditional Sharpe Ratio.  

Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0.08414 0.05465

FDCAX US Equity 0 0.04570

FCNTX US Equity 0 0.07703

FEQIX US Equity 0.04738 0.06506

FGRIX US Equity 0 0.06754

FDFFX US Equity 0 0.03259

FMAGX US Equity 0 0.05142

FDVLX US Equity 0 0.04712

FTRNX US Equity 0 0.04623

FKGRX US Equity 0.54299 0.07587

FKDNX US Equity 0.01051 0.05474

PRNHX US Equity 0 0.03261

PRGIX US Equity 0.10240 0.07618

SHRAX US Equity 0 0.03554

LMASX US Equity 0 0.02772

CHTRX US Equity 0 0.06333

OPOCX US Equity 0 0.02420

QUASX US Equity 0 0.03005

CABDX US Equity 0.21259 0.06182

CHCLX US Equity 0 0.03061
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TABLE 7.6 : Mean return, Volatility, Cumulative return and Conditional Sharpe Ratio for the minimum 
portfolio and the mean-variance portfolio. 

The Mean Return, Volatility and Cumulative Return of mean-variance portfolio seem to 

be higher than the corresponding of minimum variance portfolio. Nevertheless, the 

Conditional Sharpe Ratio is presented to be highest for the minimum variance portfolio. 

In figure 7.3, the cumulative returns of each portfolio are represented for the out of 

sample period. We conclude that through the months of out of sample period the 

cumulative returns are higher for the mean-variance portfolio than the minimum variance 

portfolio. Except of the 1st month until the 3rd month when the cumulative return of the 

minimum variance portfolio is the same the cumulative return of the mean-variance 

portfolio.  

Mean Return Volatility Cumulative 
Return

Conditional 
Sharpe Ratio

Minimum Vaiance 0.0103 0.0113 0.6154 0.9371

Mean-Variance 0.0112 0.0140 0.6711 0.8169
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FIGURE 7.3 : Plot of Cumulative returns for the mean-variance portfolio and for the 
minimum variance portfolio with Single Index Model
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7.4 Constant Conditional Correlation Model 
Now, we construct mean-variance and minimum variance portfolios, estimating the mean 

vector and the covariance matrix considering a Constant Conditional Correlation for the 

variance covariance matrix of the form : 

                  with     

TABLE 7.7 : Weights from mean-variance portfolios for the 20 funds the first and the last month of out of 
sample period. 

Rt = XtΓ + Et ∼ N(0,Ht), t = 1,2,....,T Ht = DtRDt( = ρij σ2
i,tσ

2
j,t)
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Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0.21945 0

FDCAX US Equity 0.11972 0

FCNTX US Equity 0 0

FEQIX US Equity 0 0

FGRIX US Equity 0 0

FDFFX US Equity 0 0

FMAGX US Equity 0 0

FDVLX US Equity 0 0.07637

FTRNX US Equity 0 0

FKGRX US Equity 0.63616 0

FKDNX US Equity 0 0

PRNHX US Equity 0 0

PRGIX US Equity 0 0

SHRAX US Equity 0 0

LMASX US Equity 0 0

CHTRX US Equity 0 0.92363

OPOCX US Equity 0 0

QUASX US Equity 0 0

CABDX US Equity 0.02467 0

EVSEX US Equity 0 0
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TABLE 7.8 : Weights from minimum variance portfolios for the 20 funds the first and the last month of out 
of sample period. 

The weights from the method mean-variance of each asset for the first and the last month 

of the 60 out of sample months are represented in Table 7.7. 

The weights from the method minimum variance of each asset for the first and the last 

month of the 60 out of sample months are represented in Table 7.8. 
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Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0 0

FDCAX US Equity 0.17081 0

FCNTX US Equity 0 0

FEQIX US Equity 0 0

FGRIX US Equity 0 0

FDFFX US Equity 0 0

FMAGX US Equity 0 0

FDVLX US Equity 0 0.07637

FTRNX US Equity 0 0

FKGRX US Equity 0.66181 0

FKDNX US Equity 0 0

PRNHX US Equity 0 0

PRGIX US Equity 0 0

SHRAX US Equity 0 0

LMASX US Equity 0 0

CHTRX US Equity 0 0.92363

OPOCX US Equity 0 0

QUASX US Equity 0 0

CABDX US Equity 0.16738 0

CHCLX US Equity 0 0
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It is obvious that the weights of each asset are the same for both mean-variance and 

minimum variance portfolios 60th month only. In the 1st and in the 60th month, the 

FKGRX US Equity and  CHTRX US Equity had the highest weights, respectively 

In Table 7.9, we present the out of sample mean return, the portfolio standard deviation 

(volatility), the cumulative returns and the conditional Sharpe Ratio.  

TABLE 7.9 : Mean return, Volatility, Cumulative return and Conditional Sharpe Ratio for the minimum 
portfolio and the mean-variance portfolio. 

The mean return, Cumulative return of mean variance portfolio is higher than the mean 

return of minimum variance portfolio and the Sharpe ratio, too.    

                                                          

In figure 7.4, the cumulative returns of each portfolio are represented for the out of 

sample period. We conclude that all the months of the out of sample period the 

cumulative returns are same for the mean-variance portfolio than the minimum variance 

portfolio. From then on, the cumulative return of the mean-variance portfolio is higher 

than the cumulative return of the minimum variance portfolio. 

Mean Return Volatility Cumulative 
Return

Conditional 
Sharpe Ratio

Minimum Vaiance 0.0089 0.0275 0.5370 0.3557

Mean-Variance 0.0090 0.0275 0.5376 0.3554
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7.5 Multivariate Multiple Regression Model 

We construct mean-variance and minimum variance portfolios, estimating the mean 

vector and the covariance matrix based on multivariate multiple regression models : 

                                     

The weights from the method mean-variance of each fund for the first and the last month 

of the 60 out of sample months are represented in table 7.9. 

Rt = XtΓ′�+ Et, Et ∼ N(0,Σ), t = 1,.....,T
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FIGURE 7.4 : Plot of Cumulative returns for the mean-variance portfolio and for the minimum 
variance portfolio with CCC Model.
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TABLE 7.9 : Weights from mean-variance portfolios for the 20 funds the first and the last month of out of 
sample period. 

The weights from the method minimum variance of each fund for the first and last month 

of the 60 out of sample months appear in table 7.10. 

Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0 0

FDCAX US Equity 0 0

FCNTX US Equity 0.53614778 0.4218525

FEQIX US Equity 0 0

FGRIX US Equity 0 0

FDFFX US Equity 0 0

FMAGX US Equity 0 0

FDVLX US Equity 0 0

FTRNX US Equity 0 0

FKGRX US Equity 0.44449711 0.2909520

FKDNX US Equity 0 0

PRNHX US Equity 0 0

PRGIX US Equity 0 0.2871955

SHRAX US Equity 0 0

LMASX US Equity 0 0

CHTRX US Equity 0 0

OPOCX US Equity 0 0

QUASX US Equity 0 0

CABDX US Equity 0.01935511 0

EVSEX US Equity 0 0
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TABLE 7.10 : Weights from minimum variance portfolios for the 20 funds the first and the last month of 
out of sample period. 

We observe that the fund FCNTX US Equity is highest values of weights in relation to 

the others funds for mean-variance portfolios in the 1st and in the 60th month. On the 

other hand, the fund FCNTX US Equity is highest value of weight only the 60th  month 

and the FKGRX US Equity is highest value in the 1st  month. 

We found the Mean Returns, the Cumulative Returns and the Conditional Sharpe Ratio 

for the out of sample period 1/2013 - 01/2018 and we can see these in the table 7.11. 

Funds /Weights    1st month of 60       60th month of 60

BMCAX US Equity 0 0

FDCAX US Equity 0 0

FCNTX US Equity 0.1962740 0.4218525

FEQIX US Equity 0 0

FGRIX US Equity 0 0

FDFFX US Equity 0 0

FMAGX US Equity 0 0

FDVLX US Equity 0 0

FTRNX US Equity 0 0

FKGRX US Equity 0.6105099 0.2909520

FKDNX US Equity 0 0

PRNHX US Equity 0 0

PRGIX US Equity 0 0.2871955

SHRAX US Equity 0 0

LMASX US Equity 0 0

CHTRX US Equity 0 0

OPOCX US Equity 0 0

QUASX US Equity 0 0

CABDX US Equity 0.1932161 0

CHCLX US Equity 0 0
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TABLE 7.11 : Mean return, Volatility, Cumulative return and Conditional Sharpe Ratio for the minimum 
portfolio and the mean-variance portfolio. 

The Mean Returns, the Cumulative Returns and the conditional Sharpe Ratio of mean-

variance portfolio is higher than the Mean Returns, the Cumulative Returns and the 

Conditional Sharpe Ratio of minimum variance portfolio. 

In figure 7.5, the cumulative returns of each portfolio are represented for the out of 

sample period. We conclude that until the 9th month of the out of sample period the 

cumulative return of minimum variance portfolio is equal to the cumulative return of the 

mean-variance portfolio. From then until the 60th month of the out of sample period the 

cumulative return of the mean-variance portfolio is higher than the cumulative return of 

minimum variance portfolio.

Mean Return Volatility Cumulative 
Return

Conditional 
Sharpe Ratio

Minimum Vaiance 0.01208 0.03651 0.72464 0.33234

Mean-Variance 0.01226 0.03681 0.73541 0.33242
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FIGURE 7.5 : Plot of Cumulative returns for the mean-variance portfolio and for the minimum 
variance portfolio with Multivariate Multiple Model.



Chapter 8 

Concluding Remarks 

An economist-analyst to reach the best decision must follow a multidimensional and analytical 

process. The return is the main subject of consideration and the risk, that is volatility, the main 

barrier to profit. In order to be able to measure with relative precision the interaction between these 

two elements, this relationship is necessary to identify and model. The financial data are a dynamic 

investment both the variance and covariance are time-varying. The time series of returns 

demonstrate volatility clustering and high kurtosis. In this thesis, we concentrated on time varying 

of the variances and covariances of returns, the risk measurement and we focused on building 

mutual fund portfolio construction by creating models. We presented some models and thus, we saw 

different methods of forecasting variances and covariances. Moreover, we constructed optimal 

mutual fund portfolios and measure tail-risk. 

We find that a single index model, SIM, reduces portfolio risk and improves the out of sample risk 

adjusted realized returns. We also find that the CSR of the portfolio constructed with the SIM model 

is the higher among alternative models. This suggests that the SIM covariance model represents a 

more accurate tool for tail-risk measurement. We constructed models with minimum variance and 

mean-variance, thus we saw how the minimum variance from the SIM model is higher than mean-

variance from the SIM model respectively. Furthermore, we observed that the returns of FCNTX 

US Equity greatly affect because of this seem to have the highest weight in most models both 

minimum variance and mean-variance.    

Portfolio  Construction 73



Bibliography 

[1] Elton, E.J., Gruber, M.J., Brown, S.J. and Goetzmann W.N. (2014). Modern Portfolio Theory                  

      and Investment Analysis, 9th edition, Wiley 

[2] Fama, E. and French, . (1993). Common risk factors in the returns of stocks and bonds. Journal      

      of Financial Economics, 33, 3-56 

[3] Woohwan Kim, Young Min Kim, Tae-Hwan Kim, Seungbeom Bang, Multi-dimensional  

      portfolio risk and its diversification: A note, Global Finance Journal, 147-156


  

[4] Taras Bodnar, Nestor Parolya, Wolfgang Schmid (2018), Estimation of the global minimum 

variance portfolio in high dimensions, European Journal of Operational Research, 371-390 

[5] Hany Fahmy (2019), Mean-variance-time: An extension of Markowitz's mean-variance portfolio     

      theory, Journal of Economics and Business 

[6] Salvador Cruz Rambaud, José Garcı́a Pérez, Miguel Angel Sánchez Granero, Juan Evangelista     

      Trinidad Segovia (2005), Theory of portfolios: New considerations on classic models and the    

      Capital Market Line, European Journal of Operational Research, 276-283 

[7] Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of  

      Risk. Journal of Finance, 19, 3, 425 42.  

[8] Ross, S. A. (1976). The arbitrage theory of capital asset pricing, Journal of Economic 

      Theory, 341 – 360. 

[9] Blake, C. R., Elton, E. J., and Gruber, M. J. (1993). The performance of bond mutual funds. The  

      Journal of Business, 66, 3, 371-403 

[10] Lei Huang, Hui Jiang, Huixia Wang (2019), A novel partial-linear single-index model for time       



References 

        series data, Computational Statistics & Data Analysis 110-122 

[11] Jaqueson K. Galimberti (2019), An approximation of the distribution of learning estimates in    

        macroeconomic models, Journal of Economic Dynamics and Control 29-43 

[12] A. J. O'Malley, B. H. Neelon (2014), Latent Factor and Latent Class Models to Accommodate  

        Heterogeneity, Using Structural Equation, Encyclopedia of Health Economics 131-140 

[13] Diaa Noureldin, Neil Shephard, Kevin Sheppard (2014), Multivariate rotated ARCH models,  

        Journal of Econometrics, 16-30 

[14] Vrontos, I.D., P. Dellaportas, and Politis, D.N. (2003). Inference for some multivariate ARCH  

        and GARCH models. Journal of Forecasting, 22, 427-446.  

[15] Federico Poloni, Giacomo Sbrana (2014), Feasible generalized least squares estimation of     

        multivariate GARCH(1, 1) models, Journal of Multivariate Analysis 151-159 

[16] Farid Boussama, Florian Fuchs, Robert Stelzer (2011), Stationarity and geometric ergodicity of       

       BEKK multivariate GARCH models, Stochastic Processes and their Applications, 2331-2360 

[17] Begoña Fernández, Nelson Muriel (2009), Regular variation and related results for the    

        multivariate GARCH(p,q) model with constant conditional correlations, Journal of      

        Multivariate Analysis, 1538-1550  

[18] Engle, R.F. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH    

        Models. Journal of Business and Economic Statistics, 20, 339–350.  

[19] Vrontos, I.D., Dellaportas, P. and Politis, D.N. (2003). A full-factor Multivariate GARCH  

        model. Econometric Journal, 6, 312–334.  

[20] Pelletier, D. (2006). Regime switching for dynamic correlations. Journal of Econometrics, 131,  

        445-73.  

Portfolio  Construction




	MASTER THESIS

