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Random walk models are widely used for non-stationary data, particularly financial and economic 

data. Random walks typically have: 

a) long periods of apparent trends up or down and b) sudden and unpredictable changes in direction 

It is also easy to see that by differencing tx ,we find that t t tx :=(1-B)x =w is stationary, thus the 

random walk process is a I(1) process. 

 

 

Figure 1-1:Simulated random walk Xt=Xt-1+Wt, Wt~WN(0,1), of sample size n=200 with its acf plot on the upper half 
and the differenced process with its acf plot on the lower half. The random walk procedure appears the charachteristics 
we expected with non-decreasing autocovariances when on the other hand the differenced series is a white noise 
procedure with statistically insignificant autocovariances. 

 

The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA models to include 

differencing. 

Definition 1.3.4A process tx is said to be ARIMA(p,d,q) if  

d d
t tx =(1-B) x                                     13 

is ARMA(p,q). In general, we will write the model as 

d
t t�3���%���������%�� �[ � �����%���Z                                                                                                          14

       

There are two different ways of modeling a linear trend. A deterministic trend is obtained using the 

regression model t 0 1 tx =�� ���� �W����where t��  is an ARMA process.  
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As discussed above, the seasonal unit roots in time series would permanently change the seasonal 

patterns of the series and make the variance of the series increase linearly. Therefore testing seasonal 

unit roots proceeds modeling seasonality 

Among, the seasonal unit root tests, the HEGY test which was proposed by Hylleberg, Engle, 

Granger and Yoo (1990) has the advantage of testing seasonal unit root at each frequency separately, 

thus it is widely adapted. The HEGY test was originally proposed for testing seasonal unit roots in 

quarterly data but later its use was extended also for monthly data (Beaulieu and Miron (1992)). 

First, we define the seasonal difference operator of period s as  

s
s:=1-B  

Note that: s s
s =(1-B)  

The HEGY test for seasonal integration is conducted by estimating the following regression (special 

case for quarterly data) 

p-14 4

4 t j jt i i,t-1 m 4 t-m t
j=2 i=1 m=1

y =a+���W�� �E �4 �� �Œ �: �� �� �\ ���0
                                                                                                21 

where a and t are the drift and deterministic time trend terms, jtQ is a seasonal dummy variable, and 

the itW are given below: 

2
1t t

2
2t t

3t t

4t t 3t-1

W =(1+B)(1+B )y

W =-(1-B)(1+B )y
W =-(1-B)(1+B)y
W =-B(1-B)(1+B)y =W  

In addition, as in the Augmented Dickey-Fuller tests, some lagged values of the dependent variable 

are included to assure the appropriate behavior of the residuals. The literature suggests, among other 

criteria, to include all the lagged values until p-1; more details about how p is determined can be 

found in Perron (1995). The procedure starts from a very long lagged model and reduce the number 

of lags until the last lag included is statistically different from zero at some prespecified level of 

significance (in general, a 10% level of significance is used). The introduction of these lags (as in the 

Augmented Dickey-Fuller tests) is to assure that the residuals have the standard properties (no serial 

autocorrelation). Finally, t�0is an error term with the standard white noise properties. 
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implies that the errors are used to derive the loss functions 2
1i 1ig(e ) = e and 2

2i 2ig(e ) = e which lead 

to the loss-differential series which is assumed normally distributed. The 

sample mean is then derived by
h

ii=1
d

d =
h

 

The next step is to derive the autocovariance at lag 0 for di, that is  which is assumed to be a 

consistent estimate of the variance of hd . The test statistic then follows and is derived by 

dDM = ~ N(0,1)
�������� �K

                                                                                                                                             41 

Thus, the DM statistic is assumed to be standard normal and the rejection values then follows from 

that. The null hypothesis of the test is that there is no difference between the accuracy of the two 

forecasts. The alternative hypothesis is either two-sided to test if either model perform better than the 

other or one-sided to test if one specific model is more accurate than the other. (Diebold and 

Mariano, 1995) 

 

2.7.2 Cross-validation for time series 

Because of the nature of time series data there are strong temporal dependencies and so it is not 

possible to perform the usual validation techniques. A very useful way to overcome the difficulty of 

biased evaluations is to use the procedure called time series cross-validation. 

Most cross validation schemes appear to rely on having i.i.d. data because the training-test splits do 

not take time indices into account. For example, 5-fold cross validation applied naively over 5 time 

periods would ignore the sequential nature of time, mixing up past, present and future as in figure 2.1 

 

Figure 2-1.: Usual 5-fold cross validation scheme 
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3.1.1.1 The local level model 

The random walk plus noise, or local level model, is defined by the following two equations 

t t t t

t t-1 t t

Y =�� ���Y �� �Y �a�1�������9��

�� � �� ���Z �� �Z �a�1�������:��                                                                                                                      
45 

where the error sequences (vt) and (wt) are independent, both within them and between them. This is 

a DLM with m = p = 1, t t�� � ��  and Ft = Gt = 1. Intuitively, it is appropriate for time series showing 

no clear trend or seasonal variation: the observations (Yt) are modeled as random fluctuations around 

a level ; in turn, the level can evolve randomly over time (described by a random walk). This is 

why the model is also called local level model; if W = 0, we are back to the constant mean model. 

3.1.1.2 The linear growth model 

A slightly more elaborated model is the linear growth model, which has the same observation 

equation as the local level model, but includes a time-varying slope in the dynamics for t�� .  

                                                                                                           

46 

with uncorrelated errors. This is a DLM with  

                                                                                      
47 

The system variances 
i

2
w�1 , are allowed to be zero.   

 

3.1.2 Seasonal factor models 

Suppose that we have seasonal data from quarters tY , t=1,2,...Assume also for brevity that the series 

has zero mean: a non-zero mean, or a trend component, can be modelled separately, so for the 

moment we consider the series as purely seasonal. We might describe the series by introducing 

seasonal deviations from the zero mean, expressed by different coefficients ia for the different 

quarters, i=1,2,3,4. So, if t-1Y refers to the first quarter of the year and tY to the second quarter, we 

assume 
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4. Application 

4.1 New York monthly number of births data 

For our first example, a dataset from monthly number of births from the city of New York is used. 

The dataset includes 168 entries of number of births from January 1946 to December 1959. 

Firstly, restricting our investigation in the SARIMA class of models, the most suitable 

SARIMA(p,d,q)x(P,D,Q)s will be extracted and it will be evaluated by various graphical tools and 

tests. The model estimation will be performed on a training set of number of births from January 

1946 to December 1956. A test set of 3 years from January 1957 to December 1959 will be used to 

evaluate its forecast ability. 

For the second model we use the same training set for estimation and Kalman filtering, Kalman 

smoothing and forecasting of a local level state space model with a monthly seasonal component. It 

should be noted that the training set should consist of at least 50 observations since that is needed for 

efficient estimation (Box and Jenkins, 1976). Forecasts are found on the same test set as before from 

January 1957 to December 1959. 

Finally, for the last part of the analysis assuming that both models have passed the diagnostic checks 

their forecast performance will be compared with some frequently used error measures and tests. 

4.1.1 Description of the data 

Firstly, we give a graphical representation of the whole dataset in figure 4.1 and calculate some basic 

descriptive measures for our data in table 4.1: 

Table 4.1: Descriptive statistics for monthly number of births in thousands. 

N Mean Median Maximum Minimum Std Skewness Kurtosis 

168 25.06 24.96 30 20 2.32 -0.02 -0.88 

 

 



P a g e  | 40 
 

 
 

 

Figure 4-1: Number of births in New York City from January 1946 to December 1959 

From figure 4.1, we can see that there is certainly some seasonal variation in the number of births per 

month; there is a peak every summer, and a trough every winter. It seems like this could be described 

using an additive model, as the seasonal fluctuations are roughly constant in size over time and do 

not seem to depend on the level of the time series, and the random fluctuations seem constant over 

time. A slight upward trend may also be present in the time series.  

A short note here about time series decomposition how is done in practice. If we assume an additive 

decomposition yt=St+Rt+Tt where ytis the data, tS is the seasonal component, tT is the trend-cycle 

component and tR is the residuals component for period t. 

The first step in a classical decomposition is to use a moving average method to estimate the trend-

cycle component. A moving average of order m can be written as  

k

t t+j
j=-k

1T = y
m

 

where m=2k+1. That is, the estimate of the trend-cycle at time t is obtained by averaging values of 

the time series within k periods of t. Observations that are nearby in time are also likely to be close in 

value. Therefore, the average eliminates some of the randomness in the data, leaving a smooth trend-

cycle component. 

The additive decomposition has the following steps: 

Step1: If m is an even number, compute the trend-cycle component tT  using a 2×m-MA. If m is an 

odd number, compute the trend-cycle component tT  using an m-MA. 
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Step2: Calculate the detrended series tty -T  

Step3: To estimate the seasonal component for each season, simply average the detrended values for 

that season. For example, with monthly data, the seasonal component for March is the average of all 

the detrended March values in the data. These seasonal component values are then adjusted to ensure 

that they add to zero. The seasonal component is obtained by stringing together these monthly 

values, and then replicating the sequence for each year of data. This gives tS  

Step4: The remainder component is calculated by subtracting the estimated seasonal and trend-cycle 

components: t tttR =y -S -T  

Command decompose() in R calculates the time series components which are shown in figure 4.2. 

 

Figure 4-2: From top to bottom: a) The original births series b) The trend component c)The seasonal component and d) 
The random component 

These are some first indications that we should take seasonal and non-seasonal differences, thus take 

d=1 and D=1, to stationarize the process. Our hypotheses are confirmed by figure 4.3. 
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Figure 4-3: Time series plots of: a) The original births series (top left) b) The non-seasonal differenced births series (top 
right) and c) The seasonal and non-seasonal births series (bottom left) 

 

From Figure 4.3, it is clear that once we have taken non-seasonal differences the trend has 

disappeared but there is still a seasonal pattern that is eliminated when we take seasonal and non 

seasonal differences. As we can see in the last panel of figure 4.3 the transformed series seems to 

have lost any trend and seasonal pattern and can be considered as a stationary process. 

 

A strong graphical tool for the identification of the parameters of a SARIMA model is the study of 

the characteristics of the ACF and PACF plots of the transformed process (after taking seasonal and 

non-seasonal differences) which are presented in figure 4.4. 
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Figure 4-4: ACF plot (left) and PACF (right) of the transformed births series 

 

From figure 4.4, if we look on seasonal lags there is only one major spike on seasonal lag 1, so that 

indicates the existence of an SMA(1) term in the model and thus the order of Q is probably 1. In the 

same manner, from the PACF plot of the transformed series if we look on seasonal lags there are two 

clear spikes on seasonal lag 1 and 2 that cross the 95% CI, that indicate the existence of SAR(1) and 

SAR(2) terms in the model and thus the order of P is probably 2. For the orders p,q it is not clear 

from the ACF and PACF plots if there are any AR and/or MA terms. 

 

4.1.2 ARIMA and SARIMA models 

After the preliminary analysis we are now ready to fit the most suitable SARIMA model for the 

births series. The first 11 years from January 1946 to December 1956 are used as a training set on 

which the model fit, parameters estimation and diagnostic tests will be carried out and the last 3 

years of the births dataset from January 1957 to December 1959 will be utilized as a test set for the 

forecasting evaluation of the model. 

The first step is to estimate the model parameters of integration and seasonal integration d, D 

respectively. From section we have already graphical evidence that d=D=1 but in order to 

substantiate our assumptions we conduct the ADF test for unit roots and the HEGY test for seasonal 

unit roots the results of which are shown in tables 4.2 and 4.3 respectively. 

 







P a g e  | 46 
 

 
 

 

Figure 4-5: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 
standardized residuals (bottom right). 

 

The standardized residuals in the first plot of figure 4.5 seem quite homoscedastic and to have a 

mean close to zero. Moreover, the ACF plot in figure 4.5 tells us that there is no significant 

autocorrelation for any lag and thus the residuals can be considered independent. Finally, the 

QQplotin figure 4.5 show that most of the residuals are close to the theoretical line and almost are 

inside the 95% CI bounds. So, the normality assumption of the residuals cannot be rejected. 

An alternative approach of modeling the problem would be to consider also the case of a usual non-

seasonal ARIMA model but without the strict parameters restrains of the HK algorithm. More 

specifically, we will consider an ARIMA model with d=1 where the parameters search would be 

performed in the grid p [0,12],q [0,14] . The most suitable model will be selected according to the 

combination of parameters that minimizes the AIC. 
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Table 4.9:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 
estimated SARIMA(0,1,12)x(1,1,0)12 model. 

Test Statistic p-value 

Box-Ljung 0.33056 0.5653 

Jarque-Bera 7.439 0.0305 

 

 

Figure 4-9: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 
standardized residuals (bottom right). 

 

From the results of table 4.9 and the figure 4.9 it is logical to assume that the assumptions of 

homoscedastic and uncorrelated residuals cannot be rejected for the SARIMA(0,1,12)x(1,1,0)12 

model but on the other hand the standardized residuals do not seem to satisfy the normality 

assumption.   

The final step is to make forecasts of future values based on the various fitted models. The forecast() 

function from the forecast package in R calculates the predicted values of monthly number of births 

in New York city from January 1957 to December 1959.  The graphical results are shown in figure 

4.10. 
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