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ABSTRACT 

 

 

In time series analysis, it is very common to encounter cases of data that show seasonality or some 

form of a trend. The general methodology developed by Box and Jenkins (1970) gave us the class of 

ARIMA models and the special subcategory of SARIMA models. This is still a very powerful tool 

for describing time series with such features and predicting future observations. 

 

Another large class of models that are gaining ground in recent years is the so-called state space 

models. A very broad subcategory of state space models is the so-called Dynamic Linear Models 

(DLM’s) which, despite their general simplicity, can be used to capture features that govern real-time 

time series such as trend and seasonality. The process of fitting the models and predicting future 

observations is done through the methodology known as the Kalman filter which was first introduced 

by Kalman in 1960. 

 

This thesis analyzes all the key features of the ARIMA and SARIMA models and the DLM model 

class. Then, their predictive ability is tested based on two different evaluation methods which are the 

calculation of the usual error measures, namely MSE, MAD and MAPE, and the cross-validation 

methodology specifically adapted for time series data. 

 

The application of the methods and the comparison of their predictive capacity of the were done in 

two different real data sets: the first concerns monthly birth numbers in New York City and the 

second is related to monthly retail automobile sales in the USA. 
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ΠΕΡΙΛΗΨΗ 

 

 

Στην ανάλυση χρονοσειρών είναι πολύ σύνηθες να ερχόμαστε αντιμέτωποι με περιπτώσεις  

δεδομένων που παρουσιάζουν εποχικότητα ή και κάποιας μορφή τάση. Η γενική μεθοδολογία που 

αναπτύχθηκε από τους Box και Jenkins (1970) μας έδωσε την κλάση των ARIMA μοντέλων και της 

ειδικής υποκατηγορίας SARIMA μοντέλων. Αυτό μέχρι και σήμερα αποτελεί ένα πολύ ισχυρό 

εργαλείο για την περιγραφή χρονοσειρών με τέτοια χαρακτηριστικά και πρόβλεψη μελλοντικών 

παρατηρήσεων.  

Μια άλλη μεγάλη γκάμα μοντέλων που κερδίζουν μεγάλο έδαφος τα τελευταία χρόνια είναι τα 

λεγόμενα state space μοντέλα. Μια πολύ ευρεία υποκατηγορία state space μοντέλων είναι τα 

λεγόμενα Dynamic Linear Models (DLM’s) τα οποία παρά την γενικότερη απλότητα τους μπορούν 

να χρησιμοποιηθούν για την αποτύπωση χαρακτηριστικών που διέπουν χρονοσειρές αληθινών 

δεδομένων όπως είναι η τάση και η εποχικότητα. Η διαδικασία της προσαρμογής των μοντέλων και 

πρόβλεψης μελλοντικών παρατηρήσεων γίνεται μέσω της μεθοδολογίας που είναι γνωστή ως 

Kalman φίλτρο η οποία πρωτοπαρουσιάστηκε από τον Kalman to 1960. 

Σε αυτήν την εργασία αναλύονται όλα τα βασικά χαρακτηριστικά της συνομοταξίας των ARIMA 

και SARIMA μοντέλων και της κλάσης των DLM μοντέλων. Στη συνέχεια διενεργείται έλεγχος της 

προβλεπτικής ικανότητας τους βασιζόμενοι σε δύο διαφορετικές μεθόδους αξιολόγησης οι οποίες 

είναι ο υπολογισμός των συνήθη μέτρων για σφάλματα, δηλαδή τα MSE, MAD και MAPE,  και στη 

μεθοδολογία cross-validation εδικά προσαρμοσμένη για δεδομένα χρονοσειρών.  

Η εφαρμογή των μεθόδων και η σύγκριση της προβλεπτικής ικανότητας των μοντέλων έγινε σε δύο 

διαφορετικά πραγματικά σύνολα δεδομένων: το πρώτο αφορά μηνιαίους αριθμούς γεννήσεων στην 

πόλη της Νέας Υόρκης και το δεύτερο σχετίζεται με μηνιαίες πωλήσεις αυτοκινήτων λιανικού 

εμπορίου στις ΗΠΑ. 
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Introduction 

The element of seasonality is found in almost all areas of human activity. From financial measures 

such as the annual forecast of GDP or inflation that determines the policies of an entire country to 

meteorological data and the forecast of extreme weather events, the need for processing and 

modeling of chronological data with seasonality is becoming more and more imperative. However, a 

common element and key issue in any such study is the ability of predicting future data. 

In 1970, Box and Jenkins introduced a new class of multiplicative linear autoregressive integrated 

moving average models, ARIMA(p,d,q), which are defined as: 

d

t tφ(B)(1-B) x =θ(B)w , 2

t ww ~WN(0,σ )  

where φ(z), θ(z) are the autoregressive and moving average polynomials and p,q are respectively the 

orders of these polynomials and d is the order of differencing. 

This kind of models were considered path breaking. The seasonal ARIMA model, called SARIMA, 

is a special case of this model and is applied to seasonal data, for example weekly or monthly which 

is the case for this thesis. The general SARIMA(p,d,q)x(P,D,Q)s model is defined as: 

s s 2

t t t wφ(B)Φ(Β )x =θ(Β)Θ(Β )w , w ~WN(0,σ )  

where φ(z), θ(z), Φ(z) and Θ(z) are the seasonal and non-seasonal AR and MA polynomials and P 

and Q are the orders of the non-seasonal polynomials, S is the period of the seasonal pattern, d is the 

order of differencing and D is the order of seasonal differencing. 

The process of fitting a SARIMA (p, d, q) x (P, D, Q) model begins with the identification of the 

parameters d, D and then p, q, P, Q, which is done by using both graphic as well as analytical tools 

and tests. The usual procedure used by R is the use of the Hyndman-Khandakar (HK) algorithm 

developed by Hyndman and Khandakar (2008) which minimizes one of the well known information 

criteria for selecting parameters (AIC, BIC, AICc). However, a basic criticism of this algorithm of 

selecting the optimal model is that it poses very strict restrictions on the order of the parameters and 

in fact many models with higher orders of the AR and MA polynomials are excluded by definition 

from the investigation. 

The Kalman filter was developed by Kalman in 1960 and is applied to models written on the so 

called state-space form. It was first proven as useful for applications in engineering. In 1977 

Morrison and Pike stated that a general method for applying the Kalman filter for statistical 

forecasting has not yet been developed. However the procedure had at that time started to get its 

roots into the statistical field, for example Rosenberg (1973), Engle (1979) and Harvey and Phillips 
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(1979) found that the Kalman filter could be applied to econometric and statistical problems, for 

example for time series forecasting of economic properties. These were fields that ARIMA modeling 

at that point dominated (Harvey, 1989). One example of a clear benefit of the Kalman filter is that 

only the present state estimate and the next observation is required to update the whole system. This 

can be compared to models estimated with maximum likelihood or ordinary least squares where 

updating would imply use of the whole history of data. 

One very important category of models which can be written in state-space form are the so called 

Dynamic Linear Models (DLM) which are specified by means of two equations 

 

 

t t t t t m t

t t t-1 t t p t

Υ =Fθ +v , v ~N 0,V

θ =G θ +w , w ~N 0,W
 

where Gt and Ft are known matrices and the (vt) and (wt) are two independent white noise 

sequences, with mean zero and known covariance matrices Vt and Wt respectively. DLM’s are very 

adaptable and can be used for time series which appear some kind of trend, or seasonality or both.  

The purpose of this thesis is to compare the forecasting performance between the model specified by 

the HK algorithm, the model obtained by the minimization of the AIC criterion without posing the 

strict restrictions of the HK algorithm and a suitable DLM which captures the characteristics of the 

data in hand. The questions to be answered would be 1)“Does the standard HK algorithm lead to a 

model adequate enough for forecasting future values or we can conclude to a more suitable model by 

applying less strict restrictions?” and 2) “Can the simple DLM’s assimilate the time series 

characteristics and give forecasts equally good as the standard ARIMA class of models?”  

The comparisons will be made through two different methods a) use of the ordinary error measures 

(MSE, MAD and MAPE) along with the Diebold-Mariano test in a test set of observations and b) the 

extraction of forecast errors from a cross-validation methodology designed specifically for time 

series. 

This thesis deals with two different real life datasets: 1) monthly rates of births in New York City 

and 2) monthly retail automobile sales in USA. Both of them appear to have a strong seasonal pattern 

with an underlying trend, the presence of which is obvious in the second one and more questionable 

in the first. The reason behind the choice of those so apparently different examples is to examine the 

comparison of the various models in a great variety of forecast examples, so as to obtain the big 

picture of how accurate they can be for future use in datasets which appear similar characteristics. 

The structure of this thesis is organized as follows. Chapter 1 deals with some basic concepts and 

definitions which lead to the building of the general SARIMA model which is defined and discussed 

in Chapter 2. Also in Chapter 2 can be found all the various tools that are used for the estimation, 
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model fitting and forecast evaluation. Chapter 3 deals with state space models and particularly with 

the most commonly used forms of Dynamic Linear models and the Kalman filer methodology. 

Chapter 4 contains the application of all the methods discussed in the previous chapters and is 

divided in two parts; subsection 4.1 deals with the monthly rates of births dataset and subsection 4.2 

with the monthly retail automobile sales dataset. Finally, chapter 5 concludes the thesis by 

summarizing the results and by discussing some details. 

 

1.  Basic concepts and definitions 

In the present section we give the essential definitions and attributes of the models that we will go 

over in the following chapters. Besides, we additionally express the fundamental outcomes and 

hypotheses which are at the center of our investigation and a necessary piece of each ensuing area. In 

the present case we simply take into account discrete procedures, where time tZ  and also the time 

horizon hZ  

 

1.1 Stationarity and ACF, PACF 

We ζstart  ζwith ζcertain ζdefinitions ζso  ζas ζto  ζreview ζthe ζfundamental ζterms ζand ζfurthermore 

ζconcurring ζon ζdocumentation. ζWe ζstart  ζwith ζthe ζconcept  ζof ζstationarity ζand ζautocovariance. 

Definition ζ1.1.1 ζThe ζmean ζfunction ζof ζa ζstochastic ζprocess ζ tx  ζis 

 t t t

-

μ =E(x )= xf x dx





           ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ1 

provided ζit  ζexists, ζwhere ζE ζdenotes ζthe ζusual ζexpected ζvalue ζoperator ζand ζ  tf x denotes ζprocess 

ζdistribution ζdensity ζfunction. 

Definition ζ1.1.2 ζThe ζautocovariance  ζfunction ζof ζa ζfinite ζvariance ζprocess ζ tx  ζwith ζmean ζvalue 

ζfunction ζ tμ is ζdefined  ζas ζ 

  s s t tγ(s,t)=E x -μ x -μ             ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ
2 

for ζall ζs ζand ζt  ζ 

Definition ζ1.1.3 ζA ζweekly ζstationary ζtime ζseries, ζ tx , ζis ζa ζfinite ζvariance ζprocess ζsuch ζthat  ζ 

a) ζthe ζmean ζvalue ζfunction, ζ tμ , ζis ζconstant  ζand ζdoes ζnot  ζdepend ζon ζtime ζt, ζand 
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b) ζthe ζcovariance ζfunction ζγ(s,t),depends ζon ζs ζand  ζt  ζonly ζthrough ζtheir ζdifference ζ s-t . 

From ζthis ζtime ζforward, ζwhen ζwe ζutilize ζthe ζterm ζstationarity ζthe ζterm ζweak ζstationarity ζwill ζbe 

ζmeant. ζThe ζautocovariance ζfunction ζof ζa ζstationary ζtime ζseries ζwill ζbe ζwritten ζas ζa ζfunction ζof ζthe 

ζlag ζh ζas: 

  t+h tγ(h)=E x -μ x -μ , h 1            ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ  ζ3 

 

If ζwe ζare ζinterested ζin ζfinding  ζto  ζwhat  ζextent  ζthere ζis ζa ζnumerical ζrelationship  ζbetween ζtwo 

ζvariables ζof ζinterest, ζusing  ζtheir ζcorrelation ζcoefficient  ζwill ζgive ζmisleading  ζresults ζif ζthere ζis 

ζanother, ζconfounding, ζvariable ζthat  ζis ζnumerically ζrelated ζto  ζboth ζvariables ζof ζinterest. ζThis 

ζmisleading  ζinformation ζcan ζbe ζavoided  ζby ζcontrolling  ζfor ζthe ζconfounding  ζvariable, ζwhich ζis 

ζdone ζby ζcomputing ζthe ζpartial ζcorrelation ζcoefficient 

 

Definition ζ1.1.4 ζa) ζThe ζpartial ζcorrelation ζbetween ζX ζand ζY ζgiven ζa ζset  ζof ζn ζcontrolling ζvariables 

ζ  1 2 nZ= Z ,Z ,...,Z is ζthe ζcorrelation ζbetween ζthe ζresiduals ζ Xe and  ζ Ye  ζresulting ζfrom ζthe ζlinear 

ζregression ζof ζX ζwith ζZ ζand ζof ζY ζwith ζZ, ζrespectively. ζ 

b)The ζpartial ζautocorrelation ζfunction ζ(PACF) ζgives ζthe ζpartial ζcorrelation ζof ζa ζstationary ζtime 

ζseries ζwith ζits ζown ζlagged  ζvalues, ζregressed ζthe ζvalues ζof ζthe ζtime ζseries ζat  ζall ζshorter ζlags. ζIt 

ζcontrasts ζwith ζthe ζautocorrelation ζfunction, ζwhich ζdoes ζnot  ζcontrol ζfor ζother ζlags.Given ζa ζtime 

ζseries ζ tx  ζthe ζpartial ζautocorrelation ζbetween ζ tx  ζand ζ t-hx  ζis ζdefined ζas ζthe ζconditional ζcorrelation 

ζbetween ζ tx  ζand t-hx , ζcondtional ζon ζ t-h+1 t-1x ,...,x the ζset  ζof ζobservations ζthat  ζcome ζbetween ζthe 

ζtime ζpoints ζt  ζand ζt-h. 

 The ζ1st
 ζorder ζpartial ζautocorrelation ζwill ζbe ζdefined ζto  ζequal ζthe ζ1st  ζorder ζautocorrelation. 

 The ζ2nd
 ζorder ζ(lag) ζpartial ζautocorrelation ζis

 

   
t t-2 t-1

t t-1 t-2 t-1

Cov x ,x |x

Var x |x Var x |x
 

This ζis ζthe ζcorrelation ζbetween ζvalues ζtwo ζtime ζperiods ζapart  ζconditional ζon ζknowledge ζof ζthe 

ζvalue ζin ζbetween ζ(the ζtwo  ζvariances ζin ζthe ζdenominator ζwill ζequal ζeach ζother ζin ζa ζstationary 

ζseries.) 

 The ζ3rd
 ζorder ζ(lag) ζpartial ζautocorrelation ζis

 

   
t t-3 t-1 t-2

t t-1 t-2 t-3 t-1 t-2

Cov x ,x |x ,x

Var x |x ,x Var x |x ,x
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And, ζso  ζon, ζfor ζany ζlag 

 

Definition ζ1.1.5 If ζ tx is ζa ζstationary ζprocess ζwith ζautocovariance ζfunction ζγ(.) ζthen ζits 

ζautocovariance ζgenerating ζfunction ζis ζdefined ζby 

k

k=-

G(z)= γ(k)z , z




           ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ4 

provided ζthe ζseries ζconverges ζfor ζall ζz ζin ζsome ζannulus ζ
-1r < z <r with ζr>1 

At  ζthe ζpoint  ζwhen ζwe ζhave ζcharacterized ζthe ζautocovariance ζfunction, ζwe ζcan ζgive ζthe ζdefinition 

ζof ζthe ζwhite ζnoise ζprocess, ζwhich ζhas ζa ζsignificant  ζrole ζin ζthe ζexamination ζof ζthe ζconsiderable  

ζnumber ζof ζmodels ζwe ζare ζgoing ζto  ζutilize ζand ζfurthermore ζin ζthe ζinference ζof ζthe ζprediction 

ζequations. ζ 

 

Definition ζ1.1.6 ζThe ζprocess ζ tw (with ζmean ζ0 ζand ζvariance 2σ ) ζis ζsaid  ζto  ζbe ζwhite ζnoise ζprocess,  

ζand ζit  ζwill ζbe ζsymbolized ζas ζ
2

t ww ~WN(0,σ ) , ζif ζand ζonly ζif ζ tw has ζzero  ζmean ζand ζcovariance  

ζfunction 

2

0,h 0
γ(h)=

σ ,h=0





           ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζζ5 

 

1.2 The ARMA models 

A very large and widely used class of time series models is the ARMA models. In order to construct 

the ARMA models, first we have to give some definitions. 

Definition 1.2.1We say that stationary process tx  is an autoregressive process of order p, 

abbreviated AR(p),  if it satisfies the equation 

t 1 t-1 p t-p tx =φ x +...+φ x +w                           6 

where 1 2 pφ ,φ ,...,φ are constants ( pφ 0 ) and tw is a white noise process with variance 
2

wσ  

Definition 1.2.2The process tx  is said to be a moving average process of order q, or MA(q), if it 

satisfies the equation 

t t 1 t-1 q t-qx =w +θ w +...+θ w                          7 
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where 1 2 qθ ,θ ,...,θ are constants  ( qθ 0 ) and 
2

t ww ~WN(0,σ )
 

A compact way of defining ARMA process is by defining the back-swift operator and introducing 

the autoregressive and moving average equations and operators. 

Definition 1.2.3We define the back-swift operator by  

t t-1Bx =x ,tZ
                                                                                                                  8

 

and extend it to powers 
2

t t t-1 t-2B x =B(Bx )=Bx =x  and so on. Thus,
k

t t-kB x =x ,tZ . 

Definition 1.2.4A stationary process  tx :tZ is said to be an ARMA(p,q) process if

t 1 t-1 p t-p 1 t-1 q t-q tx =φ x +...+φ x +θ w +...+θ w +w  or equivalently t tφ(Β)x =θ(Β)w ,where 

2 p

1 2 pφ(Β)=1-φ Β-φ Β -...-φ B , 2 q

1 2 qθ(Β)=1+θ Β+θ Β -...-θ B  and 
2

t ww ~WN(0,σ ) , p qφ ,θ 0 and the 

parameters p and q are called autoregressive and moving average orders respectively. 

Definition 1.2.5An ARMA(p,q) model t tφ(Β)x =θ(Β)w is said to causal  if the time series  tx :tZ

can be written as a one-sided linear filter of the white noise process tw :tZ : 

t j t-j t

j=0

x = ψ w =ψ(B)w


                          9 

where j

j

j=0

ψ(Β)= ψ B


 and 
j

j=0

ψ <


 and we set 0ψ =1 

Definition 1.2.6An ARMA(p,q) model t tφ(Β)x =θ(Β)w is said to be invertible if the innovations

 tw :tZ can be written as a one-sided linear filter of the process  tx :tZ : 

t t j t-j

j=0

w =π(Β)x = π x


                                     10 

where j

j

j=0

π(Β)= π B


  and 
j

j=0

π <


 and we set 0π =1 

At the point when we have characterized the ideas of causality and invertibility, we now give criteria 

for an ARMA model to be causal and invertible. 

Lemma 1.2.1 a) Let  tx be a stationary ARMA(p,q) process for which the polynomials φ(.), θ(.) 

have no common zeros. Then  tx is causal if and only if φ(z) 0 for all z such that 1z   
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b) Let  tx be an ARMA(p,q) process for which the polynomials φ(.), θ(.) have no common zeros. 

Then  tx is inverible if and only if θ(z) 0 for all z such that 1z   

From Brockwell and Davis (1991) we can locate a valuable tool called autocovariance generating 

function. 

Lemma 1.2.2 The autocovariance generating function for a an ARMA(p,q) process t tφ(Β)x =θ(B)w

for which φ(z) 0 when z =1 is of the following form 

-1
2

-1

θ(z)θ(z )
G(z)=σ

φ(z)φ(z )
 ,

-1r < z <r for somer>1                                                                                                          11 

 

1.3 Integrated series and ARIMA models 

A key point in our analysis is the definition of the unit root which can be found below. 

Definition 1.3.1A time series tx is integrated of orderd 0 , abbreviated I(d), if  

d d

t tx :=(1-B) x  

is stationary but 
2 d-1

t t tx , x ,..., x   remain non-stationary. 

Definition 1.3.2 Order of integration is a summary statistic that it indicates the minimum number of 

differences needed to get a stationary series. 

A special mention should be made for the class of I(0) models. From definition 1.3.1 it is clear that 

tx is I(0) if 
0

t t ty =(1-B) x =x is stationary. From this definition I(0)  stationary but not vice versa, 

i.eI(0) is a sufficient condition for stationarity, but stationarity is only a necessary condition for 

I(0).Therefore, all stationary processes are I(0), but not all I(0) processes are stationary.  

 

Definition 1.3.3A random walk is a time series model tx such that  

2

t t-1 t t wx =x +w , w ~WN(0,σ )     12 

While the mean of a random walk is still zero, the covariance is actually time-dependent. Hence a 

random walk is non-stationary because 

2

x t t+h wγ (h)=Cov(x ,x )=tσ  
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Random walk models are widely used for non-stationary data, particularly financial and economic 

data. Random walks typically have: 

a) long periods of apparent trends up or down and b) sudden and unpredictable changes in direction 

It is also easy to see that by differencing tx ,we find that t t tx :=(1-B)x =w is stationary, thus the 

random walk process is a I(1) process. 

 

 

Figure 1-1:Simulated random walk Xt=Xt-1+Wt, Wt~WN(0,1), of sample size n=200 with its acf plot on the upper half 
and the differenced process with its acf plot on the lower half. The random walk procedure appears the charachteristics 

we expected with non-decreasing autocovariances when on the other hand the differenced series is a white noise 

procedure with statistically insignificant autocovariances. 

 

The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA models to include 

differencing. 

Definition 1.3.4A process tx is said to be ARIMA(p,d,q) if  

d d

t tx =(1-B) x                                     13 

is ARMA(p,q). In general, we will write the model as 

d

t tφ(B)(1-B) x =θ(B)w                                                                                                           14

       

There are two different ways of modeling a linear trend. A deterministic trend is obtained using the 

regression model t 0 1 tx =β +β t+η where tη
 is an ARMA process.  
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A stochastic trend and a deterministic trend are obtained using the model t t 0 tx :=(1-B)x =β +η where 

tη
 is anARMA process. In the latter case, if 0β =0 , then we have a stochastic trend only, otherwise, if 

0β 0 we have both a deterministic and a stochastic trend. In other words, 

t t-1 0 tx =x +β +η  

2. The SARIMA class of models 

 In ζtime ζseries ζdata, ζseasonality ζis ζthe ζpresence ζof ζvariations ζthat  ζoccur ζat  ζspecific ζregular ζintervals 

ζsuch ζas ζweekly, ζmonthly, ζquarterly ζor ζyearly. ζSeasonality ζmay ζbe ζcaused  ζby ζvarious ζfactors, ζsuch 

ζas ζweather, ζvacation, ζand ζholidays ζand ζconsists ζof ζperiodic, ζrepetitive, ζand ζgenerally ζregular ζand  

ζpredictable ζpatterns ζin ζthe ζlevels ζof ζa ζtime ζseries. 

 Seasonal ζseries ζare ζcharacterized  ζby ζa ζstrong ζserial ζcorrelation ζat  ζthe ζseasonal ζlag ζ(and  ζpossibly 

ζmultiples ζthereof). ζThe ζclassical ζdecomposition ζof ζthe ζtime ζseries ζin ζits ζadditive ζform: ζ

t t t tx =μ +s +y where ζ tμ  ζis ζthe ζtrend ζcomponent, ζ ts  ζis ζthe ζseasonal ζcomponent  ζand ζ ty  ζis ζthe ζwhite 

ζnoise ζcomponent. ζIf ζdeterministic  ζseasonality ζof ζlag ζd  ζis ζassumed, ζthen ζit  ζis ζimplied  ζthat  ζ t t-ds =s , 

ζwhich ζmeans ζthat  ζthe ζseasonal ζcomponent  ζrepeats ζitself ζover ζevery ζcycle  ζof ζd ζdata ζobservations. 

 

2.1 Definition of the model 

In practice it may not be reasonable to assume that the seasonality component repeats itself precisely 

in the same way cycle by cycle. Seasonal ARIMA models allow for randomness in the seasonal 

pattern from one cycle to the next, describing thus a form of seasonality which is known as 

“stochastic seasonality”. 

Definition 2.1.1If d and D are non-negative integers, then  tx is said to be a seasonal 

   
s

ARIMA p,d,q x P,D,Q with period s if the differenced process 
d s D

t ty :=(1-B) (1-B ) x is a causal 

ARMA process, 

s s

t tφ(B)Φ(Β )y =θ(Β)Θ(Β )z , 
2

t zz ~WN(0,σ )                                 15 

where
p

1 pφ(z)=1-φ z-...-φ z ,
P

1 PΦ(z)=1-Φ z-...-Φ z , 
q

1 qθ(z)=1+θ z+...+θ z and 
Q

1 QΘ(z)=1+Θ z+...+Θ z . 

Note that the process  ty is causal if and only if φ(z) 0 and (z) 0  for all z 1 .  

 p and seasonal P: indicate number of autoregressive terms (lags of the stationarized series) 
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 dand seasonal D: indicate differencing that must be done to stationarize series 

 q and seasonal Q: indicate number of moving average terms (lags of the forecast errors) 

 s: indicates seasonal length in the data 

 

Box et al. (2008) propose that the SARIMA(p, d, q) × (P, D, Q)s for tx  can be seen as a special form 

of the equivalent representation of ty  as an ARMA(p + sP, q + sQ) written as  

* *

t 0 tφ (Β)y =θ +θ (Β)z  

where 
* *φ (Β)=φ(Β)Φ(Β),  θ (Β)=θ(Β)Θ(Β)                                                                                          16 

 

2.2Identifying d and D 

The first (and most important) step in fitting aSARIMA model is the determination of the orders d 

and D of differencing needed to stationarize the series. The determination will be made by taking 

into consideration both the time series correlogram (ACF and PACF plots) and widely used tests 

such as the ADF test for unit roots and the HEGY test for seasonal unit roots. 

2.2.1 Graphical tools 

Normally, ζthe ζcorrect  ζamount  ζof ζdifferencing ζis ζthe ζlowest  ζorder ζof ζdifferencing ζthat  ζyields ζa ζtime 

ζseries ζwhich ζfluctuates ζaround ζa ζwell-defined ζmean ζvalue ζand ζwhose ζautocorrelation ζfunction 

ζ(ACF) ζplot ζdecays ζfairly ζrapidly ζto  ζzero, ζeither ζfrom ζabove ζor ζbelow. ζIf ζthe ζseries ζstill ζexhibits ζa 

ζlong-term ζtrend, ζor ζotherwise ζlacks ζa ζtendency ζto  ζreturn ζto  ζits ζmean ζvalue, ζor ζif ζits 

ζautocorrelations ζare ζpositive ζout  ζto  ζa ζhigh ζnumber ζof ζlags ζ(e.g., ζ10 ζor ζmore), ζthen ζit  ζneeds ζa 

ζhigher ζorder ζof ζdifferencing. ζ 

Some ζbasic ζindications ζfor ζdetermining ζthe ζorders ζd ζand ζD ζof ζan ζSARIMA(p,d,q) ζmodel ζare ζthe 

ζfollowing: 

Indication ζ1: ζIf ζthe ζseries ζhas ζpositive ζautocorrelations ζout  ζto  ζa ζhigh ζnumber ζof ζlags, ζthen ζit  

ζprobably ζneeds ζa ζhigher ζorder ζof ζdifferencing. 

Differencing ζtends ζto  ζintroduce ζnegative ζcorrelation: ζif ζthe ζseries ζinitially ζshows ζstrong ζpositive  

ζautocorrelation, ζthen ζa ζnon-seasonal ζdifference  ζwill ζreduce ζthe ζautocorrelation ζand  ζperhaps ζeven 

ζdrive ζthe ζlag-1 ζautocorrelation ζto  ζa ζnegative ζvalue. ζIf ζwe ζapply ζa ζsecond  ζnon-seasonal ζdifference  

ζ(which ζis ζoccasionally ζnecessary), ζthe ζlag-1 ζautocorrelation ζwill ζbe ζdriven ζeven ζfurther ζin ζthe 

ζnegative ζdirection. 
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Indication ζ2: ζIf ζthe ζlag-1 ζautocorrelation ζis ζzero  ζor ζnegative, ζor ζthe ζautocorrelations ζare ζall ζsmall 

ζand ζpatternless, ζthen ζthe ζseries ζdoes ζnot  ζneed ζa ζhigher ζorder ζof ζ ζdifferencing. ζ 

One ζof ζthe ζmost  ζcommon ζerrors ζin ζARIMA ζmodeling ζis ζto  ζ"overdifference" ζthe ζseries ζand ζend  ζup 

ζadding ζextra ζAR ζor ζMA ζterms ζto  ζundo  ζthe ζdamage. ζ ζ ζIf ζthe ζlag-1 ζautocorrelation ζis ζmore ζnegative 

ζthan ζ-0.5 ζ(and  ζtheoretically ζa ζnegative ζlag-1 ζautocorrelation ζshould  ζnever ζbe ζgreater ζthan ζ0.5 ζin 

ζmagnitude), ζthis ζmay ζmean ζthe ζseries ζhas ζbeen ζoverdifferenced. ζThe ζtime ζseries ζplot  ζof ζan 

ζoverdifferenced  ζseries ζmay ζlook ζquite ζrandom ζat  ζfirst  ζglance, ζbut  ζfrom ζa ζcloser ζlook, ζa ζpattern ζof 

ζexcessive ζchanges ζin ζsign ζfrom ζone ζobservation ζto  ζthe ζnext  ζwill ζbe ζobserved. 

 

Indication ζ3: ζThe ζoptimal ζorder ζof ζdifferencing  ζis ζoften ζthe ζorder ζof ζdifferencing ζat  ζwhich ζthe 

ζstandard ζdeviation ζis ζlowest. 

The ζfirst  ζtwo ζrules ζdo  ζnot  ζalways ζunambiguously ζdetermine ζthe ζ"correct" ζorder ζof ζdifferencing. 

ζ"Mild  ζunderdifferencing"  ζcan ζbe ζcompensated ζfor ζby ζadding  ζAR ζterms ζto  ζthe ζmodel,  ζwhile ζ"mild  

ζoverdifferencing" ζcan ζbe ζcompensated ζfor ζby ζadding ζMA ζterms ζinstead. ζIn ζsome ζcases, ζthere ζmay 

ζbe ζtwo ζdifferent  ζmodels ζwhich ζfit  ζthe ζdata ζalmost  ζequally ζwell: ζa ζmodel ζthat  ζuses ζ0 ζor ζ1 ζorder ζof 

ζdifferencing ζtogether ζwith ζAR ζterms, ζversus ζa ζmodel ζthat  ζuses ζthe ζnext  ζhigher ζorder ζof 

ζdifferencing ζtogether ζwith ζMA ζterms. ζIn ζtrying ζto  ζchoose ζbetween ζtwo  ζsuch ζmodels ζthat  ζuse 

ζdifferent  ζorders ζof ζdifferencing, ζwe ζmay ζneed ζto  ζask ζwhat  ζassumption ζwe ζare ζmost  ζcomfortable  

ζmaking ζabout  ζthe ζdegree ζof ζnonstationarity ζin ζthe ζoriginal ζseries 

 

Indication ζ4: ζA ζmodel ζwith ζno  ζorders ζof ζdifferencing ζassumes ζthat  ζthe ζoriginal ζseries ζis 

ζstationary. ζA ζmodel ζwith ζone ζorder ζof ζdifferencing ζassumes ζthat  ζthe ζoriginal ζseries ζhas ζa ζconstant  

ζaverage ζtrend ζ(e.g. ζa ζrandom ζwalk). ζA ζmodel ζwith ζtwo ζorders ζof ζtotal ζdifferencing ζassumes ζthat  

ζthe ζoriginal ζseries ζhas ζa ζtime-varying ζtrend ζ(e.g. ζa ζrandom ζtrend) 

Another ζconsideration ζin ζdetermining ζthe ζorder ζof ζdifferencing ζis ζthe ζrole  ζplayed ζby ζthe ζconstant 

ζterm ζin ζthe ζmodel-if ζone ζis ζincluded. ζThe ζpresence  ζof ζa ζconstant  ζallows ζfor ζa ζnon-zero  ζmean ζin 

ζthe ζseries ζif ζno  ζdifferencing  ζis ζperformed, ζit  ζallows ζfor ζa ζnon-zero  ζaverage ζtrend ζin ζthe ζseries ζif 

ζone ζorder ζof ζdifferencing  ζis ζused, ζand ζit  ζallows ζfor ζa ζnon-zero  ζaverage ζtrend-in-the-trend ζif ζthere 

ζare ζtwo  ζorders ζof ζdifferencing. ζWe ζgenerally ζdo  ζnot  ζassume ζthat  ζthere ζare ζtrends-in-trends, ζso  ζthe 

ζconstant  ζis ζusually ζremoved ζfrom ζmodels ζwith ζtwo  ζorders ζof ζdifferencing. ζIn ζa ζmodel ζwith ζone 

ζorder ζof ζdifferencing, ζthe ζconstant  ζmay ζor ζmay ζnot  ζbe ζincluded, ζdepending  ζon ζwhether ζwe ζdo  ζor 

ζdo  ζnot  ζwant  ζto  ζallow ζfor ζan ζaverage ζtrend. 
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Indication ζ5: ζIf ζthe ζseries ζhas ζa ζstrong ζand ζconsistent  ζseasonal ζpattern, ζthen ζyou ζmust  ζuse ζan 

ζorder ζof ζseasonal ζdifferencing ζ(otherwise ζthe ζmodel ζassumes ζthat  ζthe ζseasonal ζpattern ζwill ζfade 

ζaway ζover ζtime). ζHowever, ζnever ζuse ζmore ζthan ζone ζorder ζof ζseasonal ζdifferencing ζor ζmore ζthan 

ζ2 ζorders ζof ζtotal ζdifferencing ζ(seasonal+nonseasonal) 

2.2.2 ζTests ζfor ζunit ζroots ζand ζseasonal ζunit ζroots 

Apart  ζfrom ζthe ζgraphical ζtools ζand ζthe ζrules ζbase ζon ζthe ζcharacteristics ζof ζthe ζACF ζand ζPACF 

ζplots, ζthe ζorder ζof ζintergration ζd ζcan ζbe ζfound ζwith ζthe ζmost  ζcommon ζunit  ζroot  ζtest, ζthe 

ζAugmented ζDickey-Fuller ζ(ADF) ζtest. 

The ζorder ζof ζseasonal ζdifferencing  ζD ζcan ζbe ζfound ζwith ζthe ζCanova-Hansen ζ(CH) ζtest  ζand ζthe 

ζHylleberg-Engle-Granger-Yoo ζ(HEGY) ζtest.These ζtests ζare ζused ζto  ζevaluate ζthe ζseasonal 

ζstationarity ζof ζeach ζtime ζseries ζand  ζhave ζbeen ζshown ζto  ζcomplement  ζeach ζother ζ(Hylleberg, 

ζ1995). ζFurther ζGhysels ζet  ζal. ζ(1994) ζperformed ζa ζMonte ζCarlo  ζexperiment  ζto  ζcompare ζsome 

ζseasonal ζunit  ζroot  ζtests ζand ζconcluded ζthat  ζthe ζHEGY ζtest  ζperforms ζbest  ζof ζall ζincluded  ζtests. ζ 

2.2.2.1 The DF and ADF tests for unit roots 

The ζDickey-Fuller ζtest  ζis ζgenerally ζused ζfor ζidentifying  ζthe ζpresence  ζof ζa ζunit  ζroot  ζin ζan ζAR 

ζmodel ζ
2

t t-1 t t wy =py +w , w ~WN(0,σ ) which ζcan ζbe ζrewritten ζas ζa ζregression ζmodel ζas ζ 

t t-1 t t-1 ty =(p-1)y +w =δy +w  

It  ζtakes ζdifferent  ζforms ζdepending ζon ζwhat  ζis ζthe ζtype ζof ζthe ζmodel ζunder ζconsideration: 

 ζa) ζTesting ζfor ζa ζunit  ζroot: ζ t t-1 ty =(p-1)y +w  

b) ζTesting ζfor ζa ζunit  ζroot  ζwith ζa ζdrift: ζ t 0 t-1 ty =a +(p-1)y +w  

 ζc) ζTesting ζfor ζa ζunit  ζroot  ζwith ζa ζdrift  ζand ζa ζdeterministc ζtrend: ζ t 0 1 t-1 ty =a +a t+(p-1)y +w  

After ζthe ζmodel ζparameters ζhave ζbeen ζestimated ζwe ζcan ζtest  ζif ζany ζunit  ζroots ζare ζpresent  ζby 

ζchecking ζthe ζhypothesis: ζ 0 1H :p=1 vs H : p<1 . ζIt  ζshould ζbe ζnoted ζthat  ζalthough ζthe ζtest  ζstatistic  

ζused ζis ζsimilar ζto  ζa ζt-test  ζstatistic, ζwe ζcannot  ζuse ζthe ζstandard  ζt-distribution ζto  ζcalculate ζcritical 

ζvalues. ζFor ζthis ζpurpose ζa ζspecial ζtable ζof ζcritical ζvalues, ζsimply ζknown ζas ζDickey-Fuller  ζtable, ζis 

ζused. 
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The ζDickey-Fuller, ζabbreviated ζDF, ζis ζgeneralized ζinto  ζthe ζAugmented ζDickey-Fuller, ζabbreviated 

ζADF, ζtest  ζto  ζaccommodate ζthe ζgeneral ζARIMA ζand ζARMA ζmodels.  ζThe ζAugmented ζDickey-

Fuller ζtest  ζallows ζfor ζhigher ζorder ζautoregressive ζprocesses ζby ζincluding  ζ t-py in ζthe ζmodel. ζBut  

ζour ζtest  ζis ζstill ζif ζp=1 ζin ζ 

2

t t-1 1 t-1 2 t-2 p-1 t-p+1 t t wy =a+bt+(p-1)y +δ y +δ y +...+δ y +w , w ~WN(0,σ )     

It  ζis ζnot  ζalways ζeasy ζto  ζtell ζif ζa ζunit  ζroot  ζexists ζbecause ζthese ζtests ζhave ζlow ζpower ζagainst  ζnear-

unit-root  ζalternatives. ζTo  ζsome ζextent, ζthat  ζcriticism ζis ζinvalid, ζbecause ζall ζtests ζhave ζlow ζpower 

ζwhen ζthe ζactual ζparameter ζvalue ζis ζclose ζto  ζthe ζnull ζvalue. ζTo  ζsome ζextent, ζit  ζis ζvalid ζbecause 

ζthere ζare ζtests ζthat  ζapply ζunder ζbroader ζsets ζof ζassumptions, ζor ζare ζsimply ζmore ζpowerful ζthan 

ζthe ζADF ζtest. 

There ζare ζalso  ζsize ζproblems ζ(false ζpositives) ζbecause ζwe ζcannot  ζinclude ζan ζinfinite ζnumber ζof 

ζaugmentation ζlags ζas ζmight  ζbe ζcalled ζfor ζwith ζMA ζprocesses. 

2.2.2.2 The HEGY test for seasonal unit roots 

There are 3 approaches for modeling seasonal time series: deterministic seasonal processes, 

stationary and non-stationary seasonal processes. The differences lie in how they react to the shocks 

to the seasonal patterns. In deterministic seasonal processes have no effect on the seasonal pattern, 

and in stationary seasonal processes they have temporary effect which would diminish with time 

passes by. But in non-stationary processes the shocks have non-diminishing effect, causing 

permanent changes to the seasonal pattern and increasing variance of the series. Therefore, the non-

stationary seasonal process raises the most concern and testing seasonal unit roots has high priority 

in the modeling procedure. The miss-specification of the type of seasonality would cause severe bias 

in modeling and forecasting process. 

Consider a basic autoregressive polynomial φ(Β) having a form 

Sφ(Β)=1-Β  

where as usual B is the lag operator and S is the number of time periods in a seasonal pattern which 

repeats regularly. For example, S=12 for monthly data when the seasonal pattern repeats itself every 

year or S=7 for daily data. The equation φ(z)=0 has S roots on the unit circle 

2πi
k

S
k

2kπ 2kπ
z =e =cos +isin , k=0,1,...,S-1

S S

   
   
                                                                                                        17 
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Each root kz
in (17) is related to a specific frequency

2kπ

S . When k=0,the root kz
in (17) is called 

non-seasonal unit root. The other roots kz
in (17) are called seasonal unit roots. 

Except for roots kz
in (17) at frequencies 0 and π, kz

in (17) are pairs of conjugation frequencies. We 

can reorder the S frequencies of kz
by putting their conjugations frequencies together. We distinguish 

two cases depending on whether S is an odd or an even number. 

1) When S is an even number, the S frequencies are ordered as: 

m

0, m=1

m-1
π, m=2,4,...,(S-2)

S
θ =

m-2
2π- π, m=3,5,...,(S-1)

S

π, m=S

 
 
 
 
 
 
 
 
   18 

In (18), mθ and m+1θ are conjugation frequencies if m=2,4,…,(S-2). 

2) When S is an odd number, there is no unit root at frequency π, the S frequencies are ordered as: 

m

0, m=1

m-1
π, m=2,4,...,(S-2)

S
θ =

m-2
2π- π, s=3,5,...,(S-1)

S

π, m=S

 
 
 
 
 
 
 
 
 

 19 

In (19), mθ  and m+1θ are conjugation frequencies if m=2,4,…,(S-2). 

For both cases (18) and (19),the unit roots corresponding to frequency mθ are: 

m m mu =cosθ +isinθ  20 

The frequencies mθ also indicate the number of cycles for mu in the seasonal pattern, which are 

derived by 
mθ S

2π
.For example, consider hourly data where S=24,setting m=2, 2

π π
u =cos +isin =

12 12

6+ 2 6- 2
= +i

4 4
. Its frequency is m

π
θ =

12
,and it corresponds to 

mθ S
1

2π
 cycle every 24 hours. 
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As discussed above, the seasonal unit roots in time series would permanently change the seasonal 

patterns of the series and make the variance of the series increase linearly. Therefore testing seasonal 

unit roots proceeds modeling seasonality 

Among, the seasonal unit root tests, the HEGY test which was proposed by Hylleberg, Engle, 

Granger and Yoo (1990) has the advantage of testing seasonal unit root at each frequency separately, 

thus it is widely adapted. The HEGY test was originally proposed for testing seasonal unit roots in 

quarterly data but later its use was extended also for monthly data (Beaulieu and Miron (1992)). 

First, we define the seasonal difference operator of period s as  

s

s:=1-B
 

Note that: s s

s =(1-B)    

The HEGY test for seasonal integration is conducted by estimating the following regression (special 

case for quarterly data) 

p-14 4

4 t j jt i i,t-1 m 4 t-m t

j=2 i=1 m=1

y =a+βt+ b Q + π W + γ y +ε   
                                                                                                21 

where a and t are the drift and deterministic time trend terms, jtQ
is a seasonal dummy variable, and 

the itW
are given below: 

2

1t t

2

2t t

3t t

4t t 3t-1

W =(1+B)(1+B )y

W =-(1-B)(1+B )y

W =-(1-B)(1+B)y

W =-B(1-B)(1+B)y =W
 

In addition, as in the Augmented Dickey-Fuller tests, some lagged values of the dependent variable 

are included to assure the appropriate behavior of the residuals. The literature suggests, among other 

criteria, to include all the lagged values until p-1; more details about how p is determined can be 

found in Perron (1995). The procedure starts from a very long lagged model and reduce the number 

of lags until the last lag included is statistically different from zero at some prespecified level of 

significance (in general, a 10% level of significance is used). The introduction of these lags (as in the 

Augmented Dickey-Fuller tests) is to assure that the residuals have the standard properties (no serial 

autocorrelation). Finally, tε
is an error term with the standard white noise properties. 
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After OLS estimation, tests are conducted for 1π =0
,for 2π =0

and a joint test of the hypothesis

3 4π =π =0
.If none of the iπ

’s are equal to zero, then the series is stationary (both at seasonal and non-

seasonal frequencies). 

Interpretation of the different iπ
’s is as follows: 

1) If 0 1H :π =0 is rejected in favor of 1π 0
, then there is no long-run (non-seasonal) unit root. 1π

is on 

1t tW =S(B)y
which has had all of the seasonal unit roots removed. 

2) If 0 2H :π =0 is rejected in favor of 2π 0
, then there is no semi-annual unit root. 

3) If 0 3 4H :π =π =0 is rejected in favor of 3π
<0 or 4π

<0, then there is no unit root in the annual cycle. 

 

The HEGY test has been expanded for monthly time series (12 roots) by Franses (1991) and 

Beaulieu and Miron (1993). For monthly data, the seasonal unit roots are 

1 3 1 3 3 1 3 1
1,-1,±i, - ± i , ± i , - ± i , ± i

2 2 2 2 2 2 2 2

       
              
         

These roots correspond to the frequencies: 0, π, ±π/2; ±2π/3; ±π/3; ±5π/6; and ±π/6. These 

frequencies correspond to the bi-monthly case, four-month case, quarterly case, six-month and 12-

month cases1. 

In the monthly case, the procedure requires the estimation of the following expression 

p-112 12

12 t j jt i i,t-1 m 12 t-m t

j=2 1 m=1

y a+βt+ b Q π W γ y +ε
i

      
                                                                                          22 

Where jtQ
are deterministic seasonal dummies, and i,t-1W are transformations of the ty that provide the 

basis for testing unit roots at zero and the rest of the frequencies. 

Let assume that 1π  corresponds to the unit root at frequency 0 and 2π corresponds to the unit root at 

frequency π. To verify the presence of unit roots, we need to test if the 2 parameters equal to 0. The 

null hypothesis is 

                                                
1If the unit circle is 2π, a month has π of a cycle; therefore, every two months there is one cycle and there are six cycles 

in the year. 
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0m mH :π =0
 

against the alternative hypothesis 1m mH :π <0 ,where m=1 or 2. The test statistics used here are t-

statistics: m mmt = π σ ,where mπ is the OLS estimator of mπ and mσ is the sample standard error of mπ . 

Due to the fact that the complex unit roots are conjugate pairs, the regressors appear in pairs and 

correspond with frequencies in pairs. Thus, only that both parameters are zero could proof the 

existence of unit roots. This leads to the joint test of each pair. The null hypothesis is: 

0m m m+1H :π =π =0
 

The alternative hypothesis 1m m m+1H :π 0 or π 0  ,m=3,5,7,…. The F-statistics  

 2 2

m,m+1 m m+1

1
F = t +t

2                                                                                                                                 23 

are used, where the t-statistics mt and m+1t are derived in the same way as 1t and 2t . If the null 

hypothesis is not rejected, the test indicates unit roots exist at the corresponding 2 frequencies.  

There is no known distribution for the HEGY test statistics but only asymptotic distributions which 

can be used in order for the tests to be carried out. In general, the asymptotic distributions of the 

HEGY test statistics typically depend on the specification chosen for the deterministic component. 

 

2.3 Identifying the number of AR and MA terms 

In this section the method of selecting the remaining orders will be described. The autoregressive 

orders p and P and the moving average orders q and Q will be decided partly by the correlogram 

(ACF,PACF) andand partly by minimizing information criterion's with the use of the HK-algorithm. 

 

2.3.1 Graphical tools 

The ζACF ζand ζPACF ζplots ζarefirst  ζused ζto  ζmake ζguesses ζfor ζappropriate ζorders. ζMore ζspecifically 

ζfor ζorders ζp,q: 

Indication ζ1: ζIf ζthe ζPACF ζdisplays ζa ζsharp ζcutoff ζand ζACF ζdeclines ζgraduallyAR ζsignature. 

ζAlso  ζan ζAR ζseries ζis ζusually ζpositively ζautocorrelated ζat  ζlag ζ1. 

The ζlag ζat  ζwhich ζthe ζPACF ζcuts ζoff ζis ζthe ζindicated ζnumber ζof ζAR ζterms. 
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Indication ζ2: ζACF ζthat  ζcuts ζoff ζsharply ζafter ζa ζfew ζlags ζand ζPACF ζthat  ζdeclines ζgradually ζMA 

ζsignature. ζAlso, ζan ζMA ζseries ζis ζusually ζnegatively ζautocorrelated ζat  ζlag ζ1. 

The ζlag ζat  ζwhich ζthe ζACF ζcuts ζoff ζis ζthe ζindicated ζnumber ζof ζMA ζterms. 

Indication ζ3It  ζis ζpossible  ζfor ζan ζAR ζterm ζand ζan ζMA ζterm ζto  ζcancel ζeach ζother's ζeffects, ζso  ζif ζa 

ζmixed ζARMA ζmodel ζseems ζto ζfit  ζthe ζdata, ζalso  ζtry ζa ζmodel ζwith ζone ζfewer ζAR ζterm ζand ζone 

ζfewer ζMA ζterm. 

Now ζfor ζthe ζseasonal ζorders ζP, ζQ ζwe ζhave: 

Indication ζ4: ζIf ζthe ζautocorrelation ζof ζthe ζappropriately ζdifferenced ζseries ζis ζpositive  ζat  ζlag ζs, 

ζwhere ζs ζis ζthe ζnumber ζof ζperiods ζin ζa ζseason, ζthen ζconsider ζadding ζan ζSAR ζterm ζto  ζthe ζmodel. ζIf 

ζthe ζautocorrelation ζof ζthe ζdifferenced ζseries ζis ζnegative ζat  ζlag ζs, ζconsider ζadding ζan ζSMA ζterm ζto 

ζthe ζmodel. ζThe ζlatter ζsituation ζis ζlikely ζto  ζoccur ζif ζa ζseasonal ζdifference  ζhas ζbeen ζused, ζwhich 

ζshould ζbe ζdone ζif ζthe ζdata ζhas ζa ζstable ζand ζlogical ζseasonal ζpattern. ζThe ζformer ζis ζlikely ζto  ζoccur 

ζif ζa ζseasonal ζdifference ζhas ζnot  ζbeen ζused, ζwhich ζwould ζonly ζbe ζappropriate ζif ζthe ζseasonal 

ζpattern ζis ζnot  ζstable ζover ζtime. ζYou ζshould ζtry ζto  ζavoid  ζusing ζmore ζthan ζone ζor ζtwo  ζseasonal 

ζparameters ζ(SAR+SMA) ζin ζthe ζsame ζmodel,  ζas ζthis ζis ζlikely ζto  ζlead  ζto  ζoverfitting ζof ζthe ζdata 

ζand/or ζproblems ζin ζestimation. 

In ζorder ζto  ζsum ζup, ζassuming ζthat  ζthe ζdifferencing ζimplied ζby ζd ζand ζD ζhave ζbeen ζdone ζto  ζthe 

ζtime ζseries, ζmeaning ζthat  ζthe ζSARIMA(p,d,q)×(P,D,Q)s ζof ζthe ζoriginal ζseries ζ ty  ζhas ζtaken ζits 

ζequivalent  ζrepresentation ζas ζa ζSARMA(p,q)×(P,Q)s ζof ζthe ζdifferenced ζseries ζ
*

ty , ζwe ζcan ζestimate 

ζgraphically ζthe ζappropriate ζorders ζfor ζthe ζSARIMA ζmodel ζby ζusing ζthe ζresults ζin ζTable ζ2.1: 

Τable 2.2: ACF and PACF to identify the orders of SARMA(p,q)×(P,Q)s 

 ACF PACF 

AR(p) Exponentially decreasing or damped 

sine wave 

Spikes to lag p then zero 

MA(q) Spikes to lag q then zero Exponential decreasing or damped 

sine wave 

ARMA(p,q) Exponentially decreasing or damped 

sine wave after q-p lags 

Exponentially decreasing or damped 

sine wave after p-q lags 

SAR(P)s Exponentially decreasing or damped 

sine wave for all lags times s 

Spikes for lag Ps then zero 
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SMA(Q)s Spikes for lag Qs then zero Exponentially decreasing or damped 

sine wave for all lags times s 

SARMA(P,Q)s Exponentially decreasing or damped 

sine wave for all lags times s after 

lags (Q-P)s 

Exponentially decreasing or damped 

sine wave for all lags times s after 

lags (P-Q)s 

 

2.3.2 ζSelection ζwith ζthe ζHK-algorithm 

However ζthis ζprocedure ζof ζfinding  ζpatterns ζfrom ζACF ζand ζPACF ζplots ζis ζconsidered ζsubjective 

ζfor ζmixed ζand ζseasonal ζprocesses. ζTo  ζmake ζthe ζmodel ζselection ζless ζsubjective ζsome ζfrequently 

ζused ζlikelihood ζbased ζinformation ζcriterions ζare ζapplied. ζThese ζare ζthe ζAkaike ζinformation 

ζcriterion ζ(AIC), ζthe ζAIC ζwith ζcorrection ζfor ζsmall ζsamples ζ(AICc)  ζand ζthe ζBayes ζinformation 

ζcriterion ζ(BIC). 

The ζHyndman-Khandakar ζ(HK) ζalgorithm ζwas ζdeveloped ζby ζHyndman ζand ζKhandakar ζ(2008) ζand 

ζcan ζbe ζapplied ζin ζR ζwith ζthe ζfunction ζauto.arima ζin ζthe ζforecast  ζpackage. ζThey ζsuggest  ζan 

ζiterative ζtime-saving ζprocedure ζwhere ζthe ζmodel ζwith ζthe ζsmallest  ζvalue ζof ζAIC, ζAICc ζor ζBIC 

ζwill ζbe ζfound ζmuch ζfaster, ζsince ζit  ζis ζnow ζfound ζwithout  ζcomparing ζevery ζpossible ζmodel. 

To  ζderive ζthese ζinformation ζcriterions ζthe ζfirst  ζthing ζthat  ζis ζneeded ζis ζthe ζlikelihood ζfunction,

L(Ψ) , ζwhere ζ Ψ  ζis ζthe ζmaximum ζlikelihood ζestimates ζof ζthe ζparameters ζfor ζthe ζSARIMA ζwith 

ζn=p+q+P+Q+1 ζparameters ζand ζsample ζsize ζT. ζThe ζcriteria ζare ζthen ζderived ζby ζthe ζfollowing  

ζequations: 

  AIC=-2log L Ψ +2n  ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ24 

 2n n+1
AICc=AIC+

T-n+1
 ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ25 

  BIC=-2log L Ψ +nlog(T)  ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ 26 

 

Note: ζIt ζhas ζbeen ζshown ζthat  ζAIC ζhas ζa ζtendency ζto ζchoose ζa ζmodel ζthat  ζis ζover-parametrized 

ζ(Hurvich ζand  ζAnderson, ζ1989). ζFurther ζBurnham ζand ζAnderson ζ(2004) ζsuggest  ζthat  ζAIC ζand 

ζAICc ζshould ζbe ζvalued ζover ζBIC ζand ζBrockwell ζand ζDavis ζ(1991) ζpropose ζthat  ζAICc ζis ζmost  ζfit  

ζfor ζselecting ζorders ζof ζSARIMA ζmodels. ζThus, ζthe ζmodel ζselected ζby ζAICc ζwill ζbe ζmost  ζvalued. ζ 
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The ζHK-algorithm ζthen ζperforms ζan ζiterative ζprocedure ζto  ζselect  ζthe ζmodel ζthat  ζminimizes ζthe 

ζvalue ζof ζeach ζcriterion. ζIt  ζbegins ζwith ζestimation ζof ζthe ζfollowing ζfour ζmodels: 

1)SARIMA(2,d,2)×(1,D,1)s ζ 

2)SARIMA(0,d,0)×(0,D,0)s ζ 

3)SARIMA(1,d,0)×(1,D,0)s ζ 

4)SARIMA(0,d,1)×(0,D,1)s 

where ζd ζand ζD ζare ζassumed ζto  ζhave ζbeen ζfound ζpreviously ζand ζa ζconstant  ζis ζincluded ζin ζthe 

ζmodels ζif ζd ζ+ ζD ζ≤ ζ1. ζThe ζmodel ζwhich ζattains ζthe ζsmallest  ζvalue ζfor ζthe ζchosen ζinformation 

ζcriterion ζis ζthen ζselected ζand ζthe ζprocedure ζcontinues ζwith ζvarying ζthe ζparameters ζin ζthe 

ζfollowing ζways: 

• ζLet  ζeach ζof ζp, ζq, ζP ζand ζQ ζvary ζwith ζ±1. 

• ζLet  ζboth ζp ζand ζq ζvary ζwith ζ±1 ζat  ζthe ζsame ζtime. 

 ζ• ζLet  ζboth ζP ζand ζQ ζvary ζwith ζ±1 ζat  ζthe ζsame ζtime. ζ 

• ζInclude ζthe ζintercept  ζif ζpreviously ζnot  ζincluded  ζotherwise ζdo  ζthe ζopposite. 

This ζstep ζof ζthe ζprocedure ζwill ζbe ζrepeated ζuntil ζnone ζof ζthese ζvariations ζdecreases ζthe ζvalue ζof 

ζthe ζcriterion. ζ 

There ζare ζsome ζconstraints ζthat  ζfollows ζwith ζthe ζuse ζof ζthis ζmethod. ζThese ζare ζused  ζto  ζcheck ζthat 

ζthe ζmodel ζis ζreasonable ζand ζwell-fitted ζand ζare ζthe ζfollowing 

• ζThe ζmaximum ζorders ζof ζp ζand ζq ζare ζfive. ζ 

• ζThe ζmaximum ζorders ζof ζP ζand ζQ ζare ζtwo. ζ 

• ζAll ζnon-invertible ζor ζnon-causal ζmodels ζare ζrejected. ζThese ζare ζfound ζby ζcomputing ζthe ζroots ζof 

ζthe ζlag ζpolynomials ζφ(B)Φ(B) ζand ζθ(B)Θ(B), ζif ζany ζroot  ζis ζsmaller ζthan ζ1.001 ζthen ζthe ζmodel ζis 

ζrejected. 

• ζIf ζerrors ζarise ζwhen ζfitting ζthe ζmodel ζwith ζthe ζnon-linear ζoptimization ζroutine ζthen ζthe ζmodel ζis 

ζrejected. 

 

2.4 Estimating the parameters of the model selected 

The second part of the Box-Jenkins methodology for SARIMA modeling is estimation. Once a 

model has been tentatively identified, its parameters have to be efficiently estimated, and the 

resulting fit assessed, mainly by an analysis of residuals, to see whether it can be accepted as a 
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plausible explanation of the series. If the model is found to be inadequate, then this assessment 

should indicate promising modifications to the identification, and the cycle is repeated; and so on 

until the analyst is satisfied (Box and Jenkins, 1976). 

For the general ARMA(p,q) process 
2

t t t wφ(Β)x =θ(B)w , w ~WN(0,σ ) in which, the order parameters, 

p and q, are known there are three techniques for estimating the p+q+1 unknown parameters:  

a) Two-Step Regression Estimation b) Yule-Walker Estimation c) Maximum Likelihood Estimation 

Although, for the class of SARIMA models the first two approaches prove to be inadequate for the 

estimation task and only the Maximum Likelihood method can be applied.  

If the model contains only AR terms, the unknown coefficients can be estimated using ordinary least 

squares. However, if the model contains MA terms too, the task becomes more complicated, because 

the lagged values of the innovations are unobservable. Consequently, it is not possible to derive 

explicit expressions to estimate the unknown coefficients and therefore one has to use maximum 

likelihood for estimation purposes.  

 

In order to convey an idea of what follows, we will shortly outline the procedure: first, one sets up 

the SARIMA model - in the following also called original model - with some initial values for the 

unknown vector of parametersψ. Restrictions can be imposed on the coefficients. The simplest 

restriction is that some of the coefficients are zero. Then the value of the likelihood function, given 

the initial parameters, is evaluated. 

Unfortunately, in most cases the original SARIMA model cannot be estimated directly. If one looks 

at the general SARIMA representation one recognizes on the left hand side the product of two 

expressions. Both of them contain lag-operators. Such expressions have to be telescoped out first. 

The result we get is an ordinary ARMA(p,q) model which can be estimated. 

Under the assumption that an ARMA model is stationary and invertible and that the observations are 

normally distributed it can be estimated using the maximum likelihood approach. Once the 

conditional sum of squares function is calculated numerical methods have to be applied to maximize 

the likelihood function with respect toψ. By making suitable assumptions about initial conditions, the 

maximum likelihood estimators can be obtained by minimizing the conditional sum of squares.  

However, the conditional sum of squares is not always very satisfactory for seasonal series. In that 

case the calculation of the exact likelihood function becomes necessary (Box and Jenkins, 1976). 
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The approach of maximum likelihood (ML) requires the specification of a particular distribution for 

a sample of T observations ty . Let 

 
T t-1 1y ,y ,...,y T t-1 1f y ,y ,...,y |ψ  

denote the probability density of the sample given the unknown nx1 parametersψ. It can be 

interpreted as the probability of having observed the given sample (Hamilton, 1994). 

With the sample  T t-1 1y= y ,y ,...,y at hand, the above given probability can be rewritten as a function 

of the unknown parameters given the sample y. Following the notation of Box and Jenkins (1976), 

we use the notation l(ψ|y)=lnL(ψ|y) .  

The maximum likelihood estimate ψ is the parameter vector that maximizes the probability for the 

observed sample y. Thus, the MLE satisfies the so-called likelihood equations, which are obtained by 

differentiating l(ψ|y) with respect to each of the unknown parameters of the vectorψ and setting the 

derivatives to zero. Using vector notation and suppressing y, we obtain 

l(ψ)
=0

ψ
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As a rule, the likelihood equations are non-linear. Therefore, the ML estimates must be found in the 

course of an iterative procedure. This is true for the exact likelihood function of every Gaussian 

ARMA(p,q) process (Hamilton, 1994). 

In many applications of ARMA models the conditional likelihood function is an alternative to the 

exact likelihood function. In that case, one assumes that the first p observations of a Gaussian 

ARMA(p,q) process are deterministic and are equal to its observed values  p 1y ,...,y . The initial 

residuals ta  for  t p,...,p-q+1  are set to its expected values 0. The log likelihood function for this 

setting is of the following form with  2ψ= ψ ,σ  

  2

2

1 1 S(ψ )
l(ψ)=- Τ-p ln(2π)- (T-p)ln(σ )-

2 2 2σ
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and S(ψ )  denoting the sum of squares function 

 

  
T

2

t

t=p+1

S(ψ )= a ψ 
                                                                                                                             

29 

The notation  ta ψ  emphasizes that ta  is no longer a disturbance, but a residual which depends on 

the value taken by the variables in ψ . 
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Note, that the parameter 2σ  is an additional one, that is not included in vector ψ . It is easy to see 

that (28) is maximized with respect to ψ  if the sum of squares S(ψ )  is minimized. Using the 

condition (27), this leads to 

 T
t

t

t=1

a ψ
a =0

ψ
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Thus, the ML estimate for ψ  can be obtained by minimizing (29). Furthermore, we obtain from (28) 

and (27) that 

 '2
S ψ

σ =
Τ-p
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Thus, given the parameter vector 
'

ψ  that maximizes the sum of squares, and thus the conditional log 

likelihood function (28), one divides the sum of squares by T-p to obtain the ML estimate
2

σ .  

Once the ML estimate ψ is calculated, one wants to have standard errors for testing purposes. If Τ is 

sufficiently large, the ML estimate l(ψ)  is approximately normally distributed with the inverse of the 

information matrix divided by T as covariance matrix. The inverse of the Hessian for l(ψ)  is one 

way to estimate the covariance matrix (Hamilton, 1994). One can calculate the Hessian applying 

numerical methods. 

2.5 Diagnostics 

The fit of the model is evaluated by diagnostic checks of the residuals. The residuals should behave 

like Gaussian white noise that is appear random, homoscedastic and normal (Box and Jenkins, 1976). 

The first part is a graphical check of the standardized residuals, meaning the residuals divided with 

their standard deviation. These should look random and homoscedastic. The number of outliers are 

also important where a good indication would be that about 95 percent of the residuals lie inside their 

95 percent confidence interval±1.96 (Brockwell and Davis, 1991). The next step is to evaluate the 

assumption of randomness by using the sample autocorrelation function of the residuals. The 

autocorrelations of interest are those that are significantly different from zero, that is those who lie 

outside the sample size dependent approximately 95 percent confidence interval ±2/√T (Hamilton, 

1994). Those significant lags suggest some kind of inconsistency in the residuals, but there is no 

reason to worry if only about five percent of the autocorrelations are significant. (Brockwell and 

Davis, 1991) In this thesis the most important part of the diagnostic checking is the use of tests to 

possibly acquire statistically significant results which would imply a rejection of the fitted model. 
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The chosen tests are the Box-Ljung test which is used to test the serial independence and the Jarque-

Bera test which tests the normality of the residuals. 

 

2.5.1  The Box-Ljung test 

The Ljung and Box (BL) test was developed in 1978 and is used to test the randomness of the 

residuals. For this test the first step is to extract the residuals te  for the fitted model. The T residuals 

are then used to derive the sample autocorrelations of the residuals with the following equation 

T

t t-k

t=k+1
k

T 2

t

t=1

e e

r = , k=1,2,...

e
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This equation is used until a set of autocorrelations 1 2 mr ,r ,...,r  have been obtained. These are then 

used to test the null hypothesis of serially independent residuals versus the alternative hypothesis that 

they are not serially independent with the following test statistic (Ljung and Box, 1978) 

   
m 2-1

k

k=1

Q(r)=T T+2 T-k r
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which for an appropriate model was shown to be asymptotically distributed as a 
2

1-αχ (m) where m is 

the number of lagged autocorrelations included and α is the selected significance level. Harvey, 1989 

suggest that the number of lags should be a function of T for example the truncated value of m = √T 

and that the degrees of freedom should be corrected for SARIMA models to df = m−p−q−P−Q. The 

critical value is included in (Ljung and Box, 1978) and then compared to the value of the test 

statistic. The null hypothesis of randomness is rejected for large values of the test statistic. 

 

2.5.2 The Jarque-Bera test 

The Jarque-Bera test is used to test the normality of the residuals. The null hypothesis of the test is 

normality and it is tested against the alternative hypothesis of non-normality. The statistic that is used 

is the first part of equation 4 in Jarque and Bera (1980), written in the following way  

2 2S K -3
JB=T +

6 24
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where T is the number of observations, S is the skewness and K is the kurtosis. The statistic is 

assumed to be distributed as a 
2

1-αχ (2)  variable and the null hypothesis of normality is rejected for 

large values of the statistic (Schwert, 2009). 

 

2.6 Forecasting 

If the selected SARIMA model has already been estimated and has passed all the diagnostic tests the 

final step remaining is forecasting. In forecasting, the goal is to predict future values of a time series 

n+mx ,m=1,2,…, based on the data collected to the present  n n-1 1= x ,x ,...,xx . 

It has been shown that the SARIMA(p,d,q)×(P,D,Q)s for the variable tx , t = 1,...,T can be written 

equivalently as an ARMA(p + sP,q + sQ) for ty from Equation (16). The forecast function for the 

assumed stationary variable ty  is then written as 

   * *
tt+1|t t

y -μ =φ(Β) y -μ +θ(Β) e
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where t t t|t-1e =x -y (Hamilton, 1994). The forecast for lead time τ, meaning the time that follows after 

the last observed information, is then derived by 

   * *
t+s-1t+s|t t+s-1|t

y -μ =φ(Β) y -μ +θ(Β) e
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That is the forecast for lead time τ will be derived by the previously observed values of ty  , previous 

forecasts of y  and the residuals te  which have been derived for all time points up to the last 

observed observation but are equal to zero for the ones where the real values have not yet been 

observed. (Hamilton, 1994) 

 

2.7 Goodness of fit 

2.7.1 Error measures and tests 

The accuracy of the forecasts obtained will be evaluated by some error measures. Error measures are 

easily derived and give an indication for which model that is most suitable for forecasting. These will 

be derived by the use of ty  which is the real value, t
y  which is the forecast value, n which is the 

length of the forecast horizon and t which goes from one to n. The first error measure that is 

presented is the mean squared error (MSE) which is estimated by  
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n 2

t t

t=1

1
MSE y - y

n
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A value of zero would imply a perfect forecast and a negative value should not be possible to obtain. 

The next error measure is the mean absolute deviation (MAD) is derived by 

n

t t

t=1

1
MAD = y - y

n
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For this measure the value of zero would imply a perfect forecast and a negative value should not be 

possible. The difference between MAD and MSE is that MSE places relatively greater penalty on 

large forecast errors. Further the mean absolute percentage error (MAPE) is calculated by 

n
t t

t=1 t

y - y1
MAPE =

n y
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A value of zero would imply a perfect forecast and a negative value cannot possibly be obtained. It is 

also important to state that this error measure is not defined if ty = 0  for any t. The MAPE scales the 

errors, that is this measure puts relatively more penalty to the forecast error if the true value of the 

observation is small. The last of these measures is a statistic called Theil's U. This statistic compares 

the ratio between the MSE implied by the model forecast and the MSE of forecasts obtained by a 

naive model which sets the upcoming observation at time t+1 as equal to the value observed at time 

t. It is derived by (Petris et al., 2009) 

 
 

2n

t tt=1

n 2

t t-1t=1

y - y
U =

y - y
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The value of Theil's U will be smaller than one if the model forecast has higher accuracy than the 

naive model forecast. The estimate will be zero if the forecasts are perfect and it cannot possibly be 

derived as negative. It is not defined if the naive model perform perfect forecasts (Petris et al., 2009). 

 

The Diebold and Mariano (DM) test was developed in 1995 and it’s first assumed that there are two 

forecasts 1 hw ,...,w  and 1 hz ,..., z of the true time series 1 hy ,..., y  where h is the forecast horizon. 

These are then used to derive the forecast errors of the first i1i ie = y - w and the second model 

i2i ie = y - z . (Diebold and Mariano, 1995). 

This test works even if the forecast errors have a non-zero mean are non-Gaussian and are correlated 

to each other. For the test in R with function dm.test the forecast package with default specifications 
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implies that the errors are used to derive the loss functions 
2

1i 1ig(e ) = e and 
2

2i 2ig(e ) = e which lead 

to the loss-differential series   
h

i 1i 2i i=1
d = g(e ) -g e which is assumed normally distributed. The 

sample mean is then derived by

h

ii=1
d

d =
h


 

The next step is to derive the autocovariance at lag 0 for di, that is  γ 0  which is assumed to be a 

consistent estimate of the variance of hd . The test statistic then follows and is derived by 

d
DM = ~ N(0,1)

γ(0) h
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Thus, the DM statistic is assumed to be standard normal and the rejection values then follows from 

that. The null hypothesis of the test is that there is no difference between the accuracy of the two 

forecasts. The alternative hypothesis is either two-sided to test if either model perform better than the 

other or one-sided to test if one specific model is more accurate than the other. (Diebold and 

Mariano, 1995) 

 

2.7.2 Cross-validation for time series 

Because of the nature of time series data there are strong temporal dependencies and so it is not 

possible to perform the usual validation techniques. A very useful way to overcome the difficulty of 

biased evaluations is to use the procedure called time series cross-validation. 

Most cross validation schemes appear to rely on having i.i.d. data because the training-test splits do 

not take time indices into account. For example, 5-fold cross validation applied naively over 5 time 

periods would ignore the sequential nature of time, mixing up past, present and future as in figure 2.1 

 

Figure 2-1.: Usual 5-fold cross validation scheme 
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This pattern would lead to wrong conclusions since autoregressive models require a contiguous 

block of data, because they rely on the presence of autocorrelations at predefined lags (instead of 

having training sets split into 2 parts). 

Instead we can use a rolling or sliding window approach to cross validation to avoid this issue. For 5 

time periods, you would split the sets as follows: 

 

Figure 2-2:Rolling or sliding window cross-validation scheme for time series data 

 

Assume we want to perform a 1-step ahead forecast for a time series of n-values starting with a 

training set of the first k-values, then the time series cross validation follows the next steps: 

Step1: Select the observations at, and prior to, time k  

Step2: Select the observation at k+1 for the test data 

Step3: Compute the forecasted value for k+1 based on the values 1,2,…,k and the forecast error  

Step4: Slide the training set window by one and use the values 2,3,…,k, k+1 (where the (k+1)th 

observation is the real value of the time series) 

Step4:  Slide the training set window by one and use the values 2,3,…,k, k+1 (where the (k+1)th 

observation is the real value of the time series)to forecast the value for time k+2. 
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3.State space models and the Kalman filter 

 In ζthis ζchapter ζwe ζdiscuss ζthe ζbasic ζnotions ζabout  ζstate-space ζmodels ζand ζtheir ζuse ζin ζtime ζseries 

ζanalysis.  ζDynamic ζlinear ζmodels ζ(DLM) ζare ζpresented ζas ζa ζspecial ζcase ζof ζgeneral ζstate ζspace 

ζmodels, ζbeing ζlinear ζand ζGaussian. ζFor ζDLM, ζestimation ζand ζforecasting ζcan ζbe ζobtained 

ζrecursively ζby ζthe ζwell ζknown ζKalman ζfilter. 

 State-space ζmodels ζappeared ζin ζthe ζtime ζseries ζliterature ζin ζthe ζseventies ζ(Akaike ζ(1974), 

ζHarrison ζand  ζStevens ζ(1976)) ζand ζbecame ζestablished  ζduring  ζthe ζeighties ζ(West  ζand  ζHarrison 

ζ(1997)). ζIn ζthe ζlast  ζdecades ζthey ζhave ζbecome ζa ζfocus ζof ζinterest. ζThis ζis ζdue ζon ζone ζhand ζto  ζthe 

ζdevelopment  ζof ζmodels ζwell ζsuited ζto  ζtime ζseries ζanalysis, ζbut  ζalso  ζto ζan ζeven ζwider ζrange ζof 

ζapplications, ζincluding ζfor ζinstance ζmolecular ζbiology ζor ζgenetics, ζand ζon ζthe ζother ζhand ζto  ζthe 

ζdevelopment  ζof ζcomputational ζtools, ζsuch ζas ζmodern ζMonte ζCarlo  ζmethods, ζfor ζdealing ζwith 

ζmore ζcomplex ζnonlinear ζand  ζnon-Gaussian ζsituations. 

 State-space ζmodels ζconsider ζa ζtime ζseries ζas ζthe ζoutput  ζof ζa ζdynamic ζsystem ζperturbed ζby 

ζrandom ζdisturbances. ζAs ζwe ζshall ζsee, ζthey ζallow ζa ζnatural ζinterpretation ζof ζa ζtime ζseries ζas ζthe 

ζresult  ζof ζseveral ζcomponents, ζsuch ζas ζtrend, ζseasonal ζor ζregressive ζcomponents. ζAt  ζthe ζsame 

ζtime, ζthey ζhave ζan ζelegant  ζand ζpowerful ζprobabilistic ζstructure, ζoffering ζa ζflexible ζframework ζfor 

ζa ζvery ζwide ζrange ζof ζapplications. ζComputations ζcan ζbe ζimplemented ζby ζrecursive ζalgorithms. 

ζThe ζproblems ζof ζestimation ζand  ζforecasting ζare ζsolved  ζby ζrecursively ζcomputing  ζthe ζconditional 

ζdistribution ζof ζthe ζquantities ζof ζinterest, ζgiven ζthe ζavailable ζinformation. ζIn ζthis ζsense, ζthey ζare 

ζquite ζnaturally ζtreated ζfrom ζa ζBayesian ζapproach. 

 State-space ζmodels ζare ζbased ζon ζthe ζidea ζthat  ζthe ζtime ζseries ζ
t

Y  ζis ζan ζincomplete ζand ζnoisy 

ζfunction ζof ζsome ζunderlying ζunobservable ζprocess ζ tθ , t =1,2,... ,called ζthe ζstate ζprocess.. ζMore 

ζgenerally, ζwe ζmight  ζthink ζof ζ ζas ζan ζauxiliary ζrandom ζprocess ζwhich ζfacilitates ζthe ζtask ζof 

ζspecifying ζthe ζprobability ζlaw ζof ζthe ζtime ζseries: ζthe ζobservable ζprocess ζ tY  ζdepends ζon ζthe ζlatent 

ζstate ζprocess ζ tθ , ζwhich ζhas ζa ζsimpler, ζMarkovian ζdynamics, ζand ζwe ζcan ζreasonably ζassume ζthat  

ζthe ζobservation ζ tY only ζdepends ζon ζthe ζstate ζof ζthe ζsystem ζat  ζthe ζtime ζthe ζmeasurement  ζis ζtaken, ζ

tθ . ζFigure ζ3.1 ζrepresents ζgraphically ζthe ζdependences ζamong ζvariables ζthat  ζwe ζare ζassuming. ζ 

 

 

Figure 3-1: Dependence structure for a state space model 
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More formally, the assumptions of a state space model are 

A1)  tθ ,t=0,1,2,...  is a Markov chain; that is, θt depends on the past values  0 1 t-1θ ,θ ,...,θ only 

through t-1θ . Thus, the probability law of the process  tθ , t = 0,1,2,... is specified by assigning the 

initial density 0 0p (θ )  of 0θ  and the transition densities 0 t t-1p (θ |θ )  of tθ  conditionally on t-1θ . 

A2) Conditionally on  tθ , t = 0,1,... , the Yt’s are independent and tY  depends on tθ  only. It follows 

that, for any n ≥ 1,  1 n 1 nY ,...,Y |θ ,...,θ have joint conditional density  
n

t t

i=1

f y |θ . 

With the help of the graph for understanding the conditional independence relations implied by the 

model, we find that, for any n ≥ 1, 

   

       

n

0 1 n 1 n 0 0 t t 0 1 t-1 1 t-1

t=1

n n

0 0 t 0 t 1 t-1 t 0 t-1 1 t-1 0 0 t t t t-1

t=1 t=1

θ ,θ ,...,θ ,Y ,...,Y ~p (θ ) p θ ,Y |θ ,θ ,...,θ ,Y ,...,Y =

p (θ ) f Y |θ ,...,θ ,Y ,...,Y p θ |θ ,...,θ ,Y ,...,Y =p (θ ) f Y |θ p θ |θ



 
 

In particular, we see that the process   t tθ ,Y ,t=1,2,... is Markovian. The density of  1 nY ,...,Y  can 

be obtained by integrating out all the θ-variables from the joint density of the above expression. As 

we shall see, computations are fairly simple in Gaussian linear state space models; however, in 

general the density of  1 nY ,...,Y  is not available in close form and the observable process tY  is not 

Markovian. 

 

3.1 DLM for time series analysis 

The ζfirst, ζimportant  ζclass ζof ζstate-space ζmodels ζis ζgiven ζby ζGaussian ζlinear ζstate-space ζmodels, 

ζalso  ζcalled ζdynamic ζlinear ζmodels ζ(DLM). ζThese  ζmodels ζare ζspecified ζby ζmeans ζof ζtwo ζequations 

 

 

t t t t t m t

t t t-1 t t p t

Υ =Fθ +v , v ~N 0,V

θ =G θ +w , w ~N 0,W
 ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ 42 

where ζGt  ζand ζFt  ζare ζknown ζmatrices ζand  ζthe ζ(vt) ζand ζ(wt) ζare ζtwo  ζindependent  ζwhite ζnoise 

ζsequences ζ(i.e., ζthey ζare ζindependent, ζboth ζbetween ζthem ζand ζwithin ζeach ζof ζthem), ζwith ζmean 

ζzero  ζand ζknown ζcovariance ζmatrices ζVt  ζand  ζWt  ζrespectively. ζThe ζfirst  ζequation ζabove ζis ζcalled 

ζthe ζobservation ζequation, ζthe ζsecond ζstate ζequation ζor ζsystem ζequation. ζFurthermore, ζit  ζis 

ζassumed ζthat  ζ 0θ  ζhas ζa ζGaussian ζdistribution, 
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for ζsome ζnon-random ζvector ζ 0m  ζand ζmatrix ζ 0C , ζand ζit  ζis ζindependent  ζon ζ(vt) ζand ζ(wt). ζOne ζcan 

ζshow ζthat  ζthe ζDLM ζsatisfies ζthe ζassumptions ζ(A.1) ζand ζ(A.2) ζof ζthe ζprevious ζsection, ζwith ζ

 t t t t tY |θ ~N Fθ ,V and ζ  t t-1 t t-1 tθ |θ ~N G θ ,W . 

DLM ζis ζa ζspecific ζcase ζof ζthe ζgeneral ζstate ζspace ζmodels ζspecified ζby ζthe ζset  ζof ζequations 

 

 

t t t t

t t t-1 t

Y =h θ ,v

θ =g θ ,w
 

with ζarbitrary ζfunctions ζ tg and  ζ th . ζFor ζthe ζclass ζof ζDLM ζwe ζadd  ζalso  ζthe ζassumption ζthat  ζ tg and ζ

th are ζlinear ζfunctions ζand ζthe ζassumption ζof ζNormal ζdistributions. 

3.1.1 Trend models 

Polynomial DLM are the models most commonly used for describing the trend of a time series, 

where the trend is viewed as a smooth development of the series over time. At time t, the expected 

trend of the time series can be thought of as the expected behavior of t+kY for k ≥ 1, given the 

information up to time t. 

Let us denote with tD  the information provided by the first t observations 1 tY ,...,Y , the expected 

trend is the forecast function  t t+k tf (k)=E Y |D . A polynomial model of order n is a DLM with 

constant matrices Ft = F and Gt = G, known covariance matrices Vt and Wt, and a forecast function 

of the form 

  n-1

t t+k t t,0 t,1 t,n-1f (k)=E Y |D =a +a k+...+a k ,k 0
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where t,0 t,n-1a ,...,a  are linear functions of  t t tm =E θ |D  and are independent of k. Thus, the forecast 

function is a polynomial of order (n − 1) in k. Roughly speaking, any reasonable shape of the 

forecast function can be described or closely approximated by a polynomial, by choosing n 

sufficiently large. However, one usually thinks of the trend as a fairly smooth function of time, so 

that in practice small values of n are used. The most popular polynomial models are the random walk 

plus noise model, also known as the local level model, which is a polynomial model of order n = 1, 

and the linear growth model, that is a polynomial model of order n = 2. 
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3.1.1.1 The local level model 

The random walk plus noise, or local level model, is defined by the following two equations 

t t t t

t t-1 t t

Y =μ +v , v ~N(0,V)

μ =μ +w , w ~N(0,W)
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where the error sequences (vt) and (wt) are independent, both within them and between them. This is 

a DLM with m = p = 1, t tθ =μ  and Ft = Gt = 1. Intuitively, it is appropriate for time series showing 

no clear trend or seasonal variation: the observations (Yt) are modeled as random fluctuations around 

a level  tμ ; in turn, the level can evolve randomly over time (described by a random walk). This is 

why the model is also called local level model; if W = 0, we are back to the constant mean model. 

3.1.1.2 The linear growth model 

A slightly more elaborated model is the linear growth model, which has the same observation 

equation as the local level model, but includes a time-varying slope in the dynamics for tμ .  

 
1

2

t t t t

2

t t-1 t-1 1t 1t w

2

t t-1 2,t 2,t w

Y =μ +v , v ~N(0,V)

μ =μ +β +w , w ~N(0,σ )

β =β +w , w ~N 0,σ
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with uncorrelated errors. This is a DLM with  

 1

2

2

wt

t 2
t w

σ 0μ 1 1
θ = , G= , W= ,F= 1 0

β 0 1 0 σ
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The system variances 
i

2

wσ , are allowed to be zero.   

 

3.1.2 Seasonal factor models 

Suppose that we have seasonal data from quarters tY , t=1,2,...Assume also for brevity that the series 

has zero mean: a non-zero mean, or a trend component, can be modelled separately, so for the 

moment we consider the series as purely seasonal. We might describe the series by introducing 

seasonal deviations from the zero mean, expressed by different coefficients ia for the different 

quarters, i=1,2,3,4. So, if t-1Y refers to the first quarter of the year and tY to the second quarter, we 

assume 
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t-1 1 t-1

t 2 t

Y =a +v

Y =a +v
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and so on. This model can be written as a DLM as follows. Let  
T

t-1 1 4 3 2θ = a ,a ,a ,a and

 tF =F= 1,0,0,0 . Then the observation equation of the DLM is given by 

t t tY =Fθ +v  

which corresponds to (48). The state equation must ‘rotate’ t-1θ into a vector  
T

t 2 1 4 3θ = a ,a ,a ,a , so 

that t t t 2 tY =Fθ +v =a +v . The required permutation of the state vector can be obtained by a 

permutation matrix G so defined  

0 0 0 1

1 0 0 0
G=

0 1 0 0

0 0 1 0

 
 
 
 
 
 

 

Then the state equation can be written as  

 
Τ

t t-1 t 2 1 4 3 tθ =Gθ +w = α ,α ,α ,α +w  

In the static seasonal model, tw is degenerate on a vector of zeros (i.e., tW =0 ). More generally, the 

seasonal effects might change in time, so that tW is non-zero and has to be carefully specified. 

In general, a seasonal time series with period s can be modeled through an s-dimensional state vector 

tθ  of seasonal deviations, by specifying a DLM with F = (1, 0, . . . , 0) and G given by a s by s 

permutation matrix. Identifiability constraints have to be imposed on the seasonal factors 1 sa ,...,a . A 

common choice is to impose that they sum to zero,
s

jj=1
a =0 . The linear constraint on the s seasonal 

factors implies that there are effectively only s−1 free seasonal factors, and this suggests an 

alternative, more parsimonious representation that uses an (s − 1)-dimensional state vector. For the 

example given by (48), one can consider  
T

t-1 1 4 3θ = a ,a ,a  and  
T

t 2 1 4θ = a ,a ,a , with F = (1, 0, 0). To 

go from t-1θ  to tθ , assuming for the moment a static model without system evolution errors and 

using the constraint 
4

ii=1
a =0 , one has to apply the linear transformation given by the matrix 

-1 -1 -1

G= 1 0 0

0 1 0
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More generally, for a seasonal model with period s, one can consider an (s-1) dimensional state 

space, with F=(1,0,…,0) and 

-1 -1 ........ -1 -1

G= 1 0 ........ 0 0

0 0 ....... 1 0

 
 
 
  

 

A dynamic variation in the seasonal components may be introduced via a system evolution error with 

variance  2

wW=diag σ ,0,....,0 . 

 

3.1.3 Combining component models 

In the previous sections we have presented some common models for the different components 

(trend, seasonality) of a time series. These models can be used as “building blocks” for constructing 

a DLM for a time series with a more complex behavior. The additive structure of the DLM allows to 

easily combine the different component models, as discussed at the beginning of this section. 

Suppose, for example, that a series tY  is the sum of a trend component L,tY and a seasonal 

component S,tY : 

t L,t S,t tY =Y + Y +v  

We can construct a DLM for each component, so that 

 
L,t L,t L,t

L,t L,t L,t-1 L,t L,t L,t

Y =F θ

θ =G θ +w , w ~N 0,W
 

and  

 
S,t S,t S,t

S,t S,t S,t-1 S,t S,t S,t

Y =F θ

θ =G θ +w , w ~N 0,W
 

Define tF and tθ as partitioned matrices 

 
L,t

t L,t S,t t

S,t

θ
F = F ,F , θ =

θ

 
  
 

 

and G and tW as block-diagonal matrices 

L,t L,t

t t

S,t S,t

G W
G = , W =

G W
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Then tY is described by a DLM with observation equation  

 t t t t L,t L,t S,t S,t t t tY =Fθ +v =F θ +F θ +v , v ~N 0,V
                                                                                       

49 

and state equation  

 t t t-1 t t tθ =G θ +w , w ~N 0,W
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3.2 Kalman filtering 

Here, ζto  ζget  ζstarted, ζwe ζconsider  ζthe ζmodel ζas ζgiven, ζthat  ζis ζwe ζassume ζthat  ζthe ζdensities ζ  t tf y |θ  

ζand ζ  t t-1p θ |θ  ζhave ζbeen ζspecified. ζFor ζa ζgiven ζstate-space ζmodel, ζthe ζmain ζtasks ζare ζto ζmake 

ζinference ζon ζthe ζunobserved ζstates ζor ζpredict  ζfuture ζobservations ζbased ζon ζa ζpart  ζof ζthe 

ζobservation ζsequence. ζEstimation ζand ζforecasting ζare ζsolved ζby ζcomputing ζthe ζconditional 

ζdistributions ζof ζthe ζquantities ζof ζinterest, ζgiven ζthe ζavailable  ζinformation. 

For ζestimating ζthe ζstate ζvector ζwe ζcompute ζthe ζconditional ζdensities ζ  s 1 tp θ |y ,...,y . ζWe 

ζdistinguish ζbetween ζproblems ζof ζfiltering ζ(when ζs ζ= ζt), ζstate ζprediction ζ(s ζ> ζt) ζand ζsmoothing ζ(s ζ< 

ζt). ζIt  ζis ζworth ζto ζunderline ζthe ζdifference ζbetween ζfiltering ζand ζsmoothing. ζIn ζthe ζfiltering  

ζproblem, ζthe ζdata ζare ζsupposed ζto  ζarrive ζsequentially ζin ζtime. ζThis ζis ζthe ζcase ζin ζmany ζapplied 

ζproblems: ζthink ζfor ζexample ζof ζthe ζproblem ζof ζtracking ζa ζmoving ζobject, ζor ζof ζfinancial 

ζapplications ζwhere ζone ζhas ζto  ζestimate, ζday ζby ζday, ζthe ζterm ζstructure ζof ζinterest  ζrates, ζupdating 

ζthe ζcurrent  ζestimates ζas ζnew ζdata ζare ζobserved ζon ζthe ζmarkets ζthe ζfollowing ζday, ζetc. ζIn ζthese 

ζcases, ζwe ζwant  ζa ζprocedure ζfor ζestimating ζthe ζcurrent  ζvalue ζof ζthe ζstate ζvector, ζbased  ζon ζthe 

ζobservations ζup ζto  ζtime ζt  ζ(“now”), ζand  ζfor ζupdating ζour ζestimates ζand ζforecasts ζas ζnew ζdata 

ζbecome ζavailable ζat  ζtime ζt  ζ+ ζ1. ζFor ζsolving ζthe ζfiltering ζproblem, ζwe ζcompute ζthe ζconditional 

ζdensity ζ  t 1 tp θ |y ,...,y .In ζDLM, ζthe ζKalman ζfilter ζprovides ζthe ζformulas ζfor ζupdating  ζour ζcurrent 

ζinference ζon ζthe ζstate ζvector ζas ζnew ζdata ζbecome ζavailable, ζthat  ζis ζfor ζpassing ζfrom ζthe ζfiltering 

ζdensity ζ  t 1 tp θ |y ,...,y  ζto  ζ  t+1 1 t+1p θ |y ,...,y . 

 

However ζin ζgeneral ζthe ζactual ζcomputation ζof ζthe ζrelevant  ζconditional ζdensities ζis ζnot  ζat  ζall ζan 

ζeasy ζtask. ζDynamic  ζlinear ζmodels ζare ζone ζrelevant  ζcase ζwhere ζthe ζgeneral ζrecursions ζsimplify 

ζconsiderably. ζIn ζthis ζcase, ζusing ζstandard ζresults ζabout  ζthe ζmultivariate ζGaussian ζdistribution, ζit  ζis 

ζeasily ζproved ζthat  ζthe ζrandom ζvector ζ  0 1 t 1 tθ ,θ ,...,θ ,Y ,...,Y  ζhas ζa ζGaussian ζdistribution ζfor ζany 
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ζtζ≥1. ζIt  ζfollows ζthat  ζthe ζmarginal ζand  ζconditional ζdistributions ζare ζalso  ζGaussian. ζSince ζall ζthe 

ζrelevant  ζdistributions ζare ζGaussian, ζit  ζsuffices ζto  ζcompute ζtheir ζmeans ζand  ζcovariances. 

 

Theorem ζ3.1 ζ(Kalman ζfilter): ζFor ζthe ζDLM ζspecified ζby ζ(42), ζif ζ  t-1 t-1 t-1 t-1θ |D ~N m ,C , t 1  ζthen 

a) ζThe ζone ζstep ζahead ζstate ζpredictive ζdensity ζof ζ tθ , ζgiven ζ t-1D is ζGaussian ζwith ζparameters 

 

 

t t t-1 t t-1

T

t t t-1 t t-1 t t

a =E θ |D =G m

R =Var θ |D =G C G +W
 

b) ζThe ζone ζstep ζahead ζpredictive ζdensity ζof ζ tY given ζ t-1D is ζGaussian, ζwith ζparameters 

 

 

t t t-1 t t

T

t t t-1 t t t t

f =E Y |D =Fa

Q =Var Y |D =F R F +V
 

c) ζThe ζfiltering  ζdensity ζof ζ tθ given ζ tD is ζGaussian, ζwith 

  T -1

t t t t t t t t

T -1

t t t t t t t t t

m =E θ |D =a +R F Q e

C =Var(θ |D )=R -R F Q F R
 

where ζ t t te =Y -f is ζthe ζforecast  ζerror. 

The ζKalman ζfilter ζallows ζto  ζcompute ζthe ζpredictive  ζand  ζfiltering ζdensities ζrecursively,  ζstarting 

ζfrom ζ  0 0 0 0θ |D ~N m ,C then ζcomputing ζ  1 1p θ |D  ζand ζproceeding  ζrecursively ζas ζnew ζdata 

ζinformation ζbecomes ζavailable. 

 

3.3 Kalman smoothing 

The ζproblem ζof ζsmoothing, ζor ζretrospective ζanalysis,  ζconsists ζinstead ζin ζestimating ζthe ζstate 

ζsequence ζat  ζtimes ζ1,…,t, ζgiven ζthe ζdata ζ 1 ty ,...,y . ζIn ζmany ζapplications, ζone ζhas ζobservations ζon ζa 

ζtime ζseries ζfor ζa ζcertain ζperiod, ζand ζwants ζto  ζretrospectively ζstudy ζthe ζbehavior ζof ζthe ζsystem 

ζunderlying ζthe ζobservations; ζfor ζexample ζone ζcan ζthink ζthe ζproblem ζof ζan ζeconomic ζresearcher  

ζtrying ζto  ζunderstand ζthe ζsocio-economic ζbehavior ζthat  ζexplains ζthe ζtime ζseries ζGDP ζof ζa ζcountry 

ζfor ζthe ζsame ζperiod ζof ζtime. ζThe  ζsmoothing ζproblem ζis ζsolved  ζby ζcomputing ζthe ζconditional 

ζdistribution ζof ζ 1 tθ ,...,θ given ζ 1 tY ,...,Y . 
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Again, ζone ζhas ζa ζbackward-recursive  ζalgorithm ζfor ζcomputing ζthe ζconditional ζdensities ζof ζ t Tθ |D  ζ, 

ζfor ζt< ζT ζ, ζstarting ζfrom ζthe ζfiltering ζdensity ζ  T Tp θ |D  ζand ζestimating ζbackward ζall ζthe ζstates’ 

ζhistory. 

 

Theorem ζ3.2 ζ(Kalman ζsmoothing): ζFor ζthe ζDLM ζspecified ζby ζ(42), ζif ζ  t+1 T t+1 t+1θ |D ~N s ,S , ζthen ζ

 t T t tθ |D ~N s ,S where 

 

 

T -1

t t t t+1 t+1 t+1 t+1

T -1 -1

t t t t+1 t+1 t+1 t+1 t+1 t+1 t

s =m +C G R s -a

S =C +C G R S -R R G C
 

 

The ζKalman-smoother ζallows ζto  ζcompute ζthe ζdensities ζof ζ t Tθ |D , ζstarting  ζfrom ζt=T-1, ζin ζwhich 

ζcase ζ  t T T T T Tθ |D ~N s =m ,S =C , ζand  ζthen ζproceeding ζbackward ζfor ζcomputing ζthe ζdensities ζof ζ

t Tθ |D for ζt=T-2, ζt=T-3 ζand ζso  ζon. 

 

3.4 DLM innovations and model checking 

As we have seen, for DLM the Kalman filter provides the filtering estimate tm , given the 

information tD , as the previous estimate t-1m corrected by a term which depends on the forecast 

error 

 t t t t-1 t te =Y -E Y |D =Y -f
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The forecast errors can alternatively be written in terms of the estimation errors as follows 

t t t t t t t t te =Y -Fa =Fθ +v -Fa
                                                                                                                        

52 

For the forecast errors te , t 1 some interesting properties hold: 

a) The expected value of te is zero, since       t t t-1E e =E E e |D =E 0 =0  

b) For s t , se and te are uncorrelated. 

c) The random vector te is uncorrelated with any function of 1 t-1Y ,...,Y  

d) t(e , t 1) is a Gaussian process with  t m te ~N 0,Q , t=1,2,...  
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The ζforecasts ζerrors ζ te are ζalso  ζcalled ζinnovations. ζThe ζrepresentation ζ t t tY =f +e justifies ζthe 

ζterminology, ζsince ζone ζcan ζthink ζof ζ tY as ζthe ζsum ζof ζa ζcomponent  ζwhich ζis ζpredictable ζfrom ζpast 

ζobservations, ζ tf , ζand ζanother ζcomponent, ζ te , ζwhich ζis ζindependent  ζof ζthe ζpast  ζand ζtherefore 

ζcontains ζthe ζnew ζinformation ζcarried ζby ζthe ζobservation ζby ζthe ζobservation ζ tY . 

 

When ζthe ζobservations ζare ζunivariate, ζthe ζstandardized ζinnovations, ζdefined ζby ζ 

t
t

t

e
e =

Q
, 

are ζa ζGaussian ζwhite ζnoise, ζi.e. ζa ζsequence ζof ζindependent  ζidentically ζdistributed ζzero-mean 

ζnormal ζrandom ζvariables. ζThis ζproperty ζcan ζbe ζexploited ζto  ζcheck ζthe ζmodel ζassumptions: ζif ζthe 

ζmodel ζis ζcorrect, ζthe ζsequence ζ 1 te ,...,e  ζcomputed ζfrom ζthe ζdata ζshould  ζlook ζlike ζa ζsample ζof ζsize 

ζt  ζfrom ζa ζstandard ζnormal ζdistribution. ζMany ζstatistical ζtests, ζseveral ζof ζthem ζreadily ζavailable ζin 

ζR, ζcan ζbe ζcarried ζout  ζon ζthe ζstandardized ζinnovations. ζThey ζfall ζinto  ζtwo  ζbroad ζcategories: ζthose 

ζaimed ζat  ζchecking  ζif ζthe ζdistribution ζof ζthe ζ te ’s ζis ζstandard ζnormal, ζand  ζthose ζaimed  ζat  ζchecking  

ζwhether ζthe ζ te ’s ζare ζuncorrelated. ζHowever, ζmost  ζof ζthe ζtime ζwe ζtake ζa ζmore ζinformal ζapproach 

ζto  ζmodel ζchecking, ζbased ζon ζthe ζsubjective ζassessment  ζof ζselected ζdiagnostic ζplots. ζThe ζmost  

ζilluminating ζare, ζin ζthe ζauthors’ ζopinion, ζa ζQQ-plot  ζand ζa ζplot  ζof ζthe ζempirical ζautocorrelation 

ζfunction ζof ζthe ζstandardized ζinnovations. ζThe ζformer ζis ζused ζto  ζassess ζnormality, ζwhile ζthe ζlatter 

ζreveals ζdepartures ζfrom ζthe ζproperty ζof ζuncorrelated ζinnovations. ζA ζtime ζseries ζplot  ζof ζthe 

ζstandardized  ζinnovations ζmay ζprove ζuseful ζin ζdetecting ζoutliers, ζchange ζpoints ζand ζother 

ζunexpected ζpatterns. 

 

Finally, ζthe ζsame ζgoodness ζof ζfit  ζmeasures ζas ζdescribed ζin ζsection ζ2.7 ζcan ζbe ζused ζfor ζthe 

ζinnovations ζ te to  ζevaluate ζthe ζforecasting ζperformance ζof ζthe ζDLM ζmodel. 
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4. Application 

4.1 New York monthly number of births data 

For our first example, a dataset from monthly number of births from the city of New York is used. 

The dataset includes 168 entries of number of births from January 1946 to December 1959. 

Firstly, restricting our investigation in the SARIMA class of models, the most suitable 

SARIMA(p,d,q)x(P,D,Q)s will be extracted and it will be evaluated by various graphical tools and 

tests. The model estimation will be performed on a training set of number of births from January 

1946 to December 1956. A test set of 3 years from January 1957 to December 1959 will be used to 

evaluate its forecast ability. 

For the second model we use the same training set for estimation and Kalman filtering, Kalman 

smoothing and forecasting of a local level state space model with a monthly seasonal component. It 

should be noted that the training set should consist of at least 50 observations since that is needed for 

efficient estimation (Box and Jenkins, 1976). Forecasts are found on the same test set as before from 

January 1957 to December 1959. 

Finally, for the last part of the analysis assuming that both models have passed the diagnostic checks 

their forecast performance will be compared with some frequently used error measures and tests. 

4.1.1 Description of the data 

Firstly, we give a graphical representation of the whole dataset in figure 4.1 and calculate some basic 

descriptive measures for our data in table 4.1: 

Table 4.1: Descriptive statistics for monthly number of births in thousands. 

N Mean Median Maximum Minimum Std Skewness Kurtosis 

168 25.06 24.96 30 20 2.32 -0.02 -0.88 
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Figure 4-1: Number of births in New York City from January 1946 to December 1959 

From figure 4.1, we can see that there is certainly some seasonal variation in the number of births per 

month; there is a peak every summer, and a trough every winter. It seems like this could be described 

using an additive model, as the seasonal fluctuations are roughly constant in size over time and do 

not seem to depend on the level of the time series, and the random fluctuations seem constant over 

time. A slight upward trend may also be present in the time series.  

A short note here about time series decomposition how is done in practice. If we assume an additive 

decomposition yt=St+Rt+Tt where ytis the data, tS is the seasonal component, tT is the trend-cycle 

component and tR is the residuals component for period t. 

The first step in a classical decomposition is to use a moving average method to estimate the trend-

cycle component. A moving average of order m can be written as  

k

t t+j

j=-k

1
T = y

m
  

where m=2k+1. That is, the estimate of the trend-cycle at time t is obtained by averaging values of 

the time series within k periods of t. Observations that are nearby in time are also likely to be close in 

value. Therefore, the average eliminates some of the randomness in the data, leaving a smooth trend-

cycle component. 

The additive decomposition has the following steps: 

Step1: If m is an even number, compute the trend-cycle component tT  using a 2×m-MA. If m is an 

odd number, compute the trend-cycle component tT  using an m-MA. 
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Step2: Calculate the detrended series tty -T  

Step3: To estimate the seasonal component for each season, simply average the detrended values for 

that season. For example, with monthly data, the seasonal component for March is the average of all 

the detrended March values in the data. These seasonal component values are then adjusted to ensure 

that they add to zero. The seasonal component is obtained by stringing together these monthly 

values, and then replicating the sequence for each year of data. This gives tS  

Step4: The remainder component is calculated by subtracting the estimated seasonal and trend-cycle 

components: t tttR =y -S -T  

Command decompose() in R calculates the time series components which are shown in figure 4.2. 

 

Figure 4-2: From top to bottom: a) The original births series b) The trend component c)The seasonal component and d) 

The random component 

These are some first indications that we should take seasonal and non-seasonal differences, thus take 

d=1 and D=1, to stationarize the process. Our hypotheses are confirmed by figure 4.3. 
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Figure 4-3: Time series plots of: a) The original births series (top left) b) The non-seasonal differenced births series (top 

right) and c) The seasonal and non-seasonal births series (bottom left) 

 

From Figure 4.3, it is clear that once we have taken non-seasonal differences the trend has 

disappeared but there is still a seasonal pattern that is eliminated when we take seasonal and non 

seasonal differences. As we can see in the last panel of figure 4.3 the transformed series seems to 

have lost any trend and seasonal pattern and can be considered as a stationary process. 

 

A strong graphical tool for the identification of the parameters of a SARIMA model is the study of 

the characteristics of the ACF and PACF plots of the transformed process (after taking seasonal and 

non-seasonal differences) which are presented in figure 4.4. 
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Figure 4-4: ACF plot (left) and PACF (right) of the transformed births series 

 

From figure 4.4, if we look on seasonal lags there is only one major spike on seasonal lag 1, so that 

indicates the existence of an SMA(1) term in the model and thus the order of Q is probably 1. In the 

same manner, from the PACF plot of the transformed series if we look on seasonal lags there are two 

clear spikes on seasonal lag 1 and 2 that cross the 95% CI, that indicate the existence of SAR(1) and 

SAR(2) terms in the model and thus the order of P is probably 2. For the orders p,q it is not clear 

from the ACF and PACF plots if there are any AR and/or MA terms. 

 

4.1.2 ARIMA and SARIMA models 

After the preliminary analysis we are now ready to fit the most suitable SARIMA model for the 

births series. The first 11 years from January 1946 to December 1956 are used as a training set on 

which the model fit, parameters estimation and diagnostic tests will be carried out and the last 3 

years of the births dataset from January 1957 to December 1959 will be utilized as a test set for the 

forecasting evaluation of the model. 

The first step is to estimate the model parameters of integration and seasonal integration d, D 

respectively. From section we have already graphical evidence that d=D=1 but in order to 

substantiate our assumptions we conduct the ADF test for unit roots and the HEGY test for seasonal 

unit roots the results of which are shown in tables 4.2 and 4.3 respectively. 
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Table 4.2: ADF test statistics and p-values for the births series and first differenced births series. The null hypothesis is 

that the series has a unit root and the lag length used is 15. 

Series ADF statistic p-value 

Births -2.9977 0.1616 

Diff(Births) -4.249 <0.01 

 

 

Table 4.3:HEGY test with test-statistics for the first differenced births series and the first and seasonal differenced births 

series .The p-value is found in the parentheses 

Frequency Diff(Births) Diff(Diff(Births),12) 

0 -5.0503 (<0.001) -4.001 (0.0011) 

π/6 0.3075 (0.7363) 28.0599 (<0.001) 

π/3 4.2288 (0.0161) 29.4525 (<0.001) 

π/2 2.4559 (0.0889) 24.7756 (<0.001) 

2π/3 4.5867(0.0114) 27.2751 (<0.001) 

5π/6 1.5437 (0.2174) 16.4363 (<0.001) 

π -0.9243 (0.2487) -6.0974 (<0.001) 

 

The results from table 4.2 indicate that for the births series the ADF test with the null hypothesis of a 

unit root is not rejected on the five percent significance level but for the differenced births series we 

have strong evidence in order to reject the null hypothesis and thus we can conclude that the level of 

integration d=1. 

From table 4.3 the seasonal unit root hypothesis is not rejected for all frequencies for the differenced 

births series (d=1, D=0) and the test is then performed on both first and seasonally differenced births 

series(d=1, D=1) with the result that a seasonal unit root is rejected on all frequencies on the five 

percent significance level. Thus, seasonally differencing first differenced births series seem to have 

made the time series stationary enough. Hence a seasonal difference operator of order D=1 seems 

appropriate. 

The orders of integration that seem to be needed to make each series stationary enough have now 

been decided. The procedure of identifying the SARIMA can continue to the next step which is to 

determine the autoregressive and moving average orders. 
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The auto.arima function of the forecast package in R is running the HK algorithm for the 

specification of the ordersp,P,q,Q and the selection of the most suitable SARIMA model based on 

the information criteria AIC, AICc, and BIC. All the information criteria conclude to the same 

SARIMA(0,1,0)x(2,1,1)12 model. The estimated parameters with their standard errors are shown in 

table 4.4. 

 

Table 4.4: Estimated model parameters of the SARIMA(0,1,0)x(2,1,1)12 model with their standard errors in parentheses 

Parameter Estimate Standard Error 

Φ1 -0.4608 0.1399 

Φ2 -0.2548 0.1340 

Θ1 -0.7333 0.1736 

σ2 0.3784 - 

 

The next step is to examine the usual model diagnostics in order to determine the model suitability. 

The model residuals are tested for their normality and independence via the Jarque-Bera test and the 

Ljung-Box test, the results of which are shown in table 4.5. 

 

Table 4.5: Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 

estimated SARIMA(0,1,0)x(2,1,1)12 model. 

Test Statistic p-value 

Box-Ljung 0.76909 0.3805 

Jarque-Bera 7.7601 0.05 

 

From table 4.5 we can see that forthe Box-Ljung test the null hypothesis of uncorrelated residuals 

cannot be rejected. On the other hand, the p-value of the Jarque-Bera test does not lead us to any 

conclusion about the assumption of normal distributed residuals since it is exactly equal to the 

default level of significance a=0.05. For this reason, it is advisable to check the QQplot of the 

residuals. In figure 4.5 are all the graphical results extracted from the function sarima() of the astsa 

package in R in order to check the model assumptions.  
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Figure 4-5: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 

standardized residuals (bottom right). 

 

The standardized residuals in the first plot of figure 4.5 seem quite homoscedastic and to have a 

mean close to zero. Moreover, the ACF plot in figure 4.5 tells us that there is no significant 

autocorrelation for any lag and thus the residuals can be considered independent. Finally, the 

QQplotin figure 4.5 show that most of the residuals are close to the theoretical line and almost are 

inside the 95% CI bounds. So, the normality assumption of the residuals cannot be rejected. 

An alternative approach of modeling the problem would be to consider also the case of a usual non-

seasonal ARIMA model but without the strict parameters restrains of the HK algorithm. More 

specifically, we will consider an ARIMA model with d=1 where the parameters search would be 

performed in the grid p [0,12],q [0,14]  . The most suitable model will be selected according to the 

combination of parameters that minimizes the AIC. 
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Figure 4-6: AIC as a function of the orders p and q 

 

From figure 4.6 it is clear that the AIC is almost always smaller in value when the order of p=12. 

Moreover, for p=12 the AIC as a function of q appears to be a straight line after a local minimum for 

q=5. So, it is reasonable to assume that the best ARIMA model that minimizes the AIC is the one 

with parameters p=12 and q=5. 

The estimated parameters of the ARIMA(12,1,5) model with their standard errors are presented in 

table 4.6. 

 

Table 4.6: Parameters estimates with their standard errors for the ARIMA(12,1,5) model. 

Parameter φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 

Estimate 0.1620 0.7025 -0.1022 -0.0959 0.0668 -0.0644 -0.1339 0.1194 0.2113 

Std.Error 0.4096 0.1587 0.2937 0.1396 0.2657 0.1795 0.1179 0.1227 0.1511 

 

 

 

Parameter φ10 φ11 φ12 θ1 θ2 θ3 θ4 θ5 σ2 

Estimate 0.2113 -0.3227 0.2504 -0.4476 -1.000 0.3590 0.9793 -0.3612 0.5479 

Std.Error 0.1117 0.1636 0.1472 0.4311 0.2081 0.4469 0.2240 0.4339 - 
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The model diagnostics for this model are shown in table 4.7 and figure 4.7. 

Table 4.7:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 

estimated ARIMA(12,1,5) model. 

Test Statistic p-value 

Box-Ljung 0.10013 0.7517 

Jarque-Bera 0.46371 0.7655 

 

 

 

Figure 4-7: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 

standardized residuals (bottom right). 

 

From the results of table 4.7 and the figure 4.7 it is logical to assume that the assumptions of 

normally distributed, homoscedastic and uncorrelated residuals cannot be rejected for the 

ARIMA(12,1,5) model. 

 

Finally, since the results of table 4.3 revealed that not all the hypotheses for seasonal unit roots have 

been rejected for the differenced births time series by the HEGY test it would be reasonable to 

consider a SARIMA model with not very strictly restricted orders for p and q in order to adjust for 

stochastic seasonality in certain frequencies. Moreover, for the differenced and seasonally 

differenced births series the HEGY test rejects the null hypotheses for seasonal unit roots at all 

frequencies and  thus we do not need any further seasonal differences to achieve stationarity. So for 

our search we will use a seasonal AR polynomial Φ(Β)=1-ΒS which means P=1 and for simplicity 

reasons we will consider that the seasonal MA polynomial is the simplest Θ(Β)=1 which mean that 
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Q=0. As we have already mentioned the most suitable model will be selected according to the 

combination of parameters that minimizes the AIC. 

 

Figure 4-8: AIC as a function of the orders p and q 

 

Figure 4.8 shows that the minimization of the AIC is achieved for p=0 and q=12, and therefore a 

SARIMA(0,1,12)x(1,1,0)12 will be fitted. The estimated parameters for this model are presented in 

table 4.8. 

Table 4.8:Parameters estimates with their standard errors for the SARIMA(0,1,12)x(1,1,0)12 model 

Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7 

Estimate -0.0132 -0.1127 -0.0040 -0.0232 0.0097 -0.0080 -0.0207 

Std.Error 0.3112 0.3160 0.2921 0.2842 0.2794 0.2901 0.2742 

 

Parameter θ8 θ9 θ10 θ11 θ12 Φ1 σ2 

Estimate 0.0430 0.0660 0.2401 0.1995 -0.8937 -0.3633 0.322 

Std. Error 0.2802 0.2991 0.2748 0.3457 0.2934 0.0970 - 

 

The model diagnostics for this model are shown in table 4.9 and figure 4.9. 
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Table 4.9:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 

estimated SARIMA(0,1,12)x(1,1,0)12 model. 

Test Statistic p-value 

Box-Ljung 0.33056 0.5653 

Jarque-Bera 7.439 0.0305 

 

 

Figure 4-9: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 

standardized residuals (bottom right). 

 

From the results of table 4.9 and the figure 4.9 it is logical to assume that the assumptions of 

homoscedastic and uncorrelated residuals cannot be rejected for the SARIMA(0,1,12)x(1,1,0)12 

model but on the other hand the standardized residuals do not seem to satisfy the normality 

assumption.   

The final step is to make forecasts of future values based on the various fitted models. The forecast() 

function from the forecast package in R calculates the predicted values of monthly number of births 

in New York city from January 1957 to December 1959.  The graphical results are shown in figure 

4.10. 
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Figure 4-10: Forecasts based on the SARIMA(0,1,0)x(2,1,1)12 model (left), the ARIMA(12,1,5) model (middle) and the 

SARIMA(0,1,12)x(1,1,0)12 model (right). The light shaded area is the 95%CI of the forecasts while the narrowest dark 

shaded area is the 80%CI of the forecasts. 

 

4.1.3 The Kalman filtered DLM 

Suppose that we want to describe the seriesby a local level DLM. The DLM package in R provides 

all the necessary tools for parameter estimation, Kalman filtering, Kalman smoothing and 

forecasting.  

Firstly, after giving some initial values the dlmMLE function returns the MLE estimates of the initial 

state estimates 
2

wV,σ of the local level component and sV of the seasonal component. The next steps 

is to apply the Kalman filter for the estimated model, via the dlmFilter function, for the training set 

of observations from Jan1946 to Dec1956 and then the Kalman smoothing using the dlmSmooth 

function. Finally, we calculate forecasts for the next 3 years from Jan1957 to Dec1959 with the 

dlmForecast function. The graphical results are shown in figure 4.11. 
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Figure 4-11: Stochastic level (red line), training set (grey line) and forecasted values (orange line) in the top panel, the 

seasonal component (green line) in the middle panel and the residuals(purple line)  in the bottom panel. 

 

As we see from figure 4.11 the stochastic level of the dlm follows the pattern of the training set 

values. The forecasts seem to mimic the series behavior but their efficiency will be evaluated later. 

As we have discussed the model fit will be examined through the assumptions about the model 

standardized innovations. Figure 4.12 sums up all the graphical inference from the standardized 

innovations. 



P a g e  | 53 

 

 
 

 

Figure 4-12: ACF plot (left) and QQ-plot (right) of the Kalman filter innovations 

 

From figure 4.12, it is clear from the ACF plot that more than one lags are statistically significant 

since they surpass the 95% CI and from the QQ-plot of the innovations we observe that although 

most of the standardized innovations are inside the 95% CI there are at least two that break the 

normality assumption. Our final decision about the model assumptions are extracted by the Jarque-

Bera and Box-Ljung tests the results of which are shown in table 4.10. 

 

Table 4.10: Jarque-Bera and Box-Ljung test statistics and their correspondent p-values for the Kalman filter 

innovations. 

Test Statistic p-value 

Box-Ljung 0.71051 0.3993 

Jarque-Bera 4.9454 0.0555 

 

The results from table 4.10 indicate that for the Box-Ljung test on 5% level of significance we 

cannot reject the null hypothesis that the model innovations are uncorrelated and the Jarque-Bera test 
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gives a p-value slightly larger than the a=5% level of significance and thus the normality assumption 

cannot be rejected either. 

If we are convinced that the model has passed the diagnostic tests, the final step is to evaluate its 

forecasting ability with respect to the real values from the test set and then it can be compared with 

the SARIMA model. 

4.1.4 Error measures and forecasts comparison 

The final part is to compare the two models forecasts with the actual values from the test sets and 

perform the Diebold-Mariano test to compare the two models forecasting ability. Figure 4.13 gives 

us a first notion of how adequately the two models can forecast new values. 

 

Figure 4-13: Test set values of the births series (blue line), SARIMA(0,1,0)x(2,1,1) forecasts (red line), Kalman filtered 

DLM, ARIMA(12,1,5) forecasts (green line) and SARIMA(0,1,12)x(1,1,0) forecasts (grey line) 

 

Figure 4.13 shows us that both models follow the pattern of the test set but as the forecast horizon 

grows the distance between the model forecasts and the real time series value grows. It should be 

noted here that the flattening of the trend throughout the time period of the test set we observe from 

figure 4.2 is basically the reason why the two SARIMA models (SARIMA(0,1,0)x(2,1,1) and 

SARIMA(0,1,12)x(1,1,0)) always over-estimate the number of births. This means that these 

particular models predict new values under the assumption that there is a slight upward trend which 

evolves through time while the ARIMA(12,1,5) and the Kalman filtered DLM do not suppose any 

kind of trend. 
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The usual error measures and the DM test between the two models are calculated in tables 4.11, and 

4.12 respectively. 

Table 4.11: MSE, MAD and MAPE error measures for the various models 

 MSE MAD MAPE 

SARIMA(0,1,0)x(2,1,1) 1.2212 0.8427 0.03122 

Kalman filtered DLM 0.5278 0.5945 0.02153 

ARIMA(12,1,5) 0.6276 0.6317 0.02314 

SARIMA(0,1,12)x(1,1,0) 2.4559 1.3409 0.04925 

 

Table 4.12.: Diebold-Mariano test for the various models 

Null hypothesis p-value 

The Kalman filtered DLM performs equally well as the SARIMA(0,1,0)x(2,1,1) model 0.01895 

The Kalman filtered DLM performs better than the SARIMA(0,1,0)x(2,1,1) model 0.9905 

The Kalman filtered DLM performs equally well as the SARIMA(0,1,12)x(1,1,0) model <0.001 

The Kalman filtered DLM performs better than the SARIMA(0,1,12)x(1,1,0) model 1 

The Kalman filtered DLM performs equally well as the ARIMA(12,1,5) model 1 

 

In table 4.11 all three error measures MSE, MAD and MAPE give their smaller value for the 

forecasts derived from the Kalman filtered DLM. Although it should be noted that the 

ARIMA(12,1,5) model gives almost equally good results as the Kalman filtered DLM for both three 

measures. Furthermore, the results from table 4.12 indicate that the Diebold-Mariano suggests that 

the Kalman filtered model performs better than the SARIMA(0,1,0)x(2,1,1) and 

SARIMA(0,1,12)x(1,1,0) models but it produces equally good forecasts as the ARIMA(12,1,5) 

model. So, we have strong evidence that the most suitable models to make forecasts for future values 

are the Kalman filtered DLM and the ARIMA(12,1,5) which perform almost equally well although 

the Kalman filtered DLM gives slightly better error measures. 

As an alternative version of evaluating the 4 models predictive ability we can rerun our analysis as 

follows:1)we keep the same 4 model types, SARIMA(0,1,0)x(2,1,1), ARIMA(12,1,5), 

SARIMA(0,1,12)x(1,1,0) and Kalman filtered DLM 2) we run time series cross-validation with a 

sliding window of 132 values (11 years), which has the same length as the previous training set used, 

and we calculate forecasts for various h-steps ahead, for the four different competitive models 3) we 

construct the boxplots of the squared forecasts errors for h=6,12,24 steps ahead. 
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The results are shown in figure 4.14. 

 

Figure 4-14: Boxplots of squared forecasts errors for h=6,12,24 steps ahead for the four different models: 

SARIMA(0,1,0)x(2,1,1)12 (blue), ARIMA(12,1,5) (red), Kalman filtered dlm model (green), SARIMA(0,1,12)x(1,1,0) 

model (purple) 

 

Figure 4.14 reveals that, although the boxplots of the squared forecasts errors overlap for the 

different forecast horizons, the ARIMA(12,1,5) model has the lowest medium line of squared errors 

and the narrowest boxplot for every h=6,12,24. This is a strong evidence of a better forecasting 

ability regardless of the forecast horizon. 

 

4.2 US monthly retail automobiles sales 

For our second example, a dataset from monthly retail automobiles sales in United States is used. 

The dataset includes 341 entries of retail automobiles sales in billions of dollars from January 1970 

to May 1998. 

Firstly, the most suitable SARIMA(p,d,q)x(P,D,Q)s will be extracted and it will be evaluated by 

various graphical tools and tests. The model estimation will be performed on a training set of 

automobiles sales from January 1970 to May 1993. A test set of 5 years from June 1993 to May 1998 

will be used to evaluate its forecast ability. 
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For the second model, the same training set for estimation and Kalman filtering, Kalman smoothing 

and forecasting of a Linear Growth state space model with a monthly seasonal component will be 

used. Forecasts are found on the same test set as before from June 1993 to May 1998. 

Finally, for the last part of the analysis assuming that both models have passed the diagnostic checks 

their forecast performance will be compared with some frequently used error measures and tests. 

 

4.2.1 Description of the data 

Firstly, we give a graphical representation of the whole dataset in figure 4.15 and calculate some 

basic descriptive measures for our data in table 4.13: 

 

Figure 4-15: Monthly retail automobiles sales in US from January 1970 to May 1998 

Table 4.13.: Descriptive statistics for US retail automobiles sales in billions of dollars 

N Mean Median Maximum Minimum Std Skewness Kurtosis 

341 23.89 20.73 60.12 4.49 14.37 0.58 -0.73 
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From figure 4.15, we can see that there is certainly some seasonal variation in the automobiles sales 

per month; there is a peak every summer, and a trough every winter. A possible problem that we may 

face is that the series doesn’t seem to have constant volatily over time. Thus a transformation of the 

data maybe needed e.g taking the natural logarithm of the series.Finally a clear upward trend is 

present in the series. The time series components are shown in figure 4.16. 

 

 

Figure 4-16: From top to bottom: a) The original sales series b) The trend component c) The seasonal component and d) 

The random component 

 

As we have already mentioned, figure 4.16 indicates a clear linear upward trend, a strong seasonal 

component and a random component that presents an increment in its variance approximately after 

1987.  
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Figure 4-17: Time series plots of: a) The original sales series (top left) b) The log transformed sales series (top right) c) 

The non-seasonal differenced sales series (bottom left) and d) The seasonal and non-seasonal log sales series (bottom 

right) 

 

From Figure 4.17, it is clear that once we have taken the log transform on the data the variance 

seems to be stabilized. After taking non-seasonal differences the trend has disappeared but there is 

still a seasonal pattern that is eliminated when we take seasonal and non-seasonal differences. As we 

can see in the last panel of figure 4.17 the transformed series seems to have lost any trend and 

seasonal pattern and can be considered as a stationary process. 

 

4.2.2 ARIMA and  SARIMA models 

After the preliminary analysis we are now ready to fit the most suitable SARIMA model for the sales 

series. The time period from January 1970 to May 1993 are used as a training set on which the model 

fit, parameters estimation and diagnostic tests will be carried out and the last 5 years of the sales 

dataset from June 1993 to May 1998 will be utilized as a test set for the forecasting evaluation of the 

model. 
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The first step is to estimate the model parameters of integration and seasonal integration d, D 

respectively. From section we have already graphical evidence that d=D=1 but in order to 

substantiate our assumptions we conduct the ADF test for unit roots and the HEGY test for seasonal 

unit roots the results of which are shown in tables 4.14 and 4.15 respectively. 

Table 4.14.: ADF test statistics and p-values for the log-sales series and first differenced log-sales series. The null 

hypothesis is that the series has a unit root and the lag length used is 15. 

Series ADF statistic p-value 

Log-sales -2.6049 0.3212 

Diff(log-sales) -3.8216 0.01836 

 

 

Table 4.15.:HEGY test with test-statistics for the log-sales series and the seasonal differenced log-sales series. The p-

value is found in the parentheses 

Statistic Diff(log-sales) Diff(Diff(log-sales),12) 

0 -6.2927 (<0.001) -5.6634 (0.0011) 

π/6 4.8938 (0.0083) 43.4935 (<0.001) 

π/3 6.6688 (0.0015) 40.5491 (<0.001) 

π/2 3.0797 (0.0496) 40.3158 (<0.001) 

2π/3 5.3585 (0.0053) 47.563 (<0.001) 

5π/6 11.8332 (<0.001) 31.9685 (<0.001) 

π -3.7795 (<0.001) -6.1858 (<0.001) 

 

The results from table 4.14 indicate that for the log-sales series the ADF test with the null hypothesis 

of a unit root is not rejected on the five percent significance level but for the differenced log-sales 

series we have strong evidence in order to reject the null hypothesis and thus we can conclude that 

the level of integration d=1. 

From table 4.15 the seasonal unit root hypothesis is rejected for all frequencies for the differenced 

log-sales series (d=1, D=0) but as we can see the p-value for the F3,4 statistic is very close to the 5% 

level of significance and so it is recommended that the test be performed again on both first and 

seasonally differenced log-sales series(d=1, D=1). The result is that the seasonal unit root hypothesis 

is rejected on all frequencies on the five percent significance level. Thus, seasonally differencing first 

differenced log-sales series seem to have made the time series stationary enough. Hence a seasonal 

difference operator of order D=1 seems appropriate. 
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The orders of integration that seem to be needed to make each series stationary enough have now 

been decided. The procedure of identifying the SARIMA can continue to the next step which is to 

determine the autoregressive and moving average orders. 

The auto.arima function of the forecast package will be used for the specification of the orders 

p,P,q,Q and the selection of the most suitable SARIMA model based on the information criteria AIC, 

AICc, and BIC. The model selected from each of the information criteria is shown in table 4.16. 

 

Table 4.16.:The most appropriate SARIMA model based on different information criteria 

Informaton criterion AIC BIC AICc 

Model selected SARIMA(1,1,2)x(2,1,1)12 SARIMA(0,1,1)x(2,1,1)12 SARIMA(1,1,2)x(2,1,1)12 

 

Table 4.16 indicates that both AIC and AICc suggest that a SARIMA(1,1,2)x(2,1,1)12 should be 

fitted to the data while BIC uses a different more parsimonious SARIMA(0,1,1)x(2,1,1)12 model. 

The selection now is based on what we want to achieve; generally the estimation of complicated 

model is time consuming compared to a simpler model but on the other hand it may give us better 

forecasting results. Thus we conclude that a SARIMA(1,1,2)x(2,1,1)12 will be fitted to the log-sales 

series. The estimated parameters with their standard errors are shown in table 4.17. 

 

Table 4.17: Estimated model parameters of the SARIMA(1,1,2)x(2,1,1)12 model with their standard errors in 

parentheses 

Parameter Estimate Standard error 

φ1 -0.4468 0.2495 

θ1 0.0435 0.2373 

θ2 -0.3850 0.1016 

Φ1 0.1671 0.0744 

Φ2 -0.1410 0.0705 

Θ1 -0.8809 0.0565 

σ2 0.003488 - 

 

The next step is to examine the usual model diagnostics in order to determine the model suitability. 

The model residuals are tested for their normality and independence via the Jarque-Bera test and the 

Ljung-Box test, the results of which are shown in table 4.18. 
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Table 4.18.: Ljung-Box and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 

estimated SARIMA(1,1,2)x(2,1,1)12 model. 

Test Statistic p-value 

Box-Ljung 0.00025468 0.9873 

Jarque-Bera 89.9 <0.001 

 

From table 4.18 we can see that for the Box-Ljung test the null hypothesis of uncorrelated residuals 

cannot be rejected. On the other hand, the p-value of the Jarque-Bera leads to the conclusion that the 

residuals cannot be normally distributed. 

 

Figure 4-18: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 

standardized residuals (bottom right). 

 

Figure 4.18 shows that indeed the model residuals do not appear any significant serial 

autocorrelation but on the other hand from the QQ-plot of the standardized residuals there are plenty 

of points that are not inside the 95% CI bounds. So the assumption of the normally distributed 

residuals cannot be accepted. 

As we did in the first application it would be interesting to find the best non-seasonal ARIMA model 

based on the minimization of the AIC. The parameter search for p and q will be performed in the grid 

p [0,12],q [0,14]  .  
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Figure 4-19: AIC as a function of orders p and q 

 

From figure 4.19 it is clear that the AIC is almost always smaller in value when the order of p=12. 

Moreover, for p=12 the AIC as a function of q does not appear any significant changes after a local 

minimum for q=6. So, it is reasonable to assume that the best ARIMA model that minimizes the AIC 

is the one with parameters p=12 and q=6. 

The estimated parameters of the ARIMA(12,1,5) model with their standard errors are presented in 

table 4.19. 

Table 4.19.: Parameters estimates with their standard errors for the ARIMA(12,1,6) model 

Parameter φ1 φ2 φ3 φ4 φ5 φ6 φ7 

Estimate -0.0677 -0.1024 -0.0603 -0.0249 -0.4899 -0.1240 -0.1479 

Std.Error 0.1007 0.1230 0.0933 0.0867 0.0858 0.1361 0.0766 

 

 

Parameter φ8 φ9 φ10 φ11 φ12 θ1 θ2 

Estimate -0.1479 -0.0590 -0.2065 0.0110 0.3774 -0.2640 -0.1001 

Std.Error 0.0784 0.0697 0.0688 0.0666 0.0792 0.0981 0.1356 
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Parameter θ3 θ4 θ5 θ6 σ2 

Estimate 0.0379 0.0778 0.1003 0.5076 0.003897 

Std.Error 0.0962 0.1239 0.0872 0.1643 - 

 

The model diagnostics for this model are shown in table 4.20 and figure 4.20. 

 

Table 4.20.:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 

estimated ARIMA(12,1,6) model. 

Test Statistic p-value 

Box-Ljung 55.615 <0.001 

Jarque-Bera 0.22192 0.6376 

 

 

Figure 4-20: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 

standardized residuals (bottom right). 

 

From the results of table 4.20 and the figure 4.20 it is logical to assume that the assumptions of 

homoscedastic and uncorrelated residuals can be accepted for the ARIMA(12,1,6) model but the 

Jarque-Bera test and the QQplot of the standardized residuals indicate that we cannot accept the 

assumption of normally distributed residuals. 
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Finally, following the same reasoning as in the previous application we are going to fit a SARIMA 

model with lighter restrictions for the p and q parameters and the orders P=1 and Q=0. The most 

suitable model will be extracted by the minimization of the AIC criterion as a function of p and q. 

 

Figure 4-21: AIC as a function of orders p and q 

 

Figure 4.21 does not show a clear “winner” among all the possible models since all of the models 

appear to have a sudden drop of the AIC value for q=12 and for larger q’s they almost coincide. For 

this reason, the simplest model will be chosen i.e the model with p=0, q=12. Therefore a 

SARIMA(0,1,12)x(1,1,0)12 will be fitted. The estimated parameters for this model are presented in 

table 4.21. 

Table 4.21.:Parameters estimates with their standard errors for the SARIMA(0,1,12)x(1,1,0)12 model 

Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7 

Estimate -0.1988 -0.0779 0.1147 -0.0560 -0.0330 0.0467 -0.0503 

Std.Error 0.2131 0.1613 0.0704 0.1692 0.2613 0.2780 0.2130 

 

Parameter θ8 θ9 θ10 θ11 θ12 Φ1 σ2 

Estimate 0.0682 0.0595 -0.1450 0.1079 -0.8359 0.0835 0.003617 

Std. Error 0.0993 0.0949 0.1682 0.2075 0.2215 0.0680 - 

 

The model diagnostics for this model are shown in table 4.22 and figure 4.22. 
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Table 4.22.Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the 

estimated SARIMA(0,1,12)x(1,1,0) model. 

Test Statistic p-value 

Box-Ljung 7.8794 0.005 

Jarque-Bera 67.758 <0.001 

 

 

Figure 4-22: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the 

standardized residuals (bottom right). 

 

From the results of table 4.22 we cannot accept the assumptions of uncorrelated and normally 

distributed residuals although the graphical patterns of figure 4.22 do not indicate any clear violation 

of these assumptions 

Although the residuals do not obey the necessary assumption we can use the estimated models to 

extract forecasts of future values. The forecast() function from the forecast package in R calculates 

the predicted values of monthly retail automobiles sales in logarithmic scale from June 1993 to May 

1998.  The graphical results are shown in figure 4.23. 
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Figure 4-23:Forecasted values for the log sales series for the time period from June 1993 to May 1998based on the 

SARIMA(1,1,2)x(2,1,1) model (left), the ARIMA(12,1,6) model (middle) and SARIMA(0,1,12)x(1,1,0). The light shaded 

area is the 95%CI of the forecasts while the narrowest dark shaded area is the 80%CI of the forecasts. 

 

4.2.3 The Kalman filtered DLM 

Suppose that we want to describe the series by a linear growth DLM. The DLM package in R 

provides all the necessary tools for parameter estimation, Kalman filtering, Kalman smoothing and 

forecasting.  

After following the same procedure of estimating, Kalman filtering and Kalman smoothing finally 

we calculate forecasts for the time period from June1993 to May1959. The graphical results are 

shown in figure 4.24. 
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Figure 4-24: Stochastic level (red line), training set (grey line) and forecasted values (orange line) in the top panel, the 

trend component (blue line) in the second panel, the seasonal component (brown line) in the third panel and the 

residuals (green line) in the bottom panel. 

 

As we see from figure 4.24 the forecasts seem to mimic the series behavior but their efficiency will 

be evaluated later. 

The model fit will be examined through the assumptions about the model standardized innovations. 

Figure 4.25 sums up all the graphical inference from the standardized innovations. 

 

Figure 4-25: ACF of standardized innovations (left) and QQ-plot of standardized innovations (right) 
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Figure 4.25 indicates that none of the model assumptions is verified since there exists statistical 

significant serial autocorrelation in the standardized innovations and the QQ-plot shows that many 

points are outside the 95% CI bounds. 

 

4.2.4 Error measures and forecasts comparison 

The final part is to compare the three models forecasts with the actual values from the test sets and 

perform the Diebold-Mariano test to compare the two models forecasting ability. Figure 4.26 gives 

us a first notion of how adequately the two models can forecast new values. 

Figure 4-26: Test set values of the births series (blue line), SARIMA(1,1,2)x(2,1,1) forecasts (red line), Kalman filtered 

DLM forecasts (green line), ARIMA(12,1,6) forecasts (brown line) and SARIMA(0,1,12)x(1,1,0) forecasts (grey line) 

 

Figure 4.26 shows us that the SARIMA models and the Kalman filtered DLM follow the pattern of 

the test set but not the ARIMA model. Moreover, although the distance between all the model 

forecasts and the real time series value grows as the forecast horizon grows but the most ‘efficient’ 

model seems to be the SARIMA(0,1,12)x(1,1,0). The worst model for predicting new values from 

figure 4.26 seems to be the ARIMA(12,1,6) model (brown line in figure 4.26) and this is mostly 

because this is the only model which does not take into account any trend in the time series which 

evolves over time. 

The usual error measures and the DM test between the two models are calculated in tables 4.23 and 

4.24 respectively. 
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Table 4.23.: MSE, MAD and MAPE error measures for the SARIMA and the Kalman filtered DLM 

 MSE MAD MAPE 

SARIMA(1,1,2)x(2,1,1)12 14.71742 3.543356 0.07422295 

ARIMA(12,1,6) 131.2522 10.30852 0.2085977 

Kalman filtered DLM 57.72231 6.902226 0.1399843 

SARIMA(0,1,12)x(1,1,0)12 7.034042 2.13822 0.04609026 

 

Table 4.24.: Diebold-Mariano test for the various models 

Null hypothesis p-value 

The SARIMA(0,1,12)x(1,1,0) performs equally well as the Kalman filtered DLM <0.001 

The SARIMA(0,1,12)x(1,1,0) performs better than the Kalman filtered DLM 1 

The SARIMA(0,1,12)x(1,1,0) performs equally well as  the SARIMA(1,1,2)x(2,1,1) <0.001 

The SARIMA(0,1,12)x(1,1,0) performs better than the SARIMA(1,1,2)x(2,1,1) 1 

The SARIMA(0,1,12)x(1,1,0) performs equally well as  the ARIMA(12,1,6) <0.001 

The SARIMA(0,1,12)x(1,1,0) performs better than the ARIMA(12,1,6) 1 

 

In table 4.23 all three error measures MSE, MAD and MAPE give their smaller value for the 

forecasts derived from the SARIMA(0,1,12)x(1,1,0) model. Also the results from table 4.24 indicate 

that the Diebold-Mariano suggests that the SARIMA(0,1,12)x(1,1,0) model performs better from all 

the other models. So, we have strong evidence that the best among the two models to make forecasts 

for future values is the SARIMA(0,1,12)x(1,1,0) model. 

As an alternative version of evaluating the 4 models predictive ability we can rerun our analysis as 

follows:1)we keep the same 4 model types, SARIMA(1,1,2)x(2,1,1), ARIMA(12,1,6), 

SARIMA(0,1,12)x(1,1,0) and Kalman filtered DLM 2) we run time series cross-validation with a 

sliding window of 281 values, which has the same length as the previous training set used, and we 

calculate forecasts for various h-steps ahead, for the four different competitive models 3) we 

construct the boxplots of the squared forecasts errors for h=12,24,36,48 steps ahead. 
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Figure 4-27: Boxplots of squared forecasts errors for h=12,24,36,48 steps ahead for the four different models: 

SARIMA(0,1,12)x(1,1,0)(blue), ARIMA(12,1,6) (red), Kalman filtered dlm model (green) and 

SARIMA(1,1,2)x(2,1,1)(purple) 

 

Figure 4.27 reveals that apart from the ARIMA(12,1,6) model the 3 other competitive models  have 

overlapping boxplots. Moreover, the SARIMA(0,1,12)x(1,1,0) model, especially for forecast 

horizons greater than 12 steps ahead, seems to have the lowest medium line of squared forecast 

errors among all models and the narrowest errors boxplots along with the SARIMA(1,1,2)x(2,1,1) 

model. This is an indicator of a better forecasting ability. 
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5. Conclusion 

In this study ARIMA-SAIRIMA models and Kalman filtered Dynamic Linear Models have been 

fitted to two different real life datasets.   

More specifically, for the first dataset with the monthly number of births in the city of New York, 

only two models, the ARIMA(12,1,5) and the SARIMA(0,1,0)x(2,1,1), pass all the model 

diagnostics among the four competitive models. Moreover, from the error measures calculated in the 

test set, the models that seem to produce the best forecasts are the ARIMA(12,1,5) and the Kalman 

filtered local level model. This is also confirmed by the Diebold-Mariano test for the comparison of 

the predictive ability of all models where the two aforementioned models seem to perform equally 

well and give more accurate forecasts than the other two. Furthermore, the time series cross-

validation procedure for various h-steps ahead forecast horizons showed that the model which 

constantly gives the best forecasts with respect to the forecast errors is the ARIMA(12,1,5) model.  

For the second dataset with the monthly retail automobiles sales in USA, none of the 4 candidate 

models passed the model diagnostics about the assumptions for the model residuals. The out of 

sample error measures showed that the best forecasts are produced by the SARIMA(0,1,12)x(1,1,0) 

model and this is also confirmed by the results of the Diebold-Mariano test which revealed that this 

model gives more accurate forecasts for the given test set than all the other competitive models. The 

time series cross-validation also confirmed that there is strong evidence to consider the 

SARIMA(0,1,12)x(1,1,0) model as the most suitable for predicting future values for various h-steps 

ahead horizons. 

Overall, we can say that a) the ARIMA or SARIMA model which emerge from the minimization of a 

standard information criterion without posing very strict restrictions on the orders of p and q seems 

to produce better forecasts than the model evaluated by the default HK algorithm. This is the case in 

both datasets examples we studied and it is confirmed with both estimation methods for evaluating 

model forecasts, meaning standard out of sample error measures and time series cross-validation 

with a sliding window. Of course this comes with the price of estimating a much more complex 

model than the rather simplistic model from the HK algorithm. We should bear in mind that for 

much bigger datasets the problem of minimizing an information criterion over many candidate 

models may be very time-consuming or even impossible in practice b) Simple polynomial DLM 

models with a seasonal component can give adequate forecasts for time series that appear seasonality 

and linear trend. However, their ability to produce forecasts may depend a lot on the first initial 

values of the state estimates and error variances and as it is shown in the two examples difficulties 

may arise in confirming the model assumptions. More sophisticated state space models, such as 

SARIMA models expressed in a state space form, may produce far better results. 
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Appendix 

 

Table 1:Critical values for HEGY one-sided t1 and t2 tests and for the F1,2 test in quarterly time series. Source: 

Hylleberg et. al. (1990 pp 226-227) 
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