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ABSTRACT

In time series analysis, it is very common to encounter cases of data that show seasonality or some
form of a trend. The general methodology developed by Box and Jenkins (1970) gave us the class of
ARIMA models and the special subcategory of SARIMA models. This is still a very powerful tool
for describing time series with such features and predicting future observations.

Another large class of models that are gaining ground in recent years is the so-called state space
models. A very broad subcategory of state space models is the so-called Dynamic Linear Models
(DLM’s) which, despite their general simplicity, can be used to capture features that govern real-time
time series such as trend and seasonality. The process of fitting the models and predicting future
observations is done through the methodology known as the Kalman filter which was first introduced
by Kalman in 1960.

This thesis analyzes all the key features of the ARIMA and SARIMA models and the DLM model
class. Then, their predictive ability is tested based on two different evaluation methods which are the
calculation of the usual error measures, namely MSE, MAD and MAPE, and the cross-validation

methodology specifically adapted for time series data.

The application of the methods and the comparison of their predictive capacity of the were done in
two different real data sets: the first concerns monthly birth numbers in New York City and the

second is related to monthly retail automobile sales in the USA.
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HEPIAHYH

Xmv aviivon ypovooelp®v givor moAD obvnleg va epYOUOOTE AVIUETONOL UE TEPUTTAOGELS
dedOUEVOV IOV TTOPOVGLALOVY EMOYIKOTNTA N Kol KAmowag popen tdon. H yevikn pebodoroyia mov
avantoyOnke omd tovg Box kot Jenkins (1970) pog édmoe v kAdon tov ARIMA povtélmv kot thg
ewumng vrokatnyopiog SARIMA povtédov. Avtd péypt Kot ofjuepa amotelel €va TOAD 16YVPO
EPYOAEID YlOL TNV TEPLYPAPT] XPOVOCEIP®OV UE TETOWL YOPUKTNPIOTIKG Kot TpOPAEYT UEAAOVTIKGDV

TOPUTNPNCEDV.

Mo GAAN peydAn yxdpo poviéAwv mov kepdilovv peydro £€30¢pog Ta teElevtaio ypovia eivar ta
Aeyouevo state space povtéda. Mo moAd evpeia vmokartnyopio State space povtélwv eivar to
Aeyoueva Dynamic Linear Models (DLM’S) 1o omoia mopd thv yevikdtepn anAdTnTo, TOVG UTOPoHY
va, ypnoipomomBodv Yoo TV amoTOTOON YOPOUKTNPIOTIKOV TOV OETOVV YPOVOGEPEG aANBvOV
dedopévmv OTmG etvan 1 T@omn Ko 1 emoykdtnTa. H dradikasio tTng Tpocapproyns Tov HOVTEA®Y Kot
TPOPAEYNC HEAAOVTIKOV Tapatnpnoemv yivetoaw péow ¢ pebodoroyiag mov eivar yvmotn g

Kalman @iltpo 1 onoia tpotomapovcidotnke omd tov Kalman to 1960.

Xe autnv TV gpyacia avaivovtol 0o To Pocikd yapaktnploTikd ™ cvvopotatiog tov ARIMA
kol SARIMA povtélmv kot g kKAdong tov DLM povtélmv. X1 cuvéyetla dlevepyeiton EAeYY0G TG
TpoPAETTIKNG KavOTNTOG TOVS Pacilopevol 6€ VO JPOPETIKEG HeBdOOVE a&loAdYN oG Ol 0TToleg
gtvat 0 VIoAOYIGHOG TV GUVIHOT péETp®V Yo ceaipata, oniadn to MSE, MAD kot MAPE, kot ot

uebodoloyia cross-validation €diké TpoGapHOGHEVT Y10 SESOUEVA YPOVOGELPOV.

H gpappoyn tov peboddwmv kot  cOYKpIor e TpoPAENTIKNG KOVOTNTOS TOV HOVTEA®V EYIVE GE OVO
PO PETIKA TPAYLATIKO GUVOAD OEOOUEVOV: TO TPAOTO O.POPE UNviaiovs aptBpovg YeEVVNCEDY GTNV
noAn ¢ Néag YOpkng kol 10 0e0Tepo oyeTiletan pe pnviodeg TOANGELS OLTOKIVITOV AVIKOV

eumopiov otig HITA.
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Introduction

The element of seasonality is found in almost all areas of human activity. From financial measures
such as the annual forecast of GDP or inflation that determines the policies of an entire country to
meteorological data and the forecast of extreme weather events, the need for processing and
modeling of chronological data with seasonality is becoming more and more imperative. However, a

common element and key issue in any such study is the ability of predicting future data.

In 1970, Box and Jenkins introduced a new class of multiplicative linear autoregressive integrated
moving average models, ARIMA(p,d,q), which are defined as:

@(B)(1-B)"x,=0(B)w,, W, ~WN(0,67)

where ¢(z), 6(z) are the autoregressive and moving average polynomials and p,q are respectively the
orders of these polynomials and d is the order of differencing.

This kind of models were considered path breaking. The seasonal ARIMA model, called SARIMA,
is a special case of this model and is applied to seasonal data, for example weekly or monthly which
is the case for this thesis. The general SARIMA(p,d,q)x(P,D,Q)s model is defined as:

@(B)D(B*)x,=0(B)O(B°)w,, w,~WN(0,5%)

where ¢(z), 6(z), ®(z) and O(z) are the seasonal and non-seasonal AR and MA polynomials and P
and Q are the orders of the non-seasonal polynomials, S is the period of the seasonal pattern, d is the

order of differencing and D is the order of seasonal differencing.

The process of fitting a SARIMA (p, d, ) x (P, D, Q) model begins with the identification of the
parameters d, D and then p, g, P, Q, which is done by using both graphic as well as analytical tools
and tests. The usual procedure used by R is the use of the Hyndman-Khandakar (HK) algorithm
developed by Hyndman and Khandakar (2008) which minimizes one of the well known information
criteria for selecting parameters (AIC, BIC, AICc). However, a basic criticism of this algorithm of
selecting the optimal model is that it poses very strict restrictions on the order of the parameters and
in fact many models with higher orders of the AR and MA polynomials are excluded by definition

from the investigation.

The Kalman filter was developed by Kalman in 1960 and is applied to models written on the so
called state-space form. It was first proven as useful for applications in engineering. In 1977
Morrison and Pike stated that a general method for applying the Kalman filter for statistical
forecasting has not yet been developed. However the procedure had at that time started to-get-its

roots into the statistical field, for example Rosenberg (1973), Engle (1979) and Harvey and Phillips
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(1979) found that the Kalman filter could be applied to econometric and statistical problems, for
example for time series forecasting of economic properties. These were fields that ARIMA modeling
at that point dominated (Harvey, 1989). One example of a clear benefit of the Kalman filter is that
only the present state estimate and the next observation is required to update the whole system. This
can be compared to models estimated with maximum likelihood or ordinary least squares where

updating would imply use of the whole history of data.

One very important category of models which can be written in state-space form are the so called

Dynamic Linear Models (DLM) which are specified by means of two equations

Y =E8,+v,, v,~N_ (0,V,)
0,=G 0 ,+w,, w,~N_ (0,W,)

where Gt and Ft are known matrices and the (vt) and (wt) are two independent white noise
sequences, with mean zero and known covariance matrices Vt and Wt respectively. DLM’s are very

adaptable and can be used for time series which appear some kind of trend, or seasonality or both.

The purpose of this thesis is to compare the forecasting performance between the model specified by
the HK algorithm, the model obtained by the minimization of the AIC criterion without posing the
strict restrictions of the HK algorithm and a suitable DLM which captures the characteristics of the
data in hand. The questions to be answered would be 1)“Does the standard HK algorithm lead to a
model adequate enough for forecasting future values or we can conclude to a more suitable model by
applying less strict restrictions?” and 2) “Can the simple DLM’s assimilate the time series

characteristics and give forecasts equally good as the standard ARIMA class of models?”

The comparisons will be made through two different methods a) use of the ordinary error measures
(MSE, MAD and MAPE) along with the Diebold-Mariano test in a test set of observations and b) the
extraction of forecast errors from a cross-validation methodology designed specifically for time

series.

This thesis deals with two different real life datasets: 1) monthly rates of births in New York City
and 2) monthly retail automobile sales in USA. Both of them appear to have a strong seasonal pattern
with an underlying trend, the presence of which is obvious in the second one and more questionable
in the first. The reason behind the choice of those so apparently different examples is to examine the
comparison of the various models in a great variety of forecast examples, so as to obtain the big

picture of how accurate they can be for future use in datasets which appear similar characteristics.

The structure of this thesis is organized as follows. Chapter 1 deals with some basic concepts and
definitions which lead to the building of the general SARIMA model which is defined and discussed

in Chapter 2. Also in Chapter 2 can be found all the various tools that are used for the estimation,



Page |3

model fitting and forecast evaluation. Chapter 3 deals with state space models and particularly with
the most commonly used forms of Dynamic Linear models and the Kalman filer methodology.
Chapter 4 contains the application of all the methods discussed in the previous chapters and is
divided in two parts; subsection 4.1 deals with the monthly rates of births dataset and subsection 4.2
with the monthly retail automobile sales dataset. Finally, chapter 5 concludes the thesis by

summarizing the results and by discussing some details.

1. Basic concepts and definitions

In the present section we give the essential definitions and attributes of the models that we will go
over in the following chapters. Besides, we additionally express the fundamental outcomes and
hypotheses which are at the center of our investigation and a necessary piece of each ensuing area. In
the present case we simply take into account discrete procedures, where time t € Z and also the time

horizon heZ

1.1 Stationarity and ACF, PACF

We start with certain definitions so as to review the fundamental terms and furthermore

concurring on documentation. We start with the concept of stationarity and autocovariance.

Definition 1.1.1 The mean function of a stochastic process X, is
Ht:E(Xt):J xf, (x Jdx 1

provided it exists, where E denotes the usual expected value operator and ft(x)denotes process

distribution density function.

Definition 1.1.2 The autocovariance function of a finite variance process X, with mean value

function p, is defined as

¥(,O=E [ (X1 ) (%) | 2
for all sand t

Definition 1.1.3 A weekly stationary time series, {Xt}, is a finite variance process such that

a) the mean value function, p,, is constant and does not depend on time t, and
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b) the covariance function y(s,t),depends on s and t only through their difference |s-t|.

From this time forward, when we utilize the term stationarity the term weak stationarity will be
meant. The autocovariance function of a stationary time series will be written as a function of the
lag h as:

Y()=E[ (xp 1) (x,-1) |, h 21 3

If we are interested in finding to what extent there is a numerical relationship between two
variables of interest, using their correlation coefficient will give misleading results if there is
another, confounding, variable that is numerically related to both variables of interest. This
misleading information can be avoided by controlling for the confounding variable, which is

done by computing the partial correlation coefficient

Definition 1.1.4 a) The partial correlation between X and Y given a set of n controlling variables
Z:{Zl,ZZ,...,Zn}is the correlation between the residuals e,and e, resulting from the linear
regression of X with Z and of Y with Z, respectively.

b)The partial autocorrelation function (PACF) gives the partial correlation of a stationary time

series with its own lagged values, regressed the values of the time series at all shorter lags. It

contrasts with the autocorrelation function, which does not control for other lags.Given a time

series X, the partial autocorrelation between X, and X,, is defined as the conditional correlation

between X, andX,,, condtional on X.;.....X,,the set of observations that come between the

time points t and t-h.
o The 1% order partial autocorrelation will be defined to equal the 1st order autocorrelation.

COV(Xt 1Xt-2|Xt—1)
\/V&I’ (Xt X4 ) Var (Xt-zlxt—l)

o The 2" order (lag) partial autocorrelation is

This is the correlation between values two time periods apart conditional on knowledge of the
value in between (the two variances in the denominator will equal each other in a stationary
series.)

COV(Xt 1Xt—3|xt—l’xt'2 )

e The 3™ order (lag) partial autocorrelation is
\/Var(xt|xt_1,xt_2)Var(xt_3|xt_1,xt_2)
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And, so on, for any lag

Definition 1.1.5 If X,is a stationary process with autocovariance function y(.) then its

autocovariance generating function is defined by
G(2)= Z v(k)z*,z el 4
k=-00

provided the series converges for all z in some annulus r*<|z|<r with r>1

At the point when we have characterized the autocovariance function, we can give the definition
of the white noise process, which has a significant role in the examination of the considerable
number of models we are going to utilize and furthermore in the inference of the prediction

equations.

Definition 1.1.6 The process W, (with mean 0 and variance c?) is said to be white noise process,

and it will be symbolized as w,~WN(0,52), if and only if w,has zero mean and covariance

function

) 0,h=0
= 5
Y 62,h=0

1.2 The ARMA models

A very large and widely used class of time series models is the ARMA models. In order to construct

the ARMA models, first we have to give some definitions.

Definition 1.2.1We say that stationary process X, is an autoregressive process of order p,

abbreviated AR(p), if it satisfies the equation
X =0y Xy T O X, TW, 6
where ¢,,9,.,....,¢, are constants (¢, # 0) and w, is a white noise process with variance o,

Definition 1.2.2The process X, is said to be a moving average process of order g, or MA(q), if it

satisfies the equation

X =W, 0w+ 40 W 7
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where 6,,0,,....6, are constants (6, #0) and w,~WN(0,c7,)

A compact way of defining ARMA process is by defining the back-swift operator and introducing

the autoregressive and moving average equations and operators.

Definition 1.2.3We define the back-swift operator by

Bx,=x,,,teZ

and extend it to powers B*x,=B(Bx,)=Bx_,=X,, and so on. Thus, B*x,=x,,te Z.
Definition 1.2.4A stationary process {Xt:t eZ} is said to be an ARMA(p,q) process if
X =@ Xy H QX HO W+ 0w W or equivalently o(B)x,=0(B)w, ,where

@(B)=1-¢,B-¢,B’-..-p,B", 0(B)=1+0,B+0,B°-..-0. B and w,~WN(@,c;), ¢,.0,#0and the

parameters p and q are called autoregressive and moving average orders respectively.

Definition 1.2.5An ARMA(p,q) model ¢(B)x,=0(B)w, is said to causal if the time series {xt:t € Z}
can be written as a one-sided linear filter of the white noise process {w,:teZ} :

0

X, :Z YiWyj =y(B)w, 9
=0

where W(B)ziijj and i‘\yj‘<oo and we set y,=1
j=0 i=0

Definition 1.2.6An ARMA(p,q) model ¢(B)x,=0(B)w, is said to be invertible if the innovations

{Wt:t € Z} can be written as a one-sided linear filter of the process {x,:teZ}:
w,=n(B)x, :Z Xy 10
j=0

where n(B)=) nB' and "|m;|<ecand we set 7,=1

=0 =0
At the point when we have characterized the ideas of causality and invertibility, we now give criteria
for an ARMA model to be causal and invertible.

Lemma 1.2.1 a) Let {Xt} be a stationary ARMA(p,q) process for which the polynomials ¢(.), 6(.)

have no common zeros. Then {X, } is causal if and only if g(z) = 0for all z €[ such that |z <1
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b) Let {Xt} be an ARMA(p,q) process for which the polynomials ¢(.), 6(.) have no common zeros.

Then {X, }is inverible if and only if 6(z) = 0for all z €[ such that |z|<1

From Brockwell and Davis (1991) we can locate a valuable tool called autocovariance generating

function.
Lemma 1.2.2 The autocovariance generating function for a an ARMA(p,q) process ¢(B)x,=0(B)w,

for which o(z) = 0 when |z|=1is of the following form

2 0(2)0(z™)

G(2)=
@ e

I <|z|<r for somer>1 11

1.3 Integrated series and ARIMA models

A key point in our analysis is the definition of the unit root which can be found below.

Definition 1.3.1A time series X, is integrated of orderd =0, abbreviated I(d), if
Vix,:=(1-B)’x,
is stationary but Vx,,V°X,,...,V*'X, remain non-stationary.

Definition 1.3.2 Order of integration is a summary statistic that it indicates the minimum number of

differences needed to get a stationary series.

A special mention should be made for the class of 1(0) models. From definition 1.3.1 it is clear that
X, is 1(0) if y,=(1-B)°x, =X, is stationary. From this definition 1(0) = stationary but not vice versa,
i.el(0) is a sufficient condition for stationarity, but stationarity is only a necessary condition for

1(0). Therefore, all stationary processes are 1(0), but not all 1(0) processes are stationary.

Definition 1.3.3A random walk is a time series model X, such that

X, =X, +W,, W,~WN(0,5%) 12

While the mean of a random walk is still zero, the covariance is actually time-dependent. Hence a

random walk is non-stationary because

Yx (h):COV(Xt X t+h ):tG\ZN
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Random walk models are widely used for non-stationary data, particularly financial and economic
data. Random walks typically have:

a) long periods of apparent trends up or down and b) sudden and unpredictable changes in direction

It is also easy to see that by differencing X, ,we find that Vx,:=(1-B)x,=wiis stationary, thus the

random walk process is a 1(1) process.

ACF plot of random walk

Xt:random walk

ACF
00 02 04 06 08 10

Time Lag

ACF plot of the differenced series

[ ","

il

ACF

02 04 06 08 10

|Xt:differenced series

T - T - T T T < T T T T T
0 50 100 150 200 0 5 10 15 20

Time Lag

Figure 1-1:Simulated random walk Xt=Xt-1+Wt, Wt~WN(0,1), of sample size n=200 with its acf plot on the upper half
and the differenced process with its acf plot on the lower half. The random walk procedure appears the charachteristics
we expected with non-decreasing autocovariances when on the other hand the differenced series is a white noise
procedure with statistically insignificant autocovariances.

The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA models to include

differencing.

Definition 1.3.4A process X, is said to be ARIMA(p,d,q) if

V%, =(1-B)x, 13
is ARMA(p,q). In general, we will write the model as

o(B)(1-B)*x,=0(B)w, 1

There are two different ways of modeling a linear trend. A deterministic trend is obtained using the

regression model X, =p,+f,t+n, where " is an ARMA process.
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A stochastic trend and a deterministic trend are obtained using the model Vx,:=(1-B)x,=,+n, where

" is anARMA process. In the latter case, if B,=0, then we have a stochastic trend only, otherwise, if

B, # 0 we have both a deterministic and a stochastic trend. In other words,

Xt :Xt—l +BO +nt

2. The SARIMA class of models

In time series data, seasonality is the presence of variations that occur at specific regular intervals
such as weekly, monthly, quarterly or yearly. Seasonality may be caused by various factors, such
as weather, vacation, and holidays and consists of periodic, repetitive, and generally regular and
predictable patterns in the levels of a time series.

Seasonal series are characterized by a strong serial correlation at the seasonal lag (and possibly
multiples thereof). The classical decomposition of the time series in its additive form:

X, =W, +s,+y,where p, is the trend component, s, is the seasonal component and Y, is the white

noise component. If deterministic seasonality of lag d is assumed, then it is implied that s,=s,,

which means that the seasonal component repeats itself over every cycle of d data observations.

2.1 Definition of the model

In practice it may not be reasonable to assume that the seasonality component repeats itself precisely
in the same way cycle by cycle. Seasonal ARIMA models allow for randomness in the seasonal
pattern from one cycle to the next, describing thus a form of seasonality which is known as

“stochastic seasonality”.

Definition 2.1.11f d and D are non-negative integers, then {Xt}is said to be a seasonal

ARIMA (p,d,q)x(P,D,Q), with period s if the differenced process y,:=(1-B)(1-B*)°x, is a causal
ARMA process,

o(B)D(B*)y,=6(B)O(B")z,, ,~WN(0,07) 15
where Q(2)=1-,z-...-9, 2", D(2)=1-0,z-...-,2" , B(2)=1+0,z+..+0 2 and O(z)=140O,z+..+O,z°.
Note that the process {Y, } is causal if and only if ¢(z) = 0and ®(z) = 0for all|z| <1.

e pand seasonal P: indicate number of autoregressive terms (lags of the stationarized series)
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o dand seasonal D: indicate differencing that must be done to stationarize series
e (and seasonal Q: indicate number of moving average terms (lags of the forecast errors)

e s:indicates seasonal length in the data

Box et al. (2008) propose that the SARIMA(p, d, g) x (P, D, Q)s for X, can be seen as a special form

of the equivalent representation of y, as an ARMA(p + sP, q + sQ) written as
¢ (B)y,=0,+0"(B)z,

where ¢ (B)=p(B)®(B), 6 (B)=0(B)®(B) 16

2.2ldentifying d and D

The first (and most important) step in fitting aSARIMA model is the determination of the orders d
and D of differencing needed to stationarize the series. The determination will be made by taking
into consideration both the time series correlogram (ACF and PACF plots) and widely used tests

such as the ADF test for unit roots and the HEGY test for seasonal unit roots.

2.2.1 Graphical tools

Normally, the correct amount of differencing is the lowest order of differencing that yields a time
series which fluctuates around a well-defined mean value and whose autocorrelation function
(ACF) plot decays fairly rapidly to zero, either from above or below. If the series still exhibits a
long-term trend, or otherwise lacks a tendency to return to its mean value, or if its
autocorrelations are positive out to a high number of lags (e.g., 10 or more), then it needs a

higher order of differencing.

Some basic indications for determining the orders d and D of an SARIMA(p,d,q) model are the

following:

Indication 1: If the series has positive autocorrelations out to a high number of lags, then it

probably needs a higher order of differencing.

Differencing tends to introduce negative correlation: if the series initially shows strong positive
autocorrelation, then a non-seasonal difference will reduce the autocorrelation and perhaps even
drive the lag-1 autocorrelation to a negative value. If we apply a second non-seasonal difference
(which is occasionally necessary), the lag-1 autocorrelation will be driven even further”in the

negative direction.
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Indication 2: If the lag-1 autocorrelation is zero or negative, or the autocorrelations are all small

and patternless, then the series does not need a higher order of differencing.

One of the most common errors in ARIMA modeling is to "overdifference™ the series and end up
adding extra AR or MA terms to undo the damage. If the lag-1 autocorrelation is more negative
than -0.5 (and theoretically a negative lag-1 autocorrelation should never be greater than 0.5 in
magnitude), this may mean the series has been overdifferenced. The time series plot of an
overdifferenced series may look quite random at first glance, but from a closer look, a pattern of

excessive changes in sign from one observation to the next will be observed.

Indication 3: The optimal order of differencing is often the order of differencing at which the

standard deviation is lowest.

The first two rules do not always unambiguously determine the "correct™ order of differencing.
"Mild underdifferencing™ can be compensated for by adding AR terms to the model, while "mild
overdifferencing™ can be compensated for by adding MA terms instead. In some cases, there may
be two different models which fit the data almost equally well: a model that uses O or 1 order of
differencing together with AR terms, versus a model that uses the next higher order of
differencing together with MA terms. In trying to choose between two such models that use
different orders of differencing, we may need to ask what assumption we are most comfortable

making about the degree of nonstationarity in the original series

Indication 4: A model with no orders of differencing assumes that the original series is
stationary. A model with one order of differencing assumes that the original series has a constant
average trend (e.g. a random walk). A model with two orders of total differencing assumes that

the original series has a time-varying trend (e.g. a random trend)

Another consideration in determining the order of differencing is the role played by the constant
term in the model-if one is included. The presence of a constant allows for a non-zero mean in
the series if no differencing is performed, it allows for a non-zero average trend in the series if
one order of differencing is used, and it allows for a non-zero average trend-in-the-trend if there
are two orders of differencing. We generally do not assume that there are trends-in-trends, so the
constant is usually removed from models with two orders of differencing. In a model with one
order of differencing, the constant may or may not be included, depending on whether we do or

do not want to allow for an average trend.
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Indication 5: If the series has a strong and consistent seasonal pattern, then you must use an
order of seasonal differencing (otherwise the model assumes that the seasonal pattern will fade
away over time). However, never use more than one order of seasonal differencing or more than
2 orders of total differencing (seasonal+nonseasonal)

2.2.2 Tests for unit roots and seasonal unit roots

Apart from the graphical tools and the rules base on the characteristics of the ACF and PACF
plots, the order of intergration d can be found with the most common unit root test, the
Augmented Dickey-Fuller (ADF) test.

The order of seasonal differencing D can be found with the Canova-Hansen (CH) test and the
Hylleberg-Engle-Granger-Yoo (HEGY) test.These tests are used to evaluate the seasonal
stationarity of each time series and have been shown to complement each other (Hylleberg,
1995). Further Ghysels et al. (1994) performed a Monte Carlo experiment to compare some
seasonal unit root tests and concluded that the HEGY test performs best of all included tests.

2.2.2.1 The DF and ADF tests for unit roots

The Dickey-Fuller test is generally used for identifying the presence of a unit root in an AR

model y,=py,,+W,, W,~WN(0,02)which can be rewritten as a regression model as
VY, =(P-1)y W, =8y, tw,
It takes different forms depending on what is the type of the model under consideration:
a) Testing for a unit root: Vy,=(p-1)y,,+w,
b) Testing for a unit root with a drift: Vy,=a,+(p-1)y,,+w,
c) Testing for a unit root with a drift and a deterministc trend: Vy,=a,+a,t+(p-1)y,,+w,

After the model parameters have been estimated we can test if any unit roots are present by
checking the hypothesis: {Ho:pzl S H1:|p<14}. It should be noted that although the test statistic

used is similar to a t-test statistic, we cannot use the standard t-distribution to calculate critical
values. For this purpose a special table of critical values, simply known as Dickey-Fuller table, is

used.
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The Dickey-Fuller, abbreviated DF, is generalized into the Augmented Dickey-Fuller, abbreviated
ADF, test to accommodate the general ARIMA and ARMA models. The Augmented Dickey-

Fuller test allows for higher order autoregressive processes by including Vy,,in the model. But

our test is still if p=1 in
VY, matbt+(p-1)y,, +8,Vy; +8,Vy, +.. 48, VY, tW,, w,~WN(0,05)

It is not always easy to tell if a unit root exists because these tests have low power against near-
unit-root alternatives. To some extent, that criticism is invalid, because all tests have low power
when the actual parameter value is close to the null value. To some extent, it is valid because
there are tests that apply under broader sets of assumptions, or are simply more powerful than
the ADF test.

There are also size problems (false positives) because we cannot include an infinite number of

augmentation lags as might be called for with MA processes.

2.2.2.2 The HEGY test for seasonal unit roots

There are 3 approaches for modeling seasonal time series: deterministic seasonal processes,
stationary and non-stationary seasonal processes. The differences lie in how they react to the shocks
to the seasonal patterns. In deterministic seasonal processes have no effect on the seasonal pattern,
and in stationary seasonal processes they have temporary effect which would diminish with time
passes by. But in non-stationary processes the shocks have non-diminishing effect, causing
permanent changes to the seasonal pattern and increasing variance of the series. Therefore, the non-
stationary seasonal process raises the most concern and testing seasonal unit roots has high priority
in the modeling procedure. The miss-specification of the type of seasonality would cause severe bias

in modeling and forecasting process.

Consider a basic autoregressive polynomial ¢(B) having a form
o(B)=1-B°

where as usual B is the lag operator and S is the number of time periods in a seasonal pattern which
repeats regularly. For example, S=12 for monthly data when the seasonal pattern repeats itself every

year or S=7 for daily data. The equation ¢(z)=0 has S roots on the unit circle

2xi
z,=es k:cosﬁz—knjﬂsin(&} k=0,1,...,S-1
S S 17
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2kn
Each root Zkin (17) is related to a specific frequency S . When k=0,the root %k in (17) is called

non-seasonal unit root. The other roots ¥ in (17) are called seasonal unit roots.

Except for roots Zkin (17) at frequencies 0 and m, Zkin (17) are pairs of conjugation frequencies. We

can reorder the S frequencies of Zk by putting their conjugations frequencies together. We distinguish

two cases depending on whether S is an odd or an even number.
1) When S is an even number, the S frequencies are ordered as:
0, m=1

m?_ln, m=2.4,...(S-2)

2n-m?-2n, m=3,5,...(S-1)

T, Mm=S 18

In (18), 6, and 6,.,, are conjugation frequencies if m=2,4,...,(S-2).
2) When S is an odd number, there is no unit root at frequency =, the S frequencies are ordered as:
0, m=1

m?_ln, m=2.4,...(S-2)

27:-"%27:, §=3.5,...,(S-1)

T, m=S
In (19), 0, and O,,,, are conjugation frequencies if m=2,4,...,(S-2).

For both cases (18) and (19),the unit roots corresponding to frequency 0, are:

u,,=cos0 +isinb , 20
The frequencies 6,,also indicate the number of cycles for u,in the seasonal pattern, which are

m

derived by 0
27

_B+Z , 62

4 4

. . T .. T
.For example, consider hourly data where S=24,setting m=2, u2=cosﬁ+lsmﬁz

m

. Its frequency is 9m=% ,and it corresponds to =1cycle every 24 hours.
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As discussed above, the seasonal unit roots in time series would permanently change the seasonal
patterns of the series and make the variance of the series increase linearly. Therefore testing seasonal

unit roots proceeds modeling seasonality

Among, the seasonal unit root tests, the HEGY test which was proposed by Hylleberg, Engle,
Granger and Yoo (1990) has the advantage of testing seasonal unit root at each frequency separately,
thus it is widely adapted. The HEGY test was originally proposed for testing seasonal unit roots in
quarterly data but later its use was extended also for monthly data (Beaulieu and Miron (1992)).

First, we define the seasonal difference operator of period s as
V,=1-B°
Note that: V, = V°=(1-B)°

The HEGY test for seasonal integration is conducted by estimating the following regression (special

case for quarterly data)

4 4 p-1
V.Y, =a+Bt+ijth +z W,y +Z YmVaYem 1€
=2 i=1 m=1 21

Q

where a and t are the drift and deterministic time trend terms, <! is a seasonal dummy variable, and

the Wi are given below:

W, =(1+B)(1+B%)y,

W, =-(1-B)(1+B*)y,

W, =-(1-B)(1+B)y,

W, =-B(1-B)(1+B)y, =W, ,

In addition, as in the Augmented Dickey-Fuller tests, some lagged values of the dependent variable
are included to assure the appropriate behavior of the residuals. The literature suggests, among other
criteria, to include all the lagged values until p-1; more details about how p is determined can be
found in Perron (1995). The procedure starts from a very long lagged model and reduce the number
of lags until the last lag included is statistically different from zero at some prespecified level of
significance (in general, a 10% level of significance is used). The introduction of these lags (as in the

Augmented Dickey-Fuller tests) is to assure that the residuals have the standard properties (no serial

autocorrelation). Finally, Etis an error term with the standard white noise properties.
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=0 =0

After OLS estimation, tests are conducted for™ ° for™ “and a joint test of the hypothesis

n3=7[4=0.|f none of the i °s are equal to zero, then the series is stationary (both at seasonal and non-

seasonal frequencies).

Interpretation of the different s is as follows:

m, <0

1) If H,:m,=01is rejected in favor of , then there is no long-run (non-seasonal) unit root. Tis on

W :S(B)ytwhich has had all of the seasonal unit roots removed.

0

2) If Hy:m,=0 s rejected in favor of ™2 <% then there is no semi-annual unit root.

3) If H,:m,=n,=01is rejected in favor of M3<0 or ™4<0, then there is no unit root in the annual cycle.

The HEGY test has been expanded for monthly time series (12 roots) by Franses (1991) and

Beaulieu and Miron (1993). For monthly data, the seasonal unit roots are

2 2 2 2 2 2 2 2

These roots correspond to the frequencies: 0, m, *n/2; +2n/3; *rn/3; +5n/6; and *mn/6. These
frequencies correspond to the bi-monthly case, four-month case, quarterly case, six-month and 12-

month cases’.
In the monthly case, the procedure requires the estimation of the following expression

12 12 p-l
VY, = a+Bt+ijth + Znivvi,m +Z YmV12Yem €
=2 i-1 m=1 22

Whereth are deterministic seasonal dummies, and W, are transformations of the y, that provide the

basis for testing unit roots at zero and the rest of the frequencies.

Let assume that m, corresponds to the unit root at frequency 0 and =, corresponds to the unit root at

frequency m. To verify the presence of unit roots, we need to test if the 2 parameters equal to 0. The

null hypothesis is

'If the unit circle is 2z, a month has & of a cycle; therefore, every two months there is one cycle and there are six cycles

in the year.
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H, =0

Om***m
against the alternative hypothesisH, <0 ,where m=1 or 2. The test statistics used here are t-
statistics: t, = mm / om ,where mnis the OLS estimator of n, and omis the sample standard error of mtr .

Due to the fact that the complex unit roots are conjugate pairs, the regressors appear in pairs and
correspond with frequencies in pairs. Thus, only that both parameters are zero could proof the
existence of unit roots. This leads to the joint test of each pair. The null hypothesis is:

HOm:nmzﬂ:mﬂ:O

The alternative hypothesisH,,in,, #0 orm ., #0 ,m=3,5,7,.... The F-statistics

m+1

I:m,m+l: %(trzn +tr2n+1)

23

are used, where the t-statistics t and t_,are derived in the same way as t andt,. If the null

hypothesis is not rejected, the test indicates unit roots exist at the corresponding 2 frequencies.

There is no known distribution for the HEGY test statistics but only asymptotic distributions which
can be used in order for the tests to be carried out. In general, the asymptotic distributions of the

HEGY test statistics typically depend on the specification chosen for the deterministic component.

2.3 ldentifying the number of AR and MA terms

In this section the method of selecting the remaining orders will be described. The autoregressive
orders p and P and the moving average orders q and Q will be decided partly by the correlogram

(ACF,PACF) andand partly by minimizing information criterion's with the use of the HK-algorithm.

2.3.1 Graphical tools

The ACF and PACF plots arefirst used to make guesses for appropriate orders. More specifically

for orders p,q:

Indication 1: If the PACF displays a sharp cutoff and ACF declines gradually= AR signature.

Also an AR series is usually positively autocorrelated at lag 1.

The lag at which the PACF cuts off is the indicated number of AR terms.
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Indication 2: ACF that cuts off sharply after a few lags and PACF that declines gradually =MA

signature. Also, an MA series is usually negatively autocorrelated at lag 1.
The lag at which the ACF cuts off is the indicated number of MA terms.

Indication 3It is possible for an AR term and an MA term to cancel each other's effects, so if a
mixed ARMA model seems to fit the data, also try a model with one fewer AR term and one
fewer MA term.

Now for the seasonal orders P, Q we have:

Indication 4: If the autocorrelation of the appropriately differenced series is positive at lag s,
where s is the number of periods in a season, then consider adding an SAR term to the model. If
the autocorrelation of the differenced series is negative at lag s, consider adding an SMA term to
the model. The latter situation is likely to occur if a seasonal difference has been used, which
should be done if the data has a stable and logical seasonal pattern. The former is likely to occur
if a seasonal difference has not been used, which would only be appropriate if the seasonal
pattern is not stable over time. You should try to avoid using more than one or two seasonal
parameters (SAR+SMA) in the same model, as this is likely to lead to overfitting of the data
and/or problems in estimation.

In order to sum up, assuming that the differencing implied by d and D have been done to the
time series, meaning that the SARIMA(p,d,q)x(P,D,Q)s of the original series Yy, has taken its

equivalent representation as a SARMA(p,q)x(P,Q)s of the differenced series y,, we can estimate
graphically the appropriate orders for the SARIMA model by using the results in Table 2.1:

Table 2.2: ACF and PACF to identify the orders of SARMA(p,q)*(P,Q)s

ACF PACF
AR(p) Exponentially decreasing or damped  Spikes to lag p then zero
sine wave
MA(Q) Spikes to lag q then zero Exponential decreasing or damped
sine wave

ARMA(p,q) Exponentially decreasing or damped  Exponentially decreasing or damped

sine wave after g-p lags sine wave after p-q lags

SAR(P)s Exponentially decreasing or damped  Spikes for lag Ps then zero

sine wave for all lags times s
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SMA(Q)s Spikes for lag Qs then zero Exponentially decreasing or damped

sine wave for all lags times s

SARMA(P,Q)s Exponentially decreasing or damped Exponentially decreasing or damped

sine wave for all lags times s after sine wave for all lags times s after
lags (Q-P)s lags (P-Q)s

2.3.2 Selection with the HK-algorithm

However this procedure of finding patterns from ACF and PACF plots is considered subjective
for mixed and seasonal processes. To make the model selection less subjective some frequently
used likelihood based information criterions are applied. These are the Akaike information
criterion (AIC), the AIC with correction for small samples (AlCc) and the Bayes information
criterion (BIC).

The Hyndman-Khandakar (HK) algorithm was developed by Hyndman and Khandakar (2008) and
can be applied in R with the function auto.arima in the forecast package. They suggest an
iterative time-saving procedure where the model with the smallest value of AIC, AICc or BIC

will be found much faster, since it is now found without comparing every possible model.

To derive these information criterions the first thing that is needed is the likelihood function,

L(¥), where ¥ is the maximum likelihood estimates of the parameters for the SARIMA with

n=p+q+P+Q+1 parameters and sample size T. The criteria are then derived by the following

equations:

AIC=-2log (L(‘P))+2n 24

Alcc=aic+ (M) 25
T-n+1

BIC:-2log(L(‘P))+nlog(T) 26

Note: It has been shown that AIC has a tendency to choose a model that is over-parametrized
(Hurvich and Anderson, 1989). Further Burnham and Anderson (2004) suggest that AIC and
AICc should be valued over BIC and Brockwell and Davis (1991) propose that AICc is most fit
for selecting orders of SARIMA models. Thus, the model selected by AICc will be most valued.
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The HK-algorithm then performs an iterative procedure to select the model that minimizes the
value of each criterion. It begins with estimation of the following four models:
1)SARIMA(2,d,2)%(1,D,1)s
2)SARIMA(0,d,0)%(0,D,0)s
3)SARIMA(1,d,0)x(1,D,0)s
4)SARIMA(0,d,1)x(0,D,1)s

where d and D are assumed to have been found previously and a constant is included in the
models if d + D < 1. The model which attains the smallest value for the chosen information
criterion is then selected and the procedure continues with varying the parameters in the

following ways:

* Let each of p, g, P and Q vary with £1.

* Let both p and g vary with +1 at the same time.

* Let both P and Q vary with +1 at the same time.

« Include the intercept if previously not included otherwise do the opposite.

This step of the procedure will be repeated until none of these variations decreases the value of

the criterion.

There are some constraints that follows with the use of this method. These are used to check that

the model is reasonable and well-fitted and are the following
» The maximum orders of p and q are five.
» The maximum orders of P and Q are two.

« All non-invertible or non-causal models are rejected. These are found by computing the roots of
the lag polynomials ¢(B)®(B) and 6(B)®(B), if any root is smaller than 1.001 then the model is

rejected.

« If errors arise when fitting the model with the non-linear optimization routine then the model is

rejected.

2.4 Estimating the parameters of the model selected

The second part of the Box-Jenkins methodology for SARIMA modeling is estimation. Once:a
model has been tentatively identified, its parameters have to be efficiently estimated, -and the

resulting fit assessed, mainly by an analysis of residuals, to see whether it can be accepted asa
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plausible explanation of the series. If the model is found to be inadequate, then this assessment
should indicate promising modifications to the identification, and the cycle is repeated; and so on
until the analyst is satisfied (Box and Jenkins, 1976).

For the general ARMA(p,q) process ¢(B)x,=0(B)w,, w,~WN(0,62)in which, the order parameters,

p and g, are known there are three techniques for estimating the p+g+1 unknown parameters:
a) Two-Step Regression Estimation b) Yule-Walker Estimation ¢) Maximum Likelihood Estimation

Although, for the class of SARIMA models the first two approaches prove to be inadequate for the
estimation task and only the Maximum Likelihood method can be applied.

If the model contains only AR terms, the unknown coefficients can be estimated using ordinary least
squares. However, if the model contains MA terms too, the task becomes more complicated, because
the lagged values of the innovations are unobservable. Consequently, it is not possible to derive
explicit expressions to estimate the unknown coefficients and therefore one has to use maximum

likelihood for estimation purposes.

In order to convey an idea of what follows, we will shortly outline the procedure: first, one sets up
the SARIMA model - in the following also called original model - with some initial values for the
unknown vector of parametersy. Restrictions can be imposed on the coefficients. The simplest
restriction is that some of the coefficients are zero. Then the value of the likelihood function, given

the initial parameters, is evaluated.

Unfortunately, in most cases the original SARIMA model cannot be estimated directly. 1f one looks
at the general SARIMA representation one recognizes on the left hand side the product of two
expressions. Both of them contain lag-operators. Such expressions have to be telescoped out first.

The result we get is an ordinary ARMA(p,q) model which can be estimated.

Under the assumption that an ARMA model is stationary and invertible and that the observations are
normally distributed it can be estimated using the maximum likelihood approach. Once the
conditional sum of squares function is calculated numerical methods have to be applied to maximize
the likelihood function with respect toy. By making suitable assumptions about initial conditions, the

maximum likelihood estimators can be obtained by minimizing the conditional sum of squares.

However, the conditional sum of squares is not always very satisfactory for seasonal series. In that

case the calculation of the exact likelihood function becomes necessary (Box and Jenkins, 1976).
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The approach of maximum likelihood (ML) requires the specification of a particular distribution for

a sample of T observations Y, . Let

fyT YidreYt (yT’yt-l""’yll‘V)

denote the probability density of the sample given the unknown nx1 parametersy. It can be
interpreted as the probability of having observed the given sample (Hamilton, 1994).
With the sample y={y.y,,.....y; } at hand, the above given probability can be rewritten as a function

of the unknown parameters given the sample y. Following the notation of Box and Jenkins (1976),

we use the notation I(y|y)=InL(yly).

The maximum likelihood estimate  is the parameter vector that maximizes the probability for the

observed sample y. Thus, the MLE satisfies the so-called likelihood equations, which are obtained by

differentiating 1(y|y)with respect to each of the unknown parameters of the vectory and setting the

derivatives to zero. Using vector notation and suppressing y, we obtain

ol(y) _ -

As a rule, the likelihood equations are non-linear. Therefore, the ML estimates must be found in the
course of an iterative procedure. This is true for the exact likelihood function of every Gaussian
ARMA(p,q) process (Hamilton, 1994).

In many applications of ARMA models the conditional likelihood function is an alternative to the

exact likelihood function. In that case, one assumes that the first p observations of a Gaussian

ARMA(p,q) process are deterministic and are equal to its observed values {yp,...,yl}. The initial

residuals a, for te{p,...p-q+1} are set to its expected values 0. The log likelihood function for this

setting is of the following form with wz(w’,cz)

S(y)

262

(y)=- 1 (T-p)In(2n)- 1 (T-p)In(c?)- 28
2 2

and S(y") denoting the sum of squares function
! - ! 2
S(w)=2_ (a(v)) 29
t=p+1
The notation a, (\p') emphasizes thata, is no longer a disturbance, but a residual which depends on

the value taken by the variables in y'.
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Note, that the parameter c® is an additional one, that is not included in vector y’. It is easy to see
that (28) is maximized with respect to y' if the sum of squares S(y") is minimized. Using the
condition (27), this leads to

i 2 (‘f") a,=0 30
=

Thus, the ML estimate for y' can be obtained by minimizing (29). Furthermore, we obtain from (28)

and (27) that

Thus, given the parameter vector y that maximizes the sum of squares, and thus the conditional log

likelihood function (28), one divides the sum of squares by T-p to obtain the ML estimate .

Once the ML estimate v is calculated, one wants to have standard errors for testing purposes. If T is
sufficiently large, the ML estimate I(y) is approximately normally distributed with the inverse of the

information matrix divided by T as covariance matrix. The inverse of the Hessian for I(y) is one

way to estimate the covariance matrix (Hamilton, 1994). One can calculate the Hessian applying

numerical methods.

2.5 Diagnostics

The fit of the model is evaluated by diagnostic checks of the residuals. The residuals should behave
like Gaussian white noise that is appear random, homoscedastic and normal (Box and Jenkins, 1976).
The first part is a graphical check of the standardized residuals, meaning the residuals divided with
their standard deviation. These should look random and homoscedastic. The number of outliers are
also important where a good indication would be that about 95 percent of the residuals lie inside their
95 percent confidence interval+1.96 (Brockwell and Davis, 1991). The next step is to evaluate the
assumption of randomness by using the sample autocorrelation function of the residuals. The
autocorrelations of interest are those that are significantly different from zero, that is those who lie
outside the sample size dependent approximately 95 percent confidence interval +2/~T (Hamilton,
1994). Those significant lags suggest some kind of inconsistency in the residuals, but there is no
reason to worry if only about five percent of the autocorrelations are significant. (Brockwell and
Davis, 1991) In this thesis the most important part of the diagnostic checking is the use of teststo

possibly acquire statistically significant results which would imply a rejection of the fitted model.
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The chosen tests are the Box-Ljung test which is used to test the serial independence and the Jarque-
Bera test which tests the normality of the residuals.

2.5.1 The Box-Ljung test
The Ljung and Box (BL) test was developed in 1978 and is used to test the randomness of the

residuals. For this test the first step is to extract the residuals e: for the fitted model. The T residuals
are then used to derive the sample autocorrelations of the residuals with the following equation

re=tk k=12 32

This equation is used until a set of autocorrelations I1,r2,...fm have been obtained. These are then

used to test the null hypothesis of serially independent residuals versus the alternative hypothesis that
they are not serially independent with the following test statistic (Ljung and Box, 1978)

Q=T (T+2)> (k)" T 33

m
k=1

which for an appropriate model was shown to be asymptotically distributed as a y.,(m)where m is

the number of lagged autocorrelations included and a is the selected significance level. Harvey, 1989
suggest that the number of lags should be a function of T for example the truncated value of m = VT
and that the degrees of freedom should be corrected for SARIMA models to df = m—p—q—P—Q. The
critical value is included in (Ljung and Box, 1978) and then compared to the value of the test

statistic. The null hypothesis of randomness is rejected for large values of the test statistic.

2.5.2 The Jarque-Bera test

The Jarque-Bera test is used to test the normality of the residuals. The null hypothesis of the test is
normality and it is tested against the alternative hypothesis of non-normality. The statistic that is used

is the first part of equation 4 in Jarque and Bera (1980), written in the following way

34

s*  K*3
6 24

JB=T[— +
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where T is the number of observations, S is the skewness and K is the kurtosis. The statistic is
assumed to be distributed as a x> (2) variable and the null hypothesis of normality is rejected for

large values of the statistic (Schwert, 2009).

2.6 Forecasting

If the selected SARIMA model has already been estimated and has passed all the diagnostic tests the
final step remaining is forecasting. In forecasting, the goal is to predict future values of a time series

X

n+m >

m=1,2,..., based on the data collected to the present g(={xn ,Xn_l,...,xl}.

It has been shown that the SARIMA(p,d,q)x(P,D,Q)s for the variable X,, t = 1,...,T can be written
equivalently as an ARMA(p + sP,q + sQ) fory, from Equation (16). The forecast function for the

assumed stationary variable Y, is then written as
(Vi 0"y, romye 3

where e =X,-Yy.1 (Hamilton, 1994). The forecast for lead time t, meaning the time that follows after

the last observed information, is then derived by
(yt+s|t '”):(P(B)* (yt+s-1|t 'H) +e(B)*et+s-1 36

That is the forecast for lead time t will be derived by the previously observed values of Yy, , previous

forecasts of y and the residuals e. which have been derived for all time points up to the last

observed observation but are equal to zero for the ones where the real values have not yet been
observed. (Hamilton, 1994)

2.7 Goodness of fit

2.7.1 Error measures and tests

The accuracy of the forecasts obtained will be evaluated by some error measures. Error measures are

easily derived and give an indication for which model that is most suitable for forecasting. These will

be derived by the use of y, which is the real value, y, which is the forecast value, n which is the

length of the forecast horizon and t which goes from one to n. The first error measure. thatis

presented is the mean squared error (MSE) which is estimated by
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n

MSE:%Z(Yt'yt)Z 37

t=1

A value of zero would imply a perfect forecast and a negative value should not be possible to obtain.
The next error measure is the mean absolute deviation (MAD) is derived by

MAD=%Zn:

t=1

Yi-Yi 38

For this measure the value of zero would imply a perfect forecast and a negative value should not be
possible. The difference between MAD and MSE is that MSE places relatively greater penalty on
large forecast errors. Further the mean absolute percentage error (MAPE) is calculated by

Yoo 39

MAPE = lzn:
2

N =

A value of zero would imply a perfect forecast and a negative value cannot possibly be obtained. It is

also important to state that this error measure is not defined if y, =0 for any t. The MAPE scales the

errors, that is this measure puts relatively more penalty to the forecast error if the true value of the
observation is small. The last of these measures is a statistic called Theil's U. This statistic compares
the ratio between the MSE implied by the model forecast and the MSE of forecasts obtained by a
naive model which sets the upcoming observation at time t+1 as equal to the value observed at time
t. It is derived by (Petris et al., 2009)

Yo (vi-v)

U= 40

Zrzl(yt - yt-l)2

The value of Theil's U will be smaller than one if the model forecast has higher accuracy than the

naive model forecast. The estimate will be zero if the forecasts are perfect and it cannot possibly be

derived as negative. It is not defined if the naive model perform perfect forecasts (Petris et al., 2009).

The Diebold and Mariano (DM) test was developed in 1995 and it’s first assumed that there are two

forecasts wi,...,wn and 21,...,2h of the true time series Yy,,...,Yy, where h is the forecast horizon.
These are then used to derive the forecast errors of the first e, =y, -wiand the second model
e, =Y, -Zi. (Diebold and Mariano, 1995).

This test works even if the forecast errors have a non-zero mean are non-Gaussian and are correlated

to each other. For the test in R with function dm.test the forecast package with default specifications



Page |27

implies that the errors are used to derive the loss functions g(e,;) = |eli|2and ge,) = |e2i|2which lead

to the loss-differential series d; ={g(e,)-g(e }ihlwhich is assumed normally distributed. The

Z

sample mean is then derived by d

The next step is to derive the autocovariance at lag 0 for di, that is %(0) which is assumed to be a

consistent estimate of the variance of hd . The test statistic then follows and is derived by

pM=—9_ ~ N1 n

Y(0)/h
Thus, the DM statistic is assumed to be standard normal and the rejection values then follows from
that. The null hypothesis of the test is that there is no difference between the accuracy of the two
forecasts. The alternative hypothesis is either two-sided to test if either model perform better than the
other or one-sided to test if one specific model is more accurate than the other. (Diebold and
Mariano, 1995)

2.7.2 Cross-validation for time series

Because of the nature of time series data there are strong temporal dependencies and so it is not
possible to perform the usual validation techniques. A very useful way to overcome the difficulty of

biased evaluations is to use the procedure called time series cross-validation.

Most cross validation schemes appear to rely on having i.i.d. data because the training-test splits do
not take time indices into account. For example, 5-fold cross validation applied naively over 5 time

periods would ignore the sequential nature of time, mixing up past, present and future as in figure 2.1

Split 1: Test set Training set

Split 2: Training set Test set Training set

Split 3: Training set Test set Training set

Split4: Training set Test set Training set

Split 5: Training set Test set
Time 1 Time 2 Time 3 Time 4 Time 5

Figure 2-1.: Usual 5-fold cross validation scheme
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This pattern would lead to wrong conclusions since autoregressive models require a contiguous
block of data, because they rely on the presence of autocorrelations at predefined lags (instead of
having training sets split into 2 parts).

Instead we can use a rolling or sliding window approach to cross validation to avoid this issue. For 5
time periods, you would split the sets as follows:

Split 1: Training set Test set

Split 2: Training set Test set

Split 3: Training set Test set

Split 4: Training set Test set
Time 1 Time 2 Time 3 Time 4 Time 5

Figure 2-2:Rolling or sliding window cross-validation scheme for time series data

Assume we want to perform a 1-step ahead forecast for a time series of n-values starting with a

training set of the first k-values, then the time series cross validation follows the next steps:
Stepl: Select the observations at, and prior to, time k

Step2: Select the observation at k+1 for the test data

Step3: Compute the forecasted value for k+1 based on the values 1,2,...,k and the forecast error

Step4: Slide the training set window by one and use the values 2,3,...,k, k+1 (where the (k+1)th

observation is the real value of the time series)

Step4: Slide the training set window by one and use the values 2,3,....k, k+1 (where the (k+1)th

observation is the real value of the time series)to forecast the value for time k+2.



Page |29

3.State space models and the Kalman filter

In this chapter we discuss the basic notions about state-space models and their use in time series
analysis. Dynamic linear models (DLM) are presented as a special case of general state space
models, being linear and Gaussian. For DLM, estimation and forecasting can be obtained

recursively by the well known Kalman filter.

State-space models appeared in the time series literature in the seventies (Akaike (1974),
Harrison and Stevens (1976)) and became established during the eighties (West and Harrison
(1997)). In the last decades they have become a focus of interest. This is due on one hand to the
development of models well suited to time series analysis, but also to an even wider range of
applications, including for instance molecular biology or genetics, and on the other hand to the
development of computational tools, such as modern Monte Carlo methods, for dealing with

more complex nonlinear and non-Gaussian situations.

State-space models consider a time series as the output of a dynamic system perturbed by
random disturbances. As we shall see, they allow a natural interpretation of a time series as the
result of several components, such as trend, seasonal or regressive components. At the same
time, they have an elegant and powerful probabilistic structure, offering a flexible framework for
a very wide range of applications. Computations can be implemented by recursive algorithms.
The problems of estimation and forecasting are solved by recursively computing the conditional
distribution of the quantities of interest, given the available information. In this sense, they are

quite naturally treated from a Bayesian approach.

State-space models are based on the idea that the time series Y, is an incomplete and noisy

function of some underlying unobservable process 0,,t=1,2,...,called the state process.. More
generally, we might think of as an auxiliary random process which facilitates the task of

specifying the probability law of the time series: the observable process Y, depends on the latent
state process 0,, which has a simpler, Markovian dynamics, and we can reasonably assume that
the observation Y,only depends on the state of the system at the time the measurement is taken,

0,. Figure 3.1 represents graphically the dependences among variables that we are assuming.

Bo — B — B — o — By —s O — Bra

| l l | l
1}-| ]'._' 1}-r 1 .!|.r }-.'- 1

Figure 3-1: Dependence structure for a state space model
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More formally, the assumptions of a state space model are
Al)(6,,t=0,1,2,...) is a Markov chain; that is, 6t depends on the past values(6,,,,....0,,)only
through 0,,. Thus, the probability law of the process (6,,t=0,1,2,...)is specified by assigning the

initial density p,(6,) of 8, and the transition densities p,(6,|6,,) of 8, conditionally on 6.

A2) Conditionally on (6,,t=0,1,...), the Yt’s are independent and Y, depends on 6, only. It follows

that, for any n > 1, (,,...,, )|0,.....8, have joint conditional density | ]f(y.[6,).

i=1

With the help of the graph for understanding the conditional independence relations implied by the

model, we find that, for anyn > 1,

(06,010, Y1, Y, ) ~po (0] [P (0,,Y1[05.6,,-.0,1, Yo Yoy )=

t=1

Do O] [ F(Yul0gs-s00, Yo Yt )P (005500, 5, Yirers Yoy ) =P (0) [ £(Y:16,)p (6,16,
t=1

t=1

In particular, we see that the process ((6,.Y;),t=1,2,...)is Markovian. The density of (Y,,...,,) can

be obtained by integrating out all the 6-variables from the joint density of the above expression. As

we shall see, computations are fairly simple in Gaussian linear state space models; however, in

general the density of (Yl,...,Yn) is not available in close form and the observable process Y, is not

Markovian.

3.1 DLM for time series analysis

The first, important class of state-space models is given by Gaussian linear state-space models,

also called dynamic linear models (DLM). These models are specified by means of two equations

Y. =F0,+v,, v,~N_(0,V,)
0,=G 0 ,+w,, w,~N_ (0,W,)

42

where Gt and Ft are known matrices and the (vt) and (wt) are two independent white noise
sequences (i.e., they are independent, both between them and within each of them), with mean
zero and known covariance matrices Vt and Wt respectively. The first equation above is called

the observation equation, the second state equation or system equation. Furthermore, it is

assumed that 0, has a Gaussian distribution,
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0,~N,, (m,.C, ) 43

for some non-random vector m, and matrix C,, and it is independent on (vt) and (wt). One can
show that the DLM satisfies the assumptions (A.1) and (A.2) of the previous section, with
Y6, NN(Ftet ’\/t) and etlet-1~N(Gt6t-1’W ) :
DLM is a specific case of the general state space models specified by the set of equations

Yt=ht (et’vt)

et:gt (et-l’wt)
with arbitrary functions g,and h,. For the class of DLM we add also the assumption that g, and

h, are linear functions and the assumption of Normal distributions.

3.1.1 Trend models

Polynomial DLM are the models most commonly used for describing the trend of a time series,
where the trend is viewed as a smooth development of the series over time. At time t, the expected

trend of the time series can be thought of as the expected behavior of Y, for k > 1, given the

information up to time t.

Let us denote with D, the information provided by the first t observations Y,,...,Y,, the expected

trend is the forecast function f,(K)=E(Y,,|D,). A polynomial model of order n is a DLM with

constant matrices Ft = F and Gt = G, known covariance matrices VVt and Wt, and a forecast function

of the form
f, (k)=E(Yt+k|Dt ) =a,, +at]1k+...+at]n_1k”'l, k>0 44

where a,g,...8,,, are linear functions of m,=E(6,/D,) and are independent of k. Thus, the forecast

function is a polynomial of order (n — 1) in k. Roughly speaking, any reasonable shape of the
forecast function can be described or closely approximated by a polynomial, by choosing n
sufficiently large. However, one usually thinks of the trend as a fairly smooth function of time, so
that in practice small values of n are used. The most popular polynomial models are the random walk
plus noise model, also known as the local level model, which is a polynomial model of order n = 1,

and the linear growth model, that is a polynomial model of order n = 2.
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3.1.1.1 The local level model
The random walk plus noise, or local level model, is defined by the following two equations

Y. =p, v, v,~N(0,V)

45
My :p‘t—l—’_wt > Wy NN((),W)

where the error sequences (vt) and (wt) are independent, both within them and between them. This is
aDLM withm=p =1, 6,=u, and Ft = Gt = 1. Intuitively, it is appropriate for time series showing
no clear trend or seasonal variation: the observations (Yt) are modeled as random fluctuations around

a level (p,); inturn, the level can evolve randomly over time (described by a random walk). This is

why the model is also called local level model; if W = 0, we are back to the constant mean model.

3.1.1.2 The linear growth model

A slightly more elaborated model is the linear growth model, which has the same observation

equation as the local level model, but includes a time-varying slope in the dynamics for p, .

Y, =, +v,, v,~N(0,V)
B =ty B W Wy NN(O,GQ) 46

— 2
B=Ptw 2> Wa~N (O’Gw2 )

with uncorrelated errors. This is a DLM with

2
11 c, O
9t=[utJ,G{ },W= t LE=(10) 47
Bt 01 0 GWz

The system variances 7, , are allowed to be zero.

3.1.2 Seasonal factor models

Suppose that we have seasonal data from quarters Y,,t=1,2,... Assume also for brevity that the series

has zero mean: a non-zero mean, or a trend component, can be modelled separately, so for the

moment we consider the series as purely seasonal. We might describe the series by introducing

seasonal deviations from the zero mean, expressed by different coefficientsa, for the different

quarters, i=1,2,3,4. So, if Y, refers to the first quarter of the year and Y,to the second quarter, we

assume
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Y=tV 48
Y,=a,+V,

and so on. This model can be written as a DLM as follows. Let et_lz(al,a4,a3,a2)Tand

F=F= (1,0,0,0). Then the observation equation of the DLM is given by
Y, =F0,+v,

which corresponds to (48). The state equation must ‘rotate’ 0,,into a vector 9t=(a2,al,a4,ag)T, )
that Y,=F0,+v,=a,+v,. The required permutation of the state vector can be obtained by a

permutation matrix G so defined

0001
{1000
“lo100

0010

Then the state equation can be written as
Bt=G8t_1+wt=(a2,al,a4,a3)T +w,

In the static seasonal model, w,is degenerate on a vector of zeros (i.e., W,=0). More generally, the
seasonal effects might change in time, so that W, is non-zero and has to be carefully specified.

In general, a seasonal time series with period s can be modeled through an s-dimensional state vector
0, of seasonal deviations, by specifying a DLM with F = (1, 0, . .., 0) and G given by a s by s
permutation matrix. ldentifiability constraints have to be imposed on the seasonal factors a,,...,.a,. A
common choice is to impose that they sum to zero, Z;a,.:o. The linear constraint on the s seasonal

factors implies that there are effectively only s—1 free seasonal factors, and this suggests an

alternative, more parsimonious representation that uses an (s — 1)-dimensional state vector. For the
example given by (48), one can consider 6,,=(a,.,a,.a, )T and 0,=(a,.a,.a, )T , With F=(1, 0, 0). To
go from 0., to 0,, assuming for the moment a static model without system evolution errors and

using the constraint Z;ai =0, one has to apply the linear transformation given by the matrix

-1-1-1
G=100
010
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More generally, for a seasonal model with period s, one can consider an (s-1) dimensional state
space, with F=(1,0,...,0) and

1-1. -1 -1
G=|10..... 0 0
00.... 1 0

A dynamic variation in the seasonal components may be introduced via a system evolution error with

variance W:diag(civ,o,....,o).

3.1.3 Combining component models

In the previous sections we have presented some common models for the different components
(trend, seasonality) of a time series. These models can be used as “building blocks” for constructing
a DLM for a time series with a more complex behavior. The additive structure of the DLM allows to
easily combine the different component models, as discussed at the beginning of this section.

Suppose, for example, that a series Y, is the sum of a trend component Y , and a seasonal
component Yy, :

Y=Y Y Y,
We can construct a DLM for each component, so that

Y TR0,
0, =G O uutwi, W ~N (O’WL,I )

and

Yo =Fs 05,
05:=Gs s tWs,, W ~N (O’Ws,t )

Define F and 6, as partitioned matrices
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Then Y,is described by a DLM with observation equation
Y, =R6,+v,=F 0 tF 0, v, v,~N(0,V,) 49
and state equation

0,=G0,,tw,, w,~N(0,W,) 50

3.2 Kalman filtering

Here, to get started, we consider the model as given, that is we assume that the densities f(y,|0,)

and p(et|et_l) have been specified. For a given state-space model, the main tasks are to make

inference on the unobserved states or predict future observations based on a part of the
observation sequence. Estimation and forecasting are solved by computing the conditional

distributions of the quantities of interest, given the available information.

For estimating the state vector we compute the conditional densities p(0,ly;.....y,). We

distinguish between problems of filtering (when s = t), state prediction (s > t) and smoothing (s <
t). It is worth to underline the difference between filtering and smoothing. In the filtering
problem, the data are supposed to arrive sequentially in time. This is the case in many applied
problems: think for example of the problem of tracking a moving object, or of financial
applications where one has to estimate, day by day, the term structure of interest rates, updating
the current estimates as new data are observed on the markets the following day, etc. In these
cases, we want a procedure for estimating the current value of the state vector, based on the
observations up to time t (“now”), and for updating our estimates and forecasts as new data

become available at time t + 1. For solving the filtering problem, we compute the conditional

density p(6,ly,.....y,).In DLM, the Kalman filter provides the formulas for updating our current
inference on the state vector as new data become available, that is for passing from the filtering

density p(0,]y,.....y;) 10 P(OuslYisesVert ) -

However in general the actual computation of the relevant conditional densities is not at all an
easy task. Dynamic linear models are one relevant case where the general recursions simplify

considerably. In this case, using standard results about the multivariate Gaussian distribution, it is

easily proved that the random vector (90,01,...,(—)t,3(1,...,Yt) has a Gaussian distribution for any
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t>1. It follows that the marginal and conditional distributions are also Gaussian. Since all the

relevant distributions are Gaussian, it suffices to compute their means and covariances.

Theorem 3.1 (Kalman filter): For the DLM specified by (42), if 6,,]D_,~N(m,,,C,,),t>1 then
a) The one step ahead state predictive density of 6,, given D, is Gaussian with parameters

a,=E (et Dy, ) =Gm,,
R.=Var (et |Dt-1):GtCt-1GtT W,

b) The one step ahead predictive density of Y,given D,,is Gaussian, with parameters

ft =E (YtlDt—l) :Ftat
Qt =Var (YtlDt-l) :FthFtT +Vt

c) The filtering density of 0, given D,is Gaussian, with

m, =E (et‘Dt ):at+R1ETQ;let
Ct :Viil’(et |Dt ):Rt 'RtFtTQ;lFth

where e, =Y,-f,is the forecast error.

The Kalman filter allows to compute the predictive and filtering densities recursively, starting
from 6,/D,~N(m,,C,)then computing p(6,/D,) and proceeding recursively as new data

information becomes available.

3.3 Kalman smoothing

The problem of smoothing, or retrospective analysis, consists instead in estimating the state
sequence at times 1,...,t, given the data y,,....y,. In many applications, one has observations on a
time series for a certain period, and wants to retrospectively study the behavior of the system
underlying the observations; for example one can think the problem of an economic researcher
trying to understand the socio-economic behavior that explains the time series GDP of a country

for the same period of time. The smoothing problem is solved by computing the conditional

distribution of 0,,...,0, given Y,,...,Y,.
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Again, one has a backward-recursive algorithm for computing the conditional densities of 6,|D; ,
for t< T, starting from the filtering density p(6;/D;) and estimating backward all the states’

history.

Theorem 3.2 (Kalman smoothing): For the DLM specified by (42), if 6,,,[D;~N(s,,,,S,,) . then

0,/D;~N(s,,S, )where

S¢=my +CthT+1Rjrl (st+1'at+1)
St :Ct +CIG:(I;1R til (St+1_Rt+l) RtilG t+1Ct

The Kalman-smoother allows to compute the densities of 6,|D, starting from t=T-1, in which
case 6,/D;~N(s;=m;,S;=C;), and then proceeding backward for computing the densities of

0,/D; for t=T-2, t=T-3 and so on.

3.4 DLM innovations and model checking

As we have seen, for DLM the Kalman filter provides the filtering estimate m,, given the

information D,, as the previous estimate m,, corrected by a term which depends on the forecast

error

e, =Y,-E(Y,|D,,)=Y,, 51
The forecast errors can alternatively be written in terms of the estimation errors as follows
e,=Y,-Fa,=F0,+v,-Ea, 52
For the forecast errors e,, t >1some interesting properties hold:

a) The expected value of e, is zero, since E(e,)=E(E(e,D,,))=E(0)=0

b) For s#1t, e,and e, are uncorrelated.

c) The random vector ¢, is uncorrelated with any function of Y;,...,Y,

d) (e, t>1)is a Gaussian process with e,~N, (0,Q,), t=1,2,...
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The forecasts errors e,are also called innovations. The representation Y,=f, +e, justifies the
terminology, since one can think of Y,as the sum of a component which is predictable from past
observations, f,, and another component, e,, which is independent of the past and therefore

contains the new information carried by the observation by the observation Y,.

When the observations are univariate, the standardized innovations, defined by

are a Gaussian white noise, i.e. a sequence of independent identically distributed zero-mean
normal random variables. This property can be exploited to check the model assumptions: if the
model is correct, the sequence e1,....e1 computed from the data should look like a sample of size
t from a standard normal distribution. Many statistical tests, several of them readily available in
R, can be carried out on the standardized innovations. They fall into two broad categories: those
aimed at checking if the distribution of the e, ’s is standard normal, and those aimed at checking
whether the e, ’s are uncorrelated. However, most of the time we take a more informal approach
to model checking, based on the subjective assessment of selected diagnostic plots. The most
illuminating are, in the authors’ opinion, a QQ-plot and a plot of the empirical autocorrelation
function of the standardized innovations. The former is used to assess normality, while the latter
reveals departures from the property of uncorrelated innovations. A time series plot of the
standardized innovations may prove useful in detecting outliers, change points and other

unexpected patterns.

Finally, the same goodness of fit measures as described in section 2.7 can be used for the

innovations e, to evaluate the forecasting performance of the DLM model.
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4. Application

4.1 New York monthly number of births data

For our first example, a dataset from monthly number of births from the city of New York is used.

The dataset includes 168 entries of number of births from January 1946 to December 1959.

Firstly, restricting our investigation in the SARIMA class of models, the most suitable
SARIMA(p,d,q)x(P,D,Q)s will be extracted and it will be evaluated by various graphical tools and
tests. The model estimation will be performed on a training set of number of births from January
1946 to December 1956. A test set of 3 years from January 1957 to December 1959 will be used to
evaluate its forecast ability.

For the second model we use the same training set for estimation and Kalman filtering, Kalman
smoothing and forecasting of a local level state space model with a monthly seasonal component. It
should be noted that the training set should consist of at least 50 observations since that is needed for
efficient estimation (Box and Jenkins, 1976). Forecasts are found on the same test set as before from
January 1957 to December 1959.

Finally, for the last part of the analysis assuming that both models have passed the diagnostic checks
their forecast performance will be compared with some frequently used error measures and tests.
4.1.1 Description of the data

Firstly, we give a graphical representation of the whole dataset in figure 4.1 and calculate some basic

descriptive measures for our data in table 4.1:

Table 4.1: Descriptive statistics for monthly number of births in thousands.

168 25.06 24.96 30 20 2.32 -0.02 -0.88
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Figure 4-1: Number of births in New York City from January 1946 to December 1959

From figure 4.1, we can see that there is certainly some seasonal variation in the number of births per
month; there is a peak every summer, and a trough every winter. It seems like this could be described
using an additive model, as the seasonal fluctuations are roughly constant in size over time and do
not seem to depend on the level of the time series, and the random fluctuations seem constant over

time. A slight upward trend may also be present in the time series.

A short note here about time series decomposition how is done in practice. If we assume an additive

decomposition yi=St+R¢+T: where yiis the data, S,is the seasonal component, T, is the trend-cycle

component and R, is the residuals component for period t.

The first step in a classical decomposition is to use a moving average method to estimate the trend-

cycle component. A moving average of order m can be written as

l k
T==Yy._
t mjzz-kytﬂ

where m=2k+1. That is, the estimate of the trend-cycle at time t is obtained by averaging values of
the time series within k periods of t. Observations that are nearby in time are also likely to be close in
value. Therefore, the average eliminates some of the randomness in the data, leaving a smooth trend-

cycle component.

The additive decomposition has the following steps:

Stepl: If mis an even number, compute the trend-cycle component T: using a 2xm-MA. If m is.an

odd number, compute the trend-cycle component T: using an m-MA.
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Step2: Calculate the detrended series y,-Tt

Step3: To estimate the seasonal component for each season, simply average the detrended values for
that season. For example, with monthly data, the seasonal component for March is the average of all
the detrended March values in the data. These seasonal component values are then adjusted to ensure
that they add to zero. The seasonal component is obtained by stringing together these monthly

values, and then replicating the sequence for each year of data. This gives Si

Step4: The remainder component is calculated by subtracting the estimated seasonal and trend-cycle
components: Rt:yt-ét-Tt

Command decompose() in R calculates the time series components which are shown in figure 4.2,

Decomposition of additive time series

observed

trend

seasonal

1520 40 00 10 22 23 24 35 2 ¥ W 22 24 2 28 30

random

T T T T T T T T
1946 1948 1950 1952 1954 1956 1958 1960

Time

Figure 4-2: From top to bottom: a) The original births series b) The trend component ¢)The seasonal component and d)
The random component

These are some first indications that we should take seasonal and non-seasonal differences, thus take

d=1 and D=1, to stationarize the process. Our hypotheses are confirmed by figure 4.3.
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Births in NY from 1946 to 1960 Non-seasonal differenced births series
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Figure 4-3: Time series plots of: a) The original births series (top left) b) The non-seasonal differenced births series (top
right) and c) The seasonal and non-seasonal births series (bottom left)

From Figure 4.3, it is clear that once we have taken non-seasonal differences the trend has
disappeared but there is still a seasonal pattern that is eliminated when we take seasonal and non
seasonal differences. As we can see in the last panel of figure 4.3 the transformed series seems to

have lost any trend and seasonal pattern and can be considered as a stationary process.

A strong graphical tool for the identification of the parameters of a SARIMA model is the study of
the characteristics of the ACF and PACF plots of the transformed process (after taking seasonal and

non-seasonal differences) which are presented in figure 4.4.
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Figure 4-4: ACF plot (left) and PACF (right) of the transformed births series

From figure 4.4, if we look on seasonal lags there is only one major spike on seasonal lag 1, so that
indicates the existence of an SMA(1) term in the model and thus the order of Q is probably 1. In the
same manner, from the PACF plot of the transformed series if we look on seasonal lags there are two
clear spikes on seasonal lag 1 and 2 that cross the 95% ClI, that indicate the existence of SAR(1) and
SAR(2) terms in the model and thus the order of P is probably 2. For the orders p,q it is not clear
from the ACF and PACF plots if there are any AR and/or MA terms.

4.1.2 ARIMA and SARIMA models

After the preliminary analysis we are now ready to fit the most suitable SARIMA model for the
births series. The first 11 years from January 1946 to December 1956 are used as a training set on
which the model fit, parameters estimation and diagnostic tests will be carried out and the last 3
years of the births dataset from January 1957 to December 1959 will be utilized as a test set for the

forecasting evaluation of the model.

The first step is to estimate the model parameters of integration and seasonal integration d, D
respectively. From section we have already graphical evidence that d=D=1 but in order to
substantiate our assumptions we conduct the ADF test for unit roots and the HEGY test for seasonal

unit roots the results of which are shown in tables 4.2 and 4.3 respectively.
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Table 4.2: ADF test statistics and p-values for the births series and first differenced births series. The null hypothesis is
that the series has a unit root and the lag length used is 15.

Series ADF statistic p-value
Births -2.9977 0.1616
Diff(Births) -4.249 <0.01

Table 4.3:HEGY test with test-statistics for the first differenced births series and the first and seasonal differenced births
series .The p-value is found in the parentheses

Frequency

Diff(Births)

Diff(Diff(Births),12)

0 -5.0503 (<0.001) -4.001 (0.0011)

/6 0.3075 (0.7363) 28.0599 (<0.001)
/3 4.2288 (0.0161) 29.4525 (<0.001)
) 2.4559 (0.0889) 24.7756 (<0.001)
2n/3 4.5867(0.0114) 27.2751 (<0.001)
51/6 1.5437 (0.2174) 16.4363 (<0.001)
n -0.9243 (0.2487) -6.0974 (<0.001)

The results from table 4.2 indicate that for the births series the ADF test with the null hypothesis of a
unit root is not rejected on the five percent significance level but for the differenced births series we
have strong evidence in order to reject the null hypothesis and thus we can conclude that the level of

integration d=1.

From table 4.3 the seasonal unit root hypothesis is not rejected for all frequencies for the differenced
births series (d=1, D=0) and the test is then performed on both first and seasonally differenced births
series(d=1, D=1) with the result that a seasonal unit root is rejected on all frequencies on the five
percent significance level. Thus, seasonally differencing first differenced births series seem to have
made the time series stationary enough. Hence a seasonal difference operator of order D=1 seems

appropriate.

The orders of integration that seem to be needed to make each series stationary enough have now
been decided. The procedure of identifying the SARIMA can continue to the next step which is to

determine the autoregressive and moving average orders.
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The auto.arima function of the forecast package in R is running the HK algorithm for the
specification of the ordersp,P,q,Q and the selection of the most suitable SARIMA model based on
the information criteria AIC, AlCc, and BIC. All the information criteria conclude to the same
SARIMA(0,1,0)x(2,1,1)12 model. The estimated parameters with their standard errors are shown in
table 4.4.

Table 4.4: Estimated model parameters of the SARIMA(0,1,0)x(2,1,1)12 model with their standard errors in parentheses

Parameter Estimate Standard Error

@, -0.4608 0.1399
@, -0.2548 0.1340
01 -0.7333 0.1736
o’ 0.3784 -

The next step is to examine the usual model diagnostics in order to determine the model suitability.
The model residuals are tested for their normality and independence via the Jarque-Bera test and the

Ljung-Box test, the results of which are shown in table 4.5.

Table 4.5: Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the
estimated SARIMA(0,1,0)x(2,1,1)12 model.

Test Statistic p-value
Box-Ljung 0.76909 0.3805
Jarque-Bera 7.7601 0.05

From table 4.5 we can see that forthe Box-Ljung test the null hypothesis of uncorrelated residuals
cannot be rejected. On the other hand, the p-value of the Jarque-Bera test does not lead us to any
conclusion about the assumption of normal distributed residuals since it is exactly equal to the
default level of significance a=0.05. For this reason, it is advisable to check the QQplot of the
residuals. In figure 4.5 are all the graphical results extracted from the function sarima() of the astsa

package in R in order to check the model assumptions.
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Figure 4-5: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the
standardized residuals (bottom right).

The standardized residuals in the first plot of figure 4.5 seem quite homoscedastic and to have a
mean close to zero. Moreover, the ACF plot in figure 4.5 tells us that there is no significant
autocorrelation for any lag and thus the residuals can be considered independent. Finally, the
QQplotin figure 4.5 show that most of the residuals are close to the theoretical line and almost are

inside the 95% CI bounds. So, the normality assumption of the residuals cannot be rejected.

An alternative approach of modeling the problem would be to consider also the case of a usual non-
seasonal ARIMA model but without the strict parameters restrains of the HK algorithm. More
specifically, we will consider an ARIMA model with d=1 where the parameters search would be

performed in the grid p €[0,12],q €[0,14]. The most suitable model will be selected according to the

combination of parameters that minimizes the AIC.
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Figure 4-6: AIC as a function of the orders p and g
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From figure 4.6 it is clear that the AIC is almost always smaller in value when the order of p=12.

Moreover, for p=12 the AIC as a function of q appears to be a straight line after a local minimum for

g=5. So, it is reasonable to assume that the best ARIMA model that minimizes the AIC is the one

with parameters p=12 and g=5.

The estimated parameters of the ARIMA(12,1,5) model with their standard errors are presented in

table 4.6.

Table 4.6: Parameters estimates with their standard errors for the ARIMA(12,1,5) model.

Parameter

Estimate

Std.Error

Parameter

Estimate

Std.Error

01

0.1620

0.4096

P10

0.2113

0.1117

02

0.7025

0.1587

ou

-0.3227

0.1636

03

-0.1022

0.2937

Q12

0.2504

0.1472

04
-0.0959

0.1396

01

-0.4476

0.4311

s
0.0668

0.2657

02

-1.000

0.2081

(03
-0.0644

0.1795

03

0.3590

0.4469

-0.1339

0.1179

04

0.9793

0.2240

@3
0.1194

0.1227

05

-0.3612

0.4339

09

0.2113

0.1511
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The model diagnostics for this model are shown in table 4.7 and figure 4.7.

Table 4.7:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the
estimated ARIMA(12,1,5) model.

Test Statistic p-value
Box-Ljung 0.10013 0.7517
Jarque-Bera 0.46371 0.7655
Model: (0,1,0) {2,1,1) [12] Standardized Residual
ACF of Residuals ” Normal Q-Q Plot of Std Residuals
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Figure 4-7: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the
standardized residuals (bottom right).

From the results of table 4.7 and the figure 4.7 it is logical to assume that the assumptions of
normally distributed, homoscedastic and uncorrelated residuals cannot be rejected for the
ARIMA(12,1,5) model.

Finally, since the results of table 4.3 revealed that not all the hypotheses for seasonal unit roots have
been rejected for the differenced births time series by the HEGY test it would be reasonable to
consider a SARIMA model with not very strictly restricted orders for p and g in order to adjust for
stochastic seasonality in certain frequencies. Moreover, for the differenced and seasonally
differenced births series the HEGY test rejects the null hypotheses for seasonal unit roots at all
frequencies and thus we do not need any further seasonal differences to achieve stationarity. So for
our search we will use a seasonal AR polynomial ®(B)=1-B° which means P=1 and for simplicity
reasons we will consider that the seasonal MA polynomial is the simplest ®(B)=1 which mean that
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Q=0. As we have already mentioned the most suitable model will be selected according to the

combination of parameters that minimizes the AIC.
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Figure 4-8: AIC as a function of the orders p and g

Figure 4.8 shows that the minimization of the AIC is achieved for p=0 and g=12, and therefore a
SARIMA(0,1,12)x(1,1,0)12 will be fitted. The estimated parameters for this model are presented in
table 4.8.

Table 4.8:Parameters estimates with their standard errors for the SARIMA(0,1,12)x(1,1,0)12 model

Parameter 01 0 03 04 0s 0s 07
Estimate -0.0132 -0.1127 -0.0040 -0.0232 0.0097 -0.0080 -0.0207
Std.Error 0.3112 0.3160 0.2921 0.2842 0.2794 0.2901 0.2742
Parameter 0s 09 010 011 012 @ ¢’
Estimate 0.0430 0.0660 0.2401 0.1995 -0.8937 -0.3633 0.322
Std. Error 0.2802 0.2991 0.2748 0.3457 0.2934 0.0970 -

The model diagnostics for this model are shown in table 4.9 and figure 4.9.
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Table 4.9:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the
estimated SARIMA(0,1,12)x(1,1,0)12 model.

Test Statistic p-value
Box-Ljung 0.33056 0.5653
Jarque-Bera 7.439 0.0305
Model: (0,1,12) (1,1,0) [12] Standardized Residuals
ACF of Residuals . Normal Q-Q Plot of $td Residuals
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Figure 4-9: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the
standardized residuals (bottom right).

From the results of table 4.9 and the figure 4.9 it is logical to assume that the assumptions of
homoscedastic and uncorrelated residuals cannot be rejected for the SARIMA(0,1,12)x(1,1,0)12
model but on the other hand the standardized residuals do not seem to satisfy the normality

assumption.

The final step is to make forecasts of future values based on the various fitted models. The forecast()
function from the forecast package in R calculates the predicted values of monthly number of births
in New York city from January 1957 to December 1959. The graphical results are shown in figure

4.10.
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Forecasts from ARIMA(0,1,0)(2,1,1)[12] Faorecasts from ARIMA(12,1,5) Forecasts from ARIMA(0,1,12)(1,1,0)[12]
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Figure 4-10: Forecasts based on the SARIMA(0,1,0)x(2,1,1)12 model (left), the ARIMA(12,1,5) model (middle) and the
SARIMA(0,1,12)x(1,1,0)12 model (right). The light shaded area is the 95%CI of the forecasts while the narrowest dark
shaded area is the 80%CI of the forecasts.

4.1.3 The Kalman filtered DLM

Suppose that we want to describe the seriesby a local level DLM. The DLM package in R provides
all the necessary tools for parameter estimation, Kalman filtering, Kalman smoothing and

forecasting.
Firstly, after giving some initial values the dimMLE function returns the MLE estimates of the initial
state estimates V, o> of the local level component and V, of the seasonal component. The next steps

is to apply the Kalman filter for the estimated model, via the dimFilter function, for the training set
of observations from Jan1946 to Dec1956 and then the Kalman smoothing using the dimSmooth
function. Finally, we calculate forecasts for the next 3 years from Jan1957 to Dec1959 with the

dimForecast function. The graphical results are shown in figure 4.11.
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Figure 4-11: Stochastic level (red line), training set (grey line) and forecasted values (orange line) in the top panel, the
seasonal component (green line) in the middle panel and the residuals(purple line) in the bottom panel.

As we see from figure 4.11 the stochastic level of the dim follows the pattern of the training set

values. The forecasts seem to mimic the series behavior but their efficiency will be evaluated later.

As we have discussed the model fit will be examined through the assumptions about the model
standardized innovations. Figure 4.12 sums up all the graphical inference from the standardized

innovations.
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Figure 4-12: ACF plot (left) and QQ-plot (right) of the Kalman filter innovations

From figure 4.12, it is clear from the ACF plot that more than one lags are statistically significant
since they surpass the 95% CI and from the QQ-plot of the innovations we observe that although
most of the standardized innovations are inside the 95% CI there are at least two that break the
normality assumption. Our final decision about the model assumptions are extracted by the Jarque-

Bera and Box-Ljung tests the results of which are shown in table 4.10.

Table 4.10: Jarque-Bera and Box-Ljung test statistics and their correspondent p-values for the Kalman filter
innovations.

Test Statistic p-value
Box-Ljung 0.71051 0.3993
Jarque-Bera 4.9454 0.0555

The results from table 4.10 indicate that for the Box-Ljung test on 5% level of significance we
cannot reject the null hypothesis that the model innovations are uncorrelated and the Jarque-Bera test
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gives a p-value slightly larger than the a=5% level of significance and thus the normality assumption
cannot be rejected either.

If we are convinced that the model has passed the diagnostic tests, the final step is to evaluate its
forecasting ability with respect to the real values from the test set and then it can be compared with
the SARIMA model.

4.1.4 Error measures and forecasts comparison

The final part is to compare the two models forecasts with the actual values from the test sets and
perform the Diebold-Mariano test to compare the two models forecasting ability. Figure 4.13 gives

us a first notion of how adequately the two models can forecast new values.

36

= SARMA(QD1,0)x(2,1,1)

34
|

ARMA(12,15)

DLM

= test set

32
I

SARIMA(D,1,12)x(1,1,0)

Birthsx10"3
28 30

26

Figure 4-13: Test set values of the births series (blue line), SARIMA(0,1,0)x(2,1,1) forecasts (red line), Kalman filtered
DLM, ARIMA(12,1,5) forecasts (green line) and SARIMA(0,1,12)x(1,1,0) forecasts (grey line)

Figure 4.13 shows us that both models follow the pattern of the test set but as the forecast horizon
grows the distance between the model forecasts and the real time series value grows. It should be
noted here that the flattening of the trend throughout the time period of the test set we observe from
figure 4.2 is basically the reason why the two SARIMA models (SARIMA(0,1,0)x(2,1,1) and
SARIMA(0,1,12)x(1,1,0)) always over-estimate the number of births. This means that these
particular models predict new values under the assumption that there is a slight upward trend which
evolves through time while the ARIMA(12,1,5) and the Kalman filtered DLM do not suppose any
kind of trend.
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The usual error measures and the DM test between the two models are calculated in tables 4.11, and
4.12 respectively.

Table 4.11: MSE, MAD and MAPE error measures for the various models

MSE MAD MAPE
SARIMA(0,1,0)x(2,1,1) 1.2212 0.8427 0.03122
Kalman filtered DLM 0.5278 0.5945 0.02153
ARIMA(12,1,5) 0.6276 0.6317 0.02314
SARIMA(0,1,12)x(1,1,0) 2.4559 1.3409 0.04925

Table 4.12.: Diebold-Mariano test for the various models

Null hypothesis p-value
~ The Kalman filtered DLM performs equally well as the SARIMA(0,1,0)x(2,1,1) model ~ 0.01895
The Kalman filtered DLM performs better than the SARIMA(0,1,0)x(2,1,1) model 0.9905
The Kalman filtered DLM performs equally well as the SARIMA(0,1,12)x(1,1,0) model <0.001
The Kalman filtered DLM performs better than the SARIMA(0,1,12)x(1,1,0) model 1
The Kalman filtered DLM performs equally well as the ARIMA(12,1,5) model 1

In table 4.11 all three error measures MSE, MAD and MAPE give their smaller value for the
forecasts derived from the Kalman filtered DLM. Although it should be noted that the
ARIMA(12,1,5) model gives almost equally good results as the Kalman filtered DLM for both three
measures. Furthermore, the results from table 4.12 indicate that the Diebold-Mariano suggests that
the Kalman filtered model performs better than the SARIMA(0,1,0)x(2,1,1) and
SARIMA(0,1,12)x(1,1,0) models but it produces equally good forecasts as the ARIMA(12,1,5)
model. So, we have strong evidence that the most suitable models to make forecasts for future values
are the Kalman filtered DLM and the ARIMA(12,1,5) which perform almost equally well although

the Kalman filtered DLM gives slightly better error measures.

As an alternative version of evaluating the 4 models predictive ability we can rerun our analysis as
follows:1)we keep the same 4 model types, SARIMA(0,1,0)x(2,1,1), ARIMA(12,1,5),
SARIMA(0,1,12)x(1,1,0) and Kalman filtered DLM 2) we run time series cross-validation with a
sliding window of 132 values (11 years), which has the same length as the previous training set used,
and we calculate forecasts for various h-steps ahead, for the four different competitive models:3) we
construct the boxplots of the squared forecasts errors for h=6,12,24 steps ahead.
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The results are shown in figure 4.14.
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Figure 4-14: Boxplots of squared forecasts errors for h=6,12,24 steps ahead for the four different models:
SARIMA(0,1,0)x(2,1,1)12 (blue), ARIMA(12,1,5) (red), Kalman filtered dim model (green), SARIMA(0,1,12)x(1,1,0)
model (purple)

Figure 4.14 reveals that, although the boxplots of the squared forecasts errors overlap for the
different forecast horizons, the ARIMA(12,1,5) model has the lowest medium line of squared errors
and the narrowest boxplot for every h=6,12,24. This is a strong evidence of a better forecasting

ability regardless of the forecast horizon.

4.2 US monthly retail automobiles sales

For our second example, a dataset from monthly retail automobiles sales in United States is used.
The dataset includes 341 entries of retail automobiles sales in billions of dollars from January 1970
to May 1998.

Firstly, the most suitable SARIMA(p,d,q)x(P,D,Q)s will be extracted and it will be evaluated by
various graphical tools and tests. The model estimation will be performed on a training set of
automobiles sales from January 1970 to May 1993. A test set of 5 years from June 1993 to May 1998

will be used to evaluate its forecast ability.
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For the second model, the same training set for estimation and Kalman filtering, Kalman smoothing
and forecasting of a Linear Growth state space model with a monthly seasonal component will be

used. Forecasts are found on the same test set as before from June 1993 to May 1998.

Finally, for the last part of the analysis assuming that both models have passed the diagnostic checks

their forecast performance will be compared with some frequently used error measures and tests.

4.2.1 Description of the data

Firstly, we give a graphical representation of the whole dataset in figure 4.15 and calculate some

basic descriptive measures for our data in table 4.13:

Automobiles sales in US from Jan1970 to May1998

Billions fo dollars
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Figure 4-15: Monthly retail automobiles sales in US from January 1970 to May 1998

Table 4.13.: Descriptive statistics for US retail automobiles sales in billions of dollars

341 23.89 20.73 60.12 4.49 14.37 0.58 -0.73
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From figure 4.15, we can see that there is certainly some seasonal variation in the automobiles sales
per month; there is a peak every summer, and a trough every winter. A possible problem that we may
face is that the series doesn’t seem to have constant volatily over time. Thus a transformation of the
data maybe needed e.g taking the natural logarithm of the series.Finally a clear upward trend is
present in the series. The time series components are shown in figure 4.16.

Decompaosition of additive time series

50 B0

observed
10 20 30 40

trend
30 40 S0
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random
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Time

Figure 4-16: From top to bottom: a) The original sales series b) The trend component c) The seasonal component and d)
The random component

As we have already mentioned, figure 4.16 indicates a clear linear upward trend, a strong seasonal
component and a random component that presents an increment in its variance approximately after
1987.
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Figure 4-17: Time series plots of: @) The original sales series (top left) b) The log transformed sales series (top right) c)
The non-seasonal differenced sales series (bottom left) and d) The seasonal and non-seasonal log sales series (bottom
right)

From Figure 4.17, it is clear that once we have taken the log transform on the data the variance
seems to be stabilized. After taking non-seasonal differences the trend has disappeared but there is
still a seasonal pattern that is eliminated when we take seasonal and non-seasonal differences. As we
can see in the last panel of figure 4.17 the transformed series seems to have lost any trend and

seasonal pattern and can be considered as a stationary process.

4.2.2 ARIMA and SARIMA models

After the preliminary analysis we are now ready to fit the most suitable SARIMA model for the sales
series. The time period from January 1970 to May 1993 are used as a training set on which the model
fit, parameters estimation and diagnostic tests will be carried out and the last 5 years of the sales
dataset from June 1993 to May 1998 will be utilized as a test set for the forecasting evaluation ofthe

model.
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The first step is to estimate the model parameters of integration and seasonal integration d, D
respectively. From section we have already graphical evidence that d=D=1 but in order to
substantiate our assumptions we conduct the ADF test for unit roots and the HEGY test for seasonal
unit roots the results of which are shown in tables 4.14 and 4.15 respectively.

Table 4.14.: ADF test statistics and p-values for the log-sales series and first differenced log-sales series. The null
hypothesis is that the series has a unit root and the lag length used is 15.

Series ADF statistic p-value
Log-sales -2.6049 0.3212
Diff(log-sales) -3.8216 0.01836

Table 4.15.:HEGY test with test-statistics for the log-sales series and the seasonal differenced log-sales series. The p-
value is found in the parentheses

Statistic Diff(log-sales) Diff(Diff(log-sales),12)
0 -6.2927 (<0.001) -5.6634 (0.0011)
/6 4.8938 (0.0083) 43.4935 (<0.001)
w/3 6.6688 (0.0015) 40.5491 (<0.001)
n/2 3.0797 (0.0496) 40.3158 (<0.001)
27/3 5.3585 (0.0053) 47.563 (<0.001)
51/6 11.8332 (<0.001) 31.9685 (<0.001)
n -3.7795 (<0.001) -6.1858 (<0.001)

The results from table 4.14 indicate that for the log-sales series the ADF test with the null hypothesis
of a unit root is not rejected on the five percent significance level but for the differenced log-sales
series we have strong evidence in order to reject the null hypothesis and thus we can conclude that

the level of integration d=1.

From table 4.15 the seasonal unit root hypothesis is rejected for all frequencies for the differenced
log-sales series (d=1, D=0) but as we can see the p-value for the F3,4 statistic is very close to the 5%
level of significance and so it is recommended that the test be performed again on both first and
seasonally differenced log-sales series(d=1, D=1). The result is that the seasonal unit root hypothesis
is rejected on all frequencies on the five percent significance level. Thus, seasonally differencing first
differenced log-sales series seem to have made the time series stationary enough. Hence a seasonal

difference operator of order D=1 seems appropriate.



Page |61

The orders of integration that seem to be needed to make each series stationary enough have now
been decided. The procedure of identifying the SARIMA can continue to the next step which is to

determine the autoregressive and moving average orders.

The auto.arima function of the forecast package will be used for the specification of the orders
p,P,q,Q and the selection of the most suitable SARIMA model based on the information criteria AIC,
AICc, and BIC. The model selected from each of the information criteria is shown in table 4.16.

Table 4.16.:The most appropriate SARIMA model based on different information criteria

Informaton criterion AIC BIC AlCc

Model selected SARIMA(L,1,2)x(2,1,1)12  SARIMA(0,1,1)x(2,1,1)12  SARIMA(L,1,2)x(2,1,1)12

Table 4.16 indicates that both AIC and AICc suggest that a SARIMA(1,1,2)x(2,1,1)12 should be
fitted to the data while BIC uses a different more parsimonious SARIMA(0,1,1)x(2,1,1)12 model.
The selection now is based on what we want to achieve; generally the estimation of complicated
model is time consuming compared to a simpler model but on the other hand it may give us better
forecasting results. Thus we conclude that a SARIMA(1,1,2)x(2,1,1)12 will be fitted to the log-sales
series. The estimated parameters with their standard errors are shown in table 4.17.

Table 4.17: Estimated model parameters of the SARIMA(1,1,2)x(2,1,1)12 model with their standard errors in
parentheses

Parameter Estimate Standard error

. ¢ -04468 02495
01 0.0435 0.2373
02 -0.3850 0.1016
(0] 0.1671 0.0744
(07} -0.1410 0.0705
01 -0.8809 0.0565
¢’ 0.003488 -

The next step is to examine the usual model diagnostics in order to determine the model suitability.
The model residuals are tested for their normality and independence via the Jarque-Bera test and the

Ljung-Box test, the results of which are shown in table 4.18.
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Table 4.18.: Ljung-Box and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the
estimated SARIMA(1,1,2)x(2,1,1)12 model.

Test Statistic p-value
Box-Ljung 0.00025468 0.9873
Jarque-Bera 89.9 <0.001

From table 4.18 we can see that for the Box-Ljung test the null hypothesis of uncorrelated residuals
cannot be rejected. On the other hand, the p-value of the Jarque-Bera leads to the conclusion that the
residuals cannot be normally distributed.

Model: (1,1,2) (2.1,1) [12] Standardized Residuals
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Figure 4-18: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the
standardized residuals (bottom right).

Figure 4.18 shows that indeed the model residuals do not appear any significant serial
autocorrelation but on the other hand from the QQ-plot of the standardized residuals there are plenty
of points that are not inside the 95% CI bounds. So the assumption of the normally distributed

residuals cannot be accepted.

As we did in the first application it would be interesting to find the best non-seasonal ARIMA model
based on the minimization of the AIC. The parameter search for p and q will be performed in the grid
p €[0,12],9 €[0,14].
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Figure 4-19: AIC as a function of orders p and g

From figure 4.19 it is clear that the AIC is almost always smaller in value when the order of p=12.
Moreover, for p=12 the AIC as a function of g does not appear any significant changes after a local
minimum for q=6. So, it is reasonable to assume that the best ARIMA model that minimizes the AIC

is the one with parameters p=12 and g=6.

The estimated parameters of the ARIMA(12,1,5) model with their standard errors are presented in
table 4.19.

Table 4.19.: Parameters estimates with their standard errors for the ARIMA(12,1,6) model

Parameter ?1 02 ®3 P4 (01 (013 ®7
Estimate -0.0677 -0.1024 -0.0603 -0.0249 -0.4899 -0.1240 -0.1479

Std.Error 0.1007 0.1230 0.0933 0.0867 0.0858 0.1361 0.0766

Parameter 08 09 P10 (0351 012 01 02
Estimate -0.1479 -0.0590 -0.2065 0.0110 0.3774 -0.2640 -0.1001

Std.Error 0.0784 0.0697 0.0688 0.0666 0.0792 0.0981 0.1356
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Parameter 03 04 0s 06 6’
Estimate 0.0379 0.0778 0.1003 0.5076 0.003897
Std.Error 0.0962 0.1239 0.0872 0.1643 -

The model diagnostics for this model are shown in table 4.20 and figure 4.20.

Table 4.20.:Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the

estimated ARIMA(12,1,6) model.

Test Statistic p-value

Box-Ljung 55.615 <0.001

Jarque-Bera 0.22192 0.6376
Model: (12,1,6) (0,0,0) [0] Standardized Residual
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Figure 4-20: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the

standardized residuals (bottom right).

From the results of table 4.20 and the figure 4.20 it is logical to assume that the assumptions of

homoscedastic and uncorrelated residuals can be accepted for the ARIMA(12,1,6) model but the

Jarque-Bera test and the QQplot of the standardized residuals indicate that we cannot accept the

assumption of normally distributed residuals.
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Finally, following the same reasoning as in the previous application we are going to fit a SARIMA

model with lighter restrictions for the p and q parameters and the orders P=1 and Q=0. The most

suitable model will be extracted by the minimization of the AIC criterion as a function of p and g.
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Figure 4-21: AIC as a function of orders p and g
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Figure 4.21 does not show a clear “winner” among all the possible models since all of the models

appear to have a sudden drop of the AIC value for =12 and for larger q’s they almost coincide. For

this reason, the simplest model will be chosen i.e the model with p=0, g=12. Therefore a
SARIMA(0,1,12)x(1,1,0)12 will be fitted. The estimated parameters for this model are presented in

table 4.21.

Table 4.21.:Parameters estimates with their standard errors for the SARIMA(0,1,12)x(1,1,0)12 model

Parameter

Estimate

Std.Error

Parameter

Estimate

Std. Error

The model diagnostics for this model are shown in table 4.22 and figure 4.22.

01

-0.1988

0.2131

0s

0.0682

0.0993

02

-0.0779

0.1613

09

0.0595

0.0949

03

0.1147

0.0704

010

-0.1450

0.1682

04

-0.0560

0.1692

011

0.1079

0.2075

05

-0.0330

0.2613

012

-0.8359

0.2215

05

0.0467

0.2780

0.0835

0.0680

07

-0.0503

0.2130

0,2

0.003617
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Table 4.22.Box-Ljung and Jarque-Bera tests for the assumptions of normality and independence of the residuals of the
estimated SARIMA(0,1,12)x(1,1,0) model.

Test Statistic p-value
Box-Ljung 7.8794 0.005
Jarque-Bera 67.758 <0.001
Model: (0,1,12) (1,1,0) [12] Standardized Residuals
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Figure 4-22: Plot of the standardized residuals (top), ACF plot of the residuals (bottom left) and QQplot of the
standardized residuals (bottom right).

From the results of table 4.22 we cannot accept the assumptions of uncorrelated and normally
distributed residuals although the graphical patterns of figure 4.22 do not indicate any clear violation

of these assumptions

Although the residuals do not obey the necessary assumption we can use the estimated models to
extract forecasts of future values. The forecast() function from the forecast package in R calculates
the predicted values of monthly retail automobiles sales in logarithmic scale from June 1993 to May

1998. The graphical results are shown in figure 4.23.
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Figure 4-23:Forecasted values for the log sales series for the time period from June 1993 to May 1998based on the
SARIMA(L,1,2)x(2,1,1) model (left), the ARIMA(12,1,6) model (middle) and SARIMA(0,1,12)x(1,1,0). The light shaded
area is the 95%CI of the forecasts while the narrowest dark shaded area is the 80%CI of the forecasts.

4.2.3 The Kalman filtered DLM

Suppose that we want to describe the series by a linear growth DLM. The DLM package in R
provides all the necessary tools for parameter estimation, Kalman filtering, Kalman smoothing and

forecasting.

After following the same procedure of estimating, Kalman filtering and Kalman smoothing finally
we calculate forecasts for the time period from Junel993 to May1959. The graphical results are

shown in figure 4.24.
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Figure 4-24: Stochastic level (red line), training set (grey line) and forecasted values (orange line) in the top panel, the
trend component (blue line) in the second panel, the seasonal component (brown line) in the third panel and the
residuals (green line) in the bottom panel.

As we see from figure 4.24 the forecasts seem to mimic the series behavior but their efficiency will

be evaluated later.

The model fit will be examined through the assumptions about the model standardized innovations.

Figure 4.25 sums up all the graphical inference from the standardized innovations.
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Figure 4-25: ACF of standardized innovations (left) and QQ-plot of standardized innovations (right)
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Figure 4.25 indicates that none of the model assumptions is verified since there exists statistical
significant serial autocorrelation in the standardized innovations and the QQ-plot shows that many

points are outside the 95% CI bounds.

4.2.4 Error measures and forecasts comparison

The final part is to compare the three models forecasts with the actual values from the test sets and
perform the Diebold-Mariano test to compare the two models forecasting ability. Figure 4.26 gives

us a first notion of how adequately the two models can forecast new values.
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Figure 4-26: Test set values of the births series (blue line), SARIMA(1,1,2)x(2,1,1) forecasts (red line), Kalman filtered
DLM forecasts (green line), ARIMA(12,1,6) forecasts (brown line) and SARIMA(0,1,12)x(1,1,0) forecasts (grey line)

Figure 4.26 shows us that the SARIMA models and the Kalman filtered DLM follow the pattern of
the test set but not the ARIMA model. Moreover, although the distance between all the model
forecasts and the real time series value grows as the forecast horizon grows but the most ‘efficient’
model seems to be the SARIMA(0,1,12)x(1,1,0). The worst model for predicting new values from
figure 4.26 seems to be the ARIMA(12,1,6) model (brown line in figure 4.26) and this is mostly
because this is the only model which does not take into account any trend in the time series which

evolves over time.

The usual error measures and the DM test between the two models are calculated in tables 423 'and

4.24 respectively.
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Table 4.23.: MSE, MAD and MAPE error measures for the SARIMA and the Kalman filtered DLM

MSE MAD MAPE
SARIMA(1,1,2)x(2,1,1)12 14.71742 3.543356 0.07422295
ARIMA(12,1,6) 131.2522 10.30852 0.2085977
Kalman filtered DLM 57.72231 6.902226 0.1399843
SARIMA(0,1,12)x(1,1,0)12 7.034042 2.13822 0.04609026

Table 4.24.: Diebold-Mariano test for the various models

Null hypothesis p-value
~ The SARIMA(0,1,12)x(1,1,0) performs equally well as the Kalman filtered DLM ~ <0.001
The SARIMA(0,1,12)x(1,1,0) performs better than the Kalman filtered DLM 1
The SARIMA(0,1,12)x(1,1,0) performs equally well as the SARIMA(1,1,2)x(2,1,1) <0.001
The SARIMA(0,1,12)x(1,1,0) performs better than the SARIMA(1,1,2)x(2,1,1) 1
The SARIMA(0,1,12)x(1,1,0) performs equally well as the ARIMA(12,1,6) <0.001
The SARIMA(0,1,12)x(1,1,0) performs better than the ARIMA(12,1,6) 1

In table 4.23 all three error measures MSE, MAD and MAPE give their smaller value for the
forecasts derived from the SARIMA(0,1,12)x(1,1,0) model. Also the results from table 4.24 indicate
that the Diebold-Mariano suggests that the SARIMA(0,1,12)x(1,1,0) model performs better from all
the other models. So, we have strong evidence that the best among the two models to make forecasts
for future values is the SARIMA(0,1,12)x(1,1,0) model.

As an alternative version of evaluating the 4 models predictive ability we can rerun our analysis as
follows:1)we keep the same 4 model types, SARIMA(1,1,2)x(2,1,1), ARIMA(12,1,6),
SARIMA(0,1,12)x(1,1,0) and Kalman filtered DLM 2) we run time series cross-validation with a
sliding window of 281 values, which has the same length as the previous training set used, and we
calculate forecasts for various h-steps ahead, for the four different competitive models 3) we

construct the boxplots of the squared forecasts errors for h=12,24,36,48 steps ahead.
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Figure 4-27: Boxplots of squared forecasts errors for h=12,24,36,48 steps ahead for the four different models:
SARIMA(0,1,12)x(1,1,0)(blue),  ARIMA(12,1,6)  (red), Kalman  filtered dlm  model (green) and
SARIMA(1,1,2)x(2,1,1)(purple)

Figure 4.27 reveals that apart from the ARIMA(12,1,6) model the 3 other competitive models have
overlapping boxplots. Moreover, the SARIMA(0,1,12)x(1,1,0) model, especially for forecast
horizons greater than 12 steps ahead, seems to have the lowest medium line of squared forecast
errors among all models and the narrowest errors boxplots along with the SARIMA(1,1,2)x(2,1,1)

model. This is an indicator of a better forecasting ability.
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5. Conclusion

In this study ARIMA-SAIRIMA models and Kalman filtered Dynamic Linear Models have been

fitted to two different real life datasets.

More specifically, for the first dataset with the monthly number of births in the city of New York,
only two models, the ARIMA(12,1,5) and the SARIMA(0,1,0)x(2,1,1), pass all the model
diagnostics among the four competitive models. Moreover, from the error measures calculated in the
test set, the models that seem to produce the best forecasts are the ARIMA(12,1,5) and the Kalman
filtered local level model. This is also confirmed by the Diebold-Mariano test for the comparison of
the predictive ability of all models where the two aforementioned models seem to perform equally
well and give more accurate forecasts than the other two. Furthermore, the time series cross-
validation procedure for various h-steps ahead forecast horizons showed that the model which
constantly gives the best forecasts with respect to the forecast errors is the ARIMA(12,1,5) model.

For the second dataset with the monthly retail automobiles sales in USA, none of the 4 candidate
models passed the model diagnostics about the assumptions for the model residuals. The out of
sample error measures showed that the best forecasts are produced by the SARIMA(0,1,12)x(1,1,0)
model and this is also confirmed by the results of the Diebold-Mariano test which revealed that this
model gives more accurate forecasts for the given test set than all the other competitive models. The
time series cross-validation also confirmed that there is strong evidence to consider the
SARIMA(0,1,12)x(1,1,0) model as the most suitable for predicting future values for various h-steps

ahead horizons.

Overall, we can say that a) the ARIMA or SARIMA model which emerge from the minimization of a
standard information criterion without posing very strict restrictions on the orders of p and g seems
to produce better forecasts than the model evaluated by the default HK algorithm. This is the case in
both datasets examples we studied and it is confirmed with both estimation methods for evaluating
model forecasts, meaning standard out of sample error measures and time series cross-validation
with a sliding window. Of course this comes with the price of estimating a much more complex
model than the rather simplistic model from the HK algorithm. We should bear in mind that for
much bigger datasets the problem of minimizing an information criterion over many candidate
models may be very time-consuming or even impossible in practice b) Simple polynomial DLM
models with a seasonal component can give adequate forecasts for time series that appear seasonality
and linear trend. However, their ability to produce forecasts may depend a lot on the first initial
values of the state estimates and error variances and as it is shown in the two examples difficulties
may arise in confirming the model assumptions. More sophisticated state space models, .such as

SARIMA models expressed in a state space form, may produce far better results.
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Appendix
Critical values for seasonal unit roots®
Fractiles
‘t'my ‘t'mo ‘F:mgnmy
Model T 001 005 010 0.01 005 0.10 0.01 005 0.10
No Inter 48 -2.72 -195 -1.59 -267 -1.95 -1.60 5.02 326 245
No S dum. 100 -2.60 -197 -1.61 -2.61 -1.92 -1.57 489 3.12 239
No trend 200 -262 -1.94 -162 -260 -1.95 -1.61 4.76 3.12 237
Inter. 48 -3.66 -296 -262 -268 -1.95 -1.60 4.78 3.04 2.32
No S. dum. 100 -3.47 -288 -258 -268 -1.95 -1.60 4.77 3.08 235
No Trend 200 -348 -2.87 -2.57 -258 -1.92 -1.59 4.76 3.12 237
Inter. 48 -3.77 -3.08 -2.72 -3.75 -3.04 -269 922 6.60 550
S. dum. 100 -3.55 -295 -263 -360 -294 -263 8.74 6.57 5.56
No. Trend 200 -3.51 -291 -259 -3.50 -2.89 -260 893 6.61 5.56
Inter. 48 -423 -356 -3.21 -265 -191 -1.57 464 295 223
No. S. dum. 100 -4.07 -347 -3.16 -2.58 -1.94 -1.60 4.70 298 231
No. Trend 200 -4.05 -344 -3.15 -259 -1.95 -1.62 4.66 3.07 234
Inter. 48 -446 -3.71 -337 -380 -3.08 -2.73 927 6.55 5.37
S. dum. 100 -4.09 -3.71 -3.37 -3.80 -3.08 -2.73 8.79 6.60 5.52
Trend 200 -4.05 -349 -3.18 -352 -291 -2.60 896 6.57 5.56

Table 1:Critical values for HEGY one-sided t1 and t2 tests and for the F1,2 test in quarterly time series. Source:
Hylleberg et. al. (1990 pp 226-227)
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