
Machine Learning Applications in Credit Scoring
Evgenios Karezos – M.Sc. in Data Science thesis

Supervisor: Dr. V. Vassalos

Who we are?

Channel VAS works with Mobile
Telephone Providers

Provides their customers with extra
airtime or bundles when they do
not have money available on their
account

Assigns every customer with a
credit limit calculated after
estimating their Probability to
Default (PD)

Objective

USE MACHINE LEARNING
ALGORITHMS TO PREDICT THE
CUSTOMERS’ PROBABILITY TO

DEFAULT.

TRY TO OUTPERFORM THE
ALGORITHM BEING USED UP

UNTIL NOW.

NOISE AND DEFAULT RATIO
FREE METHODOLOGY, ABLE
TO SCORE CUSTOMERS IN

SUBSEQUENT PERIOD.

Keynotes

• The data were highly imbalanced (e.g. 5% defaulters)

• Different Sampling techniques were tested

• Multiple Baseline & Ensemble Machine Learning Algorithms examined

• Tuning performed based on different metrics (AUC & Average Precision Score)

• AUC was selected for this industry, since PD gets used for Credit Limit Assignment

The Dataset

Customers split into four business-wise formerly formulated segments

The 167 features describe the customers’ behaviour for a 15-month period and
model their Recharges, Advances and Recoveries

Recharge: A customer credits their account with money

Advance: A customer borrows airtime or buys a bundle

Recovery: A customer repays their debt

The Dataset

• A customer is
considered to have
defaulted on their
loan when they have
not repaid after 6
months

Patterns Default Ratio

Segment 1 52.053 4,75%

Segment 2 113.263 4,32%

Segment 3 150.945 4,81%

Segment 4 101.904 5,46%

Size & default ratio for the four segments:

Data
Preprocessing

Null values due to queries
output replaced with 0

e.g. the average recharge value
of a customer in a specific time
period was Null, if there were

no recharges during this period.

Variables describing dates were
transformed to the equivalent

tenures and the initial variables
were dropped.

Modelling

• Scaled each feature separately before fed on algorithms like
LASSO, SVM & ANN

• Specific algorithms might behave badly if the individual
features do not look like standard normally distributed data

• Risk of a feature's variance to dominate the objective
function

Sampling

• Highly imbalanced data

• Used Under-Sampling to change the percentage of the bad
cases and let the models learn more effectively

Under-Sampled
Patterns

Percentage

Segment 1 9.892 19,00%

Segment 2 19.592 17,30%

Segment 3 29.072 19,26%

Segment 4 22.244 21,82%

Segment sizes and percent of the initial instances finally used

Probability Calibration

• Target class manipulation changes the distribution of
prediction scores

• Sampling of non-target class leads to increased
probability predictions

• If the probability score order is needed, this is not a
problem

• The actual probability is used for the credit limit
assignment

• The probabilities were calibrated

majority after under_sampling
beta =

original majority

()1 1

s

s

beta p
p

beta p

=

− +

: predicted probability by the classifiersp

Tuning

Each algorithm was
tuned using 10-fold

stratified cross
validation

The percentage of each
class’s samples were

preserved in each fold

hyperopt was selected
using a Bayesian

approach for
optimization

The model with the
highest AUC was

selected as the best one

AUC was selected over
Average Precision Score

The latter emphasises
on the bad cases, trying

to estimate their
probabilities with higher

accuracy

Current Methodology

• The Information Value of each variable was calculated

• Those with the highest values were kept

• Selected variables were fed into a genetically optimized penalized logistic
regression algorithm, for the best variables to be selected

Disadvantages

1. Weak learner not taking into account nonlinear terms and interactions

2. Time consuming procedure performed for every segment

Logistic
Regression

• Tried to compare
simple full logistic
regression model to
current method

Segment Logistic Current % Diff

1 0.62089 0.62995 -1.44%

2 0.63934 0.63135 1.27%

3 0.64221 0.63845 0.59%

4 0.65405 0.65555 -0.23%

AUC on the validation set

LASSO & Ridge

• LASSO performs subset
selection by setting coefficients
of not important variables
equal to zero

• Ridge Regression addresses
multicollinearity – The features
are highly correlated

Segments LASSO Ridge Current % Diff

1 0,62056 0,61912 0,62995 -1,49% & -1,72%

2 0,63949 0,63783 0,63135 1,29% & 1,03%

3 0,64484 0,64341 0,63845 1,00% & 0,78%

4 0,65560 0,65507 0,65555 0,01% & -0,07%

AUC on the validation set

Naïve Bayes & SVM

Naïve Bayes

• Assume features to be statistically independent

• Possibly surpass multicollinearity by looking at every variable separately

SVM

• Map inputs into high-dimensional feature spaces using non-linear transformation

• The classes become linearly separable, but the generalization error increases

Both algorithms performed even worse than the current one

Ensemble Methods

Bagging

• Applied at its most usual
case, using a Decision Tree
as base estimator

• Slightly better predictive
ability than LASSO

Segment Bagging Current % Diff

1 0,62125 0,62995 -1,38%

2 0,63772 0,63135 1,01%

3 0,64544 0,63845 1,09%

4 0,65883 0,65555 0,50%

AUC on the validation set

AdaBoost

• Applied at its most usual case, using
a Decision Tree as base estimator

• Each model focuses on where the
previous performed poorly

• First Decision Tree assigns equal
weights on every instance

• Next ones increase the weights of
difficultly classified observations
and lower those of easier ones

Segment AdaBoost Current % Diff

1 0,62398 0,62955 -0,95%

2 0,64155 0,63135 1,62%

3 0,65022 0,63845 1,84%

4 0,65954 0,65555 0,61%

AUC on the validation set

Gradient
Boosting
Machine (GBM)

• Instead of using weights like
AdaBoost, it uses gradients in
the loss function and takes steps
into the direction of the
negative gradient

• Approximates gradient with a
weak learner to avoid over-
fitting on the gradient

• It allows to optimize a user-
defined cost function, suitable
for the problem at hand

Segment GBM Current % Diff

1 0,62864 0,62995 -0,21%

2 0,64204 0,63135 1,69%

3 0,65095 0,63845 1,96%

4 0,66203 0,65555 0,99%

AUC on the validation set

XGBoost

• Advanced Implementation of GBM

• Uses the second gradient to build the
trees

• Makes fewer, but more accurate steps
towards the minimum

• Keen on over-fitting

• Dropout, like in ANN, can be used to
randomly drop boosting tree members
(DART)

Segment GBtree DART Current % Diff

1 0,62595 0,62170 0,62995 -0,63% & -1,31

2 0,64208 0,64208 0,63135 1,70% & 1,70%

3 0,65227 0,65227 0,63845 2,16% & 2,16%

4 0,66111 0,66111 0,65555 0,85% & 0,85

AUC on the validation set

Sum up

• XGBoost better on the third segment

• GBM better on the first and the fourth

• Fourth segment brings up to 50% of the
revenues

• Current algorithm better on the first noisy
segment

Algorithmically: XGBoost best model

Business-wise: GBM leads to higher revenues
better model

Overall model

• Tested if a catholic model, fitted across all
segments, would be more predictive

• Only GBM and ANN were tested

▪ GBM as the best model per segment

▪ ANN because they learn better when
fed with more observations

Size

Initial Patterns 418.165

Under-sampled
Patterns

61.820

Percentage 14,78%

Deployment size and percent of the initial instances finally used

Artificial Neural Networks

• ANN were tuned one time for each optimizer used

▪ SGD: Performs frequent updates with high variance causing
the objective function to fluctuate, potentially better local
minima, complicates convergence to exact minimum.
Used Nesterov momentum (add part of the previous step to
the current update vector) to accelerate SGD and let it know
where it is going, in order to slow down before another
increment

▪ Adagrad: Adapts learning rate to the parameters. Smaller
updates for parameters associated with frequent features
and inversely for infrequent features by accumulating all
past squared gradients

Artificial Neural Networks

▪ Adadelta: Adagrad’s extension, reduces its monotonically
decreasing learning rate. Restricts the window of
accumulated past gradients to some fixed size. Learning
rate absent from the update rule

▪ RMSprop: Identical to Adadelta. Uses learning rate in the
update rule. Specific parameter values are suggested

▪ Adam: Similar to previous two, but uses a momentum-like
term
Momentum is like a ball running down a slope, Adam
behaves like a ball with friction.

Exponential averages result to poor generalization ability of
adaptive learning rate methods diminishing the influence of
rare informative mini batches

Artificial Neural Networks

▪ AMSGrad: Uses the maximum of past squared
gradients, results in a non-increasing step size and
avoids problems suffered by Adam

▪ Adamax: Like Adam uses norm, Adamax uses
norm and does not lead to bias towards zero

▪ Nadam: Adam is a combination of RMSprop and
momentum. Nadam combines Adam with
Nesterov

2

Overall
Models’
Performance

• GBM dominates again

• The model using AdaGrad
performed better, followed
by SGD

• The rest optimisers did not
face the deficiencies of those
two

• AdaGrad will represent the
ANN from here on

Algorithm AUC % Diff

Current 0,65695 -

GBM 0,67396 2,59%

SGD 0,66373 1,03%

AdaGrad 0,66548 1,30%

Adadelta 0,65410 -0,43%

RMSprop 0,66074 0,58%

Adam 0,66091 0,60%

Adamax 0,66191 0,76%

Nadam 0,66197 0,76%

Performance
on Unseen

Data

• Produced models need to be robust & perform
well on data from a subsequent period of time

• Per segment models

▪ GBM followed by XGBoost & Bagging
outperform current methodology to the
same extend as on the validation data

• Overall models

▪ Consistent behaviour with GBM, AdaGrad &
SGD having the best performance

▪ Overall AUC is higher than its per segment
values

Overall GBM: 0,66493

Highest per segment GBM: 0,65560

Feature Importances

Overall
Model

Applied on
Segments

• Each overall model was applied on each segment’s out-of-time data

• They perform better than the segment experts

• Indicates to use only one model and score all segments’ customers
with this

Aggregate
Experts

• Calculate each out-of-time instance’s PD, using its segment’s expert
model

• Compare their predictive ability to the corresponding catholic
model on the same data

• An overall model performs better

• Another indication to use this instead of the segment experts

ALGORITHM AGGREGATE OVERALL % DIFF

Current 0,6407 0,6506 -1,52%

GBM 0,6480 0,6649 -2,54%

Conclusions

• Ensemble techniques & ANN provide the
highest uplift in terms of AUC

• Each model was mainly based on 3-5 features

• The overall models discriminated more
effectively

• All models were robust, since they performed
equally well on totally unseen data, retrieved
from a different period of time

Suggestions & Future Work

Suggestions

• Use existing GA to select most informative features & speed up performance

• New feature categories, learn different subscribers’ aspects

• Substitute the per segment models on every deployment with an overall model

Future Work

• Parallelize the procedure rewriting the code in PySpark

• Test more extensive grids for the tuning of the hyper-parameters

• Implement Stacking & learn from the predictions of a bunch of classifiers

Thank you!!

