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Abstract

Dialogue systems are an important part of today’s world Artificial Intelligence (AI) ap-
plications. Task-oriented dialogue systems have as main goal to help users to complete
certain tasks more efficiently. Spoken language understanding (SLU), a key component
of task-oriented dialogue systems, is the problem of extracting the meaning from speech
utterances. It is typically addressed as a two-task procedure, where initially an Automatic
Speech Recognition (ASR) model is employed to decode speech into text, followed by a
Natural Language Understanding (NLU) model that takes as input the most likely hypothesis
for the user’s utterance in order to extract the meaning. Several challenges lead to errors
in ASR that propagate to the NLU. Because misrecognition of a word may result in misun-
derstanding of the whole utterance, a technique in order these systems to be more robust is
instead of using the most likely hypothesis (1-best) as input to the NLU module to use a
list of most likely hypotheses (N-best lists). In this thesis, we examined if the SLU system
performance for the problem of intent detection is improved by using N-best lists as input
to NLU during training, as a form of data augmentation, compared to using only the 1-best
hypothesis. We conducted experiments using a set of standard LSTM-based architectures and
state-of-the-art transformers models using the recently introduced Fluent Speech Commands
(FSC) dataset, where intents are formed in classes as combinations of three slots (action,
object, and location).
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Chapter 1

Introduction

1.1 Dialogue systems

Dialogue systems have been a prominent component in today’s artificial intelligence applica-
tions. Nowadays, there is an increasing need of speech-driven dialogue systems that allow
users to accomplish their desired tasks by interacting with virtual agents. This increasing need
of robust speech recognition systems has attracted more and more the attention of dialogue
system researchers both in research and industry. Dialogue systems are generally divided into
two categories, according to different application purposes: task-oriented dialogue systems
and non-task-oriented dialogue systems (also known as chatbots). Task-oriented dialogue
systems are designed for a particular task. These systems work as personal assistants and
aim to assist the user to complete certain tasks, for example to book a flight, to make a phone
call or to find a restaurant. They support short conversations, from a single interaction to
several interactions, and are based on a domain ontology, a knowledge structure representing
the kinds of interactions the system needs to learn from these short conversations in order to
complete the task. Non-task-oriented dialogue systems are considered to be open domain
chat systems. These systems are designed for extended conversations that interact with
humans to provide reasonable responses and entertainment. They are trying to mimic the
unstructured conversational characteristics of human-human interaction on conversing for
entertainment, rather than focused on a particular task.

1.2 Spoken Language Understanding

Spoken language understanding (SLU) is a key component of task-oriented dialogue systems.
Formally, spoken language understanding is the problem of extracting the meaning from
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a user’s speech utterances. As Figure 1.11 shows SLU systems have two modules. The
first module is the Automatic Speech Recognition (ASR) system which is the system of
transcribing (decoding) the acoustic speech voice (signal) into text. It is considered to be
a challenging task for real-world applications due to both inter-speaker variability (physio-
logical differences and pronunciation differences of accents or dialects) and intra-speaker
variability (various styles of speech). Moreover, other hardware and environmental factors
such as channel distortion, or background noise pose more difficulties for achieving effective
speech to text conversion. The second module is a Natural Language Understanding (NLU)
system which extracts one or more semantic labels from a user’s utterance. The main disad-
vantage of this approach is that each module of conventional SLU systems tends to be trained
independently with training criteria that are specific to each module and may be different
from the overall metric for the SLU system. ASR systems are typically evaluated based on
word error rate (WER) but an ASR component with the lowest WER may not provide the
correct best hypothesis for the user’s utterance. For example, WER typically weights each
word equally, despite the fact that not every word has the same impact. Likewise, the NLU
module is trained on the output of the ASR, as a result errors in the ASR module will be
propagated to NLU affecting its performance.

Fig. 1.1 Conventional and End-to-End Spoken Language Understanding

Most of the research efforts in SLU in the NLP community are based on conventional
SLU processing, however, recent advances in technology and especially in Deep Learning
have boosted the development of ASR-free end-to-end approaches [1–9] for SLU tasks
showing promising results. End-to-end learning has been widely used in several areas, such
as machine translation and image captioning. These methods as Figure 1.1 shows aim to
learn SLU models from the acoustic signal without producing a text transcript, specifically a

1from Lugosch et al. [3].
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single model maps speech audio directly to the corresponding task. In general, these methods
require more training data in order to be efficient.

1.2.1 Natural Language Understanding

The goal of the Natural Language Understanding (NLU) module is to automatically identify
the domain and intent of the user’s utterance as expressed in natural language, and to extract
associated arguments/slots. These tasks are structured hierarchically and there is inherent
dependency between them. For example, a domain can be viewed as a group of intents which
belong to the domain, and an intent consists of one or multiple slots/tags that define semantic
keywords of this intent.

Hierarchically, the first task is domain classification. The goal of domain classification
is to identify the broad domain the user’s utterance is talking about, e.g., airlines, movies,
home-service. In case of a single-domain system, this 1-of-n domain classification task is
unnecessary. The second task is the intent detection, which is often treated as an utterance
semantic classification task. The goal of intent detection is to identify the specific task or
the goal the user is trying to accomplish, e.g. book a flight, find a movie, switch off the
lights. The final task is to extract relevant information required for accomplishing the user’s
intent. The latter task is known as slot filling. Slot filling can be treated as a sequence
labelling problem that tags the input word sequence x = (x1,x2, . . . ,xT ) with the slot labelling
sequence ys = (xs

1,x
s
2, . . . ,x

s
T ). The input word sequence and slot labelling sequence are of

the same length, and thus there is an explicit alignment. This three-tasks based approach
has the advantage of flexibility, since specific changes to a domain or intent category can
be implemented without requiring changes to other domains or intent categories. Finally,
single domain models are more focused since the intent detection only needs to consider a
relatively small set of intents and slot tags to determine and fill, respectively.

Table 1.1 illustrates an example of natural language understanding. The domain of the
utterance is airline-travel tickets and the intent detection is to show/find a flight. The word
“Athens” is labelled as the departure (origin) city and the word “Munich” as the arrival
(destination) city. Many approaches have been proposed either for intent detection or slot
filling. Moreover, joint models [17–21] for intent detection and slot filling have also been
proposed in literature. Such joint models simplify the NLU system, as only one model needs
to be trained and fine-tuned for the two tasks.
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Sentence Show me morning flights from Athens to Munich on Monday
Slots O O Time O O Origin O Dest. O Date
Intent Show/Find Flights
Domain Air-Travel Tickets

Table 1.1 An illustrative example of domain, intent, and slot recognition.

N-best lists

The performance of ASR is determined by how accurately the spoken words are recognized.
As we have already mentioned, there are several challenges that lead to errors in the output
of ASR that propagate to NLU. Considering the following utterance: “What’s the next flight
from Athens to Berlin”, in this utterance if an important entity, e.g. “Athens” is misrecognized
by ASR the whole meaning of the utterance is changed and this affects the whole outcome
of the SLU system. The recognition accuracy is vital in any application where a speech
interface is required. Typically, SLU systems use the most likely hypothesis that ASR outputs
(1-best hypothesis). Because it is very important for these systems to be robust to errors since
misrecognition of a word may result in misunderstanding the whole utterance, a technique
in order to improve the SLU performance is to use as input to NLU a list of hypotheses
(N-best lists) for the user’s utterance. The N-best list contains N-ranked hypotheses ordered
by associated confidence scores for the user’s speech, where the top entry is the engine’s best
hypothesis.

1.3 Outline

The rest of the thesis is organized as follows:

• Chapter 2 describes the background.

• Chapter 3 presents PyTorch and the dataset that used in this thesis.

• In Chapter 4, we discuss the models we implemented and their results.

• Chapter 5 concludes and proposes future work



Chapter 2

Background

2.1 Natural Language Processing

Natural Language Processing (NLP) is a field of artificial intelligence that aims to give
machines the ability to ‘understand’ and generate natural language text. NLP aims to develop
methods for solving practical problems involving language, such as information extraction,
automatic speech recognition, machine translation, sentiment analysis, question answering,
and summarization. Text data can be seen as either a sequence of characters or a sequence of
words. It is very common to see text as a sequence of words for most problems.

2.2 Neural Networks

Deep learning is a class of machine learning techniques, where information is processed in
hierarchical layers to understand representations and features from data in increasing levels
of complexity. In practice, all deep learning algorithms are neural networks, which share
some common basic properties. They all consist of interconnected neurons that are organized
in layers. Where they differ is network architecture (or the way neurons are organized
in the network), and sometimes in the way they are trained. Different classes of neural
networks exist, the most common include multi-layer perceptrons (MLPs), convolutional
neural networks (CNNs), reccurent neural networks (RNNs).

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks, also known as RNNs, are a kind of neural network that specialize
in processing sequences. The word “sequences” imply that the elements of the sequence are
related to each other and their order matters. In contrast with the traditional feed-forward
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neural networks that take in a fixed amount of input data all at the same time and produce a
fixed size output independently from the previous inputs, RNNs do not take all the input data
at once. RNNs take it one at a time in a sequence and have a form of short-term “memory”
which captures information about what has been calculated so far. As a result, the composite
input at time t has some historical information from the inputs at time T < t. Furthermore,
RNNs are networks with loops in them allowing information to be passed from one time-step
of the network to the next, that’s the reason why called recurrent because they perform the
same task (function) for every element of a sequence recurrently, with the output depending
on the previous computations. The ability to remember information using hidden states and
connect it to the current task is what makes RNNs popular.

Fig. 2.1 RNN

The above Figure 2.1 shows a RNN being unrolled (or unfolded) into a full network.
By unrolling we simply mean that we write out the network for the complete sequence. As
the above figure shows, standard RNN is a network of neuron-like nodes organized into
successive “layers”, where each successive layer (input) is called a time-step. For example, if
the sequence we care about is a sentence of 10 words, the network would be unrolled into a
10-layer neural network, one layer for each word. A recurrent neural network can be thought
of as a multiple copies of the same network, each passing a message about the previous steps
to a successor. RNNs share the same sets of parameters (U, V, W above) across all time-steps.
That’s the reason why a recurrent neural network can be thought of as a multiple copies of the
same network, each passing a message about the previous steps to a successor. Specifically
in RNNs there are the following weight-matrices:

• W maps the newly computed state ht to the output ot

• V transforms the previous state ht−1 to the current state ht

• U transforms the input xi to the state h

U,V and W apply linear transformation over their respective inputs.
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RNN formula

The formula for the current state at time t of a RNN can be written as (recurrence relation):

ht = f (ht−1,xt) (2.1)

From the above equation it is obvious that in a RNN, each state hi is dependent on all previous
computations via this recurrence relation.

• xt : is the input at time-step t. For example, x1 could be a one-hot vector or a word
embedding corresponding to the first word of a sentence.

• ht : is the hidden state at time-step t, it’s the “memory” of the network, ht is calculated
based on the previous hidden state ht−1 and the input xt at the current step. The function
f is a non-linearity such as ReLU, tahn, sigmoid and so on.

The formula for applying activation function at each time-step is: (where g is the activation
function):

ht = g(V ḣt−1 +Uẋt +bh) (2.2)

and the output:
ot = ht ×W (2.3)

RNN output

The output at each time-step t is calculated solely based on the memory at time-step t.
Figure 2.1 has outputs at each time step, but depending on the task this may not be necessary.
For example, for classification tasks we ’ll need only one final output after passing all the input
for the probabilities for each class. As this final output has already undergone calculations
through all the previous cells, the context of all the previous inputs has been captured. This
means that the final result is indeed dependent on all the previous computations and inputs.
In another case, in text generation based on the previous character/word, we will need an
output at every single time-step. Figure 2.21 shows some of the possible ways RNNs can be
designed.

• one-to-one: This is non-sequential processing, such as feed-forward neural networks
and convolution neural networks. There isn’t much difference between a feed-forward
network and applying a RNN to a single time-step.

1http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Fig. 2.2 Some of the possible ways of the input-output combinations

• one-to-many: This processing generates a sequence based on a single input. For
example caption generation from an image.

• many-to-one: This processing outputs a single result based on a sequence, for example,
sentiment analysis of a review as positive or negative.

• many-to-many (indirect): A sequence is encoded into a state vector, after which this
state vector is decoded into a new sequence, for example, language translation.

• many-to-many (direct): This outputs a result for each input step, for example, frame
phoneme labelling in speech recognition.

Training Recurrent Neural Networks

Training a RNN is similar to training a traditional Neural Network but with a little change
since the parameters are shared by all time steps in the network. The gradient at each output
depends not only on the calculations of the current time-step, but also the previous time
steps. Recurrent networks rely on an extension of back-propagation called back-propagation
through time, or BPTT.

As Figure 2.32 below shows, back-propagation through time is the typical algorithm we
use to train recurrent networks. The main difference between regular back-propagation and
back-propagation through time is that the recurrent network is unfolded through time for a
certain number of time steps. Once the unfolding is complete, we end up with a model that is
quite similar to a regular multilayer feed-forward network.

2https://www.sciencedirect.com/science/article/pii/S0959438818302009
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Fig. 2.3 Recurrent neural networks and BPTT. (Backpropagation through time)

2.2.2 RNN Extensions

More advanced types of the vanilla RNNs in order to solve shortcomings have been proposed
in literature. As Figure 2.43 below shows Bidirectional RNNs are based on the idea that
the output at time t may not only depend on the previous elements in the sequence, but also
future elements. For example, to predict in a language model the next word you may want to
look at both the left and the right context.

Fig. 2.4 Bidirectional

3http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
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Deep (Bidirectional) RNNs as Figure 2.54 shows are similar to Bidirectional RNNs, but
we now have multiple layers per time step. In practice this gives us a higher learning capacity.

Fig. 2.5 Deep (Bidirectional) RNNs.

Limitations of RNNs

Recurrent neural networks are old. The main reason why standard RNNs are rarely used
is due to the vanishing and exploding gradient problem. During training the gradients are
being propagated back in time to the initial layer. Because the information flowing though
neural nets passes many stages of multiplication, derivatives are susceptible to vanishing or
exploding. Specifically, if the gradients have small values (< 1) as they approach the earlier
layers, they shrink exponentially until they vanish and make it impossible for the model to
learn. This is the vanishing gradient problem. Similarly, if the gradients have large values
(> 1) they get larger and eventually blow up and crash the model. This is the exploding
gradient problem (any quantity multiplied frequently by an amount slightly greater than one
can become immeasurably large).

4http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
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2.2.3 LSTMs

Long Short-Term Memory (LSTMs), a variant of RNN, were introduced by Hochreiter and
Schmidhuber [10] in 1997 to address the problem of vanishing gradients. LSTMs are capable
of learning long-term dependencies and remembering information for long periods of time.
In standard RNNs at each time-step t, the model takes the input xt , the previous hidden
state ht−1 and using a non-linear function obtains the output ot and a new hidden state ht .
In LSTMs as figure 2.6 shows5 there are four layers, interacting in order to remove or add
information to the cell state. Specifically, in LSTMs at each time-step, the LSTM cell takes
in the following three different pieces of information: (i) the current input xt , (ii) the short
term memory ht , similar to hidden states in RNNs and (iii) the long term memory, known as
cell state ct .

Fig. 2.6 The structure of the Long Short-Term Memory (LSTM) neural network.

5LSTM figures from https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714 and
https://blog.floydhub.com/long-short-term-memory-from-zero-to-hero-with-pytorch/
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The key idea in LSTMs as Figure 2.7 shows is the cell state, the horizontal line running
through the top of the diagram which works as a conveyor and through these three gates has
the ability to remove or add information to the cell state.

Fig. 2.7 LSTM: Cell state

The forget gate as Figure 2.8 shows is a selective filter layer. It decides which information
from the cell state should be kept or discarded by multiplying the incoming long-term
memory ct−1 (cell state) with a forget vector. The forget vector is generated by a simple
one layer neural network which takes as input the current input xt , the incoming short-term
memory ht−1 as well as a bias vector b0 and using a sigmoid function as activation outputs
values between 0 (discard) and 1 (keep) for each element in the cell state.

Fig. 2.8 Forget Gate
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Equation 2.4 shows how the forget gate is computed:

f = σ(Wf orget(ht−1,xt)+b f orget) (2.4)

Fig. 2.9 Input Gate

The input gate decides what new information will be stored in the long-term memory.
It only works with the information from the current input xt and the short-term memory
ht−1 from the previous time step. Therefore, it has to filter out the information from these
variables. This is achieved using 2 layers.

i1 = σ(Wi1(ht−1,xt)+bi1) (2.5)

i2 = tahn(Wi2(ht−1,xt)+bi1) (2.6)

The first layer as Figure 2.9 above shows can be seen as the filter which selects what
information can pass through it and what information to be discarded. To create this layer,
we pass the short-term memory and current input into a sigmoid function (Eq. 2.5). The
sigmoid function will transform the values to be between 0 and 1, with 0 indicating that
part of the information is unimportant, whereas 1 indicates that the information will be used.
This helps to decide the values to be kept and used, and also the values to be discarded.
The second layer takes the short term memory and current input and passes it through an
activation function, usually the tanh function (Eq. 2.6), to regulate the network. The outputs
from these 2 layers are then multiplied, and the final outcome represents the information to
be kept in the long-term memory and used as the output. iinput = i1 × i2
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The outputs from the Input gate and the Forget gate will undergo a point-wise addition (Eq.
2.7) to give a new version of the long-term memory, which will be passed to the next cell.

ct = ft ∗ ct−1 + it (2.7)

Output gate The output gate will take the current input, the previous short-term memory,
and the newly computed long-term memory to produce the new short-term memory/hidden
state which will be passed on to the cell in the next time step.

Fig. 2.10 Output Gate

The previous short-term memory and current input will be passed into a sigmoid (Eq.
2.8) function for 3rd time to create another filter. Then, the new long-term memory pass
through an activation tahn function (Eq. 2.9)

O1 = σ(WO1(ht−1,xt)+bO1) (2.8)

O2 = tahn(WO2(ht−1,xt)+bO2) (2.9)

The output of these 2 processes will be multiplied (Eq. 2.10) to produce the new short-term
memory. The output of each time step can be obtained from the short-term memory, also
known as the hidden state.

ht ,Ot = O1 ×O2 (2.10)
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2.3 Transformers

Although LSTMs based models have produced state-of-the-art results in many NLP tasks,
recent advancements in attention-based models and Transformers have produced even better
results. The Transformer in NLP is a novel architecture that aims to solve sequence-to-
sequence tasks while handling long-range dependencies with ease and was proposed in
[22].

Fig. 2.11 Encoder
Transformer

BERT [11] introduced by Google, stands for Bidirectional En-
coder Representations from Transformers. It is based on the trans-
former architecture. The general transformer uses an encoder and a
decoder network, however, as BERT is a pre-training model, it only
uses the encoder (Figure 2.11) to learn a latent representation of the
input text. In particular, BERT has been pre-trained in two tasks the
masked Language Modelling and Next Sentence Prediction using
Wikipedia and Books Corpus. Language Modelling (Figure 2.126)
is the task of predicting the next word given a sequence of words.
In masked language modelling instead of predicting every next to-
ken, a percentage of input tokens is masked at random and only
those masked tokens are predicted. Next sentence prediction task
(Figure 2.13) is a binary classification task in which, given a pair
of sentences, it is predicted if the second sentence is the actual next
sentence of the first sentence.

Fig. 2.12 BERT: Masked Language Model

RoBERTa [12] (Robustly opti-
mized BERT) introduced by Face-
book, is a retraining of BERT
with improved training methodol-
ogy with more data. To improve
the training procedure, RoBERTa
removes the Next Sentence Predic-
tion (NSP) task from BERT’s pre-
training and introduces dynamic
masking so that the masked token
changes during the training epochs.

6http://jalammar.github.io/illustrated-bert/
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Fig. 2.13 BERT: Next Sentence Prediction

XLNet [14] is a large bidirectional Transformer that uses improved training methodology,
more data and more computational power to achieve better than BERT prediction metrics
on 20 language tasks. To improve the training, XLNet introduces permutation language
modelling, where all tokens are predicted but in random order. DistilBERT [13] learns a
distilled (approximate) version of BERT without token-type embeddings. DistilBERT uses a
technique called distillation, which approximates the Google’s BERT, i.e. the large neural
network by a smaller one. The idea is that once a large neural network has been trained,
its full output distributions can be approximated using a smaller network. This is in some
sense similar to posterior approximation. The key optimization functions used is the Kulback
Leiber divergence. Table 2.1 summarizes the basic characteristics of the transformer models
we used in this thesis.

BERT [11] RoBERTa [12] DistilBERT [13] XLNet [14]
Size Parameters
(in millions)

Base: 110
Large: 340

Base: 110
Large: 340 66

Base: 110
Large: 340

Data
16 GB
(Book corpus +
wikipedia)

160 GB
(BERT
plus 144 GB)

16 GB BERT
3.3 billion words

Base: 16 GB
BERT

Method
Bidirectional
Transformer with
NSP and MLM

BERT without
NSP, different
masking

BERT
distillation

Bidirectional
Transformer
permutation
based modeling

Table 2.1 Comparison of the transformers models



Chapter 3

Experimental Setup

3.1 PyTorch

PyTorch [15] is a Python based scientific computing package, but with the added power of
GPUs. Moreover, PyTorch is a deep learning framework that provides maximum flexibility
and speed during implementing and building deep neural network architectures. A model
can be defined in PyTorch in two steps by sub-classing the torch.nn.Module class specifying
the parameters of the model initially and describing then how they are applied to the inputs.
The biggest advantages of PyTorch are the dynamic computation graphing and its imperative
programming style that performs computations as it goes through each line of the written
code.

3.1.1 Transformers library

Transformers [16] provides state-of-the-art general-purpose architectures (BERT, GPT-2,
RoBERTa, XLM, DistilBert, XLNet) for Natural Language Understanding (NLU) and
Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages
and deep interoperability between PyTorch.

3.2 Dataset
The Fluent Speech Commands dataset was used for this thesis. It contains utterances from
97 speakers. It is recorded as 16 KHz single-channel .wav files each containing a single
utterance used for controlling smart-home appliances or virtual assistant, for example, “Play
music”. Each audio is labeled with three slots (action, object, and location) that take on one
of multiple values: for instance, the “location” slot can take on the values “none”, “kitchen”,
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“bedroom”, or “washroom”. We refer to the combination of slot values as the intent of the
utterance. For each intent, there are multiple possible wordings: for example, the intent
action: “activate”, object: “lights”, location: “none” can be expressed as “turn on the lights”,
“lights on”, etc.

Utterance Action Object Location
Turn up the bathroom temperture increase temperature washroom
Make it cooler decrease heat none
Switch the bedroom lights off deactivate lights bedroom
Play music activate music none
Decrease the heating in the kitchen decrease heat kitchen
Language settings change language none none

Table 3.1 Examples of wordings and their intents

Table 3.1 above shows several examples of wordings and their intents. The dataset
contains 248 phrasing mapping to 31 unique intents. The utterances are randomly divided
into train, valid, and test splits in such a way that no speaker appears in more than one split.
For the purpose of this thesis Kaldi [23] a speech recognition framework was used in order
to obtain the N-best lists using a pre-trained model that accompanies Kaldi.
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Fig. 3.1 Length for 1-best and N-best utterances
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Each combination of the three tasks corresponds to one intent. The total number of
intents due to the constraints between the tasks is 31 intents. For each original utterance of
the dataset, we obtained the N-best transcribed utterances produced by the ASR in a data
augmentation form. We treat all transcribed utterances as training examples of the classifier,
with the same class label as of the original utterance. As Figure 3.1 shows the utterances for
both 1-best and N-best are small sentences. Table 3.1 summarizes dataset statistics.

1-best N-best
Training (utterances) 23132 154266
Unique intents (classes) 31 31
Vocabulary Size (in words) 1843 7187
Unique tasks Actions 6 6
Unique tasks Objects 14 14
Unique tasks Locations 4 4

Table 3.2 Dataset Statistics





Chapter 4

Models Implemented and Results
4.1 LSTM Models
In this chapter we describe the models that we used in our experiments and the corresponding
results. Initially, LSTM based models were developed, including a simple LSTM model, a
stacked LSTM model and a bidirectional stacked LSTM model. The output vectors of all
these LSTM models are sent through a series of dense layers using max pooling and average
pooling initially and then concatenation to a softmax layer to build a sentence classifier.
Figure 4.1 shows the training process for the 1-best hypothesis and Figure 4.3 shows for the
N-best lists as a form of data augmentation, where all transcribed utterances were used as
training examples with the same label as the original utterance. As Figure 4.2 shows the
learning rate is set to 0.001, the hidden size to 512 and the embedding dimension to 200.
(Tables 4.1 summarizes the chosen hyper-parameters). Also a dropout layer is applied before
the softmax layer. The models are trained using cross-entropy loss and the Adam optimizer
for 20 epochs on both 1-best and N-best training sets and evaluated on the validation split
in order to choose the model with the lowest loss. Finally, the models are evaluated on the
test (unseen) data as reported in Table 4.3. As the results show for all models N-best lists
outperform 1-best hypothesis.

Hyperparameter LSTM LSTM II BiLSTM
batch size 400 400 400
epochs 20 20 20
learning rate 0.001 0.001 0.001
dropout (linear layer) 0 0.3 0.3
embedding dim 200 200 200
hidden size 512 512 512

Table 4.1 Hyperparameters
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Fig. 4.1 BiLSTM Architecture: Training 1-best

Fig. 4.2 Learning rate tuning
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Fig. 4.3 BiLSTM Architecture: Training N-best

4.2 Transformer Models

Our experiments were conducted using the transformers library which provides state-of-the-
art general-purpose architectures requiring only tuning the models. Table 4.2 shows the
hyperparameters for our transformers models.

Hyperparameter BERT RoBERTa XLNet DistilBERT
epochs 2 2 4 4
batch size 32 32 32 32
learning rate 4e-5 4e-5 4e-5 4e-5
adam (epsilon) 1e-8 1e-8 1e-8 1e-8
weight decay 0 0 0 0
logging steps 50 50 50 50
save steps 1000 1000 1000 1000

Table 4.2 Transformers Hyper parameters
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4.3 Results

The results of each model on the test set can be found in the following table 4.3. As the
table shows all models that used the N-best lists for training outperform the models that used
1-best hypothesis. In addition, all Transformer models outperform LSTM based models. This
was expected since Transformers are the state of the art models. Furthermore, BERT and
RoBERTa seem to achieve slightly worse performance for both 1-best and N-best lists in
contrast with DistiBERT and XLNet. It’s worth pointing out that the N-best augmentation
seems to have a more noticeable effect in the LSTM-based models, compared to the BERT-
based models. This may be due to the fact that the BERT-based models are already pre-trained
on huge datasets. XLNet seems to be an exception, in the sense that it is also Transformer-
based and pre-trained on huge datasets, but still benefits from the N-best data augmentation.
Finally, DistilBERT achieves the best results for both cases.

Model 1-best N-best
LSTM 0.9362 0.9445
LSTM (2 layers) 0.9351 0.9447
BiLSTM 0.9343 0.9436
BERT (base) 0.9631 0.9638
RoBERTa (base) 0.9613 0.9666
DistilBERT 0.9836 0.9856
XLNet (base) 0.9762 0.9854

Table 4.3 Test accuracy
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Conclusions and Future Work

In this thesis, we discussed and compared methods to tackle the problem of the errors
occurring in the output of ASR and affect the performance of the SLU system. Specifically,
we examined instead of using the 1-best hypothesis as input to the NLU module to use a list
of N-best hypotheses (N-best lists) for the user’s utterance for the problem of intent detection.
For each original utterance of the dataset, we obtained the N-best transcribed utterances
in a data augmentation form produced by the ASR. We treat all these training examples
of the classifier with the same label as the original utterance. We explored our problem
by developing several LSTM based models. In particular, we developed a simple LSTM
model, stacked and bidirectional LSTM models. Furthermore, we leveraged the transformers
library for conducting experiments using state of the art models including BERT, RoBERTa,
XLNet and DistilBERT. Our experiments conducted using the recently introduced Fluent
Speech Commands (FSC) dataset which contains utterances for controlling smart-home
appliances, where intents are formed in classes as combinations of three slots (action, object
and location). We observed that all models that use N-best lists as input to NLU outperform
the models that use 1-best hypothesis for the problem of intent detection.

In future work, we plan to experiment with more datasets as well as to experiment with
different types of input data to the NLU module. Specifically, instead of using only the 1-best
hypothesis or N-best hypotheses to use lattice or word confusion networks representations.
Lattices are an efficient and effective method to encode ambiguity of ASR systems in NLU,
for example to handle multiple speech recognition hypotheses. Previous work [25–28]
has extended recurrent neural networks to model lattice inputs and achieved improvements
in many tasks. Moreover, an idea for future work is using the same dataset to solve the
problem as a multi-task classification problem where each of the three tasks correspond to
one classifier. Finally, one could use more datasets for comparing 1-best and N-best lists for
the problem of joint intent detection and slot filling.
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Appendix A

LSTM Pytorch Code

Preprocessing

1 # D i c t i o n a r y tha t w i l l map a word to the number o f t imes i t appeared i n a l l the ↘

t r a i n i n g s e n t e n c e s
2 words = Counter ( )
3 f o r i , s e n t en c e i n enumerate ( t r a i n_s en t e n c e s ) :
4 # The s e n t e n c e s w i l l be s t o r e d as a l i s t o f words / tokens
5 t r a i n_s en t e n c e s [ i ] = [ ]
6 f o r word i n n l t k . word_token ize ( s en t en c e ) : # Token i z i ng the words
7 words . update ( [ word . l owe r ( ) ] ) # Conve r t i ng a l l the words to l owe r c a s e
8 t r a i n_s en t e n c e s [ i ] . append ( word )
9 i f i %20000 == 0 :

10 p r i n t ( s t r ( ( i ∗100) /x ) + "% done" )
11 p r i n t ( "100% done" )

Listing A.1 Vocabualry

1 words = sor ted ( words , key=words . get , r e v e r s e=True )

Listing A.2 Words

1 # D i c t i o n a r i e s to s t o r e the word to i ndex mappings and v i c e v e r s a
2 word2 idx = {o : i f o r i , o i n enumerate ( words ) }
3 i dx2word = { i : o f o r i , o i n enumerate ( words ) }

Listing A.3 Creating Dictionary

1 f o r i , s e n t en c e i n enumerate ( t r a i n_s en t e n c e s ) :
2 t r a i n_s en t e n c e s [ i ] = [ word2 idx [ word ] i f word i n word2 idx e l s e 0 f o r word i n ↘

s en t en c e ]
3
4 f o r i , s e n t en c e i n enumerate ( t e s t_s en t en c e s ) :
5 # For t e s t s e n t e n c e s
6 t e s t_s en t en c e s [ i ] = [ word2 idx [ word . l owe r ( ) ] i f word . l owe r ( ) i n word2 idx e l s e ↘

0 f o r word i n n l t k . word_token ize ( s en t en c e ) ]
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7
8 f o r i , s e n t en c e i n enumerate ( va l_sen t enc e s ) :
9 # For v a l i d a t i o n s e n t e n c e s

10 va l_sen t ence s [ i ] = [ word2 idx [ word . l owe r ( ) ] i f word . l owe r ( ) i n word2 idx e l s e 0↘

f o r word i n n l t k . word_token ize ( s en t en c e ) ]

Listing A.4 Mapping dictionary

1 de f pad_input ( s en t ence s , seq_len ) :
2 f e a t u r e s = np . z e r o s ( ( l en ( s e n t e n c e s ) , seq_len ) , dtype=i n t )
3 f o r i i , r e v i ew i n enumerate ( s e n t e n c e s ) :
4 i f l en ( r e v i ew ) != 0 :
5 f e a t u r e s [ i i , − l en ( r e v i ew ) : ] = np . a r r a y ( r e v i ew ) [ : seq_len ]
6 r e t u r n f e a t u r e s

Listing A.5 Padding

1 from to r ch . u t i l s . data impor t TensorDataset , DataLoader
2 impor t t o r ch . nn as nn
3
4 t r a i n_data = TensorDatase t ( t o r ch . from_numpy ( t r a i n_s en t e n c e s ) , t o r ch . from_numpy (↘

t r a i n _ l a b e l s ) )
5 va l_data = TensorDatase t ( t o r ch . from_numpy ( va l_sen t ence s ) , t o r c h . from_numpy (↘

v a l_ l a b e l s ) )
6 t e s t_data = TensorDatase t ( t o r ch . from_numpy ( t e s t_s en t en c e s ) , t o r ch . from_numpy (↘

t e s t_ l a b e l s ) )
7
8 batch_s i ze = 400
9

10 t r a i n_ l o a d e r = DataLoader ( t ra in_data , s h u f f l e=True , ba tch_s i ze=batch_s i ze )
11 va l_ l oade r = DataLoader ( val_data , s h u f f l e=True , ba tch_s i z e=batch_s i ze )
12 t e s t_ l o ad e r = DataLoader ( test_data , s h u f f l e=True , ba tch_s i ze=batch_s i ze )

Listing A.6 Dataset creation

1 # to r ch . cuda . i s _ a v a i l a b l e ( ) checks and r e t u r n s a Boolean True i f a GPU i s ↘

a v a i l a b l e , e l s e i t ’ l l r e t u r n Fa l s e
2 i s_cuda = to r ch . cuda . i s _ a v a i l a b l e ( )
3
4 # I f we have a GPU a v a i l a b l e , we ’ l l s e t our d e v i c e to GPU. We ’ l l use t h i s d e v i c e ↘

v a r i a b l e l a t e r i n our code .
5 i f i s_cuda :
6 d e v i c e = to r ch . d e v i c e ( " cuda" )
7 e l s e :
8 d e v i c e = to r ch . d e v i c e ( "cpu" )

Listing A.7 Setting device
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Bi-LSTM

1
2 c l a s s M u l t i c l a s s ( nn . Module ) :
3 de f __init__( s e l f , vocab_size , output_s ize , embedding_dim , hidden_dim , ↘

n_layers , drop_prob =0.3) :
4 super ( Mu l t i c l a s s , s e l f ) . __init__ ( )
5 s e l f . ou tpu t_s i z e = output_s i z e
6 s e l f . n_ laye r s = n_laye r s
7 s e l f . hidden_dim = hidden_dim
8
9 s e l f . embedding = nn . Embedding ( vocab_size , embedding_dim )

10 s e l f . l s tm = nn .LSTM( embedding_dim , hidden_dim , n_layers , d ropout=↘

drop_prob , b a t c h_ f i r s t=True , b i d i r e c t i o n a l=True , )
11 s e l f . l i n e a r = nn . L i n e a r ( s e l f . hidden_dim ∗4 , 64)
12 s e l f . r e l u = nn . ReLU ( )
13 s e l f . d ropout = nn . Dropout ( drop_prob )
14 s e l f . out = nn . L i n e a r (64 , 31)
15
16 de f f o rwa rd ( s e l f , x , h idden ) :
17 batch_s i z e = x . s i z e (0 )
18 x = x . long ( )
19 embeds = s e l f . embedding ( x )
20 lstm_out , h idden = s e l f . l s tm ( embeds , h idden )
21 avg_pool = to r ch . mean ( lstm_out , 1)
22 max_pool , _ = to r ch .max( lstm_out , 1)
23 conc = to r ch . ca t ( ( avg_pool , max_pool ) , 1)
24 conc = s e l f . r e l u ( s e l f . l i n e a r ( conc ) )
25 conc = s e l f . d ropout ( conc )
26 out = s e l f . out ( conc )
27 r e t u r n out , h idden
28
29 de f i n i t_h i dd en ( s e l f , ba t ch_s i ze ) :
30 we ight = next ( s e l f . pa ramete r s ( ) ) . data
31 h idden = ( we ight . new ( s e l f . n_ laye r s ∗2 , batch_s ize , s e l f . hidden_dim ) . zero_↘

( ) . to ( d e v i c e ) ,
32 we ight . new ( s e l f . n_ laye r s ∗2 , batch_s ize , s e l f . hidden_dim ) .↘

zero_ ( ) . to ( d e v i c e ) )
33 r e t u r n h idden

Listing A.8 Bidirectional Model

1 vocab_s ize = l en ( word2 idx ) + 1
2 outpu t_s i z e = 31
3 embedding_dim = 200
4 hidden_dim = 512
5 n_laye r s = 2

Listing A.9 Parameters

1 model = M u l t i c l a s s ( vocab_size , output_s ize , embedding_dim , hidden_dim , n_laye r s )
2 model . to ( d e v i c e )

Listing A.10 Setting device
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1 l r =0.0005
2 c r i t e r i o n = nn . C ro s sEn t ropyLos s ( )
3 o p t im i z e r = to r ch . opt im .Adam( model . pa ramete r s ( ) , l r= l r )

Listing A.11 Tuning

1 model . t r a i n ( )
2 f o r i i n range ( epochs ) :
3 p r i n t ( ’ ∗∗NEW EPOCH∗∗ ’ )
4 h = model . i n i t_h i dd en ( ba tch_s i z e )
5
6 f o r i npu t s , l a b e l s i n t r a i n_ l o a d e r :
7 i f ( ( i n p u t s . shape [ 0 ] , i n p u t s . shape [ 1 ] ) != ( batch_s ize , seq_len ) ) :
8 p r i n t ( ’ Next ’ )
9 cont inue

10 coun t e r += 1
11 #p r i n t ( ’ s t e p : ’ , c oun t e r )
12 h = tup le ( [ e . data f o r e i n h ] )
13 i npu t s , l a b e l s = i n p u t s . to ( d e v i c e ) , l a b e l s . to ( d e v i c e )
14 model . zero_grad ( )
15 output , h = model ( i npu t s , h )
16 l o s s = c r i t e r i o n ( output . squeeze ( ) , l a b e l s . long ( ) )
17 l o s s . backward ( )
18 nn . u t i l s . clip_grad_norm_ ( model . pa ramete r s ( ) , c l i p )
19 o p t im i z e r . s t e p ( )
20 t r a i n_ l o s s . append ( l o s s . i tem ( ) )
21
22 i f coun t e r%100 == 0 :
23 val_h = model . i n i t_h i dd en ( ba tch_s i z e )
24 v a l_ l o s s e s = [ ]
25 model . eva l ( )
26 f o r inp , l a b i n va l_ l oade r :
27 i f ( ( i np . shape [ 0 ] , i np . shape [ 1 ] ) != ( batch_s ize , seq_len ) ) :
28 p r i n t ( ’ Next ’ )
29 cont inue
30 val_h = tup le ( [ each . data f o r each i n val_h ] )
31 inp , l a b = inp . to ( d e v i c e ) , l a b . to ( d e v i c e )
32 out , val_h = model ( inp , val_h )
33 v a l_ l o s s = c r i t e r i o n ( out . squeeze ( ) , l a b . long ( ) )
34 v a l_ l o s s e s . append ( v a l_ l o s s . i tem ( ) )
35 model . t r a i n ( )
36 p r i n t ( "Epoch : { } / { } . . . " . format ( i +1, epochs ) ,
37 "Step : { } . . . " . format ( coun t e r ) ,
38 " Loss : { : . 6 f } . . . " . format ( l o s s . i tem ( ) ) ,
39 "Val Loss : { : . 6 f }" . format ( np . mean ( v a l_ l o s s e s ) ) )

Listing A.12 Training

1
2 t e s t_ l o s s e s = [ ]
3 num_correct = 0
4 h = model . i n i t_h i dd en ( ba tch_s i z e )
5
6 f o r i npu t s , l a b e l s i n t e s t_ l o ad e r :
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7 i f ( ( i n p u t s . shape [ 0 ] , i n p u t s . shape [ 1 ] ) != ( batch_s ize , seq_len ) ) :
8 p r i n t ( ’ Next ’ )
9 cont inue

10 h = tup le ( [ each . data f o r each i n h ] )
11 i npu t s , l a b e l s = i n p u t s . to ( d e v i c e ) , l a b e l s . to ( d e v i c e )
12 output , h = model ( i npu t s , h )
13 t e s t_ l o s s = c r i t e r i o n ( output . squeeze ( ) , l a b e l s . long ( ) )
14 pred = to r ch . argmax ( output , dim=1)
15 t e s t_ l o s s e s . append ( t e s t_ l o s s . i tem ( ) )
16 c o r r e c t_ t e n s o r = pred . eq ( l a b e l s . long ( ) . view_as ( pred ) )
17 c o r r e c t = np . squeeze ( c o r r e c t_ t e n s o r . cpu ( ) . numpy ( ) )
18 num_correct += np . sum( c o r r e c t )
19
20 p r i n t ( "Test l o s s : { : . 3 f }" . format ( np . mean ( t e s t_ l o s s e s ) ) )
21 t e s t_acc = num_correct / l en ( t e s t_ l o ad e r . d a t a s e t )
22 p r i n t ( "Test accu racy : { : . 3 f}%" . format ( t e s t_acc ∗100) )

Listing A.13 Testing
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