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Abstract

Primary goal of this thesis is to gain the knowledge of probabilistic perspec-
tive in statistical analysis and model comparison for a much scientific and
practical understanding and handling of statistical data analysis. With this
thesis we explore the Bayesian framework in Statistics for model comparison,
we implement variable selection, prior distribution specification and hypoth-
esis testing in contingency tables using R and Stan which is an imperative
modelling programming language for Bayesian Statistics using the sophisti-
cated gradient-based MCMC method. In the first chapter we introduce to
the reader the Bayesian methodology and the process of Bayes Factor cal-
culation given the historically research that has been done and we present
examples produced using Stan in R. In the second chapter we present the
probability structure in contingency tables, the distributional sampling (de-
sign) of them and how we implement independence test and some of the
most important statistical measurements like odds ratio, risk ratio and dif-
ference in proportions using conjugate priors.In the third chapter we dive in
the Generalized Linear Models world, through the conjugate prior analysis
of logistic regression, log-linear models, multinomial and ordinal models.In
chapter 4, we introduce to the reader the idea of penalised likelihood for
model comparison. AIC,BIC and DIC are the main criteria of interest along
with the Leave-One-Out cross validation criterion, that has been created as
a model comparison process, examining the expected predictive accuracy of
the models produced in Stan. In addition in chapter 5 we examining the
dependent observations for Matched Pair models. Symmetry, marginal ho-
mogeneity,Kappa coefficient, McNemar test are subjects that are concerning
scientists in many fields of science and in this chapter we present the proba-
bilistic approach of them with Bayesian analysis.
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Chapter 1

Introduction to Bayesian
Model Comparison

This chapter is an introduction to Bayesian framework, how we compute the
posterior distribution, the prior distribution selection, the Bayes Factor as
a tool of model comparison, hypothesis testing, the different approaches for
computing the marginal likelihoods and at the end we will provide to the
reader an example of this methodology.

1.1 Introduction to Bayes Theorem

Considering that we have a parametric model: p(y | θ) for the data y given
the parameters θ. We propose this model given the structure of the data,
information about how the data was collected and knowledge about the con-
text from which it arise. But there is an uncertainty about the parameters
θ which we hope the data will reduce but usually there is also uncertainty
about the model itself.

Instead of regarding the probability distribution p(y | θ) as a function of
y , we might view it as a function of θ. This Likelihood L(θ) contains the
uncertainty about θ. With this frequentist approach we aim to estimation
of the parameters θ by computing their most likely values with maximizing
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L(θ).

In the frequentist approach the parameters θ are fixed and unknown. In
the Bayesian point of view, the parameters are random variables. The big
difference between the frequentist and the bayesian approach is that in the
latter before we observe the data, our uncertainty about the parameters is
expressed through a prior density π(θ). So there is a update about the uncer-
tainty regarding the parameters using the data and the model to calculate a
posterior density p(θ | y).

The equation of Bayes Theorem is :

p(θ | y) =
p(y | θ)× π(θ)

p(y)

In words this equation can be written as :

Posterior ∝ Likelihood× Prior

which makes it very obvious and simple how the posterior is derived from
combining the likelihood and the prior. Problems usually appear in the
computation of the denominator of Bayes Theorem which contains the nor-
malising constant p(y) which equals to:

p(y) =

∫
θ

p(y | θ)π(θ)dθ

This is called the marginal likelihood of the data under the model. If the
number of parameters is large then we have to compute multiple integrals
which makes the problem even harder.

Computing integrals such as these is the reason why the simplicity of Bayes
Theorem requires rather more work than would first appear.

This was the reason why this probabilistic approach was abandoned for
many years until the exponentially growth of computer based calculations
gave birth to the MCMC algorithm implementation.
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1.2 Prior Specification

The use of prior distribution for calculating the posterior distribution is
the strongest and simultaneously the weakest part of Bayesian methodology
which the frequentist approach doubts about the proper selection of prior
among other priors.

There are many approaches of which is the proper selection of prior distri-
bution. Some of them are:

1. Informative Priors. These kind of priors incorporate the information
about the parameters θ according past experience and previous surveys.
Sometimes these kind of prior distributions are posterior distributions
derived from past experiments.

2. Conjugate Priors. A more convenient choice of prior distributions
are so called conjugate priors which are distributions that they belong
in the same family of distributions with the likelihood of the data.
Those types of priors will be our main concern on this thesis.

(a) Example 1.1 : Binomial Distribution

X|θ ∼ Binomial(N, θ)

f(x|θ) =

(
N

θ

)
θx(1− θ)N−x

with N known and for the parameter θ we assume that is following
the Beta Distribution with parameters α and β:

πθ ∼ Beta(α, β)

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

The part of the type that contains the value θ of interest is called
the kernel of the distribution. The part that does not contain
the parameter θ is called the normalising constant and can be
excluded from the calculation of the posterior density for posterior
inference.
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p(θ|x) ∝ f(x|θ)π(θ)

∝
[
θX(1− θ)N−X

] [
θα−1(1− θ)β−1

]
= θα+X−1(1− θ)β+N−X−1

Concluding to the posterior density:

p(θ|x) ∼ Beta(α +X, β +N −X)

(b) Example 1.2 : Poisson Distribution

Here the appropriate conjugate prior selection when the data are
Poisson distributed is the Gamma Distribution . Let us assume:

X|θ ∼ Poisson(λ)

The Poisson Likelihood is given by:

f(x|θ) =
e−θθx

x!

Thus the gamma distribution likelihood is given by:

π(θ) =
θα−1e−θ/β

Γaβα

We calculate again the posterior density p(θ|x)

p(θ|x) ∝ f(x|θ)π(θ)

∝
[
e−θθx

] [
θα−1e−θ/β

]
= θX+α−1e−θ(

1+1/β)

Concluding to a gamma the posterior p(θ|x) ∼ Gamma(α+X, β+
N).

(c) Example 1.3 : Normal Distribution (with known vari-
ance)
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When the data y are following y ∼ Normal(µ, σ) distribution then a
prior ∼ Normal(µ, σ) is a very reasonable selection. E.g for X ob-
servations we have X|µ ∼ Normal(µ, σ2) and σ2 is known. Suppose
we have an unknown parameter µ for which the prior beliefs can be
express in terms of a normal distribution, so that:

µ ∼ Normal(µ0, σ
2
0)

Prior : f(µ) = 1√
2πσ2

0

e−(µ−µ0)
2/2σ2

0

Likelihood : f(µ) = 1√
2πσ2

e−(x−µ0)
2/2σ2

f(µ | x) =
f(µ)f(x | µ)∫∞

−∞ f(µ)f(x | µ)dµ

=
f(µ)f(x|µ)

f(x)
∝ f(µ)f(x|µ)

=
1√

2πσ2
0

exp

(
−(µ− µ0)

2

2σ2
0

)
× 1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
=

1

2π
√
σ2
0σ

2
exp

(
−µ2 + µµ0 − µ2

0

2σ2
0

− x2 − 2µx+ µ2

2σ2

)
∝ exp

(
−µ2σ2 + 2µµ0σ

2 − µ2
0σ

2 − σ2
)x

2 + 2µσ2
0x− µ2σ2

0

2σ0σ2

)

∝ exp

(
−µ2(σ2 + σ2

0) + 2µ(µ0σ
2 + σ2

0x)− (µ2
0σ

2 + σ2
0x

2)

2σ0σ2

)

∝ exp

−µ2 + 2µ(
µ0σ2+σ2

0x

σ2+σ2
0

)− (
µσ2+σ2

0x

σ2+σ2
0

)2

2σ2
0σ

2

σ2+σ2
0

× exp(−µ0σ
2 + σ0x

2

2σ0σ2

)

∝ exp

−(µ− µ0σ2+xσ2
0

σ2+σ2
0

)2

2× σ2σ2
0

σ2+σ2
0



So the posterior inference becomes:

f(µ|x) ∼ Normal

(
µ0σ

2 + xσ2
0

σ2 + σ2
0

,
σ2σ2

0

σ2 + σ2
0

)
Page 9
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3. Jeffreys Priors.The Jeffreys prior is:

p(θ) ∝
[
I(θ)1/2

]
,

where[
I(θ)1/2

]
= Eθ

[
(
∂

∂θ
logf(X|θ))2

]
= −Ex|θ

[
(
∂2

∂θ2
logf(X|θ))

]
This prior is invariant to reparameterisation. Unfortunately, the Jef-
freys prior produces outcomes under some models so it cannot be re-
garded as a universal solution to the prior choice problem.

4. Non-Informative Priors. Priors that does not favor one value of θ
over another. All values of discrete θ or all intervals of equal length of
the continuous θ,will have the same probability a-priori. An example
of that kind of priors is (from Panagiotis Tsiamyrtzis lecture notes):
For any θ ∈ Θ = 1, 2, . . . , K we have :

p(θ = i) =
1

K

∀i = 1, 2, . . . , K

1.3 Bayes Factor

Starting with data y, assuming to have arisen under one of the two hypothesis
H0 and H1 according to a probability density p(y|H0) and p(y|H1) we can
assign to them a priori probabilities p(H0) and p(H1) = 1−p(H0). Multiplied
with the likelihood of the data y we get the posterior probabilities p(H0|y)
and p(H1|y) = 1− p(H0|y).

Because any prior view gets transformed to a posterior view given the
data from the likelihood, the transformation itself represents the evidence
provided by the data. If we convert to the odds scale

odds =
P

(1− P )
,

Page 10



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

the transformation takes a simple form.

From Bayes Theorem we take :

p(Hk|y) =
p(y|Hk)p(Hk)

p(y|H0)p(H0) + p(y|H1)p(H1)
.

Becomes:
p(H0|y)

p(H1|y)
=
p(y|H0)

p(y|H1)
× p(H0)

p(H1)
.

So the transformation gives us the Bayes Factor:

B01 =
p(y|H0)

p(y|H1)
.

In other words the Bayes Factor can be written or expressed as :

PosteriorOdds = BayesFactor × PriorOdds

Note that the null Bayesian evidence of the hypothesis is placed in the
numerator and the corresponding measure of the alternative H1 in the de-
nominator. These placement is interpreted as evidence in support of the null
hypothesis H0. If the null hypothesis was placed in the denominator the
interpretation would be in reverse, meaning that there is evidence against
the H0.

The frequentist approach of the null hypothesis testing is based on the rule
p.value > a = 0.05 for not rejecting the H0 and p.value < a = 0.05 for
rejecting the H0. In the Bayesian framework this does not exist because the
Bayes Factor is a summary of the evidence provided by the data in favour of
one scientific theory, presented by a statistical model, as opposed to another.

Jeffreys (1961) suggested interpreting B10 in half units on the log10 scale.
Kass and Raftery (1995) proposed t0 consider twice the natural logarithm
of the Bayes Factor, which is on the same scale as the familiar deviance and
likelihood ratio test statistic G2. Those two scales are presented in the table
1.
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Table 1.1: Jeffreys Scale of Bayes Factor

log10 B10 Evidence against Ho
0 to 1/2 1 to 3.2 Not worth mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Table 1.2: Kass & Raftery Scale of Bayes Factor

2 log B10 Evidence against Ho
0 to 2 1 to 3 Not worth mention
2 to 6 3 to 20 Substantial
6 to 10 20 to 150 Strong
>10 >150 Very Strong

The Bayes Factor, B01, apart from testing the null hypothesis against the
alternative, has also application in model comparison. Thus for comparing
model M0 against model M1 for observed data, y, the Bayes Factor becomes
the ratio of the posterior odds for M0 against M1 of the prior odds:

B01 =
f(y|M0)

f(y|M1)

From the above we can conclude that the Bayes Factor is the ratio of the
marginal likelihoods under the two models being compared.So the whole idea
nails down to the calculation of the following integral:

f(y|Mm) =

∫
f(y|θm,Mm)f(θm|Mm) dθm,m = 0, 1

where θm is the vector of parameters in model Mm and f(θm|Mm) is its
prior density.Dropping the notational dependence on the model,this can be
written as:

f(y) =

∫
f(y|θ)f(θ) dθ.

Page 12
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1.4 Computing the marginal likelihood

Bayes Factors are the ratio of the marginal likelihoods. Another expression
of the marginal likelihood is the integration likelihood. Historically the inte-
gration required for calculating marginal likelihoods has been done by taking
advantage of conjugacy or by assuming approximate posterior normality.

In other cases the requisite integrals have been approximated using such
methods as Gaussian quadrature, the Laplace approximation or Monte Carlo
methods. With the availability of increasing computer power, Markov chain
Monte Carlo (MCMC) has become a reasonable alternative.

All begun back in the year 1953. A Greek physicist Nickolas Metropolis
(1953) published and introduced the very famous method of Markov Chain
Monte Carlo which followed by a mathematician from Canada Dr.Hastings
(1970) who finished his work and has open up, until now, the road for calcu-
lating these computationally complicated integrals through their method.

Until then a lot of statisticians, mathematicians and computer developers
have proposed their opinion and view for overcoming this obstacle. In this
subsection, of this introduction chapter, we will focus on two main methods
that have been published in 1995 through scientific papers.

The first is the paper of Siddhartha Chid (1995) that proposed the calcu-
lation of marginal likelihood from Gibbs sampler output. The other paper is
from Kass & Raftery (1995) who they suggested that the Laplace-Metropolis
method is the most proper approach of calculating the marginal likelihood.

The approach of Chid (in the general case) is that we have a model with
θr, . . . , θs with s 6= r parameters. From Gibbs Sampler we take θ? simulated
parameters. For using the Gibbs Sampler we must first calculate the full
conditional densities of each parameter given all the remaining parameters
and so B are the number of vectors of complete conditional densities. From
the conditional Gibbs output the marginal likelihood can be calculated from:

π̂(θ?r |y, θ?s(s < r)) = G−1
G∑
j=1

π(θ?r |y, θ?1, . . . , θ?r−1, θ
(j)
l (l > r), z(j)),
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whereas an estimate of the joint density is:

B∏
r=1

π̂(θ?r |y, θ?s(s < r)).

The log of the marginal likelihood is :

log(m̂(y)) = log(f(y|θ?)) + log(π(θ?))−
B∑
r=1

log(π̂(θ?|y, θ?s(s < r))).

Raftery (1995) originally proposed the Laplace method estimator. This
method is an approximation of the marginal density of the data given from
the integral:

I =

∫
p(y|θ,H)π(θ|H) dθ

Assuming that the posterior density, which is proportional to p(y|θ,H)π(θ|H),
is highly peaked about its maximum θ̂ , which is the posterior mode.

This will usually be the case if the likelihood function p(y|θ,H) is highly
peaked near its maximum θ̂, which will be the case for large samples. We
let:

I(θ) = log(p(y|θ,H)π(θ|H))

Expanding Î(θ) as a quadratic about θ̂ and then exponentiating yields an
approximation to p(y|θ,H)π(θ|H) that has the form of a normal density
with with mean θ̂ and covariance matrix Σ̂ = (−y2Î(θ))−1,where −y2Î(θ)
is a Hessian matrix of second derivatives. Integrating this approximation
yields:

I = (2π)d/2|Σ̂|1/2p(y|θ̂, H)π(θ̂|H),

where d is the dimensions (or the number) of parameters. This is the
Laplace’s method of approximation. For calculation issues is more conve-
nient to take log scale of Laplace’s Method:

log(Î) ≈ (d/2)log(2π) + log(p(y|θ̂, H)π(θ̂|H) + (1/2)log| − Σ̂|

For many problems in which the sample size n is moderate, it produces
answers well within the accuracy required for drawing conclusions according

Page 14



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

to the tables of Bayes Factor scaled by Jeffreys which have been represented
in the previous chapter. Formally as n→∞, I = Î(1+O(n−1)). The relative
error is O(n−1).

The weakness of Laplace method is that it’s not accurate when n grows
large. Raftery suggested what he called ”Laplace -Metropolis” estimator
of p(y),obtained by using the posterior simulation output to estimate the
quantities needed to compute the Laplace approximation as described be-
fore.,namely the posterior mode θ̂, and minus the inverse Hessian at he pos-
terior mode Σ̂.

The posterior mode can be estimated as the θi simulated that maximises
the unormalized p(y|θiπ(θi). This requires computing the likelihood for each
simulated θi.If this takes too much computer time, then an alternative is to
use the multivariate or component-wise posterior median or to estimate the
posterior mode by nonparametric density estimation. The matrix Σ̂ can be
estimated by the posterior covariance matrix.

Within the example chapter we will use the Laplace method which calcu-
lates the normalising constant of the marginal likelihood and we will compare
different models and one way hypothesis testing using this method.

Many packages in R now are using both Chid95 and Laplace method for cal-
culating the marginal posterior. Due to the small and moderate size datasets
we find attractive to use Laplace Method in R.

Another method of calculating the marginal likelihood is via the Bridge-
sampling method which was proposed by Meng and Wong (1996). Bridge
sampling can be thought of as a generalisation of simpler methods for esti-
mating normalising constants such as the naive Monte Carlo estimator, the
generalized harmonic mean estimator, and importance sampling.

These simpler methods typically use samples from a single distribution,
whereas bridge sampling combines samples from two distributions. For in-
stance, in its original formulation (Meng and Wong 1996), bridge sampling
was used to estimate a ratio of two normalising constants such as the Bayes
factor. In this scenario, the two distributions for the bridge sampler are the
posteriors for each of the two models involved.

However, the accuracy of the estimator depends crucially on the overlap
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between the two involved distributions; consequently, the accuracy can be
increased by estimating a single normalising constant at a time, using as a
second distribution a convenient normalised proposal distribution that closely
matches the distribution of interest. The bridge sampling estimator of the
marginal likelihood is then given by:

p(y) =
Eg(θ) [h(θ)p(y | θ)p(θ)]
Ep(θ|y) [h(θ)g(θ)]

≈
1
n2

∑n2

j=1 h(θ̂j)p(y | θ̂j)p(θ̂j)
1
n2

∑n1

i=1 h(θ∗i )g(θ∗i )
,

where h(θ) is called the bridge function and g(θ) denotes the proposal dis-
tribution {θ?1, θ?2, . . . , θ?n1

} denote n1 samples from the posterior distribution

p(θ | y) and {θ̂1, θ̂2, . . . , θ̂n2 , } denote n2 samples from the proposal distribu-
tion g(θ).

To use bridge sampling in practice, one has to specify the bridge function
h(θ) and the proposal distribution g(θ). For the bridge function h(θ), the
bridge-sampling method minimises the relative mean-squared error of the
estimator.

Using this particular bridge function, the bridge sampling estimate of the
marginal likelihood is obtained via an iterative scheme that updates an initial
guess of the marginal likelihood p̂(y) until convergence. The estimate at
iteration t + 1 is obtained as follows:

p̂(y)(t+1) =

1
n2

∑n2

j=1
l2,j

s1l2,j+s2p̂(y)(t)

1
n1

∑n2

i=1
1

s1l1,i+s2p̂(y)t

,

where l1,i =
p(y|θ?i )p(θ?i )

g(θ?i )
and l2,j =

p(y|θ?j )p(θ?j )
g(θ?j )

.

After having specified the bridge function, one needs to choose the proposal
distribution g(θ). The bridge-sampling method implements two different
choices: (a) a multivariate normal proposal distribution with mean vector
and covariance matrix that match the respective posterior samples quantities
and (b) a standard multivariate normal distribution combined with a warped
posterior distribution.
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Both choices increase the efficiency of the estimator by making the pro-
posal and the posterior distribution as similar as possible. Note that under
the optimal bridge function, the bridge sampling estimator is robust to the
relative tail behaviour of the posterior and the proposal distribution. This
stands in sharp contrast to the importance and the generalized harmonic
mean estimator for which unwanted tail behaviour produces estimators with
very large or even infinite variances.

1.5 Importance Sampling

Let us return to the basic problem of computing an integral in Bayesian in-
ference. In many situation, the normalizing constant of the posterior density
p(θ|y) will be unknown. So the posterior mean of the function h(θ) will be
be given by the ratio of integrals:

E(h(θ)|y) =

∫
h(θ)π(θ)f(y|θ) dθ∫
π(θ)f(y|θ)| dθ

,

where π(θ) is the prior and f(y|θ) is the likelihood function.

If we were able to simulate a sample {θj} directly from the posterior density
π , then we could approximate this expectation by a Monte Carlo estimate.
In the case where we are not able to generate a sample directly p that we
can simulate and that approximates the posterior density p(θ|y).

We estimate the posterior mean as:

E(h(θ)|y) =

∫
h(θ)p(θ)f(y|θ)

π(θ)
dθ∫ p(θ)f(y|θ)

π(θ)
| dθ

=

∫
h(θ)w(θ)p(θ) dθ∫
w(θ)p(θ)| dθ

,

where w(θ) = p(θ)f(y|θ)/π(θ) is the weight function. If θ1, θ2, . . . , θm are
a simulated sample from approximation density π, the importance sampling
estimate of the posterior mean is:

ĥIS =

∑m
j=1 h(θj)w(θj)∑m

j=1w(θj)
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.

This is an importance sampling estimate because we are sampling values of
θ that are important in computing the integrals in the numerator and denom-
inator. The simulation standard error of an importance sampling estimate is
estimated by :

seĥis =

√∑m
j=1

[
(h(θj)− ĥISw(θj)

]2
∑m

j=2w(θj)

1.6 Sensitivity analysis

Sensitivity analysis concerns distributional forms for models p(y|θk, Hk) as
well as priors. When alternatives are introduced (e.g Student’s t distribution
in place of the normal), Bayes Factors may be used to determine which best
fits the data.

One may also assess the influence of individual data values by computing
the Bayes Factor after omitting each observation in turn. Asymptotic ap-
proximation makes the ”leave-one-out” procedure diagnostic approach easy
that we will present in chapter 4 .

Because Bayes Factor is sensitive to the prior it is important to evaluate
the Bayes Factor over a range of possibilities. This involves specifying classes
of priors to use under H0 and H1, and it also makes the issue of computation
more urgent, because many multidimensional integrals must be calculated.

To be more accurate in this specific subject of Bayesian Analysis,it is im-
portant to assess the sensitivity of any inferences with respect to changes in
the model assumptions, including assumptions about the sampling density
p(y|θ) and the prior density π(θ).

To express it generally: sensitivity is the exploration of our posterior in-
ferences with respect to the choice of parameters in the prior distribution.
Someone can tell that this is a tool for investigating the model uncertainty.

Notice that importance sampling may be used for sensitivity analysis even
if the original posterior sample θ1, θ2, . . . , θm was obtained using some other
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method (e.g the Gibbs Sampler). The new posterior estimates are not likely
to be as accurate as the original, but are probably sufficient for the purpose
of a sensitivity analysis.

1.7 Example of Bayes Factor For Model Com-

parison (Euroleague)

In the first example we will demonstrate a hypothesis test for Kostas Sloukas
average points in Euroleague Regular Season 2018-19.The real data taken
from the https://www.euroleague.net/competition/players/showplayer?
pcode=001926&seasoncode=E2018#!E2018_RS .

Here we assume the measurements are normally distributed with mean µ
and standard deviation σ. Kostas Sloukas scored the following points in each
27 games yi = 8, 13, 20, . . . , 11, 8, 22 (see Appendix)

We are ready to test two different Bayesian models using the Bayes Factor
for prior selection. Suppose we have prior knowledge about his true point
average coming from the data from 2009-8 season up until the previous season
2017-18 and we assign the µ = 9.

The Bayes Factor for support of M0 against the M1 as shown previously
is:

B01 =
M0

M1

,where M0 and M1 are the two models that have been calculated by the
gradient-based MCMC in Stan.

So µ for M0 is distributed as

µ ∼ Normal(9, 5)

and
σ ∼ Cauchy(0, 1)

(Note here that Stan is using standard deviations and not variances). The
log marginal likelihood of this H0 is: −61.56 as reported by Stan.
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For the second model in the denominator we gave prior density on the
mean:

µ ∼ Normal(11, 1)

and prior on standard deviation :

σ ∼ Cauchy(0, 1)

and we obtained log marginal likelihood −59.60875.

Continuing our process of Bayes Factor calculation we load the BridgeSam-
pling package in R that works with Stanfit models and calculates the Bayes
factor as Kass and Raftery (1995) presented.

Putting in the numerator the marginal likelihood of the first model and
the denominator the log marginal likelihood of the second model the Bayes
Factor becomes :

BF01 =
M0

M1

= 0.14133

where there is evidence against M0.

We proceed by reversing the hypotheses in the Bayes Factor :

BF10 =
M1

M0

= 7.07547

where we have substantial evidence against the H0. So we can conclude that
Kostas Sloukas is scoring on average more than 10 points on each Euroleague
game.

1.8 Example of Bayes Factor For Model Com-

parison (PremierLeague)

To explain in practice the usage of Bayes Factor, the website https://www.

premierleague.com/clubs/10/Liverpool/results?co=1&se=210 gives the
number of Liverpool goals for each game in Premier League for the season
2018-19 (see Appendix).
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Suppose we observe Liverpool’s goals y1, y2, . . . , yN for N consecutive
games. The general model for these data are: y1, . . . , yN are independent
f(y|θ). Since goals are relatively rare events, it is reasonable to assume that
the yis are Poisson distributed with mean λ. The values of y are :

yi = 4, 2, 1, . . . , 5, 3, 2

Now let’s suppose we have some priors beliefs about the mean Liverpool’s
goals E(y). Let’s say that the average mean of goals are 2 according to the
last two previous Premier League seasons and standard deviation 1. Also we
should think about different choices for the prior density.

For the prior selection, there are many possible choices. In this example
we will compare 3 priors on the Liverpool’s likelihood mean and standard
deviation from different distributions. The reason for that is that we want
to give significant knowledge of prior and some weakly informative priors.

After some careful thinking about the prior choices and sampling density,
we will compare those models with Bayes Factors.To do this, we compute the
prior predictive density of the real data for each model. Then we will compute
the log marginal likelihoods of the models with Stan modelling language in
R (see Appendix).

Continuing our example , we will use a conjugate prior to express our belief
about the mean Liverpool’s goals θ which is a Gamma(4.5, 2).

Our data constist of: Y = 89 the total goal counts, N = 38 the total games
played. Expressing our prior belief in Gamma for the average goals θ, then
from the expected mean of Gamma

E(y) =
a

b
= 2.25

and variance
V (y) =

a

b2
= 1.125

solving this system of equations with two unknowns we take: α = 4.5, β = 2.

Taking the kernel of Gamma and Poisson θX+α−1e−θ(
1+1/β) , then the joint

posterior distribution becomes

θ|y ∼ Gamma(α + Y, β +N)
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and we obtain:
Gamma(93.5, 40).

But without the normalising constant computed in the denominator. This
will be conducted with the calculation of marginal likelihood with the Laplace
method.

But this conjugate prior selection with Gamma prior (model M1) is prob-
ably unsure how well will fit the data and for this reason we would like to
compare it with an other or other models. So we can fit a second sampling
model (model M2) which the prior will be normal in log scale with log λ
having mean 1 and standard deviation 0.5.

A third model (model M3) will be the same for log λ with mean 2 and
standard deviation 0.5 and finally a fourth model (model M4) again log λ
with mean 1 and standard deviation 2.

Now we display the posterior modes, posterior standard deviations and log
marginal densities for the four models corresponding to the four models.

Table 1.3: Marginal Likelihood results

Summary
Posterior Mode Posterior SD log Marginal
0.84 0.10 1.06
0.85 0.10 -1.14
0.89 0.10 -3.65
0.85 0.10 -2.46

Assessing the results and plugging them in the Bayes Factor.Now for com-
paring in support of the model M2 over each else after we exponentiate, we
take the following results:

BF21 =
M2

M1

= exp(−1.145 + 1.065) = 0.976.

First for the comparison the support of model M2 over the model M1 the
outcome is 0.97 which means that actually there is no difference between
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these models and the support of M2 over M1 is not worth mention it.

BF23 =
M2

M3

= exp(−1.145 + 3.651) = 12.255.

For the comparison of model M2 over M3 we find that there is a strong
evidence in support of model M2 against M3

BF24 =
M2

M4

= exp(−1.145 + 2.468) = 3.755.

Finally comparing model M2 and M4 there is a substantial evidence in sup-
port of M2 over M4 but not as strong as the previous comparison.
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Chapter 2

Bayesian Hypothesis Testing
for Two-Way Contingency
Tables

2.1 Probability Structure for Contingency Ta-

bles

Let X and Y denote two categorical variables. X has I categories and Y
has J categories as well. I categories of X apart from categories denotes the
number of rows that will be placed in a contingency table. In the other hand
J expect of categories of the variable Y denotes also the number of columns.

A possible subject in a randomised trial has IJ possible combinations of
classification in a contingency table. Usually the response variable Y is being
placed into columns and the explanatory X into rows. But sometimes both Y
andX are response variables. In that case we focus on their joint distribution,
which also determines the marginal and conditional distributions.

When Y is a response variable and X is an explanatory variable, we focus
on the conditional distribution of Y and how it changes as the category of
X changes.
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Now let us examine the case that both X and Y are response variable:
Suppose we conduct a randomised trial from a chosen population, such as in
a sample survey employing simple random sampling. Then the X and Y are
treated as both response variables of a randomly chosen subject which these
variables have a probability distribution.

Let πij denote the probability that (X, Y ) occurs in a cell in row i and
column j. The probability distribution {πij} is the joint probability of X
and Y . The marginal distributions are the row and column totals that result
from summing the joint probabilities. We denote these by {πi+} for the row
variable and {π+j} for the column variable. The subscript ” + ” denotes the
sum over that index, which is:

πi+ =
∑
j

πij

and
π+j =

∑
i

πij

The above equations can give us the total marginal probability :∑
i

πi+ =
∑
j

π+j =
∑
i

∑
j

πij

In the case that Y is the response variable and X explanatory variable we
no longer have joint probability. In this case we are examining the probability
that given a subject is in a row i of X to be classified in one column j of Y .

This probability is called the conditional probability and is denotes as πj|i.
So
∑

j πj|i = 1. The conditional distribution of Y given X relates to the joint
distribution by: πj|i = πij/πi+ for all i and j.

The cell frequencies are denoted by {nij}, and n =
∑

i

∑
j nij is the total

sample size. So:

pij =
nij
n

The sample proportion of times that subjects in row i made response j is

pj|i =
pij
pi+

=
nij
ni+

,
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Table 2.1: Probability Structure Table in 2 × 2 table

Y
X 1 2 Total
1 π1|1 π2|1 π1+
2 π1|2 π2|2 π2+
Total π+1 π+2 1

where
ni+ = npi+ =

∑
j

nij.

2.2 Distributional Sampling

In this section we will examine the distributional assumption in a contingency
table under various sampling plans.The key point here is to represent different
sampling methods before a survey is being conducted.

With the phrase different distributional sampling methods we mean how
the variables X and Y are designed before the trial and the subjects were
selected according to their cell frequencies or their conditional probabilities.

1. Joint Multinomial Sampling. In this kind of distributional sam-
pling the total sample size n is fixed, but the row and column totals
are not.The probability mass function of the cell counts has the multi-
nomial form: [

n!

(n111 . . . nIJ !)

]∏
i

∏
j

πnijij

Here the joint probabilities can be calculated because rows and columns
are not fixed. We are interested of observing how much randomly the
sample has been split into rows and columns.

2. Independent Multinomial Sampling. In this scheme there are two
restrictions, either on the row totals or on the column totals. In other
words, either all row margins or all column margins are fixed.
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Consequently, the cell counts are multinomially distributed within each
row or column. In experimental trial design in medicine or in social
sciences, this is the most common sampling scheme. Suppose that
the ni observations on Y at using i of X are independent, each with
probability distribution {π1|i, . . . , πj|i}. The sampling scheme is called
independent multinomial sampling and is given by:

∏
i

[
ni!∏
j nij

∏
j

πnijj|i

]

. The special case of the multinomial independent sampling when the
J = 2 is the independent binomial sampling.

3. Poisson Sampling. Each cell count is random, and so is the total N
size is not fixed. Each of the cell counts is Poisson distributed. This
design often occurs in purely observational work.

Poisson sampling model treats cell counts {Yij} as independent Poisson
random variables with parameters {µij}. The joint probability mass
function for IJ cells is: ∏

i

∏
j

exp(−µij)µnijij
nij!

4. Hypergeometric Sampling. The scheme of hypergeometric distribu-
tion occurs when both row and column totals are fixed.The cell counts
are said to be hypergeometrically distributed. Practical application of
the hypergeometric with sampling scheme is rare.

For the 2×2 table, an infinite number of examples can be constructed by
classifying participants according to a median split on two continuous
variables. For example, suppose we have 100 participants, with income
and altruism as variables of interest.

The first median split creates a group of 50 rich participants and 50 poor
participants; the second median split creates a group of 50 altruistic
participants and 50 arrogant participants. Hence, all row and column
margins are fixed, and a single cell count suffices to uniquely identify
the remaining three.
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2.3 Testing Independence in Two-Way Con-

tingency Tables

In this section we will represent the method that helps the frequentist ap-
proach to calculate the independence of Y and X. We are interested on
examine whether there is an independence between the response variable Y
and the explanatory X. Alternatively is there is an association between those
two variables.

So we have to design a hypothesis test. The ”tools” for this test are joint
probabilities {πij} in an I × J contingency table. Here we will first examine
the independence test in a 2× 2 contingency table.

The H0 null hypothesis test of independence is πij = πi+π+j for all i and
j. The alternative H1 is πij 6= πi+π+j.

In the independence test problem the {nij} is substituted by {ni} and with
µij = nπi+π+j in place of µi. Here µij = E(nij) under H0. Usually,{πi+} and
{π+j} are unknown. The test statistic for independence test is:

χ2 =
∑
i

∑
j

(nij − µ̂ij)2

µ̂ij
.

This function will give one value. This value follows asymptotically the
chi-squared distribution with degrees of freedom (I − 1)(J − 1). From the
distribution table of chi-squared distribution this statistic will give us one
probability.

The probability value (p-value). If this value is greater than a = 0.05 when
a is the confidence level the H0 is not rejected. If the value is less than
a = 0.05 there is evidence against the null hypothesis H0 i.e the variables X
and Y are independent .
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2.4 Bayesian Approach for Testing Indepen-

dence in Two-Way Contingency Tables

For the analysis of 2×2 contingency tables, we will borrow the idea that Gunel
and Dickey (1974) introduced, which is a generalization of I×J contingency
tables Bayes analysis. Gunel and Dickey (1974) proposed the use of Bayes
Factor for calculating the independence or I rows and J columns.

Below we describe, separately for each of the four sampling schemes that
we have represented above. Bayes factors as we described them in Chapter
1 they test the H0 in support of H1 if H0 is placed in the denominator and
vice versa. The idea is the same for the row-column independence model H0

over the row-column dependence model H1.

Bayes factors are often difficult to calculate as we have showed, because
they are obtained by integrating over the entire parameter space, a process
that is non-trivial when the integrals are high-dimensional and intractable.

In order to describe how the Bayes factor are being calculated, we must first
introduce the idea of a “conditional” Bayes factor. Consider that we want
to test a simple normal mean and variance with two participants. Here we
don’t care for the hypothesis design for now. In other hand, we focus on the
information in the data (likelihood) coming from participant to participant.

If we were sampling sequentially, we might compute the Bayes factor for our
hypothesis after the first participant, and then after the second participant.
The second Bayes factor takes into account all the data both coming from the
first participant and the data information from the second participant. We
can also look at the Bayes factor due to having observed second’s participant
data, already taking into account the data from participant 1.

This Bayes factor represents the “extra” information about the hypothesis
offered by participant 2 over and above that offered by participant 1. We can
call it the Bayes factor for participant 2 given, or conditional on, participant
1. However, we can partition the data in other ways besides participants.

Since the sample mean and variance jointly capture all the information
in the data, we can also describe the Bayes factor for the sample mean
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Y∗∗ =


Y1 Y2 . . . YJ

y1 y11 y12 . . . y1J
y2 y21 y22 . . . y2J
...

...
...

. . .
...

yI yI1 yI2 . . . yIJ


conditioned on knowing the sample variance.

In the context of contingency tables, there are logical ways of partitioning
the data. To begin, we partition the data into a part that contains the infor-
mation about the overall quantity of observations, and a part that contains
the information about how cells differ from one another.

To compute the evidence assuming that the total number of observations is
fixed, we look at the change from the Bayes factor using only the first part of
the data (the total number of observations) to the Bayes factor conditioned
on the whole data set.

Due to the way of parameterization of models ,model parameters corre-
sponding to the components of the partition this successive conditionalization
produces Bayes factors that are easy to compute.

2.5 Bayes Factors according to distributional

sampling

First we will clarify the notation that we are going to use for explaining the
Bayes Factor for I × J contingency table.

Let y∗∗ be a data matrix of I rows and J columns. and let α∗∗ be a matrix
of prior parameters with the same dimension as the data matrix y∗∗:

In vector form , ~y = (y11, y12, . . . , yIJ) and ~α = (α11, α12, . . . , αIJ). For
notation reasons dot is the summation across a single dimension (row or
column) and star is the entire vector of that dimension. Which are clarified

Page 31



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

α∗∗ =


α1 α2 . . . αJ

α1 α11 α12 . . . α1J

α2 α21 α22 . . . α2J
...

...
...

. . .
...

αI αI1 αI2 . . . αIJ


by the equations below:

y∗∗ =
I∑
i=1

J∑
j=1

yIJ = y11 + y12 + · · ·+ yIJ

y∗. =
I∑
i=1

yIJ = (y1, . . . , yI)

y.∗ =
J∑
j=1

yIJ = (y1, . . . , yJ)

α.. =
I∑
i=1

J∑
j=1

αIJ

α∗. =
I∑
i=1

αIJ = (α1., . . . , αI.)

α.∗ =
J∑
j=1

αIJ = (α.1, . . . , α.J)

ξ∗. = α∗. − (J − 1)

ξ.∗ = α.∗ − (I − 1)

ξ.. = α.. − (I − 1)(J − 1

D(α∗∗) =
I∏
i=1

J∏
j=1

Γ(αIJ)

Γ(α..)

To give a notion to the reader of this thesis, α∗∗ is the matrix of the
prior parameters. For example α is the scale parameter in Γ distribution for
Poisson sampling models. For the multinomial distributional sampling that
case is α = 1, which says, that every combination of parameter values is
equally likely a priori.
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ξ∗. is the number of rows (vector length) and ξ.∗ is the number of columns
(vector length). Finally D(α∗∗) is the Dirichlet distribution that we shortly
explain below.

1. Bayes factor under the Joint Multinomial sampling. Under this
sampling scheme, the total N or y.. is fixed. Cell counts are assumed
to be jointly multinomially distributed:

y11, . . . , yIJ ∼Multinomial(y.., π∗∗)

and the conjugate prior selection for Multinomial parameters is the
multidimensional version of Beta distribution, the Dirichlet distribu-
tion:

π∗∗ ∼ Dirichlet(α∗∗)

where π∗∗ are the parameters to be estimated. The Bayes factor for
independence under the joint multinomial sampling scheme is:

BFM
01 =

D(y∗. + ξ∗.)

D(ξ∗.)

D(y.∗ + ξ.∗)

D(ξ.∗)

D(α∗∗)

D(y∗∗ + α∗∗)
.

For the 2× 2 table with α = 1, the Bayes factor becomes:

BFM
10 =

6(y∗∗ + 1)(y1. + 1)

(y∗∗ + 3)(y∗∗ + 2

[
y11!y12!y21!y22!

(y1. + 1)!y2.!y.1!y.2!

]
.

2. Bayes factor under the Independent Multinomial Sampling.
Here we have to remind to the reader of this thesis that independent
multinomial sampling can have either fixed number of rows or fixed
number of columns. The Bayes factor that evaluates independence in
support of the null hypothesis under this sampling scheme is :

BF I
01 =

D(y∗. + ξ∗.)

D(ξ.∗)

D(y∗. + α∗.)

D(α∗.)

D(α∗∗)

D(y∗∗ + α∗∗)
.

When the row margins are fixed in a I × J table the Bayes factor is:

BF I
01 =

D(y∗. + ξ∗.)

D(ξ∗.)

D(y.∗ + α.∗)

D(α.∗)

D(α∗∗)

D(y∗∗ + α∗∗)
.

For the 2 × 2 contingency table, the Bayes factor for the independent
multinomial sampling plan reduces to a test for the equality of two
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proportions, θ1 and θ2. Under the default setting α = 1 for prior
Dirichlet Distribution, the Bayes Factor becomes:

BF I
01 =

[(
y.1
y11

)(
y.2
y12

)(
y.1+yy.2
y11+y12

) ] [ y11!y12!y21!y22!

(y1. + 1)!y2.!y.1!y.2!

]
.

where in the left parentheses lie the binomial coefficients.

3. Bayes factor under the Poisson sampling. Under this sampling
scheme, none of the cell counts are fixed. Each cell count is assumed to
be Poisson distributed: yIJ ∼ Poisson(λIJ). Each of the rate parame-
ters λIJ is assigned a conjugate gamma prior with shape parameter α
and scale parameter β:λIJ ∼ Γ(αIJ , β).Here,

Γ(αIJ , β) =
βα

Γ(α)
λα−1e−βλ, λ > 0, α > 0, β > 0

and Γ(α) is the gamma function Γ(α) = (α− 1) The Bayes Factor for
Poisson scheme is:

BF P
01 = (1+

1

β
)(I−1)(J−1)

Γ(y.. + ξ..)

Γξ..

∏
IJ

D(y∗. + ξ∗.)

D(ξ∗.)

D(y.∗ + ξ.∗)

D(ξ.∗)

D(α∗∗)

D(y∗∗ + α∗∗)

and for the special case for 2× 2 table becomes:

BF P
10 =

8(y∗∗ + 1)(y1. + 1)

(y∗∗ + 4)(y∗∗ + 2

[
y11!y12!y21!y22!

(y1. + 1)!y2.!y.1!y.2!

]
.

4. Bayes factor under the Hypergeometric. Hypergeometrical dis-
tributional scheme are not so often as the independent multinomial or
poisson schemes because rows and column margins are fixed. Although
the Bayes Factor for the hypergeometric scheme for 2× 2 table is:

BFH
10 =

y11!y12!y21!y22!y..!

(y1. + 1)!y2.!y.1!y.2!
.

These results of each distributional scheme given their prior distributions are
substantial for implementing Bayes Factors in contingency tables.

Usually the schemes that scientists adapt for their statistical designs are
the joint multinomial, independent multinomial and poisson.
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2.6 Bayes Factor example in Independence

Test

Ending this subsection of Bayesian approach of independence of two cate-
gorical variables, we demonstrate an example of both the frequentist and
bayesian framework.

Here, we provide an example analysis of Hraba and Grant’s (1970) data,
included as part of the BayesFactor package in R as the raceDolls data set.

71 white children and 89 black children from Lincoln, Nebraska were offered
two dolls, one of whose “race” was the same as the child’s and one that was
different (either white or black). The children were then asked to select one
of the dolls, with prompts such as “Give me the doll that is a nice doll.” 50 of
the 71 white children (70%) selected the white doll, while 48 of the 89 black
children (54%) selected the black doll (see Appendix).

Table 2.2: Race Dolls Data

Child
Dolls White Child Black Child Total
Same-Race Doll 50 48 98
Different-race doll 21 41 62
Total 71 89 160

The χ2 statistic of independence gave us the value of 3.8566 and with
degrees of freedom df = 1,the p.value is 0.04955 which a boundary evidence of
association between the race of children and the colour of their doll selection.

The Bayesian approach of this independence test conducted with the BayesFac-
tor package in R and the command contingencyTableBF (),which take as an
input a I × J matrix and test the independence of columns and rows.

An additional argument on this command is that we must specify which dis-
tributional scheme this experiment was held.In our example the sampleType =′′

indepMulti′′ and the fixedMargin =′′ cols′′ to specify if the rows or the
columns margins were fixed.

This argument executes the Bayes Factor depending on the distributional

Page 35



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

sampling and the prior selection of Gunel & Dickey (1974) as we described
above.

The Bayes factor in favor of the alternative that the categorical factors
are not independent is 1.815, which is not providing strong enough evidence
against the null hypothesis. For the full R code see at the Appendix.

2.7 Bayesian Estimation of Odds Ratio and

Difference of Two Binomial Proportions

In term of probabilities in a 2 × 2 contingency table, the Relative Risk is
defined as:

RR =
π1
π2

,which is the ratio of the two proportions of two different groups. Usually
in Biostatistics the main purpose of calculating the RR is to examine two
groups of exposure and no exposure in a disease in a clinical trial.

Many sociologists and psychologists use the RR in their surveys for a quick
calculations in the difference in two examining groups. RR is by default a
nonnegative real number.

A relative risk of 1.00 occurs when π1 = π2 , that is, when the response
variable is independent of the group. The ratio of failure probabilities, (1−
π1/(1 − π2)) = π2 − π1 takes a different value than the ratio of the success
probabilities.

From the other hand Odds Ratio is the another measure of association for
a 2× 2 contingency table for a probability of success π, the OR are defined
as:

OR =
π

(1− π)
.

Also the success probability π is a function of the odds,

π =
odds

(odds+ 1)
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In 2× 2 tables, within row 1 the odds of success are odds1 = π1/(1−π1),and
within row 2 the odds of success equal odds2 = π2/(1 − π2). So the ratio of
the odds from a 2× 2 table is:

θ =
odds1
odds2

=
π1/(1− π1)
π2/(1− π2)

A more typical form of Odds Ratio calculation type according to notation
that we have already used in this thesis and is very common mathematically
in practice is :

θ =
π11π22
π12π21

.

The relationship between Relative Risk and Odds Ratio is:

OR = RR

(
1− π2
1− π1

)
.

Bayesian approach in a 2 × 2 contingency table for calculating the odds
ratio we will assume that the cell counts are poisson distributed with:

Y11 ∼ Poisson(λ11)

Y12 ∼ Poisson(λ12)

Y21 ∼ Poisson(λ21)

Y22 ∼ Poisson(λ22)

These λ’s parameters have prior distribution λ ∼ Gamma(α, β). Finding
the posterior distribution for the conjugate analysis we will end as we have
showed in chapter 1:

λ11 | y11 ∼ Gamma(y11 + α,N + β)

λ12 | y12 ∼ Gamma(y12 + α,N + β)

λ21 | y21 ∼ Gamma(y21 + α,N + β)

λ22 | y22 ∼ Gamma(y22 + α,N + β)

where α and β are common scale and rate Gamma parameters and N is the
grand total count of all cells. Generating θ? random numbers from a Gamma
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distribution for λ’s we are able to estimate a new simulated odds ratio, which
is denoted:

OR? =
λ?11 × λ?22
λ?12 × λ?21

Taking advantage of the Monte Carlo mean estimator:

1

Nθ?

∑
OR?

we can have the new estimated odds ratio from the posterior simulation.

2.8 Odds Ratio Simulation example

In the electronic Appendix the example from Hennekens (1987) study is
provided. From the data of this study we obtain a 2×2 contingency table with
104 myocardial infractions (fatal and non-fatal) among 11.037 patients in
the treatment group and 189 myocardial infractions incidents among 11.034
patients in the placebo group and is presented below:

Table 2.3: Hennekens Data

Drug
Status Treatment Placebo Total
Exposed 104 189 293
Non-Exposed 11037 11034 22071
Total 11141 11223 22364

Calculating the odds ratio for this table we take:

OR =
104× 11.034

189× 11037
= 0.55.

The simulated OR? with Gamma parameters α = 1 and β = 1, we obtained:

OR? = 0.55,

with standard error equal to 0.067.
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2.9 Difference in Proportions (A/B Testing)

example

A/B Testing is comparison procedure of two different method of marketing.
Companies are very interested knowing which of the two marketing strate-
gies is better or more highly likely to occur. A simple mathematic division
contains the outcome of a method. This outcome is called Conversion Rate
and is actually a proportion of the total number customers e.g divided by
the total number of visitors in a web application.

ConversionRate =
#Customers

#V isitors

For example, let us assume that you own a web application which provides to
the user taxi services and calling a taxi cab by the single click in your mobile
phone. The marketing department of this company have done a study and
tried two different versions of the app and wanted to know which one version
is better according to the rides made from each version:

The data analysts received the numbers from the first version and saw that
72 users from 600 that they saw the saw the version A the same day took a
taxi ride, and 120 from 750 that saw the version B took a ride the same day
or some minutes after they saw the competition.

So now we have 72 conversions from method A and 120 from from method
B. The next matrix shows the No Conversions in the first column and Con-
versions in second column.

A =

[
600 72
750 120

]
.

There is no need to write that the conversion rate is actually statistically
speaking the p in the Binomial Distribution.Binomial Distribution has two
parameters N which represents the total number of trials and p success prob-
ability for each trial. The distribution is :

Yi ∼ Binomial(N, p).

In our example we have:

Y1 ∼ Binomial(600, p1)
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Y2 ∼ Binomial(750, p2)

The conversion

p̂1 =
72

600
= 0.12

and

p̂2 =
120

750
= 0.16

In our web taxi app problem we have two two binomial samples with size
N1 and N2 with parameters θ̂1 and θ̂2. Those two parameters now due to
conjugate prior analysis they follow another distribution called Beta Distri-
bution which has two scale parameters α andβ. So our random parameters
that need to be estimated are

Y1 ∼ Binomial(N1, θ1)

Y2 ∼ Binomial(N1, θ2)

for Difference of Proportions we used prior:

θ̂1 ∼ Beta(3, 25)

θ̂2 ∼ Beta(3, 25)

Assuming beta priors for the success probabilities θ1, θ2 with parameters
(α1, β1) and (α2, β2) , respectively, we end up with posteriors given by:

θ1 | y1 ∼ Beta(y1 + α1, N1 + β1)

and
θ2 | y2 ∼ Beta(y2 + α2, N2 + β2)

Substituting the numbers we obtain:

θ1 | y1 ∼ Beta(72 + 3, 600 + 25)

and
θ2 | y2 ∼ Beta(120 + 3, 750 + 25)

Next we generate 1000 numbers from a beta distribution with the given
parameters as above:
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Generate
θn∗1 ∼ beta(75, 625)

and

Generate
θn∗2 ∼ beta(123, 775)

where n∗ are the number of simulation pseudo random numbers.

The final step is to subtract θ2 from θ1 to calculate the difference in pro-
portions.

For the Difference of Proportions, R reported 0.03 with standard error 0.01
and according to the posterior distribution with around probability p = 0.96,
the p(β) is higher than p(α), so version B is more successive than version A.
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Chapter 3

Bayesian Analysis for
Generalized Linear Regression
Models

3.1 Logistic Regression

Generalized linear modelling is a framework for statistical analysis that in-
cludes linear, log linear and logistic regression (as well as other cases from the
same exponential family distributions) as special cases as have been proposed
from Nelder & Wedderburn (1972).

Linear regression directly predicts continuous data y from a linear predictor
Xβ = β0+β1X1+· · ·+βkXk. Logistic regression predicts P (y = 1) for binary
data from a linear predictor with an inverse logit transformation.

A generalized linear model involves:

1. Random Part: Data vector y = (y1, . . . , yn that are identically inde-
pendent distributed (iid) from the same exponential family.

2. Systematic Part : Here we will find the linear predictor ηi = β0 +
β1X1+· · ·+βkXk,where Xi1, . . . , XiK are the explanatory variables and
β0+β1+· · ·+βK are the estimated coefficients.This predictor ηi is linear
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in respect to the parameters and not to the (in)dependent variable X.
The assumptions about X variable, of zero correlation or independence
or lack of interaction or additivity, cannot be taken for granted in GLM
and must be checked. The coefficients β̂ are Normally distributed and
due to that,the statistical inference is for the population average.

β̂0 ∼ N(β̂, σ2
β0

),

β̂1 ∼ N(β̂, σ2
β1

),

. . .

β̂k ∼ N(β̂, σ2
βk

).

3. Link Function : A link function G, yielding a vector of transformed
data ŷ = G−1(βX) that are used to model the data.

Logistic regression is the standard way to model binary outcomes (that is,
data yi that take on the values 0 or 1). It would not make sense to fit the
continuous linear regression model, Xβ + error, to data y, that take on, the
values 0 and 1. Instead, we model the probability that y = 1 to a non-linear
transformation:

P (yi = 1|x) = G(Xiβ) =
exp(x)

1 + exp(x)
.

This is called the inverse logit, logit−1(ηi) = G−1(ηi). Alternatively we can
write:

G−1 =
exp(x)

1 + exp(x)

This function transforms continuous values to the probability range (0, 1),where

G(π) = log

[
π

1− π

]
is a function mapping the range (0, 1) to the range −∞ to∞ in the whole real
line. We prefer to work with G−1 because it is natural to focus on the mapping
from the linear predictor to the probabilities, rather than the reverse. For

Page 44



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

instance, if a linear logistic model has been used with two covariates χ1 and
χ2,we have the model:

log

[
π

1− π

]
= β0 + β1χ1 + β2χ2

for the log odds of a positive response. Equivalently, the model may be
written in terms of the odds of a positive response, giving:

π

1− π
= exp(β0 + β1χ1 + β2χ2).

Finally the probability of a positive response yields the inverse function which
is:

π =
exp(β0 + β1χ1 + β2χ2)

1 + exp(β0 + β1χ1 + β2χ2)

The curve of the linear regression is a straight line.In logistic regression
(generalized linear models) the regression curve through this non-linearity is
S-curved. Inverse-logistic function is curved, and so the expected difference
in y corresponding to a fixed difference in x is not a constant. Exponenti-
ating logistic regression coefficients can be interpreted as odds ratios. For
simplicity, we illustrate with a model with one predictor X1, so that:

log

[
P (y = 1|x = 1)

P (y = 0|x = 1)

]
= β0 + β1X1.

In logistic regression there are two different data inputs:

1. Ungrouped Data: Are data that yi have binary form of 0,1 and are
Bernoulli Distributed,with n = 1.

yi ∼ Bernoulli(θi)

2. Grouped Data : Are data that yi have the form of successes and
failures.These yi are Binomial Distributed.

yi ∼ Binomial(Ni, θi)
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Deviance is a goodness-of-fit statistic for a GLM model. It is often used for
statistical hypothesis testing. It is a generalization of the idea of using the
sum of squares of residuals in ordinary least squares to cases where model
fitting is achieved by maximum likelihood as it is presented in this section.
It plays an important role in exponential dispersion models and generalized
linear models. Unbiased estimation of φ is the:

φ =
deviance

df
.

The priors that we must give are on interest of parameters βi in the linear
predictor are usually normal priors for these parameters, given the dispersion
parameter φ.

β̂i|φ ∼ Normal(µβi , σ
2
βi
|φ)

The variance of the normal prior depends on the dispersion parameter φ in
order to achieve an appropriate scaling of the prior distribution. When no
prior information is available, the prior mean is set equal to zero, while the
corresponding variance is set large to express prior ignorance. Alternatively,
a prior independent to the dispersion parameter can be considered.

When the variance is set large to express prior ignorance, then no dif-
ferences in the resulting posterior distribution will be observed. Another
alternative is for diffuse priors is the student t distribution as prior due to its
fat tails. Another alternative for prior selection when there is no information
to the analyst is the Cauchy distribution which has even fatter tails than
Student t.

3.2 Bernoulli & Binomial Regression exam-

ples via Hamiltonian Monte Carlo

To illustrate an example we will use the data (Bernoulli) of NASA’s Chal-
lenger Disaster from the spaceship’s rings as presented in Appendix. The
cause of the Challenger lift off disaster was traced to an O-ring, a circular
gasket that sealed the right rocket booster. NASA before Challenger’s disas-
ter in 1986 had 23 previous shuttle missions that tested the O-rings and their
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resistance to temperature. The independent variable yi are binary, which 1
indicated failure and 0 otherwiset. The X variable is the temperature at
launch in degrees Fahrenheit.

The implementation of frequentist approach of GLM model,R reported the
η = 15.0429− 0.2322. So the probability of failure on Orings boosters in the
mean temperature (69.56) is :

π =
exp(15.0429− 0.2322 ∗ 69.56)

1 + exp(15.0429− 0.2322 ∗ 69.56)
= 0.24.

For the Bayesian approach we are using the Stan modelling language which
uses Euclidean Hamiltonian Monte Carlo Simulation. The coefficients β0 β1
were calculated both with prior Normal(µ = 0, σ = 100).Stan reported
β0 = 18.678 and β1 = −0.286.

The model is
η = 18.678− 0.286× χthermal.

The probability of failure in the mean temperature is :

π =
exp(18.678− 0.286 ∗ 69.56)

1 + exp(18.678− 0.286 ∗ 69.56)
= 0.22,

but the probability of failure of the O’Rings in the temperature of 31 which
was the temperature the time that Challenger exploded is :

π =
exp(18.678− 0.286 ∗ 31)

1 + exp(18.678− 0.286 ∗ 31)
= 0.99

Table 3.1: NASA Challenger Analysis

RStan Regression Analysis
Parameter Rhat n eff mean sd 2.5% 50% 97.5%
b0 1.0 951 18.7 8.4 4.9 17.6 38.0
b1 1.0 960 -0.3 0.1 -0.6 -0.3 -0.1
log-posterior 1.0 1526 -11.3 1.1 -14.0 -10.9 -10.2

For Binomial regression (grouped data) we present data from World Cup
of Basketball in China 2019. We focus on Facundo Campazzo’s 3 point shots
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Table 3.2: Facundo Campazzo’s Attempts-Made

Facundo Campazzo 3 point shots
Versus Attempts Made
South Korea 3 4
Nigeria 3 8
Russia 2 7
Venezuela 2 3
Poland 1 4
Serbia 3 6
France 3 9
Spain 1 5

attempts through out the tournament in 8 games (including the final). The
data are the following: Attempts:4, 8, 7, 3, 4, 6, 9, 5 and made:3, 3, 2, 2, 1, 3, 3, 1.

We have selected prior Normal for regression’s intercept,β0 ∼ Normal(0, 1).
Stan reported β0 = −0.89 with sd = 0.26. We can conclude that the proba-
bility of success in Facundo Campazzo’s 3 point shot is:

π =
exp(−0.89)

1 + exp(−0.89)
= 0.29

Table 3.3: Facundo Campazzo’s Logistic Regression Analysis

Parameter Rhat n eff mean sd 2.5% 50% 97.5%
α 1.0 1549 -0.89 0.26 -1.4 -0.9 -0.4
log-posterior 1.0 1176 -38.9 0.7 -40.9 -38.7 -38.4

3.3 Logistic Regression via Laplace-Metropolis

algorithm

As we have seen in Chapter 1, Kass and Raftery (1995) proposed a method for
estimating the marginal likelihood by combining the Laplace approximation
with MCMC for bayes factor calculation.
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They suggested the Metropolis algorithm as a means for estimating the
quantities required for the Laplace approximation. By applying the Laplace
method we can derive the following approximation for the marginal likeli-
hood:

f(Y ) = (2π)P/2 | H |1/2 f(θ?)f(Y | θ?),

where θ? is the value of θ at which h(θ) = log{f(θ)f(Y | θ)} attains its
maximum H? is the minus the inverse Hessian matrix of second derivative of
h evaluated at θ? and P is the dimension of the parameter space.

For numerical reasons and since it is customary to work with log likelihoods,
it is better to work with this approximation on the logarithmic scale. Taking
logarithms, we can rewrite the Laplace approximation as:

log(f(Y )) =
P

2
log(2π) +

1

2
log(| H? |) + log(f(θ?)) + log(f(Y | θ?))

We refer to this estimator as the Laplace estimator.

In the Laplace-Metropolis estimator there are two key quantities that we
need to derive from the posterior simulation output, namely θ? and H?. The
conceptually simplest way to estimate θ? would be to compute h(θ) for each
draw from the posterior simulation output and use that θ for which h(θ) is
largest for θ?. This can take a lot of computing effort and resources.

As an alternative we consider the multivariate median, or L1 center, which
is defined as the value of θ which minimises:

d(θ(j)) =
J∑
l=1

| θ(l) − θ(j) |,

where | θ(l) − θ(j) |, denotes L1 distance. We use this as an estimator of the
posterior mode.

The other Laplace quantity needed for the the Laplace-Metropolis estima-
tor is H?. This is asymptotically equal to the posterior variance matrix. We
could use the sample covariance matrix of the simulation output for H?.

The package in R that implements the Laplace-Metropolis algorithm for the
calculation of the marginal likelihood is the MCMCpack. With the command
MCMClogit we have implemented the NASA’s Challenger example with
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prior for intercept β0 ∼ Normal(15, 1) and β1 ∼ Normal(15, 1). We obtained
the mean of the intercept β0 = 14.7799, with standard deviation equal to
0.2528 and for β1 = −0.2158 with standard error equal to 0.007995.

3.4 Log-Linear Models

The Poisson distribution is used to model variation in count data (that is,
data that can equal 0, 1, 2, . . . ). In the Poisson model, each unit i corresponds
to a setting (typically a spatial location or a time interval) in which yi events
are observed.

The Poisson distribution:

P (y) =
e−µµy

y!

, has only one adjustable parameter, namely the mean µ,which must be
positive. Thus the mean alone determines the distribution entirely. Since the
Poisson mean is required to be positive, an additive model for µ is normally
considered to be unsatisfactory.

Hence, although µ =
∑
βixi it might become, it may be found over the

range of the data, it is often scientifically dubious and logically unsatisfactory
for extrapolation. In the model with multiplicative effects, we set µ = expη

and η rather than µ obeys the linear model. This construction ensures that µ
remains positive for all η and hence positive for all parameter and covariate
combinations.

As with linear and logistic regression, the variation in y can be explained
with linear predictors X.For example, in a log linear model predictors could
include: a constant term, a measure of the mean for variable βixi. The basic
Poisson regression model (systematic component)has the form:

η = β0 + β1x1, . . . , βkxk

, The canonical link of Poisson distribution for generalized linear models is
η = logµ.The cumulant function is exp(θ). The problem with poisson models
is that the the parameter λ (here presented as µ)is the mean and also the
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variance, hence the standard deviation equals the square root of the mean,
as a result and by default we expect to have overdispersion. Note here that
the φ variant parameter is also 1 but in practice is rarely achieved.

In Poisson log-linear models, the effect of each X , is linear to the log-mean
of Y , resulting in an exponential effect of X, on the mean of Y . Then the
mean of Y can be expressed as:

log λi = β0 + β1Xi

λi = eβ0eβ1xi

λi = B0B
xi
i ,

where Bj = eβj for j = 0, 1, where B0 denotes the expected counts when
the covariate is equal to zero (X = 0). Interpretation of β1 is slightly different
from the corresponding one in normal models since relative mean differences
are considered in the Poisson case. Let us denote by λ(x) = E(Y | X = x)
the expected counts for covariate with X = 2.Then:

log [λ(x+ 1)]− log(λ(x)) = β1,

resulting in:
λ(x+ 1) = B1λ(x) = eβ1λ(x).

From that, we conclude, that when the variable X is increasing by one
unit the expected counts (of Y ) equals to B1 times the corresponding value
of Y for X = x. An other alternative interpretation of B1 coefficient is
the percentage.We take (B1 − 1) × 100 when X increases by one unit of
measurement.

When the variable X is categorical with K levels, then the linear predictor
is expressed as a linear function of K − 1 dummy variables denoted by Dj,
for j = 2, . . . , K. For the simpler case of ( j = 1) as the reference baseline
category we set β = 0. Then we express the model by:
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log λi = β0 +
K∑
j=2

βjDij ⇔

λi = eβ0exp

(
K∑
j=2

βjDij

)

λi = B0

k∏
j=2

B
Dij
j

where Bj = eβj for j ∈ (0, 2, 3, . . . , K).

If the individual i belongs in the first category of X we have (Xi = 1), then
λi = B0, while the individual i belongs in the κth category (κ > 1) of X,
(Xi = j), then:

λ(X = κ) = B0Bκ = Bκλ(X = 1).

Therefore, quantity Bκ = eβk can be now interpreted as the relative change
of the Poisson expectation λ when an individual belongs in κ category of X
compared to the baseline-reference category. The interpretation for the sum
to zero parameterization is similar, but all coefficients express the relative
change of the current level compared with an overall “average” level instead
of the baseline category used in corner parameterization.

This is similar to the interpretation of the parameters in the multiple Pois-
son regression case. The difference here is that in every change of a single
explanatory variable (say, Xj ), other covariates need to remain constant
since:

λi = B0

p∏
j=1

B
xij
j ,

where Bj = eβj for j = (0, 1, 2, . . . , p).

In Bayesian inference, a usual point estimate for the model parameters is
provided by the posterior means (or medians). Alternatively, the exponent
of the posterior mean or median of βj, can be used as estimates for inference
based on the bayesian probabilistic framework modelling.
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For the Bayesian perspective the priors in this case of log-linear models
can be expressed for βj coefficients. According to generalized linear models

theory the coefficients follow the Normal distribution βj ∼ Normal(β̂j, σ̂βj)
similar to the logistic regression as we saw in the previous section. The prior
distribution for log-linear models coefficients in Stan can be normal, student
t or Cauchy, including the intercept coefficient β0.

Due to simulation algorithm (Euclidean Hamiltonian Dynamics) used by
STAN, the calculation of the target posterior distribution is given by the
−log likelihood, the inverse transformation is included but for the posterior,
not for the exponentiation of the parameters. This calculation can be held
inside the model code or separately.

Next we demonstrate both cases in the same example for two different R
packages that implement Hamiltonian Monte Carlo from Stan in R. One is
from RStan that is the syntax Stan modelling and the second is Rstanarm
that has the same form command as the glm() command in base R.

For example purposes we take the data from eba1977 in the ISwR package
in R which is data frame with 24 observations on 4 variables. The y variable
is the number of lung cancer cases. The xi predictor varaibles are:1) x1
which is the age, a factor with levels 40-54, 55-59, 60-64, 65-69, 70-74, and
75+. 2) is the x2 which is the city variable, a factor with levels Fredericia,
Horsens, Kolding, and Vejle,and 3) x3 is the population which is the number
of inhabitants of each 4 cities.

Putting the logarithm of the population into the model as an offset, is
equivalent to including it as a regression predictor, but with its coefficient
fixed to the value 1. Another option is to include it as a predictor and let
its coefficient be estimated from the data. In some settings, this makes sense
in that it can allow the data to be fit better. In other settings, it is simpler
to just keep it as an offset so that the estimated rate θ has a more direct
interpretation.

The exponentiated coefficients gave us for eβ1 = e1.10 = 3.004 for the first
category of age factor. So the r of the expected lung cancer for the age
category of 55-59 is 3 times higher from the other age categories with the
variable city constant.
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Table 3.4: Log Linear Stan results

Parameter Rhat n eff mean sd 2.5% 50% 97.5%
β0 1.0 5554 -5.6 0.2 -6.0 -5.6 -5.3
β1 1.0 7152 1.1 0.3 0.6 1.1 1.6
β2 1.0 6970 1.5 0.2 1.1 1.5 2.0
β3 1.0 6971 1.8 0.2 1.3 1.8 2.2
β4 1.0 6865 1.9 0.2 1.4 1.8 2.3
β5 1.0 7437 1.4 0.3 0.9 1.4 1.9
β6 1.0 9331 -0.3 0.2 -0.7 -0.3 0.0
β7 1.0 9796 -0.4 0.2 -0.7 -0.4 -0.0
β8 1.0 10014 -0.3 0.2 -0.7 -0.3 0.1

For the age 60-64 , eβ2 = e1.52 = 4.57 and for the age 65-69, eβ3 = e1.77 =
5.87 , we conclude that as the factor age grows the estimated ratio of lung
cancers is getting higher. For the city variable Fredericia is the reference
level. According to the output the chance that the inhabitants of city Hors-
ens having a lung cancer is 1 − 0.71 = 0.29 lower from inhabitants of city
Fredericia.

3.5 Log linear Models for counts in contin-

gency tables

First we consider an R×C contingency table that cross classifies n subjects
on two categorical response variables, a row variable X and a column variable
Y . When X and Y are statistically independent, the joint cell probabilities
{πij = P (X = i, Y = j)} are determined by the row and column marginal
probabilities,

πij = P (X = i)P (Y = j) = πi+ + π+j, i = 1, ..., r, j = 1, ..., c.

The cell probabilities πij are parameters for a multinomial distribution.
Loglinear model formulas use expected frequencies {µij = nπij} rather than
πij. Then they apply also to the Poisson distribution for cell counts with
expected values {µij}. Under independence, µij = nπi+ + π+j for all i and j.
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The independence condition, µij = nπi+ + π+j,is multiplicative. Taking
the log of both sides of the equation yields an additive relation. That is,
independence has the form:

logµij = λ+ λXi + λYj ,

with an intercept coefficient based on the sample size of n, a row effect
coefficient λXi based on the probability in row i, and a column effect coefficient
λYj based on the probability in column j. This model is called the loglinear
model of independence. The larger the value of λXi , the larger each expected
frequency is in row i. The larger the value of λYj , the larger each expected
frequency is in column j (here the X and Y superscripts are labels for the
variables, not power exponents).

Loglinear models for contingency tables are generalized linear models that
treat the cell counts as independent observations from Poisson distributions
and use the log link function. As the log linear model of independence sug-
gests, loglinear models do not separate response and explanatory classifica-
tion variables.

This formula specifies how the expected cell counts vary according to the
categories of X and Y . The model regards the observations to be the cell
counts rather than the classifications of individual subjects.

For R× 2 contingency tables, for instance, the logit in row i is:

logit [Pr(Y = 1)] =

log

[
Pr(Y = 1)

1− Pr(Y = 1)

]
=

log

(
µi1
µi2

)
= log(µi1)− log(µi2)

(λ+ λXi + λY1 )− (λ+ λXi + λY2 ) =

λY1 − λY2 ,

Interpretation is carried out in terms of the odds. For given column category
j, under log linear independence model , the odds of being in row i1 instead
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of row i2(i1 6= i2), i1, i2 = 1, . . . , I, is:

µi1j
µi2j

=
exp(λ+ λXi1) + λYj )

exp(λ+ λi2 + λYj )
= exp(λYj1 − λYj2), i = 1, . . . , I,

i.e., the odds of being in row j1 instead of j2 is determined only by the
distance of the corresponding column main effect values and is independent
of i. The conditional columns j1 and j2 column probabilities (within row i)
we have:

Pr(Y = j1 | X = i)

Pr(Y = j2 | X = i)
= exp(λjY1 − λjY2 ), i = 1, . . . , I,

relate the same for all rows and this is true for any pair of columns j1 and j2.
Thus, the conditional column distribution is the same for all rows, as should
be for independent X and Y .

In case the classification variables X and Y are not independent, their
interaction is significant and the corresponding XY interaction term has to
be added in the log linear model expression, leading to the saturated model
and we defined them:

logµij = λ+ λXi + λYj + λXYij , i = 1, . . . , I, j = 1, . . . , J.

The {λXYij } parameters are association terms. The parameters represent
interactions between X and Y , whereby the effect of either variable on the
expected cell count depends on the category of the other variable. Direct
relationships exist between log odds ratios and the {λXYij }. For example, this
ij model for 2× 2 contingency tables has the log odds ratio:

logθ = log

(
µ11µ22

µ12µ21

)
= logµ11 + logµ22 − logµ12 − logµ21 =

(λ+λX1 +λY1 +λXY11 )+(λ+λX2 +λY2 +λXY22 )−(λ+λX1 +λY2 +λXY12 )−(λ+λX2 +λY1 +λXY21 ) =

λXY11 + λXY22 − λXY12 − λXY21

With three-way contingency tables, loglinear models can represent vari-
ous independence and association patterns. Two-factor association terms
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describe conditional odds ratios between variables. For cell expected fre-
quencies {µijk}, consider the loglinear model:

logµijk = λ+ λXi + λYj + λZk + λXZik + λY Zjk .

Since it contains an XZ term, it permits association between X and Z,
at each category for Y . It also permits a Y Z association, at each category
for X. It does not contain an XY term, so this loglinear model specifies
independence between X and Y , at each category for Z, that is, conditional
independence, so given Z, X does not depend on Y.

This model holds when an association between two variables (X and Y )
disappears after we adjust for a third variable (Z). We symbolise the model
by (XZ, Y Z). The symbol lists the highest-order terms in the model for
each variable.

Models that delete additional association terms are too simple to fit most
data sets well. For instance, the model that contains only single-factor terms,
denoted by (X,Y ,Z), is called the mutual independence model.

It treats each pair of variables as independent, both conditionally and
marginally. When variables are chosen wisely for a study, this model is
rarely appropriate. A model that permits all three pairs of variables to have
conditional associations is:

logµijk = λ+ λXi + λYj + λZk + λXYij λXZik + λY Zjk .

For it, we will see that conditional odds ratios between any two variables
are the same at each category of the third variable. This is the property
of homogeneous association. We symbolise this loglinear model, called the
homogeneous association model, by (XY , XZ, Y Z). The most general log-
linear model for three-way tables adds a three-factor interaction term,λXY Zijk ,
to the homogeneous association model. Denoted by (XY Z), it is the satu-
rated model. It provides a perfect fit.
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Table 3.5: Marijuana Log-Linear Count Analysis

Parameter Rhat n eff mean sd 2.5% 50% 97.5%
(Intercept) 1.0 3628 6.8 0.0 6.7 6.8 6.9
a 1.0 1894 -5.4 0.5 -6.4 -5.4 -4.6
c 1.0 1919 -3.0 0.2 -3.3 -3.0 -2.7
m 1.0 3135 -0.5 0.1 -0.6 -0.5 -0.4
a:c 1.0 1499 1.9 0.8 0.1 1.9 3.4
a:m 1.0 1979 2.8 0.5 1.9 2.8 3.9
c:m 1.0 1945 2.8 0.2 2.5 2.8 3.2

3.6 Multinomial Regression

Multinomial regression is a generalization of logistic regression which ap-
plies to categorical responses that have more than two categories. Models
for nominal-scale response variables treat the categories as unordered. Ex-
planatory variables can again be quantitative, categorical (using indicator
variables), or both. We let K denote the number of categories of the re-
sponse variable Y .

The response probabilities (π1, . . . , πK) at any setting for the explanatory
variables satisfy in the previous subsections. The analysis of this section
apply when the sample consists of independent observations.

When all explanatory variables are discrete, the data file can be ungrouped
or can have the grouped-data form of counts in the K categories of Y at
each setting of the explanatory variables. The models assume that those
counts have a multinomial distribution the multicategory generalization of
the binomial distribution.

The multicategory logit model for nominal response variables simultane-
ously uses all pairs of categories by specifying the odds of outcome in one
category instead of another. The order of listing the categories is irrelevant.
The basic model formula pairs each category with a baseline category. Soft-
ware (R) usually sets the first category (K) as the baseline, in which case
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the baseline-category logits are:

log

(
πj
πK

)
, j = 1, . . . , K − 1,

but this is adjustable (reference category can be changed manually).

For K = 3, for instance, the model uses log
(
π1
π3

)
and log

(
π2
π3

)
uses the

last category as reference. Conditional on the response falling in category

j or in category K, log
(
πj
πK

)
is the log odds that the response is j. The

baseline-category logit model with an explanatory variable x is:

log

(
π1
π3

)
= αj + βjx, j = 1, . . . , K − 1.

The model has κ − 1 equations, with separate parameters for each κ −
1 categories. The effects vary according to the category paired with the
baseline. These equations determine equations for all pairs of categories.
When K = 3, for example we have:

log

(
π1
π2

)
= log

(
π1/π3
π2/π3

)
= log

(
π1
π3

)
− log

(
π2
π3

)
= (α1 + β1x)− (α2 + β2x)

= (α1 − α2) + (β1 − β2)x

This equation has the form α+βx with intercept parameter α = (α1−α2)
and with slope parameter β = (β1 − β2). With p explanatory variables the
model extends to :

log

(
πj
πK

)
= αj + βj1x1 + βj2x2 + · · ·+ βjpxp, j = 1, . . . , K − 1

The Bayesian multinomial specification requires prior distributions to be
placed on all of the model parameters. Priors can be non-informative (i.e,
diffuse) or informative. The weight of the informative provided by a prior
depends on its certainty relative to the certainty in the likelihood.
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For example, a Normal prior regression parameter of β1 ∼ Normal(µ =
6, σ2 = 10) will have less influence than the prior β1 ∼ Normal(µ = 6, σ2 =
2).Similarly, truncated distributions add increased influence, such as β1 ∼
Normal(µ = 6, σ2 = 2), 0 < β1 < 8.

When non-iformative or ignorance priors are used,Bayesian models (es-
pecially for large data sets) result in parameter estimates that converge to
those of maximum-likelihood estimates.Informative priors may be obtained
from prior research results.For example, an analyst may know that a pa-
rameter θ is always positive and between 2 and 10 of the 95% confidence
interval.

A Bayesian approach argues that this information is useful and should be
included, and reflects the modelling procedure on updating the prior knowl-
edge with the current information (new data - likelihood).

For example we took a dataset from UCLA (free in web) which contains
variables on 200 students. The response variable is prog, which is the pro-
gram type of its student. The predictor variables are social economic status
(ses),a three-level categorical variable and writing score (write), which is a
continuous variable. We assign the reference level of Y variable prog to be
the ”academic” category.

We fitted a multinomial regression in Rstan and the HMC output, gave
us (see Appendix for Rstan code) for the ”sesmiddle” of the ses explana-
tory variable β = 0.54 with sd = 0.5, in general category compared to the
academic.

These results are suggesting that for one unit increase in social economic
status level, the logit coefficient for ‘general’ relative to ‘academic’ will de-
crease by the amount of -0.54. In other words, if your social economic status
level increases one unit (level), your chances of being in the academic cate-
gory are higher compared to staying in general program type category.

Exponentiating the coefficients the interpretation changes to estimated
odds scale. For example in the vocation row, exponentiating out the sesmid-
dle gave us 1.37, which means that keeping all other variables constant, if
your social economic status level increases one unit, you are 1.37 times more
likely to stay in the vocation program type category as compared to the
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Table 3.6: Multinomial Regression Analysis

Parameter Rhat n eff mean sd 2.5% 50% 97.5%
β1,1 1.0 6263 2.9 1.2 0.5 2.9 5.3
β2,1 1.0 5983 5.3 1.2 3.1 5.3 7.7
β1,2 1.0 8646 -0.5 0.5 -1.4 -0.5 0.4
β2,2 1.0 8316 0.3 0.5 -0.6 0.3 1.3
β1,3 1.0 8750 -1.2 0.5 -2.2 -1.2 -0.1
β2,3 1.0 8031 -1.0 0.6 -2.2 -1.0 0.2
β1,4 1.0 6451 -0.1 0.0 -0.1 -0.1 -0.0
β2,4 1.0 6332 -0.1 0.0 -0.2 -0.1 -0.1

academic program category (the risk is 37% higher).

3.7 Ordinal Models

In the previous section we have discussed the nominal scale of the response
variable y with no ordinality. On this section we will discuss the form of
modelling the variable y that its categories have ordinal responses.

We utilizing the category ordering by forming logits of cumulative proba-
bilities,

P (Y ≤ j | x) = π1(x) + · · ·+ πj(x), j = 1, . . . , J.

The cumulative logits are defined as:

logit (P (Y ≤ j | x)) = log

(
P (Y ≤ j | x)

1− P (Y ≤ j | x)

)
= log

(
π1(x) + · · ·+ πj(x)

πj+1(x) + · · ·+ πJ(x)

)
, j = 1. . . . , J − 1.

Each cumulative logit uses all J response categories.

For a multinomial response variable Y with possible J ordered categor-
ical outcomes and the associated p-dimensional vector of covariates x, the
cumulative probability for Y on x is given by:

P (Y ≤ j | x) =
exp(αj + x′β)

1 + exp(αj + x′β)
, j = 1, 2, . . . , J − 1,
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Figure 3.1: Plot of beta coefficients of Multinomial Regression

or the cumulative logit form as:

log

(
P (Y ≤ j | x)

P (Y > j | x)

)
, j = 1, 2, . . . , J − 1,

where αj is an unknown intercept parameter associated with the j th category
and β = (β1, β2, . . . , βp)

′ is the common vector of effect coefficients across the
categories. The Proportional Odds Logistic Regression (POLR) models have
the cumulative probabilities P (Y ≤ j) as described above,rather than the
specific category probabilities P (Y = j) as in the nominal logistic regression.

A model with a single logit[P (Y ≤ j)] is alone an ordinary logistic model
model for binary response in which categories 1 to j form one outcome and
categories j + 1 to J form the second. A model that simultaneously uses all
(J − 1) cumulative logits in a single parsimonious model is:

logit[P (Y ≤ j | x)] = αj + βTx, j = 1, . . . , J − 1.

Each logit has its own intercept αj.The {αj} intercepts are increasing in
j,because P (Y ≤ j | x) increases in j for fixed x and the logit is an increasing
function of P (Y ≤ j | x).
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For fixed j,the response curve is a logistic regression curve for a binary
response with outcomes (Y ≤ j) and (Y > j). The curves for example of
J = 4 the j = 1, 2 and 3 will have the same logistic S-curve and that because
they share the same rate of increase or decrease but are horizontally displaced
from each other.

The cumulative logit for two binary responses is:

logit[P (Y ≤ j | x1)]− logit[P (Y ≤ j | x2)]

= log

[
P (Y ≤ j | x1)/P (Y > j | x1)
P (Y ≤ j | x2)/P (Y > j | x2)

]
= βT (x1 − x2).

An odds ratio of cumulative probabilities is called a cumulative odds ratio.
The odds of making response Y ≤ j at x = x1 are exp[βT (x1−x2)] times the
odds at x = x2. The log cumulative odds ration is proportional to the
distance between x1 and x2. The same proportionality constant applies to
each logit. Because of this property, the above cumulative logit for two binary
responses, is called proportional odds model (McCullagh 1980).

Now consider a categorical outcome y that can take on the values (cate-
gories) 1, 2, . . . , J . The ordered logistic model can be written in two equiva-
lent ways. First we express it as a series of logistic regressions:

P (Y > 1) = logit−1(Xβ)

P (Y > 2) = logit−1(Xβ − α2)

P (Y > 3) = logit−1(Xβ − α3)

. . .

P (Y > K − 1) = logit−1(Xβ − αJ−1)

The parameters αj (which are called thresholds or cutpoints, for reasons
which we shall explain shortly) are constrained to increase:

0 = α1 < α1 < · · · < αJ−1,
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because the probabilities are strictly decreasing (assuming that all J out-
comes have nonzero probabilities of occurring). Since α1 is defined to be 0,
the model with J categories has J − 2 free parameters αj in addition to β.

This makes sense since J = 2 for the usual logistic regression, for which
only β needs to be estimated. The cutpoints α2, . . . , αJ−1 can be estimated
using maximum likelihood, simultaneously with the coefficients β. For some
datasets, however, the parameters can be non identified, as with logistic
regression for binary data.

Along with the already theory for cumulative logits there is a another rep-
resentation of cumulative logits that motivates a continuous latent variable
for proportional odds structure. These models have a latent continuous vari-
able assumed to underlie Y that actuates the common effect β for different
j categories in the proportional odds form of the model.

Let Y ? denote this underlying latent variable. Now let:

−∞ = α0 < α1 < · · · < αc =∞

denote cutpoints of the continuous scale for Y ? such that the ordinal variable
Y satisfies y = j if αj−1 < y? ≤ αj.

Its cumulative distribution function is G(y? − η),where values of y? vary
around a location parameter η (such as a mean) that depends on x through
η(x) = βTx. We observe Y in category j when the latent variable falls in the
jth interval of values. Now, suppose the latent variable satisfies an ordinary
linear model relating it to the explanatory variables,

Y ? = β1x1 + β2x2 + · · ·+ βpxp + ε,

where ε has some probability distribution with mean 0 and the same variance
at all values of the explanatory variables. Then, we can tell that the observed
ordinal categorical variable satisfies the model:

logit [P (Y ≤ j)] = αj − β1x1 − β2x2 − · · · − βpxp, j = 1, . . . , J − 1,

for a link function that depends on the distribution of ε

With logit link, this is the cumulative logit model of proportional odds
form, except that the signs of the effects change. Because of this latent
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variable model connection, some software fits the model with this parame-
terization.

One of the assumptions underlying ordinal logistic (and ordinal probit)
regression is that the relationship between each pair of outcome groups is
the same. In other words, ordinal logistic regression assumes that the coeffi-
cients that describe the relationship between, say, the lowest versus all higher
categories of the response variable are the same as those that describe the
relationship between the next lowest category and all higher categories, etc.

This is called the proportional odds assumption or the parallel regression
assumption. Because the relationship between all pairs of groups is the same,
there is only one set of coefficients. If this was not the case, we would need
different sets of coefficients in the model to describe the relationship between
each pair of outcome groups.

Thus, in order to assess the appropriateness of our model, we need to
evaluate whether the proportional odds assumption is tenable. Statistical
tests to do this are available in R packages.

A Bayesian method for modelling ordinal data for the cumulative logit
models we ha the coefficients with Dirichlet distribution,

θ ∼ Dirichlet(α1, . . . , αj)

p(θ) = Dirichlet(θ | α1, . . . , αk), αj > 0;α0 =
K∑
j=1

αj

p(θ | α) ∝
K∏
j=1

θ
αj−1
j ,

where the distribution is restricted to nonnegative θj’s with
∑K

j=1 θj = 1.
The Dirichlet distribution is a multivariate generalization of the beta dis-
tribution. Apart from conjugate, it is perhaps the easiest prior distribution
to specify because the concentration parameters can be interpreted as prior
counts (although they need not to be integers in Stan) of a multinomial
random variable.

The Dirichlet distribution is used in Stan for an implicit prior on the cut-
points −∞ = α0 < α1 < · · · < αc =∞ in an ordinal regression model. More
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specifically, the Dirichlet prior pertains to the prior probability of observing
each category of the ordinal outcome when the predictors are at their sample
means. Given these prior probabilities, it is straightforward to add them
to form cumulative probabilities and then use an inverse cumulative distri-
bution function transformation of the cumulative probabilities to define the
cutpoints.

If a scalar is passed to the scale parameter α of the dirichlet function,
then it is replicated to the appropriate length and the Dirichlet distribu-
tion is symmetric. If dirichlet’s α is a vector and all elements are 1 , then
the Dirichlet distribution is jointly uniform. If all concentration parameters
are equal but greater than 1 then the prior mode is that the categories are
equiprobable, and the larger the value of the identical dirichlet parameters,
the more sharply peaked the distribution is at the mode. The elements in
dirichlet parameter can also be given different values to represent that not
all outcome categories are a priori equiprobable.

Implementing cumulative logit and proportional odds model in Stan is
straightforward with the command stan polr from rstanarm package and
the priors on the coefficients are dirichlet as described above. Along with
that with have to specify the R2 prior which is the prior in the variance of
the continuous variable y?.

We used the housing dataset from MASS package in R which is a fre-
quency table from a Copenhagen Housing conditions Survey. The dataset is
a data frame of 72 rows and 5 variables.

1. Sat: (response variable) which is an ordinal categorical variable named
and its levels are satisfaction of householders with their present housing
circumstances, (High, Medium or Low).

2. Infl: Perceived degree of influence householders have on the manage-
ment of the property (High, Medium, Low).

3. Type: Type of rental accommodation, (Tower, Atrium, Apartment,
Terrace).

4. Cont: Contact residents are afforded with other residents, (Low, High).

5. Freq: Frequencies: the numbers of residents in each class.
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The response variable is an ordinal categorical variable named Sat which
is a satisfaction of householders with their present housing circumstances,
(High, Medium or Low). The Infl Perceived degree of influence householders
have on the management of the property (High, Medium, Low).Type: type of
rental accommodation, (Tower, Atrium, Apartment, Terrace).Cont: Contact
residents are afforded with other residents, (Low, High).Freq:Frequencies:
the numbers of residents in each class.

We fitted a proportional odds logistic regression model with all the explana-
tory variables included and additionally with weights the Freq variable.The
main effects cumulative logit model of proportional odds form estimates are
β1 for inflMedium 0.6 with standard deviation sd = 0.1 and for β2 inflHigh 1.3
with standard deviation sd = 0.1 ,suggesting that the cumulative probability
starting at the low satisfaction level is increasing as the influence degree of
householders in the management of the property is increasing from medium
to high. This can also be seen from the estimated odds of the exponentiated
coefficients.

Table 3.7: Ordinal Regression Analysis

Parameter Rhat n eff mean sd 2.5% 50% 97.5%
InflMedium 1.0 3989 0.6 0.1 0.4 0.6 0.8
InflHigh 1.0 3065 1.3 0.1 1.0 1.3 1.5
TypeAtrium 1.0 3632 -0.4 0.2 -0.7 -0.4 -0.1
ContHigh 1.0 4596 0.4 0.1 0.2 0.4 0.5
Low|Medium 1.0 3862 -0.5 0.1 -0.7 -0.5 -0.3
TypeApartment 1.0 4063 -0.6 0.1 -0.8 -0.6 -0.3
TypeTerrace 1.0 3808 -1.1 0.1 -1.4 -1.1 -0.8
log-posterior 1.0 896 -1754.0 2.6 -1760.2 -1753.6 -1749.7
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Figure 3.2: Plot of Beta Ordinal coefficients
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Chapter 4

Penalised Likelihood Criteria

4.1 Penalised Likelihood Criteria

In this section of chapter 4 we will introduce to the reader the methods of
model comparison between models in the Bayesian framework. After fitting
some models of interest we wish to choose the best fitting model that sepa-
rates from the other.
The criteria of doing that in Bayesian framework is BIC, AIC, DIC and LOO.
Each of them will be presented below and we will give their pathologies along
with their capabilities. Finally we will compare different models according
to the purpose of this comparison.

4.2 Bayes Information Criterion (BIC)

The Bayes information criterion (BIC) is based on the criterion originally
introduced by Schwarz (1978), and is denoted by:

S01 = log(f(y | θ̂m1,m1))− log(f(y | θ̂m0,m0))−
1

2
(dm1 − dm0) log(n),

where n is the sample size.θ̂m are the maximum likelihood estimate of pa-
rameters θm of each model m and dm is the dimension of θm or the number
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of parameters of model m.
The main property of the Schwarz criterion S it that:

S01 − log(B10)

log(B10)
→ 0,

when n→∞
and consequently can be an approximation of the log-Bayes factor as has
been proposed by Kass and Raftery (1995). The BIC criterion is widely
known by the expression:

BIC(m) = D(θ̂m,m) + dm log(n)

, where D(θ̂m,m) is the deviance measure of model m and equals to :

D(θ̂m,m) = −2 log f(y | θm,m)

, where θ̂m is the posterior mean of the parameters involved in the model m.
As can be seen BIC is a penalised deviance (or log-likelihood) measure with
penalty equal to the log(n) for each parameter estimated by the model. If
the BIC difference between two models is lower than 2, then we cannot
discriminate between the two compared models.
BIC differences from 2-6,6-10 and higher than 10 express positive, strong,
and very strong evidence in favour of the model with the lower BIC value.

4.3 Akaike Information Criterion (AIC)

The Akaike information criterion is named after the statistician Hirotugu
Akaike (1973) is another statistical criterion for model validation and com-
parison with other fitted models and is given by:

AICm = D(θ̂m,m) + 2dm,

where D(θ̂m,m) is the same penalised log likelihood as described before in
BIC subsection plus this time with penalty equal to 2 for each estimated
parameter of model m.

As we saw BIC is an approximation of the log-Bayes factor proposed from
Kass and Raftery (1995), AIC is an approximately unbiased estimator of the
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expected Kullback-Leibler (KL) distance between true and estimated models
and supports models that have predictive performance equivalent to the true
performance.

Since AIC is one of the approximately unbiased estimators the KL distance,
a wide variety of other estimators have been proposed in the literature, see
Kuha (2003) for AIC and related methods.

4.4 Deviance Information Criterion (DIC)

Deviance Information Criterion (DIC) is a method of model comparison in
Bayesian Statistics.Models that have been calculated via the Bayesian frame-
work can be compared to each other with this criterion. DIC was first intro-
duced by Spigelhalter et al.(2002).

Spiegelhalter proposed DIC as a method, or tool of model comparison
which is a generalation of AIC that is based on the posterior distribution of
the deviance statistic and is given by:

D(θ) = −2 log f(y | θ) + 2 log h(y)

where f(y | θ) is the likelihood function for the data vector y given the
parameter vector θ , and h(y) is some standardizing function of the data
alone (which thus has no impact on model selection). In this approach, the
fit of a model is summarized by the posterior expectation of the deviance,

D = E(θ|y)[D],

The complexity of the each individual model is given by the effective number
of parameters which is denoted pm, and can be given that:

pm = Eθ|y[D]−D(Eθ|y[θ])

or equivalently:
pm = D(θm,m)−D(θm,m)

Finally the Deviance Information Criterion can be written as:
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DIC(m) = 2D(θm,m)−D(θm,m)

= D(θm,m) + 2pm.

Smaller values of DIC indicating a better-fitting model.

Note that DIC is scale-free the choice of standardising function h(y) is
arbitrary. Thus values of DIC have no intrinsic meaning; as with AIC, only
differences in DIC across models are meaningful, with differences of 3 to 5
normally being thought of as the smallest that are interesting.

Besides its generality, another attractive aspect of DIC is that it may be
readily calculated during an MCMC run by monitoring both θ and D(θ), and
at the end of the run simply taking the sample mean of the simulated values
of D, minus the plug-in estimate of the deviance using the sample means of
the simulated values of θ.

4.5 Other Information Criterion

A wide variety of penalized likelihood or deviance criteria is available in
the statistical literature. Generally, most information criteria minimise the
quantity:

IC(m) ≈ D(θ̂m,m) + dmF,

where F is the penalty that takes the deviance measure for each additional
parameter added in the model m. For example the difference between AIC
and BIC is the F type of penalty that differs from the one criterion to the
other. AIC’s F = 2,while BIC’s F = log(n).

Comparing two models,for example, m1,m2 we select the model with the
smallest value of IC, even if this criterion is the AIC or BIC. Consequently we
can use the difference DIFF − IC01 between the IC values of these models
m0 and m1:

DIFF − IC01 = D(θ̂m0,m0)−D(θ̂m1,m1)− dm1 − d(m0)× F.
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Here we can denote : ψ = (dm1−d(m0))×F , as a more complicated penalty
function and without loss of generality, we assume that dm0 < dm1, and
therefore the DIFF − IC01 < 0, we model m0 and id DIFF − IC01 > 0, we
select model m1.

Shao (1993) showed that the two information criteria can be splitted into
two categories:

1. criteria that are asymptotically valid under the assumption that a true
model exists and

2. criteria that are asymptotically valid under the assumption that a true
model does exists.

Generally, information criteria with the penalty F fixed as n → ∞ (such
as AIC) and criteria with F →∞ as n→∞ (such as BIC) are two different
categories of penalised likelihood criteria, usually referred as AIC-like and
BIC-like criteria.

For example purposes we have created a dataset with 1000 random numbers
from Gamma distribution y ∼ Gamma(2, 4) and we have fitted them to two
different models:

1. a gamma model and

2. a lognormal model.

We have extracted the posterior samples to calculate AIC and DIC. The
results are given in table 4.1:

Table 4.1: Criteria Comparison for the Gamma & Lognormal Models

Information Criteria
Models AIC BIC DIC
Gamma 377.48 387.30 187.7
Lognormal 1363.01 1372.82 679.9

Continuing our model comparison we generated again 100 random numbers
from gamma distribution and calculated the AIC, BIC and DIC (out of
sample data) and the results are given in the table 4.2:
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Table 4.2: Criteria Comparison for Out of Sample data for Gamma & Log-
normal Models

Information Criteria
Models AIC BIC DIC
Gamma 51.48 52.87 13.28
Lognormal 124.70 143.63 69.82

So again the Gamma model has a better (lower) AIC , BIC and DIC than
Log-Normal.

For example purposes we will use, for now, the LOO package in R, that
implements the (Leave One Out Criterion) and we will use it for extracting
the maximum a posteriori likelihood for the calculations of AIC and BIC.

We illustrate an example of model comparison with LOO using the birthwt
dataset from the MASS package. Birthwt dataset is a data frame that has
189 rows and 10 variables (columns). The data were collected at Baystate
Medical Center, Springfield, Mass during 1986.

The model in logistic regression form has the following variables:

1. low: (response variable) which is an indicator of birth weight less than
2.5 kg and if a baby is born under 2.5 kg is 1 and 0 otherwise,

2. race: of the mother (1 = white, 2 = black, 3 = other),

3. lwt: which is a covariate is the mother’s weight in pounds at last men-
strual period,

4. smoke: which is if mother was smoking during her pregnancy,

5. ptl: is the number of previous premature labours,

6. ht: if the mother had a history of hypertension,

7. ui: which is the presence of uterine irritability,

8. ftv: number of physician visits during the first trimester.
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We fitted the following 9 models:

m0 = low ∼ 1,

m1 = low ∼ race,

m2 = low ∼ race+ lwt,

m3 = low ∼ race+ lwt+ age,

m4 = low ∼ race+ lwt+ age+ smoke,

m5 = low ∼ race+ lwt+ age+ smoke+ ptl,

m6 = low ∼ race+ lwt+ age+ smoke+ ptl + ht,

m7 = low ∼ race+ lwt+ age+ smoke+ ptl + ht+ ui,

m8 = low ∼ race+ lwt+ age+ smoke+ ptl + ht+ ui+ ftc

Comparing the above models in the minimum, mean and median from the
point-wise log-likelihood from the posterior and we obtained the table below.

Table 4.3: Information Criteria comparison for the 8 different models

Models dm minAIC minBIC meanAIC meanBIC medianAIC medianBIC
m0 2 961.00 967.48 946.68 953.16 946.16 952.65
m1 2 956.24 962.72 937.16 943.65 936.40 942.89
m2 3 949.01 958.73 922.23 931.95 921.38 931.11
m3 4 942.50 955.47 924.28 937.25 923.77 936.73
m4 5 922.60 938.80 895.97 912.18 895.52 911.73
m5 6 917.07 936.52 885.92 905.37 885.41 904.86
m6 7 898.82 932.00 866.80 899.97 866.12 899.30
m7 8 907.96 933.89 863.33 889.26 862.54 888.48
m8 9 904.27 933.45 869.13 898.31 868.49 897.67

As we can clearly identify from this comparison that model m8 has the
lower ICm criteria than all models apart from model m7 which is slightly
close to m8.
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4.6 Widely Applicable Information Criterion

(WAIC - LOO)

In the previous subsections of information criteria we introduced criteria that
hold in any type of bayesian model and are well known and used through
out the years of MCMC development, apart from WAIC which is a product
of Columbia’s University of Stan’s language HMC calculation.

After fitting a Stan model for purposes of model comparison, selection,
or averaging (Geisser and Eddy, 1979, Hoeting et al., 1999, Vehtari and
Lampinen, 2002, Ando and Tsay, 2010, Vehtari and Ojanen, 2012) proposed
the WAIC criterion which is asymptotically the same as LOO-CV (leave one
out cross validation) criterion-method.

Cross-validation and information criteria are two approaches of estimat-
ing out-of-sample predictive accuracy using within-sample fits (Akaike, 1973,
Stone, 1977).

In this thesis as have presented by Gelman, Vehtari and Gabry (2017)
we consider computations using the log-likelihood evaluated at the usual
posterior simulations of the parameters. Computation time for the predictive
accuracy measures should be negligible compared to the cost of fitting the
model and obtaining posterior draws in the first place.

Widely applicable information criterion (WAIC) and Leave-one-out cross-
validation (LOO) are methods for estimating point-wise out-of-sample pre-
diction accuracy from a fitted Bayesian model using the log-likelihood eval-
uated at the posterior simulations of the parameter values.

LOO and WAIC have various advantages over simpler estimates of predic-
tive error such as AIC and DIC but are less used in practice because they
involve additional computational steps.

Here we present the LOO and WAIC information criteria that can be per-
formed using existing simulation draws which have been presented in Gel-
man, Vehtari and Gabry (2017). They introduced an efficient computation of
LOO using Pareto-smoothed importance sampling (PSIS), a new procedure
for regularising importance weights. Although WAIC is asymptotically equal
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to LOO.

LOO and WAIC were developed for Stan’s modelling calculations and are
capable of obtain approximate standard errors for estimated predictive errors
and for comparing of predictive errors between two models. We implement
the computations in an R package called loo and demonstrate using models
fit with the Bayesian inference package RStan.

Consider data y1, . . . , yn, modeled as independent given parameters θ, thus:

p(y | θ) =
n∏
i=1

p(yi | θ).

This formulation also encompasses latent variable models with

p(yi | fi, θ),

where fi are latent variables.

Also suppose we have a prior distribution p(θ), thus yielding a posterior
distribution p(θ | y) and a posterior predictive distribution

p(ŷ | y) =

∫
p(ŷi | θ)p(θ | y)dθ.

To maintain comparability with the given dataset and to get easier interpre-
tation of the differences in scale of effective number of parameters, we define
a measure of predictive accuracy for the n data points taken one at a time:
(epld = expected log pointwise predictive for a new dataset)

elpd =
n∑
i=1

∫
pt(ŷi)logp(ŷi | y)dŷi,

where pt(ŷi) is the distribution representing the true data-generating process
for ŷi.The pt(ŷi)’s are unknown and we will use cross-validation or WAIC to
approximate the elpd.

The Bayesian LOO (Leave-one-out) estimate of out-of-sample predictive
fit is:

elpdloo =
n∑
i=1

logp(yi | y−i),
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where

p(yi | y−i) =

∫
p(yi | θ)p(θ | y−i)dθ

is the leave-one-out predictive density given the data without the ith data
point.

As noted by Gelfand, Dey, and Chang (1992), if the n points are condi-
tionally independent in the data model we can then evaluate the previous
equation with draws θs from the full posterior p(θ | y) using importance
ratios:

rsi =
1

p(yi | θ?)
∝ p(θ? | y−i)

p(θs | y)

to get the importance sampling leave-one-out (IS-LOO) predictive distribu-
tion,

p(ŷi | y−i) ≈
∑S

s=1 r
s
i p(ŷi | θs)∑S
s=1 r

s
i

.

Evaluating the LOO log predictive density at the held-out data point y, we
get

p(yi | y−i) ≈
1

1
S

∑S
s=1

1
p(yi|θs)

.

However, the posterior p(θ | y) is likely to have a smaller variance and thinner
tails than the leave-one out distributions p(θ | y−i), and thus a direct use of
the latter equation induces instability because the importance ratios can have
high or infinite variance.

As noted above, the distribution of the importance weights used in LOO
may have a long right tail. We use the empirical Bayes estimate of Zhang
and Stephens (2009) to fit a generalized Pareto distribution to the tail (20%
largest importance ratios).

By examining the shape parameter K of the fitted Pareto distribution, we
are able to obtain sample based estimates of the existence of the moments.
When the tail of the weight distribution is long, a direct use of importance
sampling is sensitive to one or few largest values. By fitting a generalized
Pareto distribution to the upper tail of the importance weights, we smooth
these values.
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WAIC (Watanabe, 2010) is an alternative approach to estimate the ex-
pected log point-wise predictive density and is defined as:

̂elpdwaic = l̂pd− p̂waic,

where p̂waic is the estimated effective number of parameters and computed
based on:

pwaic =
n∑
i=1

V arpost(logp(yi | θ)),

which we can calculate using the posterior variance of the log predictive
density for each data point yi, that is,

V S
s=1logp(yi | θs),

where V S
s=1 represents the sample variance,

V S
s=1αs =

1

S − 1

S∑
s=1

(αs − α̂)2.

Summing over all the data points yi gives a simulation-estimated effective
number of parameters,

p̂waic =
n∑
i=1

V S
s=1(logp(yi | θs)).

For DIC, there is a similar variance-based computation of the number of
parameters that is unreliable, but the WAIC version is more stable because
it computes the variance separately for each data point and then takes the
sum (the summing yields stability).

The effective number of parameters ˆpwaic can be used as measure of com-
plexity of the model, but it should not be overinterpreted, as the original
goal is to estimate the difference lpd and elpd.
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When comparing two fitted models, we can estimate the difference in their
expected predictive accuracy by the difference in elpdloo or elpdwaic. When
using LOO model comparison, software will return a matrix that will have
one row per model and several columns of estimates.

The values in the difference in elpd and its standard error columns of the
returned matrix are computed by making pairwise comparisons between each
model and the model with the largest elpd (the model in the first row).

To compute the standard error of the difference in elpds which should not
be expected to equal the difference of the standard errors. LOO uses a paired
estimate to take advantage of the fact that the same set of N data points
was used to fit both models.

These calculations should be most useful when N is large, because then
non-normality of the distribution is not such an issue when estimating the
uncertainty in these sums.

These standard errors, for all their flaws, should give a better sense of
uncertainty than what is obtained using the current standard approach of
comparing differences of deviances to a chi-squared distribution, a practice
derived for Gaussian linear models or asymptotically, and which only applies
to nested models in any case.

For example purpose we will revisit the birth weight dataset of the previous
chapter and we compare model

m1 = low ∼ race+ lwt

with a second model

m2 = low ∼ race+ log(lwt).

Finally we compare the expected predictive accuracy of those two models.

The first row of the LOO output will be always 0 because the model in the
first row is compared with itself. The row of interest is the second row. When
the difference, elpddiff , is positive then the expected predictive accuracy for
the second model is higher. A negative elpddiff favours the first model.

In our case the model 2 with the log(lwt) variable has slightly smaller

Page 81



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

expected predictive accuracy than the first model because the model 2 in the
second row has elpddiff = −0.7.

Table 4.4: LOO comparison for the 2 different models

Models ELPDdiff SEdiff
m1 = low ∼ race+ lwt 0.0 0.0
m2 = low ∼ race+ log(lwt) -0.7 1.6

Additionally we fitted 9 models the same as for variable selection in section
4.5 and we are examining their predictive accuracies in LOO-CV methodol-
ogy. R reported us the following table for leave one out cross validation:

Table 4.5: LOO comparison for the 9 different models

Models ELPDdiff SEdiff
m7 0.0 0.0
m6 -0.1 1.4
m8 -1.1 0.2
m5 -2.3 2.3
m4 -3.1 3.2
m2 -6.1 4.1
m3 -6.5 4.1
m1 -7.8 4.5
m0 -8.5 4.7

The models with the better predictive accuracy are models m7 and models
m6. Recall that from the AIC, BIC methodology of stepwise forward variable
selection the best model was model m8 but here its predictive accuracy is
ranked third compared to the 7 other models.

Additionally we revisit the Liverpool’s example from chapter 1. Remem-
ber that the data y where Poisson and we checked three models. Here in
the model comparison with LOO-CV method we compare the log Poisson-
Gamma versus the log Poisson-Normal.

The LOO comparison in our case model2 with poisson-normal has a bet-
ter expected predictive accuracy and it’s better that the first with poisson-
gamma model which its elpd = −0.5.
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Table 4.6: LOO & min(AIC) & min(BIC) comparison for the 2 different
models

Models ELPDdiff SEdiff minAIC minBIC
m1(NormalPrior) 0.0 0.0 -206.58 203.31
m2(GammaPrior) -0.5 0.0 -213.63 -210.36

Additionally even the AIC and BIC agree with the LOO-CV criteria. Here
as we have already presented AIC and BIC have been calculated from the
point-wise log-likehihood maximum a posteriori and took the minimum value.
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Chapter 5

Matched Pairs Models

5.1 Bayesian McNemar Test

The McNemar test is a test on a 2 × 2 classification table when the two
classification factors are dependent, or when you want to test the difference
between paired proportions, e.g. in studies in which patients serve as their
own control, or in studies with ”before and after” design.

Correlated proportions are usually expressed in the form of a 2× 2 contin-
gency table and their standard treatment consists of testing the null hypoth-
esis of equality of proportions and evaluating confidence intervals for their
difference.

The concordant pairs play no role as one would expect since the off-diagonal
cell counts alone are sufficient for the difference of the two marginal propor-
tions. Consider the matched-pairs of table 5.1:

Pairs with the same response from cases and controls (Yes-Yes and No-No)
are called concordant pairs and are in the main-diagonal (n11, n22). Pairs with
different responses (Yes-No and No-Yes) are call discordant pairs and appear
in the off-diagonal. We assume that the sampling scheme is multinomial, so
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Table 5.1: Table of Matched Pairs Frequencies

Controls
Cases Yes No Total
Yes n11 n12 n1.

No n21 n22 n2.

Total n.1 n.2 1

that:

n = (n11, n12, n21, n22) ∼Multinomial(N, π11, π12, π21, π22),
I∑
i=1

j∑
j=1

Πij = 1

In standard contingency tables analysis the cell probabilities πij(i, j = 1, 2)
are estimated by the corresponding sample proportions pij . Under the sym-
metry hypothesis, the off-diagonal probabilities are estimated by

(p12 + p21)/2

and the correlated proportions π1. and π.1 by

p11 + (p12 + p21)/2.

Bayesian conjugate analysis proceeds by imposing a Dirichlet prior on the
vector of probability parameters:

(π11, π12, π21) ∼ Dirichlet(α11, α12, α21, α22), α11, α12, α21, α22 > 0,

resulting to a posterior probability of:

(π11, π12, π21)|n ∼ Dirichlet(n11 + α11, n12 + α12, n21 + α21, n22 + α22)

The hypothesis of equality of two correlated proportions (π1. = π.1) can be
expressed as:

H0 : π12 = π21

and the alternative as:
H0 : π12 6= π21
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Delaportas, Kateri and Papaioannou (2001) used Bayes Factors this hypoth-
esis and under this approach and multinomial sampling, with a Dirichlet
prior the Bayes Factor is given by:

BF(H0, H1) =
Γ(α12)Γ(α21)Γ(n+ α12 + α22)

2nΓ(α12 + α21)Γ(n12 + α12)Γ(n21 + α21)

The above Bayes Factor is equivalent to Mc Nemar’s test because the main-
diagonal cells do not affect the prior parameters of Dirichlet α11, α22. As in
Mc Nemar’s test so in this Bayes Factor the total sample size N and the
main-diagonal cells do not play any significant role in the calculation of the
difference πi. − π.i.

Let set
π?12 = π12/(π12 + π21)

which is the conditional probability that an observation will fall into a cell
(1,2) given that it will fall in the off diagonal cells. Now instead of testing

H0 : π12 = π21

we can test

H0 : π?12 =
1

2
versus

H1 : π?12 6=
1

2

. From all the cell sizes we have n? = (n12, n21, n11 + n22) who follow a
trinomial distribution with Dirichlet prior again on the vector of cell proba-
bilities. The Dirichlet prior on these probabilities are α12, α21, α1 = α11 +α22

in respect.

A well known test, conditional on the sum of the off-diagonal frequencies
n, is based on the fact that n12 is distributed as binomial with parameters
(n, π?12). It is straightforward to see that when

(π11, π12, π21) ∼ Dirichlet(α11, α12, α21, α22), α11, α12, α21, α22 > 0,

holds then the prior on π?12 under H1 is a Beta distribution with parameters
α12 and α21, denoted ∼ Beta(α12, α21). In this context, the Bayes Factor
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BF(H0,H1) is equal to the Bayes Factor:

BF01 =
Γ(n+ 2)

2nΓ(n12 + 1)Γ(n21 + 1)
.

Implementing the Bayesian McNmear test in R with the assistance of Stan
we will use a dataset from Agresti’s (2001) categorical data analysis Chapter
11. Data came from the General Social Survey, examining the shift from
Republicans to Democrats, in presidential votes between the elections of
2004 and the elections of 2008.

The scope of this analysis with McNemar test is to check if there is a
substantial shift in the Democrat direction against the Republican direc-
tion.Data are presented below:

Table 5.2: Data from Agresti (2001)

2008 Elections
2004 Elections Democrat Republican Total
Democrat 175 16 191
Republican 54 188 242
Total 229 204 433

According to Delaportas & Kateri paper we will test the proportion:

θ = n12/(n12 + n21) = 1/2

The H0 of the Bayes factor in the numerator will evaluate θ which is:

H0 : y ∼ Binomial(n, θ1)

and H1.

Here the likelihood is being calculated with the frequentist approach in the
logarithmic scale. In the other hand in the denominator we have:

H1 : y ∼ Binomial(n2, θ2),

where the parameter θ follows the Beta Distribution:
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θ2 ∼ Beta(1, 1)

The Bayes Factor equals to :

BH0,H1 =
p(D | Ho)

p(D | H1)

The marginal likelihood have been evaluated with the bridge-sampling
method and R reported the following ratio:

BH0,H1 =
−13.07323

−39.71
= 26.637

which this value indicates is a very strong evidence against H0. So there is
a very strong evidence against H0 thus, we conclude that there is a swift to
the democratic part on 2008 elections from 2004.

Here we must note that bridge-sampling method needs a very large num-
ber of iterations in sampling method to successfully evaluate the marginal
likelihoods.

5.2 Symmetry, Quasi-Symmetry and Marginal

Homogeneity Models

The special case of square I×J contingency table with commensurable clas-
sification variables occurs often in social sciences applications, in psychology
and sociology and among other fields.

Characteristic of such cases refer to treatments’ comparison or “before–after”
comparisons applied on the same subjects, cross-classification of responses in
matched pairs designs, problems of rater agreement, social mobility tables ,
or models of preference in opinion surveys.

Under this statistical frame, our focus lies on the off-diagonal cells and
the models of symmetry and marginal homogeneity consist of the starting or
reference point.
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If symmetry is not significant or important for scientific calculating pro-
cesses , which is usually the case, there is need to consider special models of
asymmetry that measure departures from symmetry toward certain direction.

The standard hypothesis of symmetry is defined as :

H0 : πij = πji, i > j, i, j = 1, . . . , I

and when πij > 0 symmetry is a logistic regression model with the form of:

log

(
πij
πji

)
= 0

for all i < j. When the marginal distributions differ substantially, the symme-
try model fits poorly. A generalized model that can accommodate marginal
heterogeneity is the quasi-symmetry model:

log

(
πij
πji

)
= βi − βj

One parameter is unnecessary, and we set β1 = 0 or βc = 0. The higher the
value of β̂i − β̂j , relatively more observations fall in the cell in row i and
column j than in the cell in row j and column i.

Equivalently in terms of loglinear model with expected cell frequencies the
null hypothesis and the symmetry model have the form of:

H0 : µij = µji, i > j, i, j = 1, . . . , I

log(µij) = λ+ λXi + λYj + λXYij ,

where all λXYij = λXYji

The main distinction for symmetry models against other models for con-
tingency tables is that they model the off diagonal cells and not the main
diagonal.

The latter are kept fixed. Main diagonal for count symmetry models has
perfect fit and maximum likelihood for symmetry is:

µ̂ij =
nij + nji

2
, i, j = 1, . . . , I
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The hypothesis of marginal homogeneity is:

H0 : πi+ = π+i, i = 1, . . . , I,

states that the marginal distributions of a square contingency table are equal.
As we described previously for quasi-symmetry one parameter is redundant,
due to

∑
i,j πij = 1. For an I× I table, complete symmetry implies marginal

homogeneity, while for the special case of 2×2 tables, models symmetry and
marginal homogeneity are equivalent and tested by the McNemar test.

The tests proposed for marginal homogeneity are asymptotically chi-squared
distributed with df(MH) = I − 1. Marginal homogeneity is both equivalent to
a loglinear model. However, quasi-symmetry is a useful for studying marginal
homogeneity. Caussinus (1966) showed that symmetry is equivalent to quasi-
symmetry and marginal homogeneity holding simultaneously.

Equivalently to McNemar’s test the distributional sampling we may assume
that is multinomial because symmetry and quasi-symmetry models are equal
to McNemar test. The prior distribution then may also be Dirichlet for the
cell parameters that we want to test.

Here we will give a more precise and specific form of the Multinomial -
Dirichlet conjugate analysis. Results for the binomial with beta prior dis-
tribution generalize to the multinomial with a Dirichlet prior (Lindley 1964,
Good 1965).

With c categories, suppose cell counts (n1, . . . , nc) have a multinomial dis-
tribution with n =

∑I
i=1 ni and parameters π = (π1, . . . , πc)

′. Let {pi = ni/n}
be the sample proportions. The likelihood is proportional to:

c∏
i=1

πnic

The conjugate density is the Dirichlet, expressed in terms of gamma func-
tions as:

g(π) =
Γ(
∑
αi)∏

i Γ(αi)

c∏
i=1

παi−1c
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for 0 < πi < 1 all i,
∑

i πi = 1, where {αi > 0}.Let

K =
c∑
i=1

αi.

The Dirichlet has
E(πi) = αi/K

and
V ar(πi) = αi(K − αi)/

[
K2(K + 1)

]
.

The posterior density is also Dirichlet, with parameters {ni + αi}, so the
posterior mean is:

E(πi | n1, . . . , nc) = ni +
α1

(n+K)
.

Let
γi = E(πi) = αi/K.

This Bayesian estimator equals the weighted average:

n

(n+ c)
pi +

K

(n+K)
γi,

which is the sample proportion when the prior information corresponds to K
trials with αi outcomes of type i, i = 1, . . . , c.

Vounatsou and Smith (1996) analysed certain structured contingency ta-
bles, including symmetry, quasi-symmetry and quasi-independence models
for square tables and for triangular tables that result when the category cor-
responding to the (i, j) cell is indistinguishable from that of the (j, i) cell (a
case also studied by Altham 1975).

They assessed goodness of fit using distance measures and by comparing
sample predictive distributions of counts to corresponding observed values
for malaria disease.
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5.3 Kappa Cohen’s Coefficient of Agreement

An important statistical inference problem in a range of physical, biological,
behavioural, and social sciences is to decide how well one decision-making
method agrees with another.

An interesting special case considers only binary decisions, and views one
of the decision-making methods as giving objectively true decisions to which
the other aspires.

This problem occurs often in medicine, when cheap or easily administered
methods for diagnosis are evaluated in terms of how well they agree with a
more expensive or complicated “gold standard” method.

For this problem, when both decision-making methods make n independent
assessments, the data y take the form of four counts: a observations where
both methods decide “one”, b observations where the first rater decides “one”
but the second decides “zero”, c observations where the first rater decides
“zero” but the second decides “one”, and d observations where both raters
decide “zero,” with n = a+ b+ c+ d.

Cohen’s (1960) kappa statistic estimates the level of observed agreement

π0 =
a+ d

n

relative to the agreement that would be expected by chance alone which is
the overall probability for the first rater to decide “one”, times the overall
probability for the second rater to decide “one”, and added to this the overall
probability for the second rater to decide “zero”, times the overall probability
for the first rater to decide ”zero”.

πe =
(a+ b)(a+ c) + (b+ d)(c+ d)

n2

and is given by

κ =
π0 − πe
1− πe

Kappa lies on a scale of -1 to +1, with values below 0.4 often interpreted as
“poor” agreement beyond chance, values between 0.4 and 0.75 interpreted as
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“fair to good” agreement beyond chance, and values above 0.75 interpreted as
“excellent” agreement beyond chance. The key insight of kappa as a measure
of agreement is its correction for chance agreement.

The Bayesian approach of Kappa coefficient is that we calculate the latent
variables of this 2× 2 table, which are α , β and γ. The rate α is the rate at
which first rater decides ”one”. This means (1− α) is the rate at which the
first rater decides ”zero”. The rate β is the rate at which the second rater
decides “one” when the first rater also decides “one”.

The rate γ is the rate at which the second rater decides “zero” when the
first rater decides “zero.” The best way to interpret β and γ is that they are
the rate of agreement of the second rater with the first rater, for the “one”
and “zero” decisions respectively.

Using the rates α , β and γ, it is possible to calculate the probabilities that
both raters will decide ”one”:

πa = αβ,

that the first rater will decide ”one” but the second will decide ”zero”:

πb = α(1− β),

the first will decide ”zero” but the second will decide ”one”:

πc = (1− α)(1− γ),

and finally that both raters will decide ”zero”:

πd = (1− α)γ.

These probabilities, in turn, describe how the observed data, y, made up
of the counts a, b, c, and d, are generated. They come from a Multinomial
distribution with n trials, where on each trial there is a πα probability of
generating an a count, πβ probability for b count, and so on.

Now that we have defined the probabilities of each cell in a 2× 2 table we
have to define the variables that measure the rate of agreement. The first
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variable is the variable ξ that measures the rate of agreement between the
two raters and is given by:

ξ = αβ + (1− α)γ.

The second variable ψ is the variable that measures the rate of agreement by
chance is given by:

ψ = (πα + πb)(πα + πc)(πb + πd)(πc + πd)

,and could be expressed in terms of α , β and γ.Finally the κ is the chance -
corrected measure of agreement on the -1 to +1 scale, given by:

κ =
ξ − ψ

(1− ψ)
.

A diet questionnaire was mailed to 537 female American nurses on two
separate occasions several months apart. The questions asked included the
quantities eaten of more than 100 separate food items. The data from the
two surveys.Instead we focus on the percentage of women with concordant
responses in the two surveys.

We want to compare the observed concordance rate p0 with the expected
concordance rate pe assuming the responses of the women in the two surveys
were statistically independent.

Suppose there are c response categories and the probability of response in
the i−th category is αi, for the first survey and bi for the second survey.

These probabilities can be estimated from the row and column margins of
the following contingency table (Table 5.3).

Table 5.3: Nutrition Data Set

Survey 1 ≤ 1 serving/week > 1 serving/week
≤ 1 serving/week 136 92
> 1serving/week 69 240

The expected concordance rate (pe) if the survey responses are independent
is
∑

αiβi
.
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Implementing the Bayesian framework of Kappa coefficient of agreement
as has been described above with have to assign prior distribution to each
parameter. Priors to α , β and γ will be Beta(1, 1) and Stan after 4000
iterations of Hamiltonian Monte Carlo Simulation reported κ = 0.38. So
we conclude that is a good enough agreement between the two methods of
medical assessment. Contrary to the frequentist approach that R reported
κ = 0.37.

5.4 Bayesian Bradley-Terry Model

Bradley and Terry model for paired preferences were introduced by Bradley
and Terry (1952) and earlier discussed by Zermelo (1929). The observed
data is the outcome of matches between players or teams and we model the
matches outcomes.

We will suppose that there are K players. Each contestant will have an
ability αk ∈ R. The probability that contestant i will beat contestant j is
given by :

Pr [i beats j] = logit−1(αi − αj).

The log odds function takes the (0, 1) initial values of the observations and
extend them to −∞,∞:

logit : (0, 1)→ (−∞,∞)

which is defined by

logit(u) = log

(
u

1− u

)
.

Its inverse logit, compresses the log odds to the probability space for inter-
pretation,

logit−1 : (−∞,∞)→ (0, 1),

and this inverse logit is given by:

logit−1(v) =
1

1 + exp(−v)
=

exp(v)

1 + exp(v)
.
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The logistic distribution is the Bernoulli distribution with a parameter on
the logit (log odds) scale, where for y ∈ {0, 1} and θ ∈ (0, 1),

Bernoulli(y | θ) =

{
θ if y = 1

1− θ if y = 0.

and for α ∈ (−∞,∞),

BernolliLogit(y | α) = Bernoulli(y | logit−1(α)).

The likelihood is given by:

p(y | α) =
N∏
n=1

Bernoulli

(
yn

∣∣∣∣ logit−1
(
αteam1[n] − αteam0[n]

))

All that we need to do, to fit the data with Stan, is pack the data into a
list, compile the model and then find the maximum likelihood estimate θ∗,
that is, the estimate for the parameter values that maximizes the probability
of the match outcomes that were observed.

Now we present the data as they will be passed in Stan (just a reminder
that in Stan you cannot insert string variables as factors. Factors might be
passed only as integers)

Table 5.4: Data presentation for Bradley Terry model

n team0 team1 y
1 1 2 0
2 2 1 1
3 1 2 0
4 2 1 1
5 1 2 1
6 2 1 1

The first column, labeled n is the match index. With N matches, n ∈
1, 2, . . . , N . The second two columns indicate which teams participated in
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the match. The last column is the result yn ∈ {0, 1}, indicating which team
won the match.

For example, the fourth row (n = 4) records a match between team 2
(team0 = 2) and team 1 (team1 = 1) in which team 1 won (y = 1).

With teams abilities αk centered around zero and the total predictor being
additive in team abilities, this model has no intercept term. This is be-
cause there is symmetry between the team identified as team 0 and the team
identified as team 1.

If these identifiers are assigned randomly, the expected difference αi − αj
is zero. So the Bradley-Terry model is:

log
Pij
Pji

= αi − αj

Alternatively we can write:

Pij =
e(αi)

e(αi) + e(αj)

In the Bayesian framework we have to convert our simple likelihood into
a proper Bayesian model, and all we need is a prior for the ability parame-
ters. Such a prior will characterise the population of teams in terms of the
distribution of their abilities.

αk ∼ Normal(0, 1)

Instead of hard centering the coefficients with prior adjustments, the nor-
mal prior with location parameter zero will implicitly center the paremeters
around zero by assigning them higher density.

The unit scale of the normal prior provides an indication of how much
variation there is in player ability. For the posterior fit object,we are taking
α(m) from the posterior:

p(α | y) ∝ p(y | α)p(α)

To calculate Bayesian estimates, we take posterior means, which are guaran-
teed to minimise expected square error when the model is well specified.

Page 98



Bayesian Model Comparison and Hypothesis Testing for Contingency
Tables Using R

α̂k = E [αk | y ]

=

∫ ∞
−∞

αk p(αk|y) dα

≈ 1

M

M∑
m=1

α
(m)
k

This is an example of full Bayesian inference, which is nearly always based
on calculating conditional expectations of quantities of interest over the pos-
terior.

The second line defining the expectation shows the general form a weighted
average of the quantity of interest, αk, over the posterior distribution p(αk|y).
And last in the third line is the weighted sum from Markov chain Monte Carlo
(MCMC) using an average of the posterior draws.

Table 5.5: Bradley Terry Model Analysis

Parameter Rhat n eff mean sd 2.5% 50% 97.5%
α1 1.0 3282 0.58 0.99 -1.3 0.5 2.8
α2 1.0 3109 -0.58 0.99 -2.8 -0.5 1.3
log-posterior 1.0 3153 -4.62 1.41 -8.3 -4.3 -3.0

The output from the Stan’s Bradley-Terry model (see Appendix for code
and output), reported us:α1 = 0.58 and α2 = −0.58. So when team 2 is
competing team 1, the probability of team 2 to win is:

P̂21 =
e(−0.58)

e(−0.58) + e(0.58)
= 0.239.

In the traceplot we see the mcmc diagnostics for the two probabilistic es-
timation of α’s, on each (4) chains. The grey area indicates the warm-ip
period.
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Figure 5.1: MCMC Diagnostics for each 4 chain
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Chapter 6

Conclusion

6.1 Summary Conclusion

Summarising this thesis we have succeeded a more deep understanding and
knowledge of Bayesian thinking.The probabilistic approach gave us an alter-
native scientific tool from the classical approach of statistics, for computing
the model comparisons and hypotheses testing with the powerful program-
ming language R with the use of Stan.

Ending this thesis we summarise the results of this analysis in Bayesian
framework for model comparison and hypothesis testing. Bayes factors are a
tool for model comparison and hypothesis testing in contingency tables.According
to model comparison, one can use it to compare variables (variable selection)
and even prior distributions given, in a model.

In the other hand, bayes factors in contingency tables are proper for eval-
uating independence test given the distributional sampling (or the design of
the trial-survey) and as we have seen in chapter 5 for testing McNemar test
for dependent proportions.

For generalized linear models we showed that they are suitable when we
have a small amount of observations and we want to make a population
inference with a probabilistic perspective through bayesian analysis.
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The estimated coefficients in generalized linear models follow the Normal
distribution and we can safely insert normal distribution as prior information
when we have a strong sense of the history of the problem that we are fac-
ing.In the other hand a non-informative prior for generalized linear models
might be student-t or Cauchy distribtion.

For penalised likelihood criteria Akaike advocated that given a class of
competing models for a dataset, one can choose the model that minimises

AIC = −2 log(y | θ) + 2κ.

Two main justifications for the AIC have been advanced. The first, due to
Akaike is based on a predictive argument. Suppose that given current data
and a set of possible models we want the predictive distribution of a future
datum.

Then if the predictive distribution is conditional on a single model and on
its estimated parameters, the AIC picks the model that gives the best ap-
proximation, asymptotically. But such a predictive distribution is incorrect,
because it does not incorporate the uncertainty about parameter values and
model form.

Shibata and Katz (1976) have shown that the AIC tends to overestimate the
number of parameters needed, even asymptotically. Thus if one must ignore
both parameter uncertainty and model uncertainty when making predictions,
it may be worthwhile to have a model that is too big.

The second main justification for the AIC, perhaps best described by
Akaike (1983), is Bayesian. He wrote that model comparisons based on the
AIC are asymptotically equivalent with those based on Bayes Factors.

But this is true only if the precision of the prior is comparable to that
of the likelihood, but not in the more usual situation where prior informa-
tion is small relative to the information provided by the data. In the latter
more usual situation, the Schwarz criterion indicates that the model with the
highest posterior probability is the one that minimises:

BIC = −2 log(y | θ) + 2 log(n)

Comparing AIC and BIC indicates that BIC tends to favour simpler models
than those by the AIC criterion.
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Taking into account the fact that the computation of log likelihood is
needed for the evaluation of AIC, BIC we introduced the IC criterion that
takes the minimum of the maximum a posteriori that has a built in penalty
of the prior information. This criterion as we saw in several examples is ad-
equate for variable selection and also check each model predictive accuracy
and is given by:

IC(m) ≈ D(θ̂m,m) + dmF

Ending chapter 4 for model comparison criteria we introduced the leave one
out cross validation which a new and very promising method for evaluating
model comparison based their predictive accuracy.

The idea that a data set is separated into train and test set give us no
penalty but its not proper for variable selection and it cannot be used for
statistical analysis that a data set cannot be split (like time-series) but this
kind of analysis is beyond the scope of this thesis.

Calculating hypothesis testing in dependent proportions is yet not so much
developed in bayesian analysis. We managed to represent some testing and
model evaluation in bayesian framework that we find them useful and they are
mainly implemented nowadays in Social sciences like McNemar test, Kappa
coefficient and Bradley Terry models.

The contribution of Dennis Lindley in bayesian analysis of contingency
tables was fundamental and is a milestone for new statistical scientists to
lean over his work and take it, one more step further.

Alan Agresti, throughout his books of Categorical Data Analysis which are
a benchmark for any statistician gave us a perspective to move forward to
bayesian analysis of categorical data and dive into the world of probabilis-
tic approach, along with some other scientists such as Jim Albert, Andrew
Gelman and Eric-Jan Wagenmakers.
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Appendix A

Appendix

For the implementation of the examples on this thesis you can find the full
code on the following link:
https://github.com/nikosmatsa/Thesis-Bayesian-Model-Comparison-and-Hypothesis-
Testing-for-Contingency-Tables

https://github.com/nikosmatsa/Thesis-Bayesian-Model-Comparison-and-Hypothesis\

protect\discretionary{\char\hyphenchar\font}{}{}Testing-for-Contingency-Tables/

blob/master/Thesis%20R%20Code
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