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Abstract

Clickstream data contain important information about user’s browsing be-
havior on a website. In this study, a Markov model, more specifically the
Continuous Time Finite State Markov Chain (CTMC) is proposed to model
the data. The pages in the clickstream data are categorized based on their
content. These categories become the user-states in the model. The sequence
of states for a particular visit by a user (session) becomes the chain. Using
real data data and the CTMC model developed by Albert, the Q matrix is
calculated (Albert et al. [1962]). This Q matrix is then used to calculate the
probability of a user’s next movement on the website. We show how path
information can be categorized and modeled using a mixture of first order
CTMC model. By using this model, we perform model based clustering and
we group our data. The basic tool for this aggregation method is the EM
algorithm.
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Chapter 1

Clickstream analysis

1.1 Introduction

1.1.1 Motivation

Currently, online stores target visitors-users using many types of informa-
tion,such as demographic characteristics, purchase history , and how the
user find the site(e.g through a bookmark, search engine, or link on an email
promotion). Another source of users information is the data which record
the navigation path that a user takes through a Web site(Montgomery and
Faloutsos [2001]).

On a Web site click stream analysis or clickstream analytics is the pro-
cess of collecting, analysing and reporting aggregate data. So path data
or clickstream data can inform us about the user’s goals,interests and fu-
ture purchases. More particularly clickstream data are very important for
analysing user’s behaviour and can be applied for example in online mar-
keting and anti-terrorism. Moreover many platforms such as Face book and
Google Ads rely on these data from what a user click’s and from what he
doesn’t,;so getting a better view about user’s behaviour leads to improve-
ments in these platforms.(e.g. advertising products, customer’s experience).

1.1.2 Background

Brodwin et al. [1995] was from the first who referred to the clickstream

13



14 CHAPTER 1. CLICKSTREAM ANALYSIS

analysis. According them, the website collects information about each web
visitor and provides customized information that meets visitor’s preferences.
Afterwards Chatterjee [2003] by analyzing the clickstream data identified a
group of users who were more likely to click a banner while also identifying
practices that have no effect on the rate of click-through by the users.

Di Scala et al. [2004] analyzed clickstream data with means of Markov
chains. The purpose of their research was to measure the effectiveness of a
website. They used past clickstream data and a multi-level Markov model,
to rank the pages and provide a measure of the effectiveness of the site. The
use of Markov models to model web browsing patterns was first proposed by
Pitkow and Pirolli [1999]. Their models treated each and every web page as
unique states and didn’t group them together.Today their model is no longer
applied. Deshpande and Karypis [2004] suggested a modified Markov model.
They began from a K-order Markov chain and started to reduce the number
of states towards lower order Markov models. So their suggested model was
as accurate as Pitkow and Pirolli’s model but less complex. The main focus of
their research was to determine the page that most likely the user would visit
next. Montgomery et al. [2004] used a dynamic multinomial probit model.
This model consists of a Vector Autoregressive component with a Hidden
Markov chain in the background. They incorporated the idea of categoriz-
ing the pages into eight categories. Their model analyses the page-by-page
viewings of a visitor as they browse through a web site . Scott and Hann
[2006] in their working paper proposed a session-level Hidden Markov with a
page-level Hidden Markov model. This model is an improvement over Mont-
gomery’s model but also increases the complexity of the model and cannot
be implemented in real time. In their study, they chose to use discrete time
units and suggested that continuous time units would probably produce bet-
ter results. Lee et al. [2001] developed a model to visualize the clickstream
data . The model allowed the website operator to better analyze the data
to find trends in user’s browsing behavior. Although the system developed
uses live data, this technique is time consuming. Mobasher et al. [2001] used
pattern recognition to group users based on their browsing behavior. Once
the group was identified, the group’s historical data were used to determine
the user’s probable action. Some of the data used to determine the grouping.
In their conclusion, they stated this methodology becomes increasing unscal-
able as the number of users and items increase . Johnson et al. [2004] took
this further by analyzing the pattern across multiple sessions of the same
user. They confirmed that users who visit the sites more frequently are more
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likely to make a purchase. Also clustering and classification of clickstreams
can be found in Aggarwal et al. [2003] and Wei et al. [2012]. Park and Fader
[2004] analyses web data from a marketing perspective in order to predict
purchase for users. Cadez et al. [2003] was the first who clustered clickstream
data by using mixture of first order Markov models . Some recent work using
the multivariate t-distribution for modelbased clustering has been put forth
by McLachlan and Krishnan [2007], and Andrews and Mcnicholas [2011] .
Moreover Scholz et al. [2016] create a software package for modeling lists
of clickstreams as zero-, first- and higher-order Markov chains and making
cluster classification.

In path navigation analysis, since the number of distinct web-pages can
be very high, one problem was the increase in the number of model’s param-
eters. In order to reduce the number of parameters in the model Melnykov
[2016] developed a methodology for grouping states according their simi-
larity. A more precise approach extending the research of Melnykov [2016]
for unsupervised and semi-supervised learning of clickstream data was from
Gallaugher and McNicholas [2018].

They introduced a mixed of first order continuous Markov chain models
for analyzing clickstream data. Their results compared with the discrete
time model showed that the continuous time model is more accurate. They
evaluate their results with simulations. We use the same methodology in the
Gallaugher and McNicholas [2018] and according Albert et al. [1962], who
considered the estimation of the infinitesimal generator in a continuous time
Markov model.

1.1.3 Purpose of this study

Particularly we are interested in discovering common navigation patterns
for the different users and discovering their group structure based in their
internet behavior. So we treat clickstreams as sequences (of sites or web
pages) and we are trying to cluster them. Because of the nature of the
data we use Markov chains. Clickstream data are time-dependent and these
data are traditionally modeled by means of Markov Chains( Cadez et al.
[2003]). Also we face high dimensional data , these automatically leads in
high number of model parameters. Clustering performance can be affected
when we deal with high number of parameters. For this reason the proposed
method includes straightforward selection algorithms such as EM algorithm
(Dempster et al. [1977]) and inference criterion such as BIC (Schwarz et al.
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1978]).



Chapter 2

Markov Chains and Transition
Functions

2.1 Continuous-Time Markov Chains

2.1.1 Definition and the minimal construction of a Markov
chain

Many processes one may wish to model occur in continuous time (e.g. disease
transmission events, cell phone calls, mechanical component failure times).
A discrete-time approximation may or may not be adequate. A stochastic
process in continuous time is a family, X ();>o, of random variables indexed
by the positive real line [0, 00). The possible values of X (t);>¢, are referred
to as the state space, S, of the process.

Definition (Homogeneous Markov chain in continuous time)

A continuous-time Markov chain on a finite or countable set, S, is a family
of random variables, X (¢);>0, on a probability space (€2, F, P) such that

P(X(tny1) = jIX(tn) =4, X (th1) = in-1, ..., X(to) = o)
P(X (tn1) = jIX(tn) = 1)
H7J<tn+1 - tn)

17



18 CHAPTER 2. MARKOV CHAINS AND TRANSITION FUNCTIONS

for j7,4,ip_1,...,70 € S and t,,q4 > t, > ... > ty > 0. The distribution of
the Markov chain is determined by

¢(i) = P(X(0) = 7) < initial distribution
P, ;(t) = P(X(t + s) = j|X(s) = i) < transition probabilities

through the identity

P(X(toi1) = §s X(tn) = 6, X (1) = in1 oy X (t0) = i)

= Pij(tnsr —tn) Py i(tn —tao1) - o Pigiy (T — t0) 9 (d0)

The transition probabilities P(X (t,+1) = j|X(t,) = ¢) are assumed to de-
pend only on the time difference t,,.1 — t,,. The distribution of a Markov
chain in continuous time is completely determined by the initial distribu-
tion and the transition probabilities. This construction establishes a unique
parametrization of a CTMC by transition intensities. The transition proba-
bility for a continuous time Markov Model depends on time and satisfy the
Chapman-Kolmogorov equations.

2.1.2 Transition probabilities for finite state space

For a continuous-time Markov chain on a finite state space the backward
differential equation may be expressed in matrix form as:

P'(t) = QP(t) = P(t)Q
, with P(0) = I,
where P(t) = (P, (t));; € S. Using the boundary condition P(0) = I it

turns out that the transition probabilities may expressed in terms of expo-
nential matrices as

P(t) =exptQ = Z (tg_')”
n=0 ’
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Using the forward and backward differential equations it may be possible
to find closed form expressions for some of the transition probabilities, P, ;(t),
for certain values of 1, j.

(@ is a square matrix whose value is constant in time and its called the
infinitesimal generator of the process. Also () = ¢;; where ¢;; are the transi-
tion intensities.

2.1.3 The infinitesimal generator matrix

For a continuous-time Markov chain, (X (¢)):>0, the transition intensities may
be obtained from transition probabilities P(t) = (P ;(t))i jes as the limits

Pii(t) —1
th:Qn
t—0t t ’
P--(t)
Jim = =7

Based on these assumptions derives the following theorem.

Theorem 1 (a) Let

- —q(i) = =32, ,a(i,5) ifi=],
1,7) = o 7 L ;
ath.9) { q(i, ) ifi # J,
and let Q be the (M x M) matriz whose (i,j)th entry is q(i,j). The
matriz of transition probability functions is given by P(T) = exp tQ.

(b) PlZ(t) = 1, to <t <ty+ a|Z(ty) = i] = exp—q(i)a for all non-
negative tg and o.

(c) If Z(ty) = i and q(i) > 0 , there is,with probability one , a sample
function discontinuity for somet >ty , and in fact a first discontinuity
which 1s a jump. If 0 < a < oo , the conditional probability that the
first discontinuity in [to,to + a) is a jump to j , given that Z(ty) = 1
and there is a discontinuity in [to,to + a), is a q(i,7)/q(7).

(d) Almost all sample functions are step functions with a finite number of
Jumps in any finite time interval.



20 CHAPTER 2. MARKOV CHAINS AND TRANSITION FUNCTIONS

2.1.4 The space of sample functions

According the Theorem 1 a sample function can be specified if we know the
number of jumps made in [0, 7] , the ordered lengths of time between jumps
, and the succession of values taken on by the process in [0, 7.

We define the following random variables:

The time at which the ¢th jump occurs if w € 2
~+00 otherwise

nw) =0, ) ={

.  mm(w) —m(w) i m(w) < oo
Tilw) = { 0 otherwise
N(T,w) = The largest integer n , for which 7,,(w) < T,
Zi(w):Z(Ti(w)7w) i:071a27"' .
Where T;(-) is the time spent in the ith state ,N(7},-) is the number of
jumps made by the process on [0,7] , and Z;(-) is the state of the process
immediately after the ith jump. In fact with probability one , a sample

function of {Z(t,-),0 <t < T} can be represented as an ordered sequence:
{Z(t,w),0<t<T}=

((Zo(w), To(w)), -+, (ZN(Tw)-1(W), TNTw)-1(W)), ZN(Tw))-
This means that:
Z(ta UJ), 0 S t < T = ((Z0>t0)7 Tty (anltnfl)v Zn)

, and thus the path function starts at zy at time zero ,remains in zq for ¢y units
of time , makes a jump to z; ,remains in z; for ¢; units of time, ---, jumps
to z,_1,remains there for ¢, ; units of time and then makes the final jump
to z,, and remains there at least until time 7". The probability distribution
on the space of sample functions is described from the following theorem:

(0 ey
7(.9) = { aii) it
Then PriN(T) =n&Zy = 20&Ty < ap&e - - &Z, 1 = 2, 1&T, 4

Theorem 2 Let

n—1

< ap1&Z, = z,] = Pr[Z(0) = 2] exp —Q(Zn)T'/ H dtiq/(zia Zit1) €Xp —[Q(Zi)—Q(Zn)]tj
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where

n—1
S, = {(toatla"' 7tn_1) : th <T&O§t]‘ Saj} if n > 0.

J=0

Pr[N(T) = 0&Zy = 2] = Pr[Z(0) = zo] exp —q(z0)T.

Sufficient statistics and the maximum likelihood

If k independent realizations vy, ve, - -+ ,vg of {Z(t),0 <t < T} are observed.
The likelihood function is defined by the following equation:

k

S =TI folvy).

j=1

If we let N}K) (i,7) = the total number of transitions from state i to state j

observed during the k trials ans A(TK) (1) = the total length of time that state
iis occupied during the k trials , the log-likelihood is written :

log £4) = Ce + 33 N (i, ) loga(i, ) — > AP (i)q(i),
) i

Cy is finite with probability one and its independent from ). The set
{]\fi(pk)(i7 7), Agpk ) (i)} ;i is a sufficient statistic for Q. The maximum likelihood
estimates (m.l.e.) for ¢(i,7) are seen to be :

W o NPaH .
qg)(Z’j):% 1fz7éj&Agf€)(z)>0.
Ay’ (1)

It Ag’f ) =0 , the m.l.e does not exist so is made the convention that
Wi, ) =0ifi #jand AP () =0.

Example

Let’s assume three possible states S = 1,2,3. There are the following data
paths D = dy,ds, ds,dy. In parenthesis the time spent at the state before
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transiting to the next.

dy = 1(3min) — 2(3min) — 3
dy = 1(8min) — 2(12min) — 3
ds = 1(2min) — 3

dy = 2(2min) — 3

Problem: What is the probability of transiting from state ¢ to state j given
that s time has elapsed since entering state 7

Solution:

First fit a continuous time Markov chain model to the data by estimating
the (infinitesimal) generator Q).
The general form for the generator of a continuous time Markov chain
with three states is
—Q1 Q12 Q13
Q=|an —az (2.1)
Q31 Q32 —O3

Where the diagonal elements satisfy a; = ) i @ij- The easiest way for esti-
mating () may be using the maximum likelihood estimate (m.l.e): Metzner
[2007] we know that the m.l.e for a(ij) is given by

N,

v

T,

Oéij =

where N;; is the number of observed transitions from ¢ to j and 7; is the
total time spent in state ¢ by the observed process.

So the estimates are djp = 2/(3+ 8 +2) = 0.154,413 = 1/(3+8+2) =
0.077,6401 =0/(2+3+12) = 0,403 = 3/(2+ 3+ 12) = 0.176.

The paths lists no observations for the system being in state 3, so no
estimates of a3; and g are possible. If the system has been observed to
stay in state 3 for a time without making a transition, then T3 is positive
and we would get the m.l.e s &3; = a3o = 0. In this case, state 3 would be
absorbing (represented by a row of zeros in the generator) and the generator
would be the one given above.

Finally, using the Kolmogorov backward equations, it is possible to compute
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the transition probabilities for the fitted model. We know that the transition
matrix over a time interval of length s is given by

P(s) = exp(sQ)

2.2 Mixture Models

2.2.1 From Factor Analysis to Mixture Models

Mixture model or,in literature,mixture distributions are convex combinations
of "component” distributions. In statistics are typically used to generalize
distributional assumptions and where a heterogeneous population consists of
several sub populations. In the simplest case mixture models are considered
as flexible tools for achieving a good fit to data. We present some important
topics for mixture models based in Smyth [1997] and Bohning and Seidel
[2003]

More formally , we say that if we have a data set

D=Ax,,...,zx}

where z; is a d-dimensional vector measurement. The points are generated
from an underlying density p(z).
A flexible model for z;, is a finite mixture model with K components:

K

p(z,]0) = prlay|zi, = 1,60)a
k=1

where:

e The pi(x;|2, = 1,6)) are mixture components , 1 < k < K. Each is a
density or distribution defined over p(z;), with parameters 0. Each of
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the components can be any any distribution pr density function , and
moreover its not necessary for the components to have all the same
form.

® 2 = (Zy,...,2ip) is a vector of K binary indicator variables , where
z; plays the role of an indicator random variable which represents the
identity of the mixture component that generated z;.

e The a; = p(z;, = 1) are the mixture weights , representing the proba-
bility that a randomly selected z; was generated by component k,where

Zkak =1.

The over-all parameter vector of the mixture model with K components
is thus

0= {al, ...,aK,Ql, ,QK}

This is a complete stochastic model, so it gives us a recipe for generat-
ing new data points: first pick a distribution, with probabilities given by
the mixing weights, and then generate one observation according to that
distribution.

Symbolically,

Z ~ mult(ay, as, ..., ag)

where the discrete random variable Z says which component X is drawn from.
As it concerns what kind of distribution the fis are,in principle, we could
make these completely arbitrary, and we’d still have a perfectly good mixture
model. In practice, a lot of effort is given over to parametric mixture models,
where the f; are all from the same parametric family, but with different
parameters. For instance they might all be Gaussians with different centers
and variances, or all Poisson distributions with different means, or all power
laws with different exponents. (It’s not strictly necessary that they all be of
the same kind.) The parameter vector, of the kth component is 6 , so the
model becomes

Fa) = arf(x;6r)

0= (al, ag, ...ag, 91, 02, Gk)
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When K = 1, we have a simple parametric distribution, and density
estimation reduces to estimating the parameters,by maximum likelihood .
On the other hand when K = n, the number of observations, we have gone
back towards kernel density estimation.

Many components in the mixture lets us fit many distributions very accu-
rately, with low approximation error or bias. The cost is that we have more
parameters and so we can’t fit any one of them as precisely, and there’s more
variance in our estimates.

Geometry

If we use a mixture model with q +1 components, we will also get data which
clusters around a g-dimensional plane. Furthermore, by adjusting the mean
of each component, and their relative weights, we can make the global mean
of the mixture whatever we like. And we can even match the covariance
matrix of any g-factor model by using a mixture with q +1 components .
Although this mixture distribution will hardly ever be exactly the same as
the factor model’s distribution(e.g. mixtures of Gaussian aren’t Gaussian),
the mixture will usually (but not always) be multimodal while the factor
distribution is always unimodal — but it will have the same geometry, the
same mean and the same covariances.

2.2.2 Identifiability

Two kinds of identification problems are common for mixture models; one is
trivial and the other is fundamental. The trivial one is that we can always
swap the labels of any two components with no effect on anything observable
at all — if we decide that component number 1 is now component number
7 and vice versa, that doesn’t change the distribution of X at all. This label
degeneracy can be annoying, especially for some estimation algorithms, but
that’s the worst of it. A more fundamental lack of identifiability happens
when mixing two distributions from a parametric family just gives us a third
distribution from the same family. For example, suppose we have a single
binary feature, say an indicator for whether someone will pay back a credit
card. We might think there are two kinds of customers, with high- and low-
risk of not paying, and try to represent this as a mixture of Bernoulli distribu-
tion. If we try this, we’ll see that we’ve gotten a single Bernoulli distribution
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with an intermediate risk of repayment. A mixture of Bernoulli is always
just another Bernoulli. More generally, a mixture of discrete distributions
over any finite number of categories is just another distribution over those
categories.

2.2.3 Probabilistic Clustering

Another way of view mixture models ,is a way of putting similar data points
together into “clusters”, where clusters are represented by, precisely, the com-
ponent distributions. The idea is that all data points of the same type, be-
longing to the same cluster, are more or less equivalent and all come from the
same distribution, and any differences between them are matters of chance.
One of the very nice things about probabilistic clustering is that actually
claims something about what the data looks like; it says that it follows a cer-
tain distribution. We can check whether it does, and we can check whether
new data follows this distribution. If it does, great; if not, if the predictions
systematically fail, then the model is wrong. We can compare different prob-
abilistic clusters by how well they predict. The best number of clusters to use
is the number which will best generalize to future data. If we don’t want to
wait around to get new data, we can approximate generalization performance
by cross-validation, or by any other adaptive model selection procedure.

2.2.4 Classification-semi supervised learning

In machine learning, a common scenario is to have a small amount of labeled
and a large amount of unlabeled data. For example, it may be that we have
access to many images of faces; however, only a small number of them may
have been labeled as instances of known faces. In semi-supervised learning,
one tries to use the unlabeled data to make a better classifier than that based
on the labeled data alone. This is a common issue in many examples since
often gathering unlabeled data is cheap (taking photographs, for example).
However, typically the labels are assigned by humans, which is expensive

2.2.5 Learning Mixture Models from Data

To fit a mixture model to data we can use maximum likelihood. Assum-
ing that the data points z; are conditionally independent given the model
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and its parameters © , we have (as always, we’ll use the logarithm to turn
multiplication into addition)

N K
L(©) = log(Y _ pilailzi, = 1,60)a
=1 k

=1

where a; = p(z;, = 1) is the marginal probability that a randomly selected
z; was generated by component k. If we take partial derivatives of this log-
likelihood and set them to 0 we get a set of coupled non=linear equations.
For example if we suppose that the component parameters 6, were known
and we were just learning the a) s ,we have

l(O) = pilEilz; =1,0))
8aj N Z Z

i=1

Setting these to 0 we get K non-linear equations. A valid approach for
learning the parameters of mixture models is by using Gradient Desent. In
order to decrease the cost of having to set learning rates another widely-used
alternative is the Expectation-Maximization(EM) algorithm. We describe
the EM algorithm detailed in next chapter and we adjust it for our model.

2.2.6 A Mixture of First Order Continuous Time Markov
Models

Definition of the model

Our approach is based on a mixture of first order Continuous Time Markov
Chain Model. Consider a website consisting of different web pages. These
web pages include J different categories. The click-stream of interest is de-
fined by the transitions from one category to another(or from a state to
another). Suppose N click-streams are observed from a population with G
types and we take into account the amount of time spent in each category.
Denote them by

Xi = (xip x’ig? ceey xiLi)
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and the observed times which the chain remains in each category

7—;; - (tilat’izv 7tlL1)

correspondingly.
The one step transition matrix for group ¢ is

/\gll >\912 T AglJ
Ag _ )\ng )\5{22 e )\g'ZJ
)\ng )\gJQ e )\gJJ

Now, define the initial probabilities

gz, = P(Xj1 = xi1|X; is in group g¢),
fori =1,2,..., N. For ease of notation, and recalling that x;; € {1,2,...,J},
denote an initial probability vector for each group g by oy = (g1, aga, - . ., g)-
Finally, for ease of notation, we denote the total number of transitions from

state j to state k for clickstream @ by n;js .

the generator matrix is the following:

dg11  Gg12 - dqg1J
Qg21  qg22 *°°  qg2J

Qg = . . . . 5
qgJ1 Ygj2 *° 4gJJ

where gz, > 0 for j # k and g,;; = —Zk# qgjk for g € {1,2,...,G}. The
first item we note here is that the underlying transition probabilities are
given by

ngEi Z;
P(Xia+1) = Tiggn)| Xa = Ta,zig = 1) = _ 2T

quilxil

The second is that each T}, are independent and

TilKXil = Tjl, Zig = 1) ~ EXp(_quizxu)v
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where Exp(a) denotes an exponential distribution with rate a. We now derive
the joint density of an observed clickstream x with length L and time vector
t for a single component.

f(x, t|a, Q) flzy,t, 2o, tay .o g, tr)
flxn) f(ta]zr) f(@aolts, 1) f(to|zo, tr, 21) X - X f(ap|F)f(tL|FU{zL})
= f( ) f (t1|$1)f(962|$1)f(t2|$2) X X f($L|$L—1)f(tL|$L)

J L—1
x1=19 qﬂ? s
- Ha‘f( ! ])> [H<_qul>eXp{qultl} <%)] X (_QILxL)eXp{q:ELthL}
j=1

=1 i

J J L J J
_ (H a§(x1=j)) exp {qu]]tl 7 :])} HHq;lik] [ HqJIj(JJL J]

j=1 =1 J=1k#j

We denote the initial probability vector by oy, as before. The likelihood is
the following:

£obq<fl9’D ) -

I(zi1=j) i Nijk _ d I(z;1,=j) & ’
H H Tg H . H H gk H 955 exXp Z Z dgjstal (za = j)
i=1g=1 J=1k#j j=1 j=11=1

and the complete-data log-likelihood is

.= ZZ Zig <log7rg + ZI zi1 = j)log ayg; + ZZnZ]klogqg]k

i=1 g=1 =1 k#j
J J L;
+Z[(xiLi log ng] + ZZQQ]; le le )] .
j=1 j=1 I=1

The next step is to apply the EM algorithm. We used the EM algorithm as
it is described in Biernacki et al. [2003].
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EM algorithm

The EM algorithm is an iterative algorithm for doing ”local ascent” of the
likelihood (or log-likelihood) function. Its is usually east to implement , it
enforces parameter constraints automatically , and it does not require the
specification of a step-size(the step size is implicit at each interaction of the
algorithm). Moreover EM is a general procedure and can be applied in any
problems where there is missing data. In case of mixture models the missing
data are the z indicators for component membership.

3.1 Outline the EM algorithm for mixture
models

EM algorithm is a generalization of k-means algorithm. In EM there are two
steps called expectation step, which is equivalent to assigning points to the
clusters and maximization step, which is equal to recomputing centroids.
EM algorithm starts from an initial estimate of the parameter set © (e.g.
random initialization) , and then proceeds to iteratively update © until con-
vergence is detected. The E- step and M-step are consisted in each iteration
of the algorithm.

In the E-step the algorithm computes the expected log=likelihood with
respect to the probability of the z/s conditioned on the x}s and the current
values of the parameters. For mixture models the expected value E[z;, | =
p(z, = 1|z;,0). We compute all N data points for each of the K clusters ,
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using Bayes rule.

In the M-step the algorithm computes new parameter values that maxi-
mize the expected log-likelihood ,given the Nz N matrix of p(z;, = 1|z;,0)
values produced by the E-Step.

Both E-Step and M-Step are computed straightforward for mixture mod-

els , and that’s why the EM algorithm is very popular in practice for fitting
mixture models.

3.2 The E-Step for Mixture Models

In the E-Step,given a set of parameters © ,we compute the "weight” of data
points x, in component £ as

|z, 0
Wiy, = p(Zik =1lz;,0) = ka(£z|zk, k) Qg
Y et Pm (@i 2m, Om ) ag;

This follows from the direct application of Bayes rule. For mixture models
with different components , the components would have different functional
forms , but the general equation for computing mixture weights has the same
general form. These weights are an N x K matrix where each row sums to
1 and contains the weights for data vector z;.

We assume that each z; was generated by a single component ,so these prob-
abilities reflect the uncertainty about which component came from.

3.3 The M-Step for Mixture Models

Given the weights from the E-Step we use the weights and the data to calcu-
late new parameter values. Suppose N, = Zfil w;,, the sum of the weights
for the kth component this is the effective number of data points assigned to
component K.

The new estimate of the mixture weights is a}“ = %, 1 <k < K. These are

the new mixture weights, with 311" oy = 1. After that the updated mean

is calculated is a similar way of manner of how a standard empirical average
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is calculated. The difference is that, ith measurement x(i) has a fractional
weight wy.

After all of the new parameters are updated , the M-step is complete
and we can now go back and recompute the weights in the E-step, then
recompute the parameters again in the E-step, and continue updating in this
order. Each pair of E and M steps is considered to be one iteration.

3.4 EM algorithm for the Mixture Markov
Model

In the E step, we update the indicator variables z;,. At iteration s + 1, this
update is given by

h(#ty, &g, Qq, Xi, t
gig _ = (WgyAaguAqu}f ; ) : (31)
29/21 h(ﬂgH Oy, Qg’7 Xis ti)
where
J J
h(ﬂ.wag, Q97X27 ﬁ' <H I(zs1=j ) [H( ng I(zip=j ] [HH
i=1 j=1 plsywy

J L
X exp {Z Ggjjtul (T = ])}
j=1 =1
At the M step, we update our parameters, 7,4, &, and Qg. The updates for
Qg are given by

97

N o zignis P
; { w 1fj7ék,
gik = A . )
- Zk;&j qgjk it k =7,

where \,; = a/b with

N L; J
Z (Z 2 le ajzl - ] =+ Z Zzg”z]k) )

1=1 k#j

N N J
Z zg] Tip; = j) + Z Z ZAig”ijk-

i=1 i=1 k#j

zjk]
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At the M step, we update our parameters, 7,4, ¢, and Qg. We also update
each Q.

3.5 Initialization and Convergence Issues for
EM

The EM algorithm can be started by either weight initialization or with
parameter initialization. The initial parameters or weights can be chosen
randomly or could be chosen via some heuristic method (such as by using
the k-means algorithm to cluster the data first and then defining weights
based on k-means memberships). Convergence is generally detected by com-
puting the value of the log-likelihood after each iteration and halting when
it appears not to be changing in a significant manner from one iteration to
the next.

For avoiding computational issues , as discussed in Gallaugher and McNi-
cholas [2018] and Melnykov [2016], like the cases where there are no transi-
tions present in the data between two states, i.e.,n;;;, = 0, for all we penalized
likelihood. For the estimates gg;; which would be zero for all g we set a lower
bound of 107° for all parameters. An estimation of zero value would be a
problem, because causes problems with the calculation of the likelihood. So
we assume that all the states communicate with each other.

3.6 Selecting the number of clusters

Selecting the number of clusters is quite a sensitive topic. For finite mix-
tures, a suitable number of components can be selected using different crite-
ria. Information criteria such as the Akaike information criterion (AIC) or
Bayesian information criterion (BIC)Schwarz et al. [1978] have been used in
a model-based clustering context where it has been shown for the BIC that
the number of components are consistently selected under certain conditions,
in particular ensuring that the component densities remain bounded Keribin
[2000]. We used BIC for selecting the number of groups for our model where
is defined:
BIC = 20,,5(¥| D) — plog N
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Data Description

We first make a full description of our data, how it is collected, the data
processing which is needed for conducting an exploratory data analysis to fit
the model we have already introduce. Our data is derived from a dataset
that was constructed by YOOCHOOSE GmbH to support participants in the
RecSys Challenge 2015. The YOOCHOOSE dataset contains a collection of
sessions from a retailer, where each session is encapsulating the click events
that the user performed in the session. For some of the sessions, there are
also buy events; means that the session ended with the user bought some-
thing from the web shop. The data was collected during several months in
the year of 2014, reflecting the clicks and purchases performed by the users
of an on-line retailer in Europe. To protect end users privacy, as well as the
retailer, all numbers have been modified.

This web shop monitored users usage. It records the users (sessions) id,
the different categories they have visited, the exact date and time that they
have made the visit and so derived from the previous, the amount of time that
each user has spent in each category. The categories normally have discrete
items, and there is also an special offer category that can be common for all
items. However the category of the same item depends on the context where
the click occurred, as described next in the fileds/format. For this reason it
is preferred to use the category values instead of items, in our analysis.

A session is defined as a period of sustained web browsing or a sequence of
page viewings. If a user has not viewed any pages for a considerable amount
of time, it is assumed that the viewing session has ended and that the next
page viewing marks the beginning of a new session. Thus, different sessions
id may refer to the same user, but there is no definitive way of knowing that,
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and that’s why for simplicity each session id is assumed to correspond to a
unique user. In the second file we have the users id and if the user made a
purchase or deferred. We combined those two files for our analysis.

The YOUCHOOSE dataset comprises two different files:

Click events. The file yoochoose-clicks.dat comprising the clicks of the
users over the items.

Listing 4.1: Sample of yoochoose-clicks.dat records

Session _ID Timestamp I[tem _ID Category
<dbl> <dttm> <dbl> <chr>
1 5003694 2014—06—23 19:11:22 214836868
5003694 2014—06—23 19:13:39 214836868
5003691 2014—06—23 18:30:47 214811756
5003691 2014—06—23 18:30:56 214811752
5003691 2014—06—23 18:30:57 214811754
5003691 2014—06—23 18:31:07 214839905

Oy UL = W N
= s s s U2 0

Each record/line in the file has the following fields and format organized per
columns as comma separated values (csv):

1. Session ID — the id of the session. In one session there are one or many
clicks. Could be represented as an integer number.

2. Timestamp — the time when the click occurred. Format of YYYY-MM-
DDThh:mm:ss.SSSZ

3. Item ID — the unique identifier of the item that has been clicked. Could
be represented as an integer number.

4. Category — the context of the click. The value ”S” indicates a special
offer, 70" indicates a missing value, a number between 1 to 12 indicates
a real category identifier, any other number indicates a brand. E.g. if
an item has been clicked in the context of a promotion or special offer
then the value will be ”S” | if the context was a brand i.e BOSCH, then
the value will be an 8-10 digits number. If the item has been clicked
under regular category, i.e. sport, then the value will be a number
between 1 to 12.
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Buy events The file yoochoose-buys.dat comprising the buy events of the
users over the items. Each record/line in the file has the following field and
format organized per columns as comma separated values (csv)s:

1. Session ID - the id of the session. In one session there are one or many
buying events. Could be represented as an integer number.

2. Timestamp - the time when the buy occurred. Format of YYYY-MM-
DDThh:mm:ss.SSSZ

3. Item ID — the unique identifier of item that has been bought. Could
be represented as an integer number.

4. Price — the price of the item. Could be represented as an integer num-
ber.

5. Quantity — the quantity in this buying. Could be represented as an
integer number.

The Session ID in yoochoose-buys.dat will always exist in the yoochoose-
clicks.dat file — the records with the same Session ID together form the se-
quence of click events of a certain user during the session, also referred as a
path. The session could be short (few minutes) or very long (few hours), it
could have one click or hundreds of clicks. All depends on the activity of the
user.

4.1 Dataset analysis

To start the analysis, the dataset yoochoose-clicks.dat was read in R, i.e. in
total 33003944 observations (clicks) described by four values each (Session
ID, Time of click, Item ID and Category). The Category 0" is interpreted
as a missing value(NA).

Clicks were collected in a period starting from 1st Aprin 2014 and finishing at
30th June 2014, from 9249729 unique sessions, created by users that browsed
though 52739 different Items and 338 categories (Table 4.1). Sessions are
generally short, as they consist of only two clicks in average. A simple way of
visualization of our data is with histograms. Because of the large amount of
data we changed the scale for presenting them in a simple way. In Figures 4.1,
4.2 and 4.3 are the histograms of frequency distributions for clicks per session,
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Values | Session ID Time of click Item ID Category

Minimum 1 2014-04-01 214507224

02:00:00 UTC
Maximum 11562161 2014-09-30 1178837797

02:59:55 UTC
LUnique instances 9249729 32937345 52739 338
Median 55316873 2014-06-30 214826810

05:12:37 UTC
Standard deviation 3356590 4663570 29819442
Min. clicks per value 1 - 1 1
Max. clicks per value 200 147415 10769610
Median clicks per 2 22 28.5
value
Standard deviation 3.78752 2810.072 599337.3
clicks per value

Table 4.1: Initial raw dataset yoochoose-clicks.dat.

per item and per category. For categories the vast majority of clicks are
concentrated in a few categories. More specifically in figure 4.4 are presented
the 13 most clicked categories, where it is clear that category ”S” attracts
almost the majority of all clicks.

4.2 Data preparation

In our study, as an assumption, click events are the categories. So to clear the
data, all the observations with missing values in the category column were
removed and only the complete cases were retained. The proportion of the
missing values is important, about 50% of the pages viewed by users were re-
moved from the dataset. So the dataset remains with 16666291 observations
(50.5% of initial clicks).

From table 4.2 and figures 4.5, 4.6 and 4.7, the following are observed: a) All
observations between 1st April 2014 and 22nd June 2014 and about 45% of
the sessions have missing values, b) no loss of information on the categories, c)
the shape of frequency distributions is similar to the ones of original dataset.

Because of time and computational limitations, only 371984 of total 50000263
paths were calculated, as defined in ”Data Description”.
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Values Session ID Time of click Item ID Category
Attributes
Minimum 4882323 2014-06-23 214507331
09:43:10 UTC
Maximum 11562161 2014-09-30 214991452
02:53:59 UTC
Unique instances 5000263(54%) | 16633357(50.5%) | 42857(81.3%) 338(100%)
(percentage of the
initial dataset)
Median 8367203 2014-08-17 214842362 “s”
10:13:38 UTC
Standard deviation 1863182 2294450 109169.6
Min. clicks per 1 - 1 1
value
Max. clicks per 200 - 125648 10769610
value
Median clicks per 2 - 16 28.5
value
Standard deviation 3.534972 - 1990.808 599337.3
clicks per value

Table 4.2: Dataset filtered - only complete cases, with no missing values.

Listing 4.2: Sample of paths

175003694
]75003691”
] 75003684
] 75003681
] 75003649

]
]
]
}
1175003678

[[1
[[2
[[3
[[4
[[5
[[6

29 S77 2 S77
2 477 7 477
7 S?) 7 SH
2 S77 2 S?’
2 S77 2 S77
2 S77 2 S77

7 477 7 477 7 477
7 S)’
2 S77 2 S” 2 S”

7 477 7 477

In table 4.3, the time spent on any page and the time spent on any path is
analyzed. It is impossible to derive anything meaningful from these sessions
as the time the user spends viewing the page is not known. These times are
normally calculated from the time differences between the request time of
the current page and the request time of the next page viewed. Without the
next page viewed, the time spent viewing the page cannot be calculated.

Listing 4.3: Time spent in each state of paths at Listing 4.2
[[1]] Time difference of 2.275167 mins
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Figure 4.1: Frequency distribution of number of clicks per session in log scale
at y-axis

[[2]] Time differences in secs
[1] 9.025 1.058 10.065 1332.401 1.278
938.985

[
1

3]] Time differences in secs
]

10.212 12.902
[[4]] Time differences in secs
[1] 2657.288 7.537 29.092 37.713

[[5]] Time difference of 1.72435 mins

[[6]] Time difference of 55.923 secs

In the dataset we entered a minimum bound of time spent in each state,
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Figure 4.2: Frequency distribution of number of clicks per item in log scale
at y-axis

in case we don’t have state changes. We always assume that all stages are
connected, so when we don’t have transitions from one category to another,
this creates problems in he calculation of likelihood. For these cases we made
minimum bounds such as le-6 when we don’t observe transition in order to
overcome calculation problems. Also we put an upper bound for the times
spend in each click to avoid error values, for example when a user forget his
browser open and the time spent doesn’t correspond to reality, refer to 4.3
and figure 4.8.

Further to data refining, only transitions to a different category are consid-
ered and a chain of distinct transitions is created. The final dataset contains
session information with length from two page views to 48, and transitions
among 289 categories. Also in the proposed model, web pages viewed by
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Figure 4.3: Frequency distribution of number of clicks per categories

T
200000

T
1000000

Clicks per Category

|
1500000

Length of | Time spent Time spent

paths on a path on a page
Minimum 11 0.0009999275 | 0.0009999275
Maximum 200 35100.69 6836.685
Median 2 166.897 63.098
Standard deviation | 3.586181 767.7331 323.5106

Table 4.3: Data derived from 371984 calculated paths

the users will be the discrete states observable from the chain. The time
between clicks, measured in seconds, will be the continuous component of
the chain. These categories-web pages become the user-states in the model.
The sequence of states for a particular visit by a user (session) becomes the
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Listing 4.4: Sample of distinct/unique transitions (chain)

7 277
7 177
2 S77
7 177
7 S??

7 S77
7 SJ?
7 477
b} 277
7 S77
7 177

7 377
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b} 477
7 1’7
7 S77
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Figure 4.8: Histogram of time spent (in seconds) on any path in log scale at

y-axis
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4.3 Results

Using the clickstream data and the CTMC model developed by Albert et al.
[1962], the Q matrix is calculated. This Q matrix is then used to calculate the
probability of a user’s next movement on the website including the amount
of time which is spent in each state. The results show the time when the
user’s probability of going to the next page is at its highest before it starts
a continuous decline. Using the Q matrix, the probability of jumping from
state i to state j is calculated for all states over t from 1 to 289. ¢(i,7) can
be calculated by dividing the number of transitions from state i to state j by
the total time spent in state i. We present the Q matrix for 289 categories
so the matrix’s dimension is 289x289.

—0.0007089872  1.92767-107% ... 0.0004405962
0.0000391831 —8.49271-10~* ... 0.0006743139

9= : : .. : ’
1.631046 - 107*  1.324882-10"° ... —0.0006791908

4.3.1 Finite mixture modelling with EM algorithm

Based in the methodology described in Section 3.4, we run the EM algorithm
for finite mixtures with first-order CTMC components. Because EM may
converge but not in a local maximum, a two-stage approach is incorporated,
emEM (Biernacki et al. [2003]). The emEM runs multiple EM algorithms.
Then the best solution is obtained and it used to initialize the final EM
algorithm.

All transitions probabilities are greater than zero. To achieve that, we set
the lowest probability value as a lower bound. This lower bound is assumed
10-S.

Following with the EM algorithm, we fit the model into G groups, G =
1,2,3,4,5. To obtain our results we used the clickclust_ EM command from
r-package clickclust.cont (Gallaugher and McNicholas [2019]) with the fol-
lowing arguments :The maximum number of iterations is 50, The number
of random starting values is 10, the tolerance for convergence is le-1. The
r-package clickclust.cont provides an expectation maximization (EM) algo-
rithm to fit a mixture of continuous time Markov models for use with click-
stream. We choose the model with the lowest BIC . We present the resulting
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BIC values in the Table 4.4.

Groups

G=1

G=2

G=3

G=4

G=5

BIC

31596.22

27961.94

28934.91

23629.64

25290.76

G from 5 to 10 was tested but none of the models could be fitted.

Table 4.4: BIC results for different number of groups.
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Conclusion

This study shows that a simple Continuous Time Markov Chain can be used
to model the web users’ behavior when browsing a website. A probability
chart that displays how the users of that site behave over time can be de-
veloped. These probabilities only depend on the current page viewed by the
users. This will provide a reference point in time when the probability of a
user clicking on the next webpage will start a continuous decline.Because the
probability does not have to be calculated for each individual user, this model
is not as computing intensive. Comparing with the discrete time model one
important aspect of the Discrete Time Markov Chain is the requirement of
it to have discrete time between each state observation. This does not fit the
nature of web browsing where users can “jump” from page to page at different
time intervals. To try to fit the clickstream data into a Discrete Time Markov
Chain would have forced the model to ignore any time information provided
in the data. The results from Gallaugher and McNicholas [2018] confirm that
taking into account the amount of time spent in each category allowed for the
detection of groups of users. In contrast the discrete time model was unable
to detect the group of users. Although this methodology assumes that the
amount of time spend in a category follows exponential distribution and we
checked the exponential property for our data this isn’t always true in real
time applications. The model is in this case time unit dependent. There are
researches which consider a gamma distribution for the holding times but
not for clickstream data. Also although BIC is a reliable inference criterion
jif the correct model is not on the list of the family models BIC tends to
overestimate the size of clusters Biernaki et al. [1998].Contrary an integrated
classification likelihood criterion(ICI) was developed. Other future research

o1
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includes modeling it for a cross-websites application similar which is not con-
sidered in this model.Finally, this methodology was conceived for the purpose
of analyzing clickstream data, but it has a more general application in every
field that includes state transitions.



Appendix A

R Script

library (readr)

click<—read _csv(”yoochoose—clicks .dat”,

col _names = c(” Session _ID” ,” Timeclick” ,” Item _ID” |” Category” ),
col _types = cols(Category=col_character()) ,na = 70")
click _no_mising <— click [complete. cases(click), |
1=1

sessions={}

path={}

times={}

sestimes={}

for (s in unique(click —no_mising$Session _ID)){

path[i] <— click _no_mising[click no_mising$Session ID = s, 4]
times[i] <— click _no_mising[click _no_mising$Session _ID = s, 2]
sestimes [[1]]<—c(as.character(s),diff(times[[i]], units="secs”))
sessions [[1]]<—c(as.character(s),path[[i]])

1=1+1

}

states = unique(unlist (path, use.names = FALSE))

for (a in sessions) {

cat(a, file="sessions.csv” ;sep="," , fil1=FALSE,append=TRUE, ”\n”)
}

library (clickstream)

cls=readClickstreams(file="sessions.csv” ,sep="," Jheader=IRUE)

93



APPENDIX A. R SCRIPT

rotate0=function (x, n)

{

1 = length(x)
n = Wl

if (n=0) {

return(x)

return(x)

}

getQ= function (i, clickstreamList)

{

clicks = clickstreamList

for (j in 1:1) {

clicks = rbind(clicks , 7 [[—]]")

}

clicks = unlist(clicks , use.names = F)

clicks2 = rotateO(clicks , —1i)

dat = data.table(clicks , clicks2)

transition = as.data.frame(dcast.data.table(dat, clicks
clicks2 , fun.aggregate = length, value.var = "clicks2”))
transition = transition [, —1]

pos = which(names(transition) = " [[—]]")

rnames = names( transition )[—pos]

transition = transition|, —pos]

transition = transition|[—pos, |

names(transition) = rnames

rownames( transition) = rnames

return(list ( transition = transition))

}

ql = getQ (1, cls)
itrans=ql$transition

dif _times=lapply (times , diff ,units="secs”)
dif _times=lapply (dif_times, c,0)
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nstat=length (names(itrans))

sum_times={}

sum_times= numeric(nstat)

library (parallel)

cr=detectCores ()

library (doParallel)

cl <— makeCluster (cr—1)

registerDoParallel (cl)

s=lapply (sessions , tail ,—1)

for (i in 1l:nstat){

n=names(itrans)[1i]

ind <— lapply (s, function(ch) grep(n, ch))

dtimes <— foreach (j=1:length(s), .combine = ’c¢’) %dopar% {
as.numeric( dif _times [[j]][ind [[j]]], units="secs”)

}

sum_times [i] <— sum_times [i]+sum(dtimes ,na.rm=IRUE)

}

names (sum_times)=names(itrans)

-0}

for (i in 1l:nstat){

if (sum_times[[i]] < le—6){

Q<— rbind (Q, itrans[i,]/le—6)

}else{

(}K— rbind (Q, itrans [i,] /sum_times [[1]])
}

for (ij in 1l:nstat){

?[ij ,1j]=—sum(Q[ij ,][-1j])

X—matrix (unlist (Q) ,nrow = nstat , ncol = nstat)
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