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Abstract

Markov Chain Monte Carlo (MCMC) is a family of stochastic algorithms which are
used to draw random samples from arbitrary probability distributions. This task is
necessary to solve a variety of problems in Bayesian modelling, e.g. prediction and
model comparison, making MCMC a fundamental tool in modern statistics. As model
complexity increases, the performance of classical MCMC algorithms deteriorates
due to their potentially limited exploration of the target distribution. The latest
developments in statistics and machine learning suggest that Hamiltonian Monte
Carlo (HMC) method can offer statistical and computational efficiency com-pared to
MCMC. Hamiltonian Monte Carlo (HMC) is a state-of-the-art sampling algorithm
for Bayesian computation. Popular probabilistic programming language Stan rely on
HMC’s generality and efficiency to provide automatic Bayesian inference platforms
for epidemic models and more.

Our main purpose in this thesis is to provide a brief description of the most im-
portant features of Stan’s implementation of HMC in the context of epidemic models.
We present the HMC algorithm as well as the advantages of the Stan platform and
we introduce information criteria like AIC, WAIC and DIC, the most common meth-
ods for selecting statistical models. By applying the above techniques to simulated
and real data, it is shown that Stan is a (perhaps the only) general purpose software
which provides a built-in mechanism for specifying and solving systems of ordinary
differential equations, thus facilitating inference in epidemic models.
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Per—lhyh

Oi mŁjodoi Mìnte K�rlo e—nai mia meg�lh kathgor—a upologistik‚n algor—jmwn

pou sthr—zontai se tuqa—a deigmatolhy—a me skopì thn exagwg  arijmhtik‚n

apotelesm�twn. H qr sh tou MCMC e—nai apara—thth gia thn ep—lush poik—lwn prob-

lhm�twn sta Mpe "uzian� montŁla, p.q. prìbleyh kai sÔgkrish montŁlwn, kajist‚ntac

to MCMC jemeli‚dec ergale—o stic sÔgqronec statistikŁc. Kaj‚c h poluplokìthta

twn montŁlwn aux�netai, oi epidìseic twn klasik‚n algor—jmwn MCMC exasjenoÔn

lìgw thc endeqomŁnwc periorismŁnhc exereÔnhshc thc katanom c stìqou.

Oi megalÔterec exel—xeic sth statistik  kai sth mhqanik  m�jhsh upodhl‚noun

ìti h mŁjodoc Hamiltonian Monte Carlo (HMC) mpore— na prosfŁrei statistik  kai

upologistik  apotelesmatikìthta se sÔgkrish me to MCMC. To Hamiltonian Monte
Carlo (HMC) e—nai Łnac upersÔgqronoc algìrijmoc deigmatolhy—ac gia thn Mpe "uzian .

H dhmofil c pijanologik  gl‚ssa programmatismoÔ Stan bas—zetai sth gen—keush kai

thn apotelesmatikìthta tou HMC gia na parŁqei autìmatec platfìrmec Mpe "uzian‚n

sumperasm�twn gia epidhmiologik� montŁla kai poll� �lla.

O kÔrioc stìqoc mac se aut  th diplwmatik  ergas—a e—nai na parŁqoume mia sÔntomh

perigraf  twn pio shmantik‚n qarakthristik‚n thc efarmog c tou HMC apì to Stan
sto pla—sio twn epidhmik‚n montŁlwn. Parousi�zoume ton algìrijmo HMC kaj‚c kai

ta pleonekt mata thc platfìrmac Stan kai eis�goume krit ria plhrofìrhshc ìpwc ta

AIC, WAIC kai DIC, tic pio koinŁc mejìdouc gia thn epilog  statistik‚n montŁlwn.

Me thn efarmog  twn parap�nw teqnik‚n se prosomoiwmŁna kai pragmatik� dedomŁna,

de—qnei ìti to Stan e—nai Łna (—swc to mìno) logismikì genikoÔ skopoÔ pou parŁqei Łnan

enswmatwmŁno mhqanismì gia ton prosdiorismì kai thn ep—lush susthm�twn sun jwn
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diaforik‚n exis‚sewn, dieukolÔnontac Łtsi th sumper—lhyh se epidhmik� montŁla.
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Chapter 1

Introduction

In epidemiology one of the most basic steps is the estimation of model parameters
describing the mechanisms of disease spread. One or more of the model variables may
be unobserved (latent), for this reason inference for epidemic models is complicated, to
this end employing a Bayesian approach has the advantage of including uncertainties
within the model. To practical applications of statistics, the Bayesian approach has
evolved since the introduction of Markov Chain Monte Carlo (MCMC) methods with
the use of MCMC in practical applications being greatly facilitated by the early
development of the BUGS software (Lunn et al. 2000). Most of the recent studies in
infectious disease epidemiology use MCMC for learning the model parameters from
data (McKinley et al. 2014, O’Neill & Roberts 1999).

As model complexity increases, the performance of classical MCMC algorithms
deteriorates due to their potentially limited exploration of the target distribution.
The latest developments in statistics and machine learning suggest that Hamiltonian
Monte Carlo (HMC) method can offer statistical and computational efficiency com-
pared to MCMC (Betancourt 2017). While there have been a number of successors
to the BUGS software, especially over the last decade, including JAGS (Plummer
2017) and Nimble (de Valpine et al. 2017), a relatively new software package called
Stan enables the implementation of HMC within a probabilistic modeling language.
In addition, it appears that Stan is the first such software which has built-in solvers
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for systems of ordinary differential equations (ODEs) (Carpenter et al. 2017).

Our main purpose in this thesis is to provide a brief description of the most im-
portant features of Stan’s implementation of HMC in the context of epidemic models.
Since the epidemic models which we use are based in the Bayesian statistical inference,
we give the basic theory and tools of Bayesian Inference in Chapter 2. In this chapter
we will introduce the Bayes’ formula and the components of Bayesian inference such
as likelihood, the prior distributions and the posterior distributions. Moreover, we
present the algorithm HMC as well as the advantages of the platform Stan and at
the end of this chapter we introduce the information criteria like AIC, WAIC and
DIC most common methods of assessing the goodness of fit of anestimated statistical
models.

In chapter 3 we make an introduction to the epidemic models and the types of
them, specifically in this thesis we will deal with deterministic epidemiological models
such as SIR. The major assumptions that we make in these models is the population
size in a subgroup is differentiable with respect to time and that the epidemic process
is deterministic. In other words, the changes in population of a subgroups can be
calculated using only the history that was used to develop the model. This assumption
is tested in order to see whether it affects the spread of epidemic and its transmission
rate, which is seen through the basic reproduction number, which analyze later in the
chapter. Afterward we present the four models we use and their assumptions

In the next chapter we test extensively the aforementioned models, we use a way
to extract the likelihood and calculate the basic reproduction number. We applied
simulated data and data gathered from epidemic at British boarding school, in order
to provide the results calculated in Rstan.
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Chapter 2

Bayesian Inference

Bayesian inference is a method of statistical inference in which Bayes’s theorem is used
to update the probability for a hypothesis as more information becomes available, in
other words Bayesian inference techniques specify how one should update one’s beliefs
upon observing data. Let us see how Bayes’s theorem is defined for two contingencies
A and B. Bayes’ theorem shows the relationship between two conditional probabilities
that are the reverse of each other, indeed the conditional probability, or ‘posterior
probability’, of an event A after B is observed in terms of the ‘prior probability’ of
A, prior probability of B, and the conditional probability of B given A. The Bayes
theorem has the following form:

Pr(A|B) = Pr(B|A)Pr(A)
Pr(B) (2.1)

The rationale behind Bayes’ inference is similar to that of classical statistics, ie
we have a parameter θ of the population we want to estimate, and the probability
f(x|θ) that determines the probability of observing different x, under different values
of the parameter θ. The main difference is that θ is used as a random quantity. This
difference leads us to a completely different approach to the interpretation of classical
statistics.

In essence, our inference will be based on f(θ|x) and not on f(x|θ), ie the proba-
bility of parameter distribution given x (data) rather than x given the parameter. In
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order to be able to do this, we need to determine the prior distribution f(θ) (prior
probability distribution), which represents our beliefs about the distribution of θ be-
fore we get any information about the data. The idea of prior distribution of the
parameter θ is the core of Bayes theory.

At this point we will formulate Bayes’ theorem in a form suitable for random
variables, where f denote the densities of the random variables. In equation (2.1)
we replace B with observations x, A with parameter set Θ, and probabilities Pr with
densities f, resulting in the following:

f(Θ|x) = f(Θ)f(x|Θ)
f(x) (2.2)

Where f(Θ) is the set of prior distributions of parameter set Θ before x is ob-
served, f(x|Θ) is the likelihood of x under a model, and f(Θ|x) is the joint posterior
distribution, sometimes called the full posterior distribution, of parameter set Θ that
expresses uncertainty about parameter set Θ after taking both the prior and data
into account. Since there are usually multiple parameters, Θ represents a set of j
parameters, and may be considered here as

Θ = θ1, ..., θj (2.3)

The denominator f(x) is written as

f(x) =
∫
f(Θ)f(x|Θ)dΘ (2.4)

defining the “marginal likelihood” of x and may be set to an unknown constant c.
The marginal likelihood function indicates what x should look like, given the model,
before x has been observed. Only the set of prior probabilities and the model’s
likelihood function are used for the marginal likelihood of x. From the moment
we have completed, with respect to Θ, the denominator in the Bayes theorem, it is a
function leg as x. Therefore for given x observations, the denominator is constant and
is called the normalization constant. Based on this an alternative way of presenting
the theorem (2.2) is as follows:

f(Θ|x) ∝ f(Θ)f(x|Θ) (2.5)

4



CHAPTER 2. BAYESIAN INFERENCE

We see that the posterior distribution is proportional to the prior distribution multi-
plied by the likelihood function f(x|Θ).

If we make the equation a little more explicit, Θ is what we are interested in
representing the set of parameters. For example, if we are trying to estimate the
values of the Gaussian distribution parameters, then Θ represents both the mean (µ)
and the standard deviation (σ), while the data represents the total of observations
we have. So now the Bayes theorem in a model, according to the above, is written
as:

P (θ|data) = P (θ)P (data|θ)
P (data)

f(θ|data) ∝ f(θ)f(data|θ)
(2.6)

So the components of Bayesian inference are:

1. f(x|Θ) is the likelihood or likelihood function, in which all variables are related
in a full probability model.

2. f(Θ) is the set of prior distributions for parameter set Θ, and uses probability as
a means of quantifying uncertainty about Θ before taking the data into account.

3. f(Θ|x) is the joint posterior distribution that expresses uncertainty about pa-
rameter set Θ after taking both the prior and the data into account.

Likelihood

In order to complete the definition of a Bayesian model, both the prior distribu-
tions and the likelihood must be approximated or fully specified (Fisher 1921). In
the presence of independent observations, the likelihood factorises as

f(x|Θ) =
n∏
i=1

f(xi|Θ) (2.7)

The data x affects the posterior distribution f(Θ|x) only through the likelihood func-
tion f(x|Θ). In this way, Bayesian inference obeys the likelihood principle, which
states that for a given sample of data, any two probability models p(x|Θ) that have
the same likelihood function yield the same inference for Θ.

5



Prior Distributions

In Bayesian inference, a prior probability distribution of an uncertain parameter
Θ is a probability distribution that expresses uncertainty about Θ before the data are
taken into account (Berger et al. 2009). The parameters of a prior distribution are
called hyperparameters, to distinguish them from the parameters (Θ) of the model.
When applying Bayes’ theorem, the prior is multiplied by the likelihood function
and then normalized to estimate the posterior probability distribution, which is the
conditional distribution of Θ given the data, moreover the prior distribution affects
the posterior distribution. Prior probability distributions traditionally belonged to
one of two categories: informative priors and uninformative priors.

• Informative priors: When prior information is available about Θ, it should
be included in the prior distribution of Θ, that is definite information about a
variable.

• Uninformative priors: An uninformative prior expresses vague or general
information about a variable, can express ”objective” information such as ”the
variable is positive” or ”the variable is less than some limit”, uninformative
priors are a way of making minimal assumptions about the model.

Posterior Distribution

The best way to fully describe the unknown parameter Θ can be done only through
the Posterior distribution, in other words Posterior p(Θ|x) is our inference, which has
as many dimensions as the parameter Θ. The posterior distribution can be written
as:

f(Θ|x) = f(x, θ)
f(x) = f(x|θ)f(θ)

f(x) ∝ f(x|θ)f(θ) (2.8)

where f(x|θ) is the model likelihood. Inference is conducted via posterior summary
statistics from the marginal posterior distributions of parameter vector θ such as the
posterior mean, median and credible intervals. When the posterior distribution is not
available analytically, we may obtain the posterior summary statistics of interest by
generating values from the posterior distribution. Thus, Markov Chain Monte Carlo
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CHAPTER 2. BAYESIAN INFERENCE

(MCMC) algorithms can be used to generate values from this distribution. In our
case we use adaptive HMC, more details we see following.

2.1 Bayesian Computation

For simple models, an analytical formula for the likelihood function can typically be
derived. However for more complex models, an analytical formula is not available
raising a computational issue. The likelihood may be unavailable for mathematical
reasons, it is not available in closed form as a function of θ, or computational reasons,
it is too expensive too calculate.

Usually, the true posterior must be approximated with numerical methods. To
see why, let’s return to the definition of the posterior distribution:

f(θ|x) = f(θ)f(x|θ)∫
f(θ)f(x|θ)dθ (2.9)

This integral usually does not have a closed-form solution, so we need an approx-
imation. Since the 90s a method of approximating our posterior is by using Markov
Chain Monte Carlo (MCMC), which generates samples in a way that mimics the un-
known distribution. The idea of the algorithm is as follows: We begin at a particular
value, and ”propose” another value as a sample according to a stochastic process. We
may reject the sample if the proposed value seems unlikely and propose another. If we
accept the proposal, we move to the new value and propose another. The statistical
software for Bayesian analysis using Markov chain Monte Carlo (MCMC) methods
is WinBugs, which it is based on Bayesian inference Using Gibbs Sampling (BUGS),
project started in 1989.

Towards that direction in recent years, with many improvements in the literature
and starting with the very notion of MCMC, Hamiltonian Monte Carlo (HMC) is
one method of approximating our posterior, which stems from Physics (Duane et
al. 1987). After a rise into the statistical community, it is now central in statistical
software like Stan.
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2.1. BAYESIAN COMPUTATION

Stan

Stan is an open-source general purpose inference software, which implements full
Bayesian inference with gradient based sampling techniques, a method to approxi-
mate posteriors with variational inference as well as penalized maximum likelihood
estimation via optimization. The software performs the required computations using
advanced techniques such as automatic differentiation (Hoffman & Gelman 2011).
Moreover, Stan is one of the few general purpose software which provides a built-in
mechanism for specifying and solving systems of ordinary differential equations which
makes it suitable for inference in epidemic models (Chatzilena et al. 2019).

The user can write a Bayesian model in a BUGS-like language which is similar
to standard statistical notation. The model is then compiled to C++, making the
inference faster. A difference between Stan code and other automated platforms
such as BUGS and JAGS, is the necessary variable type declarations and statements.
Variables are declared by their type, in blocks according to their use, and constraints
upon them need to be defined carefully. The first blocks of Stan’s model statement
consist of data, transformed data, parameters, transformed parameters and generated
quantities. Within the model block, sampling notation is very similar to BUGS.
Log probability variables can also be accessed directly, or user-defined probability
functions can be employed. The Stan model file should have the extension .stan and
is portable across the different interfaces.

There are interfaces for R, Python, MATLAB, Julia, Stata, Mathematica, Scala
and the command line. According to the interface used, the user needs to call a
different function for the different inference methods offered. All these functions
include an argument which defines the location and name of the Stan model file.
Moreover, extensive diagnostics for the inference are provided. In the following we
highlight the basic concepts of HMC focusing on the way they are implemented in
Stan.

8



CHAPTER 2. BAYESIAN INFERENCE

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo method that
uses the derivatives of the density function being sampled to generate efficient transi-
tions spanning the posterior (Betancourt et al. 2014). It uses an approximate Hamil-
tonian dynamics simulation based on numerical integration which is then corrected
by performing a Metropolis acceptance step. It is important to mention that this
section translates the presentation of Hamiltonian Monte Carlo by Betancourt and
Girolami into the notation of Gelman et al (2013). (Betancourt & Girolami 2015)

The algorithm introduces auxiliary momentum variables ρ to the parameters of
the unknown posterior density, θ, with the joint density

P (ρ, θ) = P (ρ, θ)P (θ) (2.10)

The density of the auxiliary variables is deemed to be the multivariate normal (d di-
mensions) in most of the cases, as well as in the automatic procedure the probabilistic
language Stan offers

ρ ∼ Nd(0,Σ) (2.11)

where the covariance matrix Σ works as a Euclidean metric to rotate and scale the
unknown-target density (Betancourt & Stein 2011)

In Stan - in which the HMC algorithm is being implemented - the covariance
matrix is usually replaced from the identity matrix or estimated from warmups sam-
ples and optionally restricted to a diagonal matrix. After specifying the conditional
density of the momentum variables, the joint density defines a Hamiltonian,

H(ρ, θ) = −logP (ρ, θ)

= −logP (ρ|θ)− logP (θ)

= T (ρ|θ) + V (θ)

(2.12)

with the “kinetic energy”
T (ρ|θ) = −logP (ρ|θ) (2.13)

and the “potential energy”
V (θ) = −logP (θ) (2.14)

9



2.1. BAYESIAN COMPUTATION

This Hamiltonian function generates a transition by first sampling the auxiliary mo-
mentum variables ρ ∼ P (ρ, θ), where P (ρ, θ) is a distribution independent from the
parameters θ when a Nd(0,Σ) is assumed. The joint system is evolving via Hamilton’s
equations

dθ

dt
= ∂H

∂ρ
= ∂T

∂ρ
dρ

dt
= −∂H

∂ρ
= −∂T

∂θ
− ∂V

∂θ

(2.15)

The assumption that the momentum variables are independent from the parameters
θ, instantly makes the derivative ∂T/∂θ equal to zero, leading to the following

dθ

dt
= ∂T

∂ρ
dρ

dt
= −∂V

∂θ

(2.16)

This two-state differential equation is being solved by using the leapfrog integrator,
as Stan suggests. The leapfrog integrator is a numerical integration algorithm that
is specifically adapted to provide stable results for Hamiltonian systems of equations.
The leapfrog integrator takes discrete steps of some small time integral ε. It begins by
drawing a momentum value from the ρ density and then alternates half-step updates
of the momentum and full-step updates of the position.

ρ⇐ ρ− ε

2
∂V

∂θ

θ ⇐ θ − εΣρ

ρ⇐ − ε2
∂V

∂θ

(2.17)

L leapfrog steps are applied and a total of Lε time is simulated. After the L repetitions
of the above three steps, the derived result is two vectors; one for the momentum
variable ρ and the other for the parameters θ. A detailed analysis of the numerical
integration of the Hamiltonian systems provide in (Leimkuhler & Reich 2004).

After the leapfrog implementation, in order to account for numerical errors, a
Metropolis Hastings acceptance step is applied and a decision is made whether to
update to the new state (πnew, θnew ) or keep the existing state.
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CHAPTER 2. BAYESIAN INFERENCE

2.2 Bayesian Model Selection

In Bayesian inference, the most common method of assessing the goodness of fit of an
estimated statistical model is a generalization of the frequentist Akaike Information
Criterion (AIC). The Bayesian method, like AIC, is not a test of the model in the
sense of hypothesis testing. Instead Bayesian inference provides a model fit statistic
that is to be used as a tool to refine the current model or select the better-fitting
model of different methodologies. To begin with, model fit can be summarized with
deviance, which is defined as -2 times the log-likelihood (Gelman et al. 2004), such as

D(x|Θ) = −2log[p(x|Θ)] (2.18)

Due to the development of BUGS software deviance is defined differently in Bayesian
inference than frequentist inference. In frequentist inference, deviance is -2 times the
log-likelihood ratio of a reduced model compared to a full model, whereas in Bayesian
inference, deviance is simply -2 times the log-likelihood. In Bayesian inference, the
lowest expected deviance has the highest posterior probability. It is possible to have
a negative deviance. Deviance is derived from the likelihood, which is derived from
probability density functions (PDF). Evaluated at a certain point in parameter space,
a PDF can have a density larger than 1 due to a small standard deviation or lack of
variation. Likelihoods greater than 1 lead to negative deviance, and are appropriate.

On its own, the deviance is an insufficient model fit statistic, because it does not
take model complexity into account. The effect of model fitting pD is used as the
‘effective number of parameters’ of a Bayesian model. The sum of the differences
between the posterior mean of the model-level deviance and the deviance at each
draw i of θi is the pD. A related way to measure model complexity is as half the
posterior variance of the model-level deviance, known as pD (Gelman et al. 2004)

pD = var(D)/2 (2.19)

The effect of model fitting, pD can be thought of as the number of ‘unconstrained’
parameters in the model, where a parameter counts as: 1 if it is estimated with no
constraints or prior information, 0 if it is fully constrained or if all the information
about the parameter comes from the prior distribution or an intermediate value if both
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2.2. BAYESIAN MODEL SELECTION

the data and the prior are informative (Gelman et al. 2004). Therefore, by including
prior information, Bayesian inference is more efficient in terms of the effective number
of parameters than frequentist inference.

Model complexity, pD should be positive. Although pD must be positive since it
is related to variance, it is possible for pD to be negative, which indicates one or more
problems: log-likelihood is non-concave, a conflict between the prior and the data, or
that the posterior mean is a poor estimator. The sum of both the mean model-level
deviance and the model complexity is the Deviance Information Criterion (DIC), a
model fit statistic that is also an estimate of the expected loss, with deviance as a
loss function (Spiegelhalter et al. 2002). DIC is

DIC = D̄ + pD (2.20)

DIC may be compared across different models and even different methods, as long as
the dependent variable does not change between models, making DIC the most flex-
ible model fit statistic. DIC is a hierarchical modeling generalization of the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). Like AIC
and BIC, it is an asymptotic approximation as the sample size becomes large. DIC
is valid only when the joint posterior distribution is approximately multivariate nor-
mal, models should be preferred with smaller DIC. Since DIC increases with model
complexity (pD), simpler models are preferred.

The Widely Applicable Information Criterion (WAIC) is an information criterion
that is more fully Bayesian than DIC. WAIC is more difficult to calculate because
the record-level log-likelihood is required over numerous samples. However, when
available, the result more closely resembles leave-one-out cross-validation (LOO-CV).
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Chapter 3

Epidemic models

Mathematical models can analyze how infectious diseases evolve to show the likely
outcome of an epidemic and help inform public health interventions. Models use some
basic assumptions and mathematics to determine parameters for various infectious
diseases and use these parameters to measure the impact of various interventions such
as bulk vaccination programs. One of the earliest studies of the non-linearity of an
epidemic model was contained in a paper by (Hamer 1906). Hamer postulated that
the probability of a new infection in the next discrete time-step was proportional to
the product of the number of Susceptibles and the number of infectives. Modeling
helps us decide which intervention we could avoid and which one to test. An epidemic
model is a simplified way of explaining the transmission of contagious disease through
human species. (Daley & Gani 2005)

The investigation of the disease event is called epidemiology. An epidemic is an
unusually large, short-term outbreak of a disease. A disease is called endemic if it
persists in a population. The spread of infectious disease raises not only the fac-
tors associated with the disease, such as infectious agents, transmission mode, latent
period, infectious period, sensitivity and resistance, but also social, cultural, demo-
graphic, economic and geographical factors. The model examined here is the simplest
prototype of three different equations of epidemiological models, it is important to
understand its behavior.
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3.1. TYPES OF EPIDEMIC MODELS

3.1 Types of epidemic models

There are two types of epidemiological models stochastic and deterministic

Stochastic

A stochastic model is a tool for estimating probability distributions of potential
outcomes by allowing for random variation in one or more inputs over time. ”Stochas-
tic” means being or having a random variable, therefore the stochastic models depend
on the chance variations in risk of exposure, disease and other illness dynamics.

Deterministic

When dealing with large populations deterministic mathematical models are often
used. In a deterministic model, individuals in the population are assigned to different
subgroups, each representing a specific stage of the epidemic and the letters such as
S, I, and R are often used to represent different stages. The transition rates from
one class to another are mathematically expressed as derivatives, hence the model
is formulated using differential equations. While building such models, it must be

Figure 3.1: Different stages of SIR model

assumed that the population size in a subgroup is differently able with respect to
time and that the epidemic process is deterministic. In other words, the changes in
population of a subgroups can be calculated using only the history that was used to
develop the model. Such a model is described below.
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3.2 The SIR model

Let S(t), I(t) and R(t) respectively denote the number of susceptibles, infectives and
removed (= recovered or dead) individuals. The population is considered to be of
fixed size N, where S(t) + I(t) +R(t) = N for all t. The model is then defined by the
following set of differential equations:

dS

dt
= −βSt

It
N

dI

dt
= βSt

It
N
− γIt

dR

dt
= γIt

(3.1)

where β is the transmission rate and γ is the recovery rate and with initial state
(S(0), I(0), R(0)) = (s0, i0, 0). In Figure we show how (S, I, R) varies over time for
β = 0.6 and γ = 0.1

Figure 3.2: The change in the epidemic compartments over time, for β = 0.6 and
γ = 0.1

Inference for the parameters linking compartments is complicated by the fact that
one or several of the model variables may be unobserved (latent) and the presence of
a non-linear system of ODEs makes the estimation a difficult task. Along with these
parameters, we usually want to obtain estimates of the initial number of susceptible
individuals and the basic reproduction number which is discussed below.
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Stan has two built-in ODE solvers which provide a user-friendly solution to this
problem appearing in epidemic analysis. In particular, the first one which is suitable
for non-stiff systems, uses fourth and fifth order Runge-Kutta method being relatively
fast while the second one is designed to deal with stiff systems and even though it
is slower, it is more robust (Luo & Jiao 2018). In what follows, we provide a setting
where the ODE solver role is highlighted in the context of an SIR model and finally
we implement HMC.

3.3 Basic reproduction number

The basic reproduction number, denoted by R0, is a measure of how transferable a
disease is. It is the average number of people that a single infectious person will infect
over the course of their infection, this quantity determines whether the infection will
spread exponentially, die out, or remain constant. The basic reproduction number
can be computed as a ratio of known rates over time: if an infectious individual
contacts β other people per unit time, if all of those people are assumed to contract
the disease, and if the disease has a mean infectious period of 1/γ, then the basic
reproduction number is just R0 = β/γ where:

• if R0 > 1, then each person on average infects more than one other person so
the disease will spread.

• if R0 < 1, then each person infects less than one person on average so the disease
will die out.

• if R0 = 1, then each person will infect exactly one other person, so the disease
will become endemic, it will move throughout the population but not increase
or decrease.

In this model it has a natural interpretation as the expected number of infections
generated by one infectious individual in a large, completely susceptible population.
It is a key quantity to transmission dynamics as it determines the critical proportion
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of individuals that need to be vaccinated in order to eliminate the disease (Dietz
1993).

3.4 Single strain SIR models

In the context of a deterministic SIR, in order to estimate the transmission and the
recovery rate, we use four different specification. First, we assume that the total
number of infected each week Yt, follows a Binomial distribution:

Model 1
Yt ∼ Binomial(N, pt) (3.2)

pt =
∫ t

0
(βisss − γis)ds (3.3)

Where ss is the fraction of susceptible, is is the fraction of infected and N is the to-
tal population size. In order to perform HMC, we use a log-normal prior for the trans-
mission rate, β ∼ lognormal(0, 1) and assuming that the mean infectious period is 5
days we employ a Gamma prior for the recovery rate with γ ∼ Gamma(0.004, 0.002).
Finally, we use Jeffrey’s prior for the initial proportion of susceptible individuals,
s(0) ∼ Beta(0.5, 0.5).

Using the same prior distributions, we also estimate a Poisson model, formulated
as follows:

Model 2
Yt ∼ Poisson(µt) (3.4)

µt =
∫ t

0
(β Is
N
Ss − γIs)ds (3.5)

Where Ss represents the number of susceptible, Is the number of infected and N
is the total population size. In this case we assume that the mean is equal to the
variance.
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Otherwise, a different parameterization of the total number of infected each week,
follows a Negative Binomial distribution:

Model 3
Yt ∼ NegBinomial(µt, δ) (3.6)

µt =
∫ t

0
(β Is
N
Ss − γIs)ds (3.7)

Recall that Poisson(µt) has variance µ, so µ2/δ > 0 is the additional variance
of the negative binomial above that of the Poisson with mean µ. So the inverse of
parameter δ controls the over-dispersion, scaled by the square of the mean µ2. We
use a Gamma prior for inverse of parameter δ where 1/δ ∼ Gamma(10, 0.1), for the
initial proportion of susceptible individuals we use Beta prior where s(0) ∼ Beta(2, 2)
and for the other parameters using the same prior distributions like before.

We also estimate a Beta Binomial model, formulated as follows:

Model 4
Yt ∼ BetaBinomial(N, pt, δ) (3.8)

pt =
∫ t

0
(βisss − γis)ds (3.9)

In this case we assume a different parameterization of the Beta Binomial with
α and β were α = δ

1−p and β = δ
p
. The parameter δ controls the over-dispersion,

where δ ∼ Gamma(10, 0.01), for the initial proportion of susceptible individuals we
use Beta prior where s(0) ∼ Beta(2, 2) also in this case for the other parameters
we will using the same prior distributions like before. Below we will see how the
deterministic approach it will gives us an insight into the dynamics of the disease for
each corresponding instance of data sets.
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Chapter 4

Applications

4.1 Simulated data

First, we will generate data by integrating an SIR model with known β and γ pa-
rameters. This will simulate an epidemic window, which represents a time period
over which data can be collected. For instance, we can go to the field and measure
the proportion of hosts infected at various time points to capture the rise and fall of
infection. This data we will used to fit the model.

More detail the parameters represent a particularly virulent pathogen, where by
the end of 52 weeks, most of the population has been infected and has recovered or
died. This gives us the “true” epidemic dynamics of the system, from which we can
simulate data that an ecologist might collect. For instance, an ecologist could go to
the field and sample a given number of individuals from the population and figure out
how many are infected. We assign transmission and pathogen-induced death rates,
β = 0.6 and γ = 0.10 respectively. Sampled could be repeated a number of times
throughout the epidemic period, ideally this would be daily, but we all know that is
difficult. For this reason we choose the sampling every week, were taken 52 weeks
sampled throughout the epidemic and afterwards we choose 200 individuals sampled
per week sampled.
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So we have the ”true” fraction of the population that is infected in each sampling
week, the number of weeks sampled, and the number of individuals sampled per week.
To simulate the data we can use Binomial Distribution with parameters n, p where n
the number of host individuals sampled per week, and p the fraction of the population
that is infected on each of the sampled weeks.

Figure 4.1: A better way to do experiments

Now that we have some simulation data, let’s fit the mechanistic models using
the Stan MCMC sampling software. In the models, we’ll estimate the parameters of
interest, as well as the initial conditions which were likely unknown in the field.

All four models are fitted using Stan’s NUTS algorithm using 5 chains, each with
100500 iterations of which the first 2500 are warm-up to automatically tune the
sampler, and then a sample is saved every forty-nine samples, leading to a total of
10000 posterior samples. We examine the convergence of the parameters by inspecting
the trace plots of all chains indicating that there is no lack of convergence for all
models and by checking the R̂ convergence statistic reported by Stan.

Therefore, if the chains have not yet converged to a common distribution the R̂
statistic will be greater than one. However, if it is equal to 1, it does not necessarily
indicate convergence. As all convergence diagnostics, R̂ can only detect failure to
convergence but it cannot guarantee convergence. In our example, all models show
good mixing according to the effective sample size, R̂ and the trace plots. All models
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were sensitive to initial values so we initialize our parameters using values drawn
uniformly from the credible intervals we obtain from NUTS.

For the deterministic setting, posterior medians and 95% credible intervals of the
parameters are summarized in Table 4.1 and 4.2. In addition to the parameters char-
acterizing the transmission dynamics of the disease, we also report posterior estimates
for over-dispersion parameter δ, of the Negative Binomial and Beta Binomial models.

Hamiltonian Monte Carlo
Binomial Poisson

mean 95% CI ESS mean 95% CI ESS
β 0.60 0.55-0.64 10378 0.61 0.55-0.67 9539
γ 0.09 0.09-0.10 9727 0.09 0.09-0.10 9731

s(0) 0.97 0.97-0.98 10343 0.97 0.97-0.98 9737
R0 6.05 5.56-6.57 10223 6.23 5.56-6.69 9478

Table 4.1: HMC results for Binomial and Poisson models with simulated data

Hamiltonian Monte Carlo
Negative Binomial Beta Binomial

mean 95% CI ESS mean 95% CI ESS
β 0.62 0.55-0.71 9268 0.62 0.56-0.66 9867
γ 0.09 0.09-0.11 9879 0.09 0.09-0.10 9987
δ 175.92 49.61-433.25 10181 106.49 27.46-303.17 10224

s(0) 0.98 0.97-0.98 9610 0.97 0.97-0.98 9813
R0 6.40 5.54-7.43 9473 6.16 5.55-6.85 9866

Table 4.2: HMC results for Neg.Binomial and Beta Binomial models with simulated
data

We observe that the estimates for parameters β and γ are very close to the values
we set to simulate the data, in general the posterior estimates for R0 are in line
with the estimated R0. In Binomial model results in narrower credible intervals for
β compared to the other models, suggesting the greatest uncertainty of estimation
especially for models with over-dispersion parameter. To selection the better-fitting
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model of different methodologies, we calculated information criteria for models like
DIC and WAIC, the models to be preferred are those with the smaller DIC and
WAIC. As expected, the smaller DIC and WAIC has the Binomial model, since we
know that data generated from Binomial distribution.

Binomial Poisson Neg Binomial Beta Binomial
DIC 309.97 313.02 320.27 313.60

WAIC 310.54 313.01 317.18 312.08

Table 4.3: Information criteria for models with simulated data

Summing up, the results of the deterministic setting bring us to the preliminary
conclusion that if we are interested in real-time inference the method are feasible and
efficient. As seen from Figure 4.2, has a reasonable fit to the data but underestimates
the overall uncertainty thus resulting in overly precise estimates which fail to capture
the simulate data appropriately.

Figure 4.2: Models fit to simulated data
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In terms of computational time that every model needed is presented in the table
below 4.4, HMC is extremely efficient in all four models. To summarize, we observe
that the estimates of the models for R0 are very close to the value of the simulated
data, which confirms their good performance.

Binomial Poisson Neg Binomial Beta Binomial
HMC 10.04 12.57 17.13 13.95

Table 4.4: Execution time (minutes) for simulated data

We also note that the closest estimation and the narrower confidence interval are
given by the binomial model, which we expected because the data were generated by
a binomial distribution. This is also confirmed by the values of information criteria
DIC and WAIC they get the lowest value for the binomial model.

In the following diagrams Figure 4.3, 4.4, 4.5, 4.6 we focuses on plotting parameter
estimates from MCMC diagnostic plots. The ”bayesplot” package provides various
plotting functions for visualizing Markov Chain Monte Carlo (MCMC) draws from
the posterior distribution of the parameters of a Bayesian model. Trace plots are time
series plots of Markov chains in Figure 4.7, 4.8, 4.9 we show the trace plots confirming
the convergence of the series. With all these diagrams we consider the convergence
of parameters and series.

Figure 4.3: Markov Chains for Binomial model with simulated data
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Figure 4.4: Markov Chains for Poisson model with simulated data

Figure 4.5: Markov Chains for Neg. Binomial model with simulated data
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Figure 4.6: Markov Chains for Beta Binomial model with simulated data

Figure 4.7: Trace plots for Binomial model with simulated data
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Figure 4.8: Trace plots for Neg. Binomial model with simulated data

Figure 4.9: Trace plots for Beta Binomial model with simulated data
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4.2 Real data

In 1978, there was a report to the British Medical Journal for an influenza outbreak
in a boarding school in the north of England. There were 763 male students which
were mostly full boarders and 512 of them became ill. The outbreak lasted from
the 22nd of January to the 4th of February and it is reported that one infected boy
started the epidemic and then it spread rapidly in the relatively closed community of
the boarding school.

Figure 4.10: Boarding school

We use the data from Chapter 9 of de Vries (Gerda) & Hillen [2006] which are
freely available in the R package outbreaks, maintained as part of the R Epidemics
Consortium (RECON; http://www.repidemicsconsortium.org). Data consist of the
number of bedridden students rather than the number of infected students, so we
assume that the number of students who are confined to bed each day are those who
are newly infected and all these who are still in bed after being infected on a prior
day, consisting all together the total number of infected students each day.

All four models are fitted using Stan’s NUTS algorithm and in this case using 5
chains, each with 100500 iterations of which the first 500 are warm-up to automatically
tune the sampler, and then a sample is saved every forty-nine samples, leading to a
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total of 10000 posterior samples. We examine the convergence of the parameters by
inspecting the trace plots of all chains indicating that there is no lack of convergence
for all models and by checking the R̂ convergence statistic reported by Stan.

For the deterministic setting, posterior medians and 95% credible intervals of the
parameters are summarized in Table 4.5 and 4.6. In addition to the parameters char-
acterizing the transmission dynamics of the disease, we also report posterior estimates
for over-dispersion parameter δ, of the Negative Binomial and Beta Binomial models.

Hamiltonian Monte Carlo
Binomial Poisson

mean 95% CI ESS mean 95% CI ESS
β 1.87 1.78-1.98 9988 1.88 1.78-1.99 9427
γ 0.47 0.45-0.49 10032 0.48 0.45-0.50 9874

s(0) 0.99 0.99-0.99 10099 0.99 0.99-0.99 9375
R0 3.93 3.71-4.17 10231 3.92 3.67-4.21 9956

Table 4.5: HMC results for Binomial and Poisson models with real data

Hamiltonian Monte Carlo
Negative Binomial Beta Binomial

mean 95% CI ESS mean 95% CI ESS
β 1.85 1.70-2.00 9422 1.86 1.76-1.96 9897
γ 0.50 0.46-0.54 15308 0.47 0.45-0.50 9874
δ 69.16 30.16-127.81 16081 836.84 323.67-1533.66 10018

s(0) 0.99 0.99-0.99 9361 0.99 0.99-0.99 10113
R0 3.67 3.24-4.13 9983 3.89 3.65-4.15 9964

Table 4.6: HMC results for Neg.Binomial and Beta Binomial models with real data

We observe that the estimates for parameters β and γ are very close for all models.
Especially we notice the estimates for the Binomial and Poisson models is narrower
credible intervals for β and R0 compared to Negative Binomial and Beta Binomial
models (models with over-dispersion parameter), suggesting that the first two models
may be underestimating the posterior uncertainty. In general, the posterior estimates
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for R0 are in line with the estimated R0 obtained by Wearing (Wearing et al. 2005).
To selection the better-fitting model of different methodologies, we calculated infor-
mation criteria for models like DIC and WAIC, the models to be preferred are those
with the the smallest value DIC and WAIC.

Binomial Poisson Neg Binomial Beta Binomial
DIC 145.52 141.16 130.46 143.68

WAIC 152.93 146.61 131.26 149.07

Table 4.7: Information criteria for models with real data

As seen from Figure 4.5, has a reasonable fit to the real data but underestimates
the overall uncertainty thus resulting in overly precise estimates which fail to capture
the simulate data appropriately, as has been observed in the simulated data.

Figure 4.11: Models fit to real data

In terms of computational time that every model needed is presented in the table
below 4.8, HMC is extremely efficient in all four models. To summarize, we observe
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that the estimates of the models for R0 are in line with the estimated R0 obtained by
Wearing (Wearing et al. 2005). We also note the values of information criteria DIC
and WAIC they get the lowest value for the Negative Binomial model.

Binomial Poisson Neg Binomial Beta Binomial
HMC 16.88 15.49 18.55 18.90

Table 4.8: Execution time (minutes) for real data

In the following diagrams Figure 4.12, 4.13, 4.14, 4.15 we focuses on plotting
parameter estimates from MCMC diagnostic plots. The ”bayesplot” package provides
various plotting functions for visualizing Markov Chain Monte Carlo (MCMC) draws
from the posterior distribution of the parameters of a Bayesian model. Trace plots
are timeseries plots of Markov chains in Figure 4.16, 4.17, 4.18 we show the trace
plots confirming the convergence of the series. With all these diagrams we consider
the convergence of parameters and series.

Figure 4.12: Markov Chains for Binomial model with real data
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Figure 4.13: Markov Chains for Poisson model with real data

Figure 4.14: Markov Chains for Neg. Binomial model with real data
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Figure 4.15: Markov Chains for Beta Binomial model with real data

Figure 4.16: Trace plots for Binomial with real data
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Figure 4.17: Trace plots for Neg. Binomial with real data

Figure 4.18: Trace plots for Beta Binomial with real data
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Chapter 5

Discussion

The scope of the present thesis is summarize the basic concepts required to perform
HMC using Stan, in the framework of infectious disease modelling. In practice we
need a statistical software that will allow the fitting of ODE-based models, Stan is the
first general statistical software for this purpose. The idea comes from the fact that
in ordinary differential equations, the respective likelihood function may have ridged
regions resulting in a failure of standard regularity conditions and classical likelihood
or inference based on MCMC. So in these cases, we apply the HMC algorithm that
can produce more accurate results and is readily available to epidemiologists in the
form of Stan.

The advantages has Stan are many, in the sense that to estimate different models
either by changing the distributional assumptions or adding more components, we
only need to change a few lines of code Thus, as a generic and flexible software
package along with the fact that it may perform inference fast, Stan makes real-time
inference feasible. Also, HMC seems to perform better than classical techniques in
epidemiological models, where the posterior distributions may be characterised by
highly correlated parameter spaces.

We also saw that there are many factors that can affect the performance of the
different models we have implemented, the chosen parameterization, priors, starting
values and tuning parameters, are only a few of these factors. To the present, HMC

35



in Stan, does not allow for discrete parameters, but they can simply be marginalized
out.

Summing up, the deterministic approach it gives us an sight into the dynamics
of the disease and behavior of the infection spread for each corresponding instance
of data sets. The information that is being extracted from this method for R0 we
believe can be a possible answer on whether an epidemic will die out or not. This
possible answer is quite interesting since is can be very useful for applications like the
design and assessment of different vaccination strategies.

Finally, the results of the deterministic setting with real and simulated data,
bring us to the conclusion that if we are interested in real-time inference the method
are feasible and efficient. As seen from the results of models which applied has a
reasonable fit to the data either simulated or real, but underestimates the overall
uncertainty thus resulting in overly precise estimates which fail to capture the data
appropriately in both cases. Our believe that a good idea for future research is to
apply stochastic epidemic models to improve overly precise estimates.
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