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ABSTRACT

Adriana Thano

Evidence synthesis: from meta-analysis to network meta-analysis with an application in

patients with COPD

August 2017

Evidence synthesis methodologies become essential as more and more analyses are available for a specific

research question. This dissertation has been focused on the evidence synthesis methods in helthcare, using

randomized control trials (RCT) as a source of evidence. The first method described is the meta-analysis,

an overall analysis to pool the treatment effect of two specific treatments being compared directly. The

meta-analysis technique has two effect models, the fixed and the random effects, which their differentiation

relies on a fundamental assumption over the uncertainty sources; the latter assumes between-study variance

in additional to the within-study variance, which is the only source of variability in the fixed effect model.

Furthermore, the indirect treatment comparisons (ITC) overcomes the limitation of the meta-analysis, making

feasible the comparison of treatments without the requirement of them to be directly compared in an RCT.

The ITC uses a common comparator, a treatment which has been compared with the other two treatments

of interest, if both indirect and direct evidence are available a pooled estimation can be performed. The ITC

and pooled effect methodologies can be considered as mixed treatment comparisons (MTC), however, since

they are based on trivial mathematical equations they can not exploit the geometry of the network made by

the treatments connected. The last and most important evidence synthesis tool that has been presented is the

network meta-analysis, the extension of meta-analysis. A network of multiple treatments, connected directly

or indirectly by multiple studies is analyzed simultaneously by fixed or random effects. The dissertation

is organized in two parts; the theory of these methods, accompanied with examples in the Bayesian and

frequentist prospective for continuous outcomes, and an extensive application in network meta-analysis in

patients with COPD, using a publication performed by Mapi [1]. The main scope of this thesis has been to

present both in theory and application all the main steps of evidence synthesis and compare the estimations

among different approaches and models. As a conclusion, the Bayesian and frequentist approaches deemed to

result in approximately same estimations, with the random effects estimations in both cases providing more

uncertainty around them.



ΠΕΡΙΛΗΨΗ

Αντριάνα Θάνο

Σύνθεση δεδομένων: από την μέτα-ανάλυση στην μέτα-ανάλυση δικτύων με εφαρμο-

γή σε ασθενείς με ΧΠΑ

Αύγουστος 2017

Οι μεθοδολογίες σύνθεσης δεδομένων αναπτύσονται ολοένα και περισσότερο όσο μεγαλώνει το πλήθος

δεδομένων προς καταγραφή και ανάλυση. Ειδικότερα, οι μεθοδολογίες στην σύνθεση δεδομένων στην ιατροφαρ-

μακευτική είναι πρωταρχικής σημασίας· συνδυάζοντας κλινικές δοκιμές ώστε να αποτελέσουν μια ολική εκτίμηση

της θεραπείας μέσω της μέτα-ανάλυσης μεθόδου, επίσης επιτρέποντας την σύγκριση διαφόρων φαρμάκων ή θερα-

πειών που δεν έχουν συγκριθεί άμεσα σε κλινική δοκιμή. Η διπλωματική εργασία αυτή παρουσιάζει τις μεθολογίες

της μέτα-ανάλυσης, έμμεσης συγκρισης θεραπειών, απο κοινού (pooled) εκτίμησης και μετα-ανάλυση δικτύων

για συνεχή δεδομένα, και παρατίθεται ένα εκτενές παράδειγμα στην μετα-ανάλυση δικτύων σε ασθενείς με χρόνια

πνευμονική ανεπάρκεια. Παρουσιάζοντας δύο σχολές στιατιστικής, Μπεύζιανή και κάσσική για τις παραπάνω

μεθόδους καθώς και παραδείγματα. Κάθε ένα απο τα οποία έχει αναλυθεί σε μοντέλο σταθερού και τυχαίων

επιδράσεων, που διαφέροποιούνται ανάλογως των πηγών αβεβαιότητας που επιτρέπουν. Η μετα-ανάλυση δικτύων,

η κορυφή στην πυραμίδα της σύνθεσης δεδομένων, παρουσιάζεται λεπτοπμερώς για κάθε στατιστική σχολή και

μοντέλο επιδράσων θεωριτικά αλλά και έφαρμοσμένα χρησιμοποιώντας μια δημοσιευση της οποίας την ανάλυση

είχε υλοποιήσει η Mapi [1]. Ο κύριος σκοπός αυτής της εργασίας ήταν να παρουσιάσει θεωριτικά και εφαρμο-

σμένα όλα τα βήματα της σύνθεσης δεδομένων και να συγκρίνει τις εκτιμήσεις των δύο διαφορετικών σχολών

και μοντέλων παραγόντων. Συμπερασματικά, οι δύο σχολές, Μπευζιανή και κλασσική οδηγούν σε παρόμοια

αποτελέσματα, με τις εκτιμήσεις του μοντέλου των τυχαίων παραγόντων να έχουν μεγαλύτερη αβαιβεώτητα.
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Chapter 1

Introduction

Over the last decades the number of studies conducted in medical and health research has increased dramat-

ically, providing an abundance of evidence on several topics. This large amount of information has enhanced

the understanding in these areas albeit creating an issue when published studies provide contradictory evi-

dence on the same topic. Policy makers, healthcare professionals and researchers need to provide reasoning

in the direction of evidence. Therefore, the necessity to synthesize all available evidence on a specific re-

search topic, to provide a summary conclusion, is proving to be essential. Evidence synthesis is the approach

developed to achieve these summary conclusions. Such methods include meta-analysis, indirect and mixed

treatment comparisons and network meta-analysis as main methodologies [2]. These methods aim to synthe-

size individual study data to generate global summary knowledge about a specific topic, therefore increasing

its credibility. Evidence syntheses methods have been applied in a variety of areas, such as: sociology, ed-

ucation, crime and justice, food safety, environmental and healthcare assessment. This dissertation focuses

on the healthcare decision making field, specifically in medicine and clinical treatments. Evidence synthesis

methods in healthcare that are assessed in this analysis are: meta-analysis indirect and mixed treatment

comparison, and network meta-analysis.

The scope of meta-analysis is to combine existing publicly available evidence from studies with a common

research question, in such a way to resemble one comprehensive result. In the medical aspect, the interest

focuses on comparing treatment effects. All studies conducted measuring the effect size of the treatments of

interest should be pooled together in order to provide more credible estimations. Meta-analysis compares

the effect of two specific treatments, all studies that are therefore used in the meta-analysis ought to have

examined exactly these two treatments. A matter of critical importance is to identify which studies should

be considered as appropriate to be combined. To drive this identification of studies, the process of a sys-

tematic literature review (SLR) is vetted. The most rational recommendation is to include only randomized

control trials (RCT) for appropriate evidence synthesis. In an ideal scenario all combined RCTs should share

approximately identical characteristics and have been conducted under the same circumstances to measure

8



the same treatment effect. This scenario is rather unrealistic and given the presence of heterogeneity across

studies there are two different models, one ignoring the heterogeneity and one acknowledging it, namely the

fixed effect (FE) and the random effects (RE), respectively. More details on the methods and models of a

meta-analysis are discussed in Chapter 2.

Although meta-analysis has been proved useful in many situations, it has its limitations as it can be used

solely for pooling of head-to-head comparisons between two specific treatments. As there can be numer-

ous different medications for a disease this restriction advocates the extension of meta-analysis in order

to be able to compare more than two treatments, which have not necessarily been directly compared in

the published studies. The step further is made by the indirect treatment comparison (ITC), a method in

which two treatments which have not been directly compared in a RCT, can be synthesized if they share

a common comparator. The pooling of direct and indirect evidence results in a pooled effect, which can

be visualized in the constructed network of interlinked studies comparing the treatments both directly and

indirectly. When there is a “closed loop” in the network of connected studies, the method is called network

meta-analysis. To provide an example of a constructed network note that commonly a new medication is

tested only against placebo, when different available treatments are compared against placebo, a network

meta-analysis is possible providing the possibility to estimate the difference between the active treatments

via the common comparator, placebo. Similarly to meta-analysis, network meta-analysis can be performed

under a fixed effect and a random effects approach, which are extensively presented in Chapter 3.

This dissertation provides an introduction to evidence synthesis methods: meta-analysis network meta-

analysis in a frequentist and Bayesian framework. Also ITC and pooled effect estimations are analyzed. To

provide a clear understanding, an applied example is described. The application is given from International

Journal of COPD, authored by Huisman E, Cockle S, Ismaila A, Karabis A and Punekar Y, entitled “Com-

parative efficacy of combination bronchodilator therapies in COPD: a network meta-analysis” [1], parts of

this article are analysed in Chapter 4.
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Chapter 2

Meta-Analysis

2.1 Evidence base

The majority of meta-analyses in healthcare utilizes mainly RCTs which are deemed the gold standard in clin-

ical practice and are placed in the top of the pyramid describing the hierarchy of evidence in evidence-based

medicine. A RCT is an experimental study examining medical treatments on two or more groups in which

the enrolled patients are randomly assigned in order to eliminate confounding parameters, e.g., patients’ age,

sex or disease years. These studies are typically double-blinded (i.e. neither patients nor researchers are

informed which treatment is given in any of the groups). The randomized patient groups are followed up in

time and both the primary and the secondary outcomes of interest are recorded. A rigorous RCT is based

on a strict study protocol, which is the first step to begin with specifying in detail the procedure to be fol-

lowed. Meta-analysis is the combination of RCTs therefore prior to performing the analysis, a clear protocol

describing the research question, available data (to be synthesized) and methods should be developed.

The credibility of meta-analysis can only be ensured if all evidence relative to study question has been identi-

fied. The SLR, the thorough study identification process that researchers conduct, makes this possible. The

publication bias cannot be avoided, thus SLRs attempt to deal with any other type of bias, e.g., outcome

reporting bias when studies report on the basis of outcome finding [3]. Low study quality can additionally

influence the quality of the meta-analysis therefore justification of including or excluding studies should be

explained. Heterogeneity is present in all studies given that they have different study and patient charac-

teristics but as a pooling of them is needed these differentiations should be due to randomness and not any

systematic factor.

In the case of aggregate data, the minimum information required from each study in order to conduct a

meta-analysis is: the treatment effect and its variability, given in any form, e.g., the standard error (SE), the

standard deviation (SD) or the confidence intervals (CI). Occasionally, in many trials only the effects and
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SEs are reported; in that case we are not able to do further computations and data manipulations, except of

computing SD and CI (Cochrane handbook). A more analytic data presentation is a collection of summary

statistics for each treatment group in the trial. The most informative type of data are the individual patient

data. This form gives flexibility to the analyst since a variety of methodologies can be applied. A meta-

analysis can be conducted in any of these cases or their combination as long as the minimum information is

provided.

2.1.1 Binary Outcomes

The form of a binary outcome records the presence or the absence of an event, e.g. if a death or a relapse

occurred. Several measures are used to report on this type of outcome; the most commonly used ones are

the odds ratio (OR), the relative risk (RR) and the risk difference (RD).

The OR can be estimated by the number of patients with a specific disease (n) divided by the number of

patients without the disease (N-n) in a group of N patients. Given that for small to moderate sample sizes

the sampling distribution is highly skewed, usually the logarithm of OR is used which asymptotically follows

a Normal distribution.

ln(Odds) = ln(
n

N − n
)

var(ln(odds)) = 1/n+ 1/(N − n)

In the need of comparing two groups, as in RCTs, the OR is commonly used as it is able to present all

information needed for such comparison. A typical 2x2 table is presented in Table 2.1, this outcome gives a

relative measure of chance of event of interest in the forms of the ratio of the odds of an event in two groups.

OR =
ad

bc
(2.1)

Table 2.1: A 2x2 table of an RCT for 2 groups

Event No event

Treatment a b

Placeabo c d

The interpretation of the OR depends on the nature of examined outcomes, if is a undesirable outcome

(death) then a OR less than 1 indicates that the treatment is better than the placebo and an OR greater than

1 indicates that the treatment is less effective than the placebo. If the outcome was positive, e.g., treatment

response, the interpretation is reverse. The variance of ln(OR) is :
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var(ln(OR)) = 1/a+ 1/b+ 1/c+ 1/d (2.2)

2.1.2 Continuous Outcomes

For continuous outcomes the use of mean, median or eventually mode is acceptable, but the mean is con-

sidered as the most appropriate in the majority of the studies reporting continuous outcomes. The simplest

case of reporting continuous outcomes is the absolute difference between means, which is the difference in

sample means of effect sizes in each group. In terms of a continuous outcome the treatment effect is given

by:

T = µt − µc (2.3)

µt: mean effect in the treatment group, µc: mean effect in the control group

The mean effect, µ representing a response, could be a biochemical index, a percentage of improvement

or the number of episodes in a disease, or very often is the change from baseline (CFB) value. Usually the

parameter of interest is the difference in CFB between the treatment and control group. In cases that all

studies estimate the exact same parameter then they can be combined directly in the original scale or in

any transformation considered to be appropriate. If one is interested in the progress of patients in a group,

then the difference of an effect at a certain time point from the baseline value, (usually considered to be the

starting time of the study) provides a safety and efficacy measure in each group.

CFB = µbaseline − µtime

µbaseline: effect in the baseline in the same group,

µtime: effect in a certain time point

Moreover, in order to compare groups, the CFBt could be the estimation in treatment group and CFBc

respectively in control group, so the T indicates the difference in CFB (DCFB).

T = DCFB = CFBt − CFBc

Given that all patient effects are in the continuous scale it can be assumed that they are observations from

a normal distribution with mean effect equal to the average patients’ effect and variance the combination of

each group variance. The variance of the treatment effect is given by:

V ar(T ) = σ2(1/nt + 1/nc)

σ2: the common variance of the groups,

nt, nc : the sample size in treatment and control group respectively
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It is rather impossible to have the true variance, so the variance is estimated (s2)from the data; if there

is evidence for equal variances only the estimated variance of one group can be used, and in same cases of

aggregate data the variance is provided. Alternatively, a pooled estimated variance when the variances in

groups differ provides a good estimation.

s =
(nt − 1)st

2 + (nc − 1)sc
2

nt + nc − 2
(2.4)

Standardized Mean Difference

It is common that different studies being incorporated into the meta-analysis use different scales to measure

the same outcome. In that case a synthesis is possible with transforming the data in order to have the same

scaling. The standardized mean difference (SMD) is the approach to handle these data/scales discrepancies.

However, it should be kept in mind that the interpretation can become more difficult when combining two

types of data. In order to overcome this problem the measure of size effect T is divided with the standard

deviation of the trial or its estimation.

SMD =
T

sd
(2.5)

The variance in that case is not as simple as in the previous case, the assumption of normality in data is

required.

V ar(SMD) =
nt + nc
ntnc

+
SMD2

2(nt + nc)
(2.6)

In addition if the sample sizes in the groups are large and the variances approximately equal then a

different formula is preferred.

V ar(SMD) =
(nt + nc)

ntnc
(2.7)

2.2 Heterogeneity

In any estimation the sampling error cannot be avoided, estimated effect sizes differ among studies albeit

having the same research question and methodology. In meta-analysis, the synthesized studies are considered

homogeneous when their effect sizes differ only due to sampling error, i.e., it can be assumed that system-

atic differences between them do not exist. Patients and study characteristics can have an impact on the

estimated treatment difference effect. The placebo effect reflects the effect of individual study and patients

characteristics in a RCT; this study effect influences the placebo and treatment group in the same level, all

known and unknown factors contributing to this influence are called prognostic factors. The effect size in

the intervention group is a consequence of study effect and treatment effect, which are called effect modifiers,

e.g. age, sex and disease severity of patients. By allocating the patients in the groups in a random manner,

the prognostic factors are considered to be balanced, thus the effect measured is only the treatments effect

as Figure 2.1 depicts. As follows naturally, it is desirable for the effect modifiers not to differ significantly
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across studies. When all available evidence is identified from the SLR process, statisticians, clinicians and

disease experts should examine the feasibility of the analysis.

Placebo Intervention

0
5

10
15

20
25

30
35

Study Effect
Treatment Effect

Figure 2.1: The study and treatment effects

Cochrane Q-statistic

The first tool to use in order to examine if a hypothesis is valid is the standard Cochrane Q-statistic test.

The null hypothesis is that all k studies share the same true treatment effect, µ.

Ho : m1 = m2 = . . . = mk k: number of studies

H1 : mi 6= mj i, j = 1, 2 . . . , k, i 6= j

The Q statistic is approximately distributed as a χ2 distribution with k-1 degrees of freedom under the H0

hypothesis.The power of the test is very low when the number of combined studies is small, implying that

the test is not valid in such cases and that heterogeneity may be presented even if the Q statistic is not

statistically significant. On the other hand, the null hypothesis can be rejected even if homogeneity exists

when the sample sizes in each study is large enough. These reasons suggest to use this tool with caution

and in combination with graphical and empirical techniques. A statistically significant result may indicate

heterogeneity but a not statistically significant should not be interpreted as a sign of homogeneity. Additional

tests should be performed.
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I2 ratio

A widely known measure which uses the Q-statistic value is the I2. This quantity describes a percentage of

variability caused due to heterogeneity and not because of the sampling error in studies. As is mentioned, it is

unrealistic to identify identical studies therefore a degree of heterogeneity is always present. The investigation

of the degree of heterogeneity is important as it drives the decision on whether the meta-analysis should be

conducted. Under these circumstances the critical p-value is rather 0.10 instead of the conventional choice of

0.05. As a conclusion, one may say that it describes the percentage of observed variation in the Q statistic

due to heterogeneity rather than sampling error; This quantity does not inherently depend on the number

of studies as the Q statistic. In case of the degrees of freedom (df) are greater than Q, then the I2 ratio is zero.

I2 = Q−df
Q 100%

Percentage up to 40% is considered as low evidence of heterogeneity and 75% to 100% indicate highly

heterogeneous studies.

Z-score

An other option is a graphical approach, the plot of normalized (z) scores.

zi = (Ti−T̄ )
se(Ti)

As the null hypothesis holds the values of the z-scores should be approximately normally distributed

with mean zero and variance equal to one. If a study deviates a lot from this value, it is an indication of

differentiation and this study should be examined in more detail for its suitability in the meta-analysis. A

typical histogram of z-scores could be helpful to examine the normality.

Forest plot

A widely used graphic to present the meta-analysis results is the forest plot. A forest plot depicts the

effect and the CI of each study and also the treatment difference effect estimation. Moreover, it provides in-

formation about the heterogeneity of the meta-analysis, by observing whether the CIs overlap across studies.

The usual representation lists the studies parallel to the y-axis and each effect size is plotted by its point

estimate and the associated CIs are the lateral tips of the point estimate. As it is rational, studies with large

CIs are less influential than studies with smaller CIs; the latter are more precise and contribute more in the

pooled effect size.
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2.3 Frequentist Approach

The field of statistics has three main branches: the Fisherian, the frequentist or classical and the Bayesian.

The first one is being gradually abandoned while the rest are gaining ground. The frequentist school is based

mainly on Jerzy Neyman and Egon Pearson, and the Bayesian is named after the preach Thomas Bayes.

These two schools differ significantly in the way of parameter operation. Under the frequentist approach,

the parameters are considered to be fixed values and their estimation is based only on the data given; the

critical differentiation comes at this point, as in the Bayesian approach the parameters are random variables

and estimations for the parameters are combinations of the observed data and the prior information on these

parameters.

Statistical inferences are based on the likelihood of the observed (L(θ)orL((y/θ))) data (y) given the fixed

parameter (θ) being estimated.

L(θ) = f(y/θ) ∼ N(θ, σ2)

The value of θ which maximizes the likelihood is the Maximum Likelihood Estimation (MLE) and thus

the estimation of the parameter. In the ordinary case of more available data, the likelihood is the product of

the individuals’ likelihood assuming that each data is independent. MLE is the only evidence for estimation.

In populations distributed by any distribution in the exponential family the MLE calculation is quite simple

and predetermined, however in more complex distributions it can be challenging [4].

2.3.1 Fixed Effect Model

The fixed effect model has a fundamental assumption which is the key difference from the random effects

model. It assumes that all studies included in the analysis share the same true effect size and they are

observations of a common distribution with mean and variance equal to the total treatment difference effect

and its variance, respectively. The only source of variability comes from randomness, the within-study error.

All study treatment effects are observations from the same normal distribution with mean the true treatment

difference effect m and variance σ2 as the Figure 2.2 illustrates [5].

As every study comes from the same distribution there is only one source of variability, the sampling

error. The fixed effect meta-analysis model could be described as follows:

Ti = m+ ei (2.8)

T : observed treatment effect, m: true treatment effect, e: within-study error

i: 1,2...,k, k: total number of studies

The inverse of variance method is widely used for the estimation of the weights [6]. The sample size could

also be used as an naive method, but rather than using the sample size, the inverse variance is preferable as it
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Figure 2.2: Distribution of true effect in fixed effect model. Each effect observation Ti comes from a normal

distribution with mean the true treatment effect m and variance σ2.

is proportional to the sample size and moreover providing information about the dispersion of the population.

wi = 1/vi (2.9)

w: study’s weight, v: study’s variance

The weighted mean T̄ , the total treatment effect is the sum of each study effect multiplied by its weight

and divided by the sum of the weights, as presented in the equation 2.10.

T̄ =

∑k
i=1 wiTi∑k
i=1 wi

(2.10)

The variance of the total effect is the inverse of the the study weights sum.

var(T̄ ) =
1∑k
i=1 wi

(2.11)

The CIs are calculated as usual.

LowerLimit = T̄ − Z1−a/2 ∗ SE

UpperLimit = T̄ + Z1−a/2 ∗ SE
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Furthermore, the statistical significance of the effect can be examined with Z-test.

Z =
T̄

SE(T̄ )
(2.12)

2.3.2 Random Effects Model

The random effects model is considered to be more realistic compared to the fixed effect, as the assumption of

the common true treatment effect in all studies is being abandoned and this is the crucial difference from the

fixed effect model. The random effects model is considered in many cases more appropriate as the combined

studies share common characteristics, however they could never be identical; many parameters as study and

patients characteristics contribute to the differentiation of studies. The random effects model assumes that

each study effect is an observation of its own true effect (µ) distribution and all of them are a sample of a

greater, overall normal distribution, the total true effect (µ) [5]. This hypothesis provides a second source

of variation, the between-study variance (τ2), determined by the width of the total true effect distribution

as Figure 2.3 depicts. Uncertainty for the location of the total effect depends on the magnitude of the

between-study variance, the number of studies, and the precision of the individual study estimates [7].

p

Figure 2.3: Distribution of true treatment effect in random effects model. Treatment effect observation Ti is

normally distributed over its mean the true individual study effect mi and variance (within-study) σ2. They

are observations of a overall normal distribution with total true effect µ and variance (between-study) τ2.

The random effects meta-analysis model could be described as:

Ti = mi + ei = µ+ εi + ei (2.13)

T : observed treatment effect, m: true treatment effect , e: within-study error,

18



µ: overall true treatment effect, ε: between-study error

Equations 2.8 for the fixed and 2.13 for random effects models, respectively represent the general models.

The true effect size (m) in equation 2.13, is now distributed about the true effect (µ) for each different study,

with a between-studies variance (τ2) and that actually is the distribution of all true effects. As the within-

study variance always exists it is clear that there are two sources of variation, as equation 2.16 present, which

are not unrelated, the bigger the within-study variance is the lower the between-study will become. Total

variance is desired to be low, so both of them need to have small values.

Between-study variance

The role of between-study variance is of primary importance, this is the reason why many researchers have

put an effort to find the best estimator for it. Sixteen estimators of τ2 are identified [8], the widely used and

the basis for others is the DerSimonian and Laird (DL) method [6]. The DL estimator is quite simple to

implement, derived from the Cochran’s Q-statistic.

Q =

k∑
i=1

wi(Ti − T̄ )2 (2.14)

The between-studies variance is the difference of total variance from the expected variance if all studies

have the same true effect. The expected variance is the degrees of freedom for the meta-analysis.

df = (Numberofstudies)− 1

So, the DL estimator of the between-studies variance can be obtained as:

τ2 =


Q−df
U , ifQ > df

0, ifQ ≤ df
(2.15)

The dominator, U, is a scaling factor which ensures that the τ2 is in the same metric as the within-study

variance.

U =

k∑
i=1

wi −
∑k
i=1 wi

2∑2
i=1 wi

As it is defined in equation 2.15 when the τ2 is negative it truncates to zero, and that introduces positive

bias into the estimator. Consequently, the DL estimator is positively biased and over-estimates the true value

of between-study variance on average. When the number of included RCTs, k, decreases and it is smaller

than the df then the random effects model leads to identical results compared to the fixed effect model [9].

There are more estimators for the between-study variance, some of them are based on DL. Among oth-

ers there are the positive DL method [10], two step estimator with DL [11], non-parametric bootstrap DL
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method [10], Hedges and Olkin method [12], maximum likelihood method [7], Rukhin Bayes method [13],

fully Bayesian [14], and Hartung and Makambi method [15]. In this analysis only DL will be applied to be

in line with the case study described in the publication and presented in Chapter 4.

The variance of a study in the random effects is the sum of two variances:

vi = τ2 + σ2 (2.16)

As the two different sources of variation are defined, the computational methodology remains the same

as equations 2.10, 2.11.

2.4 Bayesian Approach

In the Bayesian approach, any information about a parameter, as history data, previous or pilot survey, or an

expert’s opinion, can be used as prior information in a probabilistic way either as probability or distribution.

Rather than focusing on the likelihood of the data for specific parameters, the Bayesian approach focuses

more on drawing inferences about non-specific (non-constant) parameters. Note that any prior must be spec-

ified before observing the data. Finally, when the data comes this prior information about the parameters is

being updated to a posterior.

As it is obvious this approach is based on the Bayes theorem:

P (θ/χ) =
P (χ/θ)P (θ)

P (χ)
(2.17)

θ: parameter χ: data

The likelihood function is denoted by P (χ/θ), the prior beliefs are denoted as a probability density function

P (θ). The normalizing constant P (χ) is quite difficult to be calculated and as it does not contain any

parameter can be omitted. The posterior distribution depends only on the prior and the likelihood.

P (θ/χ) ∝ P (χ/θ)P (θ) (2.18)

2.4.1 Prior distribution

The choice of prior is based on external evidence, any information regarding the parameters can be used.

It is worth mentioning that there is no restriction about it and this is its opponents’ main argument. This

plethora of choices made the justification of the prior distribution’s choice essential. Furthermore, as the

amount of provided data increases, the prior belief influences less the posterior and in case that the sample

n− >∞ the Bayesian and the frequentist approaches should be quite identical, but if the sample size is small

then the prior can affect the result significantly. The selection of the prior distribution can be categorised by
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the amount of the existed information about the parameter, and also according to the desired properties.

Conjugate prior

In the case of data derived from any distribution in the exponential family, the choice of conjugate prior

is common. All distributions in this family have the right prior resulting to a known posterior distribution

from the exponential family as well [16]. As this analysis considers only continuous outcomes only the normal

distribution will be described.

Given the likelihood x/µ ∼ N(µ, σ2), the µ is the parameter of interest, and a normal prior to µ ∼ N(d, σ2
0)

leads to a normal posterior.

µ/x ∼ N(
σ2

0

σ2 + σ2
0

µ+
σ2

σ2 + σ2
0

d, { 1

σ2
0

+
1

σ2
}−1) (2.19)

The mean of the posterior is between µ and d; it will be closer to the one with the smallest variance. The

ratio
σ2
0

σ2+σ2
0

could be denoted as k and σ2

σ2+σ2
0

as 1-k, and becomes clear that the posterior mean is a weighted

average kx+ (1− k)d with the weight k determining the exact posterior mean value.

Non-informative/vague prior

When no information is given the use of non-informative (vague) prior is preferred, because of the objectivity

that it provides. The posterior distribution takes values only in the range of prior’s, thus placing a flat prior

distribution over a plausible range is reasonable. It is a common approach to use a quite wider range than

what one expects for the likelihood to have. In that way one can avoid being criticised for subjectiveness.

Moreover, the Bayesian and the classical approaches should have approximately same results, as the prior is

not influencing and the posterior is based more on the likelihood. Characteristic is the example of a normal

distribution with extreme variance as N(0, 1000) or even more extreme N(0, 106). A specific prior is Jeffreys’

prior 2.20 as it is a non-informative one based on Fisher Information and has the property that is invariant

in any re-parametrization [17].

p(θ) ∼
√
I(θ) (2.20)

Highly informative prior

The prior plays a key role in the Bayesian statistics and it is the main differentiation from the frequentist.

This differentiation reaches its peak when an expert is confident for his beliefs and uses a highly informative

prior. These priors are characterised by small variances, in case that the variance is zero then the posterior

has no other chose than being exactly the same number as the prior. In general the more specific the prior

distribution is, the more influential will become, and the data will determine less the posterior distribution.
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These cases are described by similar posteriors and priors, and the similarity is more intense when there

is lack of data. This fact has provoked many concerns whether this is valid or not. It is clear now that a

very restrictive prior should be chosen only in specific circumstances and under indisputable evidence. These

priors are often reported as highly informative or stubborn priors.

Figure 2.4: Three different normal prior distributions for the parameter d.

Bayes’ theorem applies equally to multiparameter models, replacing monoparameter θ with multiparame-

ter θ and the posterior is a joint distribution across all of the θ=θ1, θ2 . . . .

f(θ1, θ2 . . . θk|x) (2.21)

Inferences for each parameter can be made by averaging over all of the other parameters, the posterior

marginal distribution.

f(θ1|x) =

∫
θ2,θ3...θk

f(θ1, θ2 . . . θk|x)dθ2θ3 . . . θk (2.22)

MCMC simulation

From equation 2.22 one can understand that the algebraically calculations for the posterior distribution

could be challenging or even impossible. However, if there was a large amount of observations from this dis-

tribution then one could have enough information needed for that specific distribution. Monte Carlo Marcov

Chain(MCMC) simulation is the evolution of the Bayesian school, as it provides values from the posterior

distribution by drawing values from each parameter repeatedly. Starting with random values for each pa-

rameter, the initial values, and then sampling new values based on the previous ones. More specifically if in i

iteration there are k parameters θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k then the new value is taken from the conditional posterior

distribution with fixed the remaining parameters, f(θ
(i+1)
1 |θ(i)

2 , . . . , θ
(i)
k ) and so on. The algorithm’s first

steps are far from the target distribution and thus the iterations in the ”burn-in” period, the period before

sampling from the posterior distribution, are not contribute to the estimation of the posterior mean. It is

22



important to have convergence to the posterior distribution. In order to ensure that, more than two different

initial values, creating more than two different chains, should be used. To implement MCMC simulations

used for the Bayesian analysis WinBUGS was used.

Diagnostics

As the sampled values are not taken from the posterior distribution, convergence of the Markov chains

need to be assessed. The number of chains needed and samples generated are not certain, a researcher has

to explore even more if the model is complicated. The convergence is not given and also if it occurs the time

is not known a priori. When the convergence is slow one can let the algorithm run longer or try to accelerate

it. A variety of practical procedures have been suggested to check convergence diagnostics [18].

More formally, convergence in a MCMC context is an asymptotic property which implies for a Markov chain

that pk(θ), the distribution of θk, grows to the target distribution p(θ|y) for k →∞. In other words it means

that, for k large and small ε, dk ≡ d[pk(θ), p(θ|y)] < ε, with d( f , g) the distance between two distributions f

and g. Theoretical research has focused on establishing conditions under which convergence can be guaran-

teed. In some simple cases one can provide an expression for k0 such that dk < ε for k > k0. For example,

Jones and Hobert [19] showed that for the Gaussian case with µ and σ2 unknown, a k0 can be specified for

the total variation discrepancy measure between two distributions, i.e. d(fk, f) = 1/2
∫
|fk(θ)−f(θ)|dθ. But

such theoretical results are hard to establish in most practical cases.

Diagnostics are categorised in checking for stationarity of the chain and verifying the accuracy of the posterior

summary measures. After k0 iterations θk is consider to be sampled from the correct posterior distribution,

this k is specified in the stationarity step which is equivalent to assessing the burn-in part of the Markov

chain. Most convergence diagnostics (graphical and formal) appeal to the stationarity property of a con-

verged chain. In the accuracy step it is verified that the posterior summary measures of interest based on

θk(k = k0 + 1, ..., n) are computed with the desired accuracy.

Trace plot

A simple exploration of the trace plot (given from WinBUGS) gives a first and insightful impression of the

characteristics of the Markov chain. Trace plots are produced for each parameter separately and evaluate

the chain univariately. In case of stationarity, the trace plot appears as a horizontal strip and the individual

moves are hardly discernable. This is the basis of the informal thick pen test [20]. The test involves checking

that the trace plot can be covered by a thick pen. Trace plots are the easily understandable, and also clearly

show when there are large deviations from stationarity. Moreover, one can infer about the time of convergence

as the plot shows how fast the chain explores the posterior.

Autocorrelation plot
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MCMC chains are correlated due to Marcov chain that generates the samples, measured by the autocor-

relation statistics that show the correlation between sampled values for specified number of iteration (lags).

The autocorrelation should drop off with increasing lag, and if it does not do so it indicates slow convergence.

High autocorrelations within chains indicate slow mixing and slow convergence. Reparametrizations might

help. It might be necessary to increase the thinning interval to achieve a less highly correlated sample.

Autocorrelation plots for the example discussed in the section ?? are given in Figures 2.8 and 2.11.

Gelman–Rubin interval diagnostic

Gelman and Rubin’s (1992) approach in monitoring convergence is based on detecting when the Markov

chains have forgotten their starting points, by comparing several sequences drawn from different starting

points and checking that they are indistinguishable [21]. There are many ways to compare parallel sequences,

the most obvious approach being to look at overlaid traceplots and see if the two sequences can be distin-

guished.

A more quantitative approach to answer the question ”Are the sequences much farther apart than we could

expect, based on their internal variability?” is based on the analysis of variance: Approximate convergence

is diagnosed when the variance between the different sequences is no larger than the variance within each

individual sequence. Assume we have m parallel simulations each of length n of the variable X. The values

are denoted by xij , i = 1, . . . , m, j = 1 . . . , n. The between-sequence variance B and the within-sequence

variance W is computed:

W = 1/m
∑m
i=1 s

2
i and s2

i = 1/n
∑n
k=1(xik − x̄i.)2 and B = n

m−1

∑m
i=1(x̄i. − x̄..)2

From the two variance components, two estimates of the variance of X in the target distribution are con-

structed: First

V̂ ≡ ˆvar(X) =
n− 1

n
W +

1

n
B

is an unbiased estimate of the variance when there is stationarity (in which case all x̄i. are unbiased

estimates of the true posterior mean). However, when the m chains are not mixing well V̂ overestimates

var(X) and W often underestimates this variance as long as the chains have not yet explored the whole

target distribution. When n → ∞ both V̂ and W approach var(X) but from opposite directions. One can

now monitor the convergence of the MC by estimating the factor by which the conservative estimate of the

distribution of X might be reduced: that is, the ratio between the estimated upper and lower bounds for the

standard deviation of X, which is called estimated potential scale reduction or shrink factor:

√
R̂ =

√
V̂

W

As the simulation converges, the shrink factor declines to 1, meaning that the parallel Markov chains

are essentially overlapping. If the shrink factor is high, then one should proceed with further simulations.
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The Gelman and Rubin diagnostics that can be calculated are the 50% and 97.5% quantiles of the sampling

distribution for the shrink factor. These quantiles are estimated from the second half of each chain only.

Plots to illustrate these diagnostics are given in the Figures 2.8 and 2.11.

There are more tests to be mentioned as running mean plot, Q–Q plot, and cross-correlation plot for graphical

methods and also formal tests as Geweke, Heidelberger–Welch, Raftery–Lewis, and Brooks–Gelman–Rubin

diagnostic based on Gelman–Rubin diagnostic [18]. The analyses all diagnostics described is not the scope

of this dissertation.

2.4.2 Fixed Effect Model

The idea of meta-analysis remains the same in each approach the only difference is the estimation of param-

eters. The Bayesian methodology does not trust only the data but uses them to update the prior beliefs

about the parameters to posterior [22]

The fixed effect model assumes effects to be random observations of the true effect, so there is only one

source of variation as is analysed in section 2.3.1 .

Yi ∼ N(d, σi/ni) (2.23)

i: 1,2...,k, k: total number of studies

The observed effect size, Yi, of the ith out of k studies, comes from a normal distribution with mean d,

the true treatment effect size, which is the parameter of interest and is being estimated by the model. The

variance of the distribution is the within-study variance σi, and as in the most of cases are unknown they

being replaced by the estimated within-study variance, si.

Depending on the prior information about the parameter d the distribution could have a variety of choices

according to the outcome. So, in the case that the outcome is continuous a normal distribution may be a

choice with mean and variance relative to the prior knowledge about it, generally flat priors are preferred

when objectivity is required.

d ∼ N(0, 106) (2.24)

2.4.3 Random Effects Model

The fixed effect model is considered to be unrealistic for the most of meta-analysis, the assumption of

one common true treatment effect can be very restrictive. The patient and study characteristics vary across
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studies and a more flexible model is preferable. The alternative model is the random effects, which allows two

sources of variation, assuming that each individual study effect is an observation of its own true treatments

effect, discussed in detail in section 2.3.2.

The basic assumption of the random effects can be described by the individual effect of the ith study,

Y , as an observation from a normal distribution with true mean deltai, and variance its own within-study

variance σi. The key point is that all true treatment effects are normally distributed over a total true effect

d with between-study variance τ2, as equation 2.25 present.

Yi ∼ N(δi, σi/ni) i = 1, 2, ..., k (2.25)

deltai ∼ N(d, τ2) i = 1, 2, ..., k (2.26)

The estimated parameter are the total true effect size d, and the between-study variance τ2, thus prior

distributions should be specified for these parameters. In section 2.4.1 same decision rules were briefly

discussed. In case that one wants to be objective the best choice is a non-informative prior to be used for

both parameters, as a vague normal prior to d and a uniform distribution to τ2. These priors will be used in

the application analyses.

d ∼ N(0, 106) (2.27)

τ2 ∼ U(0, 10) (2.28)

The prior distribution for the between-study variance could have large uncertainty if the number of studies

combined is quite small, i.e. <10, under these circumstances alternative prior is recommended. An other

widely used prior distribution is the Inverse Gamma (0.001, 0.001).

Figure 2.5: Uniform and Inverse Gamma prior distributions for the between-study variance t2.
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Table 2.2: Difference in change from baseline (DCFB) and SE of trough FEV1 for the 14 fictional studies

comparing Tio with the placebo.

Study DCFB (ml) SE (ml)

S1 100 15

S2 100 10

S3 140 20

S4 130 18

S5 83 19

S6 110 40

S7 150 14

S8 184 37

S9 102 31

S10 79 17

S11 134 19

S12 127 19

S13 120 15

S14 118 23

2.5 Example

The given meta-analysis example is a fictional example of a basic index in patients with COPD, analyzed

under the frequentist and the Bayesian approaches for random and fixed effect models, respectively. The

outcome of interest is the forced expiratory volume in 1 second(FEV1), a marker used to measure lung func-

tion, and to monitor chronic obstructive pulmonary disease or other lung diseases over time. The treatments

compared are the Tiotropium (Tio) and placebo. The Table ?? illustrates the data for 14 fictional RCTs,

given as the difference in change from baseline at the time point of 12 weeks. All of them are statistically

significant as obviously non of them cross the axis at zero point, hence Tio is statistically significant effica-

cious than placebo by means of FEV1 at 12 weeks in all studies included. Figure 2.6 is a convenient graph to

present available evidence comparing Tio to Placebo. The equations below serve to clarify the calculations

of the outcome used, the difference in CFB.

µTio = µTio12 − µTio0 µPlacebo = µPlacebo12 − µPlacebo0
µT = µTio − µPlacebo

All studies provided that Tio had better performance compared with the placebo with minimum value

79 ml and maximum 184 ml. The SE of studies vary from 10 ml to 40 but they do not seem to have big
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Figure 2.6: The comparison of the effect of Tio with the placebo.

heterogeneity as the CIs overlap. Fourteen studies is deemed to be an adequate sample size. Both fixed and

random effects should have approximately the same point estimate size, with random effects providing larger

standard error.

The Figure 2.7 illustrates random and fixed effect from both approaches. The Bayesian effect size esti-

mations are quite similar with the random effects having 0.5mL bigger SE. The frequentist random effects

estimation provides the biggest SE (6.7mL) and diverse from the other three estimations.

In the Bayesian framework the estimated sizes of total treatment effect are quite similar(RE: 115.8 CrI:103.45

-128.15; FE:115.2 CrI: 105.98 -124.41). The total variance of the random effects is estimated to be 6.3mL

(SD: 2.5mL), occurring from the posterior distribution of τ2 and 5.1mL for the fixed effect which is the same

with the frequentist approach, as it is not estimated. A widely used measurement for decision making is

the Deviance Information Criterion (DIC), based on likelihood penalizing the amount of parameters being

used, is a criterion of model selection. As a model contains a large amount of variables is reasonable to fits

these specific data better, in that way becomes more data specific and the predictability is reduced. The

DIC values for the two models are approximately equal (RE: 132.7; FE: 135.4) with random effects providing

the smallest, hence in a strict follow of the rule it is preferable, but the use of both models is expected in

this case. The convergence is of primary importance in the Bayesian perspective, and in order to examine

it some diagnostic test were performed, presented in Figure 2.8 and 2.11 for the fixed and random effects

respectively. The trace, autocorrelation, and density plots and also the Gelman–Rubin diagram are examined

using two chains, and it is clear from that both models had converged and were sampling from the posterior

distributions of true effect. The random effects model has a second parameter, the between-variance, for

which the same tools were assessed.
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In the frequentist framework the estimated sizes of total treatment effect differ more than the Bayesian

(RE: 117 CI:103.87-129.93; FE:115.2 CI: 105.98-124.41). The total variance of the random effects is estimated

to be 6.7mL (SD: 2.6mL), occurring from the posterior distribution of τ2 and 5.1mL for the the fixed effect.

The Table ?? gives the Q statistic test and the I2 measure, for both models and their values are quite

similar. They both assume heterogeneity, rejecting the hypothesis of Q-statistic test (RE: p.value=0.038;

FE: p.value=0.038) and a I2 around 46%. As it is mentioned the test should not be trusted totally but many

features should be taken in consideration, like the previous forest plot which is subjective in general but in

that case does not give any evidence to assume heterogeneity as also the I2.

Study
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Figure 2.7: Forest plot for random and fixed effect in Bayesian and frequentist approach.
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Table 2.3: Heterogeneity test and measures for frequentist approach, Cochran Q-statistic, I2, and the p-values

for random and fixed effect models.

Frequentist Approach Q I2 p-value

Random Effects 24.09 46% 0.038

Fixed Effect 23.9 45.7% 0.031

Figure 2.8: Diagnostics test for convergence of true effect (d) for Bayesian fixed effect model.
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Figure 2.9: True treatment effect (d) Figure 2.10: Between-variance (τ2).

Figure 2.11: Diagnostics test for convergence of true effect (d) and between-variance for Bayesian random

effects model.
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Chapter 3

Indirect and mixed treatment

comparison

3.1 Indirect treatment comparison and pooled effect

When the effect of a new treatment is examined versus a placebo in a RCT and results to be efficacious,

the need to be tested with the indicative medicine or active treatments arises. Ideally, a well-designed and

conducted RCT would simultaneously compare all treatments of interest, however this is rather impossible

the decision making is getting complicated [23]. To compare them with the meta-analysis technique, pairwise

RCTs for all pairwise combinations of the treatments of interest are required, which is an expensive, time

consuming and inefficient way to compare them. Meta-analysis has its limitations comparing up to two

treatments; many RCTs can be combined in order to be an “over all” study comparing these specific two

interventions, however no information can be retrieved for non directly (head-to-head) compared intervention.

As now it is clear, the requirement of head-to-head comparison in meta-analysis is a restrictive requirement.

To overcome this fact, the indirect treatment comparison (ITC) is the extension of meta-analysis [24]. The

ITC allows the comparison of the effect of two treatments that were not directly examined in a study,

by comparing their performance over a common treatment, called as the common comparator, which is

compared directly with both of the treatments of interest. Moreover, this comparator is often the placebo

or the most commonly used treatment. In meta-analysis, pooled studies should share similarly study and

patients characteristics in order to moderate the variability between them, the same applies also in the ITC

method.

More specifically even if a direct evidence is not available for the comparison of two particular treatments

(A, B) an estimation could be given in case that they have been both compared with a specific treatment(C),

the common comparator, as Figure 3.1 illustrates. The effect size calculation for the indirect comparison,

is geometrically presented in the Figure 3.2. The indirect treatment effect estimation of A vs B may be
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estimated as:

µAB = µAC − µBC (3.1)

Figure 3.1: ITC diagram comparing treatments A, B, C. Directly comparison of A vs C and B vs C BC,

inderctly comparison of A vs B.

Figure 3.2: Estimation of indirect effect of treatments A and B via treatment C.

By general agreement a direct comparison provides stronger evidence than an indirect, however it cannot

be ignored that in cases as only a few direct studies available but plenty of indirect, the volume of indirect
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evidence is stronger and more reliable. As the inferences are not based on a RCT the assumption of random-

ization across RCTs collapses, no pooled SE or SD can be calculated, hence in an ITC the variance is the

sum of the directs variances.

var(µAB) = var(µAC) + var(µBC) (3.2)

SD(µAB) =
√
SD(µAC)2 + SD(µBC)2 (3.3)

Taking this way of thinking a step further, multiple indirect comparisons can be set in order to have

estimations for multiple treatments effect sizes that are not directly compared, as it is presented in Figure

3.2. Adding many steps between the treatments compared increases the uncertainty-variability of the esti-

mation, and the accuracy obviously decreases. The ITC estimation is an equation and has nothing to do

with Bayesian and frequentist approach. The estimations that uses can be estimation arriving from any

framework or model of meta-analysis methodology.

It is possible both direct and indirect evidence to be available, in that case a pooled effect is estimated.

The pooled estimation of a treatment effect size is the combination of direct and indirect evidence with the

inverse variance method; each estimation is weighted by the inverse of the variance, as it is defined below:

Tpooled =

TDirect

V arTDirect
+ TIndirect

V arTIndirect

1
V arTDirect

+ 1
V arTIndirect

(3.4)

with variance:

V arTpooled
=

1
1

V arTDirect
+ 1

V arTIndirect

(3.5)

When both types of evidence exist, the result is a weighted average of them. The pooled estimationwill

always be in between of the two treatment estimations. Moreover, it will be closer to the one with smaller

variance. As it’s reasonable the pooled estimation is closer to the (direct or indirect) estimation with the

smallest variance. Furthermore, the pooled effect size is estimated with more precision, compared to the

ITC. Following this idea, if more than one treatments can be used as the common comparator for an ITC,

then all of the different estimations (coming from different paths) can be synthesized together with the direct

estimate, if available. The direct estimation can be derived from fixed and random effects models.

The pooled treatment comparison is always available for a connected network, however it cannot be applied

in all of them. It is an easy to use method, based on a simple equation 3.4, which doesn’t serve for bigger

networks, as it is not able to recognize the connection of the treatments, not even in simple cases as in

the example below when there are only three treatments connected. Eventually, the restriction of only two

treatments effect estimation in a time is the reason of extending this method to the network meta-analysis,

in order to be applied in networks of arbitrary size and complexity.
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3.1.1 Example

For a better understanding of the ITC and MTC an fictional example is given from the based on the example

used in section 2.5. The outcome of interest is again the forced expiratory volume in 1 second(FEV1) in

mL in patients with COPD. A close loop containing three treatments the placebo, the Tio, and the QVA

connected by four studies, illustrated in Figure ??. A meta-analysis comparing Placebo to Tio is already

conducted in section 2.5 and the studies’ data are given in Table ??. The Tio compared with the placebo, the

one side of the triangle, is connected by 14 studies, the second side compares the effect of QVA to placebo,

connected by two studies (S4 and S15), and the third side compares the effect of QVA to Tio, connected also

by two studies (S4 and S16), the data for all studies in the close loop are provided in the Table 3.1. The

frequentist and Bayesian approaches are permitted, as they are only two studies comparing the treatments

in two of the three sides of the loop, random effects model was not deem to be appropriate, nevertheless

both models for each approach are presented due to completeness of the example. There are available direct

and indirect estimations for all pairwise comparisons, thus for all three of them a pooled estimation could be

given, however the pooled estimation of QVA compared with the Tio is chosen to be presented here. As it is

obvious, the ITC estimations will be calculated with common comparator the placebo.

Figure 3.3: Network diagram comparing the 14 studies comparing the effect of Tio to placebo, 2 studies of

QVA to placebo, and 2 studies comparing QVA to placebo.

For each side of the loop a meta-analysis is required to pool the evidence. The pooling of Tio vs placebo

was examined in the section 2.5, as mentioned before. The next step is to pool the studies S4 and S15

comparing QVA vs placebo, Figure 3.4. Having the pooled direct estimations of Tio vs placebo, and QVA

vs placebo, the ITC estimation is available, and it is presented in the Table 3.2 which summarizes the

results from both approaches and models. The estimations for the effect of QVA compared with the placebo,

and Tio with the placebo are given in the third and forth columns respectively, the last one gives the ITC

estimation in each case using the equation ??. The standard errors have reasonable smaller values in the
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Table 3.1: Trough FEV1 Difference in CFB data for studies in the network.

Study Treatments Mean(mL) SE(mL)

S1 Tio vs Placebo 100 15

S2 Tio vs Placebo 100 10

S3 Tio vs Placebo 140 20

S4 Tio vs Placebo 130 18

S4 QVA vs Placebo 230 18

S4 QVA vs Tio 100 18

S5 Tio vs Placebo 83 19

S6 Tio vs Placebo 110 40

S7 Tio vs Placebo 150 14

S8 Tio vs Placebo 184 37

S9 Tio vs Placebo 102 31

S10 Tio vs Placebo 79 17

S11 Tio vs Placebo 134 19

S12 Tio vs Placebo 127 19

S13 Tio vs Placebo 120 15

S14 Tio vs Placebo 118 23

S15 QVA vs Placebo 163 32

S16 QVA vs Tio 70 14
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comparison of Tio with the placebo, 14 studies is consider to provide a more reliable evidence in contrast

of only two studies which was the case for QVA compared with the placebo. Fixed effect estimations for

the ITC in both frameworks are identical (QVA vs Tio: Bayesian/Frequentist 99mL (SE:16.4mL)) as the

estimations in the two meta-analysis (QVA vs placebo: Bayesian/Frequentist 214mL (SE:15.6mL); Tio vs

placebo: Bayesian/Frequentist 115mL (SE:5.1mL)). All point estimates are relatively similar, and as it is

expected the random effects have bigger uncertainty compared to fixed effect models.

In case that it was only one study examining the QVA with the Tio then the pooled effect would easily had

been calculated, however in this case there are two of them, studies S4 and S16, and thus one last meta-analysis

should be done, Figure 3.5 depicts the pooled direct evidence from both approaches and models. According

to the equations 3.4 and 3.5, the final results are summarized in the Table 3.3. The pooled treatment effect

estimations in all cases are more precise and the estimations are closer to the direct estimations as they deem

to have smaller SE compare to the indirect ones. It has to be mentioned that the polled methodology can not

recognize the connection among the studies, even in simple cases as in this example, a close loop of only three

treatments compared. In general, to overcome this disadvantage the network meta-analysis, the extension of

the meta-analysis, is presented in the next section.

Table 3.2: Trough FEV1 Difference in CFB data for studies in the network.

Framework Model QVA vs Placebo (SE) Tio vs Placebo (SE) QVA vs Tio (SE)

Bayesian Random effects 213 (16.3) 116 (6.3) 97 (17.5)

Fixed effect 214 (15.6) 115 (5.1) 99 (16.4)

Frequentist Random effects 202 (33.1) 117 (6.7) 85 (33.8)

Fixed effect 214 (15.6) 115 (5.1) 99 (16.4)

Table 3.3: Direct, indirect and pooled treatment effect for QVA compared with the Tio for FEV1 difference

in CFB.

Framework Model Direct Estimation (SE) Indirect (SE) Pooled effect (SE)

Bayesian Random effects 82 (11.5) 97 (17.5) 87.71 (6.95)

Fixed effect 81 (10.9) 99 (16.4) 88.30 (6.55)

Frequentist Random effects 83 (14.8) 85 (33.8) 83.50 (10.30)

Fixed effect 81 (10.9) 99 (16.4) 88.33 (6.57)
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Figure 3.4: Forest plot for random and fixed effect models in Bayesian and frequentist approach for QVA

compared with the Placebo.

Figure 3.5: Forest plot for random and fixed effect models in Bayesian and frequentist approach for QVA

compared with the Tio.
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3.2 Network meta-analysis

The network meta-analyses (NMA) involves the simultaneous analysis of both direct and indirect comparisons

among multiple treatments across multiple studies, usually RCTs [22, 25–28]. A combination of direct and

indirect comparisons is the definition of a network of treatments, which is superior to meta-analysis and the

final step in hierarchy of evidence synthesis, Figure 3.6 [29].

Figure 3.6: Hierarchy of evidence.

As long as all treatments in the network are connected, directly or indirectly all of them can be compared

with each other, a very convenient graph illustrating two networks are given in Figure 3.7. It is obvious

that as the number of RCTs across the network increases, the evidence increases and the network becomes

strengthener. A network connected by one to two trials in all interventions can be very weak and may not

be reliable. Prior to the analysis a feasibility assessment should be performed to examine if the evidence

provided by the network can be consider as similar enough in order to proceed to the analysis. All RTCs

should be chosen with the SLR process as it is mentioned in section 2.1. After the SLR is finalized, the

assumptions required for the analysis should be examined, discussed in the next section.
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Figure 3.7: Networks containing large number of treatments (letters) and trials (lines).

3.2.1 Assumptions

Any statistical method has to obey specific assumptions which are fundamental and have to hold in order to

ensure the validity of the results. The NMA methodology has three basic assumptions, similarity, homogeneity

and consistency.The key element in order to meet these assumption is the correct study identification. It

is important to mention that these assumptions are correlated, dissimilarities among trials will affect the

homogeneity and the consistency of the analysis. The visualization in Figure 3.8 gives a better understanding

about the assumptions.

Figure 3.8: Basic assumptions for an NMA.
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Similarity

Common criticism of meta-analysis is that the differentiation of combined studies may influence the final re-

sults. Similarity assessment aims to ensure that the meta-analysis or the NMA include only studies that are

similar enough in order to be pooled together without affecting the effect estimations. It is undeniable that

each RCT has unique characteristics and can not be identical with any other. Given that fact a researcher

has to find the studies that can be consider as similar and ”combinable”. The biggest opponents’ quarrel is

that there are no statistical methods to evaluate the similarity in a network of studies. Hence, one has to

be conscious, using all information can proven useful, as historical evidence and mainly experts opinion, an

expert clinician can contribute extremely in that phase.

Effect modifiers, discussed in section 2.2 can be more complicated in a network of studies, some of them

being compared only indirectly. Taking for granted that the search is taking place in all available databases

applying the most relevant key words, PICOS framework is usually adopted to identify these variables. Con-

sidering population of the study as a property of primary importance, population treatments applied is the

first characteristic examined, followed by the intervention, comparator, outcomes, and settings, as they are

given in Table 3.4. PICOS criteria are proved useful in including or excluding studies, and also some re-

searchers use the SPICOS criteria which consider the study design as the first characteristic needs top be

checked.

Table 3.4: PICOS criteria

Description Possible effect modifiers

P Population Demographics, baseline clinical characteristics, disease severity

I Intervention Dose, mode of administration, duration

C Comparator Active treatment, placebo, concomitant meds

O Outcomes Definitions of effect measurements, thresholds, ITT vs. PP

S Setting Study design, study duration, location/country, method of outcome assessment

Summarizing the most important and relevant characteristics for the examining disease can also be helpful

in understanding the available evidence for making decision, which studies will constitute the network. Tools

e.g., summary tables, scatter plots visualizing in a plot the age, sex, and severity by using colors and sizes of

the data can be key element in decision making about the similarity of existing evidence.

Homogeneity

A network is consider to be homogeneous when any study in the network could be representative of the NMA

results. In other words, when the variability in the studies included in the NMA can be explained by only

41



the randomness then the network is considered to be homogeneous, in any other case heterogeneity exists

among the RCTs. In order to the critical role of homogeneity be understandable it has to be mentioned that

if this assumption does not hold then the RCTs combined may not estimating the same treatment effect.

The difference in the assumption of similarity and homogeneity may not be distinctive. As discussed in the

later section, similarity focuses on study level; it is a qualitative judgment. On the other hand homogeneity

refer to outcome level; it is definitely a qualitative judgment. In other words if similarity doesn’t hold, the

differences in study and patients characteristics plausibly will have an effect on the observed outcomes.The

meta-analysis and NMA are based on RCTs, however randomization does not hold across the studies in the

network of RCTs. As a result, systematic differences in the distributions of study and patients characteristics

across trials can ensue. In general, if there is an imbalance in study and patients characteristics-related

effect modifiers across the different types of direct and indirect comparisons in a network meta-analysis, the

corresponding indirect comparisons are biased [30, 31].

The assessment of homogeneity is discussed in section 2.2 from the opposite perspective, the heterogene-

ity, as it is obvious is exactly the same requirement being examined from the other point of view, hence the

measurements as the Cochran Q-statistic and the I2 ratio hold in the NMA as well. From the Bayesian aspect

NICE recommends comparing model diagnostics between fixed effect and random effects models, if random

effects fits the data better then the analyst can suspect heterogeneity in the network. As the heterogeneity

is an indication of discrepancies and existence of effect modifiers across the combined studies the fist task to

do is to explore again the studies to examine if the assumption of similarity holds and to identify these effect

modifiers. Detection of these effect modifiers may be a challenging task in some cases, however when they

are detected a researcher can proceed to a subgroup analysis, random effects model or meta-regression if the

amount of combined RCTs is considered to be large enough [32].

Consistency

Considering three trials the Study 1, 2, and 3; which can also be the results of meta-analysis. The are the

pairwise comparisons of three different treatments, the treatments A (placebo), B and C, as Figure 3.10

illustrates. They are head-to-head comparisons, thus they create a close loop as it is presented in Figure 3.9.

All the treatments are directly connected to each other thus gives the availability for directed and indirect

pairwise comparisons. This fact provides the privilege to examine if the direct and indirect estimations are in

line. Ideally these estimation are desired to be identical or as similar as possible, supporting the assumption

of consistency in the network. It can be said that when results of indirect and direct comparisons are in

agreement, then the network can be consider to be consistent. The Figure 3.11 depicts the estimated effect

of ITC estimation, which occurs from the equation 3.2; they are identical. This is an ideal scenario and

rather impossible to holds as heterogeneity exist among studies. Once again the need to combine studies
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Figure 3.9: Closed loop with three treatments, A, B, and C.

with common study and patient characteristics arises. However, if inconsistency exists, and the estimations

are not aligned, is reasonable to consider effect modifiers across the combined studies [33]. The Figure 3.12

presents the different directions of direct and indirect estimations, assuming that the effect size of ”Study 3”

is different as in Figure 3.10; the ITC overestimate the effect size of the treatment B compared with the A

(placebo). In other words combining inconsistent studies may be inappropriate as can lead in invalid estima-

tions. As it is clear now, the ITC methodology can overestimate or underestimate the effect of treatments

depending on the studies existing.

3.2.2 Frequentist Approach

For the frequentist network meta-analysis the simple method of ITC can be used, trying to find the most

efficient, the shortest, path in order to achieve the minimum variance. The fixed or random effect model

depends only on the method estimated in the meta-analysis process, if it was needed . Moreover, if direct

evidence is available then the techniques of pooled estimation should be applied. These methods are discussed

in detail in section 3.1 and are not of interest in order to conduct and frequentist NMA, as they are not able

to understand the geometry of the network and focuses only on the pairwise comparisons. A more precise

approach uses the weighted least square regression [34, 35]. The most interesting fact in this methodology is

the estimation for multi-arm studies. There are two different approaches to adjust the variances for multi-

arm RCTs, the standard approach and the alternative or graph theoretical approach [36]. The adjustment

is necessary as a trial with k>2 arms provides k(k-1)/2 pairwise comparisons, which are not independent;

they are correlated and this correlation has to be estimated. If this correlation is ignored the estimated effect

will be biased as the weights will be incorrect, underestimated. This section will discuss both approaches
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Figure 3.10: Three trilas pairwaise comparing treatments A(placebo), B and C.
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Figure 3.12: Incosistent loop. Direct and indirect estimations are not agreement
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focusing more on alternative approach which is performed in the application presented in section 4.6. For

both approaches an fictional example is provided.

The ordinary least square assumes equal variances σ2 for all observations. In contrast, the weighted least

square take into consideration the precision of each different observed data point. A study with a large

variance contribute less than a study with a smaller variance. The residuals, ei of a study i are weighted by

its precision wi, thus the weight given in a study is simply the inverse of the variance of its effect. Trials

with equal precision will affect equally and in case that all wi = 1 the ordinary least squares estimations are

given. The model of weighted least square regression is given below, describes the estimated values Ŷi as

the outcome of the observed variables Xij multiplied by their estimated coefficients βij with the additional

errors residuals, ei, for each i object and j variable:

Ŷi =

n∑
j=1

Xijβij + ei

ei =
√
wi(Yi − Ŷi)

The hat matrix B, containing all estimated coefficients βij is defined by:

B = X(XTC−1X)−1XTC−1 (3.6)

As usually X denotes the design matrix and the C represents the covariance-variance matrix of the whole

network, which is a block diagonal matrix that consists of an invertible (k-1)x(k-1) blocks (discussed in the

next section).

For a better understanding of the methods a fictional example of a 3-arm and a 2-arm study was implemented.

A 3-arm study, S1 and two 2-arm studies, S2. S1 performing a close loop, comparing the placebo, the

Tiotropium (Tio), and the combination of Tiotropium and Olodaterol (Tio/Olo). The Table 3.5 presents

the difference in CFB values and their SEs in mL of trough FEV1 considering a time point of 12 weeks.

According to these comparisons consider the matrix H, an edge-vertex matrix, the number of rows correspond

the number of pairwise comparisons, m, and the number of columns indicates the number of treatments, n.

The number of comparisons of a study with k arms is k(k-1)/2. For the fictional example given in Table 3.5,

the corresponding matrix H is:

H =


1 −1 0

1 0 −1

0 1 −1

1 −1 0

 (3.7)

Each row of the matrix H sums to zero, the three first rows corresponds to S1 study, as it is 3-arm study

(m=3), and for study S2 there is only one row, the last one, as it is a 2-arm study and thus only one

comparison is possible. For the S1 study the need to adjust the SE arises. To adjust the uncertainty for

k-arm, k>2, studies there are two methods as mentioned before, fist the standard method is discussed.
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Table 3.5: Fictional example: a 3-arm study (S1) and a 2-arm study (S2) comparing three treatments,

Tio/Olo, Tio, and Placebo.

Study Treatment1 Tretament 2 Difference in CFB (SE)

S1 Tio/Olo Tio 28 (19.1)

Tio/Olo Placebo 162 (19.1)

Tio Placebo 135 (19.7)

S2 Tio/Olo Tio 76 (14.9)

Fixed effect

Standard approach

In an attempt to adjust the variances for a k-arm, k>2 study in the standard approach, its variance-covariance

matrix Ck has to be calculated. The matrix Σ of the equation 3.8 is the diagonal matrix of arm-based, as it

is illustrated below.

Ck = HkΣHT
k (3.8)

Σ =


σ1 0 0

0 σ2 0

0 0 σ3


The C3 matrix for the S1 study is:

C3 =


σ1 + σ2 σ1 σ2

σ1 σ1 + σ3 σ3

−σ2 σ3 σ2 + σ3


The Table 3.5 provides estimations and variances of the contrasts for the two fictional studies S1 and S2. In

more analytic form the table provides the contrasts as σ1+σ2 = 18.8, σ1+σ3 = 19.1, and σ2+σ3 = 19.7. Using

the B3, we can observe that the H matrix, by omitting the last row, it is obvious that the C3 corresponding

S1 study is:

C3 =


18.8 9.1 9.7

9.1 19.1 10

−9.7 10 19.7

 (3.9)

The C3 is a 3x3 matrix containing the contrasts variances in the diagonal, as well as their covariances,

e.g. Cov(Tio/Olo, T io) = σ1 = 9.1. In other words, it is adjusted accordingly to take into consideration the

correlation existing among the effect estimations in k-arm studies. As for the H, the hat matrix, the inverse of
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Ck is needed, however the Ck matrix has a rank k-1 and thus not invertible. The standard approach suggests

dimensionality reduction by omitting all except the first k-1 rows and columns, leading to a (k-1)x(k-1) C̃k

which is invertible, completely justifying the reason why the method is also named dimension reduction. It

is obvious that there is no need for this process is k=2, for 2-arm studies.

The C and X matrices for the overall network are:

C =


18.8 9.1 0

9.1 19.1 0

0 0 14.9

 X =


1 −1 0

1 0 −1

1 −1 0

 (3.10)

Finally, using the equation 3.6 the hat matrix B can be estimated, and the effect estimations Bx are

defined by multiplying the B with the corresponding estimations of the Table 3.5:

B =


0.44 0.00 0.56

−0.27 1 0.27

0.44 0 0.56

 Bx =


54.3

174.9

54.3

 (3.11)

Graph theoretical approach

The graph-theoretical networks that have been applied to electrical networks also work well in network

meta-analysis [36]. The idea of frequentist network meta-analysis is described by these networks. For a

meta-analytic network, the vertices (nodes) correspond to treatments and the edges to existing evidence

between treatments. As already mentioned in section 2.3 each direct study estimation is weighted according

to its inverse variance, the precision. The variance of a comparison corresponds to the resistance (R) of the

edge in the network, whereas the precision corresponds to the conductance. In the simple case for a parallel

connection of edges between two nodes in an electrical network, the effective resistance is given by the inverse

of the sum of resistances 1
R =

∑
k

1
Rk

. This is the case of pairwise meta-analysis, where the total precision

(inverse variance) estimate of the total effect (T̄ ) is given by the sum of the precisions from all m studies

combined 1
V (T̄ )

=
∑m
k=1

1
VTk

.

The standard approach reduces the dimensions to obtain invertible variance-covariance matrices, the al-

ternative approach reduces the weights of all comparisons in advance and then uses the B matrix without

reduction. As the B matrix is not invertible, the Moore-Pensrose pseudoinverse is considered. The B matrix

is given by:

B = H(HTWH)+HTW (3.12)

The W matrix is a diagonal matrix containing all observed inverse variances weights of all comparisons. The

corresponding variance-covariance matrix C of the standard approach is the Laplacian matrix L, defined as:

L = HTWH (3.13)
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For a network with n treatments L is an nxn matrix, not invertible as has rank n-1. The weights of the

treatment comparisons are the negative non-diagonal values. For each k-arm study with k>2, the L matrix

should be calculated separately for each k-arm study. The increased variances, reduced weights, can be

obtained from L+ matrix using the V matrix kxk, which contains the observed variances of all comparisons:

L+ = − 1

2k2
HTHVHTH (3.14)

The reduced weights are the negative non-diagonal entries of L matrix, which is trivially the L = (L+)+.

The example discussed below is the same as in the standard approach. First the reduced weights of S1

study should be calculated. The corresponding matrix V is:

V =


0 σ1 + σ2 σ1 + σ3

σ2 + σ1 0 σ2 + σ3

σ3 + σ1 σ3 + σ2 0

 =


0 18.8 19.1

18.8 0 19.7

19.1 19.7 0

 (3.15)

The non-adjusted weights of the study are the inverse of theirs variances, and then (0.0532, 0.0524, and

0.0508). The adjusted, reduced weights derived from 3.14 are 0.0362, 0.0351 and 0.0329, the negative no-

diagonal entries find below:

L =


0.0713 −0.0362 −0.0351

−0.0362 0.0691 −0.0329

−0.0351 −0.0329 0.0680

 (3.16)

As mentioned, the W matrix is a nxn matrix, n indicates the number of studies, thus for the fictional

data in Table 3.5 the adjusted weights for the 3-arm study S1, are the weights obtained from the matrix L,

for the 2-arm study S2 there is no need for adjustment, its weight is simply the inverse of its variance.

W =


0.0362 0 0 0

0 0.0362 0 0

0 0 0.0329 0

0 0 0 0.0680

 (3.17)

Finally, the results estimated from the alternative approach are identical with the standard approach,

using the equation 3.12, and calculating the effect estimations by multiplying the matrix B with all the

observed treatment comparison effects given in Table 3.5, can be found that :

B =


0.30 0.14 −0.14 0.56

0.15 0.58 0.42 0.27

−0.16 0.44 0.56 −0.29

0.30 0.14 −0.14 0.56

 Bx =


54.3

174.9

120.9

54.3

 (3.18)
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Random Effects

The two approaches are equivalent, since both of the each study’s contribution are the same, thus the total

residual heterogeneity Q-statistic is the same in the standard and the alternative approach, a fact that can

be proven based on the following equation:

Ck = HΣHT = HL+HT

Based on the fictional example, the matrix C3 for the study S1 (matrix 3.9), is identical if instead of Σ

the L+ is used.

L+ =


6.23 −3.07 −3.16

−3.07 6.43 3.36

−3.16 −3.36 6.52



C3 = HΣHT = HL+HT =


18.8 9.1 9.7

9.1 19.1 10

−9.7 10 19.7

 (3.19)

As the matrix Ck is not invertible, dimension reduction works with the (k-1)x(k-1) reduced matrix C̃k, which

can be described by matrix notation with the use of two additional matrices, P1 and P2. P1 is a (k− 1)xmk

containing the first k-1 unit vectors at the first k-1 columns and zero columns for the following mk − (k− 1)

columns, and P2 is a (k-1)xk matrix having a zero column followed by k-1 unit vector columns, an example

for k=3 is given below.

P1 =

1 0 0

0 1 0

 , P2 =

0 1 0

0 0 1


Using P1 and P2 matrices the reduced variance-covariance matrix of the contrasted can be written as

C̃k = P1HΣHTPT1 = P1HL
+HTPT1 . At this point, using the lemma below, it can be said that both

approaches lead to identical variance-covariance matrix of the contrasts.

Lemma: The inverse of covariance matrix of a complete graph is identical to its matrix, reduced by the

first row and column.

C̃−1
k = P2LP

T
2 (3.20)

Since the two approaches lead clearly to the same results, referring to the estimation of effect and its vari-

ance, the need to estimate the residual heterogeneity measured buy the Q-statistic arises. The contribution

of each study can be defined in general as the weighted squared deviation of the observed from the estimated

effect. The difference of the estimated effect (Bx) from the observed effect(x) is defined as xd. Thus, using

the aforementioned lemma, the Q-statistic for a study i is equal in both approaches and can be defined as:
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Qi = xTidC
−1
i xid = xTidP2LiP

T
i xid = xTidP2H

T
i WiHiP

T
2 xid (3.21)

Finally, the random effects model can be presented, the graph theoretical perspective has been decided

to be discussed, as it has been used in the application of this thesis. The random effects model simply differs

from the fixed effect in the additional between-study variance, the common variance parameter τ2. In the

frequentist approach this parameter is calculated by:

τ2 = max(
Q− df

tr((I −B)UW )
, 0) (3.22)

where df are the degrees of freedom defined as:

df =
∑
k

(k − 1)hk − (n− 1) (3.23)

The number of studies with k arms is denoted by nk, I is a mxm (m: number of comparisons), the identity

matrix U is a block diagonal matrix derived from the mxm matrix HHT/2. The random effects model

adds the τ2 parameter to the observed sampling variance of each single comparison in the network before

any necessary weigh reduction. The v vector containing all observed variances of all m comparisons can be

defined in a general form as:

v = (σ1 + τ2, σ2 + τ2, . . . , σm + τ2) (3.24)

3.2.3 Bayesian Approach

The Bayesian approach of network meta-analysis is deemed to be more flexible compared to the frequentist

framework, as it uses models to estimate the treatment effects. The correlations induced by multi-arm studies,

the estimation of predictive intervals and the ranking probabilities are straightforward in this approach, thus

Bayesian framework could be preferable. Topics discussed in section 2.4 applies also for network meta-analysis

methodology. The main difference with the meta-analysis can be noticed to the number of parameters needed.

The simple meta-analysis requires only one prior, the true treatment effect. Network meta-analysis is a

collection of many treatments connected by RCTs, some of the treatment effects are chosen to be the basic

parameters and the rest of them as the functional parameters. The latter are linear combination of the basics,

and thus only the basics parameters have priors and are considered as random variables. The choice of priors

is according to the knowledge and evidence available as discussed in section 2.4.1.

In generalized linear models, a likelihood is defined in terms of parameters (γ), while a link function (g) maps

the parameters of interest in <. There are different likelihoods and link functions for different outcomes, the

Table 3.6 illustrates the most frequently used. In a more general form the network meta-analysis is based on

equation 3.26, in which µi is the baseline treatment effect for the i specific trial. For the i trial, the b arm is

the control treatment arm (b=1, the first arm) and thus the δi,bkIk 6=1 is the treatment effect of the k-arm to
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the control-arm of the study i. Priors should be given to all trial baseline effects and basic parameters. For

example in a 2-arm study I, priors should be given to the baseline effect µI and to the treatment effect δI,12.

Table 3.6: The link functions, the likelihoods, the outcomes, and the measurements for the most frequent

used generalized linear models. The parameter is denoted by γ and the link function by θ.

Link Link function

θ = g(γ)

Likelihood Outcome Measure

Identity γ Normal Continuous MD, SMD, CFB,

difference in CFB

Logit

Probit

cloglog

ln( γ
1−γ )

Φ−1(γ)

ln(−ln(1−γ))

Binomial

Multinomial

Binary OR, RR

Log ln(γ) Poisson Rate IRR, IRD

g(γ) = θik = µi + δi,bkIk 6=1 (3.25)

δi,12 ∼ N(d12, σ
2) (3.26)

Fixed Effect

The basic idea for the Bayesian network meta-analysis is described by the connected network illustrated in

Figure 3.13. In this example all studies are deemed as 2-arms in order to be well understood. The treatment

A is the reference treatment and as it is connected directly with treatments B, C and D, creates three

basic parameters, AB, AC, and AD. These parameters are named basics as they are related to the reference

treatment A, all the remaining contrasts BC, BD, and CD can be defined in terms of basic parameters and

therefore are the functional parameters. To all the basic parameters priors need to be given, as well as to the

study effects [37].

Figure 3.13: Connected network comparing four interventions(A,B,C,D) with three basic (AB, AC, AD) and

three functianl parameters (BD, BC, DC) with 6 studies (lines).
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More specifically the functional parameters can be derived from the basics as:

dBC = dAC − dAB
dBD = dAD − dAB
dCD = dAD − dAC

The sample size should be large enough to allow referring the Central Limit Theorem, assuming normality

over the mean. The fixed effect model could be described as the extension of the simple pairwise meta-analysis.

The Yik, indicates the effect of k treatment in the i study and from a normal distribution as described below:

Yik ∼ N(θik, σ
2
ik) (3.27)

θik = µi + di,bkIk 6=1 (3.28)

µi, dAB , dAC , dAD ∼ N(0, 106) (3.29)

The observed effect Yik of the k intervention in the study i, comes from a normal distribution with true

mean θik and variance the standard error σ2
ik of it. The normal distribution requires identity link function,

and thus the model for the linear predictor is the baseline effect of the study µi and the difference of the

first, ”the baseline intervention”, b, to the k arm, as the equation 3.28 shows. Finally, vague priors are given

to all baseline effects and basic parameters due to objectiveness. The fixed effect doesn’t assume variability

among the RCTs, the true treatment effects are consider to be fixed and not derived from an individual study

distribution, e.g. di,12 = d12 and not di,12 ∼ N(d12, σi) for any i study.

The model described before is convenient with time point data, when the effects for each RCT are reported at

the time point of interest with any measure of uncertainty. In case of reported measurements at the baseline

and at a pre-specified time point, the CFB is preferred, as presented in section 2.1.2. The best case scenario

is when CFB values are reported with an uncertainty measure, then the researcher can follow the model as

previously. When only baseline and at time point effects reported then calculations have to be done and

the calculated variance should take into consideration the correlation among arms in the same study. An

other way to present aggregated data, probably the most common, is the difference between arms with any

measure according to the data examined as, OR, RR, MD or IRR, and its variance or even in cases only

the p-value. It can be assumed that the mead difference is approximately normally distributed, therefore the

link function remains the same, however the model of the equation 3.28 changes as there is no baseline effect

and the model is obtained as θik = di,bkIk 6=1. A very crucial issue to which it should be given great concern

is when more than study has more than two arms, in that case the reported mean differences are reported

based on a reference treatment and all of them are correlated and that require adjustment to the likelihood.

The last of cases to report continuous outcomes is the SMD, most preferred when outcomes reported in a

variety of scales, mainly in psychological and neurological fields.
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Random Effects

The differentiation of fixed and random effects is the sources of variation allowed. The random effects model

assumes two sources of variance, the within-study variance, in any study included and also the between-study

variance, allowing the treatment difference effects not being equal but coming from a distribution with mean

the study effect and variance the between-study variance. Additional to the basic parameters and baseline

effects, a prior should be given to the between-study variance, most common a vague prior is used. The

likelihood, model and priors are given in way to be consisted with the fixed effect network meta-analysis,

continuous outcome is again assumed.

Yik ∼ N(θik, σ
2
ik/nik) (3.30)

θik = µi + δi,bkIk 6=1 (3.31)

δi,bk ∼ N(dik, τ
2) (3.32)

µi, dAB , dAC , dAD ∼ N(0, 106)

τ2 ∼ U(0, 2)
(3.33)

It is obvious that the random effects model is more complicated, it is preferred in occasions of large enough

number of RCTs included in the network. The random effects estimations gives similar point estimates as

fixed effect model, however the variability is greater. The additional variability derives from the fact that the

differences of effects are assumed to come from a normal distribution with mean the treatment differences

and variance the between-study variance, equation 3.32, which is estimated and thus has to be given prior.

As in fixed effect model, priors are given to baseline effect and basic parameters and also prior is given to

the between-study variance, equation 3.33.

The way to handle different ways of reported aggregated data is of course the same. Once again, for multi-arm

studies the correlation among effects should be taken into consideration.

Variance adjustment for multi multi-arm studies

Models discussed holds for 2-arms studies, they do not account for the multi-arm studies correlation. In

general, the consistency equations in a s-arm study are described as:

d2,3 = d1,3 − d1,2

d2,4 = d1,4 − d1,2

d2,5 = d1,5 − d1,2

...

d(s−1),s = d1,s − d1,(s−1)

(3.34)
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The basic parameters are the d1,2, d1,3, . . . , d1,s, and all the remaining contrasts are functional to them. For

instance lets consider the effect of the treatment 3 compared with the treatment 2 of the i study:

δi,(2,3) ∼ N(d2,3, σ
2
2,3)

The functional parameter d2, 3 derives from the basic parameters d1,3, d1,2, as d2,3 = d1,3 − d1,2 and thus

σ2
2,3 = σ2

1,2 + σ2
1,3 − 2ρ2,3σ

2
1,2σ

2
1,3 (3.35)

The equation 3.35, in which the ρ represents the correlation between the relative effect of arm’s 3 treat-

ment, clarifies the need of adjustment for multi-arm studies [38]. For simplicity reasons it is common to

assume equal variances, σ2
1,2 = σ2

1,3 = σ2
2,3 = σ2, and thus the correlation between any two treatment con-

trasts is 0.5.

In a general form the random effects, assuming equal between-study variance for a k-arm study i are coming

from a (k-1) multivariate normal distribution as below:

δi =


δi,(1,2)

δi,(1,3)

...

δi,(1,k)

 ∼ Ni,s−1




di,(1,2)

di,(1,3)

...

di,(1,k)

 ,


σ2 σ2/2 . . . σ2/2
...

. . .
...

σ2/2 σ2/2 . . . σ2




the vector δi is the random effects of treatments comparisons for the specific study i and it is a multivariate

normal. The conditional univariate distribution for the random effects of k-arm study is:

δi,1,k|


δi,(1,2)

δi,(1,3)

...

δi,(1,k−1)

 ∼ N((d1,k − d1,1) +
1

k − 1

k−1∑
j=1

[δi,(1,j)− (d1,j−d1,1)],
k

2(k − 1)σ2
) (3.36)

The equation 3.36 should be used to estimate the random effects for each multi-arm study, in that way

the between-arm correlation among the parameters will be taken into account. As the fixed effect models

doesn’t make any assumption for the differences it is no need for adjustment in that case.

Treatment differences in multi-arm studies

An other important issue should be examined, in the majority of multi-arm studies the effects are reported as

mean differences from the baseline-reference treatment, usually placebo. Since differences are taken relative

to the same baseline arm, an adjustment to the likelihood is needed as the correlation is inherent in the data.

A RTC with k-arms produce k-1 correlated treatment differences. The variances (V) of treatments compared
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with the baseline is required. A 3-arm study will report 2 treatment differences (AB, AC) compared with

the baseline (treatment A) and their covariance is obtained from the equation 3.37

V ar(YAB − YAC) = V ar(YAB) + V ar(YAC)− 2Cov(YAB , YAC) (3.37)

It is known from the original data that V ar(YAB) = V ar(YA) + V ar(YB) and V ar(YAC) = V ar(YA) +

V ar(YC), and thus the covariance of the reported treatment differences is simple the variance of the common

arm.

Cov(YAB , YAC) = var(YA)

An example from the overall network of the application in COPD patients is used to describe the adjustment

of a 3-arm study. The study used as example is the S1 (same as in the frequantist), a 3-arm study with

placebo treatment acts as the baseline-reference treatment for the frequentist approach.

The data for the study are presented in the Table ?? as the differences in CFB of FEV1 in mL at 12

weeks are given as the differences in CFB. The SE of Tio vs Placebo is 19.7mL, and Tio/Olo vs placebo is

19.1mL. Then the SE of Tio/Olo to Tio, the covariance of the two differences reported is the SE2 of placebo,

196mL, thus the covariance of the 2.

SE(Tio/Olo vs P lacebo−Tio vs P lacebo) = SE(Tio/Olo vs P lacebo+SETio vs P lacebo−2ρTio/Olo vs P lacebo,T io vs P lacebo

(3.38)
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Chapter 4

Application in COPD

4.1 Disease characteristics

Chronic obstructive pulmonary disease (COPD) characterized by the development of airway obstruction,

manifesting as a decline in lung function, breathlessness and exacerbations [39]. The disease is usually pro-

gressive and associated with an enhanced chronic inflammatory response in the airways and lungs. It is the

fourth leading cause of death worldwide and a major cause of chronic morbidity and mortality throughout

the world. The COPD burden is expected to increase over the coming decades because of continued exposure

to COPD risk factors and aging of the population.

The goals of effective COPD management are to prevent disease progression, relieve symptoms, prevent and

treat complications and exacerbations and to improve health status. Current guidelines (ref) recommend the

use of long-acting bronchodilators, as they are more effective at producing maintained symptom relief than

short-acting bronchodilators. The choice between long-acting β2-agonists (LABAs), long-acting anticholin-

ergic (LAMA), and fixed combination of LABA plus ICS (inhaled corticosteroids) in one inhaler depends on

the individual patient response in terms of symptom relief and side effects. Also, combining bronchodilators

of different pharmacology classes may be considered as a better alternative to manage COPD compared to

increasing the dose of a single bronchodilator.

4.2 Objectives

This analysis used the publication of Huisman. E, Comparative efficacy of combination bronchodilator ther-

apies in COPD: a network meta-analysis, 2015 [1], in which a Bayesian network meta-analysis was performed

by MAPI in request of GlaxoSmithKline (GSK). By this time GSK was developing a closed combination

of an inhaled long-acting muscarinic antagonist (LAMA) and long-acting beta2 agonist (LABA) for COPD,

umeclidinium/vilanterol (UMEC/VI), delivered using the Ellipta R© dry-powder inhaler. The clinical efficacy
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and safety of UMEC/VI 62.5/25 is being evaluated in a comprehensive Phase III program. The anticipated

target population for UMEC/VI is mild to moderate COPD patients who have a history of no or very few

exacerbations, including patients who are symptomatic on monotherapy.

A clear value proposition, supported by robust comparative clinical evidence will be required to address

the needs of payers in different markets. GSK asked Mapi to conduct a robust comparative assessment

of UMEC/VI with all of its potential comparators. Therefore a comprehensive systematic review (SLR)

was performed to identify randomized controlled trials (RCTs) in COPD patients eligible for maintenance

therapy. A feasibility assessment was performed to evaluate the appropriateness of evidence synthesis for

UMEC/VI 62.5/25 with its comparators (based on the results of the systematic literature review). The trial

evidence should be used to perform a Bayesian network meta-analysis.

The objective of the analysis performed for this dissertation has been to compare a network meta-analysis

in frameworks analysed, Bayesian and frequentist, random and fixed models were conducted in any of them

for the outcome of interest the trough FEV1 at 12 and 24 weeks. The paper presented three more outcomes,

the rescue medication use in puffs per day, the St George’s Respiratory Questionnaire total score, and the

transitional dyspnea index focal score, which were not of interest as they are all continuous outcomes, as

FEV1, and the analysis does not differfor the methodological prospective. Moreover, the aspect of this anal-

ysis has been to assess the relative efficacy of umeclidinium 62.5 mg in combination with vilanterol 25 mg

(UMEC/VI 62.5/25) versus indacaterol 150mg + tiotropium 18mg (IND 150 + TIO 18), tiotropium 18mg

+ salmeterol 50mg (TIO 18 + SAL 50), tiotropium 18mg + formoterol 10mg or 12mg (TIO 18 + FOR 10),

and indacaterol/glycopyrronium 110/50mg (QVA149).

4.3 Data

The search for relevant RCTs was performed on 14th − 18th April in 2014, and resulted in screening of 4720

registries and 3006 abstracts. Both abstract and full-text screening has been performed independently based

on the PICOS criteria by two researchers, and the discrepancies in their decisions were evaluated by a third

researcher independently, in order to avoid any bias in selection of the publications. The process of the

systematic literature review is presented in the flow-chart below and resulted in 26 trials with 77 citations.

Finally, for the outcome of interest FEV1, 22 RCTs were identified to report it in total, 8 of them at 12

weeks, 4 at 24 weeks and 10 for both time points. Only one study was 3-arm study, the SHINE [40], all the

remaining 21 were 2-arm study.
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Figure 4.1: Flow chart of registries.
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Figure 4.2: Flow chart of studies.

An overview of study characteristics is presented in Table 4.1. All studies were randomized, double blind,

multicenter trials. Two studies, SPARK [41] and SHINE [40] included tiotropium 18mcg as an open label

arm, the other arms of these trials were double-blind, DB2113374 [42], DB2113360 [43] and ZEP117115

[44] studies were double-blind, double-dummy trials that had trough FEV1 as primary efficacy endpoint.

DB2113373 [45] and SHINE [40] also had trough FEV1 as primary objective. Tashkin 2009 [46] focused on

the area under the curve for FEV1 measured 0-4 hours after dosing as primary efficacy variable. The primary

outcome of INTRUST 1 [47] and INTRUST 2 [47] was the standardized area under the curve of FEV1 from

5 minutes to 8 hours post dose. The primary objective of SPARK [41] and the Aaron 2007 [48] were the

exacerbation rate, and the ENLIGHTEN [49] study had the number of treatment emergent adverse events

as primary endpoint. The SPARK [41] (64 weeks), Aaron 2007 [48] (52 weeks) and ENLIGHTEN [49] (52

weeks), Chan 2007 [50] (48 weeks), UPLIFT [51] (4 years), GLOW 2 [52] (52 weeks) studies were considerable

longer than the other trials, that had a duration of 26 weeks (SHINE [40], Donohue 2010 [53]) or 24 weeks

(DB2113360 [43],DB2113374 [42], DB2113373 [45], ZEP117115 [44], Niewoehner 2005 [54], Brusasco 2003

[55], Donohue 2002 [56]), 13 weeks (Cassaburi 2000 [57]), or 12 weeks ( INTRUST 1 [47], INTRUST 2 [47],
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Tashkin 2009 [46], Verkindre 2006 [58], Covelli 2005 [59], Moita 2008 [60]). All trials included patients with

COPD older than 40 years and with a smoking history of more than 10 pack-years. The SPARK [41] study

included more severe COPD patients than the other studies. SPARK included patients with stage III or IV

COPD (severe or very severe COPD according to GOLD guidelines) with a FEV1/FVC ratio of less than 70%

and a FEV1 of less than 50% of predicted normal values, and at least one exacerbation in the previous year

requiring treatment with systemic corticosteroids, antibiotics or both. In contrast, the other studies included

moderate or severe (stage II or III) COPD patients with a FEV1/FVC ratio of less than 70% and a FEV1 of

less than 70% of predicted normal values, and no inclusion criterion related to the number of exacerbations

in the previous year. The Table 4.2 presents the treatments,and the duration of each study included in the

network as also the inclusion criteria and the background treatment . As a result of these different inclusion

criteria, differences were observed in the SPARK [41] study compared with the other trials in COPD severity

at baseline. For the same reason, the proportion of patients using ICS at baseline in the SPARK [41] study

was higher (75%) than in other studies (52% on average). In addition, the FEV1 percentage predicted was

lower at baseline in the SPARK study (37.2% predicted) versus other studies (FEV1 ranging from 42.1%

predicted to 59.4% predicted across treatment arms). The other patient characteristics were homogeneous

across trials. The percentage of males in each study arm ranged from 65% to 77.3% and the mean age was

61.9 to 65.0 years across treatment arms within the trials. Long acting bronchodilators had to be discontinued

before entering all trials. The key patient characteristics are presented in Table 4.2. A summary statistics

for the main patient characteristics for the studies included in the NMA reporting the trough FEV1 values

is presented in Table 4.3. A visualization of the mean trough FEV1, age, treatment group and pack years of

smoking at baseline is given in Figure 4.3, duo to not reported values 19 points is missing out of 45 in total.

Table 4.1: Key study characteristics at baseline for studies included in NMA, reporting FEV1 value.

Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

DB2113360

[43]

Tiotropium;

18mg; OD Vi-

lanterol 25mg +

Umeclidinium

62.5mg Vi-

lanterol 25 mg

+ Umeclidinium

125mg

24 weeks Outpatient; ≥ 40

years old; diag-

nosed with COPD,

post-salbutamol

FEV1 ≤ 7% and

post-salbutamol

FEV1/FVC ratio

< 0.7. Smok-

ing history ≥10

pack-years

Allowed: ICS at a dose

of up to 1000 mcg/day of

FP or equivalent, salbu-

tamol/albuterol as rescue

Not allowed: LABAs,

short acting β2-agonists,

short acting anticholiner-

gics and SABA/ICS com-

bination products

Continued on next page
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Table 4.1 – Continued from previous page

Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

DB2113374

[42]

Tiotropium;

18mg; OD Vi-

lanterol 25mg +

Umeclidinium

62.5mg Vi-

lanterol 25 mg

+ Umeclidinium

125mg

24 weeks Outpatient;≥40

years old; diag-

nosed with COPD;

post-salbutamol

FEV1/FVC ratio

of <0.70 and a

post-salbutamol

FEV1 of ≤70%;

Smoking history

≥10 pack-years

Allowed: ICS at a dose

of up to 1000 mcg/day of

FP or equivalent, salbu-

tamol/albuterol as rescue

Not allowed: LABAs, oral

short acting and long act-

ing β2-agonists, inhaled

short acting β2-agonists,

inhaled short acting

anticholinergics and

SABA/ICS combination

products

DB2113373

[45]

Placebo Vi-

lanterol 25mg +

Umeclidinium

62.5mg

24 weeks Outpatient; ≥40

years old; diag-

nosed with COPD;

post-salbutamol

FEV1/FVC ratio

of <0.70 and a

post-salbutamol

FEV1 of ≤70%;

Smoking history ≥

pack-years

Allowed: ICS at a dose

of up to1000 mcg/day of

FP or equivalent, salbu-

tamol/albuterol as rescue

Not allowed: LABAs,

LABA/ICS combination

products, short acting

β2-agonists, short act-

ing anticholinergics and

SABA/ICS combination

products

Continued on next page
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Table 4.1 – Continued from previous page

Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

ZEP117115

[44]

Tiotropium;

18mg; OD Vi-

lanterol 25mg +

Umeclidinium

62.5mg

24 weeks Outpatient; ≥ 40

years old; diag-

nosed with COPD;

post-salbutamol

FEV1/FVC ratio

of <0.70 and a

post-salbutamol

FEV1 of ≤70%;

Smoking history ≥

pack-years

Allowed: ICS at a dose

of up to1000 mcg/day

of FP or equivalent,

salbutamol/albuterol

as rescue Not allowed:

LABAs, LABA/ICS com-

bination products, oral

short acting and long act-

ing β2-agonists, inhaled

short acting β2-agonists,

inhaled short acting

anticholinergics and

SABA/ICS combination

products

INTRUST 1

[47]

Tiotropium;

18mg; OD Inda-

caterol 150mg

+ Tiotropium;

18mg; OD

12 weeks ≥ 40 years

old; Post-

bronchodilator

FEV1 ≤65% and

≥ 30%. Post-

bronchodilator

FEV1/FVC <

70%. Smoking

history ≥ 10 pack

years

Allowed: ICS monother-

apy, salbutamol/albuterol

as rescue Not allowed:

LABAs, short acting

β2-agonists (except

those prescribed in the

study), theophylline,

anticholinergics

Continued on next page
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Table 4.1 – Continued from previous page

Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

INTRUST 2

[47]

Tiotropium;

18mg; OD Inda-

caterol 150mg

+ Tiotropium;

18mg; OD

12 weeks ≥ 40 years

old; Post-

bronchodilator

FEV1 ≤ 65% and

≥ 30%. Post-

bronchodilator

FEV1/FVC <

70%. Smoking

history ≥ 10 pack

years

Allowed: ICS monother-

apy, salbutamol/albuterol

as rescue. Not allowed:

LABAs, short acting

β2-agonists (except

those prescribed in the

study), theophylline,

anticholinergics

Aaron 2007

[48]

Tiotropium

18mg OD +

salmeterol 25mg

2puffs BID

Tiotropium

18mg OD +

placebo 2 puffs

BID Salme-

terol/Fluticasone;

25/250mg/puff;

two puffs BID

+ Tiotropium;

18mg; OD

52 weeks ≥ 35 years old;

diagnosis of mod-

erate or severe

COPD; ≥ 1 exac-

erbation of COPD

requiring systemic

steroids or antibi-

otics in previous

12 months; smok-

ing history ≥ 10

pack years; Post-

bronchodilator

FEV1 ≤ 65%;

FEV1/FVC <

70%.

Allowed: albuterol for

relief of symptoms Not

allowed: ICS, LABA,

anticholinergics

Continued on next page
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Table 4.1 – Continued from previous page

Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

ENLIGHTEN

[49]

Placebo

QVA149

(110 mg in-

dacaterol/50

mg glycopyrro-

nium); OD

52 weeks ≥ 40 years old;

diagnosis of mod-

erate or severe

COPD (stage II

or III according

to GOLD 2008

criteria); post-

bronchodilator

FEV1 < 80% and

≥ 30%. Post-

bronchodilator

FEV1/FVC <

0.70. Smoking

history ≥ 10 pack

years

Allowed: Albuterol

as rescue medication,

ICS monotherapy Not

allowed: long-acting

bronchodilators (LABA,

LAMA, theophylline),

short-acting muscarinic

antagonists

Continued on next page
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Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

SPARK [41] Tiotropium;

18mg; OD

QVA149

(110 mg in-

dacaterol/50

mg glycopyrro-

nium); OD

64 weeks ≥ 40 years old;

diagnosis of severe

or very severe

COPD (stage III

or IV according

to GOLD 2008

criteria); post-

bronchodilator

FEV1 < 50%;

FEV1/FVC <

0.70; ≥1 exac-

erbation in the

previous 12 months

requiring systemic

corticosteroids or

antibiotics; smok-

ing history ≥ 10

pack years

Allowed: salbutamol,

stable dose of ICS Not

allowed: long-acting

bronchodilators

Continued on next page
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Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

SHINE [40] Placebo

Tiotropium;

18mg; OD

QVA149

(110 mg in-

dacaterol/50

mg glycopyrro-

nium); OD

26 weeks ≥ 40 years old;

diagnosis of mod-

erate or severe

COPD (stage II

or III according

to GOLD 2008

criteria); post-

bronchodilator

FEV1 < 80% and

≥ 30%. Post-

bronchodilator

FEV1/FVC <

0.70. Smoking

history ≥ 10 pack

years

Allowed: Salbuta-

mol/albuterol as rescue

medication, inhaled or

intranasal corticosteroids

in constant doses Not

allowed: LABA, LAMA,

LABA/ICS

Tashkin 2009

[46]

Tiotropium

18mg OD +

Formoterol

12mg BID

Tiotropium

bromide 18mg

OD + Placebo

BID

12 weeks aged ≥40

years; post-

bronchodilator

FEV1 <70% and

>30% predicted

normal or >0.75

L, whichever was

less, at run-in;

FEV1/FVC<0.70

Continued use of prior

stable ICS regimens and

systemic corticosteroids

for the treatment of exac-

erbations was permitted

throughout the study. All

patients were provided

with albuterol inhalers for

use as rescue medication

Continued on next page
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Table 4.1 – Continued from previous page

Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

Chan 2007

[50]

Tiotropium

18mg; OD

Placebo

48 weeks ≥ 40 years old;

≥10 pack-years;

FEV1 ≤ 65%;

FEV1/FVC ≤

70%; included if

≥ 1 exacerbation

previous yr but

not in 6 wks prior

(later amended to

incl 1 exacerbation

in past 2 yrs)

Allowed: Stable dose

oral corticosteroids, ICS,

theophylline preparations,

mucolytic preparations

(not containing bron-

chodilators), LABAs

UPLIFT [51] Tiotropium

18mg; OD

Placebo

4 years ≥ 40 years old; >10

pack-years; FEV1

≤ 70%;FEV1/FVC

≤ 70%; excluded if

exacerbation 4 wks

prior

Allowed: All respiratory

medications, except other

inhaled anticholinergic

drugs

Niewoehner

2005 [54]

Tiotropium

18mg; OD

Placebo

6 months ≥40 years old;

≥10 pack-years;

FEV1 ≤ 60%;

FEV1/FVC ≤

70%;excluded if

not recovered from

exacerbation ≥ 30

days prior

Allowed: All other res-

piratory medications

(including ICS and

LABAs) Not Allowed:

Open-label anticholiner-

gic bronchodilator

Brusasco

2003 [55]

Tiotropium

18mg; OD

Placebo

24 weeks >40 years old;

>10 pack-years;

FEV1 ≤ 65%;

FEV1/FVC ≤ 70%

-

Continued on next page
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Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

Donohue

2002 [56]

Tiotropium

18mg; OD

Placebo

24 weeks ≥40 years old; >10

pack-years; FEV1

≤ 60%;FEV1/FVC

≤ 70%

Allowed: Usual ICS and

oral steroids; Not Al-

lowed: Inhaled anticholin-

ergic LABAs

Donohue

2010 [53]

Tiotropium

18mg; OD

Placebo

26 weeks Patients aged 40

years or older

with a smoking

history of 20 pack-

years or more

and a diagnosis of

moderate-to-severe

COPD (GOLD

criteria) were

enrolled. Post-

bronchodilator

(within 30 min of

inhaling albuterol

360 mg) forced

expiratory volume

in 1 second (FEV1)

<80% and ≥30%

predicted and

FEV1/forced vital

capacity (FVC)

<70%.

Patients could continue

inhaled corticosteroid

(ICS) monotherapy if

stable for 1 month be-

fore screening; dose and

regimen were to remain

stable throughout the

study. Before the start of

the run-in period, treat-

ment with anticholinergic

bronchodilators or with

β2-agonists was discon-

tinued with appropriate

washout, and patients re-

ceiving fixed-combination

β2-agonist/ICS were

switched to ICS

monotherapy at an

equivalent dose. All

patients were supplied

with albuterol for use as

needed.

Continued on next page
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Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

GLOW 2

([52]

Glycopyrronium

50mg OD

Tiotropium

18mg; OD

Placebo

52 weeks Males and females

≥40 years, with

a smoking history

of ≥10 pack-yrs,

a diagnosis of

moderate-to-severe

stable COPD, post-

bronchodilator

FEV1 ≥30%

and <80% of

the predicted

normal, and post-

bronchodilator

FEV1/FVC<0.70

were enrolled.

Allowed: inhaled or in-

tranasal corticosteroids

and H1-antagonists;

Salbutamol/albuterol as

rescue medication. Not

allowed: LAMAs (min

7 days before run-in);

LABAs or LABA/ICS

combinations (min 48h

before run-in).

Verkindre

2006 [58]

Tiotropium

18mg; OD

Placebo

12 weeks FEV1 ≤

50%;FEV1/SVC≤

70%;residual vol-

ume ≥ 125%;

excluded if un-

stable doses oral

corticosteroid 6

wks prior

Allowed: Stable doses oral

corticosteroids, ICS, theo-

phylline preparations, mu-

colytic agents; Not Al-

lowed: Use of SABAs, oral

ß2-agonists, or LABAs

Casaburi

2000 [57]

Tiotropium

18mg; OD

Placebo

13 weeks FEV1 ≤

65%;FEV1/FVC ≤

70%; ≥ 40 years

of age; diagnosis

of COPD defined

by ATS; smoking

history of >10

pack-years

Allowed: stable doses

of theophylline, ICS, oral

prednisone Not Allowed:

Other inhaled or oral

bronchodilators

Continued on next page
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Study Treatments Trial Dura-

tion

Inclusion criteria Background treatment

Covelli 2005

[59]

Tiotropium

18mg; OD

Placebo

12 weeks FEV1 ≤

60%;FEV1/FVC

≤ 70%;excluded

if exacerbation in

prior 6 wks

Allowed: ICS, LABAs

and theophyllines Not

Allowed: Cromones,

leukotriene antag-

onists, and inhaled

anticholinergics

Moita 2008

[60]

Tiotropium

18mg; OD

Placebo

12 weeks FEV1 ≤

70%;FEV1/FVC

≤ 70%;excluded if

≥ 3 exacerbations

previous year or

exacerbation in

6wks prior

Allowed: LABAs, theo-

phylline, mucolytics, ICS,

stable doses oral corticos-

teroids. Temporary in-

creases in theophylline or

oral steroids for exacerba-

tions; Not Allowed: theo-

phylline 24 h preparation
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Table 4.2: Key patient characteristics at baseline for studies included in NMA, reporting FEV1 value.

Study Treatments ITT Male

(%)

Age

(sd)

Current

smok-

ers

(%)

Severe

or

very

severe

(%)

ICS

use

(%)

COPD

Duration

mean

(sd)

Pack

years

(sd)

FEV1 %

predicted

(sd)

DB2113360

[43]

Tiotropium;

18mg; OD

208 67 62.6

(9.39)

48 53 45 NR 41.9

(24.44)

47.8

(13.36)

Vilanterol

25mg +

Umecli-

dinium

62.5mg

212 70 63

(8.67)

46 50 44 NR 44.8

(27.65)

48.0

(12.94)

Vilanterol

25 mg +

Umecli-

dinium

125mg

214 71 62.9

(8.87)

58 53 48 NR 43.5

(24.98)

47.2

(12.79)

DB21133747

[42]

Tiotropium;

18mg; OD

215 71 65.2

(8.3)

47 52 53 NR 54.0

(31.59)

47.4

(13.10)

Vilanterol

25mg +

Umecli-

dinium

62.5mg

217 65 65

(8.62)

42 51 47 NR 47.8

(26.13)

47.7

(13.55)

Vilanterol

25 mg +

Umecli-

dinium

125mg

215 69 63.8

(8.51)

45 59 53 NR 46.9

(24.90)

47.1

(12.88)

DB2113373

[45]

Placebo 280 70 62.2

(9.04)

54 58 49 NR 47.2

(27.21)

46.7

(12.71)

Continued on next page
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Study Treatments ITT Male

(%)

Age

(sd)

Current

smok-

ers

(%)

Severe

or

very

severe

(%)

ICS

use

(%)

COPD

Duration

mean

(sd)

Pack

years

(sd)

FEV1 %

predicted

Vilanterol

25mg +

Umecli-

dinium

62.5mg

413 74 63.1

(8.71)

49 51 51 NR 46.5

(25.80)

47.8

(13.19)

ZEP117115

[44]

Tiotropium;

18mg; OD

451 67 62.7

(8.50)

54 58 53 NR 44.4

(25.03)

46.5

(12.76)

Vilanterol

25mg +

Umecli-

dinium

62.5mg

454 68 61.9

(8.41)

59 60 54 NR 44.1

(24.44)

46.2

(13.02)

INTRUST

1 [47]

Tiotropium;

18mg; OD

564 67 63.4

(9.22)

36 53 52 6.6 (6.45) 47.2

(26.58)

48.9

(11.46)

Indacaterol;

150mg;

OD +

Tiotropium;

18mg; OD

570 70 64.0

(9.07)

40 53 52 7.1 (6.12) 47.2

(25.86)

48.3

(9.70)

INTRUST

2 [47]

Tiotropium;

18mg; OD

570 68 62.8

(8.98)

43 54 51 7.1 (6.26) 46.3

(24.64)

48.6

(9.76)

Indacaterol;

150mg;

OD +

Tiotropium;

18mg; OD

572 63 63.1

(8.83)

38 54 57 7.3 (6.48) 46.2

(25.52)

48.6

(9.74)

Aaron 2007

[48]

Tiotropium;

18mg; OD

156 53.8 68.1

(8.9)

27 NR 25 11.3 (8.8) 51.8

(28.0)

42.1

(13.5)

Continued on next page
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Table 4.2 – Continued from previous page

Study Treatments ITT Male

(%)

Age

(sd)

Current

smok-

ers

(%)

Severe

or

very

severe

(%)

ICS

use

(%)

COPD

Duration

mean

(sd)

Pack

years

(sd)

FEV1 %

predicted

Tiotropium

18mg OD

+ salme-

terol 25mg

2puffs BID

148 57.4 67.6

(8.2)

24.3 NR 34.9 NR 48.7

(27.1)

41.2

(13.0)

Salmeterol/

Fluti-

casone;

25/250mg/puff;

two puffs

BID +

Tiotropium;

18mg; OD

145 57.9 67.5

(8.9)

32 NR 27 10.3 (8.1) 50.3

(23.1)

42.2

(12.2)

ENLIGHTEN

[49]

Placebo 113 76.1 62.9

(8.14)

45 19 39 5.46 (5.1) 38.1

(15.93)

59.43

(12.5)

QVA149

(110 mg

inda-

caterol/50

mg gly-

copyrro-

nium);

OD

226 77.3 62.5

(8.81)

45 31 46 5.82

(5.74)

36.3

(16.01)

56.39

(13.27)

SPARK

[41]

Tiotropium

18mg; OD

742 75 63.6

(7.8)

37 100c 76 7.2 (5.5) 47

(28)

37.4 (8.1)

Continued on next page
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Table 4.2 – Continued from previous page

Study Treatments ITT Male

(%)

Age

(sd)

Current

smok-

ers

(%)

Severe

or

very

severe

(%)

ICS

use

(%)

COPD

Duration

mean

(sd)

Pack

years

(sd)

FEV1 %

predicted

QVA149

(110 mg

inda-

caterol/50

mg gly-

copyrro-

nium);

OD

741 76 63.1

(8.1)

38 100c 75 7.2 (5.8) 45

(23)

37.0 (8.1)

SHINE [40] Placebo 234f 72.8 64.4

(8.6)

40 32 58 6.4 (5.7) NR 55.2

(12.7)

Tiotropium

18mg; OD

483 75.0 63.5

(8.7)

39 38 59 6.1 (5.5) NR 55.1

(13.5)

QVA149

(110 mg

inda-

caterol/50

mg gly-

copyrro-

nium);

OD

475f 76.4 64.0

(8.9)

40 34 56 6.0 (5.5) NR 55.7

(13.2)

Tashkin

2009 [46]

Tiotropium

18mg OD

+ For-

moterol

12mg BID

124 65 63.8

(8.7)

49 NR 27 NR NR NR

Continued on next page
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Study Treatments ITT Male

(%)

Age

(sd)

Current

smok-

ers

(%)

Severe

or

very

severe

(%)

ICS

use

(%)

COPD

Duration

mean

(sd)

Pack

years

(sd)

FEV1 %

predicted

Tiotropium

bromide

18mg OD

+ Placebo

BID

131 68 63.9

(8.5)

46 NR 27 NR NR NR

Chan 2007

[50]

Tiotropium;

18mg; OD

608 59 67.0

(8.7)

32 NR 66 9.9 (8.1) 50.2

(22.6)

0.39

(0.13)

Placebo 305 61 67.0

(9.1)

30 NR 71 9.9 (7.9) 51.0

(26.3)

0.39

(0.14)

UPLIFT

[51]

Tiotropium;

18mg; OD

2987 75 65.0

(8.4)

29 52 62 9.9 (7.6) 49.0

(28.0)

0.40

(0.12)

Placebo 3006 74 65.0

(8.5)

30 53 62 9.7 (7.4) 48.4

(27.9)

0.39

(0.12)

Niewoehner

2005 [54]

Tiotropium;

18mg; OD

914 98 67.6

(8.7)

29 NR 61 12.2

(10.4)

67.4

(35.4)

0.36

(0.13)

Placebo 915 99 68.1

(8.5)

30 NR 58 11.9

(10.5)

69.4

(36.6)

0.36

(0.13)

Brusasco

2003 [55]

Tiotropium;

18mg; OD

402 77 63.8

(8.0)

NR NR NR 9.0 (7.3) 44.1

(22.9)

0.39

(0.12)

Placebo 400 76 64.6

(8.6)

NR NR NR 9.8 (7.4) 42.4

(22.7)

0.39

(0.12)

Donohue

2002 [56]

Tiotropium;

18mg; OD

209 74 64.5

(7.9)

NR NR 66 9.2 (7.8) 47.0

(25.0)

0.41 (NR)

Placebo 201 75 65.6

(7.8)

NR NR 66 9.7 (7.9) 46.0

(24.0)

0.41 (NR)

Continued on next page
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Study Treatments ITT Male

(%)

Age

(sd)

Current

smok-

ers

(%)

Severe

or

very

severe

(%)

ICS

use

(%)

COPD

Duration

mean

(sd)

Pack

years

(sd)

FEV1 %

predicted

Donohue

2010 [53]

Tiotropium;

18mg; OD

420 65 64

(8.8)

NR NR 35 NR 50.0

(25.1)

0.54

(0.16)

Placebo 425 61 63.6

(8.9)

NR NR 40 NR 49.7

(23.9)

0.56

(0.14)

GLOW2

[52]

Tiotropium

18mg OD

267 63 63.9

(8.2)

44 NR 52 7.5 (6.6) 50.2

(28.0)

0.56

(0.13)

Placebo 268 65 63.6

(9.1)

46 NR 51 7.4 (6.6) 48.0

(24.0)

0.56

(0.14)

Verkindre

2006 [58]

Tiotropium;

18mg; OD

46 94 61.0

(9.5)

24 NR NR 9.7 (6.9) 45.6

(23.1)

0.35

(0.09)

Placebo 54 94 60.0

(10.2)

33 NR NR 8.8 (6.6) 41.8

(18.0)

0.36

(0.09)

Casaburi

2000 [57]

Tiotropium;

18mg; OD

276 67 65.0

(8.6)

NR NR NR 9.3 (8.0) 64.5

(33.1)

0.39

(0.14)

Placebo 188 63 65.0

(9.0)

NR NR NR 8.6 (6.9) 60.5

(30.2)

0.38

(0.14)

Covelli

2005 [59]

Tiotropium;

18mg; OD

94 66 66.0

(8.9)

40 NR 54 10.1 (8.1) 66

(35.6)

0.40

(0.13)

Placebo 84 49 63.0

(9.2)

37 NR 58 10.4 (7.7) 65

(31.2)

0.39

(0.14)

Moita 2008

[60]

Tiotropium;

18mg; OD

147 NR NR 28 NR NR NR NR NR

Placebo 164 NR NR 25 NR NR NR NR NR
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Table 4.4: Difference in CFB for trough FEV1(SE) in mL at 12 and 24 weeks.

Study Treatments Weeks Difference in CFB

of trough FEV1 in

mL (SE)

DB2113360 [43] UMEC/VI 62.5/25 vs TIO 18 12 80 (24.49)

24 90 (26.02)

DB2113374[42] UMEC/VI 62.5/25 vs TIO 18 12 95 (21.94)

24 60 (25.26)

DB2113373 [45] UMEC/VI 62.5/25 vs Placebo 12 195 (17.86)

24 167 (20.15)

ZEP117115 [44] UMEC/VI 62.5/25 vs TIO 18 12 109 (15.82)

24 112 (16.07)

INTRUST 1 [47] TIO 18 + IND 150 12 80 (12.76)

INTRUST 2 [47] TIO 18 + IND 150 12 70 (10.20)

Aaron 2007 [48] TIO 18 + SAL 50 vs TIO 18 24 18.49 (45.46)

ENLIGHTEN [49] QVA 149 vs Placebo 12 163 (32.02)

QVA 149 vs Placebo 24 152 (35.36)

SPARK [41] QVA 149 vs TIO 18 12 70 (13.79)

QVA 149 vs TIO 18 24 70 (13.79)

SHINE [40] QVA 149 vs Placebo 12 230 (17.86)

24 200 (17.86)

TIO 18 vs Placebo 12 130(17.86)

24 130(17.86)

QVA 149 vs TIO 18 12 100 (17.86)

24 70 (17.86)

Tashkin 2009 [46] TIO 18 + FOR 12 12 90(28.06)

Chan 2007 [50] TIO 18 vs Placebo 12 100(15.00)

UPLIFT [51] TIO 18 vs Placebo 24 100 (7.00)

Niewoehner 2005

[54]

TIO 18 vs Placebo 12 100 (10.00)

TIO 18 vs Placebo 24 100 (13.00)

Brusasco 2003 [55] TIO 18 vs Placebo 24 120 (100.00)

Donohue 2002 [56] TIO 18 vs Placebo 24 137 (20.00)

Continued on next page
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Table 4.4 – Continued from previous page

Study Treatments Weeks Difference in CFB

of trough FEV1 in

mL (SE)

Donohue 2010 [53] TIO 18 vs Placebo 12 140 (20.41)

TIO 18 vs Placebo 24 140 (20.41)

GLOW 2 [52] TIO 18 vs Placebo 12 83(19.00)

TIO 18 vs Placebo 24 84(21.60)

Verkindre 2006 [58] TIO 18 vs Placebo 12 110(40.00)

Casaburi 2000 [57] TIO 18 vs Placebo 12 150 (14.00)

Covelli 2005 [59] TIO 18 vs Placebo 12 184 (37.00)

Moita 2008 [60] TIO 18 vs Placebo 12 102 (31.38)
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Figure 4.3: Plot of the main patient characteristics at baseline, mean FEV1 in mL, age, treatment and pack

years in each arm of the studies reporting these characteristics. Out of 45 values, 26 were reported.
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4.4 Networks of evidence

According to the evidence available a network of connected treatments for trough FEV1 at 12 weeks, Figure

4.4, and at 24 weeks Figure 4.5 is presented below. The size of its treatment’s circle indicates its precision,

and the width of the lines connecting treatments represents the amount of studies comparing them, as the

line is thicker more studies had examined these treatments, strengthening the precision of the pooled effect

estimation between them. At 12 weeks the network of evidence include 18 studies(4.4), 17 were 2-arm study

and only one was a 3-arm study (SHINE [40]). Treatments connected was the QVA149, TIO 18 + IND

150, TIO 18 + FOR 12, and the treatment of interest UMEC/VI 62.5/25, placebo and TIO 18 monotherapy

were included to the network in order to make the comparison of dual therapies LABA/LAMA feasible.

The network of evidence for trough FEV1 at 24 weeks contains 14 studies, again only SHINE study had

three arms and the rest were 2-arm studies. The treatments included are the UMEC/VI 62.5/25 as the

treatment of interest, placebo and TIO 18 monotherapy were included to make the comparison with the two

LABA/LAMA treatments TIO 18 + SAL 50 and QVA 149 feasible.

Placebo

QVA149

TIO 18

TIO 18 + FOR 12

TIO 18 + IND 150

UMEC/VI 62.5/25

Figure 4.4: Network of evidence for trough FEV1 at 12 weeks.
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Placebo

QVA149

TIO 18TIO 18 + SAL 50

UMEC/VI 62.5/25

Figure 4.5: Network of evidence for trough FEV1 at 24 weeks.

4.5 Statistical Analysis

This dissertation is part of an internship at Mapi Group, therefore the actual codes are not possible to

be published as they are confidential. The frequentist meta-analyses and the corresponding figures for the

examples were implemented in R using the labralies meta [61] and metafor [62]. The Bayesian meta-analyses

were performed using R2OpenBUGS [63] and coda [64] libraries. The frequentist network meta-analysis was

based on the graph theoretical approach [65], applied in netmeta package [66]. The Bayesian network meta-

analyses were implemented in R using the models performed by NICE DSU via openBUGS [64], the only

case where the code related to the implementation had been provided by Mapi. All figures for the examples

and application were performed in R by the ggplot2 package [67].

4.6 Frequentist Approach

A frequentist NMA was performed for the network of evidence of the continuous outcome trough FEV1, at

12 weeks and 24 weeks as described in the section 4.4. Both fixed and random effects models were performed

duo to competence of the application. Two forest plots are given, depicting the comparison of treatments

refereed to placebo, and UMEC/VI 62.5/25 for each model respectively. The forest plots were decided to be

presented instead of the tables as the diversification among the included treatments is directly detected. The

models were in general in line, as it was expected, with the random effects estimations having in all cases
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more uncertainty around them, duo to the one additional source of variability. The analyses where conducted

in R with the use of the netmeta package [66], from which the evidence networks plots were derived (Fugure

4.4 and Figure 4.5).

All therapies in the network of trough FEV1 at 12 weeks proven to be more efficacious than placebo in

both models(Figure 4.6 and Figure 4.10). The UMEC/VI 62.5/25 therapy has stricken the best performance

among the other treatments in both fixed and random effects models, contrary to the TIO 18 therapy which

performed worst. The comparison of UMEC/VI 62.5/25 therapy with the other treatments showed that it

was comparable to LABA+/LAMA therapies (QVA149, TIO 18 + FOR 12, and TIO 18 + IND 150) for

both models (Figure 4.7 and Figure 4.11). More analytically, the UMEC/VI 62.5/25 therapy compared to

LABA+/LAMA interventions for both fixed and random effects showed numerically higher values of trough

FEV1 values at 12 weeks, however the results were not consider to be statistically significant. Nevertheless,

the treatment of interest, UMEC/VI 62.5/25, had statistically better performance compared with the placebo

and TIO 18 monotherapy.

The results for trough FEV1 at 24 weeks of fixed and random effects were approximately the same, while

again the random effects estimations give larger CI as always. The QVA149, TIO 18 and UMEC/VI 62.5/25

were proven to be statistically efficacious compared with the placebo, TIO 18 + SAL 50 was numerically

grater, however not statistically significant (Figure 4.8 and Figure 4.12). The TIO 18 + SAL 50 showed the

largest CI as only one study ([48]) was identified to report the outcome of interest at 24 weeks, comparing

it with the TIO 18. Despite the results at 12 weeks, the trough FEV1 values at 24 weeks in both models

shown that only the QVA149 dual therapy was comparable to UMEC/VI 62.5/25 therapy, for the rest of the

treatments UMEC/VI 62.5/25 performed statistically better (Figure 4.9 and Figure 4.13). The comparison

of the TIO 18 + SAL 50 with the UMEC/VI 62.5/50 reported the largest CIs as they are compared in only

Aaron study [48], which had the highest SE (Table 4.4) of all the studies included in the analysis.
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Figure 4.6: Frequentist fixed effect NMA forest plot of trough FEV1 at 12 weeks using placebo as reference

treatment.

Figure 4.7: Frequentist fixed effect NMA forest plot of trough FEV1 at 12 weeks using UMEC/VI 62.5/25

as reference treatment.
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Figure 4.8: Frequentist fixed effect NMA forest plot of trough FEV1 at 24 weeks using placebo as reference

treatment.

Figure 4.9: Frequentist fixed effect NMA forest plot of trough FEV1 at 24 weeks using UMEC/VI 62.5/25

as reference treatment
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Figure 4.10: Frequentist random effects NMA forest plot of trough FEV1 at 12 weeks using placebo as

reference treatment.

Figure 4.11: Frequentist random effects NMA forest plot of trough FEV1 at 12 weeks using UMEC/VI

62.5/25 as reference treatment.
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Figure 4.12: Frequentist randon effect NMA forest plot of trough FEV1 at 24 weeks using placebo as reference

treatment.

Figure 4.13: Frequentist random effects NMA forest plot of trough FEV1 at 24 weeks using UMEC/VI

62.5/25 as reference treatment
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4.7 Bayesian Approach

The analyses of trough FEV1 at 12 and 24 weeks have been performed from the Bayesian perspective to serve

the completeness of the analysis. As a general observation, the two frameworks, frequentist and Bayesian,

present approximately same results, which was the main question to answer of this application. All estima-

tions at two time points had same direction, leading eventually to the same decisions as in the frequentist

perspective. Due to consistence, the presentation of the results is the same as in the frequentist approach.

Two forest plots have been presented for each time point for each model, fixed and random effects, the first

illustrates the comparison of the treatments with the placebo and the second one compares the treatment

of interest, UMEC/VI 62.5/25, with the rest of therapies included in the network. The fixed and random

effects models were in line with the corresponding models given from the frequentist framework, the CrIs

were approximately the same and even identical in some estimations e.g. at 12 weeks the effect of UMEC

62.5/25 versus placebo (CrI: 187.70, 228.20). The analyses were performed with the use of R and openBUGS,

as discribed in section 4.5.

All active treatments compared with the placebo by means of trough FEV1 at 12 weeks for both models

were proven to be statistically efficacious (Figure 4.16 and Figure 4.20). In that case, the estimation of TIO

18 + FOR 12 vs placebo showed the greatest uncertainty among the other treatments, as it is reported in only

one study, [46], reporting quite large SE. As it is expected the copmarison of the TIO 18 monotherapy with

the placebo had the smallest CrI, being compared in 8 studies (Table 4.4). All dual therapies included in the

network of evidence for the trough FEV1 at 12 weeks showed numerically lower performance compared with

the UMEC/VI 62.5/25 dual therapy, however none of these estimations was consider statistically significant

(Figure 4.15 and Figure 4.19)

At 24 weeks the NMA results of the outcome of interest comparing all active treatments to placebo were

in line with the results at 12 weeks, thus the two dual therapies (UMEC/VI 62.5/25, QVA149, and TIO 18

+ SAL 50) and the one monotherapy (TIO 18) were proven to be statistically significant more efficacious

than placebo (Figure 4.16 and Figure 4.20). The comparison of the treatment of interest compared the

other treatments for both models, illustrated that the dual therapies, QVA149 and TIO 18 + SAl 50, where

comparable by means of trough FEV1 at 24 weeks (Figure 4.17 and Figure 4.21).
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Figure 4.14: Bayesian fixed effect NMA forest plot of trough FEV1 at 12 weeks using placebo as reference

treatment

Figure 4.15: Bayesian fixed effect NMA forest plot of trough FEV1 at 12 weeks using UMEC/VI 62.5/25 as

reference treatment
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Figure 4.16: Bayesian fixed effect NMA forest plot of trough FEV1 at 24 weeks using placebo as reference

treatment

Figure 4.17: Bayesian fixed effect NMA forest plot of trough FEV1 at 24 weeks using UMEC/VI 62.5/25 as

reference treatment
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Figure 4.18: Bayesian random effects NMA forest plot of trough FEV1 at 12 weeks using placebo as reference

treatment

Figure 4.19: Bayesian random effects NMA forest plot of trough FEV1 at 12 weeks using UMEC/VI 62.5/25

as reference treatment
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Figure 4.20: Bayesian random effects NMA forest plot of trough FEV1 at 21 weeks using placebo as reference

treatment

Figure 4.21: Bayesian random effects NMA forest plot of trough FEV1 at 24 weeks using UMEC/VI 62.5/25

as reference treatment
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Chapter 5

Conclusion

This dissertation has shed light into the area of evidence synthesis by into detail discussing and providing

examples for the meta-analysis and network meta-analysis techniques in frequentist and Bayesian frameworks

for both fixed and random effects models for continuous outcomes. The theory has been analyzed in detail

in the first part, starting from the meta-analysis to the mixed treatment comparison, in which the indirect

treatment comparison (ITC), pooled effect estimation, and network meta-analysis (NMA) were presented.

Moreover, the dissertation’s second part presented an application in COPD, using an existing project per-

formed by Mapi [1], enhancing this NMA by providing all possible complex of frameworks and models.

The evidence synthesis methodologies start from the systematic literature review; a crucial process in

which all the available data, referring to the question of interest should be identified avoiding any source of

bias The importance of that stage should not be underestimated, as it ensures the validation of the analysis.

After deciding the considerable homogeneous RCTs, able to be pooled, the techniques of meta-analysis can

be applied. The decisions of the similar enough studies, discussed in section 3.2.1, can be challenging and

demanding and prerequisite the collaboration of expert disease, clinicians and statisticians.

Meta-analysis has been presented in Chapter 2 synthesises the available RCTs comparing two specific

treatments to provide an overall effect. There are two main models, fixed and random effects, the latter

is considered as more conservative allowing two sources of variation and is preferred when the number of

combined studies is reasonable large or there is heterogeneity among the combined studies. Both frameworks

have been analyzed and presented in a extensive fictional example, leading to approximately the same results.

In addition, in Chapter 3 the mixed treatment comparison methodologies have been presented, starting with

the ITC methodology, based on a mathematical equation [24], which overcomes the meta-analysis limitation;

the ability to synthesize indirectly compare treatments. A network of direct and indirect evidence is available

by the pooled estimation, based on the ITC methodology, however this is deemed to be more appropriate

for trivial networks containing small number of studies and treatments, as it does not take into consideration
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the geometry of the network of evidence. The final step of the evidence synthesis pyramid is the network

meta-analysis, which analyze a complex network of an arbitrary number of connected treatments directly and

indirectly. As it is the extension of meta-analysis, it has also two possible models, fixed and random effects,

and both of them have been discussed in frequentist and Bayesian framework, in the same chapter. All the

methodologies have been accompanied with examples, however in order to emphasize the NMA techniques,

an extensive example has been performed in form of an application.

The application of the NMA has been presented in Chapter 4, based on a network meta-analysis in pa-

tients with COPD [1]. The scope of this application was to replicated the results of the Bayesian analyses

published and additionally performing the frequentist analyses as well, to serve question of interest about

the differentiation of these two frameworks. Furthermore, in the publication only the analyses based on the

random effects model were provided, while in this application both models have been performed for each

approach. The continuous outcome of the trough FEV1 at the time point of 12 and 24 weeks were decided

to be analyzed. As a summary, it can be said that both frameworks are equivalent, as they lead to the

approximately same results.

The fundamental idea of evidence synthesis by means of meta analysis and mixed treatment comparison,

with emphasis to the NMA methodology, has been presented in this dissertation. Due to the limitation of

this analysis only the continuous outcome has been discussed. It could have been interesting to present also

binary or count data which are also common outcomes of interest, e.g. deaths or annual exacerbation rates

in a disease area. Another important technique could be the meta-regression, which requires a large number

of studies and can deal with more heterogeneous studies. Moreover, in cases when there is no available

evidence connecting the treatments of interest, a tool for indirectly comparisons, the Matching-Adjusted

Indirect Comparisons [68] can be performed, however this was beyond the scope of this dissertation.
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effect of tiotropium on hyperinflation and exercise capacity in chronic obstructive pulmonary disease.”,

Respiration; international review of thoracic diseases 73, 420–7 (2006).

59H. Covelli, S. Bhattacharya, C. Cassino, C. Conoscenti, and S. Kesten, “Absence of Electrocardiographic

Findings and Improved Function with Once-Daily Tiotropium in Patients with Chronic Obstructive Pul-

monary Disease”, Pharmacotherapy 25, 1708–1718 (2005).

60J. Moita, C. Bárbara, J. Cardoso, R. Costa, M. Sousa, J. Ruiz, and M. Santos, “Tiotropium improves

FEV1 in patients with COPD irrespective of smoking status”, Pulmonary Pharmacology & Therapeutics

21, 146–151 (2008).

61G. Schwarzer, “meta: An R package for meta-analysis.”, R News 7(3) (2007).

62W. Viechtbauer, “Conducting Meta-Analyses in R with the metafor Package”, Journal of Statistical Soft-

ware 36, 1–48 (2010).

63S. Sturtz, U. Ligges, A. Gelman, and N. Thomas, “R2OpenBUGS: A Package for Running OpenBUGS

from R”, Journal of Statistical Software (2005).

64M. Plummer, N. Best, K. Cowles, and K. Vines, “Coda: convergence diagnosis and output analysis for

mcmc”, R News 6, 7–11 (2006).
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