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ABSTRACT

Stella-Varvara Gkila

Convex Optimization and Applications.

June 2019

In the following thesis, we discuss algorithms for convex optimization. Is
optimization for convex function on convex sets. These algorithms are based
on notion of functional and convex analysis. We use functional analysis to
construct sequence which are convergent in Hilbert space and R". The basic
idea is that the iterative sequence we construct converges to the minimum of
objective function. We generalize the notion of gradient and differentiable
functions for non-smooth, so we can minimize them. The first method we see
is the gradient method, which is about convex and differentiable functions.
Next algorithm, proximal point is about non-smooth functions and then we
combine gradient and proximal and we have an algorithm for functions, which
is the sum of smooth and non-smooth. Finally, we study the primal dual

algorithm. An example of these methods is provided to Lasso function.
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IHNEPIAHYH

2téda-BapPapa I'kida

Kvpt Beltiotomoinon kol epappoyéc.
Tovviog 2019

YmMv  mopovoa gpyacio, Oa mapovoidoovpe oAyopibuovg yio TNV
EAOYIOTOTOINGY KVPTOV GLVAPTNCE®V TAVEO o€ KLPTA ovVola. Avtol ot
alyopiBpol Pacifovial e €vvoleg TNG CLVAPTNGLOKNG KOl KUPTNG AVAALGTG.
Xpnowponotovpe Bactkég Evvoleg Kot Be@pnpata TG ovAAVONG Y10 TETVYOVUE
TNV 6VYKALGT TOV aKoAovOl®V Tov katackevdotnkav. H facikn déa gival va
etiagovpe EMOVOANTTIKEG dladikacieg MOV GLYKAIVOLV ©TO EAAYLOTO 1TNG
OVTIKELEVIKNG cuvapTnong. O ydpog mov Ba dovAéyovpe mepltocdTEPO €ivar o
Hilbert pe xamoto mopadeiypata kot avapopéc otov R™. Oa yevikeboovpe tnv
£VVola TNG TOPAYDOYOV UE OKOMO VO UTOPOVE VA SLAYELPLGTOVUE GLVAPTNCELG
KUPTEG OAAG Oyt Srapopioipeg. H mpotn pébodog eivar n gradient method,
aQopd Tapaywyicipes cuvaptnoels. Metd 0o avapepBodpe otov proximal point
oV aQopd un mopayoyiowweg ocvvaptioels. Ot ovo mapamdve péBodot
ovvovalovtotl katr poag divouv tov proximal gradient method, pe tov omoio
UTOPOVUE VO  EAOYLOTOMOLGOVUE GCUVOPTNGELS 7OV euUmAékovtal  Opotl
dappopicipwv cvvaptnoewv Kat pn. Metd 6a avaeepBodue otov primal-dual
alyopiBpo. Télog 6Oa mapovoidoovpe £va TAPASELYHO TOV TOPATAVO

alyopiBuwv oto mpoPAnua elayiotonoinong Lasso.
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1 INTRODUCTION

The main issue in this thesis is theory of convex optimization. We study about main
notion of functional and convex analysis and their usability to optimization. In general,
we need to construct sequences with good properties like monotonicity and
convergence. We use these sequences to minimize convex functions which are
differentiable or not. So, we generalize the notion of derivative of a function.

In chapter 2 we define the basic notion of functional analysis, like norms, convergence
sequence, Banach and Hilbert spaces. We refer to basic properties of Hilbert spaces,
some of them are weakly convergence, projection. We define the function extended real
set and we define the domain, sublevel sets, graph and epigraph of function. We connect
lower-semicontinuity with the epigraph and sublevel sets. In the end we study about
minimizing sequence of a function and how convex functions minimizing in a reflexive
space (i.e. Hilbert space).

In chapter 3, we study the convexity of sets. We define affine sets hyperplanes and half-
spaces and finally, the Hanh — Banach Theorem.

In chapter 4, we define convex function and their connection with convex sets. Then
we connect convexity with differentiability, and we generalize all the properties convex
differentiable functions for nondifferentiable functions. The generalization of gradient
is the subgradient and is the notion of subgradient. Next, we introduce the Moreau —
Yosida regularization, a function which is a smooth version of non-smooth function.
We know from previous theory that this function has unique minimizer in Hilbert
spaces and this unique minimizer of Moreau — Y osida regularization is called proximal
operator. Proximal operator has very good properties, is monotone operator, is
nonexpansive and we can interpret it as the resolvent of subgradient. Then we study the
Fenchel conjugate and how we use it in duality. Finally, we define the dual problem.
In chapter 5, we will analyze the idea of iterative algorithms. First, we study gradient
method, which is about differentiable functions. This method exploits the monotonicity
of the gradient and construct a sequence which in Hilbert space converges to the
minimum of, f if exists. Next, we study the proximal point method, which is a
generalization of gradient for non-smooth functions. Then we combine the two previous

methods and we have the proximal gradient method, which is about functions, where

-1-



involve smooth and non-smooth functions. The basic idea in all three algorithms is to
construct sequences, where are converge under assumptions to the minimum of f. The
last algorithm we present is the primal dual, which is for smooth and non-smooth
functions and uses the conjugate theory.

In the chapter 6, we apply proximal gradient method on Lasso function. This thesis
aims to address the theory of convex optimization presenting the main points of the
works of [1] Juan Peypouquet (Convex Optimization in Normed Spaces,2015), [2]
Heinz H. Bauschke, Patrick L. Combettes (Convex Analysis and Monotone operator
Theory in Hilbert Spaces, 2010), Stephen Boyd, Lieven Vandeberghe and R. Tyrrell
Rockafellar.



2 ANALYSIS

2. Introduction

General convex analysis and functional analysis are very close related. In this section
we discuss basic notions of functional analysis like norms, normed spaces, inner
product, Banach spaces and Hilbert spaces, basic convergence of sequence, topological
properties. Basic notions of functions like epigraph of functions. We define the
extended real line, and proper and lower-semicontinuous functions. Also, we study the

minimizing of functions in reflexive spaces.

2.1. Norms

Definition 2.1.1. Let A € RY a real vector space. Each function ||.[: A —» R with
the following properties is a norm on A :

(a) |lx]| = 0 for each x € A and ||x|| = 0 if and only if x = 0.

(b) [|Ax]| = |Al||x]] for each A € R and each x € A.

©) llx + vyl < llx|l + |lyll for each x,y € A. (triangle inequality).

If function || .|| is a norm on X, the pair (X, || . ||) is called normed space. [-]
Note that a norm is a measure of the length of a vector and a distance between two
vectors.
Spaces with finite dimensions.
1. We define on R™ the supremum norm || .|| : R™ — R as:
x|l == max {|x;|:i =1, ...,m}

The space (R™, || . || ) is denoted £7¢.
2. We define on R™ the 1 —norm ||.|l; : R™ — Ras:
llxlly = loea| + - + |

The space (R™, || . ||,) is denoted £7*.

3. We define on R™ the Euclidean norm || .||, : R™ — R like:

m 1/2
Il = (Zw)

i=1



Proposition 2.1.2. (Cauchy — Schwarz inequality). Let x, y € R™, then we have,
m m 1/2 ,m

D il < (Zw) (Zw)
i=1 i=1 i=1

Proof. IfwesetA =Y, |x;yvil ,B = CRqlx:1%),C = (E™,]v:i|?). We have to prove
that A2 < BC & (24)? <4BC & (24)? — 4BC < 0.We suppose the function
gR->R  gA):= x| + [y D%+ -+ x| + lym)? =0, which after
operations, takes the following form g(1) = BA?> + 2442+ C = 0, for each A € R. If

1/2

A =0, then x; = 0 for each i = 1, ..., m and the inequality holds (as equality). After
all we suppose that A > 0 and then g(1) > 0 for each A € R and the quantity D =
(24)? — 4BC = 0 and we have the inequality. [-]
Definition 2.1.3. An inner product on X (linear vector space) is a function
(.,.): X XX - R such that:

(a) (x,x) > 0vx € R

b (x,x)=0 x=0

(©) (x,y) = (v, x)

(d) (x, 211 + A2y2) = 2106, y1) + A%, ¥2) VX, y € R[]

The most common example is {x, y) = Y=, x;¥;. We observe that (x, x) = ||x||22Vx €
R.
Definition 2.1.4. The dual norm of || .|| is denoted || . ||, and is defined as
Iyl = sup {(y, MIxll < 1}.[
Examples:
1. The dual of the dual norm is the original norm, ||x||.. = ||x]| for all x.
2. The dual of Euclidean norm is the Euclidean norm.

3. The dual of #; — norm is the £, — norm, and the opposite. Since,

sup {(y, x) | Ixll <13 = Xi1lyil = llyll;.

oWe denoted X* =4(X,Y) the space of bounded linear operators from space (X, || . || x)
to (Y, || - lly)- A linear operator K : X — Y is bounded if:

IKllx+ = supjxiiy_, [KCO)lly < co.
oThe topological dual of a normed space (X, ||.||) is the normed space (X*, || .[|*),

where || .||« = || [lax:v) -



oThe function (.,.)x*x : X" X X = R, defined as (K, x)x+ y = K(x) is called bilinear
function, and is the duality product between X and X *.

oThe topological dual of (X*,||.]|+), is denoted (X**||.|l..) and is called the
topological bidual of (X*,||.||*). We define the function u: X - R as pu,(K) =
(K,x)xx , VK € X*.

Definition 2.1.5. We called the canonical embedding of X into X** the function

J:X - X*, defined by g(x) = py. [

Definition 2.1.6. A normed space (X, || .||) is reflexive if for the canonical embedding

we have, (X)) = X™". [

2.2. Sequences

Definition 2.2.1. A sequence is a function x: N - R. We denote x,, := x(n) or {x,, }7=;.
Definition 2.2.2. Let a normed space (X,]|.]||). A sequence x, in X (strongly)

converges to x € X, and we write x,, & X as n — oo if lim ||x,, — x|| = 0. We say that
n—-oco

the /imit of the sequence x,, is x . [-]
Definition 2.2.3. Let a normed space (X,||.]]). A sequence x,is called Cauchy

sequence if for each m,n we have lim ||x,, — x,|| = 0. ]
m,n—co

Proposition 2.2.4. Let x,, a convergent sequence, then the sequence is Cauchy. []
Proposition 2.2.5. Every Cauchy is sequence is bounded. []

Proposition 2.2.6. Let (X,||.||]) a normed space. If every Cauchy sequence is
convergent the normed space we say that is complete and the normed space is called
Banach space. [-]

Proposition 2.2.7. Let X space with inner product. The function || .||: X — R, where
l|x|| = \/m is a norm.

Definition 2.2.8. A real vector space X with inner product is called Hilbert space H if
X is complete to norm || . || which is associated with inner product.

Examples 2.2.9. 1) Every Hilbert space from definition above is Banach space.
2) The Euclidean space R" is a Hilbert space, with the norm ||x|| = /X, xZ.

Weakly Convergent Sequences



Definition 2.2.10. Let a normed space (X, || . ||). A sequence x,, in X converges weakly
to x, asn — oo if for each f € X, we have
limp o f (xn) = f(%).

In this case, the weakly convergence of x,, means, convergence of f(x,) to f ()
for each f € X™.
Note that a convergent sequence is converges weakly, since

1<F 2 — 20 < I fIllloen — I
Lemma 2.2.11. For each o € H, the function f,: H — R with f,(x) = (x, ) € H* and
fellus = Nl
Theorem 2.2.12. (Riesz Representation Theorem) Let H Hilbert space, and f € H".
Then, there are unique a € H such that f = f,.
Proposition 2.2.13. Let H is a Hilbert space. Then a sequence (x,,) € H converges to
x, if and only if, (x,, z) = (X, z).
Proof. From definition 2.2.10 and Theorem 2.2.12. we have the conclude. []
Corollary 2.2.14. Hilbert spaces is reflexive.

Proof. We take a € H™, and from Riesz Representation theorem we have y € H* such
that a,, = (z, y),, for each z € H*, and then b, € Hl such that y = (b, x) for all x € H.
Therefore, a = (y, z), = z(b,) Vz € H". []

An important property of Hilbert spaces is the notion of projection.

Proposition 2.2.15. Let C c H, C # @ closed and convex. Let x € H. Then there exists
a unique point y* € C such that

lIx = y*Il = minyecllx —yll.
Additionally, it is the only element of K such that
(x—y*5,y—y*)<0,forally €C.

This property means that there is a unique point y* in C which is closest to x € H [1].

2.3. Topological Properties

Definition 2.3.1. Let (X, || . ||) be a normed space and let a point x, € X.
(a) The open ball with center the point x and radius r > 0 is the set
By (xo,7) ={x €X:|lx —x0ll <71}.
(b) The closed ball with center the point x, and radius r > 0 is the set

By(x0,7) =x € X:|lx — x0ll < 7. [



Definition 2.3.2. Let (X, || . ||) be a normed space and let A € X. The element x € A is
called an interior point of A if there exists a r > 0 such that By (x,,7) S A. The set of
all points interior to A is called the interior of A and is denoted int A.[-]
Definition 2.3.3. Let (X, || . ||) be a normed space and let A € X.

(a) The set A is called open if every element in A is an interior point.

(b) The set A is called closed if its complement A = X\A is open. [-]

Definition 2.3.4. Let (X, || . ||) be a normed space and let A € X.
(a) The element x € X is called contact point of Aif V € > 0 it holds :
AN By(x,&) # Q.
(b) The closure of A, is the set of all contact points to A
cl(A) ={x e X:Ve>0,AnB(x,¢e) = 0}.[]

Let (X, 7) be a topological vector space. The weak topology on X* (dual) is defined to
be the coarsest topology (the one with the fewest open sets) under which element x €
X correspond to a continuous map on X*.

Definition 2.3.5. The topological space (X, 7) is Hausdorff, if for each pair x # y, there
are open and disjoint seton X, G N H = @, such thatx € G,y € H. []

2.4. Functions

The Extended Real Line

The extended real line [—oo,+0] = RU{—o}U{+o}. We join the elements
—00, 400 to the real line R and we extend the order for each { € R —oo < & < 400, We
can define function on a set X with values only in R U {400} or in R U {—0o0}.

Example. The indicator function of A C X, is defined as,
0,x€eA
5, (0) = {

+00, otherwise’
These function is very useful because we can define the optimization problem for a
function f: X - R, min {f(x): x € A} like min {f (x) + §,(x): x € X}. The second
problem has better properties. Like linearity.
Definition 2.4.1. A function f(x) is called Lipschitz continuous on X if:

If G = fFWI < Lllx = yll vx,y € X.[]
Definition 2.4.2. Let X be a nonempty set and let f: X — [—o0, +00].



(a) The domain of f is dom(f) = {x € X|f(x) < +o0}, is the set of points where
f is finite.

(b) The function f is proper if dom(f) # @.

(c) Giveny € R, the y —sublevel set of fis I}, (f) = {x € X|f(x) < y}.

(d) The graph of f is graf = {(x,a) € X X R|f(x) = a}.

(e) The epigraph of f is epif = {(x,a) € X X R|f(x) < a}.

(f) The function f is inf-compact, if for each y € R the I}, (f) is relatively compact.

(The closure of sublevel is compact) [-]

The epigraph includes the graph of f and all points above it.
We define argmin(f) = {x* € X: f(x*) < f(x) forall x € X.} [
We observe that if x € dom(f), then x € I}, (f) and that

argmin(f) = NI, (), fory > inf (f).
Let (X, 7) is a Hausdorff space. A function f: X - R U {+o0} is lower-semicontinuous
at a point x, € X if for each @ < f(x,) there is a neighborhood V of x, such that
f(y) > aforally € V. If f is lower-semicontinuous at every point of X, we say that

f is lower-semicontinuous in X. [-]

\_~

Figure 1 lower-semicontinuous function.

v

Let f:X —» [—oo,+]andlet A C X.
(a)The infimum of f over A is denoted inf f(A) or infresf (x) .
(b) The supremum of f over A is denoted sup f(A) or supreaf (x).

The definition 2.4.4. is equivalent with the next one.

Definition 2.4.6. Let an extended real valued function f: X — [—oo0, +00] it is lower-

semicontinuous (1.s.c.) if, for all x € X, if x,, » x, then f(x) < lim inff(x,). [
n—>00

Theorem 2.4.7. Let f: X — [—o0, +0] . The following statements are equivalent:

(a) The function f is l.s.c.



(b) The set epi(f) is closed in X X R

(c) For each y € R, the y —sublevel set is also closed.

Proof. (a) = (b)
Let f 1.s.c. and take an element (x,, @) & epi(f). From the definition 2.4.4. of

l.s.c., we have that a < f(x;). We take an element y € (a,f(xo)) and from l.sc. we
have a neighborhood V' of x such that f(z) > y for all z € V. From all this is obvious
that the set V X (—oo,y) is a neighborhood of (x,, @), where the intersection with
epi(f) is the empty. So, the set epi(f) is closed.
(b) = (c)
Let epi(f) is closed. For each y € R, the y — sublevel set of f is homeomorphic to
epi(f) N [X X y]. And from that I, (f) is closed.
(c)=(a)
Let I,(f) be closed and take a random x, € X and a € R such that a < f(x,). Then
Xo € I,(f) and because the sublevel set is closed, there is a neighborhood V (x,) that
the intersection with I, (f) is empty. So, f(z) > a forall z € V(x,). [1]
Lemma 2.4.8. Let (f;);¢; be a family of function from X to extended real line. Then we
have the following statements:

(a) epi(supie;fi) =Nier epi(fy)

(b) If I is finite, then epi(min;e;f;) =V;e; epi(f;)

Proof. [2] (a) Let (x,a) € X X R and (x, @) € epi(sup;¢f;), which means that
sup;e fi(x) < aso foreachi € I, f;(x) < a and from definition of epi(f) we have
(x, ) € epi(f;) and finally (x, @) €N;¢; epi(fi).

(b) Let (x,@) € X X Rand (x, @) € epi(min;g,;f;) we the same logic like (a)
we conclude that (x, @) €U,;¢; epi(f;). [
Example. The indicator function §. of a set C < X is lower semicontinuous & C is
closed.
Proof. Let ay € R. The I,(8¢) is the @ if y < 0, and the set C otherwise. From the
Theorem 2.4.8. we have the result. [-]
Lemma 2.4.9. Let X be a Hausdorff space and let (f;);; be a family of lower-
semicontinuous functions from X to the extended real line R U {—o0} U {+00}. Then

sup;e; fi is lower-semicontinuous.



Proof. Since epi(sup;e;f;) =N epi(f;) and epi(f;) is a closed set and the
intersection of closed sets are closed we have the result. [-]

Theorem 2.4.10. Let (X, 7) be a Hausdorff space and let f: X - R U {40} be proper,
lower-semicontinuous, and inf-compact. Then argmin(f) is nonempty and compact.

Moreover, inf (f) > oo. [-]
Minimizing Sequences

Definition 2.4.11. A function f: X = R U {4+0} is sequentially lower-semicontinuous

at x € dom(f) if f(x) < lim inff(x,) for every sequence x,, converging to x. [-]
n—>00

Definition 2.4.12. We say that x,, is a minimizing sequence for f: X - R U {400} if
lim £(x) = inf (£).

Proposition 2.4.13. Let x,, be a minimizing sequence for a function f: X — R U {400},
which is sequentially 1.s.c. and proper. If x,, = x, then x € argmin(f). [-]

Theorem 2.4.14. Let X be reflexive. If f: X — R U {+00} is proper, convex, coercive
(I, (f)is bounded Vy € R) and lower-semicontinuous, then argmin(f) is nonempty
and weakly compact. If moreover, f strictly convex, then argmin(f) is a singleton.
Therefore, theorem 2.4.14. assure us that for proper, convex, coercive, l.s.c. we have

minimizers.

-10 -



3 CONVEXITY

3.Introduction
In this section we discuss basic notions of convexity. First, we define convex sets.
Convex sets help us to identify convex functions. We discuss about affine sets and we

study separating theorems.

3.1. Convex Sets

Let xq,x, € R™, where x; # x,. We define line segment between x; and x, points of

the form
z=Ax;+ (1 —A)x,, A ER.
We define closed line segment between x; and x, points of the form
z=2x+(1—-ADx,,0 <A< 1.

We note that z = x, + A(x; — x3), this means that z is the sum of the point x, and the

direction x; — x, scaled by the parameter A [4].

Let C c R™, we say that C is convex if (1 —2A)x + Ay € C and 0 < A < 1. It means
that a set C c R" is convex if the line segment between any points in C lies in C. In

particular, H and @ are convex [4]. [-]

Theorem 3.1.1. The intersection of a collection of convex sets is convex. [-]

A convex combination of x4, ..., x, € C is a point of the form A,x; + --- + A,,,x,,, where
the coefficients 4;,i = 1, ..., m is non-negative and /%, 4; = 1.

Theorem 3.1.2. Let C ¢ R™. The set C is convex if and only if it contains all convex
combinations of its elements.

Proof. By definition C is convex © A;x; + A,x, € C , x4,x, € C,A4; =2 0,4, = 0 and
A+, =1

So for m = 2 the convexity it holds.

For m > 2 we suppose that C is closed under, taking all convex combination of fewer

than m vectors:
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Let z = A;x1 + -+ A, X, for x4, ....x,, € C and for some A; we have that A; # 1,

otherwise )2, 1; = m # 1. We choose arbitrary A; # 1 and let y = k,x, + -+

Ai
1-1;°

kKmXm, km = Then, X%, ki =X",4; /X%, A; = 1. After all y is a convex

combination of m — 1 elements of C , and from our hypothesis y € C and from the fact
that z = (1 — A;)y + A,x; we have the result x € C.[4] [[]

The set of all convex combinations of points in C is called convex hull of C and is
denoted by conv C. In particular:

conv C = {A41x; + -+ Apxp|x; €C, A4 =204 ++ 4, =1}, [

It is obvious that convex hull is always a convex set. It is the smallest set that contains
C. It is very interesting to obtain that the convex combination idea is useful in
probability distributions. In general, let € € R™ a convex set and X is a random

variable, where X € C with pr = 1, then EX € C [4]. [-]

3.2. Affine Sets

Let C ¢ R™, if for any x;,x, € C and A € R, we have Ax; + (1 — A)x, € C, the set C
is called affine set.
A affine combination of x4, ..., x,, € C is a point of the form A,x; + -+ + A,,x,,, where
moA =1
The set of all affine combinations in C is called affine hull, and is denoted by af f C:
affC = {A1x; + -+ A xplxy, X €C, A4 + -+ 1, = 1},
The affine hull is the smallest set that contains C.The dimension of C,dim(C) is the
dimension of the af f C. [-]
Let C ¢ R™. The relative interior of C is denoted as ri(C) and is defined as:
ri(C) ={x € C|B(x,r) naffC < C for some r > 0}. [-]
Example 3.2.1. [4] We consider a square (x,y) —plane in R? : C =z = (x,y,k) €
R3|—1<x<1,—-1<y<1. Theaffinehullof Cisaff C = {z € R3| k = 0}. The
int(C) =@buttheri(C) ={zeR?| —1<x<1,-1<y<1,k=0}.[
We say that a function f: R"™ — R™ is affine if it is a sum of a linear function and a

constant.
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3.3. Separating Theorems

Letb € R", b # 0 and any 8 € R. The sets:
o {x[{x,b) < f}
o {x[{x,b) = B}

Are called closed half-spaces. And the sets:
o {x|(x,b) < S}
o {x|(x,b) > B}
Are called open half-spaces.

A hyperplane is a set of the form { x | (x — x(, b) = 0 }. A hyperplane divides R" into
two half-spaces. Geometrically [4] the hyperplane is a set of points with a constant inner
product to a vector b.
Theorem 3.3.1 (Hahn-Banach Separation Theorem). Let A and B be nonempty, disjoint
convex of a normal space (X, || . ||).
(a) If A is open, there exist K € X*\{0} such that (K, x) < (K, y) for each x € A
andy € B.
(b) If A is compact and B is closed, there exists L € X*\{0} and & > 0 such that
(K,x)+e<(K,y)Vx € A,y € B.

3.4 Convexity and Nonexpansiveness.

Let T: H — H an operator. We define the set of fixed points of T the set
FixT=={xeH: x =T(x)}.

Non expansive operators are very useful, [2] because many optimization problems
based to find fixed points of nonexpansive operators. Nonexpansive operators are
Lipschitz continuous operators with L = 1.

LetC c H, C # @ andlet T:C - H.We say that T is:
(a) Firmly nonexpansive, if
ITx = Tyll> + I = T)x — (I = DylI> < llx — ylI>, vx,y € C.
(b) Nonexpansive, if
ITx =Tyl < llx = yll,vx,y € C.

(c) Contractive, if
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ITx — Tyl < Lllx —y|l,L <1,Vx,y € C.
It is obvious that statement (a) implies (b).

X

T(x)

T(y) ™

T(y)

(A)T contraction (B) T is nonexpansive

Figure 2 Geometrical Interpretation of contraction and nonexpansiveness

The interpretation of contraction is that mapping x, y to T(x), T (y) reduces the distance
between them and nonexpansive operator does not increase the distance between them

[5].
Basic Properties.
o LetT;, T, nonexpansive, then T; o T, is nonexpansive.
e Let T; a contraction and T, is nonexpansive, then T; o T, is contraction

Proposition 3.4.1. Let C nonempty set of H. Let T:C - H. The T is firmly
nonexpansive if, and only of, I — T is firmly nonexpansive.

Let C c H a nonempty set. Let T: C — H a nonexpansive operator and let a € (0,1).
We say that T is averaged with constant a, or a —averaged, if there exists a
nonexpansive operator R:C — H such that T = (1 — a)l + aR. Note that if T is
averaged, then is nonexpansive. By proposition 3.4.1. T is firmly nonexpansive if and

only of is %-averaged.
Let C c H and let (x,,) € H. Then (x,,) is Fejer monotone with respect to C if
Vx € C |lxp4q — xIl < llxy — xl.

Proposition 3.4.2. Letx,, € H,and C c H, C # @. If x,, Fejer monotone with respect
to C. The we have the following:

(a) x, is bounded.
(b) Forevery x € C, (||x,, — x||)nen converges.

Theorem 3.4.3. Let x,, € H,and C c H, C # 9. If x,, Fejer monotone with respect to
C and that every weak sequential cluster point of (x,) € C. Then (x,) converges
weakly to a point X € C.
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Krasnosel’skii-Mann Theorem

Theorem 3.44. Let x, EH, and C cH , C # @ and convex. Let T:C = C be a
nonexpansive operator such that FixT # @, let A, € [0,1] such that Y ey A, (1 —
An) = +o0, and let x, € C. Set

vn €N x,41 = x, + 1, (Tx, — xp,)
Then the following statements are hold:
(a) x, is Fejer monotone with respect to FixT.
(b) (Tx,, — xp)nen converges strongly to 0.
(¢) x, converges weakly to a point in FixT.
Proof- [2] (a)lt holds the following corollary.
Corollary 3.4.5. Let x € H, y € H, and let a € R. Then
llax + (1 — )yl + a(1 — a)llx — ylI*> = allxll* + (1 — ) llylI*.
By corollary and definition of nonexpansiveness of T, we have for every y € FixT
X1 = Y112 = 11 = ) (e — ¥) + A0 (Txn, — Y)II?
= (1= )llxp = Y112 + lITxn = Tyl — 2, (1 = A Txn — xplI?
< llxn = ¥lI? = 20 (1 = )1 Txn — x5 1%
This implies that (x,,) is Fejer monotone with respect to FixT.

(.b) From the last inequality we have Y ,enA,(1 — A)Tx, — x,112 < llxo — ylI?.
Since Y ey An (1 — A,,) = 400 we have lim ||Tx,, — x,|| = 0.

ITxps1 — Xpaall = ITxp41 — Txn + (1 = 2)(Tx — x|
< llxnsr = xnll + (1 = 2)ITxn — x4
= |ITxy — xnll.
This implies that (Tx,, — x,,)nen converges strongly to 0.
(.c) Let x be a weak sequential cluster point of (x,,). Then from

Corollary 3.4.6. Let D c H closed, convex set. Let T: D — H be nonexpansive, let
X, € D, and let x € H. Suppose x a weak sequential cluster point of x,, and that x,, —
Tx, » 0= x € Fix(T).

Now apply theorem 3.4.3. and we have the result.

Proposition 3.4.7. Let a € (0,1), let T: H — H be an a — averaged operator such that
Fix(T) # @, let (1) (nen) be a sequence in [0, ﬂ such that ), ey 4, (1 — ad,) = + oo,
and let x, € H. Set

X(n+1) = Xn + A (Txy — x,), VR EN
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Then the following hold:
(a) x, is Fejer-Monotone w.r.t Fix(T).
(b) (Tx, — xp) (nen) converges strongly to 0.
(c) (xy) converges weakly to a point in Fix(T).

Note. The previous theorems and propositions assure us the convergence of the
algorithms that we will study in the next chapters.
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4 CONVEX ANALYSIS AND SUBDIFFERENTIAL
CALCULUS

4.Introfuction

In this chapter we define convex functions and their properties. We study the relation
between convexity and continuity and convexity and differentiability. Then we
characterize the convexity. In the second part we generalize the notion of derivative for
nondifferentiable functions and will characterize their minimizers. We will discuss
about proximal map and Moreau — Yosida Regularization, Legendre — Fenchel

conjugate and finally about Fenchel - Rockafellar duality.

4.1. Convex Function

Let f: X - [—o0, +0] be a function. The function f is convex if
fOx+ A -Dy) <Af )+ A -Df(y) B.1)
for each x,y € dom(f) and A € (0,1).
This definition geometrically can be interpreted as the line segment between (a, f (a)),
(,8, f (,B)), which is the chord from a to f3, lies above the graph of f. Otherwise we can

say that f: X — [—oo, +00] is convex if and only if its epi(f) convex [4].

(Bf(B))
(0,f(a))

Figure 3 Convex function.

The function f is strictly convex if

fAx+ 1 -Dy) <Af(x) + A -Df )
for each x,y € dom(f) and A € (0,1).
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The function f is strongly convex with parameter u > 0 if

fAx+ A =Dy) SAf(x)+ A =Df(y) - %/1(1 = Dllx - ylI?

for each x,y € dom(f) and A € (0,1).The inequality (3.1) is called Jensen’s inequality
and it is extended to convex combinations for m points, where m > 2, so we have :
fuxy + -+ Apxm) S A f () + -+ A f o).
We can observe that if f is convex, then each y —sublevel set is convex. We say that f
is concave if —f is convex. In the same way, strictly concave.
Example 4.1.1. We suppose the indicator function . , where C is convex set, then §.
is a convex function.
Example 4.1.2. Let f be a function on R".
(a) If f is a norm, then it is a convex function.
Proof. f(6x + (1 —=0)y) =[6x+ (1 - 6)yll
< ||6x|| + /(1 — B)yl|| (triangle inequality)
= 0llx|l + (1 = &)yl
=0f(x)+ (@ -6)f ().
(b) If f (x) = max{x,, ... x, } then is convex.

(¢) If f is the Tchebycheff norm , f(x) = max|k;|,i = 1, ...n, is convex function.

The support function §*(.|C) of a convex set C < R™ is:

8°(.1C) = sup{{x, y)|y € AC}.
Theorem 4.1.3. If f; and f, are proper convex function on R", then f; + f, is convex.
Proof. Indeed, from the definition of convex function it is elementary.
Theorem 4.1.4. The pointwise supremum of an arbitrary collection of convex functions
is convex.
Proof. As we know, the intersection of a collection of convex sets is convex. We have
f(x) = sup{fi(x)|i € I}, where f; are convex functions for each i. Indeed, the epi(f).
We define the lower semicontinuous hull of f :

liminfy, . f ), if f(y) > o forallx € X
—oo, otherwise

GRS

We say that function f is closed if f = clf. The closedness is equivalent with lower-

semicontinuity.
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4.2. Convexity and continuity
This subsection is following to [1].
Proposition 4.2.1. Let f: X — R U {+00} proper function. Then, f is convex and lower
semicontinuous if, and only if, there exists a family of functions (f;);¢; if continuous

affine functions on X such that f = sup(f;).
Characterization of Continuity

Proposition 4.2.1. [1] Let f: X —» R U {400} a convex function and a point x, € X. We
have the following equivalent statements:

(a) f is upper bounded in a V (x,)

(b) f is Lipschitz-continuous in a V (x,)

(c) f is continuous in x5 € X

(d) (xg,a) € int(epi(f)) for each A > f(x,).

Note. Let (X, || .||) be a normed space. Let f: X — R U {400} a convex function. We
know that f is continuous in int(dom(f)) in the next three cases:

(1) X is finite dimensional.

(i) X is Banach space and f is L.s.c.

(iii)  f is continuous at a point x.

4.3. Convexity and Differentiability.

Let a function f: X — [—oo, +]. We define the directional derivative of function f at

a point x in domain of f, dom(f) in the direction h the quantity:
f'(;h) = lim w

We define the one-sided directional derivative of f at x € X to the direction h to be the

fQx+th)—f(x)

limit f'(x; h) = ltlln(;n ;

One of the most useful property of convex functions is that the one-sided directional

derivative is always exists in R U {+o0} .
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Theorem 4.3.1. Let f convex function and let a point x such that f(x) < 4oo. For each

h, the difference quotient in the definition of f’(x; h) is a non-decreasing function of
t > 0,s0 that f'(x, h) exists and f'(x; h) = 1t1301 f—(x“ht)‘f(x)‘

Proof. [13] The difference quotient for t > 0 can be expressed as t~1g(th), where
gh) = f(x + h) — f(x). The set epi(g) and can be interpreted as the removal of point
(x, f(x)) to (0,0). Also, t~1g(th) = (gt~)(h). From the fact that epi(g) is convex,
we have that also the set t"*epi(g) is convex, so the function gt~! is convex. Since

epi(g) contains the origin, the latter set increases, as t ! decreases. [-]

Proposition 4.3.2. Let f: X - R U {400} proper and convex, and let x € dom(f). We
define the function @,: X — [—o0, + ], as ¢, (h) = f'(x, h). The function ¢y (h)

is convex and if f is continuous in x, then ¢, is finite and continuous in X.[-]

If the above function ¢, is linear and continuous in X, in a point x € dom(f) we say
that thefunctionfisGateaux — dif ferentiable(GD)atx. The Gdteaux derivative or
gradient of f at x is Vf(x) = f'(x;.) and Vf(x) € X*.

A function f is Fréchet-differentiable at x if there exists L € X* such that

G+ ) = f@) = (LI _
]

The Fréchet derivative of f at x is Df (x) = L.

0.

limyp) -0

Proposition 4.3.3. (Descent Lemma). If f: X - R U {+o} is Gateux-Differentiable

and Vf is Lipschitz — continuous with constant L, then

L
fO) < fO) +(VfC,y -0+ lly — x||?

for each x, y € X. In particular, f is continuous.
Proof. The proof is according [1]. Let h = y — x and define g: [0,1] - R by g(t) =
f(x + th). Then g(t) = (Vf(x + th), h) for each t € (0,1), and so

JHVF (e + th), hydt = [ g(B)dt = g(1) — g(0) = £() = f(x).

Therefore,

FO) - fQx) = f (VF (), by dt + f (Vf (x + th) — VF(x), h) dt

< (Vf(x),h>+f IVf (x +th) = VF (IR lldt
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1

< (Vf(x),h)+L||h||2f tdt

0
= (Vf(),y —x) +=ly — x[I2.0

Let f: X — Ris GD in X. The directional derivative of Vf: X — X* is the function
(VA)'(x; h) = lim,_ o+

The function f is twice Gdteaux-differentiable if is Gateaux differentiable and

(VF)' (x; h) exists for all h € X, and the function h — (Vf)'(x; h) is linear and

Vf(x+th)-Vf

continuous. The second Gateaux derivative (Hessian) of f at x € X is V2f(x) =

(V) (x,.) € 4(X; X*).[
Characterization of Convexity [1]

Theorem 4.3.4. (Fermat’s Rule). Let a normed space (X, || .||) and C < X convex set.
Let f: X > RU +{oo}. If f(x) < f(y) forall y € C and if f is Gateaux differentiable
at x, then
(V) y —x) =0

for all y € C. If moreover x € int(C), then Vf(x) = 0.
Proof. Let y € C, from convexity of C we have

z=Ay+ (1 —-A)x € ford e (0,1).
The inequality f(x) < f(z) & f(x + A(y —x)) — f(x) = 0. If we divide by A the
last inequality and let, A - 0 we have f'(x;y —x) > 0 forally € C. []
To understand the Fermat’s Rule, [1] let f a differentiable function on R2. The Theorem

means that f decrease by leaving the set C.

level curves of f

Figure 4 Fermat's rule. The vector is the gradient of f

We conclude that Fermat’s rule gives us a necessary condition for a point X be a

minimizer of f. We have the following
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X is minimizer of f & Vf(X) = 0.
Proposition 4.3.5. Let f: C — R be Gateaux-differentiable, where C < X is convex and
open set. The convexity is characterized by the equivalent statements:
(a) f is convex.
(b) f(y) = f(x) + (Vf(x),y — x), for every x,y € C.
() (Vf(x) = Vf(y),x —y) =0, for every x,y € C.

If f is twice GD on C,

(d)(V2f(x)h,h) = 0, for every x € C and h € X. (positive semidefinite)
Proof- The proof is according to [1]
By convexity of f we have for all y € X and 4 € (0,1),

fAy+ A -Dx) <Af )+ A -Df (%)
= IO < F(y) - F ().
For A = 0 we obtain b). From b) we have obvious the inequality c).
c)=a)Let g:[0,1] » R, where g(1) = f(Ax + (1 —Dy) —Af (x) — (A =D f ().
We obtain g(0) = g(1) = 0 and
g ={Vfx+ A =Dy x=y) = fx)+f¥)

For 1 € (0,1). Take 0 < A; < A, < 1 and write x; = 4;x + (1 — A;)y fori = 1,2.

g' () —g'Ay) = (VF(x) = VF(xp),x; —x3) < 0

A=A,
This implies that g’ is nondecreasing. Since g(0) = g(1) = 0, there exists ¢ € (0,1)
such that g(&) = 0. Since

e g’ nonincreasing

e g'<0onl0¢]

e 9'20
We have that g(4) = 0 and f convex.
d)=c)=a) We assume that f is twice GD. Let t >0 and h € X, we have
(Vf(x +th) = Vf(x),th) = 0. Now,

e We divide by t2.

e We take the limitas t — 0.

We have (V2f (x)h, h) = 0. Finally,
g'MD) =(Vfax+ (1A -Dy)(x—y),x—y) =0,

It follows that g’ is nonincreasing and we conclude like before. []
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The strict convexity characterized as in proposition 4.3.5. but the inequalities are hold
strict. Let f:C — R be GD, where C € X is open and convex then the following
statements are equivalent:

(a) f is strictly convex
®) f@) > f(x) +(Vf,y —x),forany x # y € C.
©) (Vf(x) = Vf(y),x—y)>0,foranyx # y € C.

If additionally f is twice GD on C, then the following is equivalent with the
previous:

(d) (V2f(x)h,h) > 0, for every x € C and h € X.

[1] (Characterization of strong convexity). Let C € X be open and convex, and let
f:C — Rbe GD. The following are equivalent.

(a) f is a —strongly convex
(b) f(y) > f(x) +(Vf,y —x) +%I|x — y|I?, for any x,y € C.
(©) (Vf(x) = Vf(),x —y) = allx — yl|?, forany x,y € C.

If moreover, f is twice GD on C, then the following is equivalent with the previous:

(d) (V2f(x)h, h) = §||h||2, for every x € C and h € X.

Geometrical interpretation of convex differentiable function is that the hyperplane
H={W2) e XxR:f(x) +(Vf(x),y —x) =z}

lies below the epigraph of f, epi(f) and touches it and point (x, f(x)). In other words,

V£ (x) is a non-vertical supporting hyperplane of epi(f) at (x, f(x)).

(Vf(x),—1)

Figure 5 Geometrical Interpretation of convex differentiable function.

4.4. Subgradients
The idea of subgradients is to generalize the notion of gradient Vf to non-differentiable

function. We can generalize the convex inequality
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fO) = ) +{Vf(x),y —x)
for a function f, where f is not necessarily at x.
Let a function f: X — [—o0, +00], convex and lower-semicontinuous. A vector x* € X*
is a subgradient of function f at point x if
f(z)=f(x)+{(x*,z—x),Vz.
The set of all subgradients at x is called the subdifferential of f, is denoted by df and
is defined:
of (x) ={x* € X*|f(y) = f(x) + (x*,y — x),forally € X}.
We say that the function f is subdifferentiable at a point x if df (x) # @.The domain
of df is the set: dom(df) = {x € X|df (x) # 0}. Is is obvious that, dom(df)

dom(f).

Geometrical Interpretation of Subgradients

Let x € X.We assume that f is finite at x. We assume the function

9(2) = f(x) +{x",z — x).

Recall that we as function is affine if it is a sum of a linear function and a constant.

The function g(x) is affine and is a non-vertical supporting hyperplane to the convex

set epi(f) at the point (x, £ (x)).

f(y)

T £3

Figure 6 Geometrical interpretation of subgradients

The subgradient gives affine global underestimator of f.

Properties of Subdifferential df
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It is obvious that the subdifferential of f at x is a closed convex set. Since it is the
intersection of closed convex half-spaces [13] H = {x* | f(z) = f(x) + (x*,x — 2)},
and the intersection of closed, convex set is a closed convex set.
Proposition 4.4.1. The set df (x) is closed and convex, Vx € X.
Proof- [1] For convexity.
Let x;,x; €0f(x) and t € (0,1). For each z€ X and from the definition of
subgradient, we have:

“ f@Dzf)+xz-—x) (1

“ f@zf)+xz—x) (2)

If we add t times the (1) inequality and 1 — ¢t times the inequality (2), we have
tf(2) 2 tf(x) + t{x],z — x) & tf(z) = tf (x) + ({tx],z — x) (3)
1-0f@)zA-0f(x)+{(1—-t)xz,z—x) (4)
If we add (3) and (4) we have
f@=fx)+(txi+ (1 —t)x;,z—x) & tx; + (1 —t)x; € df (x)
For the closed.
We take a sequence x,, € df (x), where x;, = x*. Since, x;, € df (x) we have
f(z) = f(x)+{x;,,z—x),Vz€ X andn € N.
Let n — oo we have
f@)=zfx)+{x*z—x) = x* €df(x).
Examples 4.4.2.
1) Let f:R - R, f(x) = |x|. The function of absolute value is differentiable at
every x # 0. Let’s calculate the subgradient at x = 0.
f(0) ={x" 1 f(¥) 2 f(O) +(x",y = 0)} =
={x"| lyl = {x"y)}
={x"|lylzx"y}
= [-1,1].
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Graph of f

Graph of sub f

2) Letf:X - R, f(x) = ||x||, the Euclidean norm. It is subdifferential at every
x € X and differentiable at every x # 0. The subgradient is:
af(0) = {x" | [ x"ll = 1} = Bx(0,1).

3) Letf: X - R, f(x) = ||lx|]| = max{sTx,s; € {—1,+1}}. We have
2f(0,0) = [-1,1] x [-1,1],
of(1,0) =1 x[-1,1],
af (LD ={(1,D}.
4) Let C c X,C # @ closed and convex set. Let §.: X = R U 400 , the indicator
function, we have:

ZE€06:(x) & 6:(y) = 6:,(x) +(z,y — x) Vy.

It follows that 36, (x) is the normal cone to C at x.
In this part we will analyze some very useful propositions.

Proposition 4.4.3. Let f: X —» R U {400} be convex. If f is GD at a point x, then x €
dom(df) and df (x) = {Vf(x)}.
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Proof. [1] From the convexity of f we have the inequality

fQ) = fx) +(Vf(x),y —x)
and from the subgradient inequality we can imply Vf(x) € df (x).
Let x* € df (x). We must prove that x* is unique and necessarily x* = Vf(x).By
definition,

fO) = fx) +(x"y—x)Vy € X.
Take any h € X and t > 0, and write y = x + th, and from above inequality we have
f(x+tht)—f(X) > (x*, h).

If we take the limit as t — 0, we have,
(Vf(x) —x*,h) = 0Vh e X.

Therefore, x* = Vf(x).
Proposition 4.4.5. Let a convex function, f: X - R U {400} for x* € df (x) and y* €
of (y), then (x* —y*,x —y) = 0.
Proof. We have,

x* €0f(x) & f(y) = f(x) +(x",y —x) (1)

y'€0f(y) = f(x) 2 f(y) +{y,x—y) (2)
If we add (1) and (2) we have,
f(y) + fx) = f(x) +f(y) + (x", y—x) + (¥, x—y) & (x* —y*.x —y) = 0.
With the previous proposition we generalize the non-decreasing monotonicity of a
differentiable function. The subgradient df is a monotone operator. Also, we can
generalize the Fermat’s Rule.
Theorem 4.4.6. Let f: X — R U {+00} a proper and convex function. The element X is
a global minimizer of f & 0 € df(X).
Proof. Let g = 0 be a subgradientof fatx* = f(y) = f(x)+ 0= f(y) = f(x*) =
x* is global minimizer of f. And the opposite direction, let X be a global minimizer of
fothen f(x) = f(X) & f(x) = f(X) +(0,x —X) & 0 € f (X).
The Fermat’s rule is sufficient condition for X be a global minimizer of f.
Proposition 4.4.5. Let a convex function f: X - R U {40} and continuous at x, then
df (x) is bounded and df (x) # @.
The converse of proposition 4.4.5 it is not true. For example [1], let f: R - R U {+o0},

@,if x#0

.. It foll
+o0, otherwise oHows

f(x) = 400 if x # 0, and £(0) = 0. Then the df (x) = {

that function f is subdifferentiable but not continuous at 0.
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4.5. Subdifferential Calculus

Sum of convex functions

In this section we refer a basic and very useful theorem. The Moreau-Rockafellar
theorem. This theorem is about the relation between the subgradient of the sum of two
convex function and the sum of subgradients of two functions. Theory on this
subsection helps us to define duality (next chapter) and to find minimizer for convex

functions, more things will discuss in the next subsection.

Theorem 4.5.1. Let f, g: X - R U {400} be proper, convex, lower semicontinuous.

Vx € X we have,
df (x) + 0g(x) c o(f + g)(x).
If f is continuous at some x, € dom(g), then df (x) + dg(x) = o(f + g)(x)Vx € X
Proof. [1] We take x* € df (x) and y* € dg(x), then
fO) = fl) +x"y—x)and g(y) 2 g(x) +{y",y —x) Vy € X.
If we add the two inequalities, we have
fO+9M=f)+9(x) + & +y"y—x)Vy€eX,
The last inequality implies that x* + y* € a(f + g) (x).
We take u* € d(f + g)(x). We have
g +9g@) = f(x) +glx) +{u",y —x) forevery y € X.

We need to find x* € df (x) and y* € dg(x) such that x* + y* = u*. We define the

convex nonempty sets:
B={r,)eXxR:gly)—gl) < -1}

C={,DeXxXR:f(y)— flx) —(u",y —x) < 1} and,
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h:X > RU+o as h(y) = f(y) — f(x) — (u*,y — x), h is continuous in x, and C =
epi(h), the open convex set A = int(C) is nonempty from proposition (char of

continuity) and the inequality

gy +g@) = fx)+gx) + U,y —x)

We have ANB =@ and from Hahn Banach theorem we obtain a (K,s) €
X* x R\{(0,0)} such that

(K,y)+sA<(K,z) +su,vV(y,1) €A, (z,u) €B.
We take (y,1) = (x,1) € A and (z, ) € B, we conclude that s < 0.

If we take s = 0 and z = x, we have that (K,x, — y) = 0Vy € V(x,) and it follows
K=0 and it is a contradiction to (K, s) # (0,0). Therefore s < 0. For y* = — é we have
) +A<(y"z2) +u

By the definition of C, we take (z,u) = (x,0) € B and we have
Yy=—x+f)—fx) =y y—x)<0.
From inequality g(y) + g(y) = f(x) + g(x) + (u*,y — x) we have
f@)=fx)+u —y*,z—x)Vz € X,
therefore, x* = u* —y* € df (x)Vx € X. [[]
Note. If f is continuous at some x, € dom(g), we have
of(x) +0g(x) =0(f +g)(x),VxEX >
dom(a(f + g)) = dom(df) ndom(dg).

Chain Rule. Let A € X* and let f:Y —» R U {400} be proper, convex, and lower-

semicontinuous. For each x € X, we have
A7 9f (Ax) c o(f = A)(x)
If f is continuous at some y, € A(X),we have the equality,

A" 0f (Ax) = 0(f » A)(x)

From Chain Rule and Moreau — Rockafellar theorem we can conclude,
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A" 0f (Ax) +0g(X) c o(f = A + g)(x),
for A € X* and two functions f, g proper, convex and lower-semicontinuous.
If there is x, € dom(g) such that f is continuous at Ax,, then

A*0f(Ax) + 0g(X) c a(f e A+ g)(x).

4.6. Proximal Map and Moreau - Yosida Regularization.

In this subsection we define functions on Hilbert Space H. In convex optimization is
very common to minimize convex function, which is not smooth, like the ; — norm,
the TV-debluring, or least squares. We need to find a way to handle these functions.
The idea is to create a smooth version of the non-smooth function. We success
smoothness by adding a quadratic term.

We define Moreau-Yosida Regularization of f with parameter (A, x), for a given A > 0
and x € H the function fj(x) = min,eyf(x) + % llx — z||2. The function fy is a

smooth function V A > 0.

Proposition 4.6.1. For each A > 0 and x € H, the function,
2= fon(@) = f@) + 5 llx -z,
has a unique minimizer X and is characterized by the relation,
—-ZXeaf(®).

Proof. [1] The function f; 4 is proper, convex and l.s.c. but also is strictly convex and
coercive, because f is proper, convex and lower-semicontinuous. Therefore, from
Theorem 2.4.15 we know that f; ») has a unique minimizer X . From the Fermat’s Rule
4.4.6 the unique minimizer X satisfies the optimally condition and the Moreau —

Rockafellar Theorem 4.5.1. we have
0 € 0fpn(® =0f(D) + =2 = - X e af (). [

After all, if f is convex, proper and L.s.c. ,then , for any x, there is a unique minimizer

X to the strongly convex problem argmin,eyf(z) + % llx — z||?. We define
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£ =:prox,s(x),
and is called proximity or proximal operator of f.

In general, we define resolvent of a monotone operator T, the quantity (I +AT)™1,
where I the identity relation. As we prove in proposition 4.4.5. the df is monotone
operator and we can define the proximal operator by prox,y = (I + A9f)~!, as the

resolvent of subgradient df.

Proposition 4.6.2. For a proper, convex and lower-semicontinuous function, f: H —

R U {+o0} the proximal operator prox;: H — H is nonexpansive operator.

Proof. [1] Let X = prox)s(x) and ¥ = prox,s(y), so from the previous proposition

4.6.1 we have,
~TXeaf(®) and — L2 € 0 (9).
Since df is monotone, we have
(E=0)-0F-y).x-9)=<0.
This implies,
0<lIZ-9II°P<x—y,& —9) < llx-yllz -l
and therefore,
X =9l <llx—wll. I

Proposition 4.6.3. For proper closed convex function f and A > 0, prox, is firmly

nonexpansive.
Proof. Similar with the above proposition.

The notion of firm nonexpansive is very useful for the convergence of proximal

algorithms, as we shall discuss in the next chapter.

We obtain that the proximal operator in Hilbert space is the unique point X [2] which

satisfies

1
fil) = FR) + o llx = 2II*
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Now we will prove according to [2], that the fixed points of a proximal operator are
the minimizers of f. This is useful, as in algorithms we will minimize convex

functions finding fixed point of nonexpansive operators.

Proposition 4.6.4. Let f a proper, lower-semicontinuous convex function on H to
extended real line and let x, p € H. Then

p=proxs(x) ©Vy EHy —p,x—p)+ f(p) <fQ)

Proof. [2] Let y € H. We suppose p = prox; and for each a € (0,1), z=ay +
(1 — a)p. For every a € (0,1) from definition of proximal operator and the convexity
of f we have

1 2 1 2
f®) < f@)+5llx =z =5 llx = pll
aZ
<af(+1A-a)f @) —alx—p,y—p)+—Illy —pl*
2
Sy-px—p+fP)<fO)+lly-pl*
Letting a — 0, we have the inequality.

We suppose now that (y — p,x — p) + f(p) < f(y) then
1 2 1 2 1 2
f@) +5llx=ylI* < fO) +5llx —pllI* +x —p,p—y) + > lp =¥l
1 2
= f0) +5 1=yl

and this implies p = proxs. []

Proposition 4.6.5. Let f proper, lower-semicontinuous convex function on H to
extended real line. Then

Fix(proxf) = Argmin(f).
Proof. [2] Let x € H. Then from proposition 4.6.4. for
x = proxg(x)
e VyeHy—xx—x)+f(x) < f()
SVyeHf(x) < f()
& x € argmin(f). [
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4.7. The Legendre — Fenchel conjugate

Let a function f: X = R U {400} proper, we define the Legendre — Fenchel conjugate

(or convex conjugate) be the function f*: X* -U +oo ,

fr(x") = supyex{(x”, x) = f(x)}.

The f* is convex and lower-semicontinous as the supremum of of continuous affine

functions. If f proper, f* proper closed convex.
Example. Let f(x) = %lellz, 1<p<oo,
en f1() = 2lxllg, 2+ 2 =1
We can define the biconjugate f** as the conjugate of conjugate f*.
f™:X - RU {400}

[ (%) = supyex+(x", x) — f*(x")

The f** is the largest convex l.s.c function below f. It is easy to see from the definition

and fenchel inequality that f** < f.
) <m0 = fr(x") < f(x)

Proposition 4.7.1. (Fenchel — Young Inequality). Let f: X — R U {+o0}. Forall x € X

and x* € X*, we have

fO)+fr(x7) = (x", x).

Proof. Since x is not necessarily the maximizing point for f(x*)=sup, ..., we have

fO) z2yx)—f) & f) + f(x") = (x7,x). [
Note. The inequality holds & x* € df (x).

Proposition 4.7.2. When f < g , we have f* > g*. In particular,

(supieif ()" < infier () and (infier ()" = supier(F7), ¥ (fier of functions on
X with values in RU +oo [1]. Proposition 4.7.2. is necessary to prove the next

proposition, which help us to define primal — dual algorithms more quickly. In
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particular we can replace the f by f* if f is proper, convex and lower —

semicontinuous.

Proposition 4.7.3. Let a function f: X — R U {+00} which is proper. The function f is

convex and lower-semicontinuous if, and only if, f** = f.

Proof. [1] (=) Since f is convex and Ls.c., we can write f as the supremum of
continuous and affine functions on X , we have f = sup;¢;(f;). From previous

proposition and f < g:

Therefore, f** = sup;e;(f**) = sup;e;(f;) = f, because f;** = f; is continuous and

affine functions, and as we know f** < f = f* = f
(&) Since f** = f is a supremum over the set of continuous affine functions. [-]

An interesting consequence is the fact that, if f is convex, proper and l.s.c. then we

have
fO)+f (x") =(x",x) & x" € 0f (x).
By definition, we see that:
x realizes the supyex(x*,x) — f(x) < x* € 3f (x)
and we have
f+ ) =& x)e f7(x) =fx) =&"x)— f"(x) ©x€df (x7).
We can say that df and 8f* are inverses,
x* €0f(x) & x € 3f*(x*).0

In this point is good to refer that conjugates functions do not give us anything new itself,

it helps to derive the dual problem more quickly.
Geometry of Conjugates

We assume a function f:R — R the interpretation of conjugate f*(x*) is: for the
function f(x), given a x*, we assume a line h(x) = xx*[11]. We want to find a value

on the x — axis such that, the value x maximizes the difference between the line h(x)



and function f(x). Let X be the optimal value, we define a parallel line g to h, which

is passing through the point ('y, f (¥)). The intercept of g and y — axis is the —f*(x*).

~_/

(SINED)

v

Figure 7 Geometry of Conjugate

4.8. Fenchel — Rockafellar Duality

This notion is very useful. It helps us to transform convex problems into others with
better properties, which are easier to handle them. In this subsection we assume that

X,Y are normed spaces and K € X*, is a linear and bounded operation.

Let f: X » RU {400}, g: X - R U {+00} be proper, convex and lower-semicontious.

We define the primal problem (PP) as

infrexf(Kx) + g(x).

We prove (Proposition 4.7.3) for f proper, convex and l.s.c. that f** = f. We replace
the f by f** and rewrite the primal problem as

infrexf (Kx) + g(x) = infrexsupyer(y, Kx) — f*(y) + g(x).

Theorem 4.8.1. Let X be a convex subset of a linear topological space, Y be a compact
convex subset of a linear topological space, and f: X X Y — R an upper semicontinuous
on X and lower semicontinuous on Y. Suppose that f is quasiconcave on X and

quasiconvex on Y. Then we have,
minysupyxf = supyminyf. []
From the above theorem we can swap min and sup and we have [3],
infof (Kx) + g(x) = infysupy(y, Kx) = f*(y) + g(x)

= supyinf{y, Kx) — f*(y) + g(x)
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= supy — f*(¥) — 9" (=K"y).
The last formula is known as dual problem (DP). Therefore, the primal is equal to dual
and the sup, inf,(y, Kx) — f*(y) + g(x) problem, is the primal-dual problem. The y*
is the solution of dual problem and x* is the solution of the initial primal problem. The
solution (x*,y*) is a saddle point of the primal-dual problem. We define the
Lagrangian as the L(x,y) = (y,Kx) — f*(y) + g(x). [3] The saddle point of the
primal-dual problem is any pair (x,y) € X X Y, such that
L(x*y) < Lx",y") < L(x,y7).
The primal dual gap is defined as
g(x,y) = f(Kx) + g(x) + f*(y) + g"(=K"y)
= Sup(x',y')e(XxY)L(xJ y’) - L(x" y)
If (x*,y*) is a saddle point the primal dual gap is zero. The optimally conditions are

{O €dglx*) + K*y*
0edf*(y*) —Kx*
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5 ALGORITHMS

5.Introduction

In this chapter we discuss the basic algorithms for solving convex optimization
problems. These algorithms are iterative procedures. We will discuss also their
convergence. First, we analyze the gradient method, which minimize function, where
are differentiable. Then, we will see how to handle functions non smooth with the
proximal point method and combining the two methods we have the proximal gradient
method, which handles decomposable function with smooth and non-smooth functions.
Finally, we study the primal dual algorithm.

5.1. Iterative Procedures

An iterative algorithm on X [1] is a procedure by which, starting from an initial point
Xy € X, and using a family (T;,) of functions from X to X,
Xns1 = Tn(xn) VR 20,

we construct a sequence X, € X.
These procedures help us to find minimizers of a function f. The idea is, each time, to
find a point x,,,, where f(x,,1) < f(x,), for this reason we are moving in a specific
direction and we construct a sequence, which minimize the function f.
In this point, let discuss the issue of convergence of the sequences. [1] We know that
on a Banach space all sequences are Cauchy and therefore we have convergence.
Hilbert space is a Banach space and this is useful to prove weak convergence of a
sequence in Hilbert spaces.
Lemma 5.1.(Opial’s Lemma) [1] Let S ¢ H, argmin(f) # @, and (z,,) € H. We
assume:

(a) For each u € argmin(f) there exists lim,,_,o|[x, — u||

(b) Every weak limit point of (z,,) belongs to argmin(f).

Then (z,,) converges weakly as n — oo to some il € argmin(f)

5.2. Gradient Method

In this subsection we describe the gradient method. This method helps us to minimize

convex and differentiable functions. This method is a first-order method. The idea is
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that the function f decreases fastest if one goes from a point x € dom(f) in the
direction of the —Vf (x). This implies that for the iterative sequence

Xns1 = Xn = V(). = 0,
we have that f(x,) = f(x,+1). We want to move against the gradient of f, toward
the minimum. We set an initial x, and we construct a sequence (x,) such that

Yns1 = Xn — AV (), n = 0.
As we say the f(x,) is monotonic sequence, the question is what is holds with
convergence. Under curtain assumptions like f convex, Vf Lipschitz continuous and

the step sizes A,, particularly chosen we assure the convergence.

Figure 8 Gradient Method

Let f:H — R be continuously differentiable function with Lipschitz-continuous Vf.
Let the ordinary differential equation:
x(0) = x,
{—x(t) =Vf(x(®)),t>0
By the Cauchy-Picard Theorem, for each x, € H, the (ODE) has a unique solution,

(ODE)

there is a unique continuously differentiable function x: [0, +c0) — H such that x(0) =
xo and —x(t) = Vf (x(t)) for all t > 0. [1] The stationary points of (ODE) are the
zeroes of gradient of f. [7] The (ODE) solves the problem of minimizing f in the sense
that for every trajectory x(t), we have f(x(t)) — 2. The function f decreases along

the solutions [1]. Decreases strictly into a critical point, for more details see [1].

From the fact that f is nonincreasing, we have that

limtemf(x(t)) = lnf(f)
If assume also that we have at least one minimizer of f and we take Z € argmin(f),
limi_ol|x(t) — Z|| exists. From proposition f is weakly lower semicontinuous

because is convex and continuous. And every weak limit of x(t) must minimize f, as
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t - oo. Finally, from Opial’s Lemma x(t) —» Z € S,as t - o (weakly), see [1] for
more details. []
We discretize (ODE) [1] with finite differences, and the reason is to approximate x(t)
e Let (4,) be positive parameters, called step sizes.
e Seto, = )y-, A and

e The partition of [0, +o0) = Uy~ 05, Where A; = 0; — 6;_1,i =0, ..., n, ...

We assume t — 0,0, > 00,1 - 0 & 4, € £1. Now we approximate x(t) by

Xn—Xn-1
An

If we approximate the term Vf(x(t)) by Vf(x,_,) we have from (ODE) that

_xn;—in_l = Vf(xn—l) S Xp = Xp—1 — Anvf(xn—l)‘

This method, with this update step is called gradient method and is applied on
differentiable functions.

With the same logic we can approximate the term V£ (x(t)) by Vf(x,) and we have,

=T = VS () © Xy = Xy + A VS ().

This method is known as proximal method, and is a generalization of gradient to non-
smooth functions. We shall discuss this method on the next subsection. [-]

Let f:H — R be convex, with Vf Lipschitz continuous with constant L. The (pure)
gradient method, is starting from an initial point x, € H and we apply the iteration step

Xn+1 = Xn — Aan(xn),for neN

With condition for the step sizes be
2
SUPpentn < T

Therefore, the idea of this iterative algorithm is:

Algorithm 1 Gradient Method (G)

Choose x, € H
for alln = 0 do
Xn+1 = Xp — Anvf(xn)

end for
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A proximal point of Gradient method (G) [9]

By Taylor expansion, in each iteration we can consider the expression,

fCenen) = £ Gen) +(VF (n), Xnas = )+ 5 g = xall2,
Where the term f(x,,) + (Vf(x,,), Xn41 — Xp) is a linear approximation and the term
ﬁ Iy 1 — x,||? is the proximity term (it is replacing the hessian matrix), therefore we
can express the x,,q = argmin,f(x,) +{(Vf(x,), x —x,) + i llx — x, 1%, A, are

step sizes. The geometrical interpretation of this expression is

proximal term

™. linear approximation

Figure 9 A proximal point of Gradient method

If 4,, is small, x,,,; tends to stay close to x,,.
Convergence of Gradient method (G).

The convergence of gradient method is succeeding under the next assumptions. We
assume f be convex, differentiable, Vf be Lipschitz continuous and with specific
choice of step sizes we have the next theorem [1].

Theorem 5.2.1. [1] Let (x,) satisfy (G), where f is convex, S # @, A, € 1 and
SUPpenAn < % Then (x,,) converges weakly as n — oo to point in S.

Note that we have strongly convergent & f is strongly convex or f is even or
int(argmin(f)) # 0.

We know and the rate of convergence from the next theorem

- 40 -



Theorem 5.2.2. [3] Let f convex and gradient of Lipchitz continuous with constant L
and k < n. Gradient algorithm with fix step size (step size doesn’t change after each
iteration) 4 < % satisfies

o—x |’

o < lIx
— <2 210
) - foe) < B
where x* is any minimizer of f. If in addition f is strongly convex with parameter p >

0, we have

L
Fla) = () < ¥ = llxg = 2|1

Therefore, we have,

e If f convex the convergence rate is O (%)

e If f is p —strongly convex the convergence rate is O (w*)

Details about proof is on [3].

It is obvious that if f is strongly convex the algorithm is very fast.

The gradient method is for C!-smooth and unconstrained problems. The gradient
method is a simple idea and under special assumptions is fast but if the function isn’t

strongly convex is slow and cannot handle non-smooth functions.

5.3. Proximal Point Algorithm

Let f:H - R U {+0o0} is proper, lower-semicontinous convex function. Let (4,) is
positive numbers. They are called step sizes.

The idea is to minimize the Moreau — Yosida Regularization f; , y of f, which is
proper, lower-semicontinuous and strongly convex function and has unique minimizer.
We construct a sequence as the next one:
. 1 2
Sngr = argmin{f(2) + - llz = |1}
n

[1] By the Moreau — Rockafellar Theorem and because x,,,; is the minimum we have,

X —-X
0 € 01 ) Cms1) = Of Cnya) + 53—
n

X — X
& — " € 0f (xns1)
n
= xn+1 = (1 + 7\n af)(_l)(xn)~
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This sequence (x,,) is called proximal sequence. The stationary points of a proximal
sequence are the minimizers of the objective function [1] since,
Xn+1 = Xpn & 0 € 0f (Xp41).
At this point it is good to mention that the proximal point algorithm can be interpreted
as discretization of the differential inclusion [1]
—x(t) € of (x()) t>0.

From the definition of proximal point algorithm, [1] we have

fGnan) + 5 i = %l < £ Gn) V.
Therefore, the sequence (f(x,,)) is nonincreasing.
Recall the notion of proximity operator from subsection 4.6.

proxp(x)= argmineuf (z) + 5 llx — zI|2.
The update step of proximal point algorithm (PPA) is

XM = proxy s (x*).

The proximal method is for smooth and non-smooth problems, constrained and
unconstrained problems. The prox;, is a convex optimization problem that uses the
proximal operator of the objective functions.[7] The PPA minimizes a convex function

f by repeatedly applying the prox;s to some initial x,.

Algorithm 2. Proximal Point Algorithm (PPA)

choose x, € H
for k =0,1, ...
XM = proxy s (x*).

end for.

From the next proposition which is in [1] we have that the direction of x,, is towards to
the set argmin(f).
Proposition 5.3.1. Let (x,) be a proximal sequence. If x,,,1 # X, then
(XL — X x™ — g1y > Q)
Additionally, if we have, X € argmin(f) then

(x™t —x" 2 —x")> 0.1
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The proximity operator

The notion of the proximal operator,

prox(x) = argmingenf (2) + o Ilx - zI1?,
illustrated in figure 10. The black lines are the level curves of the function and the bold
black is the boundary [7]. We calculate the prox; to the blue points and then they have

moved to red.

Figure 10 Interpretation of proximal operator

The step size (parameter) A controls how fast we move towards the minimum. Large
values provide big steps to the minimum and small values small.

After all, it is obvious that prox; (v) is a point between the minimum of f and a point
v € dom(f).

Example 5.3.2. Let §. the indicator function. The proximal operator of the indicator

function is
1
proxs,(x) = argminy (8:) + lly = xI?)
= argminyec 5 lly - xI1?
=:proj.(x).

X

.

projx

Figure 11 Proximal Operator of Projection
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In some sense, we can say that proximal iteration generalizes the notion of projection,
when the function f(x) is not the indicator but a lower-semicontinuous and convex

function.
Calculation of proximal operator.

Let f:H - R U {400}, for x € H and A > 0 we can find y € H such that
y € argminf(v) + % lv—x|>veH e x—y€eAdf(y)
Example 5.3.3. [16] £{-norm
Let f(x) = [lx[ly. Then prox; (v) = argminyex(llx|l, + % llx = ¥I%).
We have, from Fermat’s rule that
0edf(wv*)+ % (v —v) v —v* € 1df(v*) (by the subgradient condition).

Recall from subgradient of £;-norm df (x) = d|x;| X ... X d|x,,| this implies that

vi—A,vi ZA

(proxiy ) =10, Io <2
vi+ ,S_ .

Finally, the prox;s(v) = shrink(v,1); = max(|v;| —4,0) I:_LI This operator is

known as the soft thresholding operator.
Example 5.3.4. Let f(x) = [|x||,, then prox;s(x) = max(||x|l; —4,0) —~_ This

|ESIPY

sometimes is called block soft thresholding operator.
Convergence of Proximal Point Algorithm (PPA)

Theorem 5.3.5. [2] Let f: H - R U 400 and argmin(f) # @, let (1,,) be the sequence
of step sizes such that ),y A, = +0, and let x, € H. Let the proximal iteration
(Vn € N) xp4q = prox,, sx, (5.8)
Then the following statements hold:
(a) (x,) is a minimizing sequence of f, f(x) | inf f(H).

(b) (x;,) converges weakly to a point X € argmin(f).

Proof. (a)Let y € S. It follows from definition of x, (5.8) and from the optimality

condition
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Xn = Xn+1 € An Of (Xp41).
From (16.1) we have,
Y = Xnrt, X = Xni1) < FO) = f (@) (5.9)
And
0 < -0 = Xns1, Xn = ) < f ) = f ().
From (5.9) for every n € N, we have
lxn+s = Y% < llxxw = YIIZ + (¥ = Xps1, Xn = Xpaa) + X041 — 25117
= llxn = ¥l = llxpe1 = Xall? + (41 — ¥, Xna1 — xp)
< llxn = Y117 = 22, (f (n41) — inf £ (D).
This implies that x,, is Fejer-Monotone with respect to argmin(f) and
Ynen 225 (f (ny1) — inff(H)) < +oo.

Since, Y pen An = +00 we have f(x,) L inff(H).
(.b) Let X be a weak point of x,,. It follows from the next proposition.
Proposition 5.3.6. Let f be proper, lLs.c. quasiconvex function and let (x,) be a
minimizing sequence of f that converges weakly to X € H. Then f(x) = inf (H).From

previous proposition and theorem 3.4.3. the proof is complete.

5.4. Proximal Gradient Method

As we say the proximal operator can handle non smooth function. Consider the problem
minf(x) + g(x) (5.10)

Where f:H - R U {+o}, g: H - R U {400} are closed, convex, proper function. Let

f be differentiable but g be non smooth.

The proximal gradient method is

Xk+1 = prox/lkg(xk - Aka(x")),

Where, k < n the number if iterations and A, is a step size.

Algorithm 3. Proximal Gradient Method

choose x, € H

fork =0,1...
Xk+1 = prox/lkg(xk - Aka(x")),
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end for.

The update step is like searching fixed point of proximal operator. In the sense that if
X is a solution of (5.10), [7] by the optimality condition, ¥ must satisfy
0eVf(x)+ag(x)
S 0eVf(R)+0dg(x)—x +x
S (I+10g)(x)> U —-AV)(x)
ST =U+109)"1U -2V )(®)
& % =prox (2 —AVF(R))

The last equality says that ¥ minimizes the problem (5.10) < is a fixed point of the
forward — backward operator (I + Adg)~1(I — AVf).

Convergence of Proximal Gradient Method

Theorem 5.4.1. We assume that Vf is Lipschitz continuous with constant L > 0 and

the step sizes are 4 < %, then we have
Fla) — f+ < Bl
k = 2k

This theorem implies that the proximal gradient has convergence rate O (%) The reason

why we have the condition 4 € (O, %] implies that the operator (I + 10g) (I — AVf)

is averaged [7] and thus that the iteration convergence to a fixed point, with the
assumption that exists one. Is a consequence from the next theorem.

Theorem 5.4.2. (The Baillon-Haddad Theorem) Let f: H — R be convex and GD on
H, and its gradient operator Vf (x) nonexpansive. Then f is Fréchet differentiable and
Vf is firmly nonexpansive [6].

A very important question about selection of step sizes when we don’t know the
Lipschitz constant or is complicated to evaluated. [7] We can find step size by a line
search. We take a parameter b € (0,1) and at each iteration we change the step sizes as

A=b-A
Recall that for function f from Taylor expansion we have an upper bound. In particular,

the function f is bounded from above from the function

- 46 -



fiey) = fFO) +(F O x =) + 55 llx = ylI2, with 2> 0.

We can apply the proximal method as the pseudocode [7]:

Given x;,1,..,,b € (0,1)

Let A== Ayyq

Repeat
1. Letz:= prox,lg(xk — /Wf(xk))
2. Breakif f(2) < f1(z xx)
3. Update A := bA.

Return A, = A, x;, 41 ==z

5.5. Accelerated proximal gradient.

A method to make the proximal gradient method faster is to add an extrapolation step.
Then the algorithm is
Vie+1 = X + @ (e — Xg—1)
Xk+1 = proxlkg(yk+1 - Akvf(yk+1))
Where w;, € [0,1) and is called extrapolation parameter and 4, is the step sizes. Obtain
that for k = 1 we have the usual proximal gradient method, but for next iterations the

Vi+1 has some information from previous iteration. Some usual choices of

. k-1 k
extrapolation parameter are w, = —— Or Wy =

—. The convergence rate of
k+2 k+3

accelerated proximal gradient algoritm is O (k—lz)

5.6. Primal dual Algorithm.

Recall from chapter 4 the Fenchel-Rockafellar duality. We write the problem
infrexf(Kx) + g(x),

where f, g are convex, and K: X — Y is a bounded, linear operator, as the primal — dual

problem
minyinfi{y, Kx) — f*(y) + g(x).

-47 -



A good reason why we need this formula is when f is non — smooth function but we
can take proximal operators of f* and g easily.
The idea is to swing a descent step for primal variable x and an ascent step for dual

variable y.

Algorithm 4. Primal-Dual

Input: initial point (x4, V), steps 6 > 0,T > 0, so that 67L? < 1, where L = ||K||, and
6 € [0,1].
for all k > 0 do
find(Xy+1, Yi+1) by solving
Vik+1 = Proxe(yy + 0Kx;) (dual proximal)
Xi+1 = Proxg(xg — TK"yy41) (primal proximal)
Xp41 = X41 + 0(xx41 — x1) (extrapolation)

end for

The extrapolation step helps us to have convergence. The convergence rate it depends

on the type of problem:

e [f the problem is non smooth: O (%)

e Sum of a smooth and non-smooth: O (#)

e If the problem is smooth: 0(w"),w < 1
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6 Minimization of Lasso function

6.Introduction

In this chapter we will calculate the proximal operators for Lasso problem. We will
simulate data in MATLAB and run the algorithms of proximal gradient and accelerated
proximal. Then we will compare the time and the iterations each method needs. Finally,
we calculate the dual of LASSO.

6.1. LASSO

The Lasso problem is

minimize ~||Ax — bl[3 + yllx|l,.
where x € R™, where A € R™" and y > 0.
We will treat this problem in the Hilbert space R™ endowed with the £, — norm.
Proposition 6.1.1. The objective of Lasso is convex.
Proof. Let f(x) = ; lAx — b]|3 + y||x||,. We can write f(x) as f(x) = h(x) + g(x),
where h(x) =%I|Ax —b|l3 and g(x) =yllx|l;. Note that dom(h) =R" and

dom(g) = R™ and both domains are convex sets.

Convexity of h(x). The Hessian of h(x) is V2f(x) = ATA. The Hessian is positive
semidefine, since for any x € R® we have xTATAx = ||Ax||5 = 0. Hence, the
function h(x) is convex.

Convexity of g(x). For any x,, x, and any 8 € (0,1), let x = 6x; + (1 — 6)x,. Then
9(x) =yll6x; + (1 — O)x,|l
< vl0x4 |l + yII(1 = 6)x, |
=y0llx [l +y(1 = &) llx,
=0g9(x1) + (1 —0)g(xz)

Hence g(x) is convex. As we know the sum of two convex function is a convex
function, therefore, f(x) = h(x) + g(x) is also convex. [-]

In general, the Lasso problem can be interpreted as finding a sparse solution to a linear
regression model or to a least squares problem, where this implies a variable selection
method.
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6.2. Proximal gradient method

For Lasso problem, let f(x) = % |Ax — b]|3 and g(x) = y||x]|;. The function f(x) is
differentiable but function g(x) is non smooth. The gradient of f is:

Vi(x) =AT(Ax —b) .
Recall now that the proximal of #; norm is the soft thresholding operator is:

Xi —V, X Zy

[Sy(x)]i=(proxyg(x))' ={ 0, |x|<vy
ol tyx < -y

Hence the proximal operator for function g(x) is:
prox,g(x) = S, (x)
By definition of the proximal gradient, the iteration is given from the formula:
Xe+1 = prox/’lkg(xk - Akvf(xk))
Therefore, the proximal gradient update is
Xn+1) = Sya(xn + 24T (b — Ax,)).
This algorithm is called iterative-soft thresholding algorithm (ISTA). The accelerated
version of ISTA is called FISTA. [12]
In the next table we compare the algorithms ISTA and FISTA, for simulated data from
normal distribution N(0,1) and regularization parameter Y = 0.1¥max, Ymax =

A" blleo- [7]

Method Iterations Time (s) P
ISTA 143 8.3344 21.188
FISTA 108 7.3175 21.220

6.3. Primal-Dual Problem

Recall the Lasso problem
. 1
Mitepo = |Ib — Ax|3 + yllxll;.

By theory of primal dual we add an auxiliary variable y = Ax, and the Lasso problem
is equivalent to

. 1 .
miny . - b — I3 + yllx|l; subject to Ax = y.

The Lagrangian is L(y,x,u) = % b —ylI3 + yllxll, + (u, (y — Xx)), where u is the

dual variable and x, y is primal variables. Now we want to minimize the L(y, x, u).
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max;min, y||x|| + (4, Ax) — h* (1)
Where h*(1) = h(1), h*(1) = % b — A3
The update steps are:

Vi+1 = proxp, (Y, + 0Axy)
Xp1 = Proxg (g — TA Yiq1)

X = Xp41 + 0 (X1 — X))

Recall, in this point, that the proximal operator of h* is the block soft thresholding
operator.
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APPENDICES

Code for Matlab [17]

https://web.stanford.edu/~boyd/papers/prox_algs/lasso.html#6

function p = objective (A, b, gamma, x, 2z)
p = 0.5%sum((A*x - b)."2) + gamma*norm(z,1);
end
function s = prox 11 (v, lam)
s = max (0, v - lam) - max(0, -v - lam);
end
m = 500; % number of examples
n = 2500; % number of features

$x1 = sprandn(n,1,0.05);

$A = randn (m,n) ;
$A = A*spdiags(l./sgrt(sum(A.”2))',0,n,n); % normalize
columns

v = sqrt(0.001) *randn (m, 1) ;
$b = A*x1 + v

myx=x1;

save myfile.mat
myA=A;

save myfile.mat
myv=v;

save myfile.mat
myb=Db;

save myfile.mat
load myfile.mat
myx;

load myfile.mat
myA;

load myfile.mat
myv;

load myfile.mat
myb;

x0=myx;
A=mvyA;
v=myv;

b=myb;

gamma max = norm(A'*b, 'inf');
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gamma = 0.l*gamma max;

% cached computations for all methods
AtA = A'*A;

Atb = A'*b;

MAX ITER = 300; % to k sto for tha mas deikseil poses

xrelastikan
ABSTOL = le-4;
RELTOL = le=-2;

x = zeros(n,1l);
Xprev = Xx;

for k = 1:MAX ITER
while 1
grad x = AtA*x - Atb;
pl=x - lambda*grad x;
p2=lambda*gamma;
z = prox 11(pl, p2);
if f(z) <= £(x) + grad x'*(z - x) +

(1/(2*lambda) ) *sum((z - x)."2)
break;
end
lambda = beta*lambda;
end
Xprev = X;
X = Zy
h.prox optval (k) = objective (A, b, gamma, x, X);

if (k > 1 )&& abs(h.prox optval(k) - h.prox optval (k-
1)) < ABSTOL
break;
end
end

.X_Pprox = Xx;
.p_prox = h.prox optval (end);
.prox _grad toc = toc;

.p_prox o
.prox _grad_toc .

e R e e Re Sl e )
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SFISTA

lambda = 1;
tic;

x = zeros(n,1l);
Xprev = X;

for 1 = 1:MAX ITER
y = x + (1/(1+43))*(x - xprev);
while 1
grad y = AtA*y - Atb;
p3=y - lambda*grad y;
p4=lambda*gamma;
z = prox 11(p3, p4):;
if f(z) <= f(y) + grad y'*(z - y) +
(1/(2*1lambda)) * (sum(z - y)."2)
break;
end
lambda = beta*lambda;
end
Xprev = x;
X = z;

h.fast optval(l) = objective(A, b, gamma, x, X);
if (1 > 1) && abs(h.fast optval(l) - h.fast optval(l-1)) <
ABSTOL
break;
end
end

h.x fast = x;

h.p fast = h.fast optval (end);
h.fast toc = toc;

h.fast toc %ctime to run

h.p fast %optimal vaalue

1 %iterations

-54- |




References

[1] Juan Peypouquet (2015) Convex Optimization in Normed Spaces, Theory,
Methods and Examples. Springer

[2] Heinz H. Bauschke, Patrick L. Combettes (2010) Covnex Analysis and
Monotone Operator Theory in Hilbert Spaces. Springer

[3] Antonin Chambolle, Thomas Poch (2016) An introduction to continuous
optimization for imaging. HAL archives-ouvertes

[4] Stephen Boyd, Lieven Vandenberghe (2004) Convex Optimization. Cambridge
university press.

[5] Ernest K. Ryu, Stephen Boyd. 4 primer on monotone operator methods survey.
Appl. Comput. Math., V.15, N.1, 2016, pp.3-34

[6] Charles L.Byrne (November 24, 2014) On a Generalized Baillon-Haddad
Theorem for Convex Functions on Hilbert Space.

[7] Neal Parikh, Stephen Boyd (2013) Proximal Algorithms. Vol. 1, No. 3(2013)
123-231

[8] Yuxin Chen (2018) Dual and primal-dual methods. Princeton University. Lecture

notes. http://www.princeton.edu/~yc5/ele522 optimization/lectures/dual _method.pdf

[9] Yuxin Chen (2017) Lasso: Algorithms and Extensions. Princeton University.
Lecturenotes.

http://www.princeton.edu/~yc5/ele538b_sparsity/lectures/lasso_algorithm_extension.

pdf
[10] Woetao Yin (2016) Convergence of Fixed-Point Iterations. UCLA Math. Lecture

notes.

https://www.math.ucla.edu/~wotaoyin/summer2016/5_fixed point convergence.pdf
[11] Ryan Tibshirani (2015) /0-725/36-725 Convex Optimization. Lecture notes.
[12] Ryan Tibshirani. /0-725/36-725 Proximal Gradient Descent and Acceleration.

Lecture notes. http://www.stat.cmu.edu/~ryantibs/convexopt-F 16/lectures/prox-

grad.pdf
[13] R. Tyrrell Rockafellar (1972) Convex Analysis. Princeton University Press.

[14] C.A. Floudas, P.M. Pardalos (2001) Encyclopedia of Optimization. Kluwer

Academic Publishers.

-55-



[15] Apostolos Yannopoulos (2003) Notes on functional Analysis. Lecture notes

University of Crete (in Greek)
[16] Wotao Yin (2016) Coordinate Update Algorithm Short Course. UCLA Math.

Lecture notes https://www.math.ucla.edu/~wotaoyin/summer2016/4 proximal.pdf

[17] Matlab code : https://web.stanford.edu/~boyd/papers/prox_algs/lasso.html#6

-56-



1
o~
el
[



