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ABSTRACT 

 

Stella-Varvara Gkila  

 

 

Convex Optimization and Applications. 
    June 2019 

 

 

 

In the following thesis, we discuss algorithms for convex optimization. Is 

optimization for convex function on convex sets. These algorithms are based 

on notion of functional and convex analysis. We use functional analysis to 

construct sequence which are convergent in Hilbert space and ℝ". The basic 

idea is that the iterative sequence we construct converges to the minimum of 

objective function. We generalize the notion of gradient and differentiable 

functions for non-smooth, so we can minimize them. The first method we see 

is the gradient method, which is about convex and differentiable functions. 

Next algorithm, proximal point is about non-smooth functions and then we 

combine gradient and proximal and we have an algorithm for functions, which 

is the sum of smooth and non-smooth. Finally, we study the primal dual 

algorithm. An example of these methods is provided to Lasso function.   

 

 

 

 



IV 
 

ΠΕΡΙΛΗΨΗ 
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Στην παρούσα εργασία, θα παρουσιάσουμε αλγορίθμους για την 

ελαχιστοποίηση κυρτών συναρτήσεων πάνω σε κυρτά σύνολα. Αυτοί οι 

αλγόριθμοι βασίζονται σε έννοιες της συναρτησιακής και κυρτής ανάλυσης. 

Χρησιμοποιούμε βασικές έννοιες και θεωρήματα της ανάλυσης για πετύχουμε 

την σύγκλιση των ακολουθιών που κατασκευάστηκαν. Η βασική ιδέα είναι να 

φτιάξουμε επαναληπτικές διαδικασίες που συγκλίνουν στο ελάχιστο της 

αντικειμενικής συνάρτησης. Ο χώρος που θα δουλέψουμε περισσότερο είναι ο 

Hilbert με κάποια παραδείγματα και αναφορές στον ℝ". Θα γενικεύσουμε την 

έννοια της παραγώγου με σκοπό να μπορούμε να διαχειριστούμε συναρτήσεις 

κυρτές αλλά όχι διαφορίσιμες. Η πρώτη μέθοδος  είναι η gradient method, 

αφορά παραγωγίσιμες συναρτήσεις. Μετά θα αναφερθούμε στον proximal point 

που αφορά μη παραγωγίσιμες συναρτήσεις. Οι δύο παραπάνω μέθοδοι 

συνδυάζονται και μας δίνουν τον proximal gradient method, με τον οποίο 

μπορούμε να ελαχιστοποιήσουμε συναρτήσεις που εμπλέκονται όροι 

διαφρορίσιμων συναρτήσεων και μη. Μετά θα αναφερθούμε στον primal-dual 

αλγόριθμο. Τέλος θα παρουσιάσουμε ένα παράδειγμα των παραπάνω 

αλγορίθμων στο πρόβλημα ελαχιστοποίησης Lasso. 
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1 INTRODUCTION 

 
The main issue in this thesis is theory of convex optimization. We study about main 

notion of functional and convex analysis and their usability to optimization. In general, 

we need to construct sequences with good properties like monotonicity and 

convergence. We use these sequences to minimize convex functions which are 

differentiable or not. So, we generalize the notion of derivative of a function.  

In chapter 2 we define the basic notion of functional analysis, like norms, convergence 

sequence, Banach and Hilbert spaces. We refer to basic properties of Hilbert spaces, 

some of them are weakly convergence, projection. We define the function extended real 

set and we define the domain, sublevel sets, graph and epigraph of function. We connect 

lower-semicontinuity with the epigraph and sublevel sets. In the end we study about 

minimizing sequence of a function and how convex functions minimizing in a reflexive 

space (i.e. Hilbert space).    

In chapter 3, we study the convexity of sets. We define affine sets hyperplanes and half-

spaces and finally, the Hanh – Banach Theorem.      

In chapter 4, we define convex function and their connection with convex sets. Then 

we connect convexity with differentiability, and we generalize all the properties convex 

differentiable functions for nondifferentiable functions. The generalization of gradient 

is the subgradient and is the notion of subgradient. Next, we introduce the Moreau – 

Yosida regularization, a function which is a smooth version of non-smooth function. 

We know from previous theory that this function has unique minimizer in Hilbert 

spaces and this unique minimizer of Moreau – Yosida regularization is called proximal 

operator. Proximal operator has very good properties, is monotone operator, is 

nonexpansive and we can interpret it as the resolvent of subgradient. Then we study the 

Fenchel conjugate and how we use it in duality. Finally, we define the dual problem. 

In chapter 5, we will analyze the idea of iterative algorithms. First, we study gradient 

method, which is about differentiable functions. This method exploits the monotonicity 

of the gradient and construct a sequence which in Hilbert space converges to the 

minimum of, f if exists. Next, we study the proximal point method, which is a 

generalization of gradient for non-smooth functions. Then we combine the two previous 

methods and we have the proximal gradient method, which is about functions, where 
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involve smooth and non-smooth functions. The basic idea in all three algorithms is to 

construct sequences, where are converge under assumptions to the minimum of 𝑓. The 

last algorithm we present is the primal dual, which is for smooth and non-smooth 

functions and uses the conjugate theory.            

In the chapter 6, we apply proximal gradient method on Lasso function. This thesis 

aims to address the theory of convex optimization presenting the main points of the 

works of [1] Juan Peypouquet (Convex Optimization in Normed Spaces,2015), [2] 

Heinz H. Bauschke, Patrick L. Combettes (Convex Analysis and Monotone operator 

Theory in Hilbert Spaces, 2010), Stephen Boyd, Lieven Vandeberghe and R. Tyrrell 

Rockafellar.                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



- 3 - 
 

2 ANALYSIS 
 

2. Introduction 

General convex analysis and functional analysis are very close related. In this section 

we discuss basic notions of functional analysis like norms, normed spaces, inner 

product, Banach spaces and Hilbert spaces, basic convergence of sequence, topological 

properties. Basic notions of functions like epigraph of functions. We define the 

extended real line, and proper and lower-semicontinuous functions. Also, we study the 

minimizing of functions in reflexive spaces.  

 
2.1. Norms 
 
Definition 2.1.1. Let  𝐴	 ⊆ 	ℝ' a real vector space. Each function ‖	. ‖: 𝐴	 → 	ℝ with 

the following properties is a norm on 𝐴 :  

(a) ‖𝑥‖ ≥ 0	for each 𝑥 ∈ 𝐴 and ‖𝑥‖ = 0	if and only if 𝑥 = 0. 

(b) ‖𝜆𝑥‖ = |𝜆|‖𝑥‖ for each 𝜆 ∈ ℝ and each 𝑥 ∈ 𝐴. 

(c) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ for each 𝑥, 𝑦	 ∈ 	A. (triangle inequality). 

If function ‖	. ‖ is a norm on 𝑋, the pair (𝑋, ‖	. ‖) is called normed space. ⊡ 

Note that a norm is a measure of the length of a vector and a distance between two 

vectors. 

Spaces with finite dimensions. 

1. We define on ℝ< the supremum norm ‖	. ‖= ∶ ℝ< 	→ 	ℝ as: 

‖𝑥‖= ≔ 𝑚𝑎𝑥	{|𝑥C|: 𝑖 = 1,… ,𝑚} 

The space (ℝ<, ‖	. ‖=) is denoted ℓ=<. 

 

2. We define on ℝ< the ℓI – norm ‖. ‖I ∶ 	ℝ< 	→ 	ℝ as: 

‖𝑥‖I = |𝑥I| + ⋯+ |𝑥<| 

The space (ℝ<, ‖	. ‖I) is denoted ℓI<. 

 

3. We define on ℝ< the Euclidean norm ‖	. ‖K ∶ ℝ< → 	ℝ like:  

 

‖𝑥‖K:= LM|𝑥C|K
<

CNI

O
I/K
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Proposition 2.1.2. (Cauchy – Schwarz inequality). Let 𝑥, 𝑦 ∈ ℝ<, then we have,  

M|𝑥C𝑦C| 	≤
<

CNI

LM|𝑥C|K
<

CNI

O
I/K

LM|𝑦C|K
<

CNI

O
I/K

 

 

Proof.  If we set 𝐴 = ∑ |𝑥C𝑦C|	<
CNI , 𝐵 = (∑ |𝑥C|K<

CNI ), 𝐶 = (∑ |𝑦C|K<
CNI ). We have to prove 

that 𝐴K ≤ 𝐵𝐶	⇔ (2𝐴)K ≤ 4𝐵𝐶 ⇔ (2𝐴)K − 	4𝐵𝐶	 ≤ 0	.We suppose the function 

𝑔:ℝ → ℝ 𝑔(𝜆) ∶= (𝜆|𝑥I| + |𝑦I|)K + ⋯+ (𝜆|𝑥<| + |𝑦<|)K ≥ 0, which after 

operations, takes the following form 𝑔(𝜆) = 𝛣𝜆K + 2𝛢𝜆 + 𝐶 ≥ 0, for each 𝜆 ∈ ℝ. If 

𝐴 = 0	, then 𝑥C = 0 for each 𝑖 = 1,… ,𝑚	and the inequality holds (as equality). After 

all we suppose that 𝐴 > 0 and then 𝑔(𝜆) > 0 for each 𝜆 ∈ ℝ and the quantity 𝐷 =

(2𝐴)K − 4𝐵𝐶	 ≥ 0 and we have the inequality. ⊡ 

Definition 2.1.3. An inner product on 𝑋 (linear vector space) is a function  

⟨	. , . ⟩: 𝑋 × 𝑋 → ℝ such that: 

(a) ⟨𝑥, 𝑥⟩ ≥ 0∀𝑥 ∈ ℝ 

(b) ⟨𝑥, 𝑥⟩ = 0 ⇔ 	𝑥 = 0 

(c) ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩ 

(d) ⟨𝑥, 𝜆I𝑦I + 𝜆K𝑦K⟩ = 𝜆I⟨𝑥, 𝑦I⟩ + 𝜆K⟨𝑥, 𝑦K⟩	∀𝑥, 𝑦 ∈ ℝ. ⊡ 

The most common example is ⟨𝑥, 𝑦⟩ = ∑ 𝑥a𝑦a<
aNI . We observe that ⟨𝑥, 𝑥⟩ = ‖𝑥‖K

K∀𝑥 ∈

ℝ. 

Definition 2.1.4. The dual norm of ‖	. ‖ is denoted ‖	. ‖∗ and is defined as  

‖𝑦‖∗ = 𝑠𝑢𝑝	{⟨𝑦, 𝑥⟩|‖𝑥‖ ≤ 1}.⊡ 

Examples: 

1. The dual of the dual norm is the original norm, ‖𝑥‖∗∗ = ‖𝑥‖	for all 𝑥. 

2. The dual of Euclidean norm is the Euclidean norm. 

3. The dual of ℓI − norm is the ℓ= − norm, and the opposite. Since, 

𝑠𝑢𝑝	{⟨𝑦, 𝑥⟩	|	‖𝑥‖= ≤ 1} = ∑ |𝑦C|"
CNI = ‖𝑦‖I. 

∘We denoted 𝑋∗ =ℐ(𝛸, 𝛶) the space of bounded linear operators from space (𝑋, ‖	. ‖i) 

to (𝑌, ‖	. ‖k). A linear operator 	𝐾 ∶ 𝑋 → 	𝑌 is bounded if:  

‖𝐾‖i∗ = 𝑠𝑢𝑝‖m‖nop‖𝐾(𝑥)‖Y < ∞. 

∘The topological dual of a normed space (𝑋, ‖	. ‖) is the normed space (𝑋∗, ‖	. ‖*), 

where ‖	. ‖*  =	‖	. ‖ℐ(X;Y) .  
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∘The function ⟨	. , . ⟩X*,X : 𝑋∗ × 𝑋 → ℝ , defined as ⟨𝐾, 𝑥⟩i∗,i = 𝐾(𝑥) is called bilinear 

function, and is the duality product between 𝑋 and 𝑋 ∗. 

∘The topological dual of (𝑋∗, ‖. ‖*), is denoted (𝑋∗∗, ‖. ‖∗∗)	 and is called the 

topological bidual of (𝑋∗, ‖. ‖*). We define the function 𝜇: 𝛸 → ℝ as 𝜇m(𝐾) =

⟨𝐾, 𝑥⟩i∗,i	, ∀𝐾 ∈ 𝑋∗. 

Definition 2.1.5. We called the canonical embedding of 𝑋 into 𝑋∗∗ the function  

ℐ : 𝑋 → 𝑋∗∗ , defined by ℐ(𝑥) = 𝜇m. ⊡ 

Definition 2.1.6. A normed space (𝑋, ‖	. ‖) is reflexive if for the canonical embedding 

we have, ℐ(𝑋) = 𝑋**.  ⊡ 

 

2.2. Sequences  
 
 

Definition 2.2.1. A sequence is a function 𝑥:ℕ → ℝ. We denote 𝑥" ≔ 𝑥(𝑛) or {𝑥"}"NI= .  

Definition 2.2.2. Let a normed space (𝑋, ‖	. ‖). A sequence 𝑥" in 𝑋 (strongly) 

converges to 𝑥 ∈ 𝑋, and we write 𝑥" → 𝑥 as 𝑛 → ∞ if lim
"→=

‖𝑥" − 𝑥‖ = 0. We say that 

the limit of the sequence 𝑥" is 𝑥 . ⊡ 

Definition 2.2.3. Let a normed space (𝑋, ‖	. ‖). A sequence 𝑥"is called Cauchy 

sequence if for each 𝑚, 𝑛 we have lim
<,"→=

‖𝑥< − 𝑥"‖ = 0. ⊡ 

Proposition 2.2.4. Let 𝑥" a convergent sequence, then the sequence is Cauchy. ⊡ 

Proposition 2.2.5. Every Cauchy is sequence is bounded. ⊡ 

Proposition 2.2.6. Let (𝑋, ‖	. ‖) a normed space. If every Cauchy sequence is 

convergent the normed space we say that is complete and the normed space is called 

Banach space. ⊡ 

Proposition 2.2.7. Let 𝑋 space with inner product. The function ‖	. ‖: 𝑋 → ℝ, where 

‖𝑥‖ = y⟨𝑥, 𝑥⟩ is a norm. 

Definition 2.2.8. A real vector space 𝑋 with inner product is called Hilbert space ℍ if 

𝑋 is complete to norm ‖	. ‖ which is associated with inner product.  

Examples 2.2.9. 1) Every Hilbert space from definition above is Banach space. 

2) The Euclidean space ℝ" is a Hilbert space, with the norm ‖𝑥‖ = y∑ 𝑥{K{ . 

 

Weakly Convergent Sequences 
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Definition 2.2.10. Let a normed space (𝑋, ‖	. ‖). A sequence 𝑥" in 𝑋 converges weakly 

to 𝑥, as 𝑛 → ∞ if for each  𝑓 ∈ 𝑋∗, we have 

𝑙𝑖𝑚"→=𝑓(𝑥") = 𝑓(𝑥̅). 

In this case, the weakly convergence of 𝑥" means, convergence of 𝑓(𝑥") to 𝑓(𝑥̅) 

 for each 𝑓 ∈ 𝑋∗. 

Note that a convergent sequence is converges weakly, since  

|⟨𝑓, 𝑥" − 𝑥⟩| ≤ ‖𝑓‖∗‖𝑥" − 𝑥‖. 

Lemma 2.2.11. For each α ∈ ℍ, the function 𝑓�:ℍ → ℝ with f�(𝑥) = ⟨𝑥, 𝛼⟩ ∈ ℍ∗ and 

‖𝑓�‖ℍ∗ = ‖𝛼‖ℍ. 

Theorem 2.2.12. (Riesz Representation Theorem) Let ℍ Hilbert space, and 𝑓 ∈ ℍ∗. 

Then, there are unique 𝑎 ∈ ℍ such that 𝑓 = 𝑓�.  

Proposition 2.2.13. Let ℍ is a Hilbert space. Then a sequence (𝑥") ∈ ℍ converges to 

𝑥�, if and only if, ⟨𝑥", 𝑧⟩ → ⟨𝑥�, 𝑧⟩. 

Proof. From definition 2.2.10 and Theorem 2.2.12. we have the conclude. ⊡ 

Corollary 2.2.14. Hilbert spaces is reflexive.  

Proof. We take 𝑎 ∈ ℍ∗∗, and from Riesz Representation theorem we have 𝑦 ∈ ℍ∗ such 
that 𝑎� = ⟨𝑧, 𝑦⟩∗, for each 𝑧 ∈ ℍ∗, and then 𝑏� ∈ ℍ such that 𝑦 = ⟨𝑏�, 𝑥⟩ for all 𝑥 ∈ ℍ. 
Therefore, 𝑎 = ⟨𝑦, 𝑧⟩∗ = 𝑧(𝑏�) ∀𝑧 ∈ ℍ∗. ⊡ 

An important property of Hilbert spaces is the notion of projection.  

Proposition 2.2.15. Let 𝐶 ⊂ ℍ, 𝐶 ≠ ∅ closed and convex. Let 𝑥 ∈	ℍ. Then there exists 
a unique point 𝑦∗ ∈ 𝐶 such that  

‖𝑥 − 𝑦∗‖ = 𝑚𝑖𝑛�∈�‖𝑥 − 𝑦‖. 

Additionally, it is the only element of 𝐾 such that 

⟨𝑥 − 𝑦∗, 𝑦 − 𝑦∗⟩ ≤ 0, for all 𝑦 ∈ 𝐶. 

This property means that there is a unique point 𝑦∗ in 𝐶 which is closest to 𝑥 ∈ ℍ [1]. 

 

2.3. Topological Properties  
 

Definition 2.3.1. Let (𝑋, ‖	. ‖) be a normed space and let a point 𝑥� ∈ 𝑋. 

(a) The open ball with center the point 𝑥� and radius 𝑟 > 0 is the set  

𝐵i(𝑥�, 𝑟) = {	𝑥 ∈ 𝑋: ‖𝑥 − 𝑥�‖ 	< 𝑟} . 

(b) The closed ball with center the point 𝑥� and radius 𝑟 > 0 is the set  

𝐵i(𝑥�, 𝑟) = 𝑥 ∈ 𝑋: ‖𝑥 − 𝑥�‖ ≤ 𝑟. ⊡ 
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Definition 2.3.2. Let (𝑋, ‖	. ‖) be a normed space and let A ⊆ 𝑋. The element 𝑥 ∈ 𝐴 is 

called an interior point of 𝐴 if there exists a 𝑟 > 0 such that 𝐵i(𝑥�, 𝑟) ⊆ 𝐴. The set of 

all points interior to 𝐴 is called the interior of 𝐴 and is denoted 𝒊𝒏𝒕	𝐴.⊡ 

Definition 2.3.3. Let (𝑋, ‖	. ‖) be a normed space and let A ⊆ 𝑋. 

(a) The set 𝐴 is called open if every element in 𝐴 is an interior point. 

(b) The set 𝐴 is called closed if its complement 𝐴� = 𝑋\𝐴	is open. ⊡ 

Definition 2.3.4. Let (𝑋, ‖	. ‖) be a normed space and let A ⊆ 𝑋. 

(a) The element 𝑥 ∈ 𝑋 is called contact point of 𝐴 if ∀	𝜀 > 0	 it holds : 

𝐴 ∩ 𝐵i(𝑥, 𝜀) ≠ ∅. 

(b) The closure of 𝐴, is the set of all contact points to 𝐴 

𝑐𝑙(𝐴) = {𝑥 ∈ 𝑋: ∀𝜀 > 0, 𝐴 ∩ 𝐵(𝑥, 𝜀) ≠ ∅}.⊡ 

Let (𝑋, 𝜏) be a topological vector space. The weak topology on 𝑋∗ (dual) is defined to 

be the coarsest topology (the one with the fewest open sets) under which element 𝑥 ∈

𝑋 correspond to a continuous map on 𝑋∗. 

Definition 2.3.5. The topological space (𝑋, 𝜏) is Hausdorff, if for each pair 𝑥 ≠ 𝑦, there 

are open and disjoint set on 𝑋, 𝐺 ∩ 𝐻 = ∅, such that 𝑥 ∈ 𝐺, 𝑦 ∈ 𝐻. ⊡ 

 

2.4. Functions 

 

The Extended Real Line  

The extended real line [−∞,+∞] = ℝ ∪ {−∞} ∪ {+∞}. We join the elements 

−∞,+∞ to the real line ℝ and we extend the order for each 𝜉 ∈ ℝ −∞ < 𝜉 < +∞. We 

can define function on a set 𝑋 with values only in ℝ ∪ {+∞} or in ℝ ∪ {−∞}.  

Example. The indicator function of 𝐴 ⊂ 𝑋, is defined as, 

𝛿�(𝑥) = � 0	, 𝑥 ∈ 𝐴
+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

These function is very useful because we can define the optimization problem for a 

function 𝑓: 𝑋 → ℝ , 𝑚𝑖𝑛	{𝑓(𝑥): 𝑥 ∈ 𝐴} like 𝑚𝑖𝑛	{𝑓(𝑥) + 𝛿¤(𝑥): 𝑥 ∈ 𝑋}. The second 

problem has better properties. Like linearity. 

Definition 2.4.1. A function 𝑓(𝑥) is called Lipschitz continuous on 𝑋 if:  

‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ ∀𝑥, 𝑦 ∈ 𝑋.⊡ 

Definition 2.4.2. Let 𝑋 be a nonempty set and let 𝑓: 𝑋 → [−∞,+∞]. 
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(a) The domain of 𝑓 is 𝑑𝑜𝑚(𝑓) = {𝑥 ∈ 𝑋|𝑓(𝑥) < +∞} , is the set of points where 

𝑓 is finite.  

(b) The function 𝑓 is proper if 𝑑𝑜𝑚(𝑓) ≠ ∅. 

(c) Given 𝛾 ∈ ℝ, the γ −sublevel set of f is Γª(𝑓) = {𝑥 ∈ 𝑋|𝑓(𝑥) ≤ 𝛾}. 

(d) The graph of 𝑓 is 𝑔𝑟𝑎𝑓 = {(𝑥, 𝛼) ∈ 𝑋 × ℝ|𝑓(𝑥) = 𝛼}. 

(e) The epigraph of 𝑓 is 𝑒𝑝𝑖𝑓 = {(𝑥, 𝛼) ∈ 𝑋 × ℝ|𝑓(𝑥) ≤ 𝛼}. 

(f) The function 𝑓 is inf-compact, if for each γ ∈ ℝ the 𝛤¬(𝑓) is relatively compact. 

(The closure of sublevel is compact) ⊡ 

The epigraph includes the graph of 𝑓 and all points above it.  

We define 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) = {𝑥∗ ∈ 𝑋: 𝑓(𝑥∗) ≤ 𝑓(𝑥)	𝑓𝑜𝑟𝑎𝑙𝑙	𝑥 ∈ 𝑋. } ⊡ 

We observe that if 𝑥 ∈ 𝑑𝑜𝑚(𝑓), then 𝑥 ∈ 𝛤­(m)(𝑓) and that  

𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) = ⋂𝛤¬(𝑓), for 𝛾 > 𝑖𝑛𝑓(𝑓). 

Let (𝑋, 𝜏) is a Hausdorff space. A function 𝑓: 𝑋 → ℝ ∪ {+∞} is lower-semicontinuous 

at a point 𝑥� ∈ 𝑋 if for each 𝛼 < 𝑓(𝑥�) there is a neighborhood 𝑉	of 𝑥� such that 

𝑓(𝑦) > 𝛼 for all 𝑦 ∈ 𝑉.  If 𝑓 is lower-semicontinuous at every point of 𝑋, we say that 

𝑓 is lower-semicontinuous in 𝑋. ⊡ 
 
 

 

 

 

 

 

Figure 1 lower-semicontinuous function. 

Let 𝑓: 𝑋 → [−∞,+∞] and let 𝐴 ⊂ 𝑋. 

(a)The infimum of 𝑓 over 𝐴 is denoted inf 𝑓(𝐴) or infxєA𝑓(𝑥) . 

(b) The supremum of 𝑓 over A is denoted sup 𝑓(𝐴) or supxєA𝑓(𝑥). 

The definition 2.4.4. is equivalent with the next one. 

Definition 2.4.6.  Let an extended real valued function 𝑓: 𝑋 → [−∞,+∞] it is lower-

semicontinuous (l.s.c.) if, for all 𝑥 ∈ 𝑋, if 𝑥" → 𝑥, then 𝑓(𝑥) ≤ lim
"→=

𝑖𝑛𝑓𝑓(𝑥"). ⊡ 

Theorem 2.4.7. Let 𝑓: 𝑋 → [−∞,+∞] . The following statements are equivalent: 

(a) The function 𝑓 is l.s.c. 
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(b) The set 𝑒𝑝𝑖(𝑓) is closed in 𝑋 × ℝ 

(c) For each 𝛾 ∈ ℝ, the 𝛾 −sublevel set is also closed. 

Proof. (a) ⇒ (b)         

  Let 𝑓 l.s.c. and take an element (𝑥�, 𝛼) ∉ 𝑒𝑝𝑖(𝑓). From the definition 2.4.4. of 

l.s.c., we have that α < 𝑓(𝑥�). We take an element 𝑦 ∈ ²𝛼, 𝑓(𝑥�)³ and from l.sc. we 

have a neighborhood 𝑉 of 𝑥� such that 𝑓(𝑧) > 𝑦 for all 𝑧 ∈ 𝑉. From all this is obvious 

that the set 𝑉 × (−∞, 𝑦) is a neighborhood of (𝑥�, 𝛼), where the intersection with 

𝑒𝑝𝑖(𝑓) is the empty. So, the set 𝑒𝑝𝑖(𝑓) is closed.      

(b) ⇒ (c)            

Let 𝑒𝑝𝑖(𝑓) is closed. For each γ ∈ ℝ, the 𝛾 − sublevel set of 𝑓 is homeomorphic to 

𝑒𝑝𝑖(𝑓) ∩ [𝑋 × 𝛾]. And from that  𝛤¬(𝑓) is closed.    

(c)	⇒ (a)           

Let 𝛤¬(𝑓) be closed and take a random 𝑥� ∈ 𝑋 and 𝛼 ∈ ℝ such that 𝛼 < 𝑓(𝑥�). Then 

𝑥� ∉ 𝛤�(𝑓) and because the sublevel set is closed, there is a neighborhood 𝑉(𝑥�) that 

the intersection with 𝛤�(𝑓) is empty. So, 𝑓(𝑧) > 𝛼 for all 𝑧 ∈ 𝑉(𝑥�). ⊡ 

Lemma 2.4.8. Let (𝑓C)C∈´ be a family of function from 𝑋 to extended real line. Then we 

have the following statements: 

(a) 𝑒𝑝𝑖(𝑠𝑢𝑝C∈´𝑓C) =∩C∈´ 𝑒𝑝𝑖(𝑓C) 

(b) If 𝐼 is finite, then 𝑒𝑝𝑖(𝑚𝑖𝑛C∈´𝑓C) =∪C∈´ 𝑒𝑝𝑖(𝑓C) 

Proof. [2] (a) Let (𝑥, 𝛼) ∈ 𝑋 × ℝ	 and (𝑥, 𝛼) ∈ 𝑒𝑝𝑖(𝑠𝑢𝑝C∈´𝑓C), which means that 

𝑠𝑢𝑝C∈´𝑓C(𝑥) ≤ 𝛼 so for each 𝑖 ∈ 𝐼, 𝑓C(𝑥) ≤ 𝛼 and from definition of 𝑒𝑝𝑖(𝑓) we have 

(𝑥, 𝛼) ∈ 𝑒𝑝𝑖(𝑓C) and finally (𝑥, 𝛼) ∈∩C∈´ 𝑒𝑝𝑖(𝑓C).      

 (b) Let (𝑥, 𝛼) ∈ 𝑋 × ℝ and (𝑥, 𝛼) ∈ 𝑒𝑝𝑖(𝑚𝑖𝑛C∈´𝑓C) we the same logic like (a) 

we conclude that (𝑥, 𝛼) ∈∪C∈´ 𝑒𝑝𝑖(𝑓C). ⊡ 

Example. The indicator function 𝛿�  of a set 𝐶 ⊂ 𝑋 is lower semicontinuous ⇔  𝐶	is 

closed.  

Proof. Let a 𝛾 ∈ ℝ. The 𝛤¬(𝛿�) is the ∅ if 𝛾 < 0, and the set 𝐶 otherwise. From the 

Theorem 2.4.8. we have the result. ⊡ 

Lemma 2.4.9. Let 𝑋 be a Hausdorff space and let	(𝑓C)C∈´ be a family of lower-

semicontinuous functions from 𝑋 to the extended real line ℝ ∪ {−∞} ∪ {+∞}. Then 

𝑠𝑢𝑝C∈´𝑓C is lower-semicontinuous. 
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Proof. Since 𝑒𝑝𝑖(𝑠𝑢𝑝C∈´𝑓C) =∩C∈´ 𝑒𝑝𝑖(𝑓C)	and 𝑒𝑝𝑖(𝑓C) is a closed set and the 

intersection of closed sets are closed we have the result. ⊡ 

Theorem 2.4.10. Let (𝛸, 𝜏) be a Hausdorff space and let 𝑓: 𝑋 → ℝ ∪ {+∞} be proper, 

lower-semicontinuous, and inf-compact. Then 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) is nonempty and compact. 

Moreover, 𝑖𝑛𝑓(𝑓) ≻ ∞. ⊡ 

 

Minimizing Sequences 

 

Definition 2.4.11. A function 𝑓: 𝑋 → ℝ ∪ {+∞} is sequentially lower-semicontinuous 

at 𝑥 ∈ 𝑑𝑜𝑚(𝑓) if 𝑓(𝑥) ≤ lim
"→=

𝑖𝑛𝑓𝑓(𝑥") for every sequence 𝑥" converging to 𝑥. ⊡ 

Definition 2.4.12. We say that 𝑥" is a minimizing sequence for 𝑓: 𝑋 → ℝ ∪ {+∞} if 

lim
"→=

𝑓(𝑥") = 𝑖𝑛𝑓(𝑓). ⊡ 

Proposition 2.4.13. Let 𝑥" be a minimizing sequence for a function 𝑓: 𝑋 → ℝ ∪ {+∞}, 

which is sequentially l.s.c. and proper. If 𝑥" → 𝑥, then 𝑥 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓). ⊡ 

Theorem 2.4.14. Let 𝑋 be reflexive. If 𝑓: 𝑋 → ℝ ∪ {+∞} is proper, convex, coercive 

(𝛤¬(𝑓)is bounded ∀𝛾 ∈ R) and lower-semicontinuous, then 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) is nonempty 

and weakly compact. If moreover, 𝑓 strictly convex, then 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) is a singleton.  

Therefore, theorem 2.4.14. assure us that for proper, convex, coercive, l.s.c. we have 

minimizers. 
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3 CONVEXITY 
 

3.Introduction 

In this section we discuss basic notions of convexity. First, we define convex sets. 

Convex sets help us to identify convex functions. We discuss about affine sets and we 

study separating theorems. 

 

3.1. Convex Sets 

Let 𝑥I,𝑥K ∈ ℝ", where 𝑥I ≠ 𝑥K. We define line segment between 𝑥I and 𝑥K points of 

the form 

𝑧 = 𝜆𝑥I + (1 − 𝜆)𝑥K, 𝜆 ∈ ℝ. 

 We define closed line segment between 𝑥I and 𝑥K points of the form  

𝑧 = 𝜆𝑥I + (1 − 𝜆)𝑥K, 0 ≤ 𝜆 ≤ 1. 

We note that 𝑧 = 𝑥K + 𝜆(𝑥I − 𝑥K), this means that 𝑧 is the sum of the point 𝑥K and the 

direction 𝑥I − 𝑥K scaled by the parameter 𝜆 [4].  

Let 𝐶 ⊂ ℝ", we say that 𝐶 is convex if (1 − 𝜆)𝑥 + 𝜆𝑦 ∈ 𝐶 and 0 < 𝜆 < 1. It means 

that a set 𝐶 ⊂ ℝ" is convex if the line segment between any points in 𝐶 lies in 𝐶. In 

particular, ℍ and ∅ are convex [4]. ⊡ 

Theorem 3.1.1. The intersection of a collection of convex sets is convex. ⊡ 

A convex combination of 𝑥I, … , 𝑥" ∈ 𝐶 is a point of the form 𝜆I𝑥I + ⋯+ 𝜆<𝑥< where 

the coefficients 𝜆C, 𝑖 = 1,… ,𝑚 is non-negative and ∑ 𝜆C<
CNI = 1. 

Theorem 3.1.2. Let 𝐶 ⊂ ℝ". The set 𝐶 is convex if and only if it contains all convex 

combinations of its elements. 

Proof. By definition 𝐶 is convex ⇔ 𝜆I𝑥I + 𝜆K𝑥K ∈ 𝐶 , 𝑥I, 𝑥K ∈ 𝐶, 𝜆I ≥ 0, 𝜆K ≥ 0 and 

𝜆I + 𝜆K = 1.           

So for 𝑚 = 2 the convexity it holds.                                                                             

For 𝑚 > 2	we suppose that 𝐶 is closed under, taking all convex combination of fewer 

than 𝑚 vectors: 
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Let 𝑧 = 𝜆I𝑥I + ⋯+ 𝜆<𝑥< for 𝑥I, … . 𝑥< ∈ 𝐶 and for some 𝜆C we have that λC ≠ 1, 

otherwise ∑ 𝜆C = 𝑚 ≠ 1<
CNI . We choose arbitrary λI ≠ 1 and let 𝑦 = 𝑘K𝑥K + ⋯+

𝑘<𝑥<, 𝑘< = º»
I¼ºp

. Then,  ∑ 𝑘C = ∑ 𝜆C<
CNK /∑ 𝜆C<

CNK
<
CNK = 1. After all 𝑦 is a convex 

combination of 𝑚 − 1 elements of 𝐶 , and from our hypothesis 𝑦 ∈ 𝐶 and from the fact 

that 𝑧 = (1 − 𝜆I)𝑦 + 𝜆I𝑥I we have the result 𝑥 ∈ 𝐶.[4] ⊡                                     

The set of all convex combinations of points in 𝐶 is called convex hull of 𝐶 and is 

denoted by 𝒄𝒐𝒏𝒗	𝐶. In particular: 

𝒄𝒐𝒏𝒗	𝐶 = {𝜆I𝑥I + ⋯+ 𝜆<𝑥<|𝑥C ∈ 𝐶, 𝜆C ≥ 0, 𝜆I + ⋯+ 𝜆< = 1}.      ⊡ 

 It is obvious that convex hull is always a convex set. It is the smallest set that contains 

𝐶.  It is very interesting to obtain that the convex combination idea is useful in 

probability distributions. In general, let 𝐶 ⊂ ℝ" a convex set and 𝑋 is a random 

variable, where 𝑋 ∈ 𝐶 with 𝑝𝑟 = 1, then 𝐸𝑋 ∈ 𝐶	[4]. ⊡ 

 

3.2. Affine Sets  

 

Let 𝐶 ⊂ ℝ", if for any 𝑥I, 𝑥K ∈ 𝐶 and 𝜆 ∈ ℝ, we have λ𝑥I + (1 − 𝜆)𝑥K ∈ 𝐶, the set 𝐶 

is called affine set.  

A affine combination of 𝑥I, … , 𝑥" ∈ 𝐶 is a point of the form 𝜆I𝑥I + ⋯+ 𝜆<𝑥< where 

∑ 𝜆C<
CNI = 1.  

The set of all affine combinations in 𝐶 is called affine hull, and is denoted by 𝒂𝒇𝒇	𝐶:  

𝒂𝒇𝒇𝐶 = {𝜆I𝑥I + ⋯+ 𝜆<𝑥<|𝑥I, … 𝑥< ∈ 𝐶, 𝜆I + ⋯+ 𝜆< = 1}. 

The affine hull is the smallest set that contains 𝐶.The dimension of 𝐶,𝑑𝑖𝑚(𝐶) is the 

dimension of the 𝒂𝒇𝒇	𝐶. ⊡  

Let 𝐶 ⊂ ℝ". The relative interior of 𝐶 is denoted as 𝑟𝑖(𝐶) and is defined as: 

𝑟𝑖(𝐶) = {𝑥 ∈ 𝐶|𝐵(𝑥, 𝑟) ∩ 𝒂𝒇𝒇𝐶 ⊆ 𝐶	for	some	𝑟 > 0}. ⊡ 

Example 3.2.1. [4] We consider a square (𝑥, 𝑦) −plane in ℝÇ : 𝐶 = 𝑧 = (𝑥, 𝑦, 𝑘) ∈

ℝÇ| − 1 ≤ 𝑥 ≤ 1,−1 ≤ 𝑦 ≤ 1. The affine hull of 𝐶 is 𝒂𝒇𝒇	𝐶	 = 	 {𝑧 ∈ ℝÇ|	𝑘 = 0}. The 

𝑖𝑛𝑡(𝐶) = ∅ but the 𝑟𝑖(𝐶) = {𝑧 ∈ ℝÇ	| 	− 1 < 𝑥 < 1,−1 < 𝑦 < 1, 𝑘 = 0}. ⊡ 

We say that a function 𝑓:ℝ" → ℝ< is affine if it is a sum of a linear function and a 

constant.  
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3.3. Separating Theorems 

 

Let 𝑏 ∈ ℝ", 𝑏 ≠ 0 and any 𝛽 ∈ ℝ. The sets: 

o {𝑥|⟨𝑥, 𝑏⟩ ≤ 𝛽} 

o {𝑥|⟨𝑥, 𝑏⟩ ≥ 𝛽} 

Are called closed half-spaces. And the sets: 

o {𝑥|⟨𝑥, 𝑏⟩ < 𝛽} 

o {𝑥|⟨𝑥, 𝑏⟩ > 𝛽} 

Are called open half-spaces.  

A hyperplane is a set of the form {	𝑥		|	⟨𝑥 − 𝑥�, 𝑏⟩ 	= 0	}. A hyperplane divides ℝ"	into 

two half-spaces. Geometrically [4] the hyperplane is a set of points with a constant inner 

product to a vector 𝑏. 

Theorem 3.3.1 (Hahn-Banach Separation Theorem). Let 𝐴 and 𝐵 be nonempty, disjoint 

convex of a normal space (𝑋, ‖	. ‖).  

(a) If 𝐴 is open, there exist 𝐾 ∈ 𝑋∗\{0} such that ⟨𝐾, 𝑥⟩ < ⟨𝐾, 𝑦⟩ for each 𝑥 ∈ 𝐴 

and 𝑦 ∈ 𝐵. 

(b) If 𝐴 is compact and 𝐵 is closed, there exists 𝐿 ∈ 𝑋∗\{0} and 𝜀 > 0 such that 

⟨𝐾, 𝑥⟩ + 𝜀 ≤ ⟨𝐾, 𝑦⟩∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. 

3.4 Convexity and Nonexpansiveness. 
 
Let 𝑇:ℍ → ℍ an operator. We define the set of fixed points of 𝑇 the set  

𝐹𝑖𝑥𝑇 ≔ {𝑥 ∈ ℍ ∶ 	𝑥 = 𝑇(𝑥)}. 

Non expansive operators are very useful, [2] because many optimization problems 
based to find fixed points of nonexpansive operators. Nonexpansive operators are 
Lipschitz continuous operators with 𝐿 = 1. 

Let 𝐶 ⊂ ℍ, 𝐶 ≠ ∅ and let 𝑇: 𝐶 → ℍ.We say that 𝑇 is: 

(a) Firmly nonexpansive, if  

‖𝑇𝑥 − 𝑇𝑦‖K + ‖(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦‖K ≤ ‖𝑥 − 𝑦‖K, ∀𝑥, 𝑦 ∈ 𝐶. 

(b) Nonexpansive, if 

‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶. 

(c) Contractive, if  
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‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖, 𝐿 < 1, ∀𝑥, 𝑦 ∈ 𝐶. 

It is obvious that statement (a) implies (b).  

 

Figure 2 Geometrical Interpretation of contraction and nonexpansiveness 

The interpretation of contraction is that mapping 𝑥, 𝑦 to 𝛵(𝑥), 𝑇(𝑦) reduces the distance 
between them and nonexpansive operator does not increase the distance between them 
[5]. 

Basic Properties. 

• Let 𝑇I, 𝑇K nonexpansive, then 𝑇I ∘ 𝑇K is nonexpansive. 

• Let 𝑇I	a contraction and 𝑇K is nonexpansive, then 𝑇I ∘ 𝑇K	is contraction 

Proposition 3.4.1. Let 𝐶 nonempty set of ℍ. Let 𝑇: 𝐶 → ℍ. The  𝑇 is firmly 
nonexpansive if, and only of, 𝐼 − 𝑇 is firmly nonexpansive.  

Let 𝐶 ⊂ ℍ a nonempty set. Let 𝑇: 𝐶 → ℍ a nonexpansive operator and let a ∈ (0,1). 
We say that 𝑇 is averaged with constant 𝑎, or 𝑎 −averaged, if there exists a 
nonexpansive operator 𝑅: 𝐶 → ℍ such that 𝑇 = (1 − 𝑎)𝐼 + 𝑎𝑅. Note that if 𝑇 is 
averaged, then is nonexpansive. By proposition 3.4.1. 𝑇 is firmly nonexpansive if and 
only of is I

K
-averaged.  

Let 𝐶 ⊂ ℍ and let (𝑥") ∈ ℍ. Then (𝑥") is Fejer monotone with respect to 𝐶 if 

∀𝑥 ∈ 𝐶	‖𝑥"ÎI − 𝑥‖ ≤ ‖𝑥" − 𝑥‖. 

Proposition 𝟑. 𝟒. 𝟐. Let 𝑥" ∈ ℍ, and 𝐶 ⊂ ℍ , 𝐶 ≠ ∅. If 𝑥" Fejer monotone with respect 
to 𝐶. The we have the following: 

(a) 𝑥" is bounded. 

(b) 	For every 𝑥 ∈ 𝐶, (‖𝑥" − 𝑥‖)"∈ℕ converges. 

Theorem 3.4.3. Let 𝑥" ∈ ℍ, and 𝐶 ⊂ ℍ , 𝐶 ≠ ∅. If 𝑥" Fejer monotone with respect to 
𝐶 and that every weak sequential cluster point of (𝑥") ∈ 𝐶. Then (𝑥") converges 
weakly to a point 𝑥� ∈ 𝐶. 
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Krasnosel’skii-Mann Theorem 

Theorem 3.4.4. Let 𝑥" ∈ ℍ, and 𝐶 ⊂ ℍ , 𝐶 ≠ ∅ and convex. Let 𝑇: 𝐶 → 𝐶 be a 
nonexpansive operator such that 𝐹𝑖𝑥𝑇 ≠ ∅, let 𝜆" ∈ [0,1] such that ∑ 𝜆"(1 −"∈ℕ
𝜆") = +∞, and let 𝑥� ∈ 𝐶. Set  

∀𝑛 ∈ ℕ		𝑥"ÎI = 𝑥" + 𝜆"(𝑇𝑥" − 𝑥") 

Then the following statements are hold: 

(a) 𝑥" is Fejer monotone with respect to 𝐹𝑖𝑥𝑇. 

(b) (𝑇𝑥" − 𝑥")"∈ℕ converges strongly to 0. 

(c) 𝑥" converges weakly to a point in 𝐹𝑖𝑥𝑇. 

Proof. [2] (a)It holds the following corollary. 

Corollary 3.4.5. Let 𝑥 ∈ ℍ, 𝑦 ∈ ℍ, and let	𝑎 ∈ ℝ. Then  

‖𝛼𝑥 + (1 − 𝛼)𝑦‖K + 𝛼(1 − 𝛼)‖𝑥 − 𝑦‖K = 𝛼‖𝑥‖K + (1 − 𝛼)‖𝑦‖K. 

By corollary and definition of nonexpansiveness of 𝑇, we have for every 𝑦 ∈ 𝐹𝑖𝑥𝑇 

‖𝑥"ÎI − 𝑦‖K = ‖(1 − 𝜆")(𝑥" − 𝑦) + 𝜆"(𝑇𝑥" − 𝑦)‖K 

= (1 − 𝜆")‖𝑥" − 𝑦‖K + 𝜆"‖𝛵𝑥" − 𝑇𝑦‖K − 𝜆"(1 − 𝜆")‖𝑇𝑥" − 𝑥"‖K 

≤ ‖𝑥" − 𝑦‖K − 𝜆"(1 − 𝜆")‖𝑇𝑥" − 𝑥"‖K. 

This implies that (𝑥") is Fejer monotone with respect to 𝐹𝑖𝑥𝑇. 

(.b) From the last inequality we have ∑ 𝜆"(1 − 𝜆")‖𝑇𝑥" − 𝑥"‖K"∈ℕ ≤ ‖𝑥� − 𝑦‖K. 
Since ∑ 𝜆"(1 − 𝜆")"∈ℕ = +∞ we have 𝑙𝑖𝑚 ‖𝑇𝑥" − 𝑥"‖ = 0. 

‖𝑇𝑥"ÎI − 𝑥"ÎI‖ = ‖𝑇𝑥"ÎI − 𝑇𝑥" + (1 − 𝜆")(𝑇𝑥" − 𝑥")‖ 

≤ ‖𝑥"ÎI − 𝑥"‖ + (1 − 𝜆")‖𝑇𝑥" − 𝑥"‖ 

= ‖𝑇𝑥" − 𝑥"‖. 

This implies that (𝑇𝑥" − 𝑥")"∈ℕ converges strongly to 0.  

(.c) Let 𝑥 be a weak sequential cluster point of (𝑥"). Then from  

Corollary 3.4.6. Let 𝐷 ⊂ ℍ closed, convex set. Let 𝑇:𝐷 → ℍ be nonexpansive, let 
𝑥" ∈ 𝐷, and let 𝑥 ∈ ℍ. Suppose 𝑥 a weak sequential cluster point of 𝑥" and that 𝑥" −
𝑇𝑥" → 0 ⇒ 𝑥 ∈ 𝐹𝑖𝑥(𝑇).	 

Now apply theorem 3.4.3. and we have the result. 

Proposition 3.4.7. Let 𝑎 ∈ (0,1), let 𝑇:ℍ → ℍ be  an 𝑎 −	averaged operator such that 
𝐹𝑖𝑥(𝑇) ≠ ∅, let (𝜆")("∈Ò) be a sequence in Ó0, I

�
Ô such that ∑ 𝜆"(1 − 𝑎𝜆") = +"∈ℕ ∞, 

and let 𝑥� ∈ ℍ. Set  

𝑥("ÎI) = 𝑥" + 𝜆"(𝑇𝑥" − 𝑥"), ∀𝑛 ∈ N 
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Then the following hold: 

(a) 𝑥" is Fejer-Monotone w.r.t 𝐹𝑖𝑥(𝑇). 

(b) (𝑇𝑥" − 𝑥")("∈Ò) converges strongly to 0. 

(c) (𝑥") converges weakly to a point in 𝐹𝑖𝑥(𝑇). 

Note. The previous theorems and propositions assure us the convergence of the 
algorithms that we will study in the next chapters. 
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4 CONVEX ANALYSIS AND SUBDIFFERENTIAL 
CALCULUS 
 

4.Introfuction 

In this chapter we define convex functions and their properties. We study the relation 

between convexity and continuity and convexity and differentiability. Then we 

characterize the convexity. In the second part we generalize the notion of derivative for 

nondifferentiable functions and will characterize their minimizers. We will discuss 

about proximal map and Moreau – Yosida Regularization, Legendre – Fenchel 

conjugate and finally about Fenchel - Rockafellar duality.  

4.1. Convex Function 

 

Let 𝑓: 𝑋 → [−∞,+∞] be a function. The function 𝑓 is convex if  

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)	(3.1) 

for each 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓) and 𝜆 ∈ (0,1). 

This definition geometrically can be interpreted as the line segment between ²𝛼, 𝑓(𝛼)³, 

²𝛽, 𝑓(𝛽)³, which is the chord from 𝛼 to 𝛽, lies above the graph of 𝑓. Otherwise we can 

say that 𝑓: 𝑋 → [−∞,+∞] is convex if and only if its 𝑒𝑝𝑖(𝑓) convex [4]. 

 

Figure 3 Convex function. 
The function 𝑓 is strictly convex if  

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) 

for each 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓) and 𝜆 ∈ (0,1).       
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The function 𝑓 is strongly convex with parameter 𝜇 > 0 if 		 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦	) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) −
𝛼
2 𝜆
(1 − 𝜆)‖𝑥 − 𝑦‖K 

for each 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓) and 𝜆 ∈ (0,1).The inequality (3.1) is called Jensen’s inequality 

and it is extended to convex combinations for 𝑚 points, where	𝑚 > 2, so we have : 

𝑓(𝜆I𝑥I + ⋯+ 𝜆<𝑥<) ≤ 𝜆I𝑓(𝑥I) + ⋯+ 𝜆<𝑓(𝑥<). 

We can observe that if 𝑓 is convex, then each γ −sublevel set is convex. We say that 𝑓 

is concave if −𝑓 is convex. In the same way, strictly concave. 

Example 4.1.1. We suppose the indicator function 𝛿�  , where 𝐶 is convex set, then 𝛿�  

is a convex function.         

Example 4.1.2. Let 𝑓 be a function on ℝ". 

(a) If 𝑓 is a norm, then it is a convex function. 

Proof.  𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) = ‖𝜃𝑥 + (1 − 𝜃)𝑦‖ 

																																				≤ ‖𝜃𝑥‖ + ‖(1 − 𝜃)𝑦‖ (triangle inequality) 

= 𝜃‖𝑥‖ + (1 − 𝜃)‖𝑦‖ 

= 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦). 

(b) If 𝑓(𝑥) = 𝑚𝑎𝑥{𝑥I, … 𝑥"} then is convex.  

(c) Ιf 𝑓 is the Tchebycheff norm , 𝑓(𝑥) = 𝑚𝑎𝑥|𝑘C|, 𝑖 = 1,…𝑛, is convex function. 

The support function δ∗(. |𝐶) of a convex set 𝐶 ⊂ ℝ" is: 

δ∗(. |𝐶) = 𝑠𝑢𝑝{⟨𝑥, 𝑦⟩|𝑦 ∈ 𝜆𝐶}. 

Theorem 4.1.3. If 𝑓I and 𝑓K are proper convex function on ℝ", then 𝑓I + 𝑓K is convex. 

Proof. Indeed, from the definition of convex function it is elementary.  

Theorem 4.1.4. The pointwise supremum of an arbitrary collection of convex functions 

is convex.  

Proof. As we know, the intersection of a collection of convex sets is convex. We have 

𝑓(𝑥) = 𝑠𝑢𝑝{𝑓𝑖(𝑥)|𝑖 ∈ 𝐼} , where 𝑓C are convex functions for each 𝑖. Indeed, the 𝑒𝑝𝑖(𝑓). 

We define the lower semicontinuous hull of 𝑓 : 

(𝑐𝑙𝑓)(x)=Ù𝑙𝑖𝑚𝑖𝑛𝑓�→m𝑓
(𝑦), 𝑖𝑓			𝑓(𝑦) ≻ ∞			𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 ∈ 𝑋
−∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

 

We say that function 𝑓 is closed if 𝑓 = 𝑐𝑙𝑓.  The closedness is equivalent with lower-

semicontinuity. 
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4.2. Convexity and continuity 

This subsection is following to [1]. 

Proposition 4.2.1. Let 𝑓: 𝑋 → ℝ ∪ {+∞} proper function. Then, 𝑓 is convex and lower 

semicontinuous if, and only if, there exists a family of functions (𝑓C)C∈´ if continuous 

affine functions on 𝑋 such that 𝑓 = 𝑠𝑢𝑝(𝑓C). 

 

Characterization of Continuity  

 

Proposition 4.2.1. [1] Let 𝑓: 𝑋 → ℝ ∪ {+∞} a convex function and a point 𝑥� ∈ 𝑋. We 

have the following equivalent statements:  

(a) 𝑓	is upper bounded in a 𝑉(𝑥�) 

(b) 𝑓 is Lipschitz-continuous in a 𝑉(𝑥�) 

(c) 𝑓 is continuous in 𝑥� ∈ 𝑋 

(d) (𝑥�, 𝑎) ∈ 𝑖𝑛𝑡²𝑒𝑝𝑖(𝑓)³ for each λ > 𝑓(𝑥�).  

Note. Let (𝑋, ‖	. ‖) be a normed space. Let 𝑓: 𝑋 → ℝ ∪ {+∞} a convex function. We 

know that 𝑓 is continuous in 𝑖𝑛𝑡²𝑑𝑜𝑚(𝑓)³ in the next three cases:  

(i) 𝑋 is finite dimensional. 

(ii) 𝑋 is Banach space and 𝑓 is l.s.c. 

(iii) 𝑓 is continuous at a point 𝑥. 

 

4.3. Convexity and Differentiability. 

 

Let a function 𝑓: 𝑋 → [−∞,+∞]. We define the directional derivative of function 𝑓 at 

a point 𝑥 in 𝑑𝑜𝑚𝑎𝑖𝑛 of 𝑓, 𝑑𝑜𝑚(𝑓) in the direction ℎ the quantity: 

𝑓Ú(𝑥; ℎ) = lim
Ü→�

­(mÎÜÝ)¼­(m)
Ü

. 

We define the one-sided directional derivative of 𝑓 at 𝑥 ∈ 𝑋 to the direction ℎ to be the 

limit 𝑓Ú(𝑥; ℎ) = lim
Ü↓�

­(mÎÜÝ)¼­(m)
Ü

	.  

One of the most useful property of convex functions is that the one-sided directional 

derivative is always exists in ℝ ∪ {+∞} .  
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Theorem 4.3.1. Let 𝑓 convex function and let a point 𝑥 such that 𝑓(𝑥) < +∞. For each 

ℎ,  the  difference quotient in the definition of 𝑓Ú(𝑥; ℎ) is a non-decreasing function of 

𝑡 > 0,so that 𝑓Ú(𝑥, ℎ) exists and 𝑓Ú(𝑥; ℎ) = lim
Üß�

­(mÎÜÝ)¼­(m)
Ü

. 

Proof. [13] The difference quotient for 𝑡 > 0 can be expressed as 𝑡¼I𝑔(𝑡ℎ), where 

𝑔(ℎ) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥). The set 𝑒𝑝𝑖(𝑔) and can be interpreted as the removal of point 

²𝑥, 𝑓(𝑥)³ to (0,0). Also, 𝑡¼I𝑔(𝑡ℎ) = (𝑔𝑡¼I)(ℎ). From the fact that 𝑒𝑝𝑖(𝑔) is convex, 

we have that also the set 𝑡¼I𝑒𝑝𝑖(𝑔) is convex, so the function 𝑔𝑡¼I is convex. Since 

𝑒𝑝𝑖(𝑔) contains the origin, the latter set increases, as 𝑡¼I decreases. ⊡ 

 

Proposition 4.3.2.  Let 𝑓: 𝑋 → ℝ ∪ {+∞} proper and convex, and let 𝑥 ∈ 𝑑𝑜𝑚(𝑓). We 

define the function 𝜑m: 𝑋 → [−∞,+∞], as 𝜑m(ℎ) = 𝑓Ú(𝑥, ℎ). The function 𝜑i(ℎ) 

 is convex and if 𝑓 is continuous in 𝑥, then φm is finite and continuous in 𝑋.⊡ 

If the above function 𝜑m is linear and continuous in 𝑋,	in a point 𝑥 ∈ 𝑑𝑜𝑚(𝑓) we say 

that thefunction𝑓is𝐺𝑎𝑡𝑒𝑎𝑢𝑥 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒(GD)at𝑥. The Gâteaux derivative or 

gradient of 𝑓 at 𝑥 is  ∇𝑓(𝑥) = 𝑓Ú(𝑥; . ) and ∇𝑓(𝑥) ∈ 𝑋∗. 

A function 𝑓 is Fréchet-differentiable at 𝑥 if there exists 𝐿 ∈ 𝑋∗ such that 

𝑙𝑖𝑚‖Ý‖→�
|𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ⟨𝐿, ℎ⟩|

‖ℎ‖ = 0. 

The Fréchet derivative of 𝑓 at 𝑥 is 𝐷𝑓(𝑥) = 𝐿. 

 

Proposition 4.3.3. (Descent Lemma). If 𝑓: 𝑋 → ℝ ∪ {+∞} is Gateux-Differentiable 

and ∇𝑓 is Lipschitz – continuous with constant 𝐿, then  

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ +
𝐿
2
‖𝑦 − 𝑥‖K 

for each 𝑥, 𝑦 ∈ 𝑋. In particular, 𝑓 is continuous.  

Proof. The proof is according [1]. Let ℎ = 𝑦 − 𝑥 and define 𝑔: [0,1] → ℝ by 𝑔(𝑡) =

𝑓(𝑥 + 𝑡ℎ). Then 𝑔̇(𝑡) = ⟨∇𝑓(𝑥 + 𝑡ℎ), ℎ⟩ for each 𝑡 ∈ (0,1), and so  

∫ ⟨∇𝑓(𝑥 + 𝑡ℎ), ℎ⟩𝑑𝑡I
� = ∫ 𝑔̇(𝑡)𝑑𝑡I

� = 𝑔(1) − 𝑔(0) = 𝑓(𝑦) − 𝑓(𝑥). 

Therefore, 

𝑓(𝑦) − 𝑓(𝑥) = ì ⟨∇𝑓(𝑥), ℎ⟩
I

�
𝑑𝑡 + ì ⟨∇𝑓(𝑥 + 𝑡ℎ) − ∇𝑓(𝑥), ℎ⟩

I

�
𝑑𝑡 

≤ ⟨∇𝑓(𝑥), ℎ⟩ + ì ‖∇𝑓(𝑥 + 𝑡ℎ) − ∇𝑓(𝑥)‖‖ℎ‖𝑑𝑡
I

�
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≤ ⟨∇𝑓(𝑥), ℎ⟩ + 𝐿‖ℎ‖K ì 𝑡𝑑𝑡
I

�
 

= ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ + í
K
‖𝑦 − 𝑥‖K.⊡ 

Let 𝑓: 𝑋 → ℝ is GD in 𝑋. The directional derivative of 𝛻𝑓: 𝑋 → 𝑋∗ is the function  

(∇𝑓)Ú(𝑥; ℎ) = 𝑙𝑖𝑚Ü→�ï
∇­(mÎÜÝ)¼∇­

Ü
. 

The function 𝑓 is twice Gâteaux-differentiable if is Gâteaux differentiable and 

(∇𝑓)Ú(𝑥; ℎ) exists for all ℎ ∈ 𝑋, and the function ℎ ↦ (∇𝑓)Ú(𝑥; ℎ) is linear and 

continuous. The second Gâteaux derivative (Hessian) of 𝑓 at 𝑥 ∈ 𝑋 is ∇K𝑓(𝑥) =

(∇𝑓)Ú(𝑥, . ) ∈ ℐ(𝑋; 𝑋∗).⊡  

 

Characterization of Convexity [1] 

 

Theorem 4.3.4. (Fermat’s Rule). Let a normed space (𝑋, ‖	. ‖) and  𝐶 ⊂ 𝑋 convex set. 

Let 𝑓: 𝑋 → ℝ ∪ +{∞}. If 𝑓(𝑥) ≤ 𝑓(𝑦) for all 𝑦 ∈ 𝐶 and if 𝑓 is Gateaux differentiable 

at 𝑥, then  

⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ ≥ 0 

for all 𝑦 ∈ 𝐶. If moreover 𝑥 ∈ 𝑖𝑛𝑡(𝐶), then ∇𝑓(𝑥) = 0. 

Proof. Let 𝑦 ∈ 𝐶 , from convexity of 𝐶 we have  

𝑧 = 𝜆𝑦 + (1 − 𝜆)𝑥 ∈ 𝐶 for 𝜆 ∈ (0,1). 

The inequality 𝑓(𝑥) ≤ 𝑓(𝑧) ⟺ 𝑓²𝑥 + 𝜆(𝑦 − 𝑥)³ − 𝑓(𝑥) ≥ 0. If we divide by 𝜆 the 

last inequality and let, 𝜆 → 0 we have 𝑓Ú(𝑥; 𝑦 − 𝑥) ≥ 0 for all 𝑦 ∈ 𝐶.		 ⊡ 

To understand the Fermat’s Rule, [1] let 𝑓 a differentiable function on ℝK. The Theorem 

means that 𝑓 decrease by leaving the set 𝐶.  

 

Figure 4 Fermat's rule. The vector is the gradient of f 

We conclude that Fermat’s rule gives us a necessary condition for a point 𝑥� be a 

minimizer of 𝑓. We have the following 
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𝑥� is minimizer of 𝑓 ⇔ ∇𝑓(𝑥�) = 0. 

Proposition 4.3.5. Let 𝑓: 𝐶 → ℝ be Gateaux-differentiable, where 𝐶 ⊂ 𝑋 is convex and 

open set. The convexity is characterized by the equivalent statements: 

(a) 𝑓 is convex. 

(b) 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩, for every 𝑥, 𝑦 ∈ 𝐶. 

(c) ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 0, for every 𝑥, 𝑦 ∈ 𝐶. 

If 𝑓 is twice GD on 𝐶, 

(d)	⟨∇K𝑓(𝑥)ℎ, ℎ⟩ ≥ 0, for every 𝑥 ∈ 𝐶	and ℎ ∈ 𝑋. (positive semidefinite) 

Proof. The proof is according to [1] 

By convexity of 𝑓 we have for all 𝑦 ∈ 𝑋 and	𝜆 ∈ (0,1), 

𝑓(𝜆𝑦 + (1 − 𝜆)𝑥) ≤ 𝜆𝑓(𝑦) + (1 − 𝜆)𝑓(𝑥) 

⟺ ­(º�Î(I¼º)m)
º

≤ 𝑓(𝑦) − 𝑓(𝑥). 

For λ → 0 we obtain b). From b) we have obvious the inequality c). 

c) ⇒ a) Let 𝑔: [0,1] → ℝ, where 𝑔(𝜆) = 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) − 𝜆𝑓(𝑥) − (1 − 𝜆)𝑓(𝑦). 

We obtain 𝑔(0) = 𝑔(1) = 0 and  

𝑔Ú(𝜆) = ⟨∇𝑓(𝜆𝑥 + (1 − 𝜆)𝑦), 𝑥 − 𝑦⟩ − 𝑓(𝑥) + 𝑓(𝑦) 

For 𝜆 ∈ (0,1). Take 0 < 𝜆I < 𝜆K < 1 and write 𝑥C = 𝜆C𝑥 + (1 − 𝜆C)𝑦 for 𝑖 = 1,2.  

𝑔Ú(𝜆I) − 𝑔Ú(𝜆K) =
1

𝜆I − 𝜆K
⟨∇𝑓(𝑥I) − ∇𝑓(𝑥K), 𝑥I − 𝑥K⟩ ≤ 0 

This implies that 𝑔Ú is nondecreasing. Since 𝑔(0) = 𝑔(1) = 0 , there exists 𝜉 ∈ (0,1) 

such that 𝑔(𝜉) = 0. Since  

• 𝑔′	 nonincreasing  

• 𝑔Ú ≤ 0 on [0, 𝜉] 

• 𝑔Ú ≥ 0 

We have that 𝑔(𝜆) ≥ 0 and 𝑓 convex.  

d)⇒c)⇒a) We assume that 𝑓 is twice GD. Let 𝑡 > 0 and  ℎ ∈ 𝑋, we have 

⟨∇𝑓(𝑥 + 𝑡ℎ) − ∇𝑓(𝑥), 𝑡ℎ⟩ ≥ 0.  Now, 

• We divide by 𝑡K. 

• We take the limit as 𝑡 → 0. 

We have ⟨∇K𝑓(𝑥)ℎ, ℎ⟩ ≥ 0. Finally,  

𝑔ÚÚ(𝜆) = ⟨∇K𝑓(𝜆𝑥 + (1 − 𝜆)𝑦)(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≥ 0. 

It follows that 𝑔Ú is nonincreasing and we conclude like before. ⊡ 
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 The strict convexity characterized as in proposition 4.3.5. but the inequalities are hold 

strict. Let 𝑓: 𝐶 → ℝ be GD, where 𝐶 ⊂ 𝑋 is open and convex then the following 

statements are equivalent: 

(a) 𝑓 is strictly convex 

(b) 𝑓(𝑦) > 𝑓(𝑥) + ⟨∇𝑓, 𝑦 − 𝑥⟩, for any 𝑥 ≠ 𝑦 ∈ 𝐶. 

(c) ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ > 0, for any 𝑥 ≠ 𝑦 ∈ 𝐶. 

If additionally 𝑓 is twice GD on 𝐶, then the following is equivalent with the 

previous: 

(d) ⟨∇K𝑓(𝑥)ℎ, ℎ⟩ > 0, for every 𝑥 ∈ 𝐶 and ℎ ∈ 𝑋. 

 [1] (Characterization of strong convexity). Let 𝐶 ⊂ 𝑋 be open and convex, and let 

𝑓: 𝐶 → ℝ be GD. The following are equivalent. 

(a) 𝑓 is 𝑎 −strongly convex 

(b) 𝑓(𝑦) > 𝑓(𝑥) + ⟨∇𝑓, 𝑦 − 𝑥⟩ + �
K
‖𝑥 − 𝑦‖K, for any 𝑥, 𝑦 ∈ 𝐶. 

(c) ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 𝑎‖𝑥 − 𝑦‖K, for any 𝑥, 𝑦 ∈ 𝐶. 

If moreover,	𝑓 is twice GD on 𝐶, then the following is equivalent with the previous: 

(d) ⟨∇K𝑓(𝑥)ℎ, ℎ⟩ ≥ �
K
‖ℎ‖K, for every 𝑥 ∈ 𝐶 and ℎ ∈ 𝑋. 

Geometrical interpretation of convex differentiable function is that the hyperplane 

𝐻 = {(𝑦, 𝑧) ∈ 𝑋 × ℝ: 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ = 𝑧} 

lies below the epigraph of 𝑓, 𝑒𝑝𝑖(𝑓) and touches it and point ²𝑥, 𝑓(𝑥)³. In other words, 

∇𝑓(𝑥) is a non-vertical supporting hyperplane of 𝑒𝑝𝑖(𝑓) at ²𝑥, 𝑓(𝑥)³.  
 

 

 

 

																								(𝛻𝑓(𝑥), −1) 

 
      

Figure 5 Geometrical Interpretation of convex differentiable function. 

 
4.4. Subgradients 

The idea of subgradients is to generalize the notion of gradient ∇𝑓 to non-differentiable 

function. We can generalize the convex inequality 
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𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ 

for a function 𝑓, where 𝑓 is not necessarily at 𝑥.     

Let a function 𝑓: 𝑋 → [−∞,+∞], convex and lower-semicontinuous. A vector 𝑥∗ ∈ 𝑋∗ 

is a subgradient of function 𝑓 at point 𝑥 if   

𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑧 − 𝑥⟩, ∀𝑧. 

 The set of all subgradients at 𝑥 is called the subdifferential of	𝑓, is denoted by ∂𝑓 and 

is defined:  

∂𝑓(𝑥) = {𝑥∗ ∈ 𝑋∗|𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑦 − 𝑥⟩, for	all	y ∈ X}. 

We say that the function 𝑓 is subdifferentiable at a point 𝑥 if ∂𝑓(𝑥) ≠ ∅.The domain 

of ∂𝑓 is the set:	𝑑𝑜𝑚(∂𝑓) = {𝑥 ∈ 𝑋| ∂𝑓(𝑥) ≠ 0}. Is is obvious that, 𝑑𝑜𝑚(∂𝑓) ⊂

𝑑𝑜𝑚(𝑓).  

 

Geometrical Interpretation of Subgradients  

 

Let 𝑥 ∈ 𝑋.We assume that 𝑓 is finite at 𝑥. We assume the function 

𝑔(𝑧) = 𝑓(𝑥) + ⟨𝑥∗, 𝑧 − 𝑥⟩. 

 Recall that we as function is affine if it is a sum of a linear function and a constant. 

The function 𝑔(𝑥) is affine and is a non-vertical supporting hyperplane to the convex 

set 𝑒𝑝𝑖(𝑓) at the point ²𝑥, 𝑓(𝑥)³. 

 

Figure 6 Geometrical interpretation of subgradients 

The subgradient gives affine global underestimator of 𝑓.  

 

Properties of Subdifferential 𝛛𝒇 
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It is obvious that the subdifferential of 𝑓 at 𝑥 is a closed convex set. Since it is the 

intersection of closed convex half-spaces [13]  𝐻 = {𝑥∗	|	𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑥 − 𝑧⟩}, 

and the intersection of closed, convex set is a closed convex set.  

Proposition 4.4.1. The set ∂𝑓(𝑥) is closed and convex, ∀𝑥 ∈ 𝑋. 

Proof. [1] For convexity.             

Let 𝑥I∗, 𝑥K∗ ∈ ∂𝑓(𝑥) and 𝑡 ∈ (0,1). For each 𝑧 ∈ 𝑋 and from the definition of 

subgradient, we have: 

v 𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑥I∗, 𝑧 − 𝑥⟩					(1) 

v 𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑥K∗, 𝑧 − 𝑥⟩					(2) 

If we add 𝑡 times the (1) inequality and 1 − 𝑡 times the inequality (2), we have  

𝑡𝑓(𝑧) ≥ 𝑡𝑓(𝑥) + 𝑡⟨𝑥I∗, 𝑧 − 𝑥⟩ ⟺ 𝑡𝑓(𝑧) ≥ 𝑡𝑓(𝑥) + ⟨𝑡𝑥I∗, 𝑧 − 𝑥⟩	(3) 

(1 − 𝑡)𝑓(𝑧) ≥ (1 − 𝑡)𝑓(𝑥) + ⟨(1 − 𝑡)𝑥K∗, 𝑧 − 𝑥⟩		(4)		 

If we add (3) and (4) we have 

𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑡𝑥I∗ + (1 − 𝑡)𝑥K∗, 𝑧 − 𝑥⟩ ⟺ 𝑡𝑥I∗ + (1 − 𝑡)𝑥K∗ ∈ ∂𝑓(𝑥) 

For the closed.          

We take a sequence 𝑥"∗ ∈ ∂𝑓(𝑥), where 𝑥"∗ → 𝑥∗. Since, 𝑥"∗ ∈ ∂𝑓(𝑥) we have 

𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑥"∗ , 𝑧 − 𝑥⟩, ∀𝑧 ∈ 𝑋 and 𝑛 ∈ ℕ. 

Let 𝑛 → ∞ we have  

𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑧 − 𝑥⟩ ⟺ 𝑥∗ ∈ ∂𝑓(𝑥). 

Examples 4.4.2.  

1) Let 𝑓:ℝ → ℝ, 𝑓(𝑥) = |𝑥|. The function of absolute value is differentiable at 

every 𝑥 ≠ 0. Let’s calculate the subgradient at 𝑥 = 0.  

𝜕𝑓(0) = {𝑥∗	|	𝑓(𝑦) ≥ 𝑓(0) + ⟨𝑥∗, 𝑦 − 0⟩} = 

= {	𝑥∗	|		|𝑦| ≥ ⟨𝑥∗, 𝑦⟩	} 

= {	𝑥∗	|	|𝑦| ≥ 𝑥∗𝑦	}	 

= [−1,1]. 
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2)  Let 𝑓: 𝑋 → ℝ, 𝑓(𝑥) = ‖𝑥‖K the Euclidean norm. It is subdifferential at every 

𝑥 ∈ 𝑋 and differentiable at every 𝑥 ≠ 0. The subgradient is: 

∂𝑓(0) = {	𝑥∗	|	‖	𝑥∗‖ ≤ 1	} = 𝐵i(0,1). 

 

3) Let 𝑓: 𝑋 → ℝ, 𝑓(𝑥) = ‖𝑥‖ = 𝑚𝑎𝑥{𝑠ø𝑥, 𝑠C 	 ∈ 	 {−1,+1}}. We have  

∂𝑓(0,0) = [−1,1] × [−1,1], 

∂𝑓(1,0) = 1 × [−1,1], 

∂𝑓(1,1) = {(1,1)}. 

4) Let 𝐶 ⊂ 𝑋, 𝐶 ≠ ∅ closed and convex set. Let δ�: 𝑋 → ℝ ∪ +∞ , the indicator 

function, we have: 

z ∈ ∂𝛿�(𝑥) ⟺ 𝛿�(𝑦) ≥ 𝛿�(𝑥) + ⟨𝑧, 𝑦 − 𝑥⟩	∀𝑦. 

 It follows that ∂𝛿�(𝑥) is the normal cone to 𝐶 at 𝑥.	 

In this part we will analyze some very useful propositions. 

Proposition 4.4.3. Let 𝑓: 𝑋 → ℝ ∪ {+∞} be convex. If 𝑓 is GD at a point 𝑥, then 𝑥 ∈

𝑑𝑜𝑚(∂𝑓) and ∂𝑓(𝑥) = {∇𝑓(𝑥)}. 
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Proof.  [1] From the convexity of 𝑓 we have the inequality  

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ 

and from the subgradient inequality we can imply ∇𝑓(𝑥) ∈ ∂𝑓(𝑥).  

Let 𝑥∗ ∈ ∂𝑓(𝑥). We must prove that 𝑥∗ is unique and necessarily 𝑥∗ = ∇𝑓(𝑥).By 

definition,  

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑦 − 𝑥⟩	∀𝑦 ∈ 𝑋. 

Take any ℎ ∈ 𝑋 and  𝑡 > 0, and write 𝑦 = 𝑥 + 𝑡ℎ, and from above inequality we have 
­(mÎÜÝ)¼­(m)

Ü
≥ ⟨𝑥∗, ℎ⟩. 

If we take the limit as 𝑡 → 0, we have, 

⟨∇𝑓(𝑥) − 𝑥∗, ℎ⟩ ≥ 0	∀ℎ ∈ 𝑋. 

Therefore, 𝑥∗ = ∇𝑓(𝑥).  

Proposition 4.4.5. Let a convex function, 𝑓: 𝑋 → ℝ ∪ {+∞} for 𝑥∗ ∈ ∂𝑓(𝑥) and 𝑦∗ ∈

∂𝑓(𝑦), then ⟨𝑥∗ − 𝑦∗, 𝑥 − 𝑦⟩ ≥ 0. 

Proof. We have, 

𝑥∗ ∈ ∂𝑓(𝑥) ⟺ f(y) ≥ f(x) + ⟨x∗, y − x⟩	(1) 

𝑦∗ ∈ ∂𝑓(𝑦) ⟺ f(x) ≥ f(y) + ⟨y∗, x − y⟩	(2) 

If we add (1) and (2) we have, 

f(y) + f(x) ≥ f(x) + f(y) + ⟨x∗, y − x⟩ + ⟨y∗, x − y⟩ ⟺ ⟨𝑥∗ − 𝑦∗. 𝑥 − 𝑦⟩ ≥ 0. 

With the previous proposition we generalize the non-decreasing monotonicity of a 

differentiable function. The subgradient ∂𝑓 is a monotone operator. Also, we can 

generalize the Fermat’s Rule. 

Theorem 4.4.6. Let 𝑓: 𝑋 → ℝ ∪ {+∞} a proper and convex function. The element 𝑥� is 

a global minimizer of 𝑓 ⟺ 0 ∈ ∂𝑓(𝑥�).  

Proof. Let 𝑔 = 0 be a subgradient of 𝑓 at 𝑥∗ ⇒ 𝑓(𝑦) ≥ 𝑓(𝑥∗) + 0 ⇒ 𝑓(𝑦) ≥ 𝑓(𝑥∗) ⇒

𝑥∗ is global minimizer of 𝑓. And the opposite direction, let 𝑥� be a global minimizer of 

𝑓, then 𝑓(𝑥) ≥ 𝑓(𝑥�) ⟺ 𝑓(𝑥) ≥ 𝑓(𝑥�) + ⟨0, 𝑥 − 𝑥�⟩ ⟺ 0 ∈ ∂𝑓(𝑥�). 

The Fermat’s rule is sufficient condition for 𝑥� be a global minimizer of 𝑓. 

Proposition 4.4.5. Let a convex function 𝑓: 𝑋 → ℝ ∪ {+∞} and continuous at 𝑥, then  

∂𝑓(𝑥) is bounded and ∂𝑓(𝑥) ≠ ∅.  

The converse of proposition 4.4.5 it is not true. For example [1], let 𝑓:ℝ → ℝ ∪ {+∞}, 

𝑓(𝑥) = +∞  if 𝑥 ≠ 0, and 𝑓(0) = 0. Then the ∂𝑓(𝑥) = Ù ∅, 𝑖𝑓	𝑥 ≠ 0
+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. It follows 

that function 𝑓 is subdifferentiable but not continuous at 0. 
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4.5. Subdifferential Calculus 

 

Sum of convex functions 

In this section we refer a basic and very useful theorem. The Moreau-Rockafellar 

theorem. This theorem is about the relation between the subgradient of the sum of two 

convex function and the sum of subgradients of two functions. Theory on this 

subsection helps us to define duality (next chapter) and to find minimizer for convex 

functions, more things will discuss in the next subsection. 

Theorem 4.5.1. Let 𝑓, 𝑔: 𝑋 → ℝ ∪ {+∞} be proper, convex, lower semicontinuous.  

∀𝑥 ∈ 𝑋 we have, 

∂𝑓(𝑥) + ∂𝑔(𝑥) ⊂ ∂(𝑓 + 𝑔)(𝑥). 

If 𝑓 is continuous at some 𝑥� ∈ 𝑑𝑜𝑚(𝑔), then ∂𝑓(𝑥) + ∂𝑔(𝑥) = ∂(𝑓 + 𝑔)(𝑥)∀𝑥 ∈ 𝑋 

Proof. [1] We take 𝑥∗ ∈ ∂𝑓(𝑥) and 𝑦∗ ∈ ∂𝑔(𝑥), then  

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑦 − 𝑥⟩ and 𝑔(𝑦) ≥ 𝑔(𝑥) + ⟨𝑦∗, 𝑦 − 𝑥⟩ ∀𝑦 ∈ 𝑋. 

If we add the two inequalities, we have  

𝑓(𝑦) + 𝑔(𝑦) ≥ 𝑓(𝑥) + 𝑔(𝑥) + ⟨𝑥∗ + 𝑦∗, 𝑦 − 𝑥⟩ ∀𝑦 ∈ 𝑋, 

The last inequality implies that 𝑥∗ + 𝑦∗ ∈ ∂(𝑓 + 𝑔)(𝑥). 

We take 𝑢∗ ∈ ∂(𝑓 + 𝑔)(𝑥). We have 

𝑔(𝑦) + 𝑔(𝑦) ≥ 𝑓(𝑥) + 𝑔(𝑥) + ⟨𝑢∗, 𝑦 − 𝑥⟩ for every 𝑦 ∈ 𝑋. 

We need to find 𝑥∗ ∈ ∂𝑓(𝑥) and 𝑦∗ ∈ ∂𝑔(𝑥) such that 𝑥∗ + 𝑦∗ = 𝑢∗. We define the 

convex nonempty sets: 

		𝐵 = {(𝑦, 𝜆) ∈ 𝛸 × ℝ: 𝑔(𝑦) − 𝑔(𝑥) ≤ −𝜆} 

𝐶 = {(𝑦, 𝜆) ∈ 𝑋 × ℝ: 𝑓(𝑦) − 𝑓(𝑥) − ⟨𝑢∗, 𝑦 − 𝑥⟩ ≤ 𝜆} and,  
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ℎ: 𝑋 → ℝ ∪ +∞ as ℎ(𝑦) = 𝑓(𝑦) − 𝑓(𝑥) − ⟨𝑢∗, 𝑦 − 𝑥⟩, h is continuous in 𝑥� and 𝐶 =

𝑒𝑝𝑖(ℎ), the open convex set 𝐴 = 𝑖𝑛𝑡(𝐶) is nonempty from proposition (char of 

continuity) and the inequality  

𝑔(𝑦) + 𝑔(𝑦) ≥ 𝑓(𝑥) + 𝑔(𝑥) + ⟨𝑢∗, 𝑦 − 𝑥⟩ 

We have 𝐴 ∩ 𝐵 = ∅ and from Hahn Banach theorem we obtain a (𝐾, 𝑠) ∈

𝑋∗ × ℝ\{(0,0)} such that  

⟨𝐾, 𝑦⟩ + 𝑠𝜆 ≤ ⟨𝐾, 𝑧⟩ + 𝑠𝜇, ∀(𝑦, 𝜆) ∈ 𝐴, (𝑧, 𝜇) ∈ 𝐵. 

We take (𝑦, 𝜆) = (𝑥, 1) ∈ 𝐴 and (𝑧, 𝜇) ∈ 𝐵, we conclude that 𝑠 ≤ 0. 

If we take 𝑠 = 0 and 𝑧 = 𝑥� we have that ⟨𝐾, 𝑥� − 𝑦⟩ ≥ 0∀𝑦 ∈ 𝑉(𝑥�) and it follows 

K=0 and it is a contradiction to (𝐾, 𝑠) ≠ (0,0). Therefore 𝑠 < 0. For 𝑦∗ = − í
û
 we have  

⟨𝑦∗, 𝑦⟩ + 𝜆 ≤ ⟨𝑦∗, 𝑧⟩ + 𝜇. 

By the definition of 𝐶, we take (𝑧, 𝜇) = (𝑥, 0) ∈ 𝐵 and we have  

⟨𝑦∗, 𝑦 − 𝑥⟩ + 𝑓(𝑦) − 𝑓(𝑥) − ⟨𝑦∗, 𝑦 − 𝑥⟩ ≤ 0. 

From inequality 𝑔(𝑦) + 𝑔(𝑦) ≥ 𝑓(𝑥) + 𝑔(𝑥) + ⟨𝑢∗, 𝑦 − 𝑥⟩ we have  

𝑓(𝑧) ≥ 𝑓(𝑥) + ⟨𝑢∗ − 𝑦∗, 𝑧 − 𝑥⟩∀𝑧 ∈ 𝑋, 

therefore,  𝑥∗ = 𝑢∗ − 𝑦∗ ∈ ∂𝑓(𝑥)∀𝑥 ∈ 𝑋. ⊡ 

Note. If  𝑓 is continuous at some 𝑥� ∈ 𝑑𝑜𝑚(𝑔), we have 

𝜕𝑓(𝑥) + 𝜕𝑔(𝑥) = 𝜕(𝑓 + 𝑔)(𝑥	), ∀𝑥 ∈ 𝑋 ⇒ 

𝑑𝑜𝑚²∂(𝑓 + 𝑔)³ = 𝑑𝑜𝑚(∂𝑓) ∩ 𝑑𝑜𝑚(∂𝑔). 

Chain Rule. Let 𝐴 ∈ 𝑋∗ and let 𝑓: 𝑌 → ℝ ∪ {+∞} be proper, convex, and lower-

semicontinuous. For each 𝑥 ∈ 𝑋, we have  

𝐴∗ ∂𝑓(𝐴𝑥) ⊂ ∂(𝑓 ∘ 𝐴)(𝑥) 

If 𝑓 is continuous at some 𝑦� ∈ 𝐴(𝑋),we have the equality, 

𝐴∗ ∂𝑓(𝐴𝑥) = ∂(𝑓 ∘ 𝐴)(𝑥) 

From Chain Rule and Moreau – Rockafellar theorem we can conclude, 
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𝐴∗ ∂𝑓(𝐴𝑥) + ∂𝑔(𝑋) ⊂ ∂(𝑓 ∘ 𝐴 + 𝑔)(𝑥), 

for 𝐴 ∈ 𝑋∗ and two functions 𝑓, 𝑔 proper, convex and lower-semicontinuous.  

If there is 𝑥� ∈ 𝑑𝑜𝑚(𝑔) such that 𝑓	is continuous at 𝐴𝑥�, then 

𝐴∗ ∂𝑓(𝐴𝑥) + ∂𝑔(𝑋) ⊂ ∂(𝑓 ∘ 𝐴 + 𝑔)(𝑥). 

4.6. Proximal Map and Moreau - Yosida Regularization.  
 

In this subsection we define functions on Hilbert Space ℍ. In convex optimization is 

very common to minimize convex function, which is not smooth, like the ℓI − norm, 

the TV-debluring, or least squares. We need to find a way to handle these functions. 

The idea is to create a smooth version of the non-smooth function. We success 

smoothness by adding a quadratic term.  

We define Moreau-Yosida Regularization of 𝑓 with parameter (λ, 𝑥), for a given λ > 0 

and 𝑥 ∈ ℍ the function 𝑓ü(𝑥) = 𝑚𝑖𝑛m∈ℍ𝑓(𝑥) +
I
Kü
‖𝑥 − 𝑧‖K. The function 𝑓ü is a 

smooth function ∀	λ > 0. 

Proposition 4.6.1. For each λ > 0	 and 𝑥 ∈ ℍ, the function,  

𝑧 ⟼ 𝑓(üm)(𝑧) ≔ 𝑓(𝑧) + I
Kü
‖𝑥 − 𝑧‖K , 

has a unique minimizer 𝑥�  and is characterized by the relation, 

−m�¼m
ü
∈ ∂𝑓(𝑥�). 

Proof. [1] The function 𝑓(ü,m) is proper, convex and l.s.c. but also is strictly convex and 

coercive, because 𝑓 is proper, convex and lower-semicontinuous. Therefore, from 

Theorem 2.4.15 we know that  𝑓(ü,m) has a unique minimizer 𝑥� . From the Fermat’s Rule 

4.4.6 the unique minimizer 𝑥� satisfies the optimally condition and the Moreau – 

Rockafellar Theorem 4.5.1. we have 

0 ∈ ∂𝑓(ü,m)(𝑥�) = ∂𝑓(𝑥�) + m�¼m
ü
⟺ −m�¼m

ü
∈ ∂𝑓(𝑥�). ⊡ 

After all, if 𝑓 is convex, proper and l.s.c. ,then , for  any 𝑥, there is a unique minimizer 

𝑥� to the strongly convex problem  𝑎𝑟𝑔𝑚𝑖𝑛m∈ℍ𝑓(𝑧) +
I
Kü
‖𝑥 − 𝑧‖K. We define 
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𝑥� =: 𝑝𝑟𝑜𝑥ü­(𝑥),  

and is called proximity or proximal operator of 𝑓. 

In general, we define resolvent of a monotone operator 𝑇, the quantity (𝐼 + λ𝑇)¼I, 

where 𝐼 the identity relation. As we prove in proposition 4.4.5. the ∂𝑓 is monotone 

operator and we can define the proximal operator by 𝑝𝑟𝑜𝑥ü­ = (𝐼 + λ ∂𝑓)¼I, as the 

resolvent of subgradient ∂𝑓. 

Proposition 4.6.2. For a proper, convex and lower-semicontinuous function, 𝑓:ℍ →

ℝ ∪ {+∞} the proximal operator 𝑝𝑟𝑜𝑥ü­:ℍ → ℍ is nonexpansive operator.  

Proof. [1] Let 𝑥� = 𝑝𝑟𝑜𝑥ü­(𝑥) and 𝑦� = 𝑝𝑟𝑜𝑥ü­(𝑦), so from the previous proposition 

4.6.1 we have,  

−m�¼m
ü
∈ ∂𝑓(𝑥�) and −��¼�

ü
∈ ∂𝑓(𝑦�). 

Since ∂𝑓 is monotone, we have 

⟨(𝑥� − 𝑥) − (𝑦� − 𝑦), 𝑥	þ − 𝑦�⟩ ≤ 0. 

This implies,  

0 ≤ ‖𝑥� − 𝑦�‖K ≤ ⟨𝑥 − 𝑦, 𝑥	þ − 𝑦�⟩ ≤ ‖𝑥 − 𝑦‖‖𝑥� − 𝑦�‖  

and therefore, 

‖𝑥� − 𝑦�‖ ≤ ‖𝑥 − 𝑦‖.  ⊡ 

 Proposition 4.6.3.  For proper closed convex function 𝑓 and λ > 0, 𝑝𝑟𝑜𝑥ü­ is firmly 

nonexpansive. 

Proof. Similar with the above proposition. 

The notion of firm nonexpansive is very useful for the convergence of proximal 

algorithms, as we shall discuss in the next chapter.  

We obtain that the proximal operator in Hilbert space is the unique point 𝑥� [2] which 

satisfies  

𝑓ü(𝑥) = 𝑓(𝑥�) +
1
2λ
‖𝑥 − 𝑥�‖K 
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Now we will prove according to [2], that the fixed points of a proximal operator are 

the minimizers of 𝑓. This is useful, as in algorithms we will minimize convex 

functions finding fixed point of nonexpansive operators. 

Proposition 4.6.4. Let 𝑓 a proper, lower-semicontinuous convex function on ℍ to 
extended real line and let 𝑥, 𝑝 ∈ ℍ. Then  

𝑝 = 𝑝𝑟𝑜𝑥­(𝑥) ⟺ ∀𝑦 ∈ ℍ	⟨𝑦 − 𝑝, 𝑥 − 𝑝⟩ + 𝑓(𝑝) ≤ 𝑓(𝑦) 

Proof. [2] Let 𝑦 ∈ ℍ. We suppose 𝑝 = 𝑝𝑟𝑜𝑥­ and for each 𝑎 ∈ (0,1), 𝑧 = 𝑎𝑦 +
(1 − 𝑎)𝑝. For every 𝑎 ∈ (0,1) from definition of proximal operator and the convexity 
of 𝑓 we have 

𝑓(𝑝) ≤ 𝑓(𝑧) +
1
2
‖𝑥 − 𝑧‖K −

1
2
‖𝑥 − 𝑝‖K 

≤ 𝑎𝑓(𝑦) + (1 − 𝑎)𝑓(𝑝) − 𝑎⟨𝑥 − 𝑝, 𝑦 − 𝑝⟩ +
𝑎K

2
‖𝑦 − 𝑝‖K 

⟺ ⟨𝑦 − 𝑝, 𝑥 − 𝑝⟩ + 𝑓(𝑝) ≤ 𝑓(𝑦) + �ÿ

K
‖𝑦 − 𝑝‖K. 

Letting 𝑎 → 0, we have the inequality.  

We suppose now that ⟨𝑦 − 𝑝, 𝑥 − 𝑝⟩ + 𝑓(𝑝) ≤ 𝑓(𝑦) then  

𝑓(𝑝) +
1
2
‖𝑥 − 𝑦‖K ≤ 𝑓(𝑦) +

1
2
‖𝑥 − 𝑝‖K + ⟨𝑥 − 𝑝, 𝑝 − 𝑦⟩ +

1
2
‖𝑝 − 𝑦‖K

= 𝑓(𝑦) +
1
2
‖𝑥 − 𝑦‖K 

and this implies 𝑝 = 𝑝𝑟𝑜𝑥­ .		⊡ 

Proposition 4.6.5. Let 𝑓	proper, lower-semicontinuous convex function on ℍ to 
extended real line. Then  

𝐹𝑖𝑥²𝑝𝑟𝑜𝑥­³ = 𝐴𝑟𝑔𝑚𝑖𝑛(𝑓). 

Proof. [2] Let 𝑥 ∈ ℍ. Then from proposition 4.6.4. for 

𝑥 = 𝑝𝑟𝑜𝑥­(𝑥) 

⟺ ∀𝑦 ∈ ℍ	⟨𝑦 − 𝑥, 𝑥 − 𝑥⟩ + 𝑓(𝑥) ≤ 𝑓(𝑦) 

⟺ ∀𝑦 ∈ ℍ	𝑓(𝑥) ≤ 𝑓(𝑦) 

⟺ 𝑥 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) .		⊡ 
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4.7. The Legendre – Fenchel conjugate 

 

Let a function 𝑓: 𝑋 → ℝ ∪ {+∞} proper, we define the Legendre – Fenchel conjugate 

(or convex conjugate) be the function 𝑓∗: 𝑋∗ →∪ +∞ ,  

𝑓∗(𝑥∗) = 𝑠𝑢𝑝m∈i{⟨𝑥∗, 𝑥⟩ − 𝑓(𝑥)}. 

The 𝑓∗ is convex and lower-semicontinous as the supremum of of continuous affine 

functions. If 𝑓 proper, 𝑓∗ proper closed convex.  

Example. Let 𝑓(𝑥) = I
!
‖𝑥‖K, 1 < 𝑝 < ∞, 

then 𝑓∗(𝑦) = I
"
‖𝑥‖"

", I
!
+ I

!
= 1. 

We can define the biconjugate 𝑓∗∗ as the conjugate of conjugate 𝑓∗.  

𝑓∗∗: 𝑋 → R ∪ {+∞} 

𝑓∗∗(𝑥) = 𝑠𝑢𝑝m∈i∗⟨𝑥∗, 𝑥⟩ − 𝑓∗(𝑥∗) 

The 𝑓∗∗ is the largest convex l.s.c function below 𝑓. It is easy to see from the definition 

and fenchel inequality that 𝑓∗∗ ≤ 𝑓. 

𝑓∗∗(𝑥) ≤ ⟨𝑥∗, 𝑥⟩ − 𝑓∗(𝑥∗) ≤ 𝑓(𝑥) 

Proposition 4.7.1. (Fenchel – Young Inequality). Let 𝑓: 𝑋 → ℝ ∪ {+∞}. For all 𝑥 ∈ 𝑋 

and 𝑥∗ ∈ 𝑋∗, we have  

𝑓(𝑥) + 𝑓∗(𝑥∗) ≥ ⟨𝑥∗, 𝑥⟩. 

Proof. Since 𝑥 is not necessarily the maximizing point for 𝑓(𝑥∗)=𝑠𝑢𝑝m …, we have 

𝑓(𝑥∗) ≥ ⟨𝑦, 𝑥⟩ − 𝑓(𝑥) ⟺ 𝑓(𝑥) + 𝑓(𝑥∗) ≥ ⟨𝑥∗, 𝑥⟩. ⊡ 

Note. Τhe inequality holds ⇔ 𝑥∗ ∈ ∂𝑓(𝑥). 

Proposition 4.7.2. When 𝑓 ≤ 𝑔 , we have 𝑓∗ ≥ 𝑔∗. In particular,  

(𝑠𝑢𝑝C∈´𝑓(C))∗ ≤ 𝑖𝑛𝑓C∈´(𝑓C∗) and ²𝑖𝑛𝑓C∈´(𝑓C)³
∗ = 𝑠𝑢𝑝C∈´(𝑓C∗), ∀ (𝑓C)C∈´ of functions on 

𝑋 with values in ℝ ∪ +∞ [1]. Proposition 4.7.2. is necessary to prove the next 

proposition, which help us to define primal – dual algorithms more quickly. In 
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particular we can replace the 𝑓 by 𝑓∗∗ if 𝑓 is proper, convex and lower – 

semicontinuous. 

Proposition 4.7.3. Let a function 𝑓: 𝑋 → ℝ ∪ {+∞} which is proper. The function 𝑓 is 

convex and lower-semicontinuous if, and only if, 𝑓∗∗ = 𝑓. 

Proof. [1] (⇒) Since 𝑓 is convex and l.s.c., we can write 𝑓	as the supremum of 

continuous and affine functions on 𝑋 , we have 𝑓 = 𝑠𝑢𝑝C∈´(𝑓C). From previous 

proposition and 𝑓 ≤ 𝑔: 

𝑓∗ ≥ 𝑔∗ ⇒ f∗∗ ≤ g∗∗. 

Therefore, 𝑓∗∗ ≥ 𝑠𝑢𝑝C∈´(𝑓∗∗) = 𝑠𝑢𝑝C∈´(𝑓C) = 𝑓, because 𝑓C∗∗ = 𝑓C is continuous and 

affine functions, and as we know 𝑓∗∗ ≤ 𝑓 ⇒ 𝑓∗∗ = 𝑓 

(⇐) Since 𝑓∗∗ = 𝑓 is a supremum over the set of continuous affine functions. ⊡ 

An interesting consequence is the fact that, if 𝑓 is convex, proper and l.s.c. then we 

have 

𝑓(𝑥) + 𝑓∗(𝑥∗) = ⟨𝑥∗, 𝑥⟩ ⟺ 𝑥∗ ∈ ∂𝑓(𝑥). 

By definition, we see that:  

𝑥 realizes the 𝑠𝑢𝑝m∈i⟨𝑥∗, 𝑥⟩ − 𝑓(𝑥) ⟺ 𝑥∗ ∈ ∂𝑓(𝑥) 

and we have 

 𝑓(𝑥) + 𝑓∗(𝑥∗) = ⟨𝑥∗, 𝑥⟩ ⇔ 𝑓∗∗(𝑥) = 𝑓(𝑥) = ⟨𝑥∗, 𝑥⟩ − 𝑓∗(𝑥) ⇔ 𝑥 ∈ ∂𝑓∗(𝑥∗).  

We can say that ∂𝑓 and ∂𝑓∗ are inverses,  

𝑥∗ ∈ ∂𝑓(𝑥) ⇔ 𝑥 ∈ ∂𝑓∗(𝑥∗).⊡ 

In this point is good to refer that conjugates functions do not give us anything new itself, 

it helps to derive the dual problem more quickly.  

Geometry of Conjugates  

We assume a function 𝑓:ℝ → ℝ the interpretation of conjugate 𝑓∗(𝑥∗) is: for the 

function 𝑓(𝑥), given a 𝑥∗, we assume a line  ℎ(𝑥) = 𝑥𝑥∗[11]. We want to find a value 

on the 𝑥 − 𝑎𝑥𝑖𝑠 such that, the value 𝑥 maximizes the difference between the line ℎ(𝑥) 

𝑥∗𝑥 
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and function 𝑓(𝑥). Let 𝑥� be the optimal value, we define a parallel line 𝑔 to ℎ, which 

is passing through the point ²𝑦, 𝑓(𝑦)³. The intercept of 𝑔 and 𝑦 − 𝑎𝑥𝑖𝑠	 is the −𝑓∗(𝑥∗).  

 

 

 

 

Figure 7 Geometry of Conjugate 

 

4.8. Fenchel – Rockafellar Duality 

 

This notion is very useful. It helps us to transform convex problems into others with 

better properties, which are easier to handle them. In this subsection we assume that 

𝑋, 𝑌  are normed spaces and 𝐾 ∈ 𝑋∗, is a linear and bounded operation.  

Let 𝑓: 𝑋 → ℝ ∪ {+∞},	𝑔: 𝑋 → ℝ ∪ {+∞} be proper, convex and lower-semicontious. 

We define the primal problem (PP) as  

i𝑛𝑓m∈i𝑓(𝐾𝑥) + 𝑔(𝑥). 

We prove (Proposition 4.7.3) for 𝑓 proper, convex and l.s.c. that 𝑓∗∗ = 𝑓. We replace 

the 𝑓 by 𝑓∗∗ and rewrite the primal problem as  

𝑖𝑛𝑓m∈i𝑓(𝐾𝑥) + 𝑔(𝑥) = 𝑖𝑛𝑓m∈i𝑠𝑢𝑝�∈k⟨𝑦, 𝐾𝑥⟩ − 𝑓∗(𝑦) + 𝑔(𝑥). 

Theorem 4.8.1. Let 𝑋 be a convex subset of a linear topological space, 𝑌 be a compact 

convex subset of a linear topological space, and 𝑓: 𝑋 × 𝑌 → ℝ an upper semicontinuous 

on 𝑋 and lower semicontinuous on 𝑌. Suppose that 𝑓 is quasiconcave on 𝑋 and 

quasiconvex on 𝑌. Then we have, 

𝑚𝑖𝑛k𝑠𝑢𝑝i𝑓 = 𝑠𝑢𝑝i𝑚𝑖𝑛k𝑓. ⊡ 

From the above theorem we can swap min and sup and we have [3],  

𝑖𝑛𝑓m𝑓(𝐾𝑥) + 𝑔(𝑥) = 𝑖𝑛𝑓m𝑠𝑢𝑝�⟨𝑦, 𝐾𝑥⟩ − 𝑓∗(𝑦) + 𝑔(𝑥) 

= 𝑠𝑢𝑝�𝑖𝑛𝑓m⟨𝑦, 𝐾𝑥⟩ − 𝑓∗(𝑦) + 𝑔(𝑥) 

²0, −𝑓∗(𝑥∗)³ 
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= 𝑠𝑢𝑝� − 𝑓∗(𝑦) − 𝑔∗(−𝐾∗𝑦). 

The last formula is known as dual problem (DP). Therefore, the primal is equal to dual 

and the 𝑠𝑢𝑝�𝑖𝑛𝑓m⟨𝑦, 𝐾𝑥⟩ − 𝑓∗(𝑦) + 𝑔(𝑥) problem, is the primal-dual problem. The 𝑦∗ 

is the solution of dual problem and 𝑥∗ is the solution of the initial primal problem. The 

solution (𝑥∗, 𝑦∗) is a saddle point of the primal-dual problem.  We define the 

Lagrangian as the ℒ(𝑥, 𝑦) ≔ ⟨𝑦, 𝐾𝑥⟩ − 𝑓∗(𝑦) + 𝑔(𝑥). [3] The saddle point of the 

primal-dual problem is any pair (𝑥, 𝑦) ∈ 𝑋 × 𝑌, such that  

ℒ(𝑥∗, 𝑦) ≤ ℒ(𝑥∗, 𝑦∗) ≤ ℒ(𝑥, 𝑦∗). 

The primal dual gap is defined as  

ℊ(𝑥, 𝑦) ≔ 𝑓(𝐾𝑥) + 𝑔(𝑥) + 𝑓∗(𝑦) + 𝑔∗(−𝐾∗𝑦) 

= 𝑠𝑢𝑝²m',�'³∈(i×k)ℒ(𝑥, 𝑦′) − ℒ(𝑥′, 𝑦). 

If (𝑥∗, 𝑦∗) is a saddle point the primal dual gap is zero. The optimally conditions are  

Ù0 ∈ ∂𝑔
(𝑥∗) + 𝐾∗𝑦∗

0 ∈ ∂𝑓∗(𝑦∗) − 𝐾𝑥∗. 
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5 ALGORITHMS 
 
5.Introduction 

In this chapter we discuss the basic algorithms for solving convex optimization 
problems. These algorithms are iterative procedures. We will discuss also their 
convergence. First, we analyze the gradient method, which minimize function, where 
are differentiable. Then, we will see how to handle functions non smooth with the 
proximal point method and combining the two methods we have the proximal gradient 
method, which handles decomposable function with smooth and non-smooth functions. 
Finally, we study the primal dual algorithm. 

 

5.1. Iterative Procedures 
 

An iterative algorithm on 𝑋 [1] is a procedure by which, starting from an initial point 

𝑥� ∈ 𝑋, and using a family (𝑇") of functions from 𝑋 to 𝑋, 

𝑥"ÎI = 𝑇"(𝑥")	∀𝑛 ≥ 0, 

we construct a sequence 𝑥" ∈ 𝑋. 

These procedures help us to find minimizers of a function 𝑓. The idea is, each time, to 

find a point  𝑥"ÎI where 𝑓(𝑥"ÎI) < 𝑓(𝑥"), for this reason we are moving in a specific 

direction and we construct a sequence, which minimize the function 𝑓. 

In this point, let discuss the issue of convergence of the sequences. [1] We know that 

on a Banach space all sequences are Cauchy and therefore we have convergence. 

Hilbert space is a Banach space and this is useful to prove weak convergence of a 

sequence in Hilbert spaces.  

Lemma 5.1.(Opial’s Lemma) [1] Let 𝑆 ⊂ ℍ, 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) ≠ ∅, and (𝑧") ∈ ℍ. We 

assume: 

(a) For each 𝑢 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) there exists 𝑙𝑖𝑚"→=‖𝑥" − 𝑢‖ 

(b) Every weak limit point of (𝑧") belongs to 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓). 

Then (𝑧")	converges weakly as 𝑛 → ∞ to some 𝑢� ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) 

 

5.2. Gradient Method 
 

In this subsection we describe the gradient method. This method helps us to minimize 

convex and differentiable functions. This method is a first-order method. The idea is 
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that the function 𝑓 decreases fastest if one goes from a point 𝑥 ∈ 𝑑𝑜𝑚(𝑓)	in the 

direction of the −∇𝑓(𝑥). This implies that for the iterative sequence  

𝑥"ÎI = 𝑥" − 𝜆"∇𝑓(𝑥"), 𝑛 ≥ 0, 

we have that  𝑓(𝑥") ≥ 𝑓(𝑥"ÎI). We want to move against the gradient of 𝑓, toward 

the minimum. We set an initial 𝑥� and we construct a sequence (𝑥") such that  

𝑥"ÎI = 𝑥" − 𝜆"∇𝑓(𝑥"), 𝑛 ≥ 0. 

As we say the 𝑓(𝑥") is monotonic sequence, the question is what is holds with 

convergence. Under curtain assumptions like 𝑓	convex, ∇𝑓 Lipschitz continuous and 

the step sizes 𝜆" particularly chosen we assure the convergence. 

 

Figure 8 Gradient Method 
Let 𝑓:ℍ → ℝ be continuously differentiable function with Lipschitz-continuous ∇𝑓. 

Let the ordinary differential equation: 

(ODE)                               )
𝑥(0) = 𝑥�

−𝑥(𝑡)̇ = ∇𝑓²𝑥(𝑡)³, 𝑡 > 0
				. 

By the Cauchy-Picard Theorem, for each 𝑥� ∈ ℍ, the (ODE) has a unique solution, 

there is a unique continuously differentiable function 𝑥: [0, +∞) → ℍ such that 𝑥(0) =

𝑥� and −𝑥(𝑡)̇ = ∇𝑓²𝑥(𝑡)³ for all 𝑡 > 0. [1] The stationary points of (ODE) are the 

zeroes of gradient of 𝑓. [7] The (ODE) solves the problem of minimizing 𝑓 in the sense 

that for every trajectory 𝑥(𝑡), we have 𝑓²𝑥(𝑡)³ → 𝑧̂. The function 𝑓 decreases along 

the solutions [1]. Decreases strictly into a critical point, for more details see [1]. 

From the fact that 𝑓 is nonincreasing, we have that 

𝑙𝑖𝑚Ü→=𝑓²𝑥(𝑡)³ = 𝑖𝑛𝑓(𝑓). 

If assume also that we have at least one minimizer of 	𝑓 and we take 𝑧̂ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓),  

 𝑙𝑖𝑚Ü→=‖𝑥(𝑡) − 𝑧̂‖ exists. From proposition 𝑓 is weakly lower semicontinuous 

because is convex and continuous. And every weak limit of 𝑥(𝑡) must minimize 𝑓, as 
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𝑡 → ∞. Finally, from Opial’s Lemma 𝑥(𝑡) → 𝑧̂ ∈ S,	as 𝑡 → ∞ (weakly), see [1] for 

more details.  ⊡ 

We discretize (ODE) [1] with finite differences, and the reason is to approximate 𝑥̇(𝑡) 

• Let (𝜆") be positive parameters, called step sizes. 

• Set 𝜎" = ∑ 𝜆{"
{NI  and  

• The partition of [0, +∞) = ⋃ 𝜎"=
"NI , where λC = 𝜎C − 𝜎C¼I, 𝑖 = 0,… , 𝑛, … 

We assume 𝑡 → ∞,𝜎" → ∞, 𝑛 → ∞⟺ 𝜆" ∈ ℓI.  Now we approximate 𝑥̇(𝑡) by  
m.¼m./p

º.
. 

If we approximate the term ∇𝑓²𝑥(𝑡)³  by ∇𝑓(𝑥"¼I) we have from (ODE) that  

−m.¼m./p
º.

= ∇𝑓(𝑥"¼I) ⟺ 𝑥" = 𝑥"¼I − 𝜆"∇𝑓(𝑥"¼I). 

This method, with this update step is called gradient method and is applied on 

differentiable functions. 

With the same logic we can approximate the term ∇𝑓²𝑥(𝑡)³  by ∇𝑓(𝑥") and we have,  

−m.¼m./p
º.

= ∇𝑓(𝑥") ⟺ 𝑥"¼I = 𝑥" + 𝜆"∇𝑓(𝑥"). 

This method is known as proximal method, and is a generalization of gradient to non-

smooth functions. We shall discuss this method on the next subsection.  ⊡ 

Let 𝑓:ℍ → ℝ be convex, with ∇𝑓 Lipschitz continuous with constant L. The (pure) 

gradient method, is starting from an initial point  𝑥� ∈ ℍ and we apply the iteration step 

𝑥"ÎI = 𝑥" − 𝜆"∇𝑓(𝑥"), 𝑓𝑜𝑟	𝑛 ∈ ℕ 

 

With condition for the step sizes be 

𝑠𝑢𝑝"∈ℕ𝜆" <
K
í
. 

Therefore, the idea of this iterative algorithm is:  

Algorithm 1 Gradient Method (G)  

Choose 𝑥� ∈ ℍ 

for all 𝑛 ≥ 0 do 

𝑥"ÎI = 𝑥" − 𝜆"∇𝑓(𝑥") 

end for 
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A proximal point of Gradient method (G) [9] 

 

By Taylor expansion, in each iteration we can consider the expression,  

𝑓(𝑥"ÎI) ≈ 𝑓(𝑥") + ⟨∇𝑓(𝑥"), 𝑥"ÎI − 𝑥"⟩ +
I
º.
‖𝑥"ÎI − 𝑥"‖K, 

Where the term 𝑓(𝑥") + ⟨∇𝑓(𝑥"), 𝑥"ÎI − 𝑥"⟩ is a linear approximation and the term 
I
º.
‖𝑥"ÎI − 𝑥"‖K is the proximity term (it is replacing the hessian matrix), therefore we 

can express the 𝑥"ÎI = 𝑎𝑟𝑔𝑚𝑖𝑛m𝑓(𝑥") + ⟨∇𝑓(𝑥"), 𝑥 − 𝑥"⟩ +
I
º.
‖𝑥 − 𝑥"‖K, λ" are 

step sizes. The geometrical interpretation of this expression is  

 

Figure 9 A proximal point of Gradient method 
If 𝜆" is small, 𝑥"ÎI tends to stay close to 𝑥".  

 

Convergence of Gradient method (G). 

 

The convergence of gradient method is succeeding under the next assumptions. We 

assume 𝑓 be convex, differentiable, ∇𝑓 be Lipschitz continuous and with specific 

choice of step sizes we have the next theorem [1]. 

Theorem 5.2.1. [1] Let (𝑥") satisfy (G), where 𝑓 is convex, 𝑆 ≠ ∅, 𝜆" ∉ ℓI and 

𝑠𝑢𝑝"∈ℕ𝜆" <
K
í
. Then (𝑥") converges weakly as 𝑛 → ∞ to point in 𝑆. 

Note that we have strongly convergent ⟺ 𝑓 is strongly convex or 𝑓 is even or 

𝑖𝑛𝑡²𝑎𝑟𝑔𝑚𝑖𝑛(𝑓)³ ≠ ∅. 

We know and the rate of convergence from the next theorem  
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Theorem 5.2.2. [3] Let 𝑓 convex and gradient of Lipchitz continuous with constant L 

and 𝑘 < 𝑛. Gradient algorithm with fix step size (step size doesn’t change after each 

iteration) 𝜆 < I
í
 satisfies  

𝑓(𝑥{) − 𝑓(𝑥∗) ≤
1m2¼m∗1

ÿ

K{º
, 

where 𝑥∗ is any minimizer of 𝑓. If in addition 𝑓 is strongly convex with parameter µ	 >

0,  we have  

𝑓(𝑥{) − 𝑓(𝑥∗) ≤ 𝜔5 𝐿
2
‖𝑥� − 𝑥∗‖K. 

Therefore, we have, 

• If 𝑓	convex the convergence rate is 𝑂 7I
{
8 

• If 𝑓 is µ−strongly convex the convergence rate is 𝑂(𝜔{) 

Details about proof is on [3]. 

It is obvious that if 𝑓	is strongly convex the algorithm is very fast.  

The gradient method is for 𝐶I-smooth and unconstrained problems. The gradient 

method is a simple idea and under special assumptions is fast but if the function isn’t 

strongly convex is slow and cannot handle non-smooth functions. 

 

5.3. Proximal Point Algorithm 
 

Let 𝑓:ℍ → ℝ ∪ {+∞} is proper, lower-semicontinous convex function. Let (𝜆") is 

positive numbers. They are called step sizes. 

The idea is to minimize the Moreau – Yosida Regularization 𝑓(9.,m.) of 𝑓, which is 

proper, lower-semicontinuous and strongly convex function and has unique minimizer. 

We construct a sequence as the next one: 

.𝑥"ÎI = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑧) + I
Kü.

‖𝑧 − 𝑥"‖K}. 

[1] By the Moreau – Rockafellar Theorem and because 𝑥"ÎI is the minimum we have,  

0 ∈ ∂𝑓(º.,m.)(𝑥"ÎI) = ∂𝑓(𝑥"ÎI) +
𝑥"ÎI − 𝑥"

λ"
 

⟺−
𝑥"ÎI − 𝑥"

λ"
∈ ∂𝑓(𝑥"ÎI) 

⟺ 𝑥"ÎI = (𝐼 + λ" ∂𝑓)(¼I)(𝑥"). 
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This sequence (𝑥") is called proximal sequence. The stationary points of a proximal 

sequence are the minimizers of the objective function [1] since, 

𝑥"ÎI = 𝑥" ⟺ 0 ∈ ∂𝑓(𝑥"ÎI). 

At this point it is good to mention that the proximal point algorithm can be interpreted 

as discretization of the differential inclusion [1] 

−𝑥̇(𝑡) ∈ ∂𝑓²𝑥(𝑡)³   𝑡 > 0. 

From the definition of proximal point algorithm, [1] we have 

𝑓(𝑥"ÎI) +
I
K9.

‖𝑥"ÎI − 𝑥"‖K ≤ 𝑓(𝑥")		∀𝑛. 

Therefore, the sequence ²𝑓(𝑥")³ is nonincreasing.  

Recall the notion of proximity operator from subsection 4.6.  

𝑝𝑟𝑜𝑥º­(x)= 𝑎𝑟𝑔𝑚𝑖𝑛m∈ℍ𝑓(𝑧) +
I
Kº
‖𝑥 − 𝑧‖K.  

The update step of proximal point algorithm (PPA) is 

𝑥{ÎI = 𝑝𝑟𝑜𝑥º­(𝑥{). 

The proximal method is for smooth and non-smooth problems, constrained and 

unconstrained problems. The 𝑝𝑟𝑜𝑥º­ is a convex optimization problem that uses the 

proximal operator of the objective functions.[7] The PPA minimizes a convex function 

𝑓 by repeatedly applying the 𝑝𝑟𝑜𝑥º­ to some initial  𝑥�. 

 

Algorithm 2. Proximal Point Algorithm (PPA) 

choose 𝑥� ∈ ℍ 

for 𝑘 = 0,1, … 

𝑥{ÎI = 𝑝𝑟𝑜𝑥º­(𝑥{). 

end for. 

 

From the next proposition which is in [1] we have that the direction of 𝑥" is towards to 

the set 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓). 

Proposition 5.3.1. Let (𝑥") be a proximal sequence. If 𝑥"ÎI ≠ 𝑥", then  

⟨𝑥"ÎI − 𝑥", 𝑥" − 𝑥"¼I⟩ > 0. 

Additionally, if we have, 𝑥� ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) then  

⟨𝑥"ÎI − 𝑥", 𝑥� − 𝑥"⟩ > 0. ⊡ 
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The proximity operator 

 

The notion of the proximal operator,  

𝑝𝑟𝑜𝑥º­(x) = 𝑎𝑟𝑔𝑚𝑖𝑛m∈ℍ𝑓(𝑧) +
I
Kº
‖𝑥 − 𝑧‖K	, 

illustrated in figure 10. The black lines are the level curves of the function and the bold 

black is the boundary [7]. We calculate the 𝑝𝑟𝑜𝑥º­ to the blue points and then they have 

moved to red.  

 

Figure 10 Interpretation of proximal operator 
The step size (parameter) 𝜆 controls how fast we move towards the minimum. Large 

values provide big steps to the minimum and small values small.   

After all, it is obvious that 𝑝𝑟𝑜𝑥º­(𝑣) is a point between the minimum of 𝑓 and a point 

𝑣 ∈ 𝑑𝑜𝑚(𝑓).  

Example 5.3.2. Let 𝛿�  the indicator function. The proximal operator of the indicator 

function is  

𝑝𝑟𝑜𝑥;<(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛� =𝛿�(𝑦) +
1
2
‖𝑦 − 𝑥‖K> 

= 𝑎𝑟𝑔𝑚𝑖𝑛�∈�
1
2
‖𝑦 − 𝑥‖K 

=: 𝑝𝑟𝑜𝑗�(𝑥). 

 

Figure 11 Proximal Operator of Projection 
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In some sense, we can say that proximal iteration generalizes the notion of projection, 

when the function 𝑓(𝑥) is not the indicator but a lower-semicontinuous and convex 

function.  

 

Calculation of proximal operator. 

 

Let 𝑓:ℍ → ℝ ∪ {+∞}, for 𝑥 ∈ ℍ and λ > 0 we can find 𝑦 ∈ ℍ such that  

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑓(𝑣) +
1
2𝜆
‖𝑣 − 𝑥‖K: 𝑣 ∈ ℍ⟺ 𝑥 − 𝑦 ∈ 𝜆 ∂𝑓(𝑦) 

Example 5.3.3.  [16] ℓI-norm 

Let 𝑓(𝑥) = ‖𝑥‖I. Then 𝑝𝑟𝑜𝑥º­(𝑣) = 𝑎𝑟𝑔𝑚𝑖𝑛m∈i(‖𝑥‖I +
I
Kº
‖𝑥 − 𝑦‖K). 

We have, from Fermat’s rule that 

0 ∈ ∂𝑓(𝑣∗) + I
º
(𝑣∗ − 𝑣) ⟺ 𝑣 − 𝑣∗ ∈ 𝜆 ∂𝑓(𝑣∗) (by the subgradient condition). 

Recall from subgradient of ℓI-norm ∂𝑓(𝑥) = ∂|𝑥I| × …× ∂|𝑥"| this implies that  

7𝑝𝑟𝑜𝑥º­(𝑣)8
C
= @

𝑣C − 𝜆, 𝑣C ≥ 𝜆
0,					|𝑣C| ≤ 𝜆
𝑣C + 𝜆, ≤ −𝜆.

 

Finally, the 𝑝𝑟𝑜𝑥º­(𝑣) = 𝑠ℎ𝑟𝑖𝑛𝑘(𝑣, 𝜆)C = 𝑚𝑎𝑥(|𝑣C| − 𝜆, 0)
A»
|A»|

. This operator is 

known as the soft thresholding operator.  

Example 5.3.4. Let 𝑓(𝑥) = ‖𝑥‖K, then 𝑝𝑟𝑜𝑥º­(𝑥) = 𝑚𝑎𝑥(‖𝑥‖K − 𝜆, 0)
m

‖m‖ÿ
. This 

sometimes is called block soft thresholding operator. 

 

Convergence of Proximal Point Algorithm (PPA) 

 

Theorem 5.3.5. [2] Let 𝑓:ℍ → ℝ ∪ +∞ and 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) ≠ ∅, let (𝜆") be the sequence 

of step sizes such that ∑ 𝜆""∈ℕ = +∞, and let 𝑥� ∈ ℍ. Let the proximal iteration  

(∀𝑛 ∈ ℕ)	𝑥"ÎI = 𝑝𝑟𝑜𝑥º.­𝑥" (5.8) 

Then the following statements hold: 

(a) (𝑥") is a minimizing sequence of 𝑓, 𝑓(𝑥) ↓ 𝑖𝑛𝑓	𝑓(ℍ). 

(b) (𝑥") converges weakly to a point 𝑥� ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓). 

Proof. (a)Let 𝑦 ∈ 𝑆. It follows from definition of 𝑥"	(5.8) and from the optimality 

condition 
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𝑥" − 𝑥"ÎI ∈ 𝜆" ∂𝑓(𝑥"ÎI). 

From (16.1) we have,  
I
º.
⟨𝑦 − 𝑥"ÎI, 𝑥" − 𝑥"ÎI⟩ ≤ 𝑓(𝑦) − 𝑓(𝑥"ÎI) (5.9) 

And  

0 ≤ I
º.
⟨𝑥" − 𝑥"ÎI, 𝑥" − 𝑥"ÎI⟩ ≤ 𝑓(𝑥") − 𝑓(𝑥"ÎI). 

From (5.9) for every  𝑛 ∈ ℕ, we have  

‖𝑥"ÎI − 𝑦‖K ≤ ‖𝑥" − 𝑦‖K + ⟨𝑦 − 𝑥"ÎI, 𝑥" − 𝑥"ÎI⟩ + ‖𝑥"ÎI − 𝑥"‖K 

= ‖𝑥" − 𝑦‖K − ‖𝑥"ÎI − 𝑥"‖K + ⟨𝑥"ÎI − 𝑦, 𝑥"ÎI − 𝑥"⟩ 

≤ ‖𝑥" − 𝑦‖K − 2𝜆"²𝑓(𝑥"ÎI) − 𝑖𝑛𝑓𝑓(ℍ)³. 

This implies that 𝑥" is Fejer-Monotone with respect to 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓) and  

∑ 2𝜆"²𝑓(𝑥"ÎI) − 𝑖𝑛𝑓𝑓(ℍ)³"єℕ < +∞. 

Since, ∑ 𝜆""∈ℕ = +∞ we have 𝑓(𝑥") ↓ 𝑖𝑛𝑓𝑓(ℍ). 

(.b) Let 𝑥� be a weak point of 𝑥". It follows from the next proposition.  

Proposition 5.3.6. Let 𝑓 be proper, l.s.c. quasiconvex function and let (𝑥") be a 

minimizing sequence of 𝑓 that converges weakly to 𝑥� ∈ 𝐻. Then 𝑓(𝑥) = 𝑖𝑛𝑓(𝐻).From 

previous proposition and theorem 3.4.3. the proof is complete. 

 

 
5.4. Proximal Gradient Method 
 

As we say the proximal operator can handle non smooth function. Consider the problem   

𝑚𝑖𝑛𝑓(𝑥) + 𝑔(𝑥) (5.10) 

Where 𝑓:ℍ → ℝ ∪ {+∞}, 𝑔:ℍ → ℝ ∪ {+∞} are closed, convex, proper function. Let 

𝑓 be differentiable but 𝑔 be non smooth.  

The proximal gradient method is  

𝑥{ÎI ≔ 𝑝𝑟𝑜𝑥ºCD7𝑥{ − 𝜆{∇𝑓(𝑥
{)8, 

Where, 𝑘 < 𝑛 the number if iterations and 𝜆{ is a step size. 

 

Algorithm 3. Proximal Gradient Method  

choose 𝑥� ∈ ℍ 

for 𝑘 = 0,1… 

𝑥{ÎI ≔ 𝑝𝑟𝑜𝑥ºCD7𝑥{ − 𝜆{∇𝑓(𝑥
{)8, 
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end for. 

 

 

The update step is like searching fixed point of proximal operator. In the sense that if   

𝑥� is a solution of (5.10), [7] by the optimality condition, 𝑥�  must satisfy  

0 ∈ ∇𝑓(𝑥�	) + ∂𝑔(𝑥�	) 

⟺ 0 ∈ ∇𝑓(𝑥�	) + ∂𝑔(𝑥�	) − 𝑥� 	+ 𝑥� 

⟺ (𝐼 + 𝜆 ∂𝑔)(𝑥�	) ∋ (𝐼 − 𝜆∇𝑓)(𝑥�	) 

⟺ 𝑥� 	= (𝐼 + 𝜆 ∂𝑔)¼I(𝐼 − 𝜆∇𝑓)(𝑥�	) 

⟺ 𝑥� 	= 𝑝𝑟𝑜𝑥ºD²𝑥� 	− 𝜆∇𝑓(𝑥�	)³ 

The last equality says that 𝑥�  minimizes the problem (5.10) ⟺ is a fixed point of the 

forward – backward operator (𝐼 + 𝜆𝜕𝑔)¼I(𝐼 − 𝜆∇𝑓). 

 

Convergence of Proximal Gradient Method 

 

Theorem 5.4.1. We assume that ∇𝑓 is Lipschitz continuous with constant 𝐿 > 0 and 

the step sizes are 𝜆 ≤ I
í
, then we have  

𝑓(𝑥{) − 𝑓∗ ≤
‖m2¼m∗‖ÿ

Kº{
 . ⊡ 

This theorem implies that the proximal gradient has convergence rate 𝑂 7I
{
8. The reason 

why we have the condition 𝜆 ∈ 70, I
í
Ô implies that the operator (𝐼 + 𝜆𝜕𝑔)¼I(𝐼 − 𝜆∇𝑓) 

is averaged [7] and thus that the iteration convergence to a fixed point, with the 

assumption that exists one. Is a consequence from the next theorem. 

Theorem 5.4.2. (The Baillon-Haddad Theorem) Let 𝑓:𝐻 → ℝ be convex and GD on 

𝐻, and its gradient operator ∇𝑓(𝑥) nonexpansive. Then 𝑓 is Fréchet differentiable and 

∇𝑓 is firmly nonexpansive [6]. 

A very important question about selection of step sizes when we don’t know the 

Lipschitz constant or is complicated to evaluated. [7] We can find step size by a line 

search. We take a parameter 𝑏 ∈ (0,1) and at each iteration we change the step sizes as  

𝜆 = 𝑏 · 𝜆. 

Recall that for function 𝑓 from Τaylor expansion we have an upper bound. In particular, 

the function 𝑓 is bounded from above from the function  
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𝑓Hº(𝑥, 𝑦) = 𝑓(𝑦) + ⟨𝑓(𝑦), 𝑥 − 𝑦⟩ + I
Kº
‖𝑥 − 𝑦‖K, with 𝜆 > 0. 

We can apply the proximal method as the pseudocode [7]: 

 

Given 𝑥{, 𝜆5ÎI, 𝑏 ∈ (0,1) 

Let 𝜆 ≔ 𝜆{ÎI 

Repeat  

1. Let 𝑧 ≔ 𝑝𝑟𝑜𝑥ºD²𝑥{ − 𝜆∇𝑓(𝑥{)³ 

2. Break if 𝑓(𝑧) ≤ 𝑓Hº(𝑧, 𝑥{) 

3. Update 𝜆 ≔ 𝑏𝜆. 

Return 𝜆{ = 𝜆, 𝑥{ÎI ≔ 𝑧 

 
5.5. Accelerated proximal gradient.  
 

A method to make the proximal gradient method faster is to add an extrapolation step. 

Then the algorithm is  

𝑦{ÎI ≔ 𝑥{ + 𝜔{(𝑥{ − 𝑥{¼I) 

𝑥{ÎI ≔ 𝑝𝑟𝑜𝑥ºCD²𝑦{ÎI − 𝜆{∇𝑓(𝑦{ÎI)³ 

Where 𝜔{ ∈ [0,1) and is called extrapolation parameter and 𝜆{ is the step sizes. Obtain 

that for 𝑘 = 1	we have the usual proximal gradient method, but for next iterations the 

𝑦{ÎI	has some information from previous iteration. Some usual choices of 

extrapolation parameter are	𝜔{ = {¼I
{ÎK

 or 𝜔{ =
{

{ÎÇ
. The convergence rate of 

accelerated proximal gradient algoritm is 𝑂 7 I
{ÿ
8. 

 
 
5.6. Primal dual Algorithm. 
 
Recall from chapter 4 the Fenchel-Rockafellar duality. We write the problem  

𝑖𝑛𝑓m∈i𝑓(𝐾𝑥) + 𝑔(𝑥), 

where 𝑓, 𝑔 are convex, and 𝐾:𝑋 → 𝑌 is a bounded, linear operator, as the primal – dual 

problem  

𝑚𝑖𝑛�𝑖𝑛𝑓m⟨𝑦, 𝐾𝑥⟩ − 𝑓∗(𝑦) + 𝑔(𝑥). 
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A good reason why we need this formula is when  𝑓 is non – smooth function but we 

can take proximal operators of 𝑓∗ and 𝑔 easily. 

The idea is to swing a descent step for primal variable 𝑥 and an ascent step for dual 

variable 𝑦.   

 

Algorithm 4. Primal-Dual  

Input: initial point (𝑥�, 𝑦�), steps σ > 0, τ > 0, so that 𝜎𝜏𝐿K < 1, where 𝐿 = ‖𝐾‖, and 

𝜃 ∈ [0,1]. 

for all 𝑘 ≥ 0 do  

𝑓𝑖𝑛𝑑(𝑥{ÎI, 𝑦{ÎI) by solving  

𝑦{ÎI = 𝑝𝑟𝑜𝑥­∗(𝑦{ + 𝜎𝐾𝑥̅{) (dual proximal) 

𝑥{ÎI = 𝑝𝑟𝑜𝑥D(𝑥{ − 𝜏𝛫∗𝑦{ÎI) (primal proximal) 

𝑥̅{ÎI = 𝑥{ÎI + 𝜃(𝑥{ÎI − 𝑥{)	(𝑒𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛) 

end for 

  

The extrapolation step helps us to have convergence.  The convergence rate it depends 

on the type of problem: 

• If the problem is non smooth: 𝑂 7I
'
8 

• Sum of a smooth and non-smooth: 𝑂 7 I
'ÿ
8 

• If the problem is smooth: 𝑂(𝜔L),𝜔 < 1 
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6 Minimization of Lasso function 
 

6.Introduction 

In this chapter we will calculate the proximal operators for Lasso problem. We will 
simulate data in MATLAB and run the algorithms of proximal gradient and accelerated 
proximal. Then we will compare the time and the iterations each method needs. Finally, 
we calculate the dual of LASSO.  

 

6.1. LASSO 
 

The Lasso problem is  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 I
K
‖𝐴𝑥 − 𝑏‖KK + 𝛾‖𝑥‖I, 

where 𝑥 ∈ ℝ", where 𝐴 ∈ ℝ<×", and 𝛾 > 0. 

We will treat this problem in the Hilbert space	ℝ"	endowed with the ℓK − norm.  

Proposition 6.1.1. The objective of Lasso is convex. 

Proof.  Let 𝑓(𝑥) = I
K
‖𝐴𝑥 − 𝑏‖KK + 𝛾‖𝑥‖I. We can write 𝑓(𝑥) as 𝑓(𝑥) = ℎ(𝑥) + 𝑔(𝑥), 

where ℎ(𝑥) = I
K
‖𝐴𝑥 − 𝑏‖KK and 𝑔(𝑥) = 𝛾‖𝑥‖I. Note that 𝑑𝑜𝑚(ℎ) = ℝ" and 

𝑑𝑜𝑚(𝑔) = ℝ" and both domains are convex sets. 

Convexity of ℎ(𝑥). The Hessian of ℎ(𝑥) is ∇K𝑓(𝑥) = 𝐴ø𝐴. The Hessian is positive 
semidefine, since for any 𝑥 ∈ ℝ" we have 𝑥ø𝐴ø𝐴𝑥 = ‖𝐴𝑥‖KK ≥ 0. Hence, the 
function	ℎ(𝑥) is convex.   

Convexity of 𝑔(𝑥). For any 𝑥I, 𝑥K and any 𝜃 ∈ (0,1), let 𝑥 = 𝜃𝑥I + (1 − 𝜃)𝑥K. Then  

𝑔(𝑥) = 𝛾‖𝜃𝑥I + (1 − 𝜃)𝑥K‖ 

≤ 𝛾‖𝜃𝑥I‖ + 𝛾‖(1 − 𝜃)𝑥K‖ 

= 𝛾𝜃‖𝑥I‖ + 𝛾(1 − 𝜃)‖𝑥K‖ 

= 𝜃𝑔(𝑥I) + (1 − 𝜃)𝑔(𝑥K) 

Hence 𝑔(𝑥) is convex. As we know the sum of two convex function is a convex 
function, therefore, 𝑓(𝑥) = ℎ(𝑥) + 𝑔(𝑥) is also convex.  ⊡ 

In general, the Lasso problem can be interpreted as finding a sparse solution to a linear 
regression model or to a least squares problem, where this implies a variable selection 
method.  
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6.2. Proximal gradient method  
 
For Lasso problem, let 𝑓(𝑥) = I

K
‖𝐴𝑥 − 𝑏‖KK and 𝑔(𝑥) = 𝛾‖𝑥‖I. The function 𝑓(𝑥) is 

differentiable but function 𝑔(𝑥) is non smooth. The gradient of 𝑓 is: 

∇𝑓(𝑥) = 𝐴ø(𝐴𝑥 − 𝑏) . 

Recall now that the proximal of ℓI norm is the soft thresholding operator is: 

M𝑆¬(𝑥)NC=7𝑝𝑟𝑜𝑥¬D(𝑥)8C
= O

𝑥C − 𝛾, 𝑥C ≥ 𝛾
0,					|𝑥C| ≤ 𝛾

𝑥C + 𝛾, 𝑥C ≤ −𝛾.
 

Hence the proximal operator for function 𝑔(𝑥) is: 

𝑝𝑟𝑜𝑥¬D(𝑥) = 𝑆¬(𝑥) 

By definition of the proximal gradient, the iteration is given from the formula:  

𝑥{ÎI = 𝑝𝑟𝑜𝑥ºCD²𝑥{ − 𝜆{∇𝑓(𝑥{)³ 

Therefore, the proximal gradient update is  

𝑥("ÎI) = 𝑆¬º²𝑥" + 𝜆𝛢P(𝑏 − 𝐴𝑥")³. 

This algorithm is called iterative-soft thresholding algorithm (ISTA). The accelerated 

version of ISTA is called FISTA. [12] 

In the next table we compare the algorithms ISTA and FISTA, for simulated data from 

normal distribution 𝑁(0,1) and regularization parameter 𝛾 = 0.1𝛾<Rm, γ<Rm =

‖𝐴ø𝑏‖=.  [7] 

 

6.3. Primal-Dual Problem 
 

Recall the Lasso problem  

𝑚𝑖𝑛m∈ℝS
I
K
‖𝑏 − 𝐴𝑥‖KK + 𝛾‖𝑥‖I. 

By theory of primal dual we add an auxiliary variable 𝑦 = 𝐴𝑥, and the Lasso problem 
is equivalent to  

𝑚𝑖𝑛�,m
I
K
‖𝑏 − 𝑦‖KK + 𝛾‖𝑥‖I subject to 𝐴𝑥 = 𝑦. 

The Lagrangian is 𝐿(𝑦, 𝑥, 𝑢) = I
K
‖𝑏 − 𝑦‖KK + 𝛾‖𝑥‖I + ⟨𝑢, (𝑦 − 𝑋𝑥)⟩, where 𝑢	is the 

dual variable and 𝑥, 𝑦 is primal variables. Now we want to minimize the 𝐿(𝑦, 𝑥, 𝑢). 

Method Iterations Time (s) 𝒑∗ 

ISTA 143 8.3344 21.188 

FISTA 108 7.3175 21.220 
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𝑚𝑎𝑥º𝑚𝑖𝑛m,𝛾‖𝑥‖ + ⟨𝜆, 𝐴𝑥⟩ − ℎ∗(𝜆) 

Where ℎ∗(𝜆) = ℎ(𝜆), ℎ∗(𝜆) = I
K
‖𝑏 − 𝐴𝜆‖KK.   

The update steps are: 

𝑦{ÎI = 𝑝𝑟𝑜𝑥Ý∗(𝑦{ + 𝜎𝐴𝑥{) 

𝑥{ÎI = 𝑝𝑟𝑜𝑥D(𝑥{ − 𝜏𝛢∗𝑦{ÎI) 

𝑥̅ = 𝑥{ÎI + 𝜃(𝑥{ÎI − 𝑥{) 

 

Recall, in this point, that the proximal operator of ℎ∗ is the block soft thresholding 
operator. 
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APPENDICES 
 
Code for Matlab [17] 

 https://web.stanford.edu/~boyd/papers/prox_algs/lasso.html#6 

 
 
function p = objective(A, b, gamma, x, z) 
    p = 0.5*sum((A*x - b).^2) + gamma*norm(z,1); 
end 
 
function s = prox_l1(v, lam) 
 
    s = max(0, v - lam) - max(0, -v - lam); 
end 
m = 500;       % number of examples 
n = 2500;      % number of features 
 
%x1 = sprandn(n,1,0.05); 
 
%A = randn(m,n); 
 
%A = A*spdiags(1./sqrt(sum(A.^2))',0,n,n); % normalize 
columns 
%v = sqrt(0.001)*randn(m,1); 
%b = A*x1 + v; 
 
myx=x1; 
save myfile.mat 
myA=A; 
save myfile.mat 
myv=v; 
save myfile.mat 
myb=b; 
save myfile.mat 
load myfile.mat 
myx; 
load myfile.mat 
myA; 
load myfile.mat 
myv; 
load myfile.mat 
myb; 
 
x0=myx; 
A=myA; 
v=myv; 
b=myb; 
 
gamma_max = norm(A'*b,'inf'); 
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gamma = 0.1*gamma_max; 
 
% cached computations for all methods 
AtA = A'*A; 
Atb = A'*b; 
 
MAX_ITER = 300; % to k sto for tha mas deiksei poses 
xreiastikan 
ABSTOL   = 1e-4; 
RELTOL   = 1e-2; 
 
f = @(u) 0.5*sum((A*u-b).^2); 
 
%ISTA 
lambda = 1; 
beta = 0.5; 
 
tic; 
 
x = zeros(n,1); 
xprev = x;  
 
 
for k = 1:MAX_ITER 
    while 1 
        grad_x = AtA*x - Atb; 
        p1=x - lambda*grad_x; 
        p2=lambda*gamma; 
        z = prox_l1(p1, p2); 
        if f(z) <= f(x) + grad_x'*(z - x) + 
(1/(2*lambda))*sum((z - x).^2) 
            break; 
        end 
        lambda = beta*lambda; 
    end 
    xprev = x; 
    x = z; 
    
    h.prox_optval(k) = objective(A, b, gamma, x, x); 
    if (k > 1 )&& abs(h.prox_optval(k) - h.prox_optval(k-
1)) < ABSTOL 
        break; 
    end 
end 
 
h.x_prox = x; 
h.p_prox = h.prox_optval(end); 
h.prox_grad_toc = toc; 
h.p_prox 
h.prox_grad_toc 
k 
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%FISTA 
lambda = 1; 
 
tic; 
 
x = zeros(n,1); 
xprev = x; 
for l = 1:MAX_ITER 
    y = x + (l/(l+3))*(x - xprev); 
    while 1 
        grad_y = AtA*y - Atb; 
        p3=y - lambda*grad_y; 
        p4=lambda*gamma; 
        z = prox_l1(p3, p4); 
        if f(z) <= f(y) + grad_y'*(z - y) + 
(1/(2*lambda))*(sum(z - y).^2) 
            break; 
        end 
        lambda = beta*lambda; 
    end 
    xprev = x; 
    x = z; 
 
    h.fast_optval(l) = objective(A, b, gamma, x, x); 
    if (l > 1) && abs(h.fast_optval(l) - h.fast_optval(l-1)) < 
ABSTOL 
        break; 
    end 
end 
 
h.x_fast = x; 
h.p_fast = h.fast_optval(end); 
h.fast_toc = toc; 
h.fast_toc %ctime to run 
h.p_fast %optimal vaalue 
l %iterations 
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