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ABSTRACT 

 

 

Kleanthis Natsiopoulos 

 

ARDL BOUNDS TEST FOR COINTEGRATION WITH 

APPLICATION ON INCOME INEQUALITY 

 

    September 2018 

 

This thesis addresses the popular ARDL bounds test for cointegration and tries 

to demonstrate its underlying theoretical assumptions in a concise way so that 

someone interested in this area can easily apply and at the same time 

understand why and how it works. Often, misuse of a method or a test can lead 

to a bad situation or unexpectedly unwanted results. Thus, it is also crucial to 

understand under which circumstances the test doesn't work as expected. For 

this reason, four practical implementations of the test are presented showing 

some interesting behavior of the test in practice. This practical sec tion 

explores the cointegrating relationships between the 1% top income share and 

the macroeconomic factors of credit, education, gdp, inflation, population 

growth and trade in order to reveal if there is a long-run relationship. This 

relationship is tested for four different countries, Greece, France, USA and 

UK trying to see if the income inequality is driven by the same factors and in 

the same way for such different economies. For the cases of Greece and 

France, although there were strong indications supporting the existence of 

such a relationship, due to a particular limitation in the test's methodology 

(endogeneity) we couldn't say for sure whether those results were valid or not. 

In the case of USA, the test concluded for the existence of a long-run 

relationship but a simple graphical inspection was enough to tell us that this 

was a false positive alarm (type I error) as this was a degenerate relationship. 

Finally, in the case of UK a not well defined model was supporting the long-

run relationship hypothesis but a more carefully designed model was against 

this decision. 
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Αυτή η διπλωματική εργασία εξετάζει το δημοφιλές ARDL bounds test 

συνολοκλήρωσης και προσπαθεί να δείξει τις θεωρητικές παραδοχές πίσω από 

το τεστ με συνοπτικό τρόπο έτσι ώστε ο κάθε ενδιαφερόμενος να μπορεί 

εύκολα να εφαρμόσει και ταυτόχρονα να κατανοεί γιατί και πως λειτουργεί. 

Συχνά, η λανθασμένη χρήση μια μεθοδολογίας ή ενός τεστ μπορεί να 

οδηγήσει σε άσχημες καταστάσεις ή απρόσμενα και ανεπιθύμητα 

αποτελέσματα. Συνεπώς, είναι εξίσου σημαντικό να καταλάβουμε υπό ποιες 

συνθήκες το τεστ δεν λειτουργεί όπως θα περιμέναμε. Γι' αυτό το λόγο 

παρουσιάζονται τέσσερις πρακτικές εφαρμογές του τεστ δείχνοντας κάποιες 

ενδιαφέρουσες συμπεριφορές τους τεστ στην πράξη. Το πρακτικό αυτό 

κομμάτι ερευνά τις σχέσεις συνολοκλήρωσης μεταξύ του ανώτερου 1% 

μεριδίου εισοδήματος και των μακροοικονομικών παραγόντων πίστωσης, 

εκπαίδευσης, ΑΕΠ, πληθωρισμού, ρυθμού αύξησης του πληθυσμού και 

εμπορείου έτσι ώστε να αποκαλύψει αν υπάρχει μακροχρόνια σχέση. Αυτή η 

σχέση ελέγχεται για τέσσερις χώρες, την Ελλάδα, τη Γαλλία, τις ΗΠΑ και το 

Ηνωμένο Βασίλειο προσπαθώντας να δει αν η ανισοκατανομή του 

εισοδήματος οδηγείται από τους ίδιους παράγοντες και με τον ίδιο τρόπο σε 

τόσο διαφορετικές οικονομίες. Για την περίπτωση της Ελλάδας και της 

Γαλλίας, αν και υπήρχαν ισχυρές ενδείξεις που υποστήριζαν την ύπαρξη μιας 

τέτοιας σχέσης, λόγω ενός συγκεκριμένου περιορισμού στη μεθοδολογία του 

τεστ (ενδογένεια) δεν μπορούμε να είμαστε σίγουροι αν αυτά τα 

αποτελέσματα είναι έγκυρα ή όχι. Στην περίπτωση των ΗΠΑ, το τεστ υπέδειξε 

την ύπαρξη μακροχρόνιας σχέσης αλλά μια απλή γραφική απεικόνιση ήταν 
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αρκετή για να δείξει πως ήταν ψευδώς θετικό (σφάλμα τύπου Ι) καθώς η 

σχέση ήταν αποκλίνουσα. Τέλος, στην περίπτωση του Ηνωμένου Βασιλείου 

ένα κακώς προσδιορισμένο μοντέλο υποστήριζε την υπόθεση της 

μακροχρόνιας σχέσης αλλά ένα πιο προσεκτικά σχεδιασμένο μοντέλο ήταν 

αντίθετο με αυτή την απόφαση. 
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Chapter 1

Introduction

Since a lot of economic data are used in the academic and research field of economics
but also on the business side, the need for us to have some valid and easy to apply
theory for our analysis is crucial. The issue we are going to discuss probably emerges
from economic data and the reason why this kind of data are somehow special is
because most of these variables have a non-stationary behavior in terms of having a
unit root or in other words being an integrated process of some order greater than
zero. Its also true that OLS regression is probably the most frequently used technique
because the estimation but also the inference are very easy to be done. The problem
that arises when one tries to apply such a regression method using indegrated series is
called spurious regression. Under this situation one gets misleading results that may
lead to bad decisions. Although, there are cases where series that behave like this may
end up having a stable and relationship, this phenomenon is called cointegration.

There have been almost 40 years from the time when this concept appeared for the
first time and still remains an important topic in the econometrics literature. In the
present thesis, we focus on a specific cointegration test called the ARDL bounds test
proposed by M. Hashem Pesaran, Shin, & Smith (2001) and despite the fact that
more than 15 years have been passed since then, this test in particular remains one of
the most hot topics in the literature of econometrics. This is because of its ease of use,
the model is estimated using the OLS method, the test is a classic F (or Wald) test
on the joint significance of some parameters and its results are quite straightforward
to interpret. Nevertheless, it is based on some extensive theoretical assumptions that
need to be satisfied in order for the test results to be valid. The fact that the original
paper of M. Hashem Pesaran et al. (2001) is highly technical, some of the underlying
but important assumptions were not as clear unless one dives deep in the theoretical
construction of the test which is in contrast with the advantages that this test offers
for the practitioners.

For this reason, the first of the two targets that this thesis focuses on is explaining
the core of the test and the underlying assumptions in a precise but concise way. This
is done in the next three chapters discussing some basic time series concepts, the
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ARDL model and its connection with the ECM, the multipliers and the dynamics,
the multivariate analysis of the same concept, some of the assumptions that arise and
the hypothesis test itself.

The second target of this thesis addresses the problem of income inequality and if
and how there can be a long-run relationship between the 1% top income share and
the macroeconomic factors of credit, education, gdp, inflation, population growth and
trade. This relationship, if exists, is not clear if behaves with the same way for different
economies like these of Greece, France, USA and UK. We apply the ARDL bounds test
for cointegration in each of these cases separately and analyze and interpret the results.
We don’t stay only on a trivial rejection (or not) of the hypothesis but we focus on
the reasons why a decision is made and how the test behaves even in situations where
we normally wouldn’t apply the test in the first place and we are comparing various
results for a better understanding.



Chapter 2

Stationarity and integration

2.1 Describing stationarity

Starting with the description of stationarity, firstly we should separate it into two
different definitions. The first one is called strict stationarity while the second one is
called weak stationarity. A definition is:

Strict stationarity definition:

If the joint distributions P (Yt1 ≤ α1, Yt2 ≤ α2, . . . , Ytk
≤ αk) are shift-

invariant, meaning that they stay unchanged over time, then the stochastic
processes of this time series is strictly stationary.

Technically this is equal to:

P (Yt1 ≤ α1, Yt2 ≤ α2, . . . , Ytk
≤ αk) = P (Yt1+j ≤ α1, Yt2+j ≤ α2, . . . , Ytk+s ≤ αk)

∀t1, t2, . . . , tk, j
(2.1)

This means that the joint distribution of the processes depends only on the lags and
leads (j) and not on time. Also, all the moments describing the stochastic processes
are finite and don’t depend on time either.

This definition of stationarity is very strict, as its name indicates, and it’s not used in
practice. For this reason, another more convenient and easier to be tested definition
of stationarity is often used in practice. This is called weak stationarity:

Weak stationarity definition:

If the first two moments, the mean and the autocovariance, of a process
exist and they don’t depend on time (shift-invariant), then the process is
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called weak-stationary or covariance-stationary.

Technically this is equal to:

• E(Yt) ⊥ t (constant)
• V ar(Yt) = σ2 <∞
• Cov(Yt, Yj) = Cox(Yt+r, Yj+r) ⊥ t (depends only on lags)

(2.2)

If a process Yt is strictly-stationary then the random variables Yt are identically
distributed ∀t and P (Yt1 ≤ α1, Yt2 ≤ α2) = P (Yt1+j ≤ α1, Yt2+j ≤ α2) ∀j

Additionally, if the process Yt is strictly-stationary and at the same time E(Yt) <∞
and V ar(Yt) < ∞, then the process is also weakly-stationary. While the inverse
does not hold, if a process is weakly-stationary but Gaussian1 then it is also strictly-
stationary.

Nowon, for convenience the term stationary will be referring to covariance-
stationary.

2.2 Describing Integration

Many definitions of integration have been given along the previous years that are more
or less similar to each other, depending on the scope of each researcher. The following
statement is the formal definition proposed by (Engle & Granger, 1987):

A series with no deterministic component which has a stationary, invertible,
ARMA representation after differencing d times, is said to be integrated of
order d, denoted xt ∼ I(d)

Now, connecting the above definition with the chapter 2 we can conclude that a
variable yt ∼ I(d), for d = 0 is a covariance-stationary2 processes while for d > 03 the
variable (1− L)dyt = ∆dyt is a stationary processes.

At this stage, we note that the zero order of integration, namely I(0), is a necessary
but not sufficient condition for a variable to be stationary. This means that a variable
may be I(0) but at the same time it may not be stationary.

1The marginal distributions of the process to be Normal
2Note that in this whole sentence the term stationary refers to covariance-stationarity
3The values that d can take are not limited to integer numbers. For non-integer values of d, they

are called fractional difference models.
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Cointegration

In this chapter, we will present the basic idea behind the concept of cointegration.

The concept of cointegration firstly appeared implicitly in the work of Davidson,
Hendry, Srba, & Yeo (1978) through the Error Correction Model (ECM). Later,
C. W. Granger (1981) firstly developed the theory of cointegration suggesting the
term of cointegration and the relationship between the error correction models and
cointegration. After that, the concept was formally further developed in detail with
the works of C. Granger (1983) and Engle & Granger (1987), while the latest showed
the integration of the short-run dynamics with long-run equilibrium (Maddala &
Lahiri, 2009).

3.1 Describing and conceptualizing cointegra-
tion

The concept of cointegration is easy to understand through the example proposed by
Davidson et al. (1978) about the consumption spendings model. They showed that
although both consumption and income are non-stationary with a unit root, there is
a long-run relationship between them which is a stationary process. This is the ratio
between consumption and income which remains constant over time, so the linear
stationary process is the log of consumption minus the log of income.

Technically, cointegration is a vector unit root process, say a (k×1) vector of time series
yt,1 where its individual components are I(1) but there is some linear combination
of a′yt that is a stationary I(0) process, for some nonzero (k × 1) vector a which is
called cointegrating vector (Hamilton, 1994). In this case, yt is said to be cointegrated.
In plain words, this means that even if some events may lead to permanent changes
in the individual components of yt, there is some long-run equilibrium relationship

1Where each of the k time series yi,t is a (T × 1) vector
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among them, described by a′yt, which hold them together2.

yt =


y1,t

y2,t
...
yk,t

 (3.1)

a =


a1
a2
...
ak

 (3.2)

a′yt =
[
a1a2 · · · ak

]

y1,t

y2,t
...
yk,t

 = a1y1,t + a2y2,t · · · akyk,t =
k∑

i=1
aiyi,t (3.3)

The cointegrating vector a has to be normalized in order for its first element to be unity.
Notice that for a stationary a′yt process, the cointegrating vector a is not unique. If
b is a nonzero scalar, then ba is also a cointegrating vector. This non-uniqueness of
the cointegrating vector is also presented visually below in Figure 3.2 for a better
understanding.

Generally, when there are more than two variables in yy, then there may be more than
one (i.e. h < k) linearly independent (k×1) cointegrating vectors (a1, a2, . . . , ak) that
result in more than one cointegrated relationships a′iyt that are stationary. This can
be described by the (h× 1) stationary vector A′yt, where A′ is a (h× k) matrix.

A′ =


a′1
a′2
...

a′h

 (3.4)

Hamilton (1994) shows in the triangular representation of a cointegrated system that
in the case where h = k, in which the number of cointegrating vectors is equal to the
number of variables, then yt would be I(0).

To sum up, when two variables are cointegrated we say that there is a long-run
equilibrium relationship between them so that they don’t drift too far apart over time.
On the other hand, when the error term of their estimated long-run relationship is
I(1) the two series drift apart as time goes on and hence the estimated relationship
doesn’t really exist (Maddala & Lahiri, 2009).

Although it is very important for one to understand the mathematical representation
of cointegration as long as the practical (e.g. the economic) meaning of cointegration

2Notice that despite the fact that the multiplications of these two vectors of dimensions (1× k)
and (k × 1) respectively results in a (1× 1) vector, this vector itself contains the (T × 1) stationary
time series as described in the Equation (3.3)
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as both of theme described above, it would be very interested to see them in parallel.
For this reasons, we will set a simple yet very informative example that is also used in
many textbooks (Hamilton, 1994).

Consider the following bivariate system:

y1,t = γy2,t + u1,t (3.5)

y2,t = y2,t−1 + u2,t (3.6)

Where u1,t and u2,t are white noise (WN ) processes, uncorrelated with each other, while
y2,t is a random walk (RW ) processes. Notice that y1,t and y2,t are both individually
non-stationary I(1) processes as y2,t is a RW and its first difference results in the
u2,t ∼ WN which is stationary. And the first difference of y1,t is a stationary MA(1).
The derivation of the above first differences are presented below.

∆y2,t = u2,t (3.7)

∆y1,t = γ∆y2,t + ∆y1,t = γu2,t + u1,t − u1,t−1 = νt + θνt−1 (3.8)

Where νt ∼ WN and θ 6= −1 given that γ is a nonzero scalar and u2,t is not a mass
point at zero3. The proof along with a very clear instructive example of (3.8) is
presented in Hamilton (1994) pp.102-105, where he shows how the sum of a MA(1)
and a WN uncorrelated processes produces another MA(1) process.

Although y1,t and y2,t are both I(1), their linear combination a′yt = y1,t − γy2,t

is stationary as yt = (y1,t, y2,t)′ is cointegrated. Here the cointegrating vector is
a′ = (1,−γ).

In the following example, we simulate the system described in the Equations (3.5) and
(3.6). We generate the two time-series using a sample size of 5000 innovations with
the first one to be equal to zero, where u1,t and u2,t are distributed as N(0, 1) and
setting the parameter γ = 0.6. In the Figure 3.1 we can see that the series y1,t and y2,t

are obviously non-stationary. As we can notice the effect of the unit autoregressive
roots lead to permanent changes (stochastic trends) in the variables as they diverge
significantly from zero. Nevertheless, we can see that their linear combination using
the real value of γ = 0.6 (which forms the cointegrating vector a′ = (1,−0.6)) is
indeed stationary as it fluctuates steadily around zero.

3E(u2
2,t) > 0
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Figure 3.1: Cointegration simulation

In the Figure 3.2 we can see how there can not be more than one cointegrating vectors
that are linearly independent of each other for a specific relationship and when it
diverges from this unique value, the resulted series is not stationary. This is the case
with γ1 = 0.4 and γ2 = 0.8 where they are minus and plus 0.2 respectively from the
unique values of 0.6. Notice that γ is the second element of the cointegrating vector,
while the first one is equal to unity (as the whole vector has to be normalized like
that). Also, we show here that the cointegrating vector is not unique, in the sense that
there can be a scalar b where ba is also cointegrating vector but they are obviously
linearly dependent of each other. In our simulation example, this values is b = 2.7.
Looking at the figure we can see that the resulted series is stationary as it fluctuates
around zero but with a greater variation this time.
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Figure 3.2: Non-cointegrated & non-unique cointegrating vectors simu-
lation





Chapter 4

ARDL Bounds test

The ARDL bounds-test for cointegration was developed through the work of M. H.
Pesaran & Shin (1998) and M. Hashem Pesaran et al. (2001). The test is practically
performing a significance test on the parameters of the long-run variables included in
the Conditional Error Correction Model (CECM) of the underlying VAR model. We
explain in details the Conditional ECM latter in Chapter 4.1.3. In the cointegration
analysis we use very often the ARDL platform and this is due to its ability to isolate
and estimate the long-run relationship among the variables.

As the authors argue, one of the advantages of this model is that using the ARDL
model framework, we can have robust estimations of cointegration under possible
misspecification of the order of integration of the included variables.

To illustrate that, we consider the following possible cases:

• When all variables are I(d) for 0 ≤ d and are not cointegrated. Then for the
case that d = 0 we can estimate Eq. (4.2) in levels using OLS. For the rest of
the cases we can do the same after taking appropriate differences in order to
end up with I(0) variables. The initial variables may be differenced but we can
consider that the estimated ARDL model is in the levels of the new variables
namely (1− L)dyt ≡ ∆dyt.

• When all variables are I(1) so they are cointegrated. We can estimate the
long-run relationship using a simple OLS in levels and we can also estimate the
short-run dynamics and the speed of adjustment to the cointegrating relationship
constructing an Error Correction Model (ECM).

• When we have a mix of I(1) and I(0) variables and some of the I(1) variables
are cointegrated. And here is where the ARDL Bound-test takes over.

The traditional cointegration tests such as Engle & Granger (1987), Phillips & Ouliaris
(1990), Johansen (1995) etc. are not able to handle the last case where the order of
integration between the variables differs as these tests consider only the cases where
all the variables are integrated of the same order (i.e. I(1)). Not only the ARDL
bounds-test can handle the cases where there is a mix of I(0) and I(1) variables but it
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also eliminates the cases where a test that requires all variables to be I(1) is applied
while some variables where mistakenly estimated as I(1) but their true nature is I(0).
In these cases, applying a tests like this would be invalid.

4.1 ARDL model, estimation and inference

In this section, we present the framework on the basis of which the ARDL bounds
test is built on along with the corresponding practical models. We present both the
theoretical Data Generating Process (DGP) and the regression model which we apply
in practice.

4.1.1 General ARDL model

First, we describe the DGP of the general ARDL(p, q1, . . . , qk) model:

ψ(L)yt = α0 + α1t+
k∑

j=1
βj(L)xj,t + εt (4.1)

In this form, we use two lag polynomials, the AR operator ψ(L) and the MA operator
βj(L) that can be found in Eq. (B.1) and Eq. (B.9) respectively. L is the lag
operator, α0 is the constant term, α1 is the coefficient of the linear trend, t is the
vector representing the linear trend and εt is the innovations. This is the theoretical
framework while in practice we estimate it using the following regression model1:

yt = α0 + α1t+
p∑

i=1
ψiyt−i +

k∑
j=1

qj∑
lj=0

βj,ljxj,t−lj + εt (4.2)

Where α0 is the constant term, α1 is the coefficient of the linear trend, ψi is the
coefficient of the ith lag of yt, βj,lj is the coefficient of the lthj lag of the xj,t independent
variable and εt is the innovations. The open form of Eq. (4.2) is presented in Eq.
(B.11). Thus, the general ARDL(p, q1, . . . , qk) model except for the possibly existing
deterministic components (the constant and the trend), it also contains all the p lags
of the variable yt, all the qj lags for each of the k variables xj,t and the each of the k
variable xj,t in levels.

Another representation of an ARDL(p, q1, . . . , qk) model Eq.(4.1) can also be written
as a function of the intertemporal dynamics. We derive to this equation applying the
Beveridge-Nelson decomposition for a MA process Eq. (B.14) on Eq. (4.1). Here is
the theoretical DGP of this representation:

1solving for yt
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4.1.2 Intertemporal ARDL model

yt = α0 + α1t+
p∑

i=1
ψiyt−i +

k∑
j=1

βj(L)xj,t + εt

= α0 + α1t+
p∑

i=1
ψiyt−i +

p∑
i=1

(
βj(1) + (1− L)β̃j(L)

)
xj,t + εt

= α0 + α1t+
p∑

i=1
ψiyt−i +

p∑
i=1

βj(1)xj,t +
k∑

j=1
β̃j(L)∆xj,t + εt

(4.3)

In particular, here we use the Eq. (B.14) as βj(L) = βj(1) + (1− L)β̃j(L) to account
for each of the k regressors. The βj(1) described in Eq. (B.10) also uses the subscript
j to account for every variable and it it actually the sum of the level’s and all the lags’
coefficients.

The regression model that we use in practice in order to estimate the Eq. (4.3) is:

yt = α0 + α1t+
p∑

i=1
b0,iyt−i +

k∑
j=1

bjxj,t +
k∑

j=1

qj−1∑
lj=0

cj,lj ∆xj,t−lj + εt (4.4)

Where this representation of the ARDL model consists of the possibly existing deter-
ministic components (the constant and the trend), all the p lags of the variable yt,
each of the k variables xj,t in levels, the first differences of each of the k regressors
(∆xj,t) and the qj − 1 lags for each of the k variables ∆xj,t.

4.1.3 Conditional Error Correction Model (CECM)

An ARDL model is equivalent to the Conditional Error Correction Model (CECM)
of the underlying VAR as there is an 1-1 correspondence between them (Banerjee,
1993). As they carry the same information (for example regarding the estimation
of the long-run multipliers), in the empirical part, Chapter 5, we present the ARDL
form of the models but we also provide their conditional ECM form in the Appendix
C.

As the Conditional ECM is just another representation of the ARDL model in Eq.
(4.1) we can show that it derives from the general ARDL model following the next
steps starting from the know relationship ∆yt = yt−yt−1. First replace yt according to
the Eq. (4.1). Then according to Eq. (B.4) we can replace ∑p

i=1 ψiyt−i with ψ∗(L)yt

and then apply the Eq. (B.13) which is a reparameterization of the Beveridge-Nelson
decomposition for an AR process. Gather the yt−1 terms, express the xj,t using the
relationship xt = xt−1 + ∆xt and apply the Beveridge-Nelson decomposition for a MA
process to its operator. Finally, notice that the coefficient of yt−1 is actually the ψ(1)
according to the Eq. (B.2).

Now rearranging the right hand parts of this equation we derive the following Eq.
(4.5) which is in fact the Conditional ECM. In this form it is an Unrestricted CECM
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(UCECM) as we allow for the parameters of the once lagged variables in levels (yt−1
and xj,t−1) to be estimated. The Eq. (4.5) shows the theoretical framework or the
DGP of the UCECM.

Unrestricted CECM

∆yt = α0 + α1t

− ψ(1)yt−1 +
k∑

j=1
βj(1)xj,t−1

+ ψ̃∗(L)∆yt−1 +
k∑

j=1
β̃j(L)∆xj,t−1 +

k∑
j=1

βj(L)∆xj,t + εt

(4.5)

The model as we would estimate it in practice is shown in the Eq. (4.6).

∆yt = α0 + α1t

+ b0yt−1 +
k∑

j=1
bjxj,t−1

+
p−1∑
i=1

c0,i∆yt−i +
k∑

j=1

qj−1∑
lj=1

cj,lj ∆xj,t−lj +
k∑

j=1
dj∆xj,t + εt

(4.6)

Now that we know how to form the Unrestricted form of the CECM it is very easy to
transform in into a Restricted CECM (RCECM) which does not include the terms yt−1
and xj,t−1 themselves but the (possibly cointegrating) relationship between them. This
can be done by slightly changing the Eq. (4.5) and setting ψ(1) to be the common
multiplier for the relationship formed by yt−1 and xj,t−1. The theoretical DGP of the
RCECM is in Eq. (4.7).

Restricted CECM

∆yt = α0 + α1t

− ψ(1)(yt−1 −
k∑

j=1

βj(1)
ψ(1) xj,t−1)

+ ψ̃∗(L)∆yt−1 +
k∑

j=1
β̃j(L)∆xj,t−1 +

k∑
j=1

βj(L)∆xj,t + εt

(4.7)

The model as we would estimate it in practice is shown in the Eq. (4.8).

∆yt = α0 + α1t

+ b0ECTt−1

+
p−1∑
i=1

c0,i∆yt−i +
k∑

j=1

qj−1∑
lj=1

cj,lj ∆xj,t−lj +
k∑

j=1
dj∆xj,t + εt

(4.8)
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It is clear that the Error Correction Term (ECTt) is the relationship in levels between
yt and xj,t because if a relationship exists in time t, it also exists in time t-1. So, if
this relationship indeed exists, it is called cointegrating relationship and it is actually
the once lagged errors from the estimated relationship between yt and xj,t.

Looking at the Eq. (4.7) we notice that the coefficients that accompanies the variables
xj,t−1 are in fact the long-run multipliers2 and that the coefficient of the ECTt−1 term
is the ψ(1).

The RCECM model is a very interesting one and it’s often the first model we estimate
since we have favorable results from a cointegration test. This is because the coefficient
of the ECTt−1 term is another way to further support (or reject) our conclusions about
the existence of cointegration. If the ECTt−1 term is statistically significant, this
means that the cointegrating relationship (which it represents) exists. The coefficient,
which appears as b0 in the Eq. (4.8) and has to be negative in sign, has also a very
interesting interpretation. It shows the speed of adjustment back to the long-run
equilibrium. Its absolute value |b0| can be interpreted as the percentage of which the
divergence from the equilibrium is reduced in each time unit (e.g. each year) and the
ratio 1

|b0| indicates the time (measured in time units) that the system takes to get back
in equilibrium.

Another interesting relationship among all of the previously referred models is the
one about ψ(1). In the UCECM Eq. (4.6) and the RCECM (4.8) this value expresses
itself through a single coefficient.

ψ(1) = −b0 (4.9)

In the general ARDL Eq. (4.2) and the Intertemporal ARDL Eq. (4.4) appears as
the sum of the coefficients of the lagged dependent variables.

ψ(1) =
p∑

i=1
b0,t−i (4.10)

4.2 Long-run dynamics

Exploring the connection between the general form of the ARDL model (4.2) and the
ARDL model including the intertemporal dynamics Eq. (4.4) we realize that they
are just two different representations of the same thing. In fact, we can derive the
coefficients of the general ARDL representation from the estimated coefficients of the in-
tertemporal dynamics representations and vice versa. Opening the Eq. (4.4) replacing
the ∆xj,t−lj with Llj (xj,t− xj,t−1) one can notice that the corresponding coefficients of
the levels and all the lags for each of the k regressors (xj,t, xj,t−1, . . . , xj,t−(qj−1), xj,t−qj)

2In the RCECM form these are not estimated here but instead they are pre-estimated and they
are used along with the yt and xj,t variables to form the ECTt term which is used here with one lag.
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are accordingly:

βj,0 = bj + cj,0 coefficient of xj,t

βj,1 = cj,2 + cj,1 coefficient of xj,t−1

βj,2 = cj,3 + cj,2 coefficient of xj,t−2
...
βj,qj−1 = cj,qj−1 + cj,qj−2 coefficient of xj,t−(qj−1)

βj,qj
= −cj,qj

coefficient of xj,t−qj

(4.11)

The Eq. (4.3) is also very useful if we want to derive the long-run relationship
between yt and the k regressors xj,t, without using any information of the lag of yt.
An ARDL(p,q) model can be represented using iterative substitution as an infinite
distributed lag model, from which we can understand how a shock in a variable affects
future periods. The following ARDL(1,1) (4.12) for example, can be written as a
distributed lag (DL) model as presented in Eq. (4.13):

yt = a0 + a1t+ ψ1yt−1 + β0xt + β1xt−1 + εt (4.12)

yt = (1 +ψ1 +ψ2
1 + . . . )a0 + (1 +ψ1L+ψ2

1L
2 + . . . )(a1t+ β0xt + β1xt−1 + εt) (4.13)

An infinite Distributed Lag model can be written as:

yt = a0 + a1t+
k∑

j=1

∞∑
l=0

βj,lxj,t−l + εt (4.14)

And under a finite structure this becomes a DL(q1, . . . , qk):

yt = a0 + a1t+
k∑

j=1

qj∑
lj=0

βj,ljxj,t−lj + εt (4.15)

With another representation of this to be3:

yt = a0 + a1t+
k∑

j=1
θjxj,t +

k∑
j=1

qj−1∑
lj=0

γj,lj ∆xj,t−lj + ξt (4.16)

The coefficients α1 and θj are the long-run multipliers of the trend and the independent
variables xj respectively. These multipliers measure the total effect on the dependent
variable after a unit change in the dependent ones, and their estimation is one of our
main goals if this cointegrating (long-run) relationship between the variables yt and
xj (in levels) indeed exists.

3As we mentioned before, regressing on the levels of xj,t and all their qj lags is equivalent to
regressing on the levels of xj,t, the levels of ∆xj,t and their qj − 1 lags.
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4.3 Multipliers

Since we estimate the ARDL model of either form, the interpretation of the dynamic
effects can be done using the so called multipliers. The long-run multiplier is often
of big interest and thus we give special attention forming an example in which we
replicate and validate the results from the Chapter 5.4.

4.3.1 Formulas for multipliers

short-run or impact multiplier

• The effect on yt from a unit change in xt:

With respect to the DL Eq. (4.14) or (4.15):

∂yt

∂xt

= β0 (4.17)

interim multiplier

• The effect on yt+s (s steps ahead) from a unit change in xt:

With respect to the general ARDL Eq. (4.1):

∂yt+s

∂xt

(4.18)

With respect to the DL Eq. (4.14) or (4.15):

s∑
l=0

βl (4.19)

In particular, the effect on yt+1 from a unit change in xt with respect to the general
ARDL Eq. (4.1)4 and the DL Eq. (4.15) respectively:

∂yt+1

∂xt

= β1 + ψ1β0 (4.20)

1∑
l=0

βl (4.21)

4see the example in Eq. (4.13) to understand the structure in an open form
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long-run or total multiplier

The long-run multipliers appear in the Eq. (4.16) as θj.

• The total effect on y from a unit change in xt:

With respect to the DL Eq. (4.14) and (4.15) respectively:

θ =
∞∑

l=0
βl (4.22)

θ =
q∑

l=0
βl (4.23)

With respect to the general ARDL Eq. (4.2):

θ =
∑q

l=0 βl

1− ψ1

Generally, if the autoregressive order is p:

θ =
∑q

l=0 βl

1−∑p
i=1 ψi

(4.24)

With respect to the Intertemporal ARDL model, Eq. (4.4):

â1 = α̂1

1−∑p
i=1 b̂0,i

long-run multiplier of trend (4.25)

θ̂j = b̂j

1−∑p
i=1 b̂0,i

long-run multiplier of xj,t (4.26)

With respect to the UCECM, Eq. (4.5) and (4.6):

â1 = α̂1

b̂0
long-run multiplier of trend (4.27)

θ̂j = b̂j

b̂0
long-run multiplier of xj,t (4.28)

Notice that the denominator of the above formulas is actually the ψ(1). Now we can
see that the long-run parameters are θ̂j = ψ−1(1)βj(1). In other words, it is equal to
the sum of the coefficients of the levels and all their qj lags for each of the k regressors
xj (i.e. on a DL model).

Concerning the Eq. (4.1), a notable point here is that ψ(L) must be invertible in order
for a stable relationship between yt and xt to exist, and hence the long-run multiplier
to make sense.
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4.3.2 Long-run multiplier example

We can give an example on how to calculate the long-run multipliers using the results
of one of the models in the empirical part. For example we can use the estimated model
for the case of France which is an ARDL(1, 0, 1, 1, 0, 1, 0). The long-run multipliers can
be found in the Table 5.15. In our example we will recalculate the long-run multiplier
for the variable edu for which we can see from the Table 5.15 that its estimation is
1.2945.

We can re-estimate this number using the Table 5.13 which is the implementation of
the Eq. (4.2), that is the ARDL(1, 0, 1, 1, 0, 1, 0) model in the general ARDL form.
Using the formula in Eq. (4.24) and the estimated coefficients from the Table 5.13 we
can see that:

(−1.134 + 1.598)
1− 0.641 = 1.292

We can also re-estimate it using the results from the Unrestricted Conditional ECM
model in the Table C.8 which is the implementation of the UCECM model in Eq.
(4.6) and plug it in the formula in Eq. (4.28). Thus we have:

0.464
−(−0.358) = 1.296

4.4 Multivariate analysis

What we have discussed so far concerns one particular model of the underlying VAR,
the so called conditional, in which the variable we are primarily interested in is the
variable yt and the independent variables in this model are the so called marginal
variables xt = (x1,t, . . . , xk,t)′.

The underlying VAR model can be described as:

Φ(L)(Zt − µ− γt) = εt (4.29)

Where Zt = (yt, x1,t, . . . , xk, t)′ is the (k + 1) superset of yt and xt, µ is the (k + 1)
intercept vector, γt is the (k+1) trend vector, Φ(L) is the square matrix lag polynomial
Eq. (B.7) and εt is the (k + 1) vector of innovations.

Using a model of those that was mentioned previously (e.g. the UCECM model), we
treat it as a stand alone model while the true underlying VAR probably contains
extra information about the interrelationships among the variables for which we don’t
account following this single model. Due to this fact, we describe here some of the
previous concepts as a parallel system instead of a stand alone equation that helps us
to dig a little further in technical details.

5small differences from the estimated long-run multipliers are due to rounding errors
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4.4.1 Vector Error Correction Model (VECM)

Rewriting the Unrestricted Conditional ECM Eq. (4.6) under the multivariate repre-
sentation we can write the Unrestricted VECM (UVECM) here.

Unrestricted VECM

∆zt = α0 +α1t−Φ(1)zt−1 + Φ̃∗(L)∆zt + εt (4.30)
Where Φ̃∗(L) is the analogous matrix to Eq. (B.6), the Φ(1) is the cointegration
matrix, Φ(1)zt−1 is the matrix containing the cointegrating relationships analogous to
ψ(1)ECTt−1 and Φ̃∗(L)∆zt are the short-run dynamics.

or in another form: [
∆yt

∆xt

]
=
[
αy0
αx0

]
+
[
αy1
αx1

]
t

−
[

Φyy(1) Φyx(1)
Φxy(1) Φxx(1)

] [
yt−1
xt−1

]

+
[

Φ̃∗yy(L) Φ̃∗yx(L)
Φ̃∗xy(L) Φ̃∗xx(L)

] [
∆yy

∆xt

]
+
[
εyt

εxt

] (4.31)

4.4.2 Endogeneity

Under the context of the univariate analysis (e.g. the ECM Eq. (4.6)) all the marginal
variables are treated as exogenous. Nonetheless, in the multivariate analysis of the
VAR Eq. (4.29) there may be several endogenous variables and these endogenous
variables are correlated to each other in the VECM Eq. (4.30) system too.

The error vector in the Unrestricted VECM Eq. (4.30) is εt ∼ N(0,Ω) where:

Ω =
[
ωyy ωyx

ωxy ωxx

]
(4.32)

Where Ω is the covariance matrix which carries and transfers the correlations among
variables between each marginal equation. So, in order for the univariate analysis
using the ECM to be valid, it requires that the effects on yt emerging from this single
model to be the same as those which would have passed to yt from the whole VECM
system.

This can happen only in the case when the only effect on yt under the multivariate
analysis is the direct effects from the marginal variables through the conditional equa-
tion. If the conditional variable yt (the variable we are focusing on) also participates in
other cointegrating relationship, the effect which naturally would have passed through
the covariance matrix Ω of the error εt, will be omitted in the univariate case. In this
case any inference on the ECM and the tests based on this would be invalid.
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Taking a closer look at Eq. (4.31) we can see that the error from the conditional
equation (the first row) can be analyzed as follows.

εyt = ωyxω
−1
xx εxt + uyt (4.33)

Where the new error uyt ∼ N(0, ωyy − ωyxω
−1
xxωxy) is independent from εxt.

At this point we rewrite the VECM Eq. (4.31) forming the conditional equation such
that the error term to be the new independent error.[

∆yt

∆xt

]
=
[
αy0
αx0

]
+
[
αy1
αx1

]
t

−
[
Φyy(1)− ωyxω

−1
xx Φxy(1) Φyx(1)− ωyxω

−1
xx Φxx(1)

Φxy(1) Φxx(1)

] [
yt−1
xt−1

]

+
(
(Ik+1 −Ψ)Φ̃∗(L) + Ψ

)
∆zt +

[
uyt

εxt

] (4.34)

The matrices at the left side of ∆zt intentionally appear in a linear form to save some
space. But the matrix form of this part is trivial if we just notice that:

Ψ =
[

0 ωyxω
−1
xx

0k 0k×k

]
(4.35)

Looking at the Eq. (4.34) we can clearly see that this information can only pass
through Φxy(1) that now revealed itself in the conditional equation. So if we ensure
that Φxy(1) = 0, so that the effect that is driven from each of the marginal equations
to the conditional doesn’t exists, only then we can safely continue with our univariate
cointegration analysis using the Conditional ECM models.

In conclusion, although there may or may not be other cointegrating relationships
between the xt themselves, there must be at most one cointegrating relationship
between yt and xt in order for the univariate analysis to be valid. If this should be
the case, the xt are called weakly exogenous for all the parameters in the conditional
equation.

Until now we have set up the cointegrating relationship under the univariate analysis
as if all the regressors were exogenous and also the cointegrating relationship under
the multivariate case. Although, none of these are very useful in practice but what we
can do is to frame the cointegrating relationship for the univariate case assuming that
the marginal variables are at most weakly exogenous and there is only one long-run
relationship between these variables and yt. As we have discussed this requires that
Φxy(1) = 0, so assuming that this is true and replacing it in the matrix on the left
side of ∆zt in Eq. (4.34) we can construct a new cointegrating relationship for the
univariate conditional model under this assumption6.

Φyy(1)yt−1 −
(
Φyx(1)− ωyxω

−1
xx Φxx(1)

)
xt−1 (4.36)

6Note that the cointegrating matrix in Eq. (4.31) is Φ(1) while in the Eq. (4.34) is (Ik+1−Ψ)Φ(1)
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And since the equilibrating relationship is supposed to be stationary, it is hence stable
over time around zero. According to this, combining the Eq. (4.36) and Eq. (4.34)
and writing the equation in terms of yt we end up with the long-run relationship in
levels.

yt = αy0

Φyy(1) + αy1

Φyy(1)t−
(

Φyx(1)− ωyxω
−1
xx Φxx(1)

Φyy(1)

)
xt + ut (4.37)

4.5 Hypothesis testing

What we are primarily interested about is to test whether there is a linear combination
of the independent variables with the dependent ones that forms a cointegrating
(long-run) relationship. In this Chapter we describe two test. The first one (the
F-bounds test) is a test for the absence of cointegration and it is practically a joint
significance F-test (or Wald-test) on some parameters of the UCECM Eq. (4.6). The
second one (the t-bounds test) can be used if the results from the F-bounds test are
statistically significant to reduce the possibility of a false positive result.

4.5.1 Deterministics in the Long-Run

One can say that the F-bounds test is non-standard test as we have a different
specification depending on whether the deterministic components (constant (α0) and
linear trend (α1) from Eq. (4.5) and (4.6)) enters the UCECM but also depending on
whether they enter the long-run relationship too. In general, the common parts of the
Null and the Alternative hypothesis of the F-bounds test are:

H0 = ψ(1) ∩ {βj(1)}k
j=1 = 0

H1 = ψ(1) ∪ {βj(1)}k
j=1 = 0

(4.38)

As for the existence of the deterministics in the UCECM and the restrictions of
whether they may enter the long-run relationship we can discriminate between 5
different cases:

• Case 1 (No constant, no trend)

• Case 2 (Restricted constant, no trend)

• Case 3 (Unrestricted constant, no trend)

• Case 4 (Unrestricted constant, Restricted trend)

• Case 5 (Unrestricted constant, Unrestricted trend)
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Where in case that a deterministic component doesn’t exists, it is absent from every
equation implying that:

µ = 0 or γ = 0
With respect to UCECM: α0 = 0 or α1 = 0
With respect to UVECM: α0 = 0 or α1 = 0

(4.39)

In case where a deterministic component is restricted it appears in the UCECM but
is restricted to a specific linear combination of ψ(1) and βj(1) so that it also enters
the cointegrating relationship ECTt−1.

µ 6= 0 or γ 6= 0

With respect to UCECM: α0 = ψ(1)µy +
k∑

j=1
βj(1)µxj

α1 = ψ(1)γy +
k∑

j=1
βj(1)γxj

With respect to UVECM: α0 = Φ(1)µ+ (
p∑

i=1
iΦi)γ

α1 = Φ(1)γ

(4.40)

In the case where a deterministic component is unrestricted it participates in the
UCECM but without any restrictions about it (except of the restriction of 6= 0 that
it forces it to be part of the UCECM). This way it is estimated as a regular scalar
deterministic component and it doesn’t enters the long-run relationship ECTt−1.

µ 6= 0 or γ 6= 0
With respect to UCECM: α0 6= 0 or α1 6= 0
With respect to UVECM: α0 6= 0 or α1 6= 0

(4.41)

Additionally, when a component is under this restriction, it is also added in the
joint significance test under the Null (restricted also to be = 0) as it is part of the
relationship now.

4.5.2 F-bounds test

The common parameters that always exist in every case are the following and the
restricted ones should be added if needed.

With respect to UCECM: H0 : ψ(1) = βj(1) = 0, ∀j
In practice: H0 : b0 = bj = 0,∀j

(4.42)

Replacing appropriately the elements from (4.39), (4.40) and (4.41) in the Eq. (4.6),
(4.8) and (4.42) we can construct the models and the test for each of the 5 cases.
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Notice that the Null hypothesis with respect to the UCECM under the assumption of
Φxy(1) = 0 is:

F-bounds test H0 : Φyy(1) = 0 and Φyx(1)− ωyxω
−1
xx Φxx(1) = 0′k (4.43)

The Eq. (4.43) is very important because this is what the test is all about. Starting
to describe how the F-bounds test works we should start talking about the rank
of the matrices. It is easy to define that since there are k marginal variables the
cointegrating matrix associated with the matrix of the marginals can have a maximum
rank of rx = k and a minimum of rx = 0, where rk(Φxx(1)) = rx is the rank of the
matrix Φxx(1). We should also define that rz is the rank of the cointegrating matrix
(Ik+1 −Ψ)Φ(1) which accounts for the whole VAR.

Lets now discriminate between two polar cases. The first is the case where rx = k,
which is equivalent to xt ∼ I(0). Remember that this is the maximum rank that can
be achieved for this matrix. The other polar case is where rx = 0 which means that
xt ∼ I(1) and this is the minimum possible rank for the matrix.

The whole system contains the k marginal variables plus the conditional one, hence
the cointegrating matrix associated with the matrix zt can only have a minimum rank
of rz = rx and a maximum of rz = rx + 1.

Finally, notice that the Null Hypothesis Eq. (4.43) is satisfied only when rz = rx. The
only possible alternative for rz is to be equal to rx + 1 which as we easily understand,
and we will describe in detail later, can have three possible outcomes meaning that
the tested joint equalities can break either at the same time or one at a time.

Combining the above information we can see how one can test for the H0 in Eq.
(4.43). Suppose that we know that rx is a known number between 0 and k. If we
calculate the critical value that corresponds to this value of rx from the non-standard
limiting distribution and then compare this with the F-statistic from the joint Wald
test Eq. (4.42) we are eventually testing for the H0 in Eq. (4.43). As per usual, if the
F-statistic is greater than the critical value then we reject the H0.

One of the advantages of the F-bounds test is that we don’t have to know for sure the
exact rank rx or in other words the order of integration of xt. Instead, we can use
the two polar cases we spoke about before and calculate two critical values. One for
the case where xt ∼ I(0) or rx = k, say ξL, and one for the case where xt ∼ I(1) or
rx = 0, say ξU . These are the lower and the upper bounds respectively. So irrespective
of whether xt is I(0), mutually cointegrated or I(1) we can compare the F-statistic
with the two polar critical values and we can have the following possible results.

• F < ξL < ξU : Whatever the order of integration of xt is, we are unable to reject
the H0. Hence, no cointegration between yt and xt exists.

• ξL < F < ξU : If rx = k, and so the critical value is ξL, we can reject the H0.
If rx = 0, and so the critical value is ξU , we can’t reject the H0. Accordingly,
knowing the precise order of integration we can conclude, but this requires
further testing and it takes away the basic advantage of the F-bounds test.
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• ξL < ξU < F : We can reject the H0 even if the order of integration of xt is I(1)
and so rx takes the minimum possible value which is 0. This also means that
Φxx(1) = 0 and so ωyxω

−1
xx Φxx(1) = 0 which reduces the H0 in Eq. (4.43) to

H0 : Φyy(1) = 0 and Φyx(1) = 0′k.

But what does rejecting the H0 actually means? Remember that the H0 in Eq. (4.43)
consists of two equalities, so rejecting the possibility of these two happening together
doesn’t always mean that they both differ from zero. We end up with three possible
scenarios.

• Φyy(1) = 0, Φyx(1) 6= 0′k: The cointegrating relationship is nonsensical as
Φyy(1) is the denominator in Eq. (4.37) and the cointegrating relationship is not
defined. Still yt ∼ I(1).

• Φyy(1) 6= 0, Φyx(1) = 0′k: The cointegrating relationship exists but it is
degenerate. This means that a relationship exists but it is through the short-run
dynamics ∆xt and although it is seemingly stable it diverges in the long-run.
Under this possible scenario yt ∼ I(0)7.

• Φyy(1) 6= 0, Φyx(1) 6= 0′k: A cointegrating relationship exists. Interestingly,
while this may mean that yt ∼ I(1) and hence a usual cointegrating relationship
exists, this may be also the case where yt ∼ I(0). This also means that all the
marginal variables in xt ∼ I(0), implying that zt ∼ I(0), and so the system
cointegrating matrix is full rank (rz = (k + 1)). To correct the above statement
about a ‘cointegrating relationship’, a long-run relationship also exists in this
case (an OLS estimation in levels would not lead to spurious regression) but this
is not what we call a usual cointegrating relationship.

4.5.3 t-bounds test

We realize that just by rejecting the H0 we can’t be sure if a usual cointegration exists
or the results are degenerate or just nonsensical. Trying to eliminate at least the first
false positive case (the nonsensical), M. Hashem Pesaran et al. (2001) proposed an
additional test for Φyy(1) = 0 through a non-standard ADF type regression using the
usual t-statistic. Unfortunately, the t-bounds test can only be used in three our of
the five variants of the equation in regards to the deterministics. These are the cases
where there is no restriction on the deterministic components (Case I, Case III and
Case V).

One uses the t-bounds test in the same manner as the F-bounds test whilst in this case
the lower bound, ζL, corresponds to xt ∼ I(1) and the upper bound, ζU , corresponds
to xt ∼ I(0). As per usual, the two sided t-test rejects the Null if the absolute value
of the t-statistic is greater than the absolute value of the critical value.

7This is the case in Section 5.5 where the dependent variable is trend stationary
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• |t| < |ζL| < |ζU |: Failing to reject the H0 we automatically concludes that
Φyy(1) = 0 and thus we are in the first scenario of the nonsensical relationship.

• |ζL| < |t| < |ζU |: As with the F-bounds test, we reject the H0 if xt ∼ I(0)
but not if xt ∼ I(1). In order to conclude for the case where xt is mutually
cointegrated among themselves we have to know the rank of the cointegrating
matrix and compare with the relevant critical value.

• |ζL| < |ζU | < |t|: One can reject the Null Hypothesis that Φyy(1) = 0 and that
leaves us with two possible results. Either Φyx(1) 6= 0′k and there is a cointe-
grating relationship either Φyx(1) = 0′k and there is a degenerate relationship.

4.6 Test requirements

After all this technical details, here is a good place to sum up the whole practical
process and especially the requirements under which the application of the test is valid.
These restrictions that were mentioned in details previously are the followings.

Order of integration

One of the first things we usually check before any time series analysis is the order of
integration of the series. This is crucial in this case also, but instead, this particular
test does not distinguish between the I(0) and the I(1) series as long as they play the
role of the independent variables. So, in this case, we care more about testing whether
the independent variables are I(2) (or greater) or not. Any I(0) or I(1) independent
variable can participate in the model but not the I(2) ones.

As for the dependent variable, this has to be exactly I(1) for a cointegrating relationship
to exist. In addition, two practical examples are presented in this paper, in the chapter
5.5 and the chapter 5.6, where the dependent variables were found to be I(0) and
in fact trend stationary. In these cases, we continue on purpose with the analysis to
show how degenerate cases like these behave in practice.

Additionally, potential structural breaks have to be taken into account along the
testing process of a Unit Root. ADF type tests are known to have low statistical
power and a potential outlier may force the test to incorrect diagnosis. The same may
happen with a structural break. A series can have a stationary behavior in the first
regime and a different but still stationary behavior in the next regime. In this case,
a conventional Unit Root test will be confused, as it has not taken into account the
break in the series, and will conclude in favor of the existence of a Unit Root.
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Serially independent and homogeneous error term

Theoretically, a correctly specified ARDL model, using the appropriate number of lags
for the dependent as long as for the independent variables, is free of autocorrelation
problems. Therefore, it is essential that an ARDL model that its residuals are serially
correlated is not a well specified model and it doesn’t represent the true DGP of the
underlying series. In fact, in a case like this, the estimated coefficients will be biased
and inconsistent and the standard errors will be invalid.

Another problem arises when the error term is heterogeneous. In contrast to the
previous case of autocorrelation, here in the case where the error term is heterogeneous,
the OLS estimators will be still consistent but the standard error will be again invalid.
So, this is less of a problem when it comes to the estimation of the parameters but it
is when we have to make inference.

The usual desirable residuals properties (normality etc.) should also hold.

Dynamically stable parameters

Reminding that the main goal of this test is to find whether there is a long run rela-
tionship between the variables. So, the estimated parameters have to be dynamically
stable in order for our final estimated long run relationship to be sensible. Many
test can be applied for this reason but in this paper we use the usual CUSUM and
CUSUMSQ tests, despite the fact that they are known for low statistical power.

A single cointegrating relationship for yt

As we discussed in details in the Chapter 4.4.2, there must be at most one cointegrating
relationship between yt and xt. Otherwise the results from our univariate analysis will
be incorrect because we don’t account for these simultaneous effects. In the Chapter
5 we also model separately every variable to test for other cointegrating relationships
in the two cases (Greece and France) where a long-run relationship was found but
the results (especially for the case of France) were not supporting our conditional
model.





Chapter 5

Application: Income inequality

5.1 Data summary

The sample we used for the main modeling consists of yearly data that spans from
1971 to 2014, while could extend our sample to the past and to more recent data but
this was not possible for all variables. Notice that each country is referred using the
standard ISO code1.

Our choice for income inequality measurement is the 1% Top Income Shares (tis01).
The data for France, USA, and United Kingdom were obtained from the World
Inequality Database2 while those for Greece was computed using the same appropriate
methodology of Piketty (2001) (Appendix B) by A. Livada and K.Chryssis who
provided me with the data set for Greece. The computation of the 1% tis indicator
was based on the pre-tax national income. More specifically, for the cases of Greece
and France the estimation of the 1% tis was based entirely on the tax units while for
United Kingdom, due to data availability reasons, we have used a mixed approach.
Tax units for the period 1971-1989 and individual units for the period 1990-20143.
For the USA, the 1% tis was estimated based on the equal split as this was the only
measure available.

The 1% tis variable for United Kingdom, which was finally estimated as described
above, had a missing value (for the sample under investigation) at the year 1980 which
was replaced using a cubic spline interpolation.

The Figure 5.1 shows the long history of the 1% tis variable for all the countries. We
can see that there is a common U-shape for all the countries. One could say that there

1Greece (GRC), France (FRA), United States of America (USA), United Kingdom of Great
Britain and Northern Ireland (GBR)

2http://wid.world
3The final series created has a smooth continuity as the methodology of estimation (based on tax

units, individual or equal split) makes no big difference on the estimated tis

http://wid.world
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is a deterministic decline for all countries for a long period of time4 and a deterministic
rising thereafter. Under this point of view we should assume that there is a structural
break5 and continue the rest of the analysis under this spectrum. The other alternative
is to consider this behavior as the result of a RW that fluctuates around a mean
creating the sense of deterministic trends in some parts of the series.

In this thesis we treat each of the series as a special case. The tis01 series of USA has
reached its historical high and it doesn’t seem to dramatically change its behavior. We
consider that this case incorporates a deterministic trend. The tis01 series for GBR
has reached its historical high around 2009 and it seems like having a slightly declining
way from 2007 since the last observation in 2014, similar to the decline from 1971 to
1978. For the rest of the series, covering the most of the time span in our sample, we
suppose that it is driven from a deterministic linear trend6. A declining shape applies
also for FRA after 2007 and in this case it seems like a repeated cycle mimicking the
behavior of the series in the years from 1945 to 1985. Finally, GRC looks like it has
also passed its historical high but although its behavior is quite the same as this for
the other countries with some lag of one or two decades we believe that is safer not to
force a deterministic upward trend in the cases of GRC and FRA.

Figure 5.1: Extended 1% tis series for all countries

In Table 5.1 we present some summary statistics about tis01 series for each country.
The results in the table are calculated using the working subsample covering the years
from 1971 to 2014.

4Until the late ‘70 for USA and United Kingdom, around the mid 80’ for France and around the
mid 90’ for Greece

5as the deterministic structure of the series breaks/changes
6Unfortunately, the current version of the software we use for the analysis, EViews 10, does not

support a discrimination like this in the long-run relationship. Our effort to use dummy variables to
model the short-run relationship didn’t have a considerable impact to the results.
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Table 5.1: 1% Top Income Share summary statistics

Min. Median Mean St.Dev. Max.

tis01_GRC 0.039 0.053 0.054 0.011 0.091
tis01_FRA 0.077 0.100 0.103 0.015 0.127
tis01_USA 0.104 0.148 0.151 0.035 0.208
tis01_GBR 0.057 0.103 0.102 0.033 0.154

The explanatory variables we are using throughout this thesis along with their sec-
ondary source (database) are the following:

• credit denotes the domestic credit to private sector (% of GDP)
– It includes loans, nonequity securities, trade credits etc provided to the

private sector. — World Bank
• edu represents the enrolment in tertiary education (% of total population)

– It is constructed dividing the total number of students enrolled at public
and private tertiary education institutions by the total population of the
country. — World Bank

• gdp denotes the GDP per capita (constant 2010 US$)
– It is the GDP divided by midyear population — World Bank

• infl denotes the inflation, consumer prices (annual %)
– It is the consumer prices as the percentage change from the previous year
— OECD

• popg denotes the population growth (annual %)
– It is calculated as the exponential rate of growth of midyear population,

expressed as a percentage — World Bank
• trade denotes the Trade (% of GDP)

– It is the sum of exports and imports of goods and services measured as a
share of gross domestic product — World Bank

Getting a good sense of the data is very important. Among others, it helps us make
decisions in situations where the statistical tests are there for us as a tool but the
appropriate specification or a final decision has to be made based on our knowledge
and our experience. For this reason, we present here the Figure 5.2 that shows the
variable tis01 in levels and the Figure 5.3 that shows the variable tis01 in first
differences for each of the four countries.
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Figure 5.2: tis01, variables in levels

Figure 5.3: tis01, variables in first difference

Also, at the beginning of each of the following cases we present the figures of the
explanatory variables in levels and in first differences. For each country, the figures
with the variables in levels are the Figures 5.4, 5.11, 5.17 and 5.20 and the figures
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with the variables in first differences are the Figures 5.5, 5.12, 5.18 and 5.21.

5.2 Methodological strategy

In this section, we present the general methodological strategy we follow for the
analysis.

First, we apply the appropriate stationarity and Unit Root tests to conclude for the
order of integration of the variables. If the order of integration of the independent
variables is not I(2) or greater and the order of the dependent variable is I(1) we
are good to go for the rest of the analysis. Notice that when the results are not the
optimal for applying the test, we still continue with this case to better understand the
reasons that led us here.

Next, we select some candidate cases7 that we think they may be appropriate for
our data. This is a selection that is mainly based on the graphical behavior of the
variable, our belief based on the economic theory, the results of the models (statistical
significance of the deterministic trend components etc) and the final estimated results
(whether they make sense or not).

When we decide on the appropriate case, we try to achieve the most parsimonious
model that is free of some crucial problems as mentioned above in 4.6.

Once we decide on a suitable model that we think that describes the DGP of the
underlying process reasonably well, we go ahead for the actual test of non-cointegration
using the F-bounds test. Additionally, if the chosen case is Case I, Case III or Case
V we can also make use of the t-bounds test in order to shed some light on the results
and reduce the chances of a potential false positive.

If the results are favorable, we can continue forming the long-run relationship, calcu-
lating the long-run multipliers, the short-run dynamics, the speed of the adjustment to
the long-run equilibrium etc., as described in the Chapters 4.1 and 4.3. If the results
show no signs of cointegration among the variables, the formation of the long-run
relationship and those that was described above would be meaningless because the
results would be spurious.

5.3 The case of Greece

In the Table 5.2 we present some standard unit root test along with some breakpoint
unit root tests which test for the existence of a UR under the hypothesis of a potential
structural break on the deterministic trend components.

7The choice is among the Case I, Case II, Case III, Case IV and Case V
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What we are actually interested in in these tables is to see if the dependent variable
(tis01) is I(0) because this would violate the requirements of the test as described in
4.6.

Figure 5.4: Greece, variables in levels



5.3. The case of Greece 35

Figure 5.5: Greece, variables in first differences

We applied the same for the cases of the other countries too and they can be found in
Tables 5.11, 5.17 and 5.22. Interpreting some interesting results from the Table 5.2 we
can see that the first row, based on the ADF and PP tests, indicates that the variable
tis01 has a Unit Root. The KPSS test fails to reject the Null Hypothesis that the
series is stationary but this test should not be interpreted in this cases as the H0 of
the test assumes that the series is trend stationary. Here it is clear that there isn’t
a deterministic trend in the data but the test gets tricked from the general upward
trend in the data. In the rest of this paper, a decision may have been made even if
some results seem to be in conflict. The reasoning behind this is not always stated in
details as above but it should logically come out of the data and the situation. The
results for some of the other variables are also mixed but for the purposes of this tests
we don’t have to make a conclusion on whether the independent variables are I(0) or
I(1) as long as they are not I(2).
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Table 5.2: Unit Root tests for Greece in Levels

Greece, variables in levels:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
tis01 0.911 n 0 0.561 n 0.347 c −5.068∗ t-b 6 i 1990

credit 1.477 c 0 1.241 c 0.187∗∗ t −3.371 t-c 0 i 1997

edu 0.622 c 0 0.517 c 0.171∗∗ t −3.645 t-b 5 a 1990

gdp −1.489 c 1 −1.717 c 0.081 t −3.583 t-t 1 a 2003

infl −1.480 c 0 −1.391 c 0.167∗∗ t −4.431∗ c-c 0 i 1993

popg −1.522 c 1 −0.489 c 0.100 t −3.914 t-c 1 i 2010

trade −1.089 c 0 −0.904 c 0.122∗ t −4.387∗ t-t 1 i 1996

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.

Table 5.3: Unit Root tests for Greece in First Differences

Greece, variables in first differences:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
∆tis01 −1.255 n 0 −1.115 n 0.527∗∗ c −3.795 c-c 0 a 2014

∆credit −4.676∗∗∗ n 0 −4.915∗∗∗ n 0.385∗ c −6.652∗∗∗ c-c 0 i 1998

∆edu −5.277∗∗∗ c 0 −5.263∗∗∗ c 0.271 c −5.897∗∗∗ c-c 0 a 2007

∆gdp −3.366∗∗∗ n 0 −3.439∗∗∗ n 0.166 c −4.709∗∗ c-c 0 i 2007

∆infl −6.004∗∗∗ n 0 −6.059∗∗∗ n 0.297 c −7.414∗∗∗ c-c 0 i 1975

∆popg −4.718∗∗∗ n 0 −4.526∗∗∗ n 0.191 c −5.962∗∗∗ c-c 1 i 1990

∆trade −5.109∗∗∗ n 0 −4.965∗∗∗ n 0.126 c −6.691∗∗∗ c-c 1 i 2000

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.
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In the Table 5.3 we present the same tests as in the previous Table 5.2 but here the
variables under investigation are transformed into their first differences. Here we want
to see whether the independent variables and the dependent one are I(2) (actually
greater than I(1), in which case the initial variable can’t participate in the model) or
not.

We applied the same for the cases of the other countries too and they can be found in
Tables 5.12, 5.18 and 5.23.

Table 5.3 shows that all the independent variables in first differences are stationary.
In this particular case we have seen that they are not stationary in levels so we
conclude that they are I(1), but this conclusion is not necessary because we are fine
as long as their order of integration is not greater than I(1). On the other hand, the
dependent variable tis01 in first differences seems to be non-stationary containing a
Unit Root.

But taking a closer look at the Figure 5.3 we notice that the last observation corre-
sponding to the year 2014 is unexpectedly high and this drives the tests to conclude
for the existence of a Unit Root. Naturally, a single observation in time should not
significantly affect the internal process of the data. In order to test for this, in the
next Table 5.4 we did the same tests but this time excluding the last observation for
the year 2014. And as expected, the results turned over concluding that the dependent
variable tis01 is I(1). As for the last observation, it’s not known yet if it the start of
a new regime, or a random shock. In case that we aim to forecast we should know if
we should treat this as a new regime to set the rest of the series (from 2014 and on)
with this new behavior or to control for this with a once-off dummy variable. However,
we don’t focus on this kind of forecasting analysis rather than we try to explain the
relationship between tis01 and the rest of the independent macroeconomic variables
and so the use of a once-off dummy should be just fine for our case if needed.

Table 5.4: Unit Root tests for Greece in First Differences (excluding
2014)

Greece, variables in first differences:
Sample: 1971-2013 (excluding 2014)

Standard Unit Root Tests Breakpoint Unit Root Tests
ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date

∆tis01 −2.359∗∗ n 1 −3.917∗∗∗ n 0.429∗ c −4.777∗∗ c-c 0 a 1984

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.
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To sum up, as concerns the order of integration of our variables, we are good to go for
the rest of the analysis for the case of Greece.

For the case of Greece many modeling attempts were made and the best found to be
the scenario of Case II with a restricted constant. Other choices like Case III or
Case IV either turned our nonsensical based on the t-bounds cointegration test or
they were obviously not converging to equilibrium even graphically.

Initially, the best model we found was the ARDL(1, 0, 0, 3, 0, 0, 0) using the Case II
testing restrictions and this is the model that Tables 5.5, C.2, 5.6, C.1, C.4 and C.5
are referring to.

Testing this model for autocorrelation and heteroskedasticity issues, we found out
that it suffers from heteroskedasticity. The results from the tests can be found in the
second half of the Table C.2. For this reason, we estimated robust standard errors
using heteroskedasticity consistent covariance matrix8 and the results of the final
model are listed in the Table 5.5. Our selected model ARDL(1, 0, 0, 3, 0, 0, 0) is free of
autocorrelation problems regarding the results in Table C.2 and what we are interested
in now is the Table 5.6 where we can see that there are strong evidence for a long-run
levels relationship. The Figure 5.6 shows how the estimated Long-Run cointegrating
relationship fits to the real data.

The graphical representation is a very important tool along with the cointegration
test. And this graph doesn’t totally satisfy our conclusion for the existence of
cointegration in levels. For this reason, we made a simple modification to this model.
We constructed a once-off dummy variable controlling only for the last observation
in the year 2014 (as we did for the Unit Root tests) and the results are summarised
in the Tables 5.7, C.3, 5.8, C.6, 5.9 and 5.10 and they concern the selected model
ARDL(1,0,1,1,1,0,0). In contrast with the rest of the independent dynamic regressors,
the dummy variable D2014 was forced to participate only in the short run part of the
model as a fixed regressor and not in the long run relationship in order to avoid any
potential manipulation of the long run dynamics. This way, we treat this observed
point as a short run shock for which we control for. We also see how the best selected
model changed from ARDL(1, 0, 0, 3, 0, 0, 0) to ARDL(1, 0, 1, 1, 1, 0, 0) with the use of
a dummy variable affecting just one observation and so how influential this observation
was that may was misleading the results. We notice that this model doesn’t have
heteroskedasticity problems anymore. This model also passes the autocorrelation and
the F-bounds cointegration tests.

What’s even more interesting is the Figure 5.9 where we clearly see how the second
model fits the original data much more better. It probably fluctuates a little more in
the first years from 1971 to the mid 90’s but it captures much better the trend after
that.

A very important check is the one about the dynamic stability of the parameters. The
CUSUM test in Figure 5.7 shows that the parameters are dynamically stable and

8HAC (Newey-West)
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while the CUSUM Square test in Figure 5.8 indicates a slight break during 1996, it
doesn’t go far from the 5% limits and it gets back to stability in 1999 indicating that
the residuals variance is stable too.

The graph doesn’t totally satisfy our decision but we could say that it is a quite
good modeling approach. So, assuming that our conclusion for long-run relationship
is true, we can proceed interpreting the results of our interest. In the Tables 5.10
and 5.9 where we can find information about the speed of adjustment back to the
long-run equilibrium after an instant shock, the short-run multipliers and the long-run
multipliers which form the final long-run relationship. The statistically significant
ECTt−1 term and its negative sign is also a sign that supports our conclusion for the
existenceof cointegration. Its coefficient is equal to -0.225 which indicates that 22.5%
of the disequilibrium is corrected each year or equivalently that the disequilibrium is
fully corrected in about 4 years. Also from the Table 5.10 we see that the variables
edu, gdp and infl are all statistically significant showing that they have a short-run
impact. From the other table we can see that except from the intercept the only
variable which has a long-run impact is the variable infl. Both the short and the
long run components of infl are statistically significant and so we can suggest that
inflation has a strong causal effect. On the other hand, the variables edu and gdp
have a weak causal effect.

To sum up, the long-run effect of infl is rather due to the currency change from
drachmas to euro and its effect is negative both in the short and the long run which
means that as the inflation rises, the top 1% income share decreases. The variable gdp
has also a negative short-run effect and the only variable with a positive short-run
effect is edu.

Although our prime interest is in exploring and estimating the long-run relationship,
we also present the graphical representation of the performance of the ARDL model.
The Figure 5.10 shows how the fitted ARDL model performs against the observed
dependent series and also shows the corresponding residuals. We observe that the fit
is much better than the fit of the long-run relationship as this is the estimated series
from the ARDL model which is a platform that incorporates both the short and the
long-run dynamics.

But as we have explained in previous chapters, what we have done so far is investigating
this model as if it was separate from other influences. In fact, the underlying DGP is
a VAR and if the variable tis01 takes part in any cointegrating relationship with any
of the other variable, this effect should have passed in our estimated model. Although,
we estimated the model separately from any other influences. At this point we have
to apply the same modeling procedure using as dependent variable every variables we
previously treated as independent.

The results for the variables credit, edu, gdp, infl, popg were the same, that no
cointegrating relationship was found. Interestingly, the model treating the variable
trade as dependent revealed that there is a cointegrating relationship under the Case
I where both the F and the t test were significant. The selected model was the
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ARDL(2, 2, 0, 0, 1, 0, 0) with the corresponding variables trade, tis01, credit, edu,
gdp, infl and popg respectively. The graphical long-run relationship also looks very
good fitting9.

After this last finding, any inference on the previous model for tis01 (as we did)
would be incorrect as the variable trade in the model for tis01 is probably not weakly
exogenous. The test for every variable should normally have been done beforehand
but we wanted to make this example on how we should interpret the results if this
was appropriate.

Table 5.5: ARDL model, Greece

ARDL(1,0,0,3,0,0,0)
Dependent variable: tis01

Coefficient Std.Error t-Statistic P-Value
Intercept 0.059 0.011 5.573 0.000
tis01t−1 0.563 0.044 12.718 0.000
creditt 2.530e−04 2.550e−05 9.936 0.000
edut 0.292 0.034 8.524 0.000
gdpt −1.480e−06 1.220e−07 −12.185 0.000
gdpt−1 2.290e−06 3.090e−07 7.405 0.000
gdpt−2 −5.410e−07 4.090e−07 −1.323 0.196
gdpt−3 −3.190e−06 5.010e−07 −6.361 0.000
inflt −3.950e−04 1.350e−04 −2.932 0.006
popgt 5.510e−04 0.001 0.516 0.609
tradet 1.680e−04 7.370e−05 2.276 0.030
Observations 41 Residual Std. Error 0.003
R2 0.936 Log Likelihood 184.743
Adjusted R2 0.915 AIC −8.475
F-Statistic 44.055 BIC −8.016
Prob(F-Statistic) 0.000

Note: HAC standard errors & covariance

9These model are not presented here but they are available upon request
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Table 5.6: F Bounds test for cointegration, Greece

Value Significance I(0) I(1)
Asymptotic: n=10000

F−statistic 6.415 10% 1.99 2.94
k 6 5% 2.27 3.28
Actual Sample Size 41 2.5% 2.55 3.61

1% 2.88 3.99

Finite Sample: n=45
10% 2.188 3.254
5% 2.591 3.766
1% 3.540 4.931

Finite Sample: n=40
10% 2.218 3.314
5% 2.618 3.863
1% 3.505 5.121

F-Bounds test H0: No levels relationship

Figure 5.6: Greece, LR relationship, ARDL(1,0,0,3,0,0,0) Case II
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Table 5.7: ARDL model with dummy, Greece

ARDL(1,0,1,1,1,0,0)
Dependent variable: tis01

Coefficient Std.Error t-Statistic P-Value
Intercept 0.018 0.004 4.751 0.000
tis01t−1 0.775 0.040 19.376 0.000
creditt -2.18e-05 2.66e-05 -0.818 0.419
edut 0.267 0.120 2.226 0.033
edut−1 -0.355 0.147 -2.413 0.022
gdpt -1.19e-06 4.53e-07 -2.640 0.013
gdpt−1 1.11e-06 4.91e-07 2.258 0.031
inflt -2.050e-04 8.58e-05 -2.393 0.023
inflt−1 -2.750e-04 7.29e-05 -3.770 0.001
popgt -7.130e-04 0.001 -0.711 0.483
tradet 1.070e-04 6.08e-05 1.757 0.089
D2014t 0.024 0.002 11.249 0.000
Observations 43 Residual Std. Error 1.563e-03
R2 0.984 Log Likelihood 223.853
Adjusted R2 0.979 AIC -9.854
F-Statistic 178.759 BIC -9.362
Prob(F-Statistic) 0.000
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Table 5.8: F Bounds test for cointegration with dummy, Greece

Value Significance I(0) I(1)
Asymptotic: n=10000

F−statistic 7.831 10% 1.99 2.94
k 6 5% 2.27 3.28
Actual Sample Size 43 2.5% 2.55 3.61

1% 2.88 3.99

Finite Sample: n=45
10% 2.188 3.254
5% 2.591 3.766
1% 3.540 4.931

Finite Sample: n=40
10% 2.218 3.314
5% 2.618 3.863
1% 3.505 5.121

F-Bounds test H0: No levels relationship

Figure 5.7: Greece, CUSUM test, ARDL(1,0,1,1,1,0,0) Case II
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Figure 5.8: Greece, CUSUMSQ test, ARDL(1,0,1,1,1,0,0) Case II

Table 5.9: Levels Equation with dummy, Greece

Dependent variable: tis01
Case 2: Restricted Constant and No Trend

Coefficient Std.Error t-Statistic P-Value
Intercept 0.081 0.013 6.265 0.000
creditt -9.69e-05 1.250e-04 -0.775 0.444
edut -0.391 0.335 -1.167 0.252
gdpt -3.81e-07 9.32e-07 -0.409 0.685
inflt -0.002 4.100e-04 -5.207 0.000
popgt -0.003 0.005 -0.705 0.486
tradet 4.750e-04 2.790e-04 1.703 0.099
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Table 5.10: ECM with dummy, Greece

Dependent variable: ∆tis01
Case 2: Restricted Constant and No Trend

Coefficient Std.Error t-Statistic P-Value
∆edut 0.267 0.090 2.964 0.006
∆gdpt -1.19e-06 2.52e-07 -4.738 0.000
∆inflt -2.050e-04 5.69e-05 -3.611 0.001
D2014t 0.024 1.437e-03 16.368 0.000
ECTt−1 -0.225 0.026 -8.763 0.000
Observations 43 Residual Std. Error 1.412e-03
R2 0.915 Log Likelihood 223.853
Adjusted R2 0.906 AIC -10.179
BIC -9.974

Figure 5.9: Greece, LR relationship, ARDL(1,0,1,1,1,0,0) Case II
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Figure 5.10: Greece, fit and error, ARDL(1,0,1,1,1,0,0) Case II

5.4 The case of France

From the Table 5.11 we see that the credit is stationary in levels and so it’s I(0).
The standard ADF test gets confused because of the sudden drop. But assuming
a deterministic trend (KPSS) or a structural break at the intercept of the slope at
the year 1977 the conclusion is the former. The same happens also with trade. The
variable edu is under the same situation. The linear deterministic trend here is more
visible and the type of the break occurs more slowly. infl appears to be I(0) under
the hypothesis of a break at the intercept, popg seems to have Unit Root while the
results for gdp are mixed. About the variable tis01, it clearly has a UR based on the
tests.
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Figure 5.11: France, variables in levels
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Figure 5.12: France, variables in first differences

The Table 5.12 provides very uniform results showing that all the variables are
stationary at first differences and no variable is I(2) or more. Once again, it’s not
necessary to conclude about whether a variable is I(0) or I(1) as long as it’s not
greater than I(1).

Now we are set to go for the cointegration test. From the graphical representation
of the tis01 series for France in the Figure 5.2 and after experimenting with several
models and cases, finally, the best model was found using the Case II scenario on a
ARDL(1, 0, 1, 1, 0, 1, 0) model specification. The model is presented in Table 5.13 and
we can see from the Table C.7 that it passes all the diagnostic tests and so the model
is well defined. Also, the Figures 5.13 and 5.14 are the graphical representations of
the CUSUM and CUSUM Square tests and clearly show that the model parameters
and variance are dynamically stable.

Now that all the requirements for the test are fulfilled we can take a look at the
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Table 5.11: Unit Root tests for France in Levels

France, variables in levels:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
tis01 0.213 n 0 0.195 n 0.601∗∗ c −1.482 t-t 0 a 1982

credit −1.952 c 1 −2.546 c 0.153 t −9.578∗∗∗ t-c 0 a 1977

edu −1.256 c 1 −1.302 c 0.144∗ t −5.858∗∗∗ t-c 2 i 1988

gdp −2.051 c 0 −1.913 c 0.136∗ t −4.226 t-b 1 i 2005

infl −1.057 n 0 −1.106 n 0.618∗∗ c −4.832∗∗ c-c 0 i 1984

popg −1.199 n 0 −1.197 n 0.109 c −3.458 c-c 1 i 1991

trade −1.393 c 0 −1.233 c 0.105 t −5.076∗∗ t-c 0 a 1985

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.

Table 5.12: Unit Root tests for France in First Differences

France, variables in first differences:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
∆tis01 −6.221∗∗∗ n 0 −6.226∗∗∗ n 0.168 c −6.860∗∗∗ c-c 0 i 2009

∆credit −10.044∗∗∗ n 0 −10.739∗∗∗ n 0.185 c −12.804∗∗∗ c-c 0 i 1979

∆edu −3.108∗∗∗ n 0 −3.040∗∗∗ n 0.159 c −4.881∗∗ c-c 0 i 1994

∆gdp −3.213∗∗∗ c 0 −3.034∗∗∗ n 0.406∗ c −6.335∗∗∗ c-c 0 i 2009

∆infl −5.701∗∗∗ n 0 −5.672∗∗∗ n 0.104 c −6.525∗∗∗ c-c 0 i 1976

∆popg −7.556∗∗∗ n 0 −7.518∗∗∗ n 0.109 c −10.176∗∗∗ c-c 0 i 1991

∆trade −6.989∗∗∗ n 0 −7.049∗∗∗ n 0.093 c −7.992∗∗∗ c-c 0 i 1986

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.
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Table 5.14 and see that the F test statistic value is equal to 4.539 which is much
greater even from the upper critical value for n=4010 from the non asymptotic critical
values provided by Narayan (2005), which indicates that there may be a cointegrating
relationship between the independent variables and the dependent one. This hypothesis
is also supported by the negative and statistically significant ECTt−1 term in the Table
5.16 which also tells us that each year, the disequilibrium is reduced by 35.8% on
average and so it takes less than three years to return back in the long-run equilibrium.
The same table indicates that the variables edu and gdp have a short-run effect on
tis01 while the Table 5.15 shows that only the variable popg has a positive long-run
effect on tis01.

Interestingly, we notice that edu and gdp have respectively a negative and a positive
short-run effect in the case of France in contrast with the case of Greece where these
variables had the opposite short-run effects.

We can also get a good feeling of the performance of our long-run relationship model
from the Figure 5.15 where we see that the long-run trend is well captured except of
the first few years until 1981 where there is a big divergence. The model also falsely
predicts a weird drop for the year 1991 which is caused by the strange drop in the
variable popg for the same year.

The whole performance of the ARDL model can be seen in the Figure 5.16 where
the ARDL model seems to fit very well, much better than the long-run cointegrating
relationship, but this is expected as the whole ARDL model includes also the short-run
dynamics.

A quick try to apply the cointegration test using the rest of the variables as dependent
revealed the following results11. The case with credit as dependent variable found to
be cointegrating under the Case I using an ARDL(1, 2, 1, 0, 3, 0, 3) model. The model
for edu was also rejected the bounds test with the model ARDL(1, 3, 0, 1, 3, 1, 3) under
the Case II. The model for gdp had the same results using an ARDL(1, 0, 0, 0, 2, 0, 0)
under the Case I and also the model for trade under the same case with an
ARDL(1, 0, 0, 0, 1, 0, 0) model12.

Clearly, the previous results for the model about tis01 should not be interpreted in
order to make inference about it because there are many (even one would also be a
problem) endogenous variables that we should have accounted for their cointegrating
relationship with tis01.

10in our case our sample size is n=43
11The order of the variables in the ARDL models has the following pattern. The first variable is

always the dependent one, the second one is always tis01, the rest of the variables has the following
sequence (excluding the one that is the dependent variable each time) credit, edu, gdp, infl, popg,
trade.

12These models are not presented here but they are available upon request.
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Table 5.13: ARDL model, France

ARDL(1,0,1,1,0,1,0)
Dependent variable: tis01

Coefficient Std.Error t-Statistic P-Value
Intercept 3.868e-03 7.107e-03 0.544 0.590
tis01t−1 0.641 0.094 6.817 0.000
creditt 1.480e-05 5.610e-05 0.264 0.793
edut -1.134 0.726 -1.560 0.128
edut−1 1.598 0.744 2.147 0.039
gdpt 6.200e-06 1.330e-06 4.673 0.000
gdpt−1 -5.320e-06 1.090e-06 -4.895 0.000
inflt 2.790e-04 3.360e-04 0.830 0.412
popgt 2.958e-03 4.967e-03 0.595 0.555
popgt−1 0.011 5.182e-03 2.201 0.035
tradet -4.510e-04 2.540e-04 -1.779 0.084
Observations 43 Residual Std. Error 0.003
R2 0.965 Log Likelihood 191.949
Adjusted R2 0.954 AIC -8.416
F-Statistic 87.139 BIC -7.966
Prob(F-Statistic) 0.000
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Figure 5.13: France, CUSUM test, ARDL(1,0,1,1,0,1,0) Case II
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Figure 5.14: France, CUSUMSQ test, ARDL(1,0,1,1,0,1,0) Case II
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Table 5.14: F Bounds test for cointegration, France

Value Significance I(0) I(1)
Asymptotic: n=10000

F-statistic 4.539 10% 1.99 2.94
k 6 5% 2.27 3.28
Actual Sample Size 43 2.5% 2.55 3.61

1% 2.88 3.99

Finite Sample: n=45
10% 2.188 3.254
5% 2.591 3.766
1% 3.540 4.931

Finite Sample: n=40
10% 2.218 3.314
5% 2.618 3.863
1% 3.505 5.121

F-Bounds test H0: No levels relationship

Table 5.15: Levels Equation, France

Dependent variable: tis01
Case 2: Restricted Constant and No Trend

Coefficient Std.Error t-Statistic P-Value
Intercept 0.010 0.019 0.551 0.585
creditt 4.130e-05 1.620e-04 0.255 0.800
edut 1.294 0.895 1.445 0.158
gdpt 2.470e-06 1.520e-06 1.619 0.115
inflt 7.780e-04 8.730e-04 0.891 0.379
popgt 0.040 0.012 3.111 0.000
tradet -1.258e-03 6.420e-04 -1.959 0.058



5.4. The case of France 55

Table 5.16: ECM, France

Dependent variable: ∆tis01
Case 2: Restricted Constant and No Trend

Coefficient Std.Error t-Statistic P-Value
∆edut -1.134 0.505 -2.243 0.031
∆gdpt 6.200e-06 8.280e-07 7.492 0.000
∆popgt 2.958e-03 3.913e-03 0.755 0.455
ECTt−1 -0.358 0.053 -6.652 0.000
Observations 43 Residual Std. Error 2.920e-03
R2 0.626 Log Likelihood 191.948
Adjusted R2 0.597 AIC -8.742
BIC -8.578

Figure 5.15: France, LR relationship, ARDL(1,0,1,1,0,1,0) Case II
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Figure 5.16: France, fit and error, ARDL(1,0,1,1,0,1,0) Case II

5.5 The case of USA

The results from Table 5.17 are mostly mixed among the tests. The only variable
that all the tests agree in favor of the existenceof a Unit Root is credit. About the
variable tis01, the AFD and the PP tests support the hypothesis of a Unit Root while
the KPSS and the ADF breakpoint tests agree that there is not Unit Root. KPSS
assumes a trend stationary process and the ADF breakpoint test also incorporates a
deterministic linear trend including a break at the trend at the year 2011 where the
tis01 series seems to get flat. We continue believing the results of the KPSS test,
that tis01 is trend stationary and thus I(0). A very interesting case would be the
one that the ADF breakpoint test indicates but this implementation is not supported
by the software we use as footnote 6 explains.
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Figure 5.17: USA, variables in levels
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Figure 5.18: USA, variables in first differences

The Table 5.18 shows that all the independent variables in first differences are stationary.
For the variable tis01 in first differences, this time all the tests except the KPSS
agree that it is stationary. According to the underlying assumptions that compose
the requirements of the F-bounds test in order to be valid we should not continue
applying the test as the dependent variable is trend stationary and so I(0). Though,
this case is a very interesting counterexample that in the end further supports our
previous conclusion about the order of integration and although it doesn’t give us any
additional information about whether the series are mutually cointegrated, it gives us
useful information about the behavior of the test under a case like this.

Along the modeling process many cases and order specifications were tested. Here we
present the most representative ones for each case. Starting with Case II (using a
restricted constant) and Case III (using an unrestricted constant) the best model
for both cases found to be the ARDL(1, 0, 0, 1, 0, 0, 0) but in both cases the F-bounds
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Table 5.17: Unit Root tests for USA in Levels

USA, variables in levels:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
tis01 −0.243 c 0 0.464 c 0.117 t −4.402∗ t-t 2 i 2011

credit 2.225 n 0 2.233 n 0.785∗∗∗ t −0.720 t-t 5 i 2004

edu −1.879 c 1 −1.797 c 0.104 t −4.343 t-b 1 i 1996

gdp −0.463 c 1 −0.611 c 0.096 t −3.792 t-c 1 i 2007

infl −2.046 c 0 −2.017 c 0.093 t −6.095∗∗∗ c-c 1 a 1984

popg −2.018 c 1 −1.855 c 0.141∗ t −7.322∗∗∗ t-b 2 i 1989

trade −1.264 c 0 −1.143 c 0.117 t −4.918∗ t-b 0 i 1981

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.

Table 5.18: Unit Root tests for USA in First Differences

USA, variables in first differences:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
∆tis01 −6.613∗∗∗ n 0 −6.612∗∗∗ n 0.500∗∗ c −7.445∗∗∗ c-c 0 i 1976

∆credit −6.091∗∗∗ n 0 −6.175∗∗∗ n 0.141 c −7.305∗∗∗ c-c 0 i 2007

∆edu −4.394∗∗∗ n 0 −4.419∗∗∗ n 0.097 c −5.473∗∗∗ c-c 0 i 2002

∆gdp −3.144∗∗∗ n 0 −3.144∗∗∗ n 0.085 c −5.534∗∗∗ c-c 0 i 2009

∆infl −5.482∗∗∗ n 0 −6.728∗∗∗ n 0.398∗ c −7.723∗∗∗ c-c 1 a 1982

∆popg −4.697∗∗∗ n 0 −4.640∗∗∗ n 0.106 c −5.805∗∗∗ c-c 2 i 1991

∆trade −6.597∗∗∗ n 0 −6.615∗∗∗ n 0.149 c −7.765∗∗∗ c-c 0 i 2009

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.
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tests, as shown in Tables 5.19 and 5.20, the F-statistic falls between the lower and the
upper critical values and so the results are inconclusive13.

But none of these cases seems a sound choice anyway as they don’t incorporate the
linear trend that we previously concluded that exists. So a better modeling approach
would be the Case IV (using a restricted trend) which is presented in the Table 5.21.
This is actually a very interesting case where the best order specification found to
be the ARDL(1, 0, 0, 0, 0, 0, 0). This means that no variable has a short-run effect
on tis01 and the whole series behavior is driven only through a single lag on the
dependent variable which leaves the ARDL model with just an AR component and
makes it a simple ARX(1) which seems suspicious. If we were about to interpret the
F-bounds test results in the Table 5.21 we would see that the F-statistic is greater
than the upper bound and it would have rejected the Null hypothesis of no levels
relationship concluding in favor of the existence of a cointegrating relationship.

Nonetheless, this would have been a crucial mistake. The reason is the one that
was previously explained in the Chapter 4.5 at the requirements about the order
of integration. Remember that even if we end up with statistically significant test
results we are unable, using the test alone, to determine whether this is due to
usual cointegration or we are under a degenerate case. In this case, we know in
advance that the dependent variable is trend stationary and has a I(0) process and
we would normally expect the results of the F-bounds test, if properly specified, to be
statistically significant but for the wrong reasons. In particular, as we have already
explained in Chapter 4.5, we expect the first difference of the dependent variable in
the conditional ECM model, to depend only on its own lagged levels and not on those
of the independent (forcing) variables. This is exactly what our chosen model says
through its ARDL(1, 0, 0, 0, 0, 0, 0) specification. Moreover, a single look at the Figure
5.19 clearly suggests that this is a degenerate case.

13We have to note once again that since we assumed that the variable tis01 I(0) any results of
the F-bounds tests are invalid and normally should not be interpreted. What we do here, is just an
observation of how the test works under certain violated assumptions.
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Table 5.19: F Bounds test for cointegration (Case II), USA

Value Significance I(0) I(1)
Asymptotic: n=10000

F-statistic 3.090 10% 1.99 2.94
k 6 5% 2.27 3.28
Actual Sample Size 43 2.5% 2.55 3.61

1% 2.88 3.99

Finite Sample: n=45
10% 2.188 3.254
5% 2.591 3.766
1% 3.540 4.931

Finite Sample: n=40
10% 2.218 3.314
5% 2.618 3.863
1% 3.505 5.121

F-Bounds test H0: No levels relationship
Corresponding model: ARDL(1,0,0,1,0,0,0)

Figure 5.19: USA, LR relationship, ARDL(1,0,0,0,0,0,0) Case IV
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Table 5.20: F Bounds and t Bounds test for cointegration (Case III),
USA

Value Significance I(0) I(1)
Asymptotic: n=10000

F-statistic 3.307 10% 2.12 3.23
k 6 5% 2.45 3.61
Actual Sample Size 43 2.5% 2.75 3.99

1% 3.15 4.43

Finite Sample: n=45
10% 2.327 3.541
5% 2.764 4.123
1% 3.79 5.411

Finite Sample: n=40
10% 2.353 3.599
5% 2.797 4.211
1% 3.8 5.643

Value Significance I(0) I(1)
t-statistic -4.103 10% -2.57 -4.04

5% -2.86 -4.38
2.5% -3.13 -4.66
1% -3.43 -4.99

F-Bounds test H0: No levels relationship
t-Bounds test H0: No levels relationship
Corresponding model: ARDL(1,0,0,1,0,0,0)
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Table 5.21: F Bounds test for cointegration (Case IV), USA

Value Significance I(0) I(1)
Asymptotic: n=10000

F-statistic 5.459 10% 2.33 3.25
k 6 5% 2.63 3.62
Actual Sample Size 43 2.5% 2.9 3.94

1% 3.27 4.39

Finite Sample: n=45
10% 2.606 3.644
5% 3.025 4.198
1% 3.998 5.463

Finite Sample: n=40
10% 2.634 3.719
5% 3.07 4.309
1% 4.154 5.699

F-Bounds test H0: No levels relationship
Corresponding model: ARDL(1,0,0,0,0,0,0)

5.6 The case of United Kingdom

The results from the Table 5.22 show that the variables infl, popg and trade have
a Unit Root, while the results are mixed for the rest. About the variable tis01 for
which we care the most in this table, it is hard to decide if it has a Unit Root or
not.

The Table 5.23 show that all the variables are stationary in first differences. The
independent variables are either I(0) or I(1) and the variable tis01 is clearly stationary
in first differences.

But we haven’t take a decision yet about the variable tis01. The first option we have
here is to trust the KPSS test and conclude that tis01 is trend stationary, in other
words I(0). In this case, as we showed in the case of France, the test can’t be applied.
The second option is to assume that it has a Unit Root as the ADF and PP tests
indicate.
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Figure 5.20: United Kingdom, variables in levels
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Figure 5.21: United Kingdom, variables in first differences

If this is true, we can continue doing the test using and appropriate case for the
deterministic parts. In the opposite case, applying and interpreting the test would
probably lead to wrong decisions as the test results would be invalid. Another try
would be to model the deterministic parts accordingly as the series doesn’t seem to
have a linear trend throughout, rather than some declining parts in the very beginning
and at the recent years but as explained this is not an option now.

Here we present three different cases, Case I, Case II and Case IV and for each one
of those we include two models. The first one is the final model selected and the second
one is best selected model only based on the BIC criterion without testing for potential
autocorrelation and other problems. These models are all overparameterized and all
have serial correlation problems. To understand the importance of this problem, we
present the F-bounds and the t-bounds test results of these cases too. These results
indicate in every case that there is a cointegrating relationship as the F-statistics
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Table 5.22: Unit Root tests for United Kingdom in Levels

United Kingdom, variables in levels:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
tis01 −0.559 c 0 −0.497 c 0.118 t −3.239 t-t 0 a 2008

credit −1.259 c 1 −1.171 c 0.055 t −3.664 t-t 2 a 2006

edu −1.136 c 0 −1.042 c 0.114 t −2.361 t-c 0 i 1991

gdp −0.405 c 1 −0.493 c 0.098 t −3.406 t-t 1 i 2006

infl −1.816 c 0 −1.583 c 0.162∗∗ t −0.078∗ t-c 0 a 1980

popg −0.867 c 5 −0.420 c 0.162∗∗ t −2.764 c-c 7 i 2000

trade −2.466 c 0 −2.536 c 0.154∗∗ t −3.983 t-t 0 i 1992

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.

Table 5.23: Unit Root tests for United Kingdom in First Differences

United Kingdom, variables in first differences:
Standard Unit Root Tests Breakpoint Unit Root Tests

ADF Exogenous Lags PP Exogenous KPSS Exogenous ADFbp Specification Lags Break Type Break Date
∆tis01 −6.892∗∗∗ n 0 −6.890∗∗∗ n 0.065 c −7.834∗∗∗ c-c 0 i 1978

∆credit −3.246∗∗∗ n 0 −3.301∗∗∗ n 0.112 c −5.318∗∗∗ c-c 0 i 2008

∆edu −4.407∗∗∗ c 0 −4.367∗∗∗ c 0.268 c −5.494∗∗∗ c-c 0 i 2002

∆gdp −2.891∗∗∗ n 0 −2.891∗∗∗ n 0.108 c −5.176∗∗∗ c-c 0 i 2009

∆infl −6.405∗∗∗ n 0 −7.761∗∗∗ n 0.488∗∗ c −9.527∗∗∗ c-c 3 i 1986

∆popg −2.664∗∗∗ n 5 −2.732∗∗∗ n 0.338 c −5.796∗∗∗ c-c 1 a 1998

∆trade −6.892∗∗∗ n 0 −6.890∗∗∗ n 0.065 c −7.834∗∗∗ c-c 0 i 1978

H0: Unit Root Unit Root No Unit Root Unit Root

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the Exogenous columns, c indicates that a constant intercept participates in the test equation,
t indicates the participation of a linear trend along with the constant and n indicates than no exogenous variables participate.
The column Lags shows the number of lags that was used (where applicable).
The number of lags was chosen based on the BIC criterion. The AIC was also consistent as for the stability of the test results
but it overestimated the number of lags in some cases.
The first letter on the Specification column indicates the trend nature of the data (therefore a level less than the column Exogenous).
The second letter indicates in which of these instances the break occurs.
Here t indicates a break in the treand, c a break in the intercept and b indicates a break in both of them.
In the Break Type column, a stands for Additive Outlier Test and i stands for Innovational Outlier Test.
The first one is used when we assume that the break occurs immediately while the second one when the break occurs slowly.
The breakpoint selection is mainly based on Dickey-Fuller min t-statistic and when appropriate on the max absolute t-statistics of the intercept/trend.



5.6. The case of United Kingdom 67

and the t-statistic in Case I are by far greater than any critical value regardless of
the selected case which already seems strange. On the other hand, the well specified
models doesn’t have serial correlation problems.

When we are using the Case I, it’s hard to check where the F-statistic lies, even using
the critical values provided by Narayan (2005) because these values are reported for
small sample sizes starting with 30 observations in increments of 5 and now we are
in between as we see in the Table 5.24. For cases like this, we have constructed and
carefully tested an algorithm written in R which simulates exact sample critical values
under any scenario14. The lower and upper critical values for the exact sample size of
n=43, k=6 and 5% significance were calculated as 2.30 and 3.66 respectively. The
F-statistic is equal to 3.649 and so the test is inconclusive but for the Case I we can
also apply the t-bounds test which is also inconclusive as the t-statistic falls between
the lower and the upper critical values. Both the F and the t bounds tests are unable
to reject the Null hypothesis for 5% level of significance but in both cases the statistic
is very close to the critical value and so the test results are not very clear. We can
see in the Figure 5.22 how the well specified model captures the fluctuations like the
one in the 2000s better than the overparameterized model that is closer along the
upward trend but it seems more like a straight line that becomes nearly horizontal at
the 2000s and captures the mean rather than the fluctuating behavior.

The same happens with the Case II, where the F statistic in the Table 5.25 falls
clearly between the two critical values and the Figure 5.23 has almost the same
shape as the one in the previous figure. These two models are rejected for one more
reason. The Figure 5.24 represents the CUSUM Square test that shows that the model
parameters are not stable over time as there is a break starting in 1991 and stays off
for a long time until 2010. This figure is almost identical for both the Case I and
Case II.

Table 5.26 refers to the Case IV where this is a good example for us to show why
the asymptotic critical values may be a simple solution but not always a good one,
especially when our sample size is small. In this case, based on the asymptotic critical
values we should reject the Null hypothesis of no levels relationship. But looking at
the actual sample critical values by Narayan (2005) doesn’t help much because our
sample size is between the reported ones. Using again our simulation algorithm, we
calculated the appropriate critical values for this case as 3.053 and 4.269 for the lower
and upper limits respectively. According to this, we can’t reject the Null hypothesis
and this is another inconclusive case. The Figure 5.25 also supports this statement as
both of the models diverge from tis01.

14The R codes are currently part of an R package under development, which also provides some
useful functionalities that are missing from other existing software. The package will be published in
the near future but the R codes that provide the critical values are available upon request.
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Table 5.24: F Bounds and t Bounds test for cointegration (Case I),
United Kingdom

Value Significance I(0) I(1)
Asymptotic: n=10000

Model ARDL(1,0,0,1,0,0,0) 10% 1.75 2.87
F-statistic 3.649 5% 2.04 3.24
k 6 2.5% 2.32 3.59
Actual Sample Size 43 1% 2.66 4.05

Finite Sample: n=45
Model ARDL(3,0,1,1,0,0,2) 10% 1.89 3.10
F-statistic 8.800 5% 2.29 3.64
k 6 1% 3.14 4.81
Actual Sample Size 41

Finite Sample: n=40
10% 1.92 3.17
5% 2.32 3.70
1% 3.32 5.01

Value Significance I(0) I(1)
Model ARDL(1,0,0,1,0,0,0) 10% -1.62 -3.70
t-statistic -3.966 5% -1.95 -4.04

2.5% -2.24 -4.34
Model ARDL(3,0,1,1,0,0,2) 1% -2.58 -4.67
t-statistic -6.147

F-Bounds test H0: No levels relationship
t-Bounds test H0: No levels relationship
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Figure 5.22: United Kingdom, LR relationships, Case I
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Table 5.25: F Bounds test for cointegration (Case II), United Kingdom

Value Significance I(0) I(1)
Asymptotic: n=10000

Model ARDL(1,0,0,1,0,0,0) 10% 1.99 2.94
F-statistic 3.166 5% 2.27 3.28
k 6 2.5% 2.55 3.61
Actual Sample Size 43 1% 2.88 3.99

Finite Sample: n=45
Model ARDL(3,0,0,1,0,0,2) 10% 2.19 3.25
F-statistic 7.859 5% 2.59 3.77
k 6 1% 3.54 4.93
Actual Sample Size 41

Finite Sample: n=40
10% 2.22 3.31
5% 2.62 3.86
1% 3.51 5.12

F-Bounds test H0: No levels relationship

Figure 5.23: United Kingdom, LR relationships, Case II
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Figure 5.24: United Kingdom, CUSUMSQ test, Case I and Case II
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Table 5.26: F Bounds test for cointegration (Case IV), United Kingdom

Value Significance I(0) I(1)
Asymptotic: n=10000

Model ARDL(1,0,0,1,0,1,0) 10% 2.33 3.25
F-statistic 4.221 5% 2.63 3.62
k 6 2.5% 2.90 3.94
Actual Sample Size 43 1% 3.27 4.39

Finite Sample: n=45
Model ARDL(3,0,0,1,0,0,0) 10% 2.61 3.64
F-statistic 6.807 5% 3.03 4.20
k 6 1% 4.00 5.46
Actual Sample Size 41

Finite Sample: n=40
10% 2.63 3.72
5% 3.07 4.31
1% 4.15 5.70

F-Bounds test H0: No levels relationship

Figure 5.25: United Kingdom, LR relationships, Case IV



Summary and Conclusion

This thesis addresses the popular ARDL bounds test for cointegration and tries to
demonstrate its underlying theoretical assumptions in a concise way so that someone
interested in this area can easily apply and at the same time understand why and
how it works. Often, misuse of a method or a test can lead to a bad situation or
unexpectedly unwanted results. Thus, it is also crucial to understand under which
circumstances the test doesn’t work as expected. For this reason, four practical
implementations of the test are presented showing some interesting behavior of the
test in practice.

So, the present thesis consists of two parts. The first part is the theoretical one where
we set out some basic time series theory and notation, then we explain the origin of
the ARDL model, its connection with the Conditional ECM and how one can calculate
and interpret the multipliers of the model. Next, we explain the connection with the
underlying VAR and the corresponding VECM model and how endogeneity may be a
problem under which the ARDL bounds test would be inappropriate to be used. The
final section of the theoretical part explains the motivation behind the test and the
analyses the Null hypothesis based on the VAR model, the Conditional ECM and
also based on the CECM under the assumption that the problem of endogeneity is
not present. The F-bounds and the complementary t-bounds tests are then presented
under this last assumption.

The second part of this thesis is the practical application where the goal is to examine
whether there is a long-run relationship between the 1% top income share and the
macroeconomic factors of credit, education, gdp, inflation, population growth and
trade. This application is splitted in four sections analysing separately the case of
Greece, France, USA and UK. The case of Greece is similar to the one of France where
the test concluded in favor of the existence of a long-run relationship but testing further
for other possible cointegrating relationships in the whole system of equations, other
cointegrating relationships between the tis01 and the other explanatory variables
were also found and so our first conclusion was unreliable. In the case of USA the
unit root tests shows that tis01 is trend stationary and thus I(0) and so we knew
in advance that the test was going to give specific results. Although, we do continue
with the test in order to have a better understanding on how the test behaves under
situations like this. As expected, the results was that the relationship is a degenerate
one. Finally, the case of UK is somehow more complex. We conclude that tis01 is
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also trend stationary and we present two sets of models. The first one is a not well
specified model that suffers from autocorrelation and shows evidence for cointegration.
As we can’t rely on a model like this, we estimate a second model that seems to be
correctly specified without having serial correlation problems but for which the test
couldn’t reject the hypothesis of no cointegration.



Appendix A

Code Appendix

A.1 R code

The cointegration simulation example

set.seed(2018)
n=5000
# y2~RW~I(1)
y2= cumsum(c(0,rnorm(n-1,0,1)))
# y1~I(1)
y1= 0.6*y2 +rnorm(n,0,1)

coint= y1- 0.6*y2
group= data.frame(y1,y2,coint)
groupt= ts(group)

labels= c(expression(y[1][t] %~% I(1)),
expression(y[2][t] %~% I(1)),
expression((y[1][t]-gamma*y[2][t]) %~% I(0)))

autoplot(groupt, facets = FALSE) +
labs(caption=expression('for'~gamma==0.6)) +
theme(plot.title = element_text(hjust=0.5)) +
scale_colour_hue(name = "Time Series",

breaks=colnames(groupt),
labels=labels)
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The non-cointegrated & non-unique cointegrating vectors simulation ex-
ample

set.seed(2018)
n=5000
# y2~RW~I(1)
y2= cumsum(c(0,rnorm(n-1,0,1)))
# y1~I(1)
y1= 0.6*y2 +rnorm(n,0,1)

gamma1=0.4
gamma2=0.8
gamma3=0.6
beta=2.7

coint= y1- gamma3*y2
no_coint1= y1- gamma1*y2
no_coint2= y1- gamma2*y2
non_unique_coint= beta*y1 - (beta*gamma3*y2)

group= data.frame(y1,y2,no_coint1,no_coint2,non_unique_coint)
groupt= ts(group)

labels= c(expression(y[1][t] %~% I(1)),
expression(y[2][t] %~% I(1)),
expression((y[1][t]-gamma[1]*y[2][t]) %~% I(1)),
expression((y[1][t]-gamma[2]*y[2][t]) %~% I(1)),
expression((y[1][t]-gamma[3]*y[2][t]) %~% I(0)))

capt= expression('for:'~gamma[1]==0.4~ ~','~ gamma[2]==0.8 ~','~ gamma[3]==0.6%.%2.7)

autoplot(groupt, facets = FALSE) +
labs(caption= capt) +
theme(plot.title = element_text(hjust=0.5)) +
scale_colour_hue(name = "Time Series",

breaks=colnames(groupt),
labels=labels)

A.2 EViews code

The codes provided here indicate how each test or equation should be done. The same
can be applied to/with other variables just by replacing the variable name with the
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wanted one.

The following code is supposed produce the correct results using EViews10. In case
where one uses a different EViews version or in case of different results, the following
actions using the API should work as expected.

For the ARDL model construction, if the following code doesn’t converge
to the excepted order of ARDL, one should replace the variable name with
@fl(variable_name,n) where n is the number of lags, in order to specify the exact
number of lags.

Here we set some examples for the Unit Root tests. Other modifications can be applied
as following:

Test in Levels: dif=0

Test in first differences: dif=1

Augmented Dickey-Fuller test: adf

Phillips-Perron: pp

Kwiatkowski-Phillips-Schmidt-Shin: kpss

no exogenous in the test equation (adf, pp) : exog=none

constant exogenous in the test equation (adf, pp, kpss): exog=const

constant and linear trend exogenous in the test equation (adf, pp, kpss):
exog=trend

Innovational Outlier: type=io

Additive Outlier: type=ao

Break specification: const/trend/both

ADF Unit Root tests in Levels without exogenous in test equation

TIS01_GRC.uroot(dif=0, adf, none, lagmethod=sic)

ADF Unit Root tests in Levels with constant exogenous in test equa-
tion

CREDIT_GRC.uroot(dif=0, adf, const, lagmethod=sic)
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Phillips-Perron Unit Root test in Levels withour exogenous in test equa-
tion

TIS01_GRC.uroot(exog=none, pp)

Phillips-Perron Unit Root test in Levels with constant exogenous in test
equation

EDU_GRC.uroot(exog=const, pp)

Kwiatkowski-Phillips-Schmidt-Shin stationarity test in Levels without ex-
ogenous in test equation

TIS01_GRC.uroot(exog=const, kpss)

Breakpoint ADF Unit Root Test

TIS01_GRC.buroot(dif=0, type=io, exog=const, break=const,
breakmethod=dfuller, lagmethod=sic)

ARDL(1,0,0,3,0,0,0) Case II model, Greece

ardl(deplags=4, reglags=3, ic=bic, trend=const)
TIS01_GRC CREDIT_GRC EDU_GRC GDP_GRC INFL_GRC POPG_GRC TRADE_GRC
'{%equation}.rename ardl1003000cii

Breusch-Godfrey Serial Correlation LM Test

ardl1003000cii.auto(1)
ardl1003000cii.auto(2)
ardl1003000cii.auto(3)
ardl1003000cii.auto(4)
ardl1003000cii.auto(5)
ardl1003000cii.auto(6)
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Breusch-Pagan-Godfrey Heteroskedasticity Test

ardl1003000cii.hettest @regs

Create dummy variable

series D2014=@year=2014

ARDL(1,0,1,1,1,0,0) Case II model with dummy, Greece

ardl(deplags=4, reglags=3, ic=bic, trend=const)
TIS01_GRC CREDIT_GRC EDU_GRC GDP_GRC INFL_GRC POPG_GRC TRADE_GRC @D2014
'{%equation}.rename ardl1011100cii

LM and BPG Tests

ardl1011100cii.auto(1)
ardl1011100cii.auto(2)
ardl1011100cii.auto(3)
ardl1011100cii.auto(4)
ardl1011100cii.auto(5)
ardl1011100cii.auto(6)
ardl1011100cii.hettest @regs

CUSUM and CUSUMSQ tests

ardl1011100cii.rls(q) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9)
c(10) c(11) c(12)
ardl1011100cii.rls(v) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9)
c(10) c(11) c(12)

Conditional Unrestricted ECM and bounds test

ardl1011100cii.cointrep
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Conditional Restricted ECM

ardl1011100cii.ecreg
'In case where it produces the ARDL instead of the CRECM use the API

Cointegrating Relationship (Long-Run) fit

ardl1011100cii.makecoint coint_eq
group group_plots TIS01_GRC (TIS01_GRC - coint_eq)
freeze group_plots.line

ARDL fit

ardl1011100cii.resids(g)

ARDL(1,0,1,1,0,1,0) Case II model, France

ardl(deplags=3, reglags=2, ic=bic, trend=const)
TIS01_FRA CREDIT_FRA EDU_FRA GDP_FRA INFL_FRA POPG_FRA TRADE_FRA
'{%equation}.rename ardl1011010cii

LM and BPG Tests

ardl1011010cii.auto(1)
ardl1011010cii.auto(2)
ardl1011010cii.auto(3)
ardl1011010cii.auto(4)
ardl1011010cii.auto(5)
ardl1011010cii.auto(6)
ardl1011010cii.hettest @regs

CUSUM and CUSUMSQ tests

ardl1011010cii.rls(q) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9)
c(10) c(11)
ardl1011010cii.rls(v) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9)
c(10) c(11)
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Conditional Unrestricted ECM and bounds test

ardl1011010cii.cointrep

Conditional Restricted ECM

ardl1011010cii.ecreg
'In case where it produces the ARDL instead of the CRECM use the API

Cointegrating Relationship (Long-Run) fit

ardl1011010cii.makecoint coint_eq
group group_plots TIS01_FRA (TIS01_FRA - coint_eq)
freeze group_plots.line

ARDL fit

ardl1011010cii.resids(g)

ARDL(1,0,0,1,0,0,0) Case II model, USA

ardl(deplags=4, reglags=3, ic=bic, trend=const)
TIS01_USA CREDIT_USA EDU_USA GDP_USA INFL_USA POPG_USA TRADE_USA
'{%equation}.rename ardl1001000cii

ARDL(1,0,0,1,0,0,0) Case III model, USA

ardl(deplags=4, reglags=3, ic=bic, trend=uconst)
TIS01_USA CREDIT_USA EDU_USA GDP_USA INFL_USA POPG_USA TRADE_USA
'{%equation}.rename ardl1001000ciii

ARDL(1,0,0,0,0,0,0) Case IV model, USA

ardl(deplags=4, reglags=3, ic=bic, trend=linear)
TIS01_USA CREDIT_USA EDU_USA GDP_USA INFL_USA POPG_USA TRADE_USA
'{%equation}.rename ardl1000000civ
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Cointegrating Relationship (Long-Run) fit

ardl1000000civ.makecoint coint_eq
group group_plots TIS01_USA (TIS01_USA - coint_eq)
freeze group_plots.line

ARDL(3,0,1,1,0,0,2) Case I model, United Kingdom

ardl(deplags=4, reglags=3, ic=bic, trend=none)
TIS01_GBR CREDIT_GBR EDU_GBR GDP_GBR INFL_GBR POPG_GBR TRADE_GBR
'{%equation}.rename ardl3011002ci

ARDL(1,0,0,1,0,0,0) Case I model, United Kingdom

ardl(deplags=2, reglags=1, ic=bic, trend=none)
TIS01_GBR CREDIT_GBR EDU_GBR GDP_GBR INFL_GBR POPG_GBR TRADE_GBR
'{%equation}.rename ardl1001000ci

Conditional Unrestricted ECM and bounds test for CASE I

ardl3011002ci.cointrep
ardl1001000ci.cointrep

Cointegrating Relationship (Long-Run) fit

ARDL1001000CI.makecoint coint_1001000CI
ARDL3011002CI.makecoint coint_3011002CI
group group_plots TIS01_gbr (TIS01_gbr - coint_1001000CI)
(TIS01_gbr - coint_3011002CI)
freeze group_plots.line

ARDL(3,0,0,1,0,0,2) Case II model, United Kingdom

ardl(deplags=3, reglags=3, ic=bic, trend=const)
TIS01_GBR CREDIT_GBR EDU_GBR GDP_GBR INFL_GBR POPG_GBR TRADE_GBR
'{%equation}.rename ardl3001002cii
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ARDL(1,0,0,1,0,0,0) Case II model, United Kingdom

ardl(deplags=2, reglags=1, ic=bic, trend=const)
TIS01_GBR CREDIT_GBR EDU_GBR GDP_GBR INFL_GBR POPG_GBR TRADE_GBR
'{%equation}.rename ardl1001000cii

Conditional Unrestricted ECM and bounds test for CASE II

ardl3001002cii.cointrep
ardl1001000cii.cointrep

Cointegrating Relationship (Long-Run) fit

ardl1001000cii.makecoint coint_ardl1001000cii
ardl3001002cii.makecoint coint_ardl3001002cii
group group_plots TIS01_gbr (TIS01_gbr - coint_ardl1001000cii)
(TIS01_gbr - coint_ardl3001002cii)
freeze group_plots.line

CUSUMSQ test

ardl1001000cii.rls(v) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9)

ARDL(3,0,0,1,0,0,0) Case IV model, United Kingdom

ardl(deplags=4, reglags=3, ic=bic, trend=linear)
TIS01_GBR CREDIT_GBR EDU_GBR GDP_GBR INFL_GBR POPG_GBR TRADE_GBR
'{%equation}.rename ardl3001000civ

ARDL(1,0,0,1,0,1,0) Case IV model, United Kingdom

ardl(deplags=2, reglags=1, ic=bic, trend=linear)
TIS01_GBR CREDIT_GBR EDU_GBR GDP_GBR INFL_GBR POPG_GBR TRADE_GBR
'{%equation}.rename ardl1001010civ
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Conditional Unrestricted ECM and bounds test for CASE IV

ardl3001000civ.cointrep
ardl1001010civ.cointrep

Cointegrating Relationship (Long-Run) fit

ardl1001010civ.makecoint coint_ardl1001010civ
ardl3001000civ.makecoint coint_ardl3001000civ
group group_plots TIS01_gbr (TIS01_gbr - coint_ardl1001010civ)
(TIS01_gbr - coint_ardl3001000civ)
freeze group_plots.line
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Math Appendix

Lag polynomial (AR operator) (B.1)

ψ(L) = 1− ψ∗(L) = 1−
p∑

i=1
ψiL

i

= 1− ψ1L
1 − ψ2L

2 − · · · − ψpL
p

(B.1)

ψ(1) = 1− ψ∗(1) = 1−
p∑

i=1
ψi (B.2)

ψ∗(1) =
p∑

i=1
ψi (B.3)

ψ∗(L) =
p∑

i=1
ψiL

i (B.4)

ψ̃∗i = −
p∑

r=i+1
ψr (B.5)

ψ̃∗(L) =
p−1∑
i=1

ψ̃∗iL
i−1 (B.6)

Φ(L) = Ik+1 −
p∑

i=1
ΦiL

i (B.7)

Lag polynomial (MA operator) (B.8)

β(L) =
q∑

i=0
βiL

i

= β0L
0 + β1L

1 + · · ·+ βqL
q

(B.8)
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The form of the MA operator accounting for more than one variables:

βj(L) =
qj∑

lj=0
βj,ljL

lj

= βj,0L
0 + βj,1L

1 + · · ·+ βj,qj
Lqj

(B.9)

β(1) =
qj∑

lj=0
βlj (B.10)

Open form of general ARDL(p, q1, . . . , qk) Eq. (4.2)

yt = α0 + α1t

+ ψ1yt−1 + ψ2yt−2 . . . ψpyt−p

+ β1,0x1,t + β1,1x1,t−1 + · · ·+ β1,q1x1,t−q1

+ β2,0x2,t + β2,1x2,t−1 + · · ·+ β2,q2x2,t−q2

...
+ βk,0xk,t + βk,1xk,t−1 + · · ·+ βk,qk

xk,t−qk
+ εt

(B.11)

Beveridge-Nelson decomposition

For an AR process (B.12):

ψ(L) = ψ(1) + (1− L)ψ̃(L) (B.12)

ψ∗(L) = (ψ∗(1) + (1− L)ψ̃∗(L))L (B.13)
For a MA process (B.14):

β(L) = β(1) + (1− L)β̃(L) (B.14)

β̃∗(L) = β̃(L)− ψ̃(L)ψ(L)−1β(L) (B.15)
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Tables Appendix

Table C.1: Conditional ECM, Greece

Dependent variable: ∆tis01
Coefficient Std.Error t-Statistic P-Value

Intercept 0.059 0.012 4.985 0.000
tis01t−1 −0.437 0.102 −4.267 0.000
creditt 2.530e−04 7.210e−05 3.511 0.001
edut 0.292 0.131 2.230 0.033
gdpt−1 −2.920e−06 5.530e−07 −5.283 0.000
inflt −3.950e−04 1.610e−04 −2.458 0.020
popgt 5.510e−04 2.079e−03 0.265 0.793
tradet 1.680e−04 1.350e−04 1.243 0.223
∆gdpt −1.480e−06 9.390e−07 −1.578 0.125
∆gdpt−1 3.730e−06 1.040e−06 3.585 0.001
∆gdpt−2 3.190e−06 1.140e−06 2.805 0.009
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Table C.2: Diagnostic test for ARDL, Greece

Serial Correlation LM Test: Breusch-Godfrey
Statistic lags=1 lags=2 lags=3 lags=4 lags=5 lags=6
Obs∗R2 1.935e−03 4.633 6.698 7.407 7.579 8.346
Pr(>χ2

d.f.) 0.965 0.099 0.082 0.116 0.181 0.214
Note: The d.f. for each test is equal to the lags included
LM test H0: No serial correlation up to order of the d.f. of χ2

d.f.

Heteroskedasticity Test: Breusch-Pagan-Godfrey
Statistic Value
Obs∗R2 34.159
Pr(>χ2

10) 0.000
BPG test H0: No heteroskedasticity

Table C.3: Diagnostic test for ARDL with dummy, Greece

Serial Correlation LM Test: Breusch-Godfrey
Statistic lags=1 lags=2 lags=3 lags=4 lags=5 lags=6
Obs∗R2 3.773 4.131 4.192 4.221 5.608 8.221
Pr(>χ2

d.f.) 0.052 0.127 0.241 0.377 0.346 0.222
Note: The d.f. for each test is equal to the lags included
LM test H0: No serial correlation up to order of the d.f. of χ2

d.f.

Heteroskedasticity Test: Breusch-Pagan-Godfrey
Statistic Value
Obs∗R2 12.112
Pr(>χ2

11) 0.355
BPG test H0: No heteroskedasticity
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Table C.4: Levels Equation, Greece

Dependent variable: tis01
Case 2: Restricted Constant and No Trend

Coefficient Std.Error t-Statistic P-Value
Intercept 0.135 0.013 10.800 0.000
creditt 5.800e−04 1.380e−05 41.889 0.000
edut 0.668 0.119 5.637 0.000
gdpt −6.690e−06 2.540e−07 -26.356 0.000
inflt −9.040e−04 2.034e-04 -3.867 0.001
popgt 1.261e−03 2.521e−03 0.500 0.621
tradet 3.840e−04 2.020e−03 1.901 0.067

Table C.5: ECM, Greece

Dependent variable: ∆tis01
Case 2: Restricted Constant and No Trend

Coefficient Std.Error t-Statistic P-Value
∆gdpt −1.480e−06 6.760e−07 −2.190 0.036
∆gdpt−1 3.730e−06 8.640e−07 4.315 0.000
∆gdpt−2 3.1904−06 8.980e−07 3.549 0.001
ECTt−1 −0.437 0.055 −7.956 0.000
Observations 41 Residual Std. Error 2.813e−03
R2 0.667 Log Likelihood 184.743
Adjusted R2 0.639 AIC −8.817
BIC −8.649
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Table C.6: Conditional ECM with dummy, Greece

Dependent variable: ∆tis01
Coefficient Std.Error t-Statistic P-Value

Intercept 0.018 0.004 4.751 0.000
tis01t−1 -0.225 0.040 -5.624 0.000
creditt -2.18e-05 2.66e-05 -0.818 0.419
edut−1 -0.089 0.075 -1.166 0.253
gdpt−1 -8.58e-08 2.11e-07 -0.407 0.687
inflt−1 -4.800e-04 8.19e-05 -5.860 0.000
popgt -7.130e-04 0.001 -0.710 0.483
tradet 1.070e-04 6.08e-05 1.757 0.089
∆edut 0.267 0.119 2.226 0.033
∆gdpt -1.19e-06 4.53e-07 -2.640 0.013
∆inflt -2.050e-04 8.58e-05 -2.393 0.023
D2014t 0.024 0.002 11.249 0.000

Table C.7: Diagnostic test for ARDL, France

Serial Correlation LM Test: Breusch-Godfrey
Statistic lags=1 lags=2 lags=3 lags=4 lags=5 lags=6
Obs∗R2 1.403 3.843 5.367 6.798 9.496 10.045
Pr(>χ2

d.f.) 0.236 0.146 0.147 0.147 0.091 0.123
Note: The d.f. for each test is equal to the lags included
LM test H0: No serial correlation up to order of the d.f. of χ2

d.f.

Heteroskedasticity Test: Breusch-Pagan-Godfrey
Statistic Value
Obs∗R2 7.004
Pr(>χ2

10) 0.725
BPG test H0: No heteroskedasticity
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Table C.8: Conditional ECM, France

Dependent variable: ∆tis01
Coefficient Std.Error t-Statistic P-Value

Intercept 3.868e-03 7.107e-03 0.544 0.590
tis01t−1 -0.358 0.094 -3.815 6.000e-04
creditt 1.480e-05 5.610e-05 0.264 0.793
edut−1 0.464 0.309 1.498 0.143
gdpt−1 8.850e-07 6.500e-07 1.361 0.182
inflt 2.790e-04 3.360e-04 0.830 0.412
popgt−1 0.014 4.944e-03 2.905 0.000
tradet -4.510e-04 2.540e-04 -1.779 0.084
∆edut -1.134 0.726 -1.560 0.128
∆gdpt 6.200e-06 1.330e-06 4.673 0.000
∆popgt 2.958e-03 4.967e-03 0.595 0.555
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