Athens University of Economics and Business
School of Business, Department of Management Science and Technology

Doctoral Program in Operations Research

Models and Solution Algorithms for Inventory Routing Problems

by
Pantelis Z. Lappas

Dissertation submitted for partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Athens, May 2017

© Pantelis Z. Lappas, 2017



Athens University of Economics and Business
School of Business, Department of Management Science and Technology

Doctoral Program in Operations Research

Models and Solution Algorithms for Inventory Routing Problems

by

Pantelis Z. Lappas

Committee

Manolis Kritikos (Supervisor)

Assistant Professor of Operations Research and Information Systems

Athens University of Economics and Business
School of Business
Department of Management Science and Technology

George loannou

Professor of Production and Operations Management

Athens University of Economics and Business
School of Business
Department of Management Science and Technology

Apostolos Burnetas

Professor of Operations Research

National and Kapodistrian University of Athens
School of Science
Department of Mathematics



To my wife, and my parents

P. Lappas



Hepiinyn

216)0¢ TG Tapovoag daTpPng eivar N TopovGiaon aAYOPIOUIKOV TPOsEYYIGE®VY Yo
mv enilvon tov TlpoPinuatog Apopordynong Amobeudtov (Inventory Routing
Problem, IRP) kot tov IIpoPAfjuotog Apouordynone Amobeudtov pe Xpovika
[MapdBvpa (Inventory Routing Problem with Time Windows, IRPTW). Ta avotépm
mpofAquata Tyalovv amd v mwpocéyyion g Awayeipiong AmoBepdtov and tov
ITpounOevty/IIoAnty (Vendor Managed Inventory, VMI) nov 610800nke 1dwaitepa
Katd to TEAN ¢ dexaetiog Tov “80 amd tig Wal-Mart ko Procter & Gamble kot ot
ovvéyeln, viobetOnke amd mToAAEG etatpieg Omwc ot Johnson & Johnson, Black &
Decker k.a. Zoppova pe o VMI, o tpoundevtig dravépel mpoidovio o€ évav aptOpd
Ao YEOYPUPIKAE SLACTAPTOVG TEAATES OmOPAGILOVTOS TAVTOXPOVA Y10 TO, akOAOVOAL:
(1) tovg ypdvovg eEumnpétnong mehotwv, (2) TIc mocoTNTES dlavoung Kot (3) Tig
dradpopec mov mpémet va akorovnbodv. Ot mpdTeg dVO amopdoels, oyxetilovtat [e TO
[popinpa EAéyyov AmoBepdtov (Inventory Control Problem, ICP), eved n tpitn pe
10 [IpoPinua g Apopordynong Oynudrtov (Vehicle Routing Problem, VRP).

A&iler va onuemBel nog 1o IRPTW amotelel Pacwkn eméktaon tov IRP, kabog
woyvovy ot idtot meploptopol, aArd yioo kGbe meAdtn 1 eEummpénon mpénel va
Eexvnoet kot va odokAnpwbel péoa o Eva ypovikd mapadvpo (time window), eved to
Oynuo Bo ToPaUEVEL GTO YMOPO TOL TEAATN YLl CLYKEKPIUEVO YPOVO €ELMNPETNONG.
Kotd ovvémela, to IRPTW oamotehei ovvBeon tov ICP kot tov TIpoPAnuatog
Apoporoynong Oynudtov pe Xpovikd ITopaBvpa (Vehicle Routing Problem with
Time Windows, VRPTW).

H Sweoponoinon tov mpofAnudtov OpopoAdynons omobespdtov Evavit Ttov
vroloitwv  mpofAnudtmv  dpopoArdynong (routing problems) oeeideton  oTov
napdyovta andbepa, o omoiog Tpochétel 6to mPOPANUA TN ddoTAGT TOV YPOHVOL. G
ek tovtou, ta IRP xor IRPTW avrpetonilovior wg mpofAnpate moAlomAmv
neptodwv (multi-period problems). O wapdyovtog amdOepa mepmiékel To TPOPAN QL
oe 0vo dwotdoes. Ilpmdtov, n mepropiopévn dvvatdtta ST pnons amofEpatog
otov mpounBevty Ko/ M otovg meAdteg Oa mpémer va AapPdvetor vwoOyn OTOV
anopaciCovtal o1t mocdTNTEG TOL Bl draveunBovv, Evd TVYOV KOGTY TOL GLVOEOVTOL
pe 1t owmpnon amofépatog otov mpounbevty M TOvg TEANTEG TPEMEL VO
CLUUTEPTAOUPAVOVTOL GTNV AVTIKEWUEVIKT] cuvapTnon. Ta mpofAnpato dpopoAdyNong
amofepdtov avikovv oty KAdorn moAvmiokdttag NP kot yapaxtnpilovrar mg NP-
dvoyepn (NP-Hard), xabdc mepikieiovy 10 KAaowod mpOPANHo TG dpOUOAdYNONG
oYNUATOV.

Me ™ pofnpotikny poviehonoinon tov tpoPfAnudtov mapovctdleTal, EMmALOV, Yo
Kk60e mpoPAnua pio avtictoyn aiyopOuikn emidvon. Xty mepintoorn tov IRP, n
OVTIKEYLEVIKT] GLUVAPTNGT TOL TPOPANLOTOS OVOTOPIGTO TO GUVOAIKO KOGTOG TOL
amoteAeital omd TO KOOTOC peTopopdc (transportation cost) koit to  kOGTOG



amoffkevong/datnpnong amobépatog (inventory holding cost) otovg meddtec. T to
IRPTW, 1 avtikelevikn ouvaptnon tov TpofALaTog avamoploTd LOVo TO GLVOMKO
KOGTOG LETOPOPALG.

Adyo ¢ NP-hard ¢@dong tov IRP mpoteiveton évog vPpdkdc eEeMKTIKOC
aAyopiBpoc Bertiotomoinong (hybrid evolutionary optimization algorithm) mov
a&lomotel 600 gupémg Yvwotove pebevpetikode adyopOupovg (meta-heuristics): tov
I'evetikd  AAyopiOpo (Genetic  Algorithm, GA) kot 7t0v  AkyopilOpo g
IIpocopoiwpévng Avommong (Simulated Annealing Algorithm, SA). O GA
aflomoteitan ot @Aon tov  oxedwopov (planning) omov  kabopilovrar ot
TPOYPOUUUATICUEVES TPOG ATOGTOAN TocOTNTEG TTpoidvTog (delivery quantities), kabdg
EMIONG KOl O1 YPOVIKEC OTIYIEG TOV opilovTa Omov o1 meAdTeg Oa AdPovy TIC GYETIKES
nocotteg (delivery times). O SA ypnowonoteitoar ot @don ™G OPOUOAIYNONG
(routing) yio. v emilvon TV TPoPANUAT®V SPOLOAGYNONG TTOV TPOKVTTOLY GE KGO
nepiodo tov ypovikov opilovta. Ta amoteléopata Tmv 600 alyopiBumv cuvdvalovtan
EMOVOAANTITIKA £0G TNV €0pECT TG PEATIGTNG ADONG TOL TPOPANLATOC.

Oocov apopd o IRPTW, mapovsialetar évag adydpiBuog enidvong 6vo pacewv (two-
phase solution algorithm) mov Pacileton oe pio amAn Ilpocopoimon (simple
simulation) yw ™ @don tov oyedacpuov kot otov AAydpiBpo Metafintig ['ertovidg
Avalnmong (Variable Neighborhood Search, VNS) yia ™ @don tg dpopordynong.
Téhog, yw 1t pETPNON 1TNG ONMOTEAECUOTIKOTNTOS T®V OV0  TPOTEWOUEVOV
aAyoplOpkdv mpooeyyicemv, véo dedopéva mpoPAnuatov (benchmark instances)
éyouv oyxednotel Yo 1o IRP kou IRPTW, evd mapovsidloviar avoAvTikd
VTOAOYIOTIKG amoteAécpata enl TV TPOPANUATOV.

AéEaig Kiewdwa: Apoporoynom, IIpopinue Apopordynong AmoBeudrtov, I[Ipdfinua
Apopordynong Amofepdtov pue Xpovika IMapdbvpa, [evetikdg AlyopiBuog, AdyopiOupoc
[Ipocopowwpévng Avomtmong, E&ehktiky Beltiotonoinom, Ilpocopoimon, AAydpiOuog
MertafAintig Fertovidg Avalitnong



Abstract

The main objective of this thesis is to propose a hybrid evolutionary optimization
algorithm for solving the Inventory Routing Problem (IRP). The IRP arises from the
application of the Vendor Managed Inventory (VMI) concept, where the supplier
(vendor) has to make inventory and routing decisions simultaneously for a given
planning horizon. This thesis focuses on a scenario where a single-product type has to
be delivered by a fleet of capacitated homogenous vehicles and housed at a depot over
a finite and discrete planning horizon. The demand is fully available to the decision
maker (supplier) at the beginning of the planning horizon, stock-outs are not allowed,
and transportation costs and inventory holding costs of customers are taken into
account in the objective function. Due to the NP-hard nature of the IRP, it is very
difficult to develop an exact algorithm that can solve large-scale problems within a
reasonable computation time. As an alternative, a hybrid evolutionary optimization
algorithm based on two well-known meta-heuristics, the Genetic Algorithm and the
Simulated Annealing Algorithm, is presented to handle the IRP. Namely, the Genetic
Algorithm is related to the planning phase, while the Simulated Annealing Algorithm
is associated with the routing phase. A repetitive procedure, containing characteristics
from both referred meta-heuristics, is applied to obtain a near-optimal feasible
solution. Testing instances with different properties are established to investigate
algorithmic performance, and the computational results are then reported.

Finally, a two-phase solution algorithm is presented to handle an extension of the IRP,
the Inventory Routing Problem with Time Windows (IRPTW). The IRPTW, which
has not been excessively researched in the literature, is a generalization of the
standard IRP involving the added complexity that every customer should be served
within a given time window. A single-product type has to be delivered by a fleet of
capacitated homogenous vehicles and housed at a depot over a finite and discrete
planning horizon. The demand is fully available to the decision maker (supplier) at the
beginning of the planning horizon, stock-outs are not allowed, and only transportation
costs are taken into account in the objective function. The proposed two-phase
solution algorithm is based on (a) a simple simulation for the planning phase and (b)
the Variable Neighborhood Search Algorithm (VNS) for the routing phase. The
computational study underscores the importance of integrating the inventory and
vehicle routing decisions. Analytical results and graphic presentation formats are
provided to convey meaningful insights into the problem.

Keywords: Routing, Inventory Routing Problem, Inventory Routing Problem with Time
Windows, Genetic Algorithm, Simulated Annealing Algorithm, Evolutionary Optimization,
Simulation, Variable Neighborhood Search
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Chapter 1

Introduction

In recent years, the Inventory Routing Problem (IRP) has received a great deal of
attention from academics, consultants and practitioners. It reflects a multi-functional
problem that attempts to integrate two different functions within the supply chain
network, i.e., planning and routing (Min and Zhou, 2002). In particular, planning is
associated with the Inventory Control Problem (ICP), while routing is related to the
Vehicle Routing Problem (VRP). The ICP represents an activity that aims to organize
the availability of goods to customers during a given planning horizon (Axsiter,
2006), while the VRP concerns the distribution of goods between suppliers and
customers, without taking into account the time scope (Toth and Vigo, 2002).
Whereas VRPs typically deal with a single period (e.g., a day), IRPs have to deal with
a longer horizon (multi periods: e.g., a sequence of days).

In the context of the IRP, these two widely studied problems in the Operations
Research literature are modeled simultaneously since an inter-relationship exists
between them (Moin and Salhi, 2007; Archetti and Speranza, 2016). If only the ICP
for the customers is concerned and the VRP for the supplier is ignored, the supply
chain cost, including the total transportation and total inventory cost, is not minimized
optimally, as the VRP decisions cannot be made effectively and vice versa. The IRP
arises in environments where Vendor Managed Inventory (VMI) policies are applied.
It can be assumed as an extension of the VRP, which integrates routing and inventory
allocation decisions. Analytically, the vendor (supplier) monitors the inventory levels
of the customers and determines (a) the delivery times (when to visit his customers),
(b) the quantities (how much to deliver to each of them when they are served), so that
stock-outs are avoided, and (c) the set of routes used by a fleet of vehicles to serve a
given set of customers (how to integrate the customers into the vehicle routes).

IRPs can be categorized into three levels (Andersson et al., 2010; Coelho et al., 2013).
The first categorization is based on the structural variants presented in IRPs, namely,
product, time horizon, network topology, routing, inventory policy, inventory
decisions, fleet composition and fleet size. The second categorization is related to the
availability of information on the demand, reflecting several types of IRPs, for
example, deterministic, stochastic, and dynamic and stochastic IRPs. Moreover, the
third categorization is associated with the chosen solution approach. According to
Ballou (1989) the modeling of supply chain and logistics problems has traditionally
relied on three primary methods, i.e., simulation, optimization (exact algorithm) and
heuristics, which can be divided into two categories (Griffis et al., 2012): classic
heuristics (construction heuristics, local improvement heuristics) and meta-heuristics
(local search meta-heuristics and population search meta-heuristics). The recent




literature has shown an increased interest in so-called matheuristics, methods that
combine exact and heuristic approaches (Maniezzo et al., 2009). Archetti and
Speranza (2013) classified matheuristics into three classes: decomposition
approaches, improvement heuristics and column generation-based approaches.

It is worth noting that IRP decisions can be (a) decisions over time only, in which the
delivery times and the quantities have to be determined at the same time, while the
routes are given, and (b) decisions over time and space, where delivery times,
quantities and routes have to be determined simultaneously (Bertazzi and Speranza,
2012; Bertazzi and Speranza, 2013). Furthermore, the optimal solution of an IRP
depends on the objective function that has been chosen (Bertazzi et al., 2008). As a
result, an objective function can be (a) the sum of transportation costs only, (b) the
sum of transportation and inventory holding costs of the customers or (c) the sum of
transportation and inventory holding costs of the supplier and the customers. It should
not pass unnoticed that under the VMI concept, stock-outs are not allowed, and
therefore, the objective function does not include shortage costs.

In this thesis, the main objective is to propose an approach for solving the IRP with
the following characteristics. A single-product type has to be delivered by a fleet of
capacitated homogenous vehicles (multiple vehicles) housed at a depot over a finite
and discrete planning horizon. The network topology taken into account by the IRP
model is one-to-many; that is, one supplier serves many geographically dispersed
customers (demand points). A vehicle can visit more than one customer (multiple
routing), while a vehicle’s trip starts and ends at the depot (supplier). As far as the
inventory policy is concerned, a Maximum Level (ML) policy is considered, in which
any customer has defined a maximum inventory level and every time a customer is
served, the delivered quantity is such that the inventory level at the customer is not
greater than the maximum level. It is assumed that the depot has a sufficient supply of
products that can cover all customers’ demands throughout the planning horizon.
Moreover, the inventory is not allowed to become negative (fixed inventory) since the
lowest inventory level is either fixed or equal to zero. With respect to the availability
of information on customer demand, the proposed IRP model is deterministic since
the demand is fully available to the supplier at the beginning of the planning horizon.

Regarding the solution approach, a hybrid evolutionary optimization algorithm that
combines a nature-inspired optimization algorithm (local search meta-heuristic), such
as the Simulated Annealing Algorithm (SA), as well as a biologically-inspired
optimization algorithm (population search meta-heuristic), that is, the Genetic
Algorithm (GA), is presented to handle the problem. The SA is associated with the
routing decisions (routing phase), while GA is related to the inventory allocation
decisions (planning phase). A repetitive procedure, containing characteristics of both
meta-heuristics, is applied to obtain a near-optimal feasible solution. In addition, IRP
decisions are decisions over time and space, while the objective function represents
the sum of transportation and inventory holding costs of the customers.




A second objective of the thesis is to present a two-phase solution algorithm to handle
an extension of the IRP, the Inventory Routing Problem with Time Windows
(IRPTW). The IRPTW, which has not been excessively researched in the literature, is
a generalization of the standard IRP involving the added complexity that every
customer should be served within a given time window. A single-product type has to
be delivered by a fleet of capacitated homogenous vehicles and housed at a depot over
a finite and discrete planning horizon. The demand is fully available to the decision
maker (supplier) at the beginning of the planning horizon, stock-outs are not allowed,
and only transportation costs are taken into account in the objective function. As far
as the inventory policy is concerned, an Order-up-to Level (OL) policy is considered,
in which any customer has defined a maximum inventory level and every time a
customer is served, the delivered quantity is such that the maximum inventory level at
the customer is reached. Moreover, it is assumed that the depot has a sufficient supply
of products that can cover all customers’ demands throughout the planning horizon.
The proposed two-phase solution algorithm is based on (a) a simple simulation for the
planning phase and (b) the Variable Neighborhood Search Algorithm (VNS) for the
routing phase.

The remainder of this thesis is organized as follows. Chapter 2 presents an overview
of the state of the art in research on the Inventory Routing Problems. A problem
description and the mathematical formulation for the IRP are presented in Chapter 3.
In addition, the proposed solution approach is described and analyzed in detail, while
computational results are presented. Chapter 4 is devoted to the presentation of the
IRPTW. Finally, Chapter 5 summarizes the main contributions of this thesis and
points to some potential research directions.




Chapter 2

Literature Review

Routing problems have attracted attention as a possible solution to many of the
complex issues surrounding Supply Chain Management (ScM). In today’s economic
environment, efficiency for firms is moving from an internal to a supply chain priority
since the competition is not among them, but among their supply chains (Croom et al.,
2000; Tan, 2001). As a consequence, the ultimate success of a firm depends on its
ability to integrate and coordinate different supply chain activities within the supply
chain network (Min and Zhou, 2002; Schmid et al., 2013). Routing problem (RP) is
the generic name given to a whole class of problems in which transportation is
necessary (Diaz-Parra et al., 2014). The issue of RPs can be addressed in two
dimensions: (a) classical routing problems, such as the Traveling Salesman Problem
(TSP) and the Vehicle Routing Problem (VRP), and (b) highly relevant extensions of
classical routing problems like the Inventory Routing Problem (IRP) and the
Production Routing Problem (PRP).

The TSP is the most basic routing problem and a typical model of the combinatorial
optimization problems whose computation complexity is derived from non-
polynomial time (NP-hard problem). In particular, the problem is to find the shortest
route (minimum transportation cost) that starts from a depot, visits all customers
exactly once, and returns to the depot (Flood, 1956). For a comprehensive review of
the proposed solution approaches including exact algorithms, heuristics and meta-
heuristics, see Laporte (2010), Rego et al. (2011) and Arram et al. (2014). However,
in transportation problems, customers usually have a demand, whereas the depot
consists of a fleet of vehicles with limited and known capacity. This situation reflects
the VRP (Dantzig and Ramser, 1959), which generalizes the Multiple Traveling
Salesman Problem (m-TSP), i.e., the TSP with m vehicles (Bektas, 2006). A survey of
the VRP literature as well as the most important exact solutions, classical and modern
heuristics are presented by Cordeau et al. (2002), Eksioglu et al. (2009), Laporte
(2009) and Potvin (2009). The Vehicle Routing Problem with Time Windows
(VRPTW) is a generalization of the VRP involving the added complexity that every
customer should be served within a given time window (Brdysy and Gendreau, 2005a;
Briysy and Gendreau, 2005b; El-Sherbeny, 2010).

Furthermore, the IRP is an extension of the VRP, which integrates routing decisions
with inventory control (Moin and Salhi, 2007; Andresson et al., 2010; Coelho et al.,
2013; Archetti and Speranza, 2016). The problem arises in environments where VMI
policies are employed, while the supplier decides the delivery times, the quantities
and the vehicle routes at the same time. The main objective is to minimize the total
transportation and inventory holding costs. The Inventory Routing Problem with Hard




or Soft Time Windows (IRPTW/IRPSTW) is a generalization of the standard IRP
involving the added complexity that every customer should be served within a given
time window. Liu and Lee (2011) proposed a two-phase heuristic method for solving
the IRPSTW. The first phase of the heuristic algorithm finds an initial solution based
on a construction approach, while the second phase improves the initial solution by
adopting a variable neighborhood tabu search algorithm. In addition, Zeng and Zhao
(2010) represented the stochastic IRPSTW as a discrete time Markov decision process
model and solved it by using dynamic programming approximations. Lappas et al.
(2015a) presented a two-phase solution algorithm based on the Monte Carlo
Simulation and the Genetic Algorithm to solve the IRPTW. The first phase is related
to the planning phase of the IRPTW, in which delivery times and quantities are
determined by implementing the well-known inventory policy (s,S) for inventory
management using the Monte Carlo Simulation. In the second phase, the Genetic
Algorithm is applied to combine the customers into the vehicle routes by solving a
VRPTW for a specific time period during the planning horizon. Some applications in
the context of IRPTW/IRPSTW were presented by Zhang et al. (2013), Li et al.
(2015) and Zhang et al. (2015). The IRPTW is obviously NP-hard, being a
generalization of the IRP, which reduces to the TSP when the planning horizon is
equal to a single period (e.g., one day); there are no inventory holding costs; all the
customers need to be served but not in specific time windows; there is a single vehicle
and transportation capacity is infinite (Bertazzi and Speranza, 2013; Lappas et al.,
2015b; Lappas et al., 2015c) (Fig. 1).

IRPTW IRPTW

3

J Planning Horizon: one day

4 (O Fleet: one vehicle
VRE [ TSP (0 Capacity: infinite

* 3 Time window: [e=0k=~]
.{ 3 No inventory
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Fig. 1. NP-hard nature of the IRP

The PRP is also a core problem that has to be solved specifically in a VMI
replenishment system and can be assumed to be the generalization of the IRP. The
vendor monitors the inventory levels of the customers, while production, inventory,
distribution and routing decisions have to be made simultaneously. For a
comprehensive review of this literature through the year 2015, see Adulyasak (2015).

Several applications of the IRP have been found. The result of an analysis of the
scientific literature led to the identification of six main paths of development in the
overall field of the IRP: (1) maritime transportation (Ronen, 1993; Arga et al., 2013;
Song and Furman, 2013; Hewitt et al., 2013; Arga et al., 2014; Papageorgiou et al.,




2014; Arga et al., 2015; Jiang and Grossmann, 2015; Hemmati et al., 2015; Arga et
al., 2016a; Arga et al., 2016b; Hemmati et al., 2016), (2) industrial gas distribution
(Bell et al., 1983; Goel et al., 2012; Ghiami et al., 2015; Shao et al., 2015; Singh et al.,
2015; Goel et al., 2015; Andersson et al., 2016), (3) distribution of perishable goods
(Federgruen and Zipkin, 1984; Federgruen et al., 1986; Le et al., 2013; Soysal et al.,
2015; Mirzaei and Seifi, 2015; Soysal et al., 2016; Diabat et al., 2016), (4) fuel
delivery (Popovi¢ et al., 2012), (5) medical waste collection (Nolz et al., 2014a; Nolz
et al., 2014b) and medical drug distribution (Niakan and Rahimi, 2015), in addition to
(6) distribution of agriculture products (Liao et al., 2013) and groceries (Mercer and
Tao, 1996; Gaur and Fisher, 2004).

The IRP research can be divided into three main streams. In the first stream, exact
algorithms have been proposed to solve the IRP. Some of the exact algorithms that
have been published through the year 2013 and that can solve an IRP are summarized
by Coelho et al. (2013) and Coelho and Laporte (2013). The second stream of
research contains approximation approaches. Due to the inability of the exact
algorithms to solve large-scale IRP instances, an impressive number of heuristics as
well as meta-heuristics have been proposed. Constructive heuristics and improvement
heuristics have been developed and presented by Abdelmaguid et al. (2009) for the
IRP with backlogging. The proposed construction heuristic, called ETCH (Estimated
Transportation Costs Heuristic), estimates a transportation cost value for each
customer in each time period to facilitate a comparison between the transportation and
the inventory holding and shortage costs. Due to the myopic nature of the ETCH and
the fact that partial fulfillment of demand is not allowed, an improvement heuristic
was proposed in order to overcome the above limitations. The improvement heuristic
is based on the idea of exchanging customer delivery quantities between periods to
allow transitions from a given solution to its neighborhood. More recently, Raa (2015)
provided a multi-start two-phase heuristic solution method consisting of an insertion-
based construction phase and an improvement phase for the Cyclic IRP, while
Nambirajan et al. (2016) proposed a three-phase heuristic called CARE (Clustering,
Allocation, Routing, Extended) for two-stage multi-product inventory routing
problems with replenishments.

Furthermore, several local search meta-heuristics such as Tabu Search (TS) (Archetti
et al., 2012; Li et al., 2014; Qin et al., 2014), Greedy Randomized Adaptive Search
Procedure (GRASP) (Guemri et al., 2016), Iterated Local Search (ILS)
(Vansteenwegen and Mateo, 2014; Santos et al., 2016), Variable Neighborhood
Search (VNS) (Mjirda et al., 2012; Mijirda et al., 2014, Mjirda et al., 2016) and
Adaptive Large Neighborhood Search (ALNS) (Coelho et al., 2012a; Aksen et al.,
2014; Shirokikh and Zakharov, 2015) have been applied to the IRP. An alternative
approach that combines simulation with heuristics has been presented by Juan et al.
(2014), who described and used a “simheuristic” algorithm to solve the single-period
stochastic IRP with stock-outs. Their approach combines the Monde Carlo Simulation
with the multi-start randomized heuristic.




A number of population search meta-heuristics have been proposed for the solution of
the IRP and its variants. Huang and Lin (2010) presented a modified ant colony
optimization algorithm for multi-item IRPs with demand uncertainty. Tatsis et al.
(2013) described the multiple suppliers, one retailer (many-to-one) IRP and proposed
an ant-based optimization algorithm to solve the problem. In both papers, the main
objective is to minimize the total transportation, inventory holding and backlogging
costs. A hybrid heuristic method that integrates a Large Neighborhood Search (LNS)
into Particle Swarm Optimization (PSO) presented by Liu et al. (2015) to solve the
Periodic IRP. In addition, Yang et al. (2015) applied indicator-based evolutionary
algorithms and swarm algorithms to find an approximation to the Pareto front of the
IRP. Evolutionary optimization algorithms, such as GAs, have also been proposed to
solve the IRP. This is particularly clear in the studies cited by Abdelmaguid and
Dessouky (2006), Aziz and Moin (2007), Moin et al. (2011) Simi¢ and Simi¢ (2013),
Shukla et al. (2013), Cho et al. (2013) and Park et al. (2016).

The third stream of research is associated with mathheuristics, consisting of
decomposition approaches (Campbell and Savelsbergh, 2004), improvement
heuristics (Coelho et al., 2012b; Bertazzi et al., 2013; Guerrero et al., 2013; Archetti
et al., 2014; Bertazzi et al., 2015) and column generation-based approaches (Aghezzaf
et al., 2006).

The research presented below represents an attempt to use local search and population
search meta-heuristics to solve the IRP. The basic idea of the proposed approach is to
combine a nature-inspired evolutionary optimization algorithm, such as the SA, and a
biologically-inspired evolutionary optimization algorithm, that is, the GA, to handle
the IRP. Therefore, a hybrid evolutionary optimization algorithm is proposed to solve
the IRP. The SA is associated with the routing phase of the IRP, while the GA is
related to the planning phase of the IRP. Both algorithms are dealt with in an iterative
way.

The works most closely related to this theis are most likely those of Abdelmaguid and
Dessouky (2006), Aziz and Moin (2007), Moin et al. (2011), Cho et al. (2013), and
Park et al. (2016). Abdelmaguid and Dessouky (2006) introduced a genetic algorithm
to solve the one-to-many type of the IRP with finite horizon. The objective function
includes transportation costs as well as inventory holding and shortage costs on the
end inventory positions. In particular, they designed a genetic representation in the
form of a two-dimensional matrix based on the delivery schedule and addressed the
vehicle routing part using the Clarke and Wright algorithm. In addition, a randomized
version of a construction heuristic called ATCH (Approximate Transportation Costs
Heuristic) was used to generate the initial random population, while suitable crossover
and mutation operators were designed for the improvement phase of the genetic
algorithm. In the studies by Aziz and Moin (2007) and Moin et al. (2011), the many-
to-one type of IRP with finite horizon is addressed. Both transportation and inventory
costs are considered, while a hybrid genetic algorithm combining a genetic algorithm
(planning phase) and a simple 2-opt procedure (routing phase) is presented. Cho et al.




(2013) proposed an adaptive genetic algorithm for the time dependent inventory
routing problem considering the one-to-many network topology. This paper takes into
account the effect of dynamic traffic conditions in an urban context, while the
objective function consists of the transportation, inventory holding and shortage costs
at the end of the period inventory positions. More recently, Park et al. (2016)
presented a genetic algorithm for the inventory routing problem with lost sales under
a VMI strategy in a two-echelon supply chain comprised of a single manufacturer and
multiple retailers (one-to-many network topology). The objective function consists of
the transportation costs, the inventory holding cost of the manufacturer, the inventory
holding costs of the retailers and the costs associated with lost sales.

The proposed hybrid evolutionary optimization algorithm shows significant
differences:

1. Most of the previous research has considered a one-to-many type of IRP in which
the objective function includes shortage costs at the end of the period inventory
positions or costs related to lost sales. In this thesis, stock-outs or lost sales are not
allowed, and therefore, no shortage costs or costs related to lost sales are included
in the objective function.

2. Some of the previously reported research (e.g., Abdelmaguid and Dessouky, 2006;
Aziz and Moin, 2007; Moin et al., 2011) has focused only on the planning phase
of the IRP, while the routing phase has been addressed by simple heuristics such
as the Clarke and Wright algorithm and the 2-opt algorithm. In this thesis, the
routing phase of the IRP is addressed by the Simulated Annealing algorithm, a
nature-inspired  optimization  algorithm  (local search  meta-heuristic)
simultaneously improving the solution approach in the context of the vehicle
routing problem.

3. In the VRP literature, there exists a classical set of well-known benchmarks
commonly used to test new VRP algorithms. However, this is not the case for the
IRP. As a result, to provide complete information about the set of benchmarks that
are employed so that other researchers can use them, new datasets have been
developed by generalizing the well-known dataset P of Augerat et al. (1998).
These datasets are divided into two categories: datasets consisting of low
inventory holding costs and datasets including high inventory holding costs.
Different problem sizes, based on the total number of customers, were designed in
each category to evaluate the performance of the proposed solution approach in
the context of the one-to-many type of IRP: 15, 20, 22, 39, 44, 50, 54, 59, 64, 69,
75 and 100 customers (first category) and 15, 20, 22, 39, 44, 50 customers (second
category).

As far as the IRPTW is concerned, new benchmark instances have been developed by
generalizing the well-known datasets of Solomon (1987)!. Consequently, the
efficiency and the effectiveness of the proposed two-phase solution algorithm cannot

1 http://web.cba.neu.edu/~msolomon/problems.htm
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be compared to other published IRPTW studies using benchmark instances previously
introduced. This is due to the differentiated manner in which the proposed algorithm
operates based on the assumptions presented in Chapter 4. The basic notion is to
formulate a mathematical problem and present a two-phase solution algorithm to
prefigure a road-map for future work. Testing instances are established to investigate
algorithmic performance, and the computational results are then reported. Finally, this
study provides various graphical presentation formats to highlight the insights that are
gained. In particular, the analytical results and graphic presentations help to simplify
complicated issues and convey meaningful insights into the problem.




Chapter 3

The Inventory Routing Problem

3.1. Problem Description and Mathematical Formulation

This section presents a modeling framework for formulating the IRP. Let ¢ = (V,E)
be a complete undirected graph where V ={0,...,n} is the set of vertices and
E ={(i,j):i,j €V,j > i} is the set of edges. Vertices 1,...,n correspond to the
customers, whereas vertex 0 corresponds to the depot. The model presented here deals
with the repeated distribution of a single product from a single supplier to a set of
geographically dispersed customers C = V\{0} = {1, ..., n} over a given time horizon
of length H. The set of time horizons is denoted by T = {1, ..., H}. Each customer
i € C faces a different demand df per time period ¢ € T, maintains his own inventory
up to capacity U;, and incurs an inventory holding cost of h; per period per unit. It is
assumed that the depot has a sufficient supply of items that can cover all customers’
demands throughout the planning horizon, that is, U, = +o.

A nonnegative cost, c;; is associated with each edge (i,j) € E and represents the
travel cost spent to go from vertex i to vertex j Vi,j € V. Generally, the usage of the
loop edge, (i,i) is not allowed, and this is imposed by defining c;; = +oo for all i €
V. In addition, the cost matrix satisfies the triangle inequality: c; + ¢ = ¢;;. In
other words, it is not convenient to deviate from the direct link between two vertices.
Since G is a complete undirected graph, the cost matrix [cij] IS symmetric, and as a
result, ¢;; = c;; V i,j € V. Vertices are associated with points of the plane having the
given coordinates (x;, y;)Vi € V, and the cost c;; for each edge (i, j) € E is defined as
the Euclidean distance between the two vertices i,j € V. Therefore, c¢;; =

J(xi - xj)2 + (i - J’j)z-

An unlimited fleet of identical vehicles with capacity Q is available for the
distribution of the product. The fleet of vehicles is denoted by the set K = {1,2, ... }.
However, to model the problem, an upper bound on the number of vehicles needed to
distribute the products should be defined. A trivial upper bound on the maximum fleet
size needed is |K| = |C| = n. Furthermore, the formulation uses the following
decision variables:

*  wf,.: the amount of delivery to customer i € C in period t € T by vehicle k € K.
xl-tjk: the number of times the edge (i,j) € E is traversed by vehicle k € K in
periodt € T.
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=yl a binary variable that is used to assign customers to vehicles, with value 1
indicating that customer i € C will be visited by vehicle k € K in period t € T,
and 0 otherwise.

= I}: a nonnegative variable indicating the inventory level at customer i € C at the
end of period t € T. It should be mentioned that at the beginning of the planning
horizon, each customer i € C has an initial inventory level of I? = 0,Vi € C of
product.

Moreover, stock-outs are not allowed at the customers, while the quantities delivered
by each vehicle in each route cannot exceed the vehicle capacity. As far as the
replenishment policy is concerned, a Maximum Level (ML) policy is applied.
Therefore, any customer has defined a maximum inventory level. Every time a
customer is served, the delivered quantity is such that the inventory level at the
customer is not greater than the maximum level. After defining the necessary
parameters and decision variables, the IRP can be formulated as a mixed integer linear
programming as shown below:

Min ZZZ Z cijxfjk+22hi1f @)

KEK tET i€V jev,j>i teT ieC
Subject to:
If=If_1+ZWfk—df,ViEC,VtET @)
kEK

If>0,VieC,VteT @)
If<U,Vi€CVteT (4)
Z wh < Qyi, Vk EK,VLET (5)
iec
wh S Uy, VieC,VkeK,VtET (6)
nykSLVieC,VteT @)
k€K

Z X + Z Xy = 2V, Vi €C,Vk € KVt €T ©)
JEV,j>i JEV,j<i
Z Z xfjksnyk—ygk,vsgC,vSeS,VkeK,VteT 9)
i€S jES,j>i €S
wh =0,VieC,VkEeK,VtET (10)
x{x €{0,1},Vi€C,Vj€C,j>i,VkEKVLET (11)
x5 €{0,1,2},Vj€C,Vk €K, Vt €T (12)
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v €{0,1}, Vi€ V,Vk EK,VtET (13)

The total cost comprises the transportation costs and the inventory holding costs of
the customers as depicted in the objective function (1). Constraints (2) are the
inventory balance equations for the customers. Constraints (3) guarantee that no
stock-out occurs at the customers, and constraints (4) limit the inventory level of the
customers to the corresponding maximum inventory level (ML policy). Constraints
(5) ensure that the vehicle capacities are not exceeded in any period t € T during the
planning horizon. Constraints (6) impose the condition that if any quantity is
delivered to the customer i € C in period t € T, the customer i is visited in period t.
In addition, a customer can be visited exactly once in each period t € T (7).
Constraints (8) and (9) are the routing constraints. Namely, they guarantee that a
feasible route is determined to visit all customers served in period t € T. Finally,
constraints (10), (11), (12) and (13) are the domain constraints.

3.2. Solution Approach for the IRP

Due to the NP-hard nature of the IRP, a hybrid evolutionary optimization algorithm
based on two well-known meta-heuristics (Genetic Algorithm, Simulated Annealing
Algorithm) is proposed to handle the problem. Since the IRP can be described as the
combination of the Inventory Control and the Vehicle Routing Problems, the meta-
heuristics are used as follows: The Genetic Algorithm is related to the planning phase
of the IRP (inventory control problem) determining delivery times and quantities,
while the Simulated Annealing Algorithm is associated with the routing phase of the
IRP (vehicle routing problem) determining routes. Both algorithms are dealt with in
an iterative way to define the re-optimization phase. Hence, a repetitive procedure is
applied to obtain a near-optimal feasible solution.

3.2.1. Planning Phase — A Genetic Algorithm Approach

Genetic Algorithms (GAs) have been developed by John Holland and his
collaborators at the University of Michigan in the 1970s (Holland, 1975). They are
based on the principles of biological evolution and the natural selection process of the
survival of the fittest. This process actually reflects an optimization process based on
an initial, randomly generated, population of solutions (population-based meta-
heuristic). A solution is referred to as an individual, while its data structure
representation corresponds to the chromosome or genotype. A chromosome consists
of genes that represent the decision variables within a solution. One iteration of
creating a new population through the optimization algorithm is called a generation.
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The population is maintained and evolved from generation to generation using genetic
operators such as evaluation, reproduction (selection), recombination (crossover) and
mutation. The fitness of each individual is associated with the evaluation function or
the objective function, while the phenotype represents how an individual operates
during the fitness assessment.

Furthermore, a selection process allows parent solutions with high fitness to be
selected from the current population. Then, crossover and mutation operators are
applied to generate children (offspring). In particular, the crossover operator intends
to inherit some characteristics (genes) of the two parents to generate the offspring,
while the mutation operator represents a slight change to a single individual. The
offspring compete with the parents for their place in the next generation (survival of
the fittest), thus constructing the next population. In the following subsections, a
detailed description of the developed genetic approach regarding the IRP is given.

3.2.1.1. Chromosome Representation

A small sample problem of a distribution system that comprises a single supplier and
six customers can be considered to illustrate the proposed chromosome representation

(Fig. 2).
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Fig. 2. llustrative example

The planning horizon is equal to six days. At the beginning of the planning horizon,
all customers have zero inventory levels, whereas each customer has a daily demand.
Stock-outs are not allowed, while inventory holding costs exist only at the demand
points. Each customer has a sufficient maximum inventory level to satisfy his storage
needs during the planning horizon. Furthermore, it is assumed that the supplier has a
sufficient supply of products that can cover all customers’ demands throughout the
planning horizon. Table 1 provides information about the maximum inventory level as
well as the inventory holding cost of each customer.
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Table 1

Inventory information for the illustrative example

Customer  Inventory Holding Cost (per unit per period) Maximum Inventory Level
1 0.4649 115
2 0.3723 190
3 0.3545 95
4 0.4054 135
5 0.4908 60
6 0.1219 175

A chromosome can be represented by a two-dimensional matrix with six rows and six
columns (Fig. 3).

Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 43 0 21 13 13 24
Customer 2 74 0 40 55 0 21
Customer 3 15 15 34 0 14 15
Customer 4 26 42 0 23 21 22
Customer 5 7 12 14 5 9 11
Customer 6 29 87 0 0 34 24

Fig. 3. Chromosome representation

The rows and the columns of the matrix correspond to the customers and the time
periods of the planning horizon, respectively. Each cell of the matrix represents the
total amount of product that should be delivered to a specific customer in a specific
time period. For example, the total amount of product that should be delivered to
customer 2 in day 3 is equal to 40. Since stock-outs are not allowed, it should be
observed that each delivery quantity satisfies the current demand of the customer. If a
delivery to a customer does not take place in a specific time period, the period’s
demand is satisfied through the available inventory from a previous delivery. For
instance, the delivery quantities of period 1 for Customer 2 are enough to satisfy the
demands of Period 1 and 2, respectively (43 = 21 + 22). Therefore, for each customer
(row of a matrix), the sum of delivery quantities is equal to the sum of customer
demand during the planning horizon.

3.2.1.2. Generation of Initial Population

Based on a pre-defined population size, a random procedure is followed to generate
the initial population. To begin with, each individual in the population is represented
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by a randomly generated binary matrix (Fig. 4). Each cell contains a 1/0 value
indicating whether a customer is visited in a specific time period.

Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 0 1 1 1 1
Customer 2 0 1 1 0 1
Customer 3 1 1 0 1 1
Customer 4 1 0 1 1 1
Customer 5 1 1 1 1 1
Customer 6 1 0 0 1 1

Fig. 4. Binary matrix representation

Since at the beginning of the planning horizon all customers have zero initial
inventory levels and stock-outs are not allowed, the first column of the binary matrix
contains only 1-values. The remaining columns of the binary matrix are randomly
generated. Below, an algorithm (Algorithm 1) is presented that generates a binary
matrix.

Algorithm 1. Generate a binary matrix

Inputs: NC (humber of customers), NP (number of periods)
tempBM1 < ones(NC, 1), tempBM2 « randi([0,1], NC,NP — 1)
BinaryMatrix < [tempBM1, tempBM?2]

Output: BinaryMatrix

Analytically, ones creates an NC-by-1 array of ones, while randi creates an NC-by-
(NP — 1) array of 1/0 values. Afterward, the algorithm combines the two arrays into
one array to create the binary matrix that corresponds to an individual of the
population. Given a population size, PopSize, this procedure can be repeated to
create the initial population (Algorithm 2).

Algorithm 2. Generate a population of binary matrices

Inputs: NC, NP, PopSize
fori=1:PopSize do
Call Algorithm 1
end — for

Output: PopBM (population of binary matrices)

According to a binary matrix, a real-value matrix that consists of delivery quantities in
each time period of the planning horizon can be easily produced (Algorithm 3). This
two-dimensional matrix reflects the chromosome representation shown in section
3.2.1.1 (Fig. 5).




Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 43 0 21 13 13 24
Customer 2 74 0 40 55 0 21
Customer 3 15 15 34 0 14 15
Customer 4 26 42 0 23 21 22
Customer 5 7 12 14 5 9 11
Customer 6 29 87 0 0 34 24

Fig. 5. Delivery quantities matrix (chromosome representation)

Algorithm 3. Produce chromosome representations of population’s individuals

Inputs: DM (demand matrix), PopBM, PopSize
fori = 1:PopSize do
Population{i} « convertBM (DM, PopBM)
end — for

Output: Population

Given the customers’ demands during the planning horizon and their binary matrix
representations, Algorithm 3 produces real-value matrices that reflect the initial
population with respect to the assumption that stock-outs are not allowed. In
particular, after each iteration, convertBM creates a delivery quantity matrix
according to the demand matrix of each customer and the relative binary matrix. As a
result, after each iteration, an individual is added to the population. Moreover, based
on a delivery quantity matrix, inventory levels and inventory holding costs of each
customer can be easily determined, as shown in figures 6 and 7, respectively.

Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 22 0 0 0 0 0
Customer 2 38 0 0 27 0 0
Customer 3 0 0 14 0 0 0
Customer 4 0 29 0 0 0 0
Customer 5 0 0 0 0 0 0
Customer 6 0 58 39 0 0 0

Fig. 6. Inventory level matrix
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Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 | 10.2281 0 0 0 0 0
Customer 2 | 14.1470 0 0 10.0518 0 0
Customer 3 0 0 4.9631 0 0 0
Customer 4 0 11.7567 0 0 0 0
Customer 5 0 0 0 0 0 0
Customer 6 0 7.0716 4.7551 0 0 0

Fig. 7. Inventory holding cost matrix

3.2.1.3. Fitness Evaluation and Selection

An important issue is the choice of an appropriate fitness function that determines the
selection criterion in the IRP. The fitness quantifies the optimality of a solution (i.e., a
chromosome) in the proposed hybrid evolutionary algorithm so that a particular
chromosome may be ranked against all the other chromosomes. Therefore, optimal
chromosomes are allowed to breed and mix their genes by any of several technigues,
producing a new generation that will be even better. For the IRP, it is assumed that
candidate solutions with lower total costs (inventory holding costs plus transportation
costs) imply better solutions. Since the IRP is a minimization problem, the fitness for
each chromosome is defined as follows:

1
Ykek Deer Liev Ljev,j>i CijXiji T Leer Diec il

fitness = (14)

Therefore, each individual has a probability of being selected that is proportional to its
fitness. The higher the individual’s fitness is, the more likely it is to be selected. In
this context, the roulette-wheel selection approach is adopted as the selection process
(Algorithm 4).
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Algorithm 4. Roulette-wheel selection

Inputs: fitness(1), fitness(2), ..., fitness(PopSize)
foum < Zﬁ:f(’pme fitness(i)
Generate a uniformly distributed random number rN € [0, fiym]
FV « fitness(1)
iter <1
while FV < rN do
iter « iter +1
FV « FV + fitness(iter)
end — while
Parent « iter

Output: Parent

Algorithm 4 shows how to select a parent from a population of PopSize individuals.
To keep the population size constant across generations, suitable pairs of mates are
picked. The goal is to select every time two parents to produce two offspring. This
process is repeated until the population of offspring is the same as the population of
parents.

3.2.1.4. Crossover Operator

Since two parents are selected, a crossover operator can be applied. For the reported
chromosome representation, a single-point crossover operator as well as a double-
point crossover operator has been designed and can be used randomly to produce two
offspring. The two-dimensional matrix structure can be broken horizontally
considering that delivery quantities for a selected set of customers will be exchanged
between two parent solutions. Hence, the crossover point is relevant to a specific row
of the two-dimensional matrix.

3.2.1.4.1. Single-Point Crossover Operator

Based on the two-dimensional matrix structure, the single-point crossover indicates
that one crossover position (a row of the matrix) is selected uniformly at random and
the rows are exchanged between the individuals about this point. Then, two new
offspring are produced. Consider the following example (Fig. 8).
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P1 | P2 | P3 | P4 | P5 | P6 P1 | P2 | P3 | P4 | P5 | P6
Cl | 64| 0 0 |13 ]37 ]| 0 Cl |21 |22 |21 |26| 0 | 24
C2 | 74| 0 |40 |55 | 0 |21 C2 |114| O 0 |28 |27 | 21
C3 | 15| 15| 20 | 14 | 29| O C3 |3 | 0 |34 | 0 |25]| 4
C4 | 26 | 42 | O | 23 | 21 | 22 C4 | 68| O 0 | 44| 0 | 22
C5 | 7 12 | 14 | 5 9 11 C5 |19 0 |19 | 0 9 | 11
C6 | 29 | 87 | O 0 | 34 | 24 C6 | 29 | 48 | O | 39 | 34 | 24
Parent 1 Parent 2
P1 | P2 | P3 | P4 | P5 | P6 P1 | P2 | P3 | P4 | P5 | P6
Cl |64 | O 0 | 13|37 | 0 Cl |21 |22 |21 |26 | 0 | 24
C2 |74 0 |40 |55 | 0 |21 C2 [114| O 0 | 28|27 | 21
C3 |15 |15 | 20 | 14 | 29 | O C3 |3 | 0 |34 | 0 |25]| 4
C4 | 68| 0 0 |44 | O | 22 C4 | 26 | 42 | O | 23 | 21 | 22
C5 | 19| 0 |19 0 9 | 11 C5 | 7 |12 | 14| 5 9 | 11
C6 | 29 | 48| O | 39 | 34| 24 Cé6 | 29 | 87 | O 0 | 34 | 24
Offspring 1 Offspring 2

Fig. 8. Single-point crossover operator

In the above case, the third row of the matrix is considered as the crossover point. As
a result, Parent 1 and Parent 2 exchange rows 4, 5 and 6 with each other, thus
producing two offspring. The algorithm that shows the functionality of the single-
point crossover operator is presented below (Algorithm 5). Assuming that two parents
are selected, parent(1) and parent(2) from a given population, population, a
crossover point is randomly generated from [2,NC — 1], where NC is the given
number of customers. Since the crossover point is known, two offspring are produced.
The first offspring, 04, as well as the second one, 0,, maintain the first CrossPoint
rows of P; and P,, respectively. In addition, the remaining rows of P;, CrossPoint +
1,..,NC, are copied to 0,, while the remaining rows of P, are copied to O;.
Furthermore, to guarantee the continuity of the process, the relative binary matrices
for 0, and 0, are produced, called 0¥Mand 05", respectively.

Algorithm 5. Single-point crossover

Inputs: PopBM, Population, Parent(1), Parent(2), NC
P, « Parent(1),P, « Parent(2),CrossPoint « random integer from [2,NC — 1]
0, « Population{P;}, 0, « Population{P,}, 05" « PopBM{P,}, 05M « PopBM{P,}
0,(CrossPoint + 1:end,:) « Population{P,}(CrossPoint + 1:end,:)
0,(CrossPoint + 1:end,:) « Population{P,}(CrossPoint + 1:end,:)
0BM(CrossPoint + 1:end,:) « PopBM{P,}(CrossPoint + 1:end,:)
03M(CrossPoint + 1:end,:) « PopBM{P,}(CrossPoint + 1:end,:)

Outputs: 0,, 0,, 08M o5M
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3.2.1.4.2. Double Crossover Operator

In the double-point crossover operator, two crossover positions are selected uniformly
at random and the rows are exchanged between the individuals between these points.
Then, two new offspring are produced. Consider the following example.

P1 | P2 | P3 | P4 | P5 | P6 P1 | P2 | P3 | P4 | P5 | P6
Cl |64 | 0 0 |13 ]37 ]| 0 Cl |21 |22 |21 |26| 0 |24
C2 | 74| 0 |40 |55 | 0 |21 C2 |114| O 0 |28 |27 | 21
C3 |15 | 15|20 | 14 29| O C3 |3 | 0 |34 |0 |25 4
C4 | 26 | 42 | O | 23 | 21 | 22 } C4 | 68 | O 0 | 44| 0 | 22
Cs5 | 7 12 | 14 | 5 9 11 C5 |19 0 |19 | O 9 | 11
Cé6 | 29 | 87 | O 0 | 34 | 24 C6 | 29 | 48 | O | 39 | 34 | 24
Parent Parent 2
P1 | P2 | P3 | P4 | P5 | P6 P1 | P2 | P3 | P4 | P5 | P6
Cl | 64| O 0 | 13 37| 0 Cl |21 |22 21|26 | 0 |24
C2 | 74| 0 |40 |55 | 0 |21 C2 |114| O 0 | 28|27 |21
C3 |3 | 0 |34 | 0| 25]| 4 C3 |15 |15 | 20 | 14 {29 | O
C4 | 68| O 0 |44 | O | 22 C4 | 26 | 42 | O | 23 |21 | 22
C5 | 7 12 | 14 | 5 9 11 C5 |19 | 0 |19 | O 9 | 11
Cé6 | 29 | 87 | O 0 | 34 | 24 C6 | 29 | 48 | O | 39 | 34 | 24
Offspring 1 Offspring 2

Fig. 9. Double-point crossover operator

This example depicts two crossover positions, row 2 and row 5. Therefore, rows 3 and
4 of the Parent 1, P,, are copied to the Offspring 2, 0,, while rows 3 and 4 of the
Parent 2, P,, are copied to the Offspring 1, 0,. Analogous to the simple-point
crossover operator, an algorithm of the double-point crossover operator is presented
below (Algorithm 6).
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Algorithm 6. Double-point crossover

Inputs: PopBM, Population, Parent(1), Parent(2), NC
P, « Parent(1),P, « Parent(2),CrossPoint, « random integer from [2,NC — 1]
CrossPoint, < random integer from [2,NC — 1]
sort(CrossPoint,, CrossPoint,) //CrossPoint, # CrossPoint,
a « CrossPoint,,b< CrossPoint,
0, < Population{P,}, 0, « Population{P,}, 08" « PopBM{P,}, 05M « PopBM{P,}
0,(a+1:b—1,:) « Population{P,}(a + 1:b—1,:)
0,(a+ 1:b—1,:) « Population{P,}(a + 1:b—1,:)
0*M(a+1:b—1,:) « PopBM{P,}(a+ 1:b —1,:)
02M(a+1:b—1,:) « PopBM{P,;}(a + 1:b —1,:)
Outputs: 0,,0,, 0BM, 05M

3.2.1.5. Mutation Operator

After the crossover, an individual is subjected to mutation. In particular, the mutation
prevents the algorithm from being trapped in a local minimum. Therefore, through the
crossover, a current solution is exploited to find better ones, whereas the mutation is
supposed to help to explore the whole search space. In the context of the proposed
solution approach, the mutation operator presented by Abdelmaguid and Dessouky
(2006), called the backward delivery exchange, is adopted. The backward delivery
exchange process is chosen due to the restriction that stock-outs are not allowed.
Accordingly, part of a customer’s delivery amount can be transferred only to a
preceding period. The following figure (Fig. 10) illustrates an example of using the
backward delivery exchange operator.

Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 43 0 21 13 13 24
Customer 2 74 0 40 55 0 21
Customer 3 15 15 34 0 14 15
Customer 4 26 42 0 23 21 22
Customer 5 7 }2‘22/“\14.4 5 9 11
Customer 6 29 87 0 0 34 24

Fig. 10. Backward delivery exchange operator

The example shows that the delivery quantity for Customer 5 scheduled in period 3 is
reduced by 10 units, and this amount is transferred to period 2.

Below, the algorithm of the backward delivery exchange operator is presented
(Algorithm 7). An important parameter in the mutation process is the mutation
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probability, MutationRate, which decides how often parts of a chromosome will be
mutated. Since a mutation takes place, a random integer, RandNC, is generated in the
interval from [1, NC], where NC indicates the number of the customers. Then, for
RandNC times, the following process is repeated. A period, RandPer, is selected
randomly. If no deliveries are scheduled for this period, RandPer is re-generated
randomly. Afterwards, find returns the customers, ListCust, that are scheduled to be
visited in the RandPer time period of the planning horizon. A customer,
RandMutCust, from ListCust is randomly selected and his scheduled delivery
amount, DelX, is saved. Next, the amount that could be transferred to a preceding
period, BcDelX, is randomly selected in the interval from [1, DelX]. From previous
periods where a customer has scheduled deliveries, the nearest period, PrecPer, is
selected to transfer BcDelx units of product. Subsequently, the scheduled delivery
quantity in period RandPer is reduced by BcDelX units, and this amount is
transferred to period PrecPer.

Algorithm 7. Backward delivery exchange operator

Input: O (child solution)
if (rand « U(O,l)) < MutationRate then
RandNC « random integer from [1,NC]
for mutind = 1: RandNC do
RandPer « random integer from [2, NP]
while sum(0(:, RandPer)) = 0 do
RandPer « random integer from [2, NP]
end — while
ListCust « find(O(:,RandPer)),n « length(ListCust)
RandMutCust < random integer from [1,n]
DelX « O(ListCust(RandMutCust), RandPer)
BcDelX « random integer from [1, DelX]
PrecPer « findPrecedingPeriod(RandPer)
tempDel « O(ListCust(RandMutCust), PrecPer)
O(ListCust(RandMutCust), PrecPer) « tempDel + BcDelX
O(ListCust(RandMutCust), RandPer) « DelX — BcDelX
end — for
end — if
Output: O (child solution after mutation)

3.2.2. Routing Phase — A Simulated Annealing Algorithm Approach

Since the Genetic Algorithm focuses only on the planning phase by determining the
delivery times and quantities, the vehicle routes should be constructed. The routing
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phase is related to the usage of a Simulated Annealing Algorithm for solving a vehicle
routing problem for each time period of the planning horizon where delivery
quantities have been scheduled. The Simulated Annealing Algorithm is a nature-
inspired optimization algorithm introduced by Kirkpatrick et al. (1983). Contrary to
Genetic Algorithms, it is a single-individual stochastic algorithm, as it does not
involve a population of candidate solutions. The algorithm mimics the annealing
process of heating and cooling a material in order to re-crystallize it (Talbi, 2009). In
particular, the annealing process starts with an initial system state at a very high
temperature, which is slowly decreased to obtain a strong crystalline structure. The
strength of the structure depends on the rate of decrease, which is subjected to a
cooling process until it converges to an equilibrium state (steady frozen state).
However, to reach an equilibrium state at each temperature, a number of sufficient
transitions must be applied.

Similarly, the Simulated Annealing algorithm (Algorithm 8) consists of two cycles,
the external and the internal cycle. The algorithm begins with an initial feasible
solution, x,, and a high temperature T,,,,, and proceeds in EXTcyc iterations (external
cycle). Then, the algorithm proceeds in INTcyc iterations (internal cycle).
Throughout the internal cycle, the temperature is constantly trying to converge to an
equilibrium state at the end of INTcyc iterations. At each iteration of the internal
cycle, a neighboring solution, x, is generated by perturbing the current solution. A
cost function, CostFunction(), exists to measure the quality of each solution. If the
cost of the neighboring solution, CostFunction(x), is less than the cost of the current

solution, CostFunction(x,), it is accepted. Otherwise, it is accepted with probability
AE
e T, where T is a control parameter (temperature) and AE represents the difference

in the objective value between the current solution and the generated neighboring
solution. The control parameter T is decreased gradually through the external cycle.
The temperature is updated using a geometric schedule that corresponds to the
formula T < alpha X T, where alpha €[0,1]. Therefore, as the algorithm
progresses, the probability that a non-improving generated neighboring solution is
accepted decreases. The set of parameters related to the high value of control
parameter (temperature), T,,q., the rate of decrease (cooling rate), alpha, and the
stopping condition of the internal (INTcyc iterations) as well as external cycle
(EXTcyc iterations) of the algorithm is called the annealing (cooling) schedule.
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Algorithm 8. Simulated annealing algorithm

Inputs: Ty, EXTcyc,INTcyc, alpha
xo < GeneratelnitialSolution() // Algorithm 9
T « Thal <1
while i < EXTcyc do
je1
while j < INTcyc do
x < CreateNeighboringSolution(x,) // Algorithm 10

if CostFunction(x) < CostFunction(x,) then

X € X
else
AE « CostFunction(x,) — CostFunction(x),randN « U(0,1)
if randN < e‘g then
Xo € X
end — if
end — if
jej+1

end — while
T < alpha*T,i<i+1
end — while

Output: best solution found

In terms of the optimization process, the annealing schedule controls the transition
from the exploration to the exploitation. Particularly, at the beginning of the
algorithm, the temperature has a high value, which is decreased until a final
temperature is reached. This final temperature is typically close to zero. As a
consequence, at the beginning of the algorithm, the exploration is high and the
exploitation is low, while at the end of the algorithm, the exploitation is high and the
exploration is low. The main objective is to obtain a balance between exploration and
exploitation to sufficiently explore the search space and simultaneously exploit good
solutions.

3.2.2.1. Solution Representation

Assume an individual in a population obtained by the planning phase described in
section 3.2.1. The Simulated Annealing algorithm should be applied to each time
period of the planning horizon where scheduled delivery quantities exist (Fig. 11).
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Period 1 | Period2 | Period3 | Period4 | Period5 | Period 6
Customer 1 64 0 0 26 0 24
Customer 2 36 38 68 0 44 4
Customer 3 30 0 20 43 0 0
Customer 4 39 0 52 0 43 0
Customer 5 19 0 39 0 0 0
Customer 6 58 0 116 0 0 0
Customer 7 23 0 17 8 23 0
Customer 8 110 0 0 25 0 0
Customer 9 30 0 0 0 17 0
Customer 10 10 13 0 13 4 0
Customer 11 19 21 0 0 0 0
Customer 12 34 0 52 0 0 0
Customer 13 14 0 14 0 16 0
Customer 14 51 0 0 69 0 0
Customer 15 38 0 0 7 18 0

Fig. 11. Solving a VRP problem at each time period of the planning horizon

Path representation is the most natural way of representing the routes of a VRP. Since
a VRP consists of one or more routes, the length of each path is variable. On account
of this, a dynamic variable, x, can be used to represent the solution of the VRP. x
contains all the routes of a specific time period of the planning horizon. For instance,
in the first time period x = {x. Ry, x. R,, x. R3}, where (a) x.R; = [0,2,13,,8,3,10,0]
is the first route, (b) x.R, =[0,4,11,15,12,1,0] is the second route and (c) x.R; =
[0,6,7,9,14,5,0] is the third route. The zero value in each row vector represents the
supplier, while the other numbers represent the customers.

3.2.2.2. Initial Solution

In order to generate an initial solution to start solving a VRP with Simulated
Annealing algorithm, a random approach is followed, GeneratelnitialSolution().
The approach iterates over a pre-defined list of customers that will be visited in a
specific time period according to the planning phase. The algorithm (Algorithm 9)
proceeds as follows. If there are n customers in the pre-defined list, a customer is
selected randomly to start creating a route. Each route corresponds to a specific
vehicle of a fleet with capacity Q. Moreover, each customer who is added in a route
should have delivery quantity, DQgeiecteacustomer» SUCh that it does not exceed the
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vehicle’s capacity, VC, whereas this customer is excluded from the list since he is
associated with a specific route. If a customer’s delivery quantity is greater than the
remaining vehicle’s capacity, VC, a new route is designed that is related to a new
vehicle with capacity VC = Q. Finally, the combination of the routes construct the
random initial non-optimal feasible solution, x,, of the VRP.

Algorithm 9. Generate an initial VRP solution

Inputs: ListOfCustomers, Q
n « length(ListOf Customers),i « 1,j « 1,VC < Q
whilei <ndo
SelectedCustomer « generate random integer from [ListOfCustomers]
if DQserecteacustomer < VC then

if DQseiecteacustomer = VC then

R; < add SelectedCustomer, Update ListOf Customers
X< R, jej+1LVC < Q

i—i+1

else
R; « add SelectedCustomer, Update ListOf Customers
VC < VC = DQseiecteacustomers U < 1 +1

end — if

else
Xo < Rj,jej+1L,VC<Q
R; < add SelectedCustomer, Update ListOfCustomers
VC < VC — DQserecteacustomers i < 1 +1
end — if
end — while
update x,

OUtpUt: xo = {xo.Rl,xO.Rz, ...}

3.2.2.3. Cost Function

The objective of the Simulated Annealing algorithm is to minimize the cost associated
with all proposed routes of a specific time period of the planning horizon. Therefore,
if a solution x consists of k routes, the cost function, CostFunction, is equal to:

ij Cost(x.R;).
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3.2.2.4. Neighboring Solution

At each iteration of the internal cycle of the Simulated Annealing algorithm, a
neighboring solution, x, is generated by perturbing the current solution,
CreateNeighboringSolution(x,) (Algorithm 10). The generation of the
neighboring solution is based on a random selection among three inter-route
improvement algorithms: (a) the move improvement algorithm, (b) the swap
improvement algorithm and (c) the cyclic improvement algorithm. The three
algorithms attempt to reduce the total route length by moving one or more customers
to a different route. It is worth noting that a move is feasible if the demand of the
moved customer does not violate the vehicle capacity on the route it is moved to. All
of the algorithms are analytically described by Goetschalckx (2011).

Algorithm 10. Generate a neighboring solution

Input: x,
randN « generate random integer from [1,3]
if randN = 1 then
x <« move(xy)
end — if
if randN = 2 then
x « swap(xy)
end — if
if randN = 3 then
x « cyclic(xy)
end — if
Output: x = {x.R{,x.R,, ...}

3.2.3. Re-optimization Phase — A Hybrid Approach

Both approaches that are presented in sections 3.2.1 (Genetic Algorithm) and 3.2.2
(Simulated Annealing) are dealt with in an iterative way, thus constructing a hybrid
evolutionary optimization algorithm (Algorithm 11) that is related to a re-optimization
phase. Hence, a repetitive procedure is applied to obtain a near-optimal feasible
solution. The algorithm starts by creating the IRP model based on a specific IRP data
set, IRPInstance. Then, Algorithm 2 is called to generate an initial population of
PopSize individuals as far as the random binary matrices are concerned. Algorithm 3
is called to generate the population of the genetic algorithm based on the random
binary matrices. Since an initial population has been constructed, a population of VRP
problems is created. Each element of the population consists of a set of VRPs that
correspond to each time period of the planning horizon of each individual of the
genetic algorithm population. Consequently, for each individual of the population,
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Algorithm 8 is used to solve a VRP problem for each time period of the planning
horizon where scheduled delivery quantities exist. Since the delivery quantities and
times as well as the VRP solutions are available for each individual of the population,
respective populations containing information about the inventory levels, PopIM, the
inventory costs, PopICM, and the vehicle routing costs, PopVRPCM, can be created.
In addition, the total inventory routing cost is calculated for each individual of the
population since PopICM and PopVRPCM are available. With respect to the
minimum inventory routing cost, the best individual of the population is selected,
BestIRPSol, whereas the population is sorted.

After initialization, the algorithm proceeds as follows. For each generation, an internal
cycle takes place to produce the offspring. At each iteration of the internal cycle, two
parents are selected according to their fitness (see Section 3.2.1.3) using Algorithm 4.
Algorithm 5 or Algorithm 6 is used randomly to apply a crossover operator to produce
two offspring. For each offspring, a mutation operator may be applied using
Algorithm 7. After the internal cycle, a new population has been created consisting of
both parents, Population, and offspring, newPopulation. Furthermore, to avoid
duplicate individuals, a procedure called replaceDuplicatesIRP() is applied. This
procedure uses Algorithm 7, applying the proposed mutation operator to duplicate
individuals. Afterward, the new best IRP solution, BestIRPSol2, is calculated and
compared with the previous best IRP solution, BestIRPSol. If the second solution is
better, it is accepted. Otherwise, the new population is sorted and only the first
PopSize individuals are selected to keep the population size constant from one
generation to the next.

Algorithm 11. Hybrid evolutionary optimization algorithm

Inputs: PopSize, MaxGen, MutationRate, Q,IRPInstance

IRPmodel « LoadlRPData(IRPInstance), PopBM « call Algorithm 2
Pop « call Algorithm 3
PVRPs « createVRPs(IRPmodel, Pop, Q)
for each element in pVRPs do

PopVRPs < call Algorithm 8
end — for
PopIM « createPopIM (IPRmodel, Pop), PopICM « createPopICM (IRPmodel, PopIM)
PopVRPCM « createPopVRPCM (PopVRPs)
PopIRPCM < createPopIRPCM (PopICM, PopVRPCM)
BestIRPSol < [PopBM{best}, Pop{best}, PopVRPs{best}, PopIRPCM{best}]
[PopulationBM, Population, Populationl RPCM] < popSort(PopBM, Pop, PopIRPCM)
selectedParents « zeros(1,2)
for indx = 1: MaxGen do

for k =1:2: PopSize do

Fitness « CreateFitness(PopulationlRPCM)
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selectedParents(1) « call Algorithm 4
selectedParents(2) < call Algorithm 4,randN < U(0,1)
if randN < 0.5 then
call Algorithm 5
else
call Algorithm 6
end — if
fori=k:k+1do
call Algorithm 7
end — for
end — for
PopA < [PopulationBM,newPopulationBM |
PopB « [Population, newPopulation]
[PopA, PopB] « replaceDuplicatesIRP(PopA, PopB), PopBM < PopA
Pop « PopB
PVRPs « createVRPs(IRPmodel, Pop, Q)
for each element in pVRPs do
PopVRPs < call Algorithm 8
end — for
PopIM « createPopIM (IPRmodel, Pop)
PopICM <« createPopICM (IRPmodel, PopIM)
PopVRPCM « createPopVRPCM (PopVRPs)
PopIRPCM « createPoplRPCM (PoplCM, PopVRPCM)
BestIRPSol2 « [PopBM{best}, Pop{best}, PopVRPs{best}, PopI|RPCM{best}|
if BestIRPSol2 < BestIRPSol then
BestIRPSol « BestIRPSol?2

else

[PopulationBM, Population, PopulationRPCM] < popSort(PopBM, Pop, PopIRPCM)
PopulationBM < PopulationBM (1: PopSize)
Population < Population(1: PopSize)
end — if
end — for

Output: BestIRPSol

Based on the example presented in Section 3.2.2.1, the following figure illustrates the
IRP solution related to the best individual of the population through 50 generations
(Fig. 12).
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Fig. 12. IRP solution for the IRP sample problem — 50 generations

Table 2 presents the routes that take place in each time period of the planning horizon.

Table 2

Cost information and routes for the IRP sample problem — 50 generations

IRP Solution

Routes of Period 1

Routes of Period 2

Routes of Period 3

Route 1: 0-2-13-8-3-10-0
Route 2: 0-4-11-15-12-1-0
Route 3: 0-6-7-9-14-5-0

Route 1: 0-2-10-11-0

Route 1: 0-2-3-12-4-0
Route 2: 0-6-13-7-5-0

Routes of Period 4

Routes of Period 5

Routes of Period 6

Route 1: 0-1-10-15-3-8-7-14-0

Route 1: 0-7-9-13-2-10-15-4-0

Route 1: 0-2-1-0

Total VRP Cost

Total Inventory Control Cost

Total IRP Cost

736.7608

245.1916

981.9524

If the number of generations is increased (e.g., 100 instead of 50), then a better
solution is obtained (Fig. 13, Table 3).
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Table 3

Cost information and routes for the IRP sample problem — 100 generations

IRP Solution

Routes of Period 1

Routes of Period 2

Routes of Period 3

Route 1: 0-5-14-9-13-2-6-0
Route 2: 0-1-3-8-7-0
Route 3: 0-4-11-15-12-10-0

Route 1: 0-6-7-2-0
Route 2: 0-4-15-0

Route 1: 0-2-8-13-9-14-5-0

Routes of Period 4

Routes of Period 5

Routes of Period 6

Route 1: 0-1-10-3-2-7-5-6-0

Route 1: 0-2-7-9-14-5-0

Route 1: 0-6-8-3-12-1-0

Total VRP Cost

Total Inventory Control Cost

Total IRP Cost

711.8943

231.7815

943.6758

The next figure (Fig. 14) illustrates a typical graph of the minimum IRP cost in the
population as a function of generation number. Specifically, the figure shows a typical
evolutionary algorithm convergence behavior for the IRP sample problem. In the first
case (50 generations), the evolutionary algorithm has mostly converged after 40
generations; in the second case (100 generations), after 95 generations. However, it
appears that in both cases, the best candidate solution continues to improve for a few

more generations.
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3.2.4. Computational Experiments and Results

This section presents the computational results of the proposed hybrid evolutionary
optimization algorithm described in Section 4. The algorithm was developed in the
MATLAB programming language and executed on a DELL personal computer with
an Intel® Core™ i3-2120, clocked at 3.30 GHz, a microprocessor with 4 GB of RAM
memory under the operating system Microsoft Windows 7 Professional. As
mentioned in Chapter 2, new benchmark instances were designed. Consequently, the
efficiency and the effectiveness of the proposed algorithm cannot be compared to
other published IRP studies using benchmark instances previously introduced. This is
due to the differentiated manner in which the proposed algorithm operates based on
the assumptions presented in Chapter 2 and Section 3.1, respectively. However, this
section validates the evolutionary algorithm and then evaluates its performance by
comparing the algorithm’s solutions with solutions obtained by solving a VRP
problem for each time period of the planning horizon based on the known demands
(the planning phase is ignored). The algorithm has been tested on a newly introduced
set of 18 IRP benchmark instances described in the following. All benchmark
instances and their computational results are available at
http://www.msl.aueb.gr/files/GaSalRP.zip.

3.2.4.1. Set of Benchmark Instances

New datasets have been developed by generalizing the well-known dataset P of
Augerat et al. (1998). These datasets are divided into two classes. The first class
(Class A) contains the instances with planning horizon H = 6 time periods (days) and
a high inventory holding cost of the customers, h; € [0.1,0.5]Vi € C. The second
class (Class B) contains the instances with planning horizon H = 6 time periods
(days) and low inventory holding costs of the customers, h; € [0.01,0.05]Vi € C. The
datasets are named in the form of “IRP nX pY HC” (first class) or
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“IRP_nX_pY LC” (second class) strings, where “X” stands for the number of
customers and “Y” stands for the number of time periods. For instance, the problem
IRP_n15 p6 HC represents a test problem with 15 customers, a planning horizon of 6
days and high inventory holding costs at the customers. Different problem sizes,
based on the total number of customers, were designed in each class. Class A contains
problems with 15, 20, 22, 39, 44, 50, 54, 59, 64, 69, 75 and 100 customers, while the
Class B contains problems with 15, 20, 22, 39, 44 and 50 customers. Vertex
coordinates are kept the same as in the study by Augerat et al. (1998). The distance
matrix is obtained by calculating the Euclidean distances (symmetric cost matrix).
Demand exists for each customer at each time period of the planning horizon.
Customer demand at each time period was generated according to the Poisson
distribution, Poisson(A), where A is the rate parameter. For each customer, the rate
parameter is equal to his demand in the single-period VRP problem of Augerat et al.
(1998). An unlimited fleet of identical vehicles with capacity Q is available for the
distribution of the product. The vehicle capacity varies from 200 to 300 units of
product. At the beginning of the planning horizon, all customers have zero inventory
levels. Each customer has a sufficient maximum inventory level to satisfy his storage
needs during the planning horizon. Namely, for each customer i € C, Y!= df < U,.
Finally, the supplier has a sufficient supply of products that can cover customers’
demands throughout the planning horizon.

3.2.4.2. Parameter Setting

The proposed hybrid evolutionary algorithm has seven parameters to be set. Four of
the parameters are associated with the Simulated Annealing algorithm. T,
determines the initial value of the temperature. EXTcyc and INTcyc are the
maximum number of iterations for the external and internal cycle, respectively. In
addition, alpha reflects the cooling rate of the geometric schedule. The other three
parameters are related to the Genetic Algorithm. Particularly, PopSize defines the
size of the population, MaxGen sets the maximum number of generations (i.e.,
maximum number of iterations), while MutationRate corresponds to the mutation
rate. Based on the minimal cost criterion, the value of each parameter is determined
after some experiments in the context of the VRP and the Inventory Control Problem,
respectively. The values of the above parameters for each instance are presented in
Table 4.
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Table 4

Parameters of the hybrid evolutionary optimization algorithm

Instance Tax EXTcyc INTcyc alpha PopSize MaxGen MutationRate
Class A Instances
IRP_n15_p6_HC 100 1500 100 0.98 10 (20) 50 (100) 0.08
IRP_n20_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n22_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n39_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n44_p6 HC 100 1500 100 0.98 10 50 0.08
IRP_n50_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n54 p6_ HC 100 1500 100 0.98 10 (20) 50 (70) 0.08
IRP_n59_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n64_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n69_p6_HC 100 1500 100 0.98 10 50 0.08
IRP_n75_p6_HC 100 1500 100 0.98 10 (20) 50 (70) 0.08
IRP_n100_p6_HC 100 1500 100 0.98 10 (20) 50 (70) 0.08
Class B Instances
IRP_n15 p6_LC 100 1500 100 0.98 10 50 0.08
IRP_n20_p6_LC 100 1500 100 0.98 10 50 0.08
IRP_n22_p6_LC 100 1500 100 0.98 10 50 0.08
IRP_n39_p6_LC 100 1500 100 0.98 10 50 0.08
IRP_n44_p6_LC 100 1500 100 0.98 10 50 0.08
IRP_n50_p6_LC 100 1500 100 0.98 10 50 0.08

3.2.4.3. Results

This section presents the computational results for the 12 and 6 instances of Class A
and B, respectively. Since the algorithm cannot be compared to other published IRP
studies, the best solution obtained from the proposed algorithm (IRP) is compared to
the best solution obtained if the planning phase is ignored (p — VRP). In the aftermath
of ignoring the planning phase, a VRP problem needs to be solved for each day of the
planning horizon according to daily demand. The proposed Simulated Annealing
algorithm for the routing phase is then used to solve a daily VRP problem through the

planning horizon. To compare the results, the following gap percentage formula is

— L % 100. The Sol,_ygp corresponds
Solp_vrP

to the solution obtained by solving the daily VRPs according to the known daily
demands, while the Sol;zp determines the solution obtained by applying the proposed
hybrid evolutionary optimization algorithm. Since the Sol;zp is compared with the
Sol,_ygp, a positive gap means that the Sol,,_ygp is outperformed. The computational

Used Gap (%) = (SOl]Rp - SOlp—VRP) X
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results obtained are summarized in Tables 5 (Class A instances) and 6 (Class B
instances). For the p — VRP problem, the total vehicle routing cost is presented,
whereas for the IRP problem, the total cost is separated in terms of its transportation
and inventory cost. In addition, the last column of the table shows the gap between the
two problems reflecting the respective relative error.

Table 5

Experimental results (first class of instances)

| p-VRP IRP p-VRP - IRP
nstance
Vehicle Routing Cost ~ Vehicle Routing Cost  Inventory Holding Cost ~ Total Cost  Gap (%)

736.7608 245.1916 981.9524  -13.9741
IRP_n15 p6 HC 1141.4608

711.8943 231.7815 943.6758  -17.3274
IRP_n20 p6_HC 1313.139 947.7804 323.2335 1271.0139 -3.2080
IRP_n22 p6 HC 1348.1933 1073.4663 245.6849 1319.1511 -2.1542
IRP_n39 p6 HC 2481.3249 1638.3222 648.6909 2287.0132 -7.8310
IRP_n44 p6_HC 2832.1262 1311.7218 743.3693 2055.0912 -27.4365
IRP_n50_p6_HC 2934.1541 1546.7005 780.6426 2327.3431 -20.6810

1931.812 964.661 2896.4729 -3.1669
IRP_n54_p6_HC 2991.2924

2281.1826 801.8551 3083.0377 3.0671
IRP_n59 p6 HC 3472.2657 2560.0989 958.1427 3518.2415 1.3241
IRP_n64 p6 HC 3707.7601 2691.5032 1143.1868 3834.69 3.4234
IRP_n69 p6_HC 4014.4543 3015.5997 1215.7251 4231.3248 5.4022

3029.7364 1208.7383 4238.4747 8.0253
IRP_n75 p6_HC 3923.5927

2930.6974 1190.7582 4121.4556 5.0429

3791.122 1190.755 4981.877 2.6264
IRP_n100_p6 HC 4854.3807

3645.1169 1188.8117 4833.9286 -0.4213
Table 6
Experimental results (second class of instances)

p-VRP IRP p-VRP — IRP
Instance _ _ _ _ _
Vehicle Routing Cost ~ Vehicle Routing Cost  Inventory Holding Cost ~ Total Cost  Gap (%)

IRP_n15 p6 LC 1141.4608 664.3223 25.0305 689.3528  -39.6078
IRP_n20 p6 LC 1313.139 774.6633 36.3499 811.0132  -38.2386
IRP_n22 p6 LC 1348.1933 986.0693 26.7627 1012.832  -24.8749
IRP_n39 p6 LC 2481.3249 1406.3136 63.409 1469.7226 -40.7686
IRP_n44 p6 LC 2832.1262 1428.9866 73.6921 1502.6787 -46.9417
IRP_n50_p6 _LC 2934.1541 1276.7132 191.8418 1468.555  -49.9496

Based on Table 5, it can be concluded that better solutions are obtained when the
planning phase is considered. The ability of each customer to have storage enables a
significant decrease in the vehicle routing cost, reducing the total number of routes
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during the planning horizon. For 8 of the 12 instances, the evolutionary algorithm
provides better solutions with gaps in the interval of —27.4365 percent to —0.4213
percent. It should not pass unnoticed that even in cases where the p — VRP provides
better solutions, a change in parameters of the evolutionary algorithm, such as
population size and maximum number of generations (see Table 4), results in a gap
improvement. Specifically, for the first, the eleventh and the twelfth instance of Class
A, the gap was improved by 24%, 37.16% and 116.04%, respectively. In particular,
in the last case, the improvement of the gap was such that the best solution of the
instance was improved significantly. Despite the better solution obtained from the
p — VRP, the change in the parameters led to the evolutionary algorithm providing an
even better solution.

Furthermore, Table 6 shows the computational results related to the instances of Class
B. As can be observed, in all cases, the evolutionary algorithm provides better
solutions than the p — VRP, with gaps in the interval of —49.9496 percent to
—24.8749 percent. The results indicate that if a small inventory holding cost is
applied to each customer, better solutions can be obtained, significantly reducing the
total vehicle routing cost and designating the importance of integrating supply chain
activities.

To illustrate in more detail the behavior of the proposed algorithm, more information
is presented about the vehicles (number of routes) used in each time period of the
planning horizon in Tables 7 and 8.

Table 7
Number of vehicles used during the planning horizon (first class of instances)
p-VRP IRP
Instance No. of No. of
PL P2 P3 P4 P5 P6 Pl P2 P3 P4 P5 P6
Routes Routes
31 2 1 1 1 9
IRP.nl5p6HC 2 2 2 2 2 2 12
3 2 1 1 1 1 9
IRPn20p6 HC 2 2 2 2 2 2 12 4 2 1 2 1 1 11
IRPn22p6 HC 2 2 2 2 2 2 12 4 2 1 2 2 1 12
IRPn39p6HC 3 3 3 3 3 3 18 6 2 3 2 1 1 15
IRPnddpeHC 3 3 3 3 3 3 18 14 0 1 1 0 O 16
IRP.n50 pgHC 3 3 3 3 3 3 18 6 0 2 1 1 O 20
6 2 3 1 1 1 24
IRP.n54 p6 HC 4 4 4 4 4 4 24
7 4 4 3 4 2 24
IRPn59 p6 HC 4 4 4 5 4 4 25 8 4 4 5 3 2 26
IRPn64 p HC 5 5 5 5 5 4 29 12 5 5 3 2 1 28
IRPn6Ope HC 5 5 5 5 5 5 30 9 6 4 4 4 3 30
11 5 5 4 4 3 32
IRPnf5p HC 5 5 5 5 5 5 30
10 5 5 5 3 3 31
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9 6 5 5 6 3 34
IRP. n100 ps HC 6 6 5 5 6 6

11 5 5 &5 5 3 34

Table 8
Number of vehicles used during the planning horizon (second class of instances)

p-VRP IRP
Instance No. of No. of

PL P2 P3 P4 P5 P6 PL P2 P3 P4 P5 P6

Routes Routes

IRP_n15 p6 LC 2 2 2 2 2 2 12 4 2 2 1 0 0 9
IRP_n20 p6 LC 2 2 2 2 2 2 12 7 2 1 0 1 0 11
IRP_n22 p6 LC 2 2 2 2 2 2 12 3 2 2 2 1 1 11
IRPn39 p6LC 3 3 3 3 3 3 8 8 3 2 1 1 0 15
IRP n44 p6 LC 3 3 3 3 3 3 8 14 1 1 1 1 0 18
IRP n50 pp LC 3 3 3 3 3 3 8 17 1 0 0 0 O 18

Both tables show that the maximum number of vehicles is used mainly at the initial
time periods of the planning horizon. This can be explained (a) by the fact that the
inventory level of each customer is equal to zero at the beginning of the planning
horizon and (b) by the usage of the backward delivery exchange mutation operator.
Actually, the operator satisfies constraint (3), thus avoiding any stock-out. However,
it is interesting to observe that with higher inventory holding costs (Table 5), the
optimal solution visits customers more frequently. Furthermore, if low-inventory
holding costs (Table 6) are applied to the customers, a decrease in the number of
times a customer is visited during the planning horizon can be observed since most of
the delivery quantities are scheduled at the initial time periods. On the other hand, in
the context of the p-VRP, the number of vehicles is nearly the same, as a specific
VRP problem should be solved on a daily basis.

To visually verify the above conclusions, the following figures illustrate the solutions
of (a) the IRP_n50_p6 (no inventory holding costs), (b) the IRP_n50 p6 HC (high
inventory holding cost) and (c) the IRP_n50_p6_LC (low inventory holding cost)
benchmark instances. As regards the first solution, 3 routes are scheduled for each day
of the planning horizon since the inventory allocation problem is ignored. Concerning
the other two solutions, it can be observed that the evolutionary algorithm changes its
behavior based on inventory holding cost information. Specifically, the second
solution shows that routes are scheduled only for the time periods 1, 3, 4 and 5 (4 of
the 6 days). The third solution, due to the low inventory holding costs, indicates the
routes that should be scheduled for the time periods 1 and 2 (2 of the 6 days).
Therefore, with higher inventory holding costs, the solution visits customers more
frequently.
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Finally, the convergence of fitness values regarding the instances of Class B and A is
presented in figures 18 and 19, respectively.
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For each instance, fluctuations can be observed during convergence. However, the
entirety direction of evolution indicates improvement with respect to the minimization
of inventory routing problem cost. For the majority of instances, it appears that the
best candidate solution would continue to improve for a few hundred more
generations.

3.2.5. Conclusions and Future Work

In this chapter, a hybrid evolutionary optimization algorithm was introduced to handle
the IRP. The chapter gives more emphasis to how a Genetic Algorithm (population-
based search meta-heuristic) can be used in hybrid synthesis with a Simulated
Annealing Algorithm (single-point search meta-heuristic) for the solution of the IRP.
Particularly, the Genetic Algorithm is related to the planning phase of the hybrid
approach to determine the delivery times and quantities, while the Simulated
Annealing algorithm is associated with the routing phase to determine the routes of
each individual of the population. Both algorithms are dealt with in an iterative way to
define a re-optimization phase. In this study, stock-outs or lost sales are not allowed,
and therefore no shortage costs or costs related to lost sales are included in the
objective function. This is a characteristic that differentiates the proposed algorithm
from other works most closely related to this study.
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The algorithm has been tested on a newly introduced set of 18 IRP benchmark
instances by comparing the algorithm’s solutions with the solutions obtained by
solving a VRP problem for each time period of the planning horizon based on known
demand (the planning phase is ignored). The computational results show that the
proposed algorithm is outperformed, simultaneously verifying the benefits obtained
by the integration of the inventory and the vehicle routing decisions. The algorithm
can be even further improved. In terms of future research, the goals are to (a) explore
more deeply the parameters of the Genetic Algorithm and the Simulated Annealing
Algorithm, (b) explore the algorithm behavior in other problems (instances) and (c)
focus on the development of other meta-heuristic approaches for the solution of the
IRP. Finally, the proposed algorithm can be extended to complicated problems such
as the Inventory Routing Problem with Time Windows (IRPTW) and its variations.
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Chapter 4

The Inventory Routing Problem with Time Windows

The purpose of this chapter is to propose a solution algorithm for the Inventory
Routing Problem with Time Windows (IRPTW). The IRPTW reflects a multi-
functional problem that attempts to integrate two different functions within the supply
chain network, i.e., planning and routing. In particular, planning is associated with the
Inventory Control Problem (ICP), while routing is related to the Vehicle Routing
Problem with Time Windows (VRPTW). It is worth noting that the integration of
ICP-VRPTW problems has scarcely been studied in the literature. The IRPTW is a
generalization of the IRP involving the added complexity that every customer should
be served within a given time window. The basic notion of this Chapter is (a) to
formulate a mathematical problem and (b) to present a two-phase solution algorithm
to handle the IRPTW. Testing instances are established to investigate algorithmic
performance, and the computational results are then reported.

4.1. Problem Description and Mathematical Formulation

The IRPTW is a variation of the classical Vehicle Routing Problem with Time
Windows (VRPTW) formulation. Whereas the VRPTW focuses on a single period,
the IRPTW considers a multi-period time horizon, typically measured in terms of
days. The IRPTW can be defined on a complete directed graph G = (N, A) where
N ={0,n+1}U{1,...,n}is the set of nodes and A = {(i,j):i,j € N, i # j} is the set
of arcs. Arcs 1, ...,n correspond to the customers, whereas 0 and n + 1 represent the
single depot (origin-depot and destination-depot). The set of arcs represents
connections between the depot and the customers and among customers. No arc
terminates in node 0, and no arc originates from node n + 1. The proposed model
deals with the repeated distribution of a single product from a single supplier to a set
of geographically dispersed customers C = {1,...,n} over a given time horizon of
length H. The set of time horizons is denoted by T = {1, ..., H}. Each customer i € C
faces a different demand d! per time period ¢t € T. It is assumed that the depot has a
sufficient supply of items that can cover all customers’ demands throughout the
planning horizon. To each arc (i,j) € A, where i # j, a travel cost ¢;; and travel time
t;; are associated. The cost and travel time matrices satisfy the triangle inequality.
Nodes are associated with points of the plane having the given coordinates
(x;,yi)Vi € N, and the travel cost c;; for each arc (i,j) € A is defined as the

Euclidean distance between the two nodes i,j € N.
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A fleet of m homogenous vehicles, with capacity Q, is available for the distribution of
the product. The fleet of vehicles is denoted by K = {1, ..., m}. Each customer i € C
is associated with a time interval [e;, [;], called a time window and a service time s;,
where e; < [; Vi € C. The service of each customer must start within the associated
time window, and the vehicle must stop at the customer location for s; time instants,
where 0 < s; < [; —e; Vi € C. Moreover, in case of early arrival at the location of
customer i € C, the vehicle generally is allowed to wait until time instant e;, i.e., until
the service may start. Therefore, a vehicle must arrive at the customer i € C before ;.
It can arrive before e; but the customer i € C will not be serviced before. The depot
has also time windows [ey, [,] and [e;41, ln+1] Where eq = e,41 and Iy = 1,+4. The
time windows associated with the depot represent the earliest possible departure from
the depot as well as the latest possible return time at the depot, respectively. As a
result, vehicles may not leave the depot before e, and must be back before or at time
l,+1- In addition, s, = s,,; = 0. Each customer maintains his own inventory up to
capacity U; Vi € C. At the beginning of the planning horizon each customer i € C has
an initial inventory level of I? = U; of product.

Furthermore, the formulation uses the following decision variables:

» w,.: the amount of delivery to customer i € C in period t € T by vehicle k € K.

= xij: a binary variable that is equal to 1 if vehicle k € K drives from node i to
nodej Vv (i,j) € Awherei #j,j #n+1,j # 0, and 0 otherwise.

= al,: the time vehicle k € K starts to service customer i € C.

=yl a binary variable that is equal to 1 if customer i € C is visited by vehicle
k € K inperiod t € T, and 0 otherwise.

= zEL:abinary variable that is equal to 1 if vehicle k € K is used in period t € T, and
0 otherwise.

= I}: a nonnegative variable indicating the inventory level at customer i € C at the
end of period t € T.

Moreover, stock-outs are not allowed at the customers, while the quantities delivered
by each vehicle in each route cannot exceed the vehicle capacity. As far as the
replenishment policy is concerned, an Order-up-to Level (OL) policy is considered, in
which any customer has defined a maximum inventory level and every time a
customer is served, the delivered quantity is such that the maximum inventory level at
the customer is reached. After defining the necessary parameters and decision
variables, the IRPTW can be formulated as shown below:

min > > ey Y D xh (15)
iEN jEN kEK t€T
Subject to:

I°=U,VieC (16)
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Ty Z wh =dl,VieCVtET (17

kEK

IF<U,Vi€CVteT (18)
Z w < Qzi,Vk e K,Vt €T (19)
iec
Z Vi <LVieCVteT (20)
keEK
Z Yo =mVteT (21)
k€K
Z y7t1+1,k =mVteT (22)
keK
Z Xy = Vi Vi € N\{0},Vk EK,Vt €T (23)
jEN
jEN
af +si+ty < af +M(1—xy),Vi,jENVkEK,VLET (25)
al = ey, Vi€EN,Vk €K VtET (26)
at < Lyh, VieN,Vk €K, VtET (27)
xy €{0,1},Vi,j EN,Vk €K, Vt €T (28)
i €{0,1},Vi e N,Vk EK,Vt €T (29)
If>0,vieC,VteT (30)
wh =0,VieC,VkEK,VtET (31)
a4, >0,vieC,VkEeK,VtET (32)
zt < Zy{k Vk EK,VtET (33)
ieC
z,inzz:y{k vk EK,VtET (34)

iec

The total cost includes only the transportation costs as depicted in the objective
function (15). This case corresponds to an environment in which the transportation
cost represents the major cost component (e.g., the supplier and the customers
represent entities of one and the same company). Constraints (16) indicate that each
customer i € C has an initial inventory level equal to his maximum inventory level.
Constraints (17) are the inventory balance equations for the customers. Constraints
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(18) limit the total amount of inventory to U;, Vi € C. Constraints (19), (33) and (34)
ensure that the vehicle capacities are not exceeded on any day t € T during the
planning horizon. Constraints (20)-(24) impose that each customer is visited exactly
once, that m vehicles leave the depot, and that the same vehicle enters and leaves a
given customer. Constraints (25) ensure feasibility in terms of the time necessary
when traveling from node i to node j Vi,j € N. In addition, ensure simultaneously the
elimination of subtours where M is a large constant. Constraints (26) and (27) impose
that service may only start within the given interval [e;, [;]Vi € N. Constraints (28)-
(32) are the domain constraints.

4.2. Solution Approach for the IRPTW

Due to the NP-hard nature of the IRPTW, a two-phase solution algorithm based on (a)
a simple simulation and (b) the Variable Neighborhood Search Algorithm (VNS) is
proposed to handle the problem. The first phase (Phase 1) is related to the planning
phase of the IRPTW, in which delivery times and quantities are determined by
implementing the well-known inventory policy (s,S) for inventory management using
a simple simulation. In the second phase (Phase Il), the VNS is applied to combine
the customers into the vehicle routes by solving a VRPTW for a specific time period
during the planning horizon.

In particular, (s,S) inventory policy reflects the OU policy, where s and S correspond
to a minimum and a maximum inventory level, respectively. An order for S-s units is
placed immediately when the inventory level is reduced to s. Since stock-outs are not
allowed, inventory policy (s;, S;) is applied to each customer i € C setting s; =
0Vi € C. In addition, each customer has an initial inventory level equal to his
maximum inventory capacity U; Vi € C. At the end of the planning horizon, each
customer should have an inventory level equal to his initial inventory level.

Since the demands are fully available to the supplier at the beginning of the planning
horizon, by applying an (s,S) inventory policy to each customer, Phase | of the
algorithm enables the supplier to run an inventory simulation to determine delivery
times and quantities, so that stock-outs are avoided. A sample problem of a
distribution system that comprises a single supplier and twenty-five customers can be
considered to explain the inventory simulation algorithm (Table 9).

Table 9
IRPTW sample problem
Demand (s,S) Inventory Policy
Customer
P1 P2 P3 P4 P5 P6 S S
1 11 16 9 7 9 9 0 20
2 24 34 36 33 32 30 0 60
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3 8 14 7 11 11 13 0 20
4 10 14 9 7 11 5 0 20
5 13 14 9 5 10 9 0 20
6 16 15 23 21 12 20 0 40
7 24 21 23 16 17 26 0 40
8 18 18 20 19 13 18 0 40
9 15 6 2 17 13 9 0 20
10 11 15 8 11 11 7 0 20
11 8 5 9 10 9 12 0 20
12 10 27 21 26 17 13 0 40
13 15 23 27 19 30 34 0 60
14 8 11 10 8 14 16 0 20
15 39 36 42 40 39 39 0 80
16 42 38 40 49 42 34 0 80
17 14 19 14 10 8 16 0 40
18 15 23 27 25 18 20 0 40
19 13 10 12 8 8 11 0 20
20 6 9 8 16 12 9 0 20
21 25 21 17 28 15 19 0 40
22 13 21 23 21 17 15 0 40
23 9 15 9 13 10 14 0 20
24 9 16 12 15 11 12 0 20
25 34 47 57 43 42 39 0 80

Below, an algorithm (Algorithm 12) is presented that applies the (s,S) policy to
customers. Initially, based on a specific test problem (IRPTWdata), the number of
customers (NC) as well as the length of the planning horizon (H) are defined. Then,
for each customer i, his (s;,S;) inventory policy and demands during the planning
horizon (d) are taken into account to determine the delivery quantities and times
(deliveries) as well as the inventory levels (inventories). It is worth noting that the
time starts from zero, where customer demand is equal to zero and an initial inventory
level exists for each customer. To define the delivery quantities the (s,S) policy is
applied to each customer. Analytically, for each time period of the planning horizon,
if the inventory level (IL) is less than s;, a delivered quantity (0Q) is defined such
that the maximum inventory level at the customer is reached. To define the inventory
levels, the inventory balance equation is applied. Namely, the amount of inventory in
the next time period must be equal to the current inventory plus the amount of
delivered quantity minus the demand in the next time period.
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Algorithm 12. Simple simulation (Phase I)

Inputs: IRPTWdata
NC « getNoCustomers(IRPTWdata)
H « getPlanningHorizon(IRPTWdata)
Inventories « []
Deliveries « []
fori=1:NCdo
s; « gets;(IRPTWdata)
S; « getS;(IRPTWdata)
d < [0,d},d?, ..., d]
IL(1) « S;
je1
while j < H do
jejt+1
ifILG—1) <s;then
0Q(j— 1)« S, —ILG—1)
else
0Q(j—1)«0
end — if
ILG) < ILG—-1)+0Q( —1)—d()
end — while
nej
0Q(n) « S; —IL(n)
IL(n) « S;
Deliveries « [Deliveries; 0Q]
Inventories « [Inventories; IL]
end — for

Output: Deliveries, Inventories

Based on the above example, the following figures (Fig. 20, Fig. 21, Fig. 22 and Fig.
23) illustrate for each customer the relative inventory levels during the planning
horizon and the delivery times.
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Fig. 20. Inventory simulation (Customer 1 — Customer 8)
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Fig. 22. Inventory simulation (Customer 17 — Customer 24)
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Fig. 23. Inventory simulation (Customer 25)

Since the simple simulation focuses only on the planning phase by determining the
delivery times and quantities, the vehicle routes should be constructed. The routing
phase (Phase I1) is related to the usage of a Variable Neighborhood Search Algorithm
(VNS) for solving a vehicle routing problem with time windows for each time period
of the planning horizon where delivery quantities have been scheduled. The VNS is a
single-point search meta-heuristic introduced by Mladenovi¢ and Hansen (1997). In
the context of the algorithm, a set of neighborhood structures N, where k =1,..,n
are defined. The basic idea of the algorithm is to successively explore the set of pre-
defined neighborhoods to provide a better solution. Each iteration of the algorithm is
composed of three steps: shaking, local search and move. At each iteration, an initial
solution is shaked from the current neighborhood N,. For example, a solution x’ is
generated randomly in the current neighborhood Ni(x). The representation of a
VRPTW solution follows the representation presented in Chapter 3, in the context of
the Simulated Annealing algorithm. A local search procedure is applied to the
solution x’ to generate the solution x"'. The evaluation of the solution is based on the
cost function related to the proposed vehicle routes. Therefore, the current solution is
replaced by the new local optima x" if and only if a better solution has been found
(i.e., f(x") < f(x)). The same search procedure is thus restarted from the solution
x"" in the first neighborhood N,. If no better solution is found, the algorithm moves to
the next neighborhood N4, randomly generates a new solution in this neighborhood,
and attempts to improve it.

The generation of the initial solution is based on the Push Forward Insertion Heuristic
(PFIH) (Solomon, 1987; Tan et al., 2001). The method tries to insert the customer
between all the arcs in the current route. It selects the arc that has the lowest
additional insertion cost. In addition, the feasibility check tests all the constraints
related to time windows and vehicle capacity. When the current route is full of
feasible insertions, PFIH will start a new route and repeat the procedure until all the
customers are routed. As far as the first step of the VNS (shaking) is concerned, the 2-
interchange neighborhood operator of Osman (1993) as well as the CROSS-exchange
neighborhood operator of Taillard et al. (1997) are used randomly (rand2interchange
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and randCrossExchange). Regarding the second step of the VNS (local search), nested
neighborhoods are used based on the 2-interchange and CROSS-exchange
mechanisms. These mechanisms (twolnterchange and crossExchange) are now used
systematically (not randomly). In general terms, the 2-interchange mechanism is
based on customer interchange between sets of vehicles routes. The 2 means that
maximum two customer nodes may be interchanged between routes. The CROSS-
exchange mechanism swaps sequences of consecutive customers between two routes.
The detail information about PFIH, 2-interchange and CROSS-exchange can be
obtained from papers of Solomon (1987), Osman (1993) and Taillard et al. (1997),
respectively. Algorithm 13 presents the template of the proposed VNS algorithm.
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Algorithm 13. Variable neighborhood search algorithm (Phase I1)

Input: deliveries, IRPTW data
[H, vehicleCapacity] « getPlanningHorizonAndVehCapacity(IRPTWdata),i < 1
whilei < Hdo
VRPTW <« createVRPTWproblem(deliveries, i)
x « PFIH(VRPTW ,vehicleCapacity)
Repeat
k<1
whilek <2 do

if k =1then

x' « rand2interchange(x, vehicleCapacity)
end — if
if k =2then

x'" « randCrossExchange(x, vehicleCapacity)
end — if
l < 1,improvement « false

whilel < 2 do

ifl=1then

x"" « twolnterchange(x', vehicleCapacity)
end — if
ifl=2then

x"" « crossExchange(x', vehicleCapacity)
end — if
if f(x") < f(x") then
x' «x",l « 1,improvement « true
else
l<l+1
end — if
end — while
if improvement = true then
x—x" k1
else
ke<k+1
end — if
end — while
Until stoping criteria
i—i+1
end — while

Output: best found solution
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Based on the above example, the following figure (Fig. 24) illustrates the IRPTW
solution.
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Fig. 24. IRPTW solution for the IRPTW sample problem

Table 10 presents the routes that take place in each time period of the planning
horizon.
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Table 10

Cost information and routes for the IRPTW sample problem

IRPTW Solution

Routes of Period 1

Routes of Period 2

Routes of Period 3

Route 1: 0-24-25-19-10-0
Route 2: 0-5-3-7-9-4-1-0
Route 3: 0-23-21-0

Route 1: 0-13-17-18-0
Route 2: 0-16-14-0
Route 3: 0-20-15-12-0
Route 4: 0-6-2-0
Route 5: 0-8-11-22-0

VRPTW Cost =0

VRPTW Cost = 163.4705

VRPTW Cost = 338.1404

Routes of Period 4

Routes of Period 5

Routes of Period 6

Route 1: 0-24-25-23-21-0

Route 1: 0-7-0

Route 1: 0-13-17-18-10-0

Route 2: 0-10-16-14-12-0 Route 2: 0-20-24-25-19-16-14-12-0

Route 3: 0-20-18-19-9-0
Route 4: 0-5-3-4-2-1-0

Route 3: 0-8-15-11-0
Route 4: 0-5-3-7-9-6-4-2-1-0
Route 5: 0-23-22-21-0

VRPTW Cost = 35.0462 VRPTW Cost = 247.8036 VRPTW Cost = 330.9369

Total VRPTW Cost

1115.3975

4.3. Computational Experiments and Results

This section presents the computational results of the proposed two-phase solution
algorithm. The algorithm was developed in the MATLAB programming language and
executed on a DELL personal computer with an Intel® Core™ i3-2120, clocked at
3.30 GHz, a microprocessor with 4 GB of RAM memory under the operating system
Microsoft Windows 7 Professional. Since new benchmark instances were designed,
the efficiency and the effectiveness of the proposed algorithm cannot be compared to
other published IRPTW studies using benchmark instances previously introduced.
This is due to the differentiated manner in which the proposed algorithm operates
based on the assumptions presented in Section 4.1. However, this section validates the
two-phase solution algorithm and then evaluates its performance by comparing the
algorithm’s solutions with solutions obtained by solving a VRPTW problem for each
time period of the planning horizon based on the known demands (the planning phase
is ignored). The algorithm has been tested on a newly introduced set of 18 IRPTW
benchmark instances described in the following.

All benchmark instances and their computational results are available at
http://www.msl.aueb.gr/files/SimVnsIRPTW.zip.
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The new datasets have been developed by generalizing the well-known datasets C101,
C201, R101, R201, RC101 and RC201 of Solomon  (1987),
http://web.cba.neu.edu/~msolomon/problems.htm. As a result, these datasets are
divided into six classes. The datasets are named in the form of “IRPTW_Z nX_pY”
strings, where “Z” stands for the class related to a specific dataset of Solomon (1987),
i.e.,, C101, C201, R101, R201, RC101 and RC201, “X” stands for the number of
customers and “Y” stands for the number of time periods. For instance, the problem
IRPTW_C101 n25 p6 represents a test problem of the first class (i.e., dataset that
was generated by the dataset C101 of Solomon (1987)) with 25 customers and a
planning horizon of 6 days. Different problem sizes, based on the total number of
customers, were designed, in each class. Specifically, each class contains problems
with 25, 50 and 100 customers. Nodes coordinates are modified in such a way that the
depot is located at the origin (i.e., coordinates (0,0)). The distance matrix is obtained
by calculating the Euclidean distances. Time windows related to customers as well as
the maximum operation time for each vehicle are kept the same as in the Solomon’s
datasets.

Demand exists for each customer at each time period of the planning horizon.
Customer demand at each time period was generated according to the Poisson
distribution, Poisson(A), where A is the rate parameter. For each customer, the rate
parameter is equal to his demand in the single-period VRPTW problem of Solomon
(1987). In addition, for each customer i € C, his maximum inventory capacity is
defined as U; = 24;. As it usually happens in real life, customers with higher expected
demands will have higher inventory capacities. Therefore, for each customer i € C,
inventory policy (s;,S;) is equal to (0,U;). An unlimited fleet of identical vehicles
with capacity Q is available for the distribution of the product. The vehicle capacity is
kept the same as in the Solomon’s datasets. At the beginning of the planning horizon,
each customer i € C has an initial inventory level up to his maximum inventory
capacity, i.e., U;. Finally, the supplier has a sufficient supply of products that can
cover customers’ demands throughout the planning horizon.

Since the algorithm cannot be compared to other published IRPTW studies, the best
solution obtained from the proposed algorithm (IRPTW) is compared to the best
solution obtained if the planning phase is ignored (p — VRPTW). In the aftermath of
ignoring the planning phase, a VRPTW problem needs to be solved for each day of
the planning horizon according to daily demand. The proposed Variable
Neighborhood Search algorithm for the routing phase is then used to solve a daily
VRPTW problem through the planning horizon. To compare the results, the following
gap percentage formula is used:

1
Gap (%) = (Soljrprw — Soly_yrprw) X o5 % 100
SOlp—VRPTW

The Sol,_yrprw corresponds to the solution obtained by solving the daily VRPTWs
according to the known daily demands, while the Sol;zpry, determines the solution
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obtained by applying the proposed two-phase solution algorithm. Since the Sol;gpri
is compared with the Sol,_yrprw, @ positive gap means that the Sol,_yrpry is
outperformed. The computational results obtained are summarized in Table 11. For
the p — VRPTW and IRPTW problems, the respective total vehicle routing cost is
presented. In addition, for each IRPTW a computation time (in seconds) needed to
obtain a solution is presented, while the last column of the table shows the gap
between the two problems reflecting the respective relative error.

Table 11
Experimental results

p-VRPTW IRPTW p-VRPTW — IRPTW
Instance Computation

Vehicle Routing Cost  Vehicle Routing Cost ) Gap (%)

Time (seconds)

IRPTW_C101_n25 p6 1150.8817 1115.3975 142.5091 -3.0832
IRPTW_C101_n50_p6 2559.8361 2077.3767 1.0827e+03 -18.8473
IRPTW_C101 n100_p6 5685.3165 5067.128 7.6578e+03 -10.8734
IRPTW_C201 n25 p6 1293.2554 883.8036 165.4300 -31.6606
IRPTW_C201 n50_p6 2753.3707 1614.115 2.1193e+03 -41.3768
IRPTW_C201_n100_p6 3883.0779 2812.4137 3.9252e+04 -27.5726
IRPTW_R101 n25 p6 3804.3657 1880.0941 68.9572 -50.5806
IRPTW_R101_n50_p6 6728.73 3462.5182 461.9215 -48.5413
IRPTW_R101 n100_p6 10388.3709 5566.806 4.6026e+03 -46.4131
IRPTW_R201_n25 p6 2795.4622 1629.6064 135.5557 -41.7053
IRPTW_R201 n50_p6 5106.1462 2626.2472 1.5377e+03 -48.5669
IRPTW_R201 nl100 p6 7567.238 3837.7514 1.5402e+04 -49.2846
IRPTW_RC101 n25 p6 3257.2105 1892.2402 82.0641 -41.9061
IRPTW_RC101 n50 p6 5969.5287 3907.7457 556.1790 -34.5385
IRPTW_RC101 n100 _p6  10783.6372 6145.4136 5.2140e+03 -43.0117
IRPTW_RC201_n25 p6 2549.0663 1521.4596 213.5986 -40.3131
IRPTW_RC201_n50_p6 4548.0065 2878.2674 2.2410e+03 -36.7136
IRPTW_RC201_nl100_p6  8191.1021 5053.3035 1.2644e+04 -38.3074

Based on Table 11, it can be concluded that better solutions are obtained when the
planning phase is considered. The ability of each customer to have storage enables a
significant decrease in the vehicle routing cost, reducing the total number of routes
during the planning horizon. As it can be observed, in all cases, the two-phase
solution algorithm provides better solutions than the p — VRPTW, with gaps in the
interval of —3.0832 percent to —50.5806 percent. The results indicate that if the
inventory capacity of each customer is taken into account during the planning phase,
better solutions can be obtained, significantly reducing the total vehicle routing cost
and designating the importance of integrating supply chain activities.




To illustrate in more detail the behavior of the proposed algorithm, more information
is presented about the vehicles (number of routes) used in each time period of the
planning horizon in Table 12.

Table 12
Number of vehicles used during the planning horizon

p-VRPTW IRPTW
Instance No. of No. of

P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

Routes Routes

IRPTW_C101_n25 p6 3 3 3 3 3 3 18 0 3 5 1 4 5 18
IRPTW_C101_n50_p6 7 6 5 6 6 6 36 0 7 6 4 6 9 32
IRPTW_C101 n100 p6 11 12 12 12 12 12 71 0 11 17 7 13 20 68
IRPTW_C201_n25_p6 2 2 2 2 2 2 12 o 1 2 1 1 2 7
IRPTW_C201_n50_p6 4 4 4 3 3 4 22 0 3 4 2 3 5 17
IRPTW_C201_nl00p6 5 5 4 5 4 6 29 0 5 4 3 5 7 24
IRPTW_R101_n25_p6 9 9 9 9 9 9 54 0 4 6 3 4 10 27
IRPTW_R101_n50_p6 14 14 13 14 14 14 8 1 8 7 5 9 13 43
IRPTW_R101 n100 p6 23 23 23 23 23 23 138 0 12 13 10 15 24 74
IRPTW_R201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 4 4 15
IRPTW_R201_n50 p6 6 6 6 6 6 6 36 0 3 5 3 4 6 21
IRPTW_R201_nl00p6 9 9 8 10 9 9 54 1 6 6 3 4 9 29
IRPTW_RC101 n25 p6 6 6 6 6 6 6 36 0 3 6 1 6 6 22
IRPTW_RC101_n50 p6 10 10 10 10 10 10 60 0 7 10 5 8 12 42
IRPTW_RC101_n100 p6 20 18 19 20 17 19 113 0 11 16 5 14 20 66
IRPTW RC201 n25 p6 4 4 4 4 4 4 24 0 3 2 2 2 4 13
IRPTW_RC201. n50p6 6 6 5 5 5 5 32 0 4 2 4 4 5 19
IRPTW_RC201 n100 p6 10 10 11 10 11 10 62 O 7 7 4 6 9 33

Due to the fact that each customer has an initial inventory level equal to his maximum
inventory capacity, in most cases no routes occur in period 1. However, for test
problems “IRPTW_R101 n50 p6” and “IRPTW_R201 nl100 p6” a single route
takes place in order to satisfy the daily demand of some customers for whom their
daily demands are greater than their maximum inventory capacity. Since stock-outs
are not allowed, a route takes place to satisfy their demands. In addition, the number
of routes is increased at the end of the planning horizon since the (s,S) inventory
policy is applied for each customer. According to this policy, for each customer, the
inventory level at the end of the planning horizon should be equal to the initial
inventory level. On the other hand, in the context of the p-VRPTW, the number of
vehicles is nearly the same, as a specific VRPTW problem should be solved on a daily
basis.




4.4. Conclusions and Future Work

In this chapter, a two-phase solution algorithm was introduced to handle the IRPTW.
The chapter gives more emphasis to how a simple simulation can be used in hybrid
synthesis with a Variable Neighborhood Search algorithm (single-point search meta-
heuristic) for the solution of the IRPTW. Particularly, the simple simulation is related
to the planning phase of the IRPTW to determine the delivery times and quantities,
while the Variable Neighborhood Search algorithm is associated with the routing
phase to determine the routes. The algorithm has been tested on a newly introduced
set of 18 IRPTW benchmark instances by comparing the algorithm’s solutions with
the solutions obtained by solving a VRPTW problem for each time period of the
planning horizon based on known demand (the planning phase is ignored). The
computational results show that the proposed algorithm is outperformed,
simultaneously verifying the benefits obtained by the integration of the inventory and
the vehicle routing decisions. Due to the myopic nature of the proposed algorithm, it
is worth noting that the two-phase solution algorithm should be even further
improved. To begin with, both simulation and VNS should be dealt with in an
iterative way to define a re-optimization phase. In this case, (s,S) inventory policy can
be initialized randomly and recalculated at each iteration of the solution algorithm.
This can be obtained by applying a Discrete Event Monte Carlo Simulation for the
planning phase of the problem. In terms of future research, the goals are to (a) extend
and improve the proposed algorithm, (b) explore the algorithm behavior in other
problems (instances), (c) take into account inventory holding costs of customers in the
objective function and (d) focus on the development of other meta-heuristic
approaches for the solution of the IRPTW.
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Chapter 5

Conclusions

In this thesis, two solution algorithms were introduced to handle the IRP and the
IRPTW, respectively. As far as the first solution approach is concerned, the thesis
gives more emphasis to how a Genetic Algorithm (population-based search meta-
heuristic) can be used in hybrid synthesis with a Simulated Annealing Algorithm
(single-point search meta-heuristic) for the solution of the IRP. Particularly, the
Genetic Algorithm is related to the planning phase of the hybrid approach to
determine the delivery times and quantities, while the Simulated Annealing algorithm
is associated with the routing phase to determine the routes of each individual of the
population. Regarding the second solution approach, a two-phase solution algorithm
was introduced to handle the IRPTW. The proposed approach combines a simple
simulation for the planning phase with a Variable Neighborhood Search algorithm for
the routing phase to solve the IRPTW. In both studies, stock-outs or lost sales are not
allowed, and therefore no shortage costs or costs related to lost sales are included in
the objective function. This is a characteristic that differentiates the proposed
algorithms from other works most closely related to this thesis.

Both algorithms have been tested on a newly introduced set of IRP and IRPTW
benchmark instances. The computational results show that the proposed algorithms
are outperformed, simultaneously verifying the benefits obtained by the integration of
the inventory and the vehicle routing decisions. However, both algorithms can be
even further improved. In terms of future research, in the context of the hybrid
evolutionary optimization algorithm, the goals are to (a) explore more deeply the
parameters of the Genetic Algorithm and the Simulated Annealing Algorithm, (b)
explore the algorithm behavior in other problems (instances) and (c) focus on the
development of other meta-heuristic approaches for the solution of the IRP.
Regarding the two-phase solution algorithm, both simulation and Variable
Neighborhood Search algorithm should be dealt with in an iterative way to define a
re-optimization phase. The future goals are to (a) extend and improve the proposed
algorithm, (b) explore the algorithm behavior in other problems (instances), (c) take
into account inventory holding costs of customers in the objective function and (d)
focus on the development of other meta-heuristic approaches for the solution of the
IRPTW (e.g., combining the Genetic Algorithm presented in Chapter 3 with the
Variable Neighborhood Search Algorithm presented in Chapter 4). Finally, the
proposed algorithms can be extended to complicated problems such as the Inventory
Routing Problem with Soft Time Windows (IRPTW) as well as the Production
Routing Problem (PRP) and its variations.
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