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Περίληψη 

 

Στόχος της παρούσας διατριβής είναι η παρουσίαση αλγοριθμικών προσεγγίσεων για 

την επίλυση του Προβλήματος Δρομολόγησης Αποθεμάτων (Inventory Routing 

Problem, IRP) και του Προβλήματος Δρομολόγησης Αποθεμάτων με Χρονικά 

Παράθυρα (Inventory Routing Problem with Time Windows, IRPTW). Τα ανωτέρω 

προβλήματα πηγάζουν από την προσέγγιση της Διαχείρισης Αποθεμάτων από τον 

Προμηθευτή/Πωλητή (Vendor Managed Inventory, VMI) που διαδόθηκε ιδιαίτερα 

κατά τα τέλη της δεκαετίας του ’80 από τις Wal-Mart και Procter & Gamble και στη 

συνέχεια υιοθετήθηκε από πολλές εταιρίες όπως οι Johnson & Johnson, Black & 

Decker κ.ά. Σύμφωνα με το VMI, ο προμηθευτής διανέμει προϊόντα σε έναν αριθμό 

από γεωγραφικά διάσπαρτους πελάτες αποφασίζοντας ταυτόχρονα για τα ακόλουθα: 

(1) τους χρόνους εξυπηρέτησης πελατών, (2) τις ποσότητες διανομής και (3) τις 

διαδρομές που πρέπει να ακολουθηθούν. Οι πρώτες δύο αποφάσεις, σχετίζονται με το 

Πρόβλημα Ελέγχου Αποθεμάτων (Inventory Control Problem, ICP), ενώ η τρίτη με 

το Πρόβλημα της Δρομολόγησης Οχημάτων (Vehicle Routing Problem, VRP).  

Αξίζει να σημειωθεί πως το IRPTW αποτελεί βασική επέκταση του IRP, καθώς 

ισχύουν οι ίδιοι περιορισμοί, αλλά για κάθε πελάτη η εξυπηρέτηση πρέπει να 

ξεκινήσει και να ολοκληρωθεί μέσα σε ένα χρονικό παράθυρο (time window), ενώ το 

όχημα θα παραμένει στο χώρο του πελάτη για συγκεκριμένο χρόνο εξυπηρέτησης. 

Κατά συνέπεια, το IRPTW αποτελεί σύνθεση του ICP και του Προβλήματος 

Δρομολόγησης Οχημάτων με Χρονικά Παράθυρα (Vehicle Routing Problem with 

Time Windows, VRPTW). 

Η διαφοροποίηση των προβλημάτων δρομολόγησης αποθεμάτων έναντι των 

υπολοίπων προβλημάτων δρομολόγησης (routing problems) οφείλεται στον 

παράγοντα απόθεμα, ο οποίος προσθέτει στο πρόβλημα τη διάσταση του χρόνου. Ως 

εκ τούτου, τα IRP και IRPTW αντιμετωπίζονται ως προβλήματα πολλαπλών 

περιόδων (multi-period problems). Ο παράγοντας απόθεμα περιπλέκει το πρόβλημα 

σε δύο διαστάσεις. Πρώτον, η περιορισμένη δυνατότητα διατήρησης αποθέματος 

στον προμηθευτή και/ ή στους πελάτες θα πρέπει να λαμβάνεται υπόψη όταν 

αποφασίζονται οι ποσότητες που θα διανεμηθούν, ενώ τυχόν κόστη που συνδέονται 

με τη διατήρηση αποθέματος στον προμηθευτή ή τους πελάτες πρέπει να 

συμπεριλαμβάνονται στην αντικειμενική συνάρτηση. Τα προβλήματα δρομολόγησης 

αποθεμάτων ανήκουν στην κλάση πολυπλοκότητας NP και χαρακτηρίζονται ως NP-

δυσχερή (NP-Hard), καθώς περικλείουν το κλασικό πρόβλημα της δρομολόγησης 

οχημάτων. 

Με τη μαθηματική μοντελοποίηση των προβλημάτων παρουσιάζεται, επιπλέον, για 

κάθε πρόβλημα μία αντίστοιχη αλγοριθμική επίλυση. Στην περίπτωση του IRP, η 

αντικειμενική συνάρτηση του προβλήματος αναπαριστά το συνολικό κόστος που 

αποτελείται από το κόστος μεταφοράς (transportation cost) και το κόστος 
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αποθήκευσης/διατήρησης αποθέματος (inventory holding cost) στους πελάτες. Για το 

IRPTW, η αντικειμενική συνάρτηση του προβλήματος αναπαριστά μόνο το συνολικό 

κόστος μεταφοράς.   

Λόγω της NP-hard φύσης του IRP προτείνεται ένας υβριδικός εξελικτικός 

αλγόριθμος βελτιστοποίησης (hybrid evolutionary optimization algorithm) που 

αξιοποιεί δύο ευρέως γνωστούς μεθευρετικούς αλγόριθμους (meta-heuristics): τον 

Γενετικό Αλγόριθμο (Genetic Algorithm, GA) και τoν Αλγόριθμο της 

Προσομοιωμένης Ανόπτησης (Simulated Annealing Algorithm, SA). Ο GA 

αξιοποιείται στη φάση του σχεδιασμού (planning) όπου καθορίζονται οι 

προγραμματισμένες προς αποστολή ποσότητες προϊόντος (delivery quantities), καθώς 

επίσης και οι χρονικές στιγμές του ορίζοντα όπου οι πελάτες θα λάβουν τις σχετικές 

ποσότητες (delivery times). Ο SA χρησιμοποιείται στη φάση της δρομολόγησης 

(routing) για την επίλυση των προβλημάτων δρομολόγησης που προκύπτουν σε κάθε 

περίοδο του χρονικού ορίζοντα. Τα αποτελέσματα των δύο αλγορίθμων συνδυάζονται 

επαναληπτικά έως την εύρεση της βέλτιστης λύσης του προβλήματος. 

Όσον αφορά το IRPTW, παρουσιάζεται ένας αλγόριθμος επίλυσης δύο φάσεων (two-

phase solution algorithm) που βασίζεται σε μία απλή Προσομοίωση (simple 

simulation) για τη φάση του σχεδιασμού και στον Αλγόριθμο Μεταβλητής Γειτονιάς 

Αναζήτησης (Variable Neighborhood Search, VNS) για τη φάση της δρομολόγησης. 

Τέλος, για τη μέτρηση της αποτελεσματικότητας των δύο προτεινόμενων 

αλγοριθμικών προσεγγίσεων, νέα δεδομένα προβλημάτων (benchmark instances) 

έχουν σχεδιαστεί για τα IRP και IRPTW, ενώ παρουσιάζονται αναλυτικά 

υπολογιστικά αποτελέσματα επί των προβλημάτων. 

Λέξεις Κλειδιά: Δρομολόγηση, Πρόβλημα Δρομολόγησης Αποθεμάτων, Πρόβλημα 

Δρομολόγησης Αποθεμάτων με Χρονικά Παράθυρα, Γενετικός Αλγόριθμος, Αλγόριθμος 

Προσομοιωμένης Ανόπτησης, Εξελικτική Βελτιστοποίηση, Προσομοίωση, Αλγόριθμος 

Μεταβλητής Γειτονιάς Αναζήτησης 

 

 

 

 

 

 

 

 



 
iii 

Abstract 

 

The main objective of this thesis is to propose a hybrid evolutionary optimization 

algorithm for solving the Inventory Routing Problem (IRP). The IRP arises from the 

application of the Vendor Managed Inventory (VMI) concept, where the supplier 

(vendor) has to make inventory and routing decisions simultaneously for a given 

planning horizon. This thesis focuses on a scenario where a single-product type has to 

be delivered by a fleet of capacitated homogenous vehicles and housed at a depot over 

a finite and discrete planning horizon. The demand is fully available to the decision 

maker (supplier) at the beginning of the planning horizon, stock-outs are not allowed, 

and transportation costs and inventory holding costs of customers are taken into 

account in the objective function. Due to the NP-hard nature of the IRP, it is very 

difficult to develop an exact algorithm that can solve large-scale problems within a 

reasonable computation time. As an alternative, a hybrid evolutionary optimization 

algorithm based on two well-known meta-heuristics, the Genetic Algorithm and the 

Simulated Annealing Algorithm, is presented to handle the IRP. Namely, the Genetic 

Algorithm is related to the planning phase, while the Simulated Annealing Algorithm 

is associated with the routing phase. A repetitive procedure, containing characteristics 

from both referred meta-heuristics, is applied to obtain a near-optimal feasible 

solution. Testing instances with different properties are established to investigate 

algorithmic performance, and the computational results are then reported.  

Finally, a two-phase solution algorithm is presented to handle an extension of the IRP, 

the Inventory Routing Problem with Time Windows (IRPTW). The IRPTW, which 

has not been excessively researched in the literature, is a generalization of the 

standard IRP involving the added complexity that every customer should be served 

within a given time window. Α single-product type has to be delivered by a fleet of 

capacitated homogenous vehicles and housed at a depot over a finite and discrete 

planning horizon. The demand is fully available to the decision maker (supplier) at the 

beginning of the planning horizon, stock-outs are not allowed, and only transportation 

costs are taken into account in the objective function. The proposed two-phase 

solution algorithm is based on (a) a simple simulation for the planning phase and (b) 

the Variable Neighborhood Search Algorithm (VNS) for the routing phase. The 

computational study underscores the importance of integrating the inventory and 

vehicle routing decisions. Analytical results and graphic presentation formats are 

provided to convey meaningful insights into the problem. 

Keywords: Routing, Inventory Routing Problem, Inventory Routing Problem with Time 

Windows, Genetic Algorithm, Simulated Annealing Algorithm, Evolutionary Optimization, 

Simulation, Variable Neighborhood Search  
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Chapter 1 

1. Introduction 

 

In recent years, the Inventory Routing Problem (IRP) has received a great deal of 

attention from academics, consultants and practitioners. It reflects a multi-functional 

problem that attempts to integrate two different functions within the supply chain 

network, i.e., planning and routing (Min and Zhou, 2002). In particular, planning is 

associated with the Inventory Control Problem (ICP), while routing is related to the 

Vehicle Routing Problem (VRP). The ICP represents an activity that aims to organize 

the availability of goods to customers during a given planning horizon (Axsäter, 

2006), while the VRP concerns the distribution of goods between suppliers and 

customers, without taking into account the time scope (Toth and Vigo, 2002). 

Whereas VRPs typically deal with a single period (e.g., a day), IRPs have to deal with 

a longer horizon (multi periods: e.g., a sequence of days). 

In the context of the IRP, these two widely studied problems in the Operations 

Research literature are modeled simultaneously since an inter-relationship exists 

between them (Moin and Salhi, 2007; Archetti and Speranza, 2016). If only the ICP 

for the customers is concerned and the VRP for the supplier is ignored, the supply 

chain cost, including the total transportation and total inventory cost, is not minimized 

optimally, as the VRP decisions cannot be made effectively and vice versa. The IRP 

arises in environments where Vendor Managed Inventory (VMI) policies are applied. 

It can be assumed as an extension of the VRP, which integrates routing and inventory 

allocation decisions. Analytically, the vendor (supplier) monitors the inventory levels 

of the customers and determines (a) the delivery times (when to visit his customers), 

(b) the quantities (how much to deliver to each of them when they are served), so that 

stock-outs are avoided, and (c) the set of routes used by a fleet of vehicles to serve a 

given set of customers (how to integrate the customers into the vehicle routes).  

IRPs can be categorized into three levels (Andersson et al., 2010; Coelho et al., 2013). 

The first categorization is based on the structural variants presented in IRPs, namely, 

product, time horizon, network topology, routing, inventory policy, inventory 

decisions, fleet composition and fleet size. The second categorization is related to the 

availability of information on the demand, reflecting several types of IRPs, for 

example, deterministic, stochastic, and dynamic and stochastic IRPs. Moreover, the 

third categorization is associated with the chosen solution approach. According to 

Ballou (1989) the modeling of supply chain and logistics problems has traditionally 

relied on three primary methods, i.e., simulation, optimization (exact algorithm) and 

heuristics, which can be divided into two categories (Griffis et al., 2012): classic 

heuristics (construction heuristics, local improvement heuristics) and meta-heuristics 

(local search meta-heuristics and population search meta-heuristics). The recent 
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literature has shown an increased interest in so-called matheuristics, methods that 

combine exact and heuristic approaches (Maniezzo et al., 2009). Archetti and 

Speranza (2013) classified matheuristics into three classes: decomposition 

approaches, improvement heuristics and column generation-based approaches. 

It is worth noting that IRP decisions can be (a) decisions over time only, in which the 

delivery times and the quantities have to be determined at the same time, while the 

routes are given, and (b) decisions over time and space, where delivery times, 

quantities and routes have to be determined simultaneously (Bertazzi and Speranza, 

2012; Bertazzi and Speranza, 2013). Furthermore, the optimal solution of an IRP 

depends on the objective function that has been chosen (Bertazzi et al., 2008). As a 

result, an objective function can be (a) the sum of transportation costs only, (b) the 

sum of transportation and inventory holding costs of the customers or (c) the sum of 

transportation and inventory holding costs of the supplier and the customers. It should 

not pass unnoticed that under the VMI concept, stock-outs are not allowed, and 

therefore, the objective function does not include shortage costs.  

In this thesis, the main objective is to propose an approach for solving the IRP with 

the following characteristics. A single-product type has to be delivered by a fleet of 

capacitated homogenous vehicles (multiple vehicles) housed at a depot over a finite 

and discrete planning horizon. The network topology taken into account by the IRP 

model is one-to-many; that is, one supplier serves many geographically dispersed 

customers (demand points). A vehicle can visit more than one customer (multiple 

routing), while a vehicle’s trip starts and ends at the depot (supplier). As far as the 

inventory policy is concerned, a Maximum Level (ML) policy is considered, in which 

any customer has defined a maximum inventory level and every time a customer is 

served, the delivered quantity is such that the inventory level at the customer is not 

greater than the maximum level. It is assumed that the depot has a sufficient supply of 

products that can cover all customers’ demands throughout the planning horizon. 

Moreover, the inventory is not allowed to become negative (fixed inventory) since the 

lowest inventory level is either fixed or equal to zero. With respect to the availability 

of information on customer demand, the proposed IRP model is deterministic since 

the demand is fully available to the supplier at the beginning of the planning horizon. 

Regarding the solution approach, a hybrid evolutionary optimization algorithm that 

combines a nature-inspired optimization algorithm (local search meta-heuristic), such 

as the Simulated Annealing Algorithm (SA), as well as a biologically-inspired 

optimization algorithm (population search meta-heuristic), that is, the Genetic 

Algorithm (GA), is presented to handle the problem. The SA is associated with the 

routing decisions (routing phase), while GA is related to the inventory allocation 

decisions (planning phase). A repetitive procedure, containing characteristics of both 

meta-heuristics, is applied to obtain a near-optimal feasible solution. In addition, IRP 

decisions are decisions over time and space, while the objective function represents 

the sum of transportation and inventory holding costs of the customers. 
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A second objective of the thesis is to present a two-phase solution algorithm to handle 

an extension of the IRP, the Inventory Routing Problem with Time Windows 

(IRPTW). The IRPTW, which has not been excessively researched in the literature, is 

a generalization of the standard IRP involving the added complexity that every 

customer should be served within a given time window. Α single-product type has to 

be delivered by a fleet of capacitated homogenous vehicles and housed at a depot over 

a finite and discrete planning horizon. The demand is fully available to the decision 

maker (supplier) at the beginning of the planning horizon, stock-outs are not allowed, 

and only transportation costs are taken into account in the objective function. As far 

as the inventory policy is concerned, an Order-up-to Level (OL) policy is considered, 

in which any customer has defined a maximum inventory level and every time a 

customer is served, the delivered quantity is such that the maximum inventory level at 

the customer is reached. Moreover, it is assumed that the depot has a sufficient supply 

of products that can cover all customers’ demands throughout the planning horizon. 

The proposed two-phase solution algorithm is based on (a) a simple simulation for the 

planning phase and (b) the Variable Neighborhood Search Algorithm (VNS) for the 

routing phase.  

The remainder of this thesis is organized as follows. Chapter 2 presents an overview 

of the state of the art in research on the Inventory Routing Problems. A problem 

description and the mathematical formulation for the IRP are presented in Chapter 3. 

In addition, the proposed solution approach is described and analyzed in detail, while 

computational results are presented. Chapter 4 is devoted to the presentation of the 

IRPTW. Finally, Chapter 5 summarizes the main contributions of this thesis and 

points to some potential research directions. 
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Chapter 2 

2. Literature Review 

 

Routing problems have attracted attention as a possible solution to many of the 

complex issues surrounding Supply Chain Management (ScM). In today’s economic 

environment, efficiency for firms is moving from an internal to a supply chain priority 

since the competition is not among them, but among their supply chains (Croom et al., 

2000; Tan, 2001). As a consequence, the ultimate success of a firm depends on its 

ability to integrate and coordinate different supply chain activities within the supply 

chain network (Min and Zhou, 2002; Schmid et al., 2013). Routing problem (RP) is 

the generic name given to a whole class of problems in which transportation is 

necessary (Diaz-Parra et al., 2014). The issue of RPs can be addressed in two 

dimensions: (a) classical routing problems, such as the Traveling Salesman Problem 

(TSP) and the Vehicle Routing Problem (VRP), and (b) highly relevant extensions of 

classical routing problems like the Inventory Routing Problem (IRP) and the 

Production Routing Problem (PRP). 

The TSP is the most basic routing problem and a typical model of the combinatorial 

optimization problems whose computation complexity is derived from non-

polynomial time (NP-hard problem). In particular, the problem is to find the shortest 

route (minimum transportation cost) that starts from a depot, visits all customers 

exactly once, and returns to the depot (Flood, 1956). For a comprehensive review of 

the proposed solution approaches including exact algorithms, heuristics and meta-

heuristics, see Laporte (2010), Rego et al. (2011) and Arram et al. (2014). However, 

in transportation problems, customers usually have a demand, whereas the depot 

consists of a fleet of vehicles with limited and known capacity. This situation reflects 

the VRP (Dantzig and Ramser, 1959), which generalizes the Multiple Traveling 

Salesman Problem (m-TSP), i.e., the TSP with m vehicles (Bektas, 2006). A survey of 

the VRP literature as well as the most important exact solutions, classical and modern 

heuristics are presented by Cordeau et al. (2002), Eksioglu et al. (2009), Laporte 

(2009) and Potvin (2009). The Vehicle Routing Problem with Time Windows 

(VRPTW) is a generalization of the VRP involving the added complexity that every 

customer should be served within a given time window (Bräysy and Gendreau, 2005a; 

Bräysy and Gendreau, 2005b; El-Sherbeny, 2010).  

Furthermore, the IRP is an extension of the VRP, which integrates routing decisions 

with inventory control (Moin and Salhi, 2007; Andresson et al., 2010; Coelho et al., 

2013; Archetti and Speranza, 2016). The problem arises in environments where VMI 

policies are employed, while the supplier decides the delivery times, the quantities 

and the vehicle routes at the same time. The main objective is to minimize the total 

transportation and inventory holding costs. The Inventory Routing Problem with Hard 
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or Soft Time Windows (IRPTW/IRPSTW) is a generalization of the standard IRP 

involving the added complexity that every customer should be served within a given 

time window. Liu and Lee (2011) proposed a two-phase heuristic method for solving 

the IRPSTW. The first phase of the heuristic algorithm finds an initial solution based 

on a construction approach, while the second phase improves the initial solution by 

adopting a variable neighborhood tabu search algorithm. In addition, Zeng and Zhao 

(2010) represented the stochastic IRPSTW as a discrete time Markov decision process 

model and solved it by using dynamic programming approximations. Lappas et al. 

(2015a) presented a two-phase solution algorithm based on the Monte Carlo 

Simulation and the Genetic Algorithm to solve the IRPTW. The first phase is related 

to the planning phase of the IRPTW, in which delivery times and quantities are 

determined by implementing the well-known inventory policy (s,S) for inventory 

management using the Monte Carlo Simulation. In the second phase, the Genetic 

Algorithm is applied to combine the customers into the vehicle routes by solving a 

VRPTW for a specific time period during the planning horizon. Some applications in 

the context of IRPTW/IRPSTW were presented by Zhang et al. (2013), Li et al. 

(2015) and Zhang et al. (2015). The IRPTW is obviously NP-hard, being a 

generalization of the IRP, which reduces to the TSP when the planning horizon is 

equal to a single period (e.g., one day); there are no inventory holding costs; all the 

customers need to be served but not in specific time windows; there is a single vehicle 

and transportation capacity is infinite (Bertazzi and Speranza, 2013; Lappas et al., 

2015b; Lappas et al., 2015c) (Fig. 1). 

 

Fig. 1. NP-hard nature of the IRP 

The PRP is also a core problem that has to be solved specifically in a VMI 

replenishment system and can be assumed to be the generalization of the IRP. The 

vendor monitors the inventory levels of the customers, while production, inventory, 

distribution and routing decisions have to be made simultaneously. For a 

comprehensive review of this literature through the year 2015, see Adulyasak (2015). 

Several applications of the IRP have been found. The result of an analysis of the 

scientific literature led to the identification of six main paths of development in the 

overall field of the IRP: (1) maritime transportation (Ronen, 1993; Arga et al., 2013; 

Song and Furman, 2013; Hewitt et al., 2013; Arga et al., 2014; Papageorgiou et al., 
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2014; Arga et al., 2015; Jiang and Grossmann, 2015; Hemmati et al., 2015; Arga et 

al., 2016a; Arga et al., 2016b; Hemmati et al., 2016), (2) industrial gas distribution 

(Bell et al., 1983; Goel et al., 2012; Ghiami et al., 2015; Shao et al., 2015; Singh et al., 

2015; Goel et al., 2015; Andersson et al., 2016), (3) distribution of perishable goods 

(Federgruen and Zipkin, 1984; Federgruen et al., 1986; Le et al., 2013; Soysal et al., 

2015; Mirzaei and Seifi, 2015; Soysal et al., 2016; Diabat et al., 2016), (4) fuel 

delivery (Popović et al., 2012), (5) medical waste collection (Nolz et al., 2014a; Nolz 

et al., 2014b) and medical drug distribution (Niakan and Rahimi, 2015), in addition to 

(6) distribution of agriculture products (Liao et al., 2013) and groceries (Mercer and 

Tao, 1996; Gaur and Fisher, 2004). 

The IRP research can be divided into three main streams. In the first stream, exact 

algorithms have been proposed to solve the IRP. Some of the exact algorithms that 

have been published through the year 2013 and that can solve an IRP are summarized 

by Coelho et al. (2013) and Coelho and Laporte (2013). The second stream of 

research contains approximation approaches. Due to the inability of the exact 

algorithms to solve large-scale IRP instances, an impressive number of heuristics as 

well as meta-heuristics have been proposed. Constructive heuristics and improvement 

heuristics have been developed and presented by Abdelmaguid et al. (2009) for the 

IRP with backlogging. The proposed construction heuristic, called ETCH (Estimated 

Transportation Costs Heuristic), estimates a transportation cost value for each 

customer in each time period to facilitate a comparison between the transportation and 

the inventory holding and shortage costs. Due to the myopic nature of the ETCH and 

the fact that partial fulfillment of demand is not allowed, an improvement heuristic 

was proposed in order to overcome the above limitations. The improvement heuristic 

is based on the idea of exchanging customer delivery quantities between periods to 

allow transitions from a given solution to its neighborhood. More recently, Raa (2015) 

provided a multi-start two-phase heuristic solution method consisting of an insertion-

based construction phase and an improvement phase for the Cyclic IRP, while 

Nambirajan et al. (2016) proposed a three-phase heuristic called CARE (Clustering, 

Allocation, Routing, Extended) for two-stage multi-product inventory routing 

problems with replenishments. 

Furthermore, several local search meta-heuristics such as Tabu Search (TS) (Archetti 

et al., 2012; Li et al., 2014; Qin et al., 2014), Greedy Randomized Adaptive Search 

Procedure (GRASP) (Guemri et al., 2016), Iterated Local Search (ILS) 

(Vansteenwegen and Mateo, 2014; Santos et al., 2016), Variable Neighborhood 

Search (VNS) (Mjirda et al., 2012; Mjirda et al., 2014, Mjirda et al., 2016) and 

Adaptive Large Neighborhood Search (ALNS) (Coelho et al., 2012a; Aksen et al., 

2014; Shirokikh and Zakharov, 2015) have been applied to the IRP. An alternative 

approach that combines simulation with heuristics has been presented by Juan et al. 

(2014), who described and used a “simheuristic” algorithm to solve the single-period 

stochastic IRP with stock-outs. Their approach combines the Monde Carlo Simulation 

with the multi-start randomized heuristic.  
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A number of population search meta-heuristics have been proposed for the solution of 

the IRP and its variants. Huang and Lin (2010) presented a modified ant colony 

optimization algorithm for multi-item IRPs with demand uncertainty. Tatsis et al. 

(2013) described the multiple suppliers, one retailer (many-to-one) IRP and proposed 

an ant-based optimization algorithm to solve the problem. In both papers, the main 

objective is to minimize the total transportation, inventory holding and backlogging 

costs. A hybrid heuristic method that integrates a Large Neighborhood Search (LNS) 

into Particle Swarm Optimization (PSO) presented by Liu et al. (2015) to solve the 

Periodic IRP. In addition, Yang et al. (2015) applied indicator-based evolutionary 

algorithms and swarm algorithms to find an approximation to the Pareto front of the 

IRP. Evolutionary optimization algorithms, such as GAs, have also been proposed to 

solve the IRP. This is particularly clear in the studies cited by Abdelmaguid and 

Dessouky (2006), Aziz and Moin (2007), Moin et al. (2011) Simić and Simić (2013), 

Shukla et al. (2013), Cho et al. (2013) and Park et al. (2016). 

The third stream of research is associated with mathheuristics, consisting of 

decomposition approaches (Campbell and Savelsbergh, 2004), improvement 

heuristics (Coelho et al., 2012b; Bertazzi et al., 2013; Guerrero et al., 2013; Archetti 

et al., 2014; Bertazzi et al., 2015) and column generation-based approaches (Aghezzaf 

et al., 2006). 

The research presented below represents an attempt to use local search and population 

search meta-heuristics to solve the IRP. The basic idea of the proposed approach is to 

combine a nature-inspired evolutionary optimization algorithm, such as the SA, and a 

biologically-inspired evolutionary optimization algorithm, that is, the GA, to handle 

the IRP. Therefore, a hybrid evolutionary optimization algorithm is proposed to solve 

the IRP. The SA is associated with the routing phase of the IRP, while the GA is 

related to the planning phase of the IRP. Both algorithms are dealt with in an iterative 

way. 

The works most closely related to this theis are most likely those of Abdelmaguid and 

Dessouky (2006), Aziz and Moin (2007), Moin et al. (2011), Cho et al. (2013), and 

Park et al. (2016). Abdelmaguid and Dessouky (2006) introduced a genetic algorithm 

to solve the one-to-many type of the IRP with finite horizon. The objective function 

includes transportation costs as well as inventory holding and shortage costs on the 

end inventory positions. In particular, they designed a genetic representation in the 

form of a two-dimensional matrix based on the delivery schedule and addressed the 

vehicle routing part using the Clarke and Wright algorithm. In addition, a randomized 

version of a construction heuristic called ATCH (Approximate Transportation Costs 

Heuristic) was used to generate the initial random population, while suitable crossover 

and mutation operators were designed for the improvement phase of the genetic 

algorithm. In the studies by Aziz and Moin (2007) and Moin et al. (2011), the many-

to-one type of IRP with finite horizon is addressed. Both transportation and inventory 

costs are considered, while a hybrid genetic algorithm combining a genetic algorithm 

(planning phase) and a simple 2-opt procedure (routing phase) is presented. Cho et al. 
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(2013) proposed an adaptive genetic algorithm for the time dependent inventory 

routing problem considering the one-to-many network topology. This paper takes into 

account the effect of dynamic traffic conditions in an urban context, while the 

objective function consists of the transportation, inventory holding and shortage costs 

at the end of the period inventory positions. More recently, Park et al. (2016) 

presented a genetic algorithm for the inventory routing problem with lost sales under 

a VMI strategy in a two-echelon supply chain comprised of a single manufacturer and 

multiple retailers (one-to-many network topology). The objective function consists of 

the transportation costs, the inventory holding cost of the manufacturer, the inventory 

holding costs of the retailers and the costs associated with lost sales. 

The proposed hybrid evolutionary optimization algorithm shows significant 

differences:  

1. Most of the previous research has considered a one-to-many type of IRP in which 

the objective function includes shortage costs at the end of the period inventory 

positions or costs related to lost sales. In this thesis, stock-outs or lost sales are not 

allowed, and therefore, no shortage costs or costs related to lost sales are included 

in the objective function. 

2. Some of the previously reported research (e.g., Abdelmaguid and Dessouky, 2006; 

Aziz and Moin, 2007; Moin et al., 2011) has focused only on the planning phase 

of the IRP, while the routing phase has been addressed by simple heuristics such 

as the Clarke and Wright algorithm and the 2-opt algorithm. In this thesis, the 

routing phase of the IRP is addressed by the Simulated Annealing algorithm, a 

nature-inspired optimization algorithm (local search meta-heuristic) 

simultaneously improving the solution approach in the context of the vehicle 

routing problem. 

3. In the VRP literature, there exists a classical set of well-known benchmarks 

commonly used to test new VRP algorithms. However, this is not the case for the 

IRP. As a result, to provide complete information about the set of benchmarks that 

are employed so that other researchers can use them, new datasets have been 

developed by generalizing the well-known dataset P of Augerat et al. (1998). 

These datasets are divided into two categories: datasets consisting of low 

inventory holding costs and datasets including high inventory holding costs. 

Different problem sizes, based on the total number of customers, were designed in 

each category to evaluate the performance of the proposed solution approach in 

the context of the one-to-many type of IRP: 15, 20, 22, 39, 44, 50, 54, 59, 64, 69, 

75 and 100 customers (first category) and 15, 20, 22, 39, 44, 50 customers (second 

category). 

As far as the IRPTW is concerned, new benchmark instances have been developed by 

generalizing the well-known datasets of Solomon (1987)
1
. Consequently, the 

efficiency and the effectiveness of the proposed two-phase solution algorithm cannot 

                                                           
1
 http://web.cba.neu.edu/~msolomon/problems.htm  

http://web.cba.neu.edu/~msolomon/problems.htm
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be compared to other published IRPTW studies using benchmark instances previously 

introduced. This is due to the differentiated manner in which the proposed algorithm 

operates based on the assumptions presented in Chapter 4. The basic notion is to 

formulate a mathematical problem and present a two-phase solution algorithm to 

prefigure a road-map for future work. Testing instances are established to investigate 

algorithmic performance, and the computational results are then reported. Finally, this 

study provides various graphical presentation formats to highlight the insights that are 

gained. In particular, the analytical results and graphic presentations help to simplify 

complicated issues and convey meaningful insights into the problem. 
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Chapter 3 

3. The Inventory Routing Problem 

3.1. Problem Description and Mathematical Formulation 

 

This section presents a modeling framework for formulating the IRP. Let         

be a complete undirected graph where           is the set of vertices and 

                    is the set of edges. Vertices       correspond to the 

customers, whereas vertex   corresponds to the depot. The model presented here deals 

with the repeated distribution of a single product from a single supplier to a set of 

geographically dispersed customers                 over a given time horizon 

of length  . The set of time horizons is denoted by          . Each customer 

    faces a different demand   
  per time period    , maintains his own inventory 

up to capacity   , and incurs an inventory holding cost of    per period per unit. It is 

assumed that the depot has a sufficient supply of items that can cover all customers’ 

demands throughout the planning horizon, that is,      .  

A nonnegative cost,     is associated with each edge         and represents the 

travel cost spent to go from vertex   to vertex         . Generally, the usage of the 

loop edge,       is not allowed, and this is imposed by defining        for all   

 . In addition, the cost matrix satisfies the triangle inequality:            . In 

other words, it is not convenient to deviate from the direct link between two vertices. 

Since   is a complete undirected graph, the cost matrix       is symmetric, and as a 

result,                . Vertices are associated with points of the plane having the 

given coordinates            , and the cost     for each edge         is defined as 

the Euclidean distance between the two vertices      . Therefore,     

        
 
        

 
. 

An unlimited fleet of identical vehicles with capacity   is available for the 

distribution of the product. The fleet of vehicles is denoted by the set          . 

However, to model the problem, an upper bound on the number of vehicles needed to 

distribute the products should be defined. A trivial upper bound on the maximum fleet 

size needed is          . Furthermore, the formulation uses the following 

decision variables: 

    
 : the amount of delivery to customer     in period     by vehicle    . 

     
 : the number of times the edge         is traversed by vehicle     in 

period    . 
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    
 : a binary variable that is used to assign customers to vehicles, with value   

indicating that customer     will be visited by vehicle     in period    , 

and   otherwise. 

   
 : a nonnegative variable indicating the inventory level at customer     at the 

end of period    . It should be mentioned that at the beginning of the planning 

horizon, each customer     has an initial inventory level of   
         of 

product. 

Moreover, stock-outs are not allowed at the customers, while the quantities delivered 

by each vehicle in each route cannot exceed the vehicle capacity. As far as the 

replenishment policy is concerned, a Maximum Level (ML) policy is applied. 

Therefore, any customer has defined a maximum inventory level. Every time a 

customer is served, the delivered quantity is such that the inventory level at the 

customer is not greater than the maximum level. After defining the necessary 

parameters and decision variables, the IRP can be formulated as a mixed integer linear 

programming as shown below: 

               
 

                

       
 

      

  (1) 

Subject to:  

  
    

        
 

   

   
            (2) 

  
              (3) 

  
               (4) 

    
 

   

     
            (5) 

   
       

                 (6) 

    
 

   

             (7) 

     
 

       

      
 

       

     
                 (8) 

      
 

       

     
 

      

    
                      (9) 

   
                   (10) 

    
                                (11) 

    
                         (12) 
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                       (13) 

 

The total cost comprises the transportation costs and the inventory holding costs of 

the customers as depicted in the objective function (1). Constraints (2) are the 

inventory balance equations for the customers. Constraints (3) guarantee that no 

stock-out occurs at the customers, and constraints (4) limit the inventory level of the 

customers to the corresponding maximum inventory level (ML policy). Constraints 

(5) ensure that the vehicle capacities are not exceeded in any period     during the 

planning horizon. Constraints (6) impose the condition that if any quantity is 

delivered to the customer     in period    , the customer   is visited in period  . 

In addition, a customer can be visited exactly once in each period     (7). 

Constraints (8) and (9) are the routing constraints. Namely, they guarantee that a 

feasible route is determined to visit all customers served in period    . Finally, 

constraints (10), (11), (12) and (13) are the domain constraints. 

 

3.2. Solution Approach for the IRP 

 

Due to the NP-hard nature of the IRP, a hybrid evolutionary optimization algorithm 

based on two well-known meta-heuristics (Genetic Algorithm, Simulated Annealing 

Algorithm) is proposed to handle the problem. Since the IRP can be described as the 

combination of the Inventory Control and the Vehicle Routing Problems, the meta-

heuristics are used as follows: The Genetic Algorithm is related to the planning phase 

of the IRP (inventory control problem) determining delivery times and quantities, 

while the Simulated Annealing Algorithm is associated with the routing phase of the 

IRP (vehicle routing problem) determining routes. Both algorithms are dealt with in 

an iterative way to define the re-optimization phase. Hence, a repetitive procedure is 

applied to obtain a near-optimal feasible solution. 

 

3.2.1. Planning Phase – A Genetic Algorithm Approach 

 

Genetic Algorithms (GAs) have been developed by John Holland and his 

collaborators at the University of Michigan in the 1970s (Holland, 1975). They are 

based on the principles of biological evolution and the natural selection process of the 

survival of the fittest. This process actually reflects an optimization process based on 

an initial, randomly generated, population of solutions (population-based meta-

heuristic). A solution is referred to as an individual, while its data structure 

representation corresponds to the chromosome or genotype. A chromosome consists 

of genes that represent the decision variables within a solution. One iteration of 

creating a new population through the optimization algorithm is called a generation. 
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The population is maintained and evolved from generation to generation using genetic 

operators such as evaluation, reproduction (selection), recombination (crossover) and 

mutation. The fitness of each individual is associated with the evaluation function or 

the objective function, while the phenotype represents how an individual operates 

during the fitness assessment.  

Furthermore, a selection process allows parent solutions with high fitness to be 

selected from the current population. Then, crossover and mutation operators are 

applied to generate children (offspring). In particular, the crossover operator intends 

to inherit some characteristics (genes) of the two parents to generate the offspring, 

while the mutation operator represents a slight change to a single individual. The 

offspring compete with the parents for their place in the next generation (survival of 

the fittest), thus constructing the next population. In the following subsections, a 

detailed description of the developed genetic approach regarding the IRP is given. 

 

3.2.1.1. Chromosome Representation 

 

A small sample problem of a distribution system that comprises a single supplier and 

six customers can be considered to illustrate the proposed chromosome representation 

(Fig. 2). 
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Fig. 2. Illustrative example 

The planning horizon is equal to six days. At the beginning of the planning horizon, 

all customers have zero inventory levels, whereas each customer has a daily demand. 

Stock-outs are not allowed, while inventory holding costs exist only at the demand 

points. Each customer has a sufficient maximum inventory level to satisfy his storage 

needs during the planning horizon. Furthermore, it is assumed that the supplier has a 

sufficient supply of products that can cover all customers’ demands throughout the 

planning horizon. Table 1 provides information about the maximum inventory level as 

well as the inventory holding cost of each customer. 
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Table 1 

Inventory information for the illustrative example 

Customer Inventory Holding Cost (per unit per period) Maximum Inventory Level 

1 0.4649 115 

2 0.3723 190 

3 0.3545 95 

4 0.4054 135 

5 0.4908 60 

6 0.1219 175 

 

A chromosome can be represented by a two-dimensional matrix with six rows and six 

columns (Fig. 3).  

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 43 0 21 13 13 24 

Customer 2 74 0 40 55 0 21 

Customer 3 15 15 34 0 14 15 

Customer 4 26 42 0 23 21 22 

Customer 5 7 12 14 5 9 11 

Customer 6 29 87 0 0 34 24 

 

Fig. 3. Chromosome representation 

The rows and the columns of the matrix correspond to the customers and the time 

periods of the planning horizon, respectively. Each cell of the matrix represents the 

total amount of product that should be delivered to a specific customer in a specific 

time period. For example, the total amount of product that should be delivered to 

customer 2 in day 3 is equal to 40. Since stock-outs are not allowed, it should be 

observed that each delivery quantity satisfies the current demand of the customer. If a 

delivery to a customer does not take place in a specific time period, the period’s 

demand is satisfied through the available inventory from a previous delivery. For 

instance, the delivery quantities of period 1 for Customer 2 are enough to satisfy the 

demands of Period 1 and 2, respectively (43 = 21 + 22). Therefore, for each customer 

(row of a matrix), the sum of delivery quantities is equal to the sum of customer 

demand during the planning horizon. 

 

3.2.1.2. Generation of Initial Population 

 

Based on a pre-defined population size, a random procedure is followed to generate 

the initial population. To begin with, each individual in the population is represented 
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by a randomly generated binary matrix (Fig. 4). Each cell contains a 1/0 value 

indicating whether a customer is visited in a specific time period.  

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 1 0 1 1 1 1 

Customer 2 1 0 1 1 0 1 

Customer 3 1 1 1 0 1 1 

Customer 4 1 1 0 1 1 1 

Customer 5 1 1 1 1 1 1 

Customer 6 1 1 0 0 1 1 

 

Fig. 4. Binary matrix representation 

Since at the beginning of the planning horizon all customers have zero initial 

inventory levels and stock-outs are not allowed, the first column of the binary matrix 

contains only 1-values. The remaining columns of the binary matrix are randomly 

generated. Below, an algorithm (Algorithm 1) is presented that generates a binary 

matrix. 

Algorithm 1. Generate a binary matrix 

Inputs:    (number of customers),    (number of periods) 

                                                 

                                

Output:              

 

Analytically,      creates an   -by-  array of ones, while       creates an   -by-

       array of 1/0 values. Afterward, the algorithm combines the two arrays into 

one array to create the binary matrix that corresponds to an individual of the 

population. Given a population size,        , this procedure can be repeated to 

create the initial population (Algorithm 2).  

Algorithm 2. Generate a population of binary matrices 

Inputs:               

                    

                   

         

Output:       (population of binary matrices) 

 

According to a binary matrix, a real-value matrix that consists of delivery quantities in 

each time period of the planning horizon can be easily produced (Algorithm 3). This 

two-dimensional matrix reflects the chromosome representation shown in section 

3.2.1.1 (Fig. 5). 
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 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 43 0 21 13 13 24 

Customer 2 74 0 40 55 0 21 

Customer 3 15 15 34 0 14 15 

Customer 4 26 42 0 23 21 22 

Customer 5 7 12 14 5 9 11 

Customer 6 29 87 0 0 34 24 

 

Fig. 5. Delivery quantities matrix (chromosome representation) 

Algorithm 3. Produce chromosome representations of population’s individuals 

Inputs:    (demand matrix),      ,         

                    

                                    

         

Output:            

 

Given the customers’ demands during the planning horizon and their binary matrix 

representations, Algorithm 3 produces real-value matrices that reflect the initial 

population with respect to the assumption that stock-outs are not allowed. In 

particular, after each iteration,           creates a delivery quantity matrix 

according to the demand matrix of each customer and the relative binary matrix. As a 

result, after each iteration, an individual is added to the population. Moreover, based 

on a delivery quantity matrix, inventory levels and inventory holding costs of each 

customer can be easily determined, as shown in figures 6 and 7, respectively. 

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 22 0 0 0 0 0 

Customer 2 38 0 0 27 0 0 

Customer 3 0 0 14 0 0 0 

Customer 4 0  29 0 0 0 0 

Customer 5 0 0 0 0 0 0 

Customer 6 0 58 39 0 0 0 

 

Fig. 6. Inventory level matrix 
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 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 10.2281 0 0 0 0 0 

Customer 2 14.1470 0 0 10.0518 0 0 

Customer 3 0 0 4.9631 0 0 0 

Customer 4 0 11.7567 0 0 0 0 

Customer 5 0 0 0 0 0 0 

Customer 6 0 7.0716 4.7551 0 0 0 

 

Fig. 7. Inventory holding cost matrix 

 

3.2.1.3. Fitness Evaluation and Selection 

 

An important issue is the choice of an appropriate fitness function that determines the 

selection criterion in the IRP. The fitness quantifies the optimality of a solution (i.e., a 

chromosome) in the proposed hybrid evolutionary algorithm so that a particular 

chromosome may be ranked against all the other chromosomes. Therefore, optimal 

chromosomes are allowed to breed and mix their genes by any of several techniques, 

producing a new generation that will be even better. For the IRP, it is assumed that 

candidate solutions with lower total costs (inventory holding costs plus transportation 

costs) imply better solutions. Since the IRP is a minimization problem, the fitness for 

each chromosome is defined as follows: 

        
 

           
 

                       
 

      

 (14) 

 

Therefore, each individual has a probability of being selected that is proportional to its 

fitness. The higher the individual’s fitness is, the more likely it is to be selected. In 

this context, the roulette-wheel selection approach is adopted as the selection process 

(Algorithm 4).  
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Algorithm 4. Roulette-wheel selection 

Inputs:                                          

                 
         
    

                                                            

               

        

                

              

                      

           

             

Output:        

 

Algorithm 4 shows how to select a parent from a population of         individuals. 

To keep the population size constant across generations, suitable pairs of mates are 

picked. The goal is to select every time two parents to produce two offspring. This 

process is repeated until the population of offspring is the same as the population of 

parents. 

 

3.2.1.4. Crossover Operator 

 

Since two parents are selected, a crossover operator can be applied. For the reported 

chromosome representation, a single-point crossover operator as well as a double-

point crossover operator has been designed and can be used randomly to produce two 

offspring. The two-dimensional matrix structure can be broken horizontally 

considering that delivery quantities for a selected set of customers will be exchanged 

between two parent solutions. Hence, the crossover point is relevant to a specific row 

of the two-dimensional matrix. 

 

3.2.1.4.1. Single-Point Crossover Operator 

 

Based on the two-dimensional matrix structure, the single-point crossover indicates 

that one crossover position (a row of the matrix) is selected uniformly at random and 

the rows are exchanged between the individuals about this point. Then, two new 

offspring are produced. Consider the following example (Fig. 8). 
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 P1 P2 P3 P4 P5 P6 

C1 64 0 0 13 37 0 

C2 74 0 40 55 0 21 

C3 15 15 20 14 29 0 

C4 26 42 0 23 21 22 

C5 7 12 14 5 9 11 

C6 29 87 0 0 34 24 
 

 P1 P2 P3 P4 P5 P6 

C1 21 22 21 26 0 24 

C2 114 0 0 28 27 21 

C3 30 0 34 0 25 4 

C4 68 0 0 44 0 22 

C5 19 0 19 0 9 11 

C6 29 48 0 39 34 24 
 

Parent 1 Parent 2 

 P1 P2 P3 P4 P5 P6 

C1 64 0 0 13 37 0 

C2 74 0 40 55 0 21 

C3 15 15 20 14 29 0 

C4 68 0 0 44 0 22 

C5 19 0 19 0 9 11 

C6 29 48 0 39 34 24 
 

 P1 P2 P3 P4 P5 P6 

C1 21 22 21 26 0 24 

C2 114 0 0 28 27 21 

C3 30 0 34 0 25 4 

C4 26 42 0 23 21 22 

C5 7 12 14 5 9 11 

C6 29 87 0 0 34 24 
 

Offspring 1 Offspring 2 

 

Fig. 8. Single-point crossover operator 

In the above case, the third row of the matrix is considered as the crossover point. As 

a result, Parent 1 and Parent 2 exchange rows 4, 5 and 6 with each other, thus 

producing two offspring. The algorithm that shows the functionality of the single-

point crossover operator is presented below (Algorithm 5). Assuming that two parents 

are selected,           and           from a given population,           , a 

crossover point is randomly generated from         , where    is the given 

number of customers. Since the crossover point is known, two offspring are produced. 

The first offspring,   , as well as the second one,   , maintain the first C          

rows of    and   , respectively. In addition, the remaining rows of   ,            

      , are copied to   , while the remaining rows of    are copied to   . 

Furthermore, to guarantee the continuity of the process, the relative binary matrices 

for    and    are produced, called   
  and   

  , respectively.  

Algorithm 5. Single-point crossover 

Inputs:                                         

             ,                                                       

                                       
               

             

                                                           

                                                           

   
                                                     

   
                                                     

Outputs:         
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3.2.1.4.2. Double Crossover Operator 

 

In the double-point crossover operator, two crossover positions are selected uniformly 

at random and the rows are exchanged between the individuals between these points. 

Then, two new offspring are produced. Consider the following example. 

 P1 P2 P3 P4 P5 P6 

C1 64 0 0 13 37 0 

C2 74 0 40 55 0 21 

C3 15 15 20 14 29 0 

C4 26 42 0 23 21 22 

C5 7 12 14 5 9 11 

C6 29 87 0 0 34 24 
 

 P1 P2 P3 P4 P5 P6 

C1 21 22 21 26 0 24 

C2 114 0 0 28 27 21 

C3 30 0 34 0 25 4 

C4 68 0 0 44 0 22 

C5 19 0 19 0 9 11 

C6 29 48 0 39 34 24 
 

Parent 1 Parent 2 

 P1 P2 P3 P4 P5 P6 

C1 64 0 0 13 37 0 

C2 74 0 40 55 0 21 

C3 30 0 34 0 25 4 

C4 68 0 0 44 0 22 

C5 7 12 14 5 9 11 

C6 29 87 0 0 34 24 
 

 P1 P2 P3 P4 P5 P6 

C1 21 22 21 26 0 24 

C2 114 0 0 28 27 21 

C3 15 15 20 14 29 0 

C4 26 42 0 23 21 22 

C5 19 0 19 0 9 11 

C6 29 48 0 39 34 24 
 

Offspring 1 Offspring 2 

 

Fig. 9. Double-point crossover operator 

This example depicts two crossover positions, row 2 and row 5. Therefore, rows 3 and 

4 of the Parent 1,   , are copied to the Offspring 2,   , while rows 3 and 4 of the 

Parent 2,   , are copied to the Offspring 1,   . Analogous to the simple-point 

crossover operator, an algorithm of the double-point crossover operator is presented 

below (Algorithm 6).  
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Algorithm 6. Double-point crossover 

Inputs:                                         

                                                                    

                                          

                                                         

                            b             

                                       
               

             

                                         

                                                      

   
                                   

                
                                   

Outputs:         
     

   

 

3.2.1.5. Mutation Operator 

 

After the crossover, an individual is subjected to mutation. In particular, the mutation 

prevents the algorithm from being trapped in a local minimum. Therefore, through the 

crossover, a current solution is exploited to find better ones, whereas the mutation is 

supposed to help to explore the whole search space. In the context of the proposed 

solution approach, the mutation operator presented by Abdelmaguid and Dessouky 

(2006), called the backward delivery exchange, is adopted. The backward delivery 

exchange process is chosen due to the restriction that stock-outs are not allowed. 

Accordingly, part of a customer’s delivery amount can be transferred only to a 

preceding period. The following figure (Fig. 10) illustrates an example of using the 

backward delivery exchange operator. 

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 43 0 21 13 13 24 

Customer 2 74 0 40 55 0 21 

Customer 3 15 15 34 0 14 15 

Customer 4 26 42 0 23 21 22 

Customer 5 7 12 22 14 4 5 9 11 

Customer 6 29 87 0 0 34 24 

 

Fig. 10. Backward delivery exchange operator 

The example shows that the delivery quantity for Customer 5 scheduled in period 3 is 

reduced by 10 units, and this amount is transferred to period 2. 

Below, the algorithm of the backward delivery exchange operator is presented 

(Algorithm 7). An important parameter in the mutation process is the mutation 
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probability,             , which decides how often parts of a chromosome will be 

mutated. Since a mutation takes place, a random integer,       , is generated in the 

interval from       , where    indicates the number of the customers. Then, for 

       times, the following process is repeated. A period,        , is selected 

randomly. If no deliveries are scheduled for this period,         is re-generated 

randomly. Afterwards,      returns the customers,         , that are scheduled to be 

visited in the          time period of the planning horizon. A customer, 

           , from          is randomly selected and his scheduled delivery 

amount,     , is saved. Next, the amount that could be transferred to a preceding 

period,       , is randomly selected in the interval from         . From previous 

periods where a customer has scheduled deliveries, the nearest period,        , is 

selected to transfer        units of product. Subsequently, the scheduled delivery 

quantity in period         is reduced by        units, and this amount is 

transferred to period        . 

Algorithm 7. Backward delivery exchange operator 

Input:   (child solution) 

                                                

                                    

                          

                                       

                                                                                      

                                        

              

                                                   

                                                                                   

                                                                                                                                                          

                                                                                             

                                                                                              

                                               

                                                    

                                                 

           

        

Output:   (child solution after mutation) 

 

3.2.2. Routing Phase – A Simulated Annealing Algorithm Approach 

 

Since the Genetic Algorithm focuses only on the planning phase by determining the 

delivery times and quantities, the vehicle routes should be constructed. The routing 
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phase is related to the usage of a Simulated Annealing Algorithm for solving a vehicle 

routing problem for each time period of the planning horizon where delivery 

quantities have been scheduled. The Simulated Annealing Algorithm is a nature-

inspired optimization algorithm introduced by Kirkpatrick et al. (1983). Contrary to 

Genetic Algorithms, it is a single-individual stochastic algorithm, as it does not 

involve a population of candidate solutions. The algorithm mimics the annealing 

process of heating and cooling a material in order to re-crystallize it (Talbi, 2009). In 

particular, the annealing process starts with an initial system state at a very high 

temperature, which is slowly decreased to obtain a strong crystalline structure. The 

strength of the structure depends on the rate of decrease, which is subjected to a 

cooling process until it converges to an equilibrium state (steady frozen state). 

However, to reach an equilibrium state at each temperature, a number of sufficient 

transitions must be applied.  

Similarly, the Simulated Annealing algorithm (Algorithm 8) consists of two cycles, 

the external and the internal cycle. The algorithm begins with an initial feasible 

solution,   , and a high temperature      and proceeds in        iterations (external 

cycle). Then, the algorithm proceeds in        iterations (internal cycle). 

Throughout the internal cycle, the temperature is constantly trying to converge to an 

equilibrium state at the end of        iterations. At each iteration of the internal 

cycle, a neighboring solution,  , is generated by perturbing the current solution. A 

cost function,               , exists to measure the quality of each solution. If the 

cost of the neighboring solution,                , is less than the cost of the current 

solution,                 , it is accepted. Otherwise, it is accepted with probability 

  
  

 , where   is a control parameter (temperature) and    represents the difference 

in the objective value between the current solution and the generated neighboring 

solution. The control parameter   is decreased gradually through the external cycle. 

The temperature is updated using a geometric schedule that corresponds to the 

formula          , where            . Therefore, as the algorithm 

progresses, the probability that a non-improving generated neighboring solution is 

accepted decreases. The set of parameters related to the high value of control 

parameter (temperature),     , the rate of decrease (cooling rate),      , and the 

stopping condition of the internal (       iterations) as well as external cycle 

(       iterations) of the algorithm is called the annealing (cooling) schedule.  
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Algorithm 8. Simulated annealing algorithm 

Inputs:                          

                                              

            

                   

      

                     

                                                   

                                            

         

        

                                                     

               
  

       

          

           

          

         

            

                  

           

Output: best solution found 

 

In terms of the optimization process, the annealing schedule controls the transition 

from the exploration to the exploitation. Particularly, at the beginning of the 

algorithm, the temperature has a high value, which is decreased until a final 

temperature is reached. This final temperature is typically close to zero. As a 

consequence, at the beginning of the algorithm, the exploration is high and the 

exploitation is low, while at the end of the algorithm, the exploitation is high and the 

exploration is low. The main objective is to obtain a balance between exploration and 

exploitation to sufficiently explore the search space and simultaneously exploit good 

solutions. 

 

3.2.2.1. Solution Representation 

 

Assume an individual in a population obtained by the planning phase described in 

section 3.2.1. The Simulated Annealing algorithm should be applied to each time 

period of the planning horizon where scheduled delivery quantities exist (Fig. 11). 
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 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Customer 1 64 0 0 26 0 24 

Customer 2 36 38 68 0 44 4 

Customer 3 30 0 20 43 0 0 

Customer 4 39 0 52 0 43 0 

Customer 5 19 0 39 0 0 0 

Customer 6 58 0 116 0 0 0 

Customer 7 23 0 17 8 23 0 

Customer 8 110 0 0 25 0 0 

Customer 9 30 0 0 0 17 0 

Customer 10 10 13 0 13 4 0 

Customer 11 19 21 0 0 0 0 

Customer 12 34 0 52 0 0 0 

Customer 13 14 0 14 0 16 0 

Customer 14 51 0 0 69 0 0 

Customer 15 38 0 0 7 18 0 

 VRP VRP VRP VRP VRP VRP 

 

Fig. 11. Solving a VRP problem at each time period of the planning horizon 

Path representation is the most natural way of representing the routes of a VRP. Since 

a VRP consists of one or more routes, the length of each path is variable. On account 

of this, a dynamic variable,  , can be used to represent the solution of the VRP.   

contains all the routes of a specific time period of the planning horizon. For instance, 

in the first time period                   , where (a)                         

is the first route, (b)                         is the second route and (c)      

                 is the third route. The zero value in each row vector represents the 

supplier, while the other numbers represent the customers. 

 

3.2.2.2. Initial Solution 

 

In order to generate an initial solution to start solving a VRP with Simulated 

Annealing algorithm, a random approach is followed,                          . 

The approach iterates over a pre-defined list of customers that will be visited in a 

specific time period according to the planning phase. The algorithm (Algorithm 9) 

proceeds as follows. If there are   customers in the pre-defined list, a customer is 

selected randomly to start creating a route. Each route corresponds to a specific 

vehicle of a fleet with capacity  . Moreover, each customer who is added in a route 

should have delivery quantity,                   , such that it does not exceed the 
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vehicle’s capacity,   ,  whereas this customer is excluded from the list since he is 

associated with a specific route. If a customer’s delivery quantity is greater than the 

remaining vehicle’s capacity,   , a new route is designed that is related to a new 

vehicle with capacity     . Finally, the combination of the routes construct the 

random initial non-optimal feasible solution,   , of the VRP. 

Algorithm 9. Generate an initial VRP solution 

Inputs:                   

                                        

              

                                                                  

                                

                                 

                                                   

                                                                           

          

        

                                                    

                                   

          

       

                    

                                                                                          

                                  

         

           

           

Output:                    

 

3.2.2.3. Cost Function 

 

The objective of the Simulated Annealing algorithm is to minimize the cost associated 

with all proposed routes of a specific time period of the planning horizon. Therefore, 

if a solution   consists of   routes, the cost function,             , is equal to: 

           
   
   .  
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3.2.2.4. Neighboring Solution 

 

At each iteration of the internal cycle of the Simulated Annealing algorithm, a 

neighboring solution,  , is generated by perturbing the current solution, 

                              (Algorithm 10). The generation of the 

neighboring solution is based on a random selection among three inter-route 

improvement algorithms: (a) the move improvement algorithm, (b) the swap 

improvement algorithm and (c) the cyclic improvement algorithm. The three 

algorithms attempt to reduce the total route length by moving one or more customers 

to a different route. It is worth noting that a move is feasible if the demand of the 

moved customer does not violate the vehicle capacity on the route it is moved to. All 

of the algorithms are analytically described by Goetschalckx (2011). 

Algorithm 10. Generate a neighboring solution 

Input:    

                                          

                 

             

        

                 

             

         

                 

               

        

Output:                 

 

3.2.3. Re-optimization Phase – A Hybrid Approach 

 

Both approaches that are presented in sections 3.2.1 (Genetic Algorithm) and 3.2.2 

(Simulated Annealing) are dealt with in an iterative way, thus constructing a hybrid 

evolutionary optimization algorithm (Algorithm 11) that is related to a re-optimization 

phase. Hence, a repetitive procedure is applied to obtain a near-optimal feasible 

solution. The algorithm starts by creating the IRP model based on a specific IRP data 

set,            . Then, Algorithm 2 is called to generate an initial population of 

        individuals as far as the random binary matrices are concerned. Algorithm 3 

is called to generate the population of the genetic algorithm based on the random 

binary matrices. Since an initial population has been constructed, a population of VRP 

problems is created. Each element of the population consists of a set of VRPs that 

correspond to each time period of the planning horizon of each individual of the 

genetic algorithm population. Consequently, for each individual of the population, 
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Algorithm 8 is used to solve a VRP problem for each time period of the planning 

horizon where scheduled delivery quantities exist. Since the delivery quantities and 

times as well as the VRP solutions are available for each individual of the population, 

respective populations containing information about the inventory levels,      , the 

inventory costs,       , and the vehicle routing costs,         , can be created. 

In addition, the total inventory routing cost is calculated for each individual of the 

population since        and          are available. With respect to the 

minimum inventory routing cost, the best individual of the population is selected, 

          , whereas the population is sorted. 

After initialization, the algorithm proceeds as follows. For each generation, an internal 

cycle takes place to produce the offspring. At each iteration of the internal cycle, two 

parents are selected according to their fitness (see Section 3.2.1.3) using Algorithm 4. 

Algorithm 5 or Algorithm 6 is used randomly to apply a crossover operator to produce 

two offspring. For each offspring, a mutation operator may be applied using 

Algorithm 7. After the internal cycle, a new population has been created consisting of 

both parents,           , and offspring,              . Furthermore, to avoid 

duplicate individuals, a procedure called                        is applied. This 

procedure uses Algorithm 7, applying the proposed mutation operator to duplicate 

individuals. Afterward, the new best IRP solution,            , is calculated and 

compared with the previous best IRP solution,           . If the second solution is 

better, it is accepted. Otherwise, the new population is sorted and only the first 

        individuals are selected to keep the population size constant from one 

generation to the next. 

Algorithm 11. Hybrid evolutionary optimization algorithm 

Inputs:                                           
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Output:            

 

Based on the example presented in Section 3.2.2.1, the following figure illustrates the 

IRP solution related to the best individual of the population through 50 generations 

(Fig. 12). 
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Fig. 12. IRP solution for the IRP sample problem – 50 generations 

Table 2 presents the routes that take place in each time period of the planning horizon. 

 

Table 2 

Cost information and routes for the IRP sample problem – 50 generations 

IRP Solution 

Routes of Period 1 Routes of Period 2 Routes of Period 3 

Route 1: 0-2-13-8-3-10-0 

Route 2: 0-4-11-15-12-1-0 

Route 3: 0-6-7-9-14-5-0 

Route 1: 0-2-10-11-0 Route 1: 0-2-3-12-4-0 

Route 2: 0-6-13-7-5-0 

Routes of Period 4 Routes of Period 5 Routes of Period 6 

Route 1: 0-1-10-15-3-8-7-14-0 Route 1: 0-7-9-13-2-10-15-4-0 Route 1: 0-2-1-0 

Total VRP Cost Total Inventory Control Cost Total IRP Cost 

736.7608 245.1916 981.9524 

 

If the number of generations is increased (e.g., 100 instead of 50), then a better 

solution is obtained (Fig. 13, Table 3). 
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Fig. 13. IRP solution for the IRP sample problem – 100 generations 

Table 3 

Cost information and routes for the IRP sample problem – 100 generations 

IRP Solution 

Routes of Period 1 Routes of Period 2 Routes of Period 3 

Route 1: 0-5-14-9-13-2-6-0 

Route 2: 0-1-3-8-7-0 

Route 3: 0-4-11-15-12-10-0 

Route 1: 0-6-7-2-0 

Route 2: 0-4-15-0 

Route 1: 0-2-8-13-9-14-5-0 

Routes of Period 4 Routes of Period 5 Routes of Period 6 

Route 1: 0-1-10-3-2-7-5-6-0 Route 1: 0-2-7-9-14-5-0 Route 1: 0-6-8-3-12-1-0 

Total VRP Cost Total Inventory Control Cost Total IRP Cost 

711.8943 231.7815 943.6758 

 

The next figure (Fig. 14) illustrates a typical graph of the minimum IRP cost in the 

population as a function of generation number. Specifically, the figure shows a typical 

evolutionary algorithm convergence behavior for the IRP sample problem. In the first 

case (50 generations), the evolutionary algorithm has mostly converged after 40 

generations; in the second case (100 generations), after 95 generations. However, it 

appears that in both cases, the best candidate solution continues to improve for a few 

more generations. 
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Fig. 14. Evolutionary algorithm convergence behavior 

 

3.2.4. Computational Experiments and Results 

 

This section presents the computational results of the proposed hybrid evolutionary 

optimization algorithm described in Section 4. The algorithm was developed in the 

MATLAB programming language and executed on a DELL personal computer with 

an Intel® Core™ i3-2120, clocked at 3.30 GHz, a microprocessor with 4 GB of RAM 

memory under the operating system Microsoft Windows 7 Professional. As 

mentioned in Chapter 2, new benchmark instances were designed. Consequently, the 

efficiency and the effectiveness of the proposed algorithm cannot be compared to 

other published IRP studies using benchmark instances previously introduced. This is 

due to the differentiated manner in which the proposed algorithm operates based on 

the assumptions presented in Chapter 2 and Section 3.1, respectively. However, this 

section validates the evolutionary algorithm and then evaluates its performance by 

comparing the algorithm’s solutions with solutions obtained by solving a VRP 

problem for each time period of the planning horizon based on the known demands 

(the planning phase is ignored). The algorithm has been tested on a newly introduced 

set of 18 IRP benchmark instances described in the following. All benchmark 

instances and their computational results are available at 

http://www.msl.aueb.gr/files/GaSaIRP.zip.   

 

3.2.4.1. Set of Benchmark Instances 

 

New datasets have been developed by generalizing the well-known dataset P of 

Augerat et al. (1998). These datasets are divided into two classes. The first class 

(Class A) contains the instances with planning horizon     time periods (days) and 

a high inventory holding cost of the customers,                 . The second 

class (Class B) contains the instances with planning horizon     time periods 

(days) and low inventory holding costs of the customers,                   . The 

datasets are named in the form of “IRP_nX_pY_HC” (first class) or 

http://www.msl.aueb.gr/files/GaSaIRP.zip
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“IRP_nX_pY_LC” (second class) strings, where “X” stands for the number of 

customers and “Y” stands for the number of time periods. For instance, the problem 

IRP_n15_p6_HC represents a test problem with 15 customers, a planning horizon of 6 

days and high inventory holding costs at the customers. Different problem sizes, 

based on the total number of customers, were designed in each class. Class A contains 

problems with 15, 20, 22, 39, 44, 50, 54, 59, 64, 69, 75 and 100 customers, while the 

Class B contains problems with 15, 20, 22, 39, 44 and 50 customers. Vertex 

coordinates are kept the same as in the study by Augerat et al. (1998). The distance 

matrix is obtained by calculating the Euclidean distances (symmetric cost matrix). 

Demand exists for each customer at each time period of the planning horizon. 

Customer demand at each time period was generated according to the Poisson 

distribution,           , where   is the rate parameter. For each customer, the rate 

parameter is equal to his demand in the single-period VRP problem of Augerat et al. 

(1998). An unlimited fleet of identical vehicles with capacity   is available for the 

distribution of the product. The vehicle capacity varies from 200 to 300 units of 

product. At the beginning of the planning horizon, all customers have zero inventory 

levels. Each customer has a sufficient maximum inventory level to satisfy his storage 

needs during the planning horizon. Namely, for each customer    ,    
    

      . 

Finally, the supplier has a sufficient supply of products that can cover customers’ 

demands throughout the planning horizon. 

  

3.2.4.2. Parameter Setting 

 

The proposed hybrid evolutionary algorithm has seven parameters to be set. Four of 

the parameters are associated with the Simulated Annealing algorithm.      

determines the initial value of the temperature.        and        are the 

maximum number of iterations for the external and internal cycle, respectively. In 

addition,       reflects the cooling rate of the geometric schedule. The other three 

parameters are related to the Genetic Algorithm. Particularly,         defines the 

size of the population,        sets the maximum number of generations (i.e., 

maximum number of iterations), while              corresponds to the mutation 

rate. Based on the minimal cost criterion, the value of each parameter is determined 

after some experiments in the context of the VRP and the Inventory Control Problem, 

respectively. The values of the above parameters for each instance are presented in 

Table 4. 
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Table 4 

Parameters of the hybrid evolutionary optimization algorithm 

Instance                                                      

Class A Instances 

IRP_n15_p6_HC 100 1500 100 0.98 10 (20) 50 (100) 0.08 

IRP_n20_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n22_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n39_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n44_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n50_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n54_p6_HC 100 1500 100 0.98 10 (20) 50 (70) 0.08 

IRP_n59_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n64_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n69_p6_HC 100 1500 100 0.98 10 50 0.08 

IRP_n75_p6_HC 100 1500 100 0.98 10 (20) 50 (70) 0.08 

IRP_n100_p6_HC 100 1500 100 0.98 10 (20) 50 (70) 0.08 

Class B Instances 

IRP_n15_p6_LC 100 1500 100 0.98 10 50 0.08 

IRP_n20_p6_LC 100 1500 100 0.98 10 50 0.08 

IRP_n22_p6_LC 100 1500 100 0.98 10 50 0.08 

IRP_n39_p6_LC 100 1500 100 0.98 10 50 0.08 

IRP_n44_p6_LC 100 1500 100 0.98 10 50 0.08 

IRP_n50_p6_LC 100 1500 100 0.98 10 50 0.08 

 

3.2.4.3. Results 

 

This section presents the computational results for the 12 and 6 instances of Class A 

and B, respectively. Since the algorithm cannot be compared to other published IRP 

studies, the best solution obtained from the proposed algorithm (   ) is compared to 

the best solution obtained if the planning phase is ignored (     ). In the aftermath 

of ignoring the planning phase, a VRP problem needs to be solved for each day of the 

planning horizon according to daily demand. The proposed Simulated Annealing 

algorithm for the routing phase is then used to solve a daily VRP problem through the 

planning horizon. To compare the results, the following gap percentage formula is 

used:                           
 

        
    . The          corresponds 

to the solution obtained by solving the daily VRPs according to the known daily 

demands, while the        determines the solution obtained by applying the proposed 

hybrid evolutionary optimization algorithm. Since the        is compared with the 

        , a positive gap means that the          is outperformed. The computational 
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results obtained are summarized in Tables 5 (Class A instances) and 6 (Class B 

instances). For the       problem, the total vehicle routing cost is presented, 

whereas for the     problem, the total cost is separated in terms of its transportation 

and inventory cost. In addition, the last column of the table shows the gap between the 

two problems reflecting the respective relative error.  

Table 5 

Experimental results (first class of instances) 

Instance 
p-VRP IRP p-VRP – IRP  

Vehicle Routing Cost Vehicle Routing Cost Inventory Holding Cost Total Cost Gap (%) 

IRP_n15_p6_HC 1141.4608 
736.7608 245.1916 981.9524 -13.9741 

711.8943 231.7815 943.6758 -17.3274 

IRP_n20_p6_HC 1313.139 947.7804 323.2335 1271.0139 -3.2080 

IRP_n22_p6_HC 1348.1933 1073.4663 245.6849 1319.1511 -2.1542 

IRP_n39_p6_HC 2481.3249 1638.3222 648.6909 2287.0132 -7.8310 

IRP_n44_p6_HC 2832.1262 1311.7218 743.3693 2055.0912 -27.4365 

IRP_n50_p6_HC 2934.1541 1546.7005 780.6426 2327.3431 -20.6810 

IRP_n54_p6_HC 2991.2924 
1931.812 964.661 2896.4729 -3.1669 

2281.1826 801.8551 3083.0377 3.0671 

IRP_n59_p6_HC 3472.2657 2560.0989 958.1427 3518.2415 1.3241 

IRP_n64_p6_HC 3707.7601 2691.5032 1143.1868 3834.69 3.4234 

IRP_n69_p6_HC 4014.4543 3015.5997 1215.7251 4231.3248 5.4022 

IRP_n75_p6_HC 3923.5927 
3029.7364 1208.7383 4238.4747 8.0253 

2930.6974 1190.7582 4121.4556 5.0429 

IRP_n100_p6_HC 4854.3807 
3791.122 1190.755 4981.877 2.6264 

3645.1169 1188.8117 4833.9286 -0.4213 

 

Table 6 

Experimental results (second class of instances) 

Instance 
p-VRP IRP p-VRP – IRP  

Vehicle Routing Cost Vehicle Routing Cost Inventory Holding Cost Total Cost Gap (%) 

IRP_n15_p6_LC 1141.4608 664.3223 25.0305 689.3528 -39.6078 

IRP_n20_p6_LC 1313.139 774.6633 36.3499 811.0132 -38.2386 

IRP_n22_p6_LC 1348.1933 986.0693 26.7627 1012.832 -24.8749 

IRP_n39_p6_LC 2481.3249 1406.3136 63.409 1469.7226 -40.7686 

IRP_n44_p6_LC 2832.1262 1428.9866 73.6921 1502.6787 -46.9417 

IRP_n50_p6_LC 2934.1541 1276.7132 191.8418 1468.555 -49.9496 

 

Based on Table 5, it can be concluded that better solutions are obtained when the 

planning phase is considered. The ability of each customer to have storage enables a 

significant decrease in the vehicle routing cost, reducing the total number of routes 
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during the planning horizon. For 8 of the 12 instances, the evolutionary algorithm 

provides better solutions with gaps in the interval of          percent to         

percent. It should not pass unnoticed that even in cases where the       provides 

better solutions, a change in parameters of the evolutionary algorithm, such as 

population size and maximum number of generations (see Table 4), results in a gap 

improvement. Specifically, for the first, the eleventh and the twelfth instance of Class 

A, the gap was improved by    ,        and        , respectively. In particular, 

in the last case, the improvement of the gap was such that the best solution of the 

instance was improved significantly. Despite the better solution obtained from the 

     , the change in the parameters led to the evolutionary algorithm providing an 

even better solution. 

Furthermore, Table 6 shows the computational results related to the instances of Class 

B. As can be observed, in all cases, the evolutionary algorithm provides better 

solutions than the      , with gaps in the interval of          percent to 

         percent. The results indicate that if a small inventory holding cost is 

applied to each customer, better solutions can be obtained, significantly reducing the 

total vehicle routing cost and designating the importance of integrating supply chain 

activities. 

To illustrate in more detail the behavior of the proposed algorithm, more information 

is presented about the vehicles (number of routes) used in each time period of the 

planning horizon in Tables 7 and 8. 

Table 7 

Number of vehicles used during the planning horizon (first class of instances) 

Instance 

p-VRP  IRP  

P1 P2 P3 P4 P5 P6 
No. of 

Routes 
P1 P2 P3 P4 P5 P6 

No. of 

Routes 

IRP_n15_p6_HC 2 2 2 2 2 2 12 
3 1 2 1 1 1 9 

3 2 1 1 1 1 9 

IRP_n20_p6_HC 2 2 2 2 2 2 12 4 2 1 2 1 1 11 

IRP_n22_p6_HC 2 2 2 2 2 2 12 4 2 1 2 2 1 12 

IRP_n39_p6_HC 3 3 3 3 3 3 18 6 2 3 2 1 1 15 

IRP_n44_p6_HC 3 3 3 3 3 3 18 14 0 1 1 0 0 16 

IRP_n50_p6_HC 3 3 3 3 3 3 18 16 0 2 1 1 0 20 

IRP_n54_p6_HC 4 4 4 4 4 4 24 
16 2 3 1 1 1 24 

7 4 4 3 4 2 24 

IRP_n59_p6_HC 4 4 4 5 4 4 25 8 4 4 5 3 2 26 

IRP_n64_p6_HC 5 5 5 5 5 4 29 12 5 5 3 2 1 28 

IRP_n69_p6_HC 5 5 5 5 5 5 30 9 6 4 4 4 3 30 

IRP_n75_p6_HC 5 5 5 5 5 5 30 
11 5 5 4 4 3 32 

10 5 5 5 3 3 31 
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IRP_n100_p6_HC 6 6 5 5 6 6 34 
9 6 5 5 6 3 34 

11 5 5 5 5 3 34 

 

Table 8 

Number of vehicles used during the planning horizon (second class of instances) 

Instance 

p-VRP  IRP  

P1 P2 P3 P4 P5 P6 
No. of 

Routes 
P1 P2 P3 P4 P5 P6 

No. of 

Routes 

IRP_n15_p6_LC 2 2 2 2 2 2 12 4 2 2 1 0 0 9 

IRP_n20_p6_LC 2 2 2 2 2 2 12 7 2 1 0 1 0 11 

IRP_n22_p6_LC 2 2 2 2 2 2 12 3 2 2 2 1 1 11 

IRP_n39_p6_LC 3 3 3 3 3 3 18 8 3 2 1 1 0 15 

IRP_n44_p6_LC 3 3 3 3 3 3 18 14 1 1 1 1 0 18 

IRP_n50_p6_LC 3 3 3 3 3 3 18 17 1 0 0 0 0 18 

 

Both tables show that the maximum number of vehicles is used mainly at the initial 

time periods of the planning horizon. This can be explained (a) by the fact that the 

inventory level of each customer is equal to zero at the beginning of the planning 

horizon and (b) by the usage of the backward delivery exchange mutation operator. 

Actually, the operator satisfies constraint (3), thus avoiding any stock-out. However, 

it is interesting to observe that with higher inventory holding costs (Table 5), the 

optimal solution visits customers more frequently. Furthermore, if low-inventory 

holding costs (Table 6) are applied to the customers, a decrease in the number of 

times a customer is visited during the planning horizon can be observed since most of 

the delivery quantities are scheduled at the initial time periods. On the other hand, in 

the context of the p-VRP, the number of vehicles is nearly the same, as a specific 

VRP problem should be solved on a daily basis.  

To visually verify the above conclusions, the following figures illustrate the solutions 

of (a) the IRP_n50_p6 (no inventory holding costs), (b) the IRP_n50_p6_HC (high 

inventory holding cost) and (c) the IRP_n50_p6_LC (low inventory holding cost) 

benchmark instances. As regards the first solution, 3 routes are scheduled for each day 

of the planning horizon since the inventory allocation problem is ignored. Concerning 

the other two solutions, it can be observed that the evolutionary algorithm changes its 

behavior based on inventory holding cost information. Specifically, the second 

solution shows that routes are scheduled only for the time periods 1, 3, 4 and 5 (4 of 

the 6 days). The third solution, due to the low inventory holding costs, indicates the 

routes that should be scheduled for the time periods 1 and 2 (2 of the 6 days). 

Therefore, with higher inventory holding costs, the solution visits customers more 

frequently. 
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Fig. 15. Solving a VRP problem on a daily basis (ignoring the planning phase) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Solving the IRP with high inventory holding costs at the customers 
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Fig. 17. Solving the IRP with low inventory holding costs at the customers 

Finally, the convergence of fitness values regarding the instances of Class B and A is 

presented in figures 18 and 19, respectively. 

   

IRP_n15_p6_LC (50 Generations) IRP_n20_p6_LC (50 Generations) IRP_n22_p6_LC (50 Generations) 

   

IRP_n39_p6_LC (50 Generations) IRP_n44_p6_LC (50 Generations) IRP_n50_p6_LC (50 Generations) 

 

Fig. 18. Convergence of fitness values (instances of class B) 
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IRP_n15_p6_HC (50 Generations) IRP_n15_p6_HC (100 Generations) IRP_n20_p6_HC (50 Generations) 

   

IRP_n22_p6_HC (50 Generations) IRP_n39_p6_HC (50 Generations) IRP_n44_p6_HC (50 Generations) 

   

IRP_n50_p6_HC (50 Generations) IRP_n54_p6_HC (50 Generations) IRP_n54_p6_HC (70 Generations) 

   

IRP_n59_p6_HC (50 Generations) IRP_n64_p6_HC (50 Generations) IRP_n69_p6_HC (50 Generations) 
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IRP_n75_p6_HC (50 Generations) IRP_n75_p6_HC (70 Generations) IRP_n100_p6_HC (50 Generations) 

 

  

IRP_n100_p6_HC (70 Generations)   

 

Fig. 19. Convergence of fitness values (instance of class A) 

For each instance, fluctuations can be observed during convergence. However, the 

entirety direction of evolution indicates improvement with respect to the minimization 

of inventory routing problem cost. For the majority of instances, it appears that the 

best candidate solution would continue to improve for a few hundred more 

generations. 

 

3.2.5. Conclusions and Future Work 

 

In this chapter, a hybrid evolutionary optimization algorithm was introduced to handle 

the IRP. The chapter gives more emphasis to how a Genetic Algorithm (population-

based search meta-heuristic) can be used in hybrid synthesis with a Simulated 

Annealing Algorithm (single-point search meta-heuristic) for the solution of the IRP. 

Particularly, the Genetic Algorithm is related to the planning phase of the hybrid 

approach to determine the delivery times and quantities, while the Simulated 

Annealing algorithm is associated with the routing phase to determine the routes of 

each individual of the population. Both algorithms are dealt with in an iterative way to 

define a re-optimization phase. In this study, stock-outs or lost sales are not allowed, 

and therefore no shortage costs or costs related to lost sales are included in the 

objective function. This is a characteristic that differentiates the proposed algorithm 

from other works most closely related to this study.  
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The algorithm has been tested on a newly introduced set of 18 IRP benchmark 

instances by comparing the algorithm’s solutions with the solutions obtained by 

solving a VRP problem for each time period of the planning horizon based on known 

demand (the planning phase is ignored). The computational results show that the 

proposed algorithm is outperformed, simultaneously verifying the benefits obtained 

by the integration of the inventory and the vehicle routing decisions. The algorithm 

can be even further improved. In terms of future research, the goals are to (a) explore 

more deeply the parameters of the Genetic Algorithm and the Simulated Annealing 

Algorithm, (b) explore the algorithm behavior in other problems (instances) and (c) 

focus on the development of other meta-heuristic approaches for the solution of the 

IRP. Finally, the proposed algorithm can be extended to complicated problems such 

as the Inventory Routing Problem with Time Windows (IRPTW) and its variations.  
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Chapter 4 

4. The Inventory Routing Problem with Time Windows 

 

The purpose of this chapter is to propose a solution algorithm for the Inventory 

Routing Problem with Time Windows (IRPTW). The IRPTW reflects a multi-

functional problem that attempts to integrate two different functions within the supply 

chain network, i.e., planning and routing. In particular, planning is associated with the 

Inventory Control Problem (ICP), while routing is related to the Vehicle Routing 

Problem with Time Windows (VRPTW). It is worth noting that the integration of 

ICP-VRPTW problems has scarcely been studied in the literature. The IRPTW is a 

generalization of the IRP involving the added complexity that every customer should 

be served within a given time window. The basic notion of this Chapter is (a) to 

formulate a mathematical problem and (b) to present a two-phase solution algorithm 

to handle the IRPTW. Testing instances are established to investigate algorithmic 

performance, and the computational results are then reported. 

 

4.1. Problem Description and Mathematical Formulation 

 

The IRPTW is a variation of the classical Vehicle Routing Problem with Time 

Windows (VRPTW) formulation. Whereas the VRPTW focuses on a single period, 

the IRPTW considers a multi-period time horizon, typically measured in terms of 

days. The IRPTW can be defined on a complete directed graph         where 

                  is the set of nodes and                     is the set 

of arcs. Arcs       correspond to the customers, whereas   and     represent the 

single depot (origin-depot and destination-depot). The set of arcs represents 

connections between the depot and the customers and among customers. No arc 

terminates in node  , and no arc originates from node    . The proposed model 

deals with the repeated distribution of a single product from a single supplier to a set 

of geographically dispersed customers           over a given time horizon of 

length  . The set of time horizons is denoted by          . Each customer     

faces a different demand   
  per time period    . It is assumed that the depot has a 

sufficient supply of items that can cover all customers’ demands throughout the 

planning horizon. To each arc        , where    , a travel cost     and travel time 

    are associated. The cost and travel time matrices satisfy the triangle inequality. 

Nodes are associated with points of the plane having the given coordinates 

           , and the travel cost     for each arc         is defined as the 

Euclidean distance between the two nodes      . 
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A fleet of   homogenous vehicles, with capacity  , is available for the distribution of 

the product. The fleet of vehicles is denoted by          . Each customer     

is associated with a time interval        , called a time window and a service time   , 

where            . The service of each customer must start within the associated 

time window, and the vehicle must stop at the customer location for    time instants, 

where                . Moreover, in case of early arrival at the location of 

customer    , the vehicle generally is allowed to wait until time instant   , i.e., until 

the service may start. Therefore, a vehicle must arrive at the customer     before   . 

It can arrive before    but the customer     will not be serviced before. The depot 

has also time windows         and             where         and        . The 

time windows associated with the depot represent the earliest possible departure from 

the depot as well as the latest possible return time at the depot, respectively. As a 

result, vehicles may not leave the depot before    and must be back before or at time 

    . In addition,          . Each customer maintains his own inventory up to 

capacity        . At the beginning of the planning horizon each customer     has 

an initial inventory level of   
     of product.  

Furthermore, the formulation uses the following decision variables: 

    
 : the amount of delivery to customer     in period     by vehicle    . 

     
 : a binary variable that is equal to   if vehicle     drives from node   to 

node             where              , and   otherwise. 

    
 : the time vehicle     starts to service customer    . 

    
 : a binary variable that is equal to   if customer     is visited by vehicle 

    in period    , and   otherwise. 

   
 : a binary variable that is equal to   if vehicle     is used in period    , and 

  otherwise. 

   
 : a nonnegative variable indicating the inventory level at customer     at the 

end of period    . 

Moreover, stock-outs are not allowed at the customers, while the quantities delivered 

by each vehicle in each route cannot exceed the vehicle capacity. As far as the 

replenishment policy is concerned, an Order-up-to Level (OL) policy is considered, in 

which any customer has defined a maximum inventory level and every time a 

customer is served, the delivered quantity is such that the maximum inventory level at 

the customer is reached. After defining the necessary parameters and decision 

variables, the IRPTW can be formulated as shown below: 

        
      

      
 

      

 (15) 

Subject to:  

  
          (16) 
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            (17) 

  
               (18) 

    
 

   

    
            (19) 

    
 

   

             (20) 

    
 

   

        (21) 

       
 

   

        (22) 

     
 

   

    
                     (23) 

     
 

   

    
                       (24) 

   
            

          
                    (25) 

   
       

                 (26) 

   
       

                 (27) 

    
                         (28) 

   
                       (29) 

  
              (30) 

   
                   (31) 

   
                   (32) 

  
      

 

   

           (33) 

  
       

 

   

           (34) 

 

The total cost includes only the transportation costs as depicted in the objective 

function (15). This case corresponds to an environment in which the transportation 

cost represents the major cost component (e.g., the supplier and the customers 

represent entities of one and the same company). Constraints (16) indicate that each 

customer     has an initial inventory level equal to his maximum inventory level. 

Constraints (17) are the inventory balance equations for the customers. Constraints 
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(18) limit the total amount of inventory to        . Constraints (19), (33) and (34) 

ensure that the vehicle capacities are not exceeded on any day     during the 

planning horizon. Constraints (20)-(24) impose that each customer is visited exactly 

once, that   vehicles leave the depot, and that the same vehicle enters and leaves a 

given customer. Constraints (25) ensure feasibility in terms of the time necessary 

when traveling from node   to node         . In addition, ensure simultaneously the 

elimination of subtours where   is a large constant. Constraints (26) and (27) impose 

that service may only start within the given interval            . Constraints (28)-

(32) are the domain constraints.  

 

4.2. Solution Approach for the IRPTW 

 

Due to the NP-hard nature of the IRPTW, a two-phase solution algorithm based on (a) 

a simple simulation and (b) the Variable Neighborhood Search Algorithm (VNS) is 

proposed to handle the problem. The first phase (Phase I) is related to the planning 

phase of the IRPTW, in which delivery times and quantities are determined by 

implementing the well-known inventory policy (s,S) for inventory management using 

a simple simulation. In the second phase (Phase II), the VNS is applied to combine 

the customers into the vehicle routes by solving a VRPTW for a specific time period 

during the planning horizon. 

In particular, (s,S) inventory policy reflects the OU policy, where s and S correspond 

to a minimum and a maximum inventory level, respectively. An order for S-s units is 

placed immediately when the inventory level is reduced to s. Since stock-outs are not 

allowed, inventory policy         is applied to each customer     setting    

      . In addition, each customer has an initial inventory level equal to his 

maximum inventory capacity        . At the end of the planning horizon, each 

customer should have an inventory level equal to his initial inventory level. 

Since the demands are fully available to the supplier at the beginning of the planning 

horizon, by applying an (s,S) inventory policy to each customer, Phase I of the 

algorithm enables the supplier to run an inventory simulation to determine delivery 

times and quantities, so that stock-outs are avoided. A sample problem of a 

distribution system that comprises a single supplier and twenty-five customers can be 

considered to explain the inventory simulation algorithm (Table 9). 

Table 9 

IRPTW sample problem 

Customer 
Demand (s,S) Inventory Policy 

P1 P2 P3 P4 P5 P6 s S 

1 11 16 9 7 9 9 0 20 

2 24 34 36 33 32 30 0 60 
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3 8 14 7 11 11 13 0 20 

4 10 14 9 7 11 5 0 20 

5 13 14 9 5 10 9 0 20 

6 16 15 23 21 12 20 0 40 

7 24 21 23 16 17 26 0 40 

8 18 18 20 19 13 18 0 40 

9 15 6 2 17 13 9 0 20 

10 11 15 8 11 11 7 0 20 

11 8 5 9 10 9 12 0 20 

12 10 27 21 26 17 13 0 40 

13 15 23 27 19 30 34 0 60 

14 8 11 10 8 14 16 0 20 

15 39 36 42 40 39 39 0 80 

16 42 38 40 49 42 34 0 80 

17 14 19 14 10 8 16 0 40 

18 15 23 27 25 18 20 0 40 

19 13 10 12 8 8 11 0 20 

20 6 9 8 16 12 9 0 20 

21 25 21 17 28 15 19 0 40 

22 13 21 23 21 17 15 0 40 

23 9 15 9 13 10 14 0 20 

24 9 16 12 15 11 12 0 20 

25 34 47 57 43 42 39 0 80 

 

Below, an algorithm (Algorithm 12) is presented that applies the (s,S) policy to 

customers. Initially, based on a specific test problem (         ), the number of 

customers (  ) as well as the length of the planning horizon ( ) are defined. Then, 

for each customer  , his (       inventory policy and demands during the planning 

horizon ( ) are taken into account to determine the delivery quantities and times 

(          ) as well as the inventory levels (           ). It is worth noting that the 

time starts from zero, where customer demand is equal to zero and an initial inventory 

level exists for each customer. To define the delivery quantities the (s,S) policy is 

applied to each customer. Analytically, for each time period of the planning horizon, 

if the inventory level (    is less than   , a delivered quantity (  ) is defined such 

that the maximum inventory level at the customer is reached. To define the inventory 

levels, the inventory balance equation is applied. Namely, the amount of inventory in 

the next time period must be equal to the current inventory plus the amount of 

delivered quantity minus the demand in the next time period. 
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Algorithm 12. Simple simulation (Phase I) 

Inputs:            

                                           

                                

               

              

              

                    

                    

       
    

      
   

         

    

             

      

                   

                   

     

          

       

                           

          

    

               

         

                           

                             

        

Output:                        

 

Based on the above example, the following figures (Fig. 20, Fig. 21, Fig. 22 and Fig. 

23) illustrate for each customer the relative inventory levels during the planning 

horizon and the delivery times. 
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Fig. 20. Inventory simulation (Customer 1 – Customer 8) 
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Fig. 21. Inventory simulation (Customer 9 – Customer 16) 
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Fig. 22. Inventory simulation (Customer 17 – Customer 24) 
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Fig. 23. Inventory simulation (Customer 25) 

Since the simple simulation focuses only on the planning phase by determining the 

delivery times and quantities, the vehicle routes should be constructed. The routing 

phase (Phase II) is related to the usage of a Variable Neighborhood Search Algorithm 

(VNS) for solving a vehicle routing problem with time windows for each time period 

of the planning horizon where delivery quantities have been scheduled. The VNS is a 

single-point search meta-heuristic introduced by Mladenović and Hansen (1997). In 

the context of the algorithm, a set of neighborhood structures    where          

are defined. The basic idea of the algorithm is to successively explore the set of pre-

defined neighborhoods to provide a better solution. Each iteration of the algorithm is 

composed of three steps: shaking, local search and move. At each iteration, an initial 

solution is shaked from the current neighborhood   . For example, a solution    is 

generated randomly in the current neighborhood      . The representation of a 

VRPTW solution follows the representation presented in Chapter 3, in the context of 

the Simulated Annealing algorithm. A local search procedure is applied to the 

solution    to generate the solution    . The evaluation of the solution is based on the 

cost function related to the proposed vehicle routes. Therefore, the current solution is 

replaced by the new local optima     if and only if a better solution has been found 

(i.e.,            ). The same search procedure is thus restarted from the solution 

    in the first neighborhood   . If no better solution is found, the algorithm moves to 

the next neighborhood     , randomly generates a new solution in this neighborhood, 

and attempts to improve it. 

The generation of the initial solution is based on the Push Forward Insertion Heuristic 

(PFIH) (Solomon, 1987; Tan et al., 2001). The method tries to insert the customer 

between all the arcs in the current route. It selects the arc that has the lowest 

additional insertion cost. In addition, the feasibility check tests all the constraints 

related to time windows and vehicle capacity. When the current route is full of 

feasible insertions, PFIH will start a new route and repeat the procedure until all the 

customers are routed. As far as the first step of the VNS (shaking) is concerned, the 2-

interchange neighborhood operator of Osman (1993) as well as the CROSS-exchange 

neighborhood operator of Taillard et al. (1997) are used randomly (rand2interchange 
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and randCrossExchange). Regarding the second step of the VNS (local search), nested 

neighborhoods are used based on the 2-interchange and CROSS-exchange 

mechanisms. These mechanisms (twoInterchange and crossExchange) are now used 

systematically (not randomly). In general terms, the 2-interchange mechanism is 

based on customer interchange between sets of vehicles routes. The 2 means that 

maximum two customer nodes may be interchanged between routes. The CROSS-

exchange mechanism swaps sequences of consecutive customers between two routes. 

The detail information about PFIH, 2-interchange and CROSS-exchange can be 

obtained from papers of Solomon (1987), Osman (1993) and Taillard et al. (1997), 

respectively. Algorithm 13 presents the template of the proposed VNS algorithm. 
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Algorithm 13. Variable neighborhood search algorithm (Phase II) 

Input:                      

                                                                    

              

                                       

                              

       

    

             

            

                                       

       

            

                                        

       

                      

             

            

                                       

       

            

                                      

       

                     

                            

     

      

       

          

                         

          

     

      

       

          

                       

      

          

Output:                     
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Based on the above example, the following figure (Fig. 24) illustrates the IRPTW 

solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. IRPTW solution for the IRPTW sample problem 

Table 10 presents the routes that take place in each time period of the planning 

horizon. 
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Table 10 

Cost information and routes for the IRPTW sample problem 

IRPTW Solution 

Routes of Period 1 Routes of Period 2 Routes of Period 3 

 Route 1: 0-24-25-19-10-0 

Route 2: 0-5-3-7-9-4-1-0 

Route 3: 0-23-21-0 

Route 1: 0-13-17-18-0 

Route 2: 0-16-14-0 

Route 3: 0-20-15-12-0 

Route 4: 0-6-2-0 

Route 5: 0-8-11-22-0 

VRPTW Cost = 0 VRPTW Cost = 163.4705 VRPTW Cost = 338.1404 

Routes of Period 4 Routes of Period 5 Routes of Period 6 

Route 1: 0-24-25-23-21-0 Route 1: 0-7-0 

Route 2: 0-10-16-14-12-0 

Route 3: 0-20-18-19-9-0 

Route 4: 0-5-3-4-2-1-0 

Route 1: 0-13-17-18-10-0 

Route 2: 0-20-24-25-19-16-14-12-0 

Route 3: 0-8-15-11-0 

Route 4: 0-5-3-7-9-6-4-2-1-0 

Route 5: 0-23-22-21-0 

VRPTW Cost = 35.0462 VRPTW Cost = 247.8036 VRPTW Cost = 330.9369 

Total VRPTW Cost 

1115.3975 

 

4.3. Computational Experiments and Results 

 

This section presents the computational results of the proposed two-phase solution 

algorithm. The algorithm was developed in the MATLAB programming language and 

executed on a DELL personal computer with an Intel® Core™ i3-2120, clocked at 

3.30 GHz, a microprocessor with 4 GB of RAM memory under the operating system 

Microsoft Windows 7 Professional. Since new benchmark instances were designed, 

the efficiency and the effectiveness of the proposed algorithm cannot be compared to 

other published IRPTW studies using benchmark instances previously introduced. 

This is due to the differentiated manner in which the proposed algorithm operates 

based on the assumptions presented in Section 4.1. However, this section validates the 

two-phase solution algorithm and then evaluates its performance by comparing the 

algorithm’s solutions with solutions obtained by solving a VRPTW problem for each 

time period of the planning horizon based on the known demands (the planning phase 

is ignored). The algorithm has been tested on a newly introduced set of 18 IRPTW 

benchmark instances described in the following.  

All benchmark instances and their computational results are available at 

http://www.msl.aueb.gr/files/SimVnsIRPTW.zip.   

http://www.msl.aueb.gr/files/SimVnsIRPTW.zip


 
58 

The new datasets have been developed by generalizing the well-known datasets C101, 

C201, R101, R201, RC101 and RC201 of Solomon (1987), 

http://web.cba.neu.edu/~msolomon/problems.htm. As a result, these datasets are 

divided into six classes. The datasets are named in the form of “IRPTW_Z_nX_pY” 

strings, where “Z” stands for the class related to a specific dataset of Solomon (1987), 

i.e., C101, C201, R101, R201, RC101 and RC201, “X” stands for the number of 

customers and “Y” stands for the number of time periods. For instance, the problem 

IRPTW_C101_n25_p6 represents a test problem of the first class (i.e., dataset that 

was generated by the dataset C101 of Solomon (1987)) with 25 customers and a 

planning horizon of 6 days. Different problem sizes, based on the total number of 

customers, were designed, in each class. Specifically, each class contains problems 

with 25, 50 and 100 customers. Nodes coordinates are modified in such a way that the 

depot is located at the origin (i.e., coordinates      ). The distance matrix is obtained 

by calculating the Euclidean distances. Time windows related to customers as well as 

the maximum operation time for each vehicle are kept the same as in the Solomon’s 

datasets. 

Demand exists for each customer at each time period of the planning horizon. 

Customer demand at each time period was generated according to the Poisson 

distribution,           , where   is the rate parameter. For each customer, the rate 

parameter is equal to his demand in the single-period VRPTW problem of Solomon 

(1987). In addition, for each customer    , his maximum inventory capacity is 

defined as       . As it usually happens in real life, customers with higher expected 

demands will have higher inventory capacities. Therefore, for each customer    , 

inventory policy         is equal to       . An unlimited fleet of identical vehicles 

with capacity   is available for the distribution of the product. The vehicle capacity is 

kept the same as in the Solomon’s datasets. At the beginning of the planning horizon, 

each customer     has an initial inventory level up to his maximum inventory 

capacity, i.e.,   . Finally, the supplier has a sufficient supply of products that can 

cover customers’ demands throughout the planning horizon. 

Since the algorithm cannot be compared to other published IRPTW studies, the best 

solution obtained from the proposed algorithm (     ) is compared to the best 

solution obtained if the planning phase is ignored (       ). In the aftermath of 

ignoring the planning phase, a VRPTW problem needs to be solved for each day of 

the planning horizon according to daily demand. The proposed Variable 

Neighborhood Search algorithm for the routing phase is then used to solve a daily 

VRPTW problem through the planning horizon. To compare the results, the following 

gap percentage formula is used: 

                              
 

          
     

The            corresponds to the solution obtained by solving the daily VRPTWs 

according to the known daily demands, while the          determines the solution 

http://web.cba.neu.edu/~msolomon/problems.htm


 
59 

obtained by applying the proposed two-phase solution algorithm. Since the          

is compared with the           , a positive gap means that the            is 

outperformed. The computational results obtained are summarized in Table 11. For 

the         and       problems, the respective total vehicle routing cost is 

presented. In addition, for each       a computation time (in seconds) needed to 

obtain a solution is presented, while the last column of the table shows the gap 

between the two problems reflecting the respective relative error.  

Table 11 

Experimental results 

Instance 

p-VRPTW IRPTW p-VRPTW – IRPTW  

Vehicle Routing Cost Vehicle Routing Cost 
Computation 

Time (seconds) 
Gap (%) 

IRPTW_C101_n25_p6 1150.8817 1115.3975 142.5091 -3.0832 

IRPTW_C101_n50_p6 2559.8361 2077.3767 1.0827e+03 -18.8473 

IRPTW_C101_n100_p6 5685.3165 5067.128 7.6578e+03 -10.8734 

IRPTW_C201_n25_p6 1293.2554 883.8036 165.4300 -31.6606 

IRPTW_C201_n50_p6 2753.3707 1614.115 2.1193e+03 -41.3768 

IRPTW_C201_n100_p6 3883.0779 2812.4137 3.9252e+04 -27.5726 

IRPTW_R101_n25_p6 3804.3657 1880.0941 68.9572 -50.5806 

IRPTW_R101_n50_p6 6728.73 3462.5182 461.9215 -48.5413 

IRPTW_R101_n100_p6 10388.3709 5566.806 4.6026e+03 -46.4131 

IRPTW_R201_n25_p6 2795.4622 1629.6064 135.5557 -41.7053 

IRPTW_R201_n50_p6 5106.1462 2626.2472 1.5377e+03 -48.5669 

IRPTW_R201_n100_p6 7567.238 3837.7514 1.5402e+04 -49.2846 

IRPTW_RC101_n25_p6 3257.2105 1892.2402 82.0641 -41.9061 

IRPTW_RC101_n50_p6 5969.5287 3907.7457 556.1790 -34.5385 

IRPTW_RC101_n100_p6 10783.6372 6145.4136 5.2140e+03 -43.0117 

IRPTW_RC201_n25_p6 2549.0663 1521.4596 213.5986 -40.3131 

IRPTW_RC201_n50_p6 4548.0065 2878.2674 2.2410e+03 -36.7136 

IRPTW_RC201_n100_p6 8191.1021 5053.3035 1.2644e+04 -38.3074 

 

Based on Table 11, it can be concluded that better solutions are obtained when the 

planning phase is considered. The ability of each customer to have storage enables a 

significant decrease in the vehicle routing cost, reducing the total number of routes 

during the planning horizon. As it can be observed, in all cases, the two-phase 

solution algorithm provides better solutions than the        , with gaps in the 

interval of         percent to          percent. The results indicate that if the 

inventory capacity of each customer is taken into account during the planning phase, 

better solutions can be obtained, significantly reducing the total vehicle routing cost 

and designating the importance of integrating supply chain activities. 
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To illustrate in more detail the behavior of the proposed algorithm, more information 

is presented about the vehicles (number of routes) used in each time period of the 

planning horizon in Table 12.  

Table 12 

Number of vehicles used during the planning horizon 

Instance 

p-VRPTW  IRPTW  

P1 P2 P3 P4 P5 P6 
No. of 

Routes 
P1 P2 P3 P4 P5 P6 

No. of 

Routes 

IRPTW_C101_n25_p6 3 3 3 3 3 3 18 0 3 5 1 4 5 18 

IRPTW_C101_n50_p6 7 6 5 6 6 6 36 0 7 6 4 6 9 32 

IRPTW_C101_n100_p6 11 12 12 12 12 12 71 0 11 17 7 13 20 68 

IRPTW_C201_n25_p6 2 2 2 2 2 2 12 0 1 2 1 1 2 7 

IRPTW_C201_n50_p6 4 4 4 3 3 4 22 0 3 4 2 3 5 17 

IRPTW_C201_n100_p6 5 5 4 5 4 6 29 0 5 4 3 5 7 24 

IRPTW_R101_n25_p6 9 9 9 9 9 9 54 0 4 6 3 4 10 27 

IRPTW_R101_n50_p6 14 14 13 14 14 14 83 1 8 7 5 9 13 43 

IRPTW_R101_n100_p6 23 23 23 23 23 23 138 0 12 13 10 15 24 74 

IRPTW_R201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 4 4 15 

IRPTW_R201_n50_p6 6 6 6 6 6 6 36 0 3 5 3 4 6 21 

IRPTW_R201_n100_p6 9 9 8 10 9 9 54 1 6 6 3 4 9 29 

IRPTW_RC101_n25_p6 6 6 6 6 6 6 36 0 3 6 1 6 6 22 

IRPTW_RC101_n50_p6 10 10 10 10 10 10 60 0 7 10 5 8 12 42 

IRPTW_RC101_n100_p6 20 18 19 20 17 19 113 0 11 16 5 14 20 66 

IRPTW_RC201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 2 4 13 

IRPTW_RC201_n50_p6 6 6 5 5 5 5 32 0 4 2 4 4 5 19 

IRPTW_RC201_n100_p6 10 10 11 10 11 10 62 0 7 7 4 6 9 33 

 

Due to the fact that each customer has an initial inventory level equal to his maximum 

inventory capacity, in most cases no routes occur in period 1. However, for test 

problems “IRPTW_R101_n50_p6” and “IRPTW_R201_n100_p6” a single route 

takes place in order to satisfy the daily demand of some customers for whom their 

daily demands are greater than their maximum inventory capacity. Since stock-outs 

are not allowed, a route takes place to satisfy their demands. In addition, the number 

of routes is increased at the end of the planning horizon since the (s,S) inventory 

policy is applied for each customer. According to this policy, for each customer, the 

inventory level at the end of the planning horizon should be equal to the initial 

inventory level. On the other hand, in the context of the p-VRPTW, the number of 

vehicles is nearly the same, as a specific VRPTW problem should be solved on a daily 

basis. 
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4.4. Conclusions and Future Work 

 

In this chapter, a two-phase solution algorithm was introduced to handle the IRPTW. 

The chapter gives more emphasis to how a simple simulation can be used in hybrid 

synthesis with a Variable Neighborhood Search algorithm (single-point search meta-

heuristic) for the solution of the IRPTW. Particularly, the simple simulation is related 

to the planning phase of the IRPTW to determine the delivery times and quantities, 

while the Variable Neighborhood Search algorithm is associated with the routing 

phase to determine the routes. The algorithm has been tested on a newly introduced 

set of 18 IRPTW benchmark instances by comparing the algorithm’s solutions with 

the solutions obtained by solving a VRPTW problem for each time period of the 

planning horizon based on known demand (the planning phase is ignored). The 

computational results show that the proposed algorithm is outperformed, 

simultaneously verifying the benefits obtained by the integration of the inventory and 

the vehicle routing decisions. Due to the myopic nature of the proposed algorithm, it 

is worth noting that the two-phase solution algorithm should be even further 

improved. To begin with, both simulation and VNS should be dealt with in an 

iterative way to define a re-optimization phase. In this case, (s,S) inventory policy can 

be initialized randomly and recalculated at each iteration of the solution algorithm. 

This can be obtained by applying a Discrete Event Monte Carlo Simulation for the 

planning phase of the problem. In terms of future research, the goals are to (a) extend 

and improve the proposed algorithm, (b) explore the algorithm behavior in other 

problems (instances), (c) take into account inventory holding costs of customers in the 

objective function and (d) focus on the development of other meta-heuristic 

approaches for the solution of the IRPTW. 
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Chapter 5 

5. Conclusions 

 

In this thesis, two solution algorithms were introduced to handle the IRP and the 

IRPTW, respectively. As far as the first solution approach is concerned, the thesis 

gives more emphasis to how a Genetic Algorithm (population-based search meta-

heuristic) can be used in hybrid synthesis with a Simulated Annealing Algorithm 

(single-point search meta-heuristic) for the solution of the IRP. Particularly, the 

Genetic Algorithm is related to the planning phase of the hybrid approach to 

determine the delivery times and quantities, while the Simulated Annealing algorithm 

is associated with the routing phase to determine the routes of each individual of the 

population. Regarding the second solution approach, a two-phase solution algorithm 

was introduced to handle the IRPTW. The proposed approach combines a simple 

simulation for the planning phase with a Variable Neighborhood Search algorithm for 

the routing phase to solve the IRPTW. In both studies, stock-outs or lost sales are not 

allowed, and therefore no shortage costs or costs related to lost sales are included in 

the objective function. This is a characteristic that differentiates the proposed 

algorithms from other works most closely related to this thesis.  

Both algorithms have been tested on a newly introduced set of IRP and IRPTW 

benchmark instances. The computational results show that the proposed algorithms 

are outperformed, simultaneously verifying the benefits obtained by the integration of 

the inventory and the vehicle routing decisions. However, both algorithms can be 

even further improved. In terms of future research, in the context of the hybrid 

evolutionary optimization algorithm, the goals are to (a) explore more deeply the 

parameters of the Genetic Algorithm and the Simulated Annealing Algorithm, (b) 

explore the algorithm behavior in other problems (instances) and (c) focus on the 

development of other meta-heuristic approaches for the solution of the IRP. 

Regarding the two-phase solution algorithm, both simulation and Variable 

Neighborhood Search algorithm should be dealt with in an iterative way to define a 

re-optimization phase. The future goals are to (a) extend and improve the proposed 

algorithm, (b) explore the algorithm behavior in other problems (instances), (c) take 

into account inventory holding costs of customers in the objective function and (d) 

focus on the development of other meta-heuristic approaches for the solution of the 

IRPTW (e.g., combining the Genetic Algorithm presented in Chapter 3 with the 

Variable Neighborhood Search Algorithm presented in Chapter 4). Finally, the 

proposed algorithms can be extended to complicated problems such as the Inventory 

Routing Problem with Soft Time Windows (IRPTW) as well as the Production 

Routing Problem (PRP) and its variations.  
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