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 Goodness of fit is an important part of inference. Standard 

approaches such as chi-square method and bootstrap are asymptotic or 

highly time consuming. In this thesis we evaluate a new method of calibrated 

simulation proposed by Besbeas and Morgan (2014). We explore a new 

variant of the method and we compare the method against the bootstrap. 

The approaches of chi-square, bootstrap and calibrated simulation to check 

the goodness of fit of models are introduced and illustrated using real data. 
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Ο έλεγχος καλής προσαρμογής είναι ένα σημαντικό κομμάτι της στατιστικής 

επιστήμης. Κλασσικές προσεγγίσεις είναι το κριτήριο �� και η μέθοδος 

bootstrap. Και οι δύο μέθοδοι είναι ασυμπτωτικές και χρειάζονται πολύ 

χρόνο για να παράξουν αποτελέσματα. Σε αυτή την εργασία εφαρμόζουμε 

μια καινούργια μέθοδο ρυθμιζόμενη προσομοίωσης που προτάθηκε από 

τους Besbeas and Morgan (2014). Θα εξερευνήσουμε μια καινούργια 

παραλλαγή της μεθόδου και θα την συγκρίνουμε με αυτή του bootstrap. Οι 

μέθοδοι του κριτήριου ��, του bootstrap, και της ρυθμιζόμενης 

προσομοίωσης για να ελέγξουμε την καλή προσαρμογή μοντέλων 

παρουσιάζονται και αναπτύσονται παρακάτω χρησιμοποιώντας πραγματικά 

δεδομένα. 
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                                                      CHAPTER 1 

                                                      INTRODUCTION 

The main purpose of this thesis is to examine different methods for judging how well 

a model fits the data. This is known as goodness of fit and it is an important part of 

inference. Standard approaches for goodness of fit are the chi-square method and the 

use of the bootstrap. The chi-square method is asymptotic and suffers from the need 

to merge cells in order to have larger frequencies but by doing so we lose information 

while for the bootstrap the models have to be fitted to each of many different 

simulated data sets, which is highly time consuming.  

Besbeas and Morgan (2014) propose and evaluate a new method of calibrated 

simulation. Here comparative data sets are obtained from simulating data when model 

parameter values are obtained from assumed asymptotic normal distribution of the 

maximum likelihood estimators from the real data. The approach is motivated and 

justified by Bayesian p-values. It limits the additional model-fitting that is required, 

and an improvement in efficiency is obtained relative to the bootstrap. Calibration of 

the resulting statistics is achieved as repeated data sets are easily simulated from the 

fitted model. The method requires the specification of model discrepancy measures. 

The approaches of chi-square, bootstrap and calibrated simulation to check the 

goodness of fit of models are introduced and illustrated using a variety of real data 

sets which arise in fecudability studies and capture-recapture. 

In chapter 2 we have a thorough presentation of a fertility problem with real life data. 

The data here describe the number of fertility cycles to conception required by fertile 

human couples setting out to conceive. Since the couples in this study are essentially 

waiting for an event, the simplest probability model for waiting times when they are 

integer, is the geometric model. In practice the probability of conception of each 
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woman might be different, which gives rise to an hierarchical model the beta-

geometric model. These two models are thoroughly presented. 

In chapter 3 we do the model fitting and we are checking the chi-square goodness-of-

fit. In order to do that we present analytically the maximum likelihood estimator 

hessian matrix, variance, standard error, the log-likelihood, the multinomial log-

likelihood and finally the chi-square statistic for both geometric and beta-geometric 

models and we check the goodness-of-fit. 

In chapter 4 we are going to see the historical background of bootstrap methods. A 

definition is also given and is calculated for both the geometric and beta-geometric 

models. We next use the parametric bootstrap to generate 500 samples and we 

calculate the deviances for each sample. We make a histogram to see where the 

observed deviance is located relative to the deviances from the simulated samples. We 

do this procedure for both models. 

In chapter 5 we illustrate the use of calibrate simulation to examine how well the 

geometric and the beta-geometric distributions fit the women non-smokers data set In 

detail, suppose that �� and �� are respectively the maximum-likelihood estimates from 

fitting the real data, and associated dispersion matrix obtained from inverting the 

observed information matrix evaluated at ��. For each simulated parameter value �� ~ 

N (��,	��) we might calculate a measure of the discrepancy between the data, x and the 

corresponding model, D(x;��), and for each simulated parameter value �� we also 

simulate a new data set ��. For each new data set we then calculate D(��;	��), and a 

scatter plot is obtained of D(��;	��) vs D(x;��). If the model fits the data well then one 

would expect approximately half of the points in the scatter plot to be above the line 

of unit slope through the origin. 

In chapter 6 we examine the relative performance of the bootstrap and simulated 

calibration methods for evaluating the goodness of fit of a model, and we present the 

results using scatter-plots. 

In chapter 7 we make an introduction to capture-recapture models. We examine the 

goodness-of-fit of model � , which is the simplest model where capture probability is 

constant over the capture occasions, and model �! which the capture probabilities to 

vary with time. We used real life data to examine the goodness-of-fit for both models. 

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



26 

 

 

 

 

 

                                                  CHAPTER 2 

                                         FERTILITY PROBLEM 

Reported falls in human sperm counts in many developed countries have serious 

implications for the future of mankind. In fecundability studies, data are collected on 

waiting times to conception in human beings, as well as on variables such as age and 

body mass index, which is a measure of obesity. For instance, the paper by Jensen et 

al. (1998) concluded that the probability of conception in a menstrual cycle was 

lowered if only five alcoholic drinks were taken by the woman each week. Data from 

studies such as this require appropriate statistical analysis, which quite often results 

from describing the data by means of models tailored specifically to the particular 

question of interest. 

Table 2.1 describes the numbers of fertility cycles to conception required by fertile 

human couples setting out to conceive. The data were collected retrospectively, which 

means that information was only obtained from women who had conceived, and the 

women involved have been classified according to whether they smoked or not. 

Couples requiring more than 12 cycles are grouped together in a single category. 

The couples in this study are essentially waiting for an event and the simplest 

probability model for waiting times when they are integer, as here, is the geometric 

model, we denote the geometric model as Model 1. Let X denote the number of cycles 

and let p be the probability of conception per cycle then  

                                             "#($ = &) =(1 − �))*+p, for & ≥ 1.  (1) 

 In practice the probability of conception of each woman might be different, which 

gives rise to alternative models. The beta-geometric distribution arises as a 

hierarchical model (or infinite mixture) under the assumption of individual 

heterogeneity. We denote the beta-geometric model as Model 2. Let X denote the 

number of cycles and let p~ Be(α, β) be the probability of conception per cycle then 
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                                      "#($ = &) 	= 		-(
+1,�+&−1)-(
,�) , for & ≥ 1, 

where B(α, β) is the beta function. 

Table 2.1 Cycles to conception, classified by whether the female of the couple 

smoked or not. The data, taken from Weinberg and Gladen (1986), form a subset of 

data presented by Baird and Wilcox (1985). Excluded were women whose most 

recent method of contraception was the pill, as prior pill usage is believed to reduce 

fecundability temporarily. The definition of “smoking” is given in the source papers. 

Cycle Women non-smokers Women smokers 

1 198 29 

2 107 16 

3 55 17 

4 38 4 

5 18 3 

6 22 9 

7 7 4 

8 9 5 

9 5 1 

10 3 1 

11 6 1 

12 6 3 

>12 12 7 

Total 486 100 

                                                  

We could assume that there is a third model which could be a mixture of two, or more 

generally &, geometric distributions. The assumption here would be that we have 

k	groups of women with respect to probability �. 

We are going to use the “non-smokers” data in order to examine how well the 

geometric and the beta-geometric models fit the data. The same procedure has been 

done with the “smokers” data also but the sample size is much smaller for these data, 

and the results are omitted. 
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                                                 CHAPTER 3 

                    Model fitting and chi-square goodness-of-fit 

    3.1 Maximum likelihood estimation 

Let y = (0+, 0�, … , 02)3 be a vector of independent and identically distributed (iid), 

random variables from one of a family of distributions on ℜ2 and indexed by a p-

dimensional parameter θ = (�+, … , 	�5)3 where θ	∈ Ω⊂ ℜ5 and p≤n. Denote the 

distribution function of y by F(y|θ) and assume that the density function f(y|θ) exists. 

Then the likelihood function of θ is given by: 

                                                  L(θ) = ∏ 	�(0�2�:+ | θ). 

In practice, the natural logarithm of the likelihood function, called the log-likelihood 

function is denoted by: 

                                         ℓ(=) = log L(θ) = ∑ log	B�:C 	f(0� |	=), 

is used since it is found to be easier to manipulate algebraically. Let the p partial 

derivatives of the log-likelihood form the p ⨉ 1 vector 

                                                  u(θ) = 
Eℓ(F)EF  = 

G
H

EℓEIJ⋮EℓEILM
N 

The vector u(θ) is called the score vector of the log-likelihood function. The moments 

u(θ) satisfy two important identities. First, the expectation of u(θ) with respect to y is 

equal to zero, and second, the variance of u(θ) is the negative of the expectation of the 

second derivative of ℓ(=), i.e., 

                                Var (u(θ)) = -EOP(=)Q(F)RS= T−	E V( EWℓ(F)EIXEIY)Z[. 
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The p ⨉ p matrix on the right hand side is called the expected Fisher information 

matrix and usually denoted by \ (=)=	T−	E V( EWℓ(F)EIXEIY)Z[. The expectation here is taken 

over the distribution of y at a fixed value of  =. The maximum likelihood estimate of 

=	is given by the solution =� to the p equations  

                                                           u(=�) = 0 

and under some regularity conditions, the distribution of =� is asymptotically normal 

with mean = and variance covariance matrix given by the p ⨉ p matrix \	(=)*+i.e., 

the inverse of the expected information matrix. The p ⨉ p matrix  

                                                     I(=) = -V]2ℓ(F)]�_]�`Z 
is called the observed information matrix. In practice, since the true value of = is not 

known, these two matrices are estimated by substituting the estimated value =� to give 

\ (=�) and I(=�), respectively. Asymptotically, these forms of the information matrix 

can be shown to be equivalent because the \ (=�) and I(=�) are the maximum likelihood 

estimators of \ (=) and I(=) respectively. 

From a computational standpoint, the above quantities are related to those computed 

to solve an optimization problem as follows: -	ℓ(=) corresponds to the objective 

function to be minimized, u(θ) represents the gradient vector, the vector of first order 

partial derivatives and I(=), corresponds to the negative of the Hessian matrix a(F), 
the matrix of second-order derivatives of the objective function respectively: 

                                                   −a(F) = 	−	]2ℓ(F)]�_]�`  

In the MLE problem, the Hessian matrix is used to determine whether the solution =� 

to the equations u(θ)=0 corresponds to a minimum of the objective function -	ℓ(=) 
but more importantly it is used through the observed information matrix I(=�) for 

estimating the asymptotic covariance matrix of =�, since if \ (=�) were to be used then 

the expectation of I(=�) needs to be evaluated analytically. Thus Var(=�) = bcd=�ef*+  = 

[−ad	=�e]*+. Moreover, if computing the derivatives of ℓ(=) in closed form is 

difficult or if the optimization procedure does not produce an estimate of the Hessian 
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as a byproduct, estimates of the derivatives obtained using finite difference methods 

may be substituted for I(=�). 

As we shall see in the next sections, the standard errors of the estimators F�, are just 

the square roots of the diagonal terms of the variance–covariance matrix Var(=�). The 

maximum likelihood estimates, hessian matrices and standard errors have been 

computed with the help of the R-programming language. 

 

3.2 Chi-square test 

The most famous test for checking the validity of a distribution to describe  a random 

phenomenon based on a set of experimental data is the chi-square test. The test 

evaluates the null hypothesis a   that the data are governed by the assumed 

distribution, against the alternative 	a+ that the data are not drawn from the assumed 

distribution: 

a  : the data are governed by the assumed distribution.  

a+: the data are not drawn from the assumed distribution. 

Let  �+, ��, … , �) denote the probabilities hypothesized for k possible categories under 

a . In n independent trials, we let i+,i�,…,i) denote the observed frequencies (j�, 1 

≤ i ≤k) of each outcome which are to be compared to the expected frequencies n�+, 

n��,…,n�), (k�, 1 ≤ i ≤k). 

The test is based on the chi-square test statistic which is defined as:                                                                          

$� =	∑ (jl−kl)2kl&l=1 . 

The standardized counts m(no*po)Wpo 	for k categories are approximately normal, but 

they are not independent because one of the counts is entirely determined by the sum 

of the others (since the total of the observed and the expected counts must sum to n). 

This results in a loss of one degree of freedom, so it turns out the distribution of the 

chi-squared test statistic based on & counts is approximately the chi-squared 
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distribution with q = & − 1 degrees of freedom, denoted $)*+� . But often the 

assumed distribution has unknown parameters which we have to estimate. In this case 

the asymptotic distribution of the chi-square test statistic is the $� with (k − 1 −
r)	degrees of freedom, where & are the number of counts and # the number of 

parameters which we have estimated. There are some restrictions which we have to 

take into account: 

a) All the expected frequencies k� ≥ 1 

b) And a maximum  20% of the expected frequencies are k� ≤ 5  

or 

a) All the expected frequencies are k� ≥ 5 

In order to continue we shall take into account that all the expected frequencies 

are	k� ≥ 5. 

 

3.3  Goodness of fit testing that the data follow a geometric distribution. 

         3.3.2 Computation of simple log-likelihood, hessian matrix, variance and 

standard error 

Let $ denotes the number of cycles to conception. In this section we assume that $ 

has a geometric distribution with probability function given by Equation (1). 

The likelihood function for a set of observations x = ( �+,…,�2) is given by 

u(�│�) 	= w�:+2 �(1 − �)(xo*+) = �2(1 − �)(∑ xoyozJ *2)  
and the log-likelihood is given by 

ℓ	(�) = i{|}(�) + (∑ ��2�:+ − i){|}(1 − �). 
And it is straightforward to show that the maximum likelihood estimator of � is given 

by: �̂ =
2∑ xoyozJ , 
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For the non-smokers data set, the log-likelihood (which we are going to call simple 

log-likelihood in order to distinguish it from the multinomial log-likelihood below) is 

given by 

ℓ	(�) 	= 	486{|}(�) 	+	(1441	– 	486){|}(1 − �)	
resulting in the maximum likelihood estimate �̂ = 2∑ xoyozJ   = 

���+��+ = 0.337 or 33.7%. 

This assumes that ∑ ��2�:+  = 198·1 + 107·2 + 55·3 + 38·4 + 18·5 + 22·6 + 7·7 + 9·8 + 

5·9 + 3·10 + 6·11 + 6·12 + 12·13= 1441 and which is obtained by setting all the 

observed cycles above 12 equal to 13 this is why the standard (simple) log-likelihood 

is not very appropriate. 

The derivatives of the log-likelihood with respect to � are: 

Eℓ	(�)E5  = 	25 - (∑ xoyozJ *2)+*5   

EWℓ	(�)E5W  = - 25W - (
∑ xo*2)yoz�(+*5)W  

And thus the observed information matrix, I(�) = - (EWℓ	(�)E5W ), evaluated at �	 = �̂ is 

equal to: 

I(�̂)= -T −4860.3372−	(1441−486)(1−0.337)2 [ = 6451.919. 

The expected information matrix is given by: 

  \ (�) = -EV]2ℓ	(p))]�2 Z = E� 25W 	+ 	 (∑ xo*2)yozJ(+*5)W 	� = 25W 	+ 	2(
JL*+)(+*5)W = 25W(+*5). 

and	equals	\ (�̂) = 6451.919 for the non-smokers data. 

The hessian matrix is H(�̂) =  
EWℓ	(�)E5W  = -6451.919 and thus the variance and standard 

error are: 

Var(�̂) = [c(p�)]*+ = (-[a(�̂)])*+ = (-[]2ℓ	(p)]�2 ])*+=(6451.919)*+ 
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Standard error = m(6446.462)−1= 0.01245487. 

 

    3.3.3   Computation of multinomial log-likelihood, hessian matrix, variance and 

standard error 

The simple likelihood assumes the observed cycles above 12 are all equal to 13. We 

can avoid arbitrarily setting the unknown number of cycles above 12 to 13 by 

assuming a multinomial likelihood structure. 

Multinomial likelihood function: 

L(x|p) = 2!2J!2W!………2�! ∏ ��2o��:+ , 1≤i≤u, (u=13, for this example) 

Where i� denote the observed frequencies and  �� = 	"($ = l) = (1 − �)�*+p, for 

1 ≤ l < 13 and  

	�+� = "(� ≥ 13) = 1 - (∑ "($ = l)+��:+ )=1-(1-(1 − �)+�)=(1 − �)+�. 
The log-likelihood is given by  ℓ (p) = c + ( ∑ i�log	(�(1 − �)�*+))��:+   

where c is a constant that does not depend upon p. The derivatives with respect to p 

are : 

Eℓ	(p)	E5  = 
∑ 2o��JozJ5  – 

∑ 2o(�*+)��JozJ+*5  - 2�(�*+)+*5  

EWℓ	(p)	E5W  = -	∑ 2o��JozJ5W 	–	∑ 2o(�*+)��JozJ(+*5)W 	-	2�(�*+)(+*5)W .		
Setting the score to zero results in the maximum likelihood estimate 

 �̂ = 
∑ 2o��JozJ∑ 2o(�*+)�	2�(�*+)�	∑ 2o��JozJ��JozJ  = 

�������+����++ = 0.3317. 

The observed information matrix is, I( ) = - (EWℓ	(�)E5W ), evaluated at �	 = �̂ is 

I(�̂)= −	¡− 4740.11 	− 8110.447 	−	 1440.447¢ = 6446.462. 
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The hessian matrix is H(�̂) =  
EWℓ	(�)E5W  = -6446.462 and thus the variance and standard 

error are: 

£�#(�̂) = [c(¤¥)]*+ = (-[a(�̂)])*+ = (-[]2ℓ	(p))]�2 ])*+=(6446.462)*+ 

Standard error = m(6446.462)−1= 0.01245487. 

We observe that there is little difference in the maximum likelihood estimate for p 

between simple and multinomial likelihoods. 

3.4  Chi-squared test 

We evaluate the goodness of fit of the geometric distribution using a chi-squared test.  

The chi-square statistic is given by: 

                 $� = ∑ (no*po)Wpo+ �:+  ~ $�,+*¦�  

Table 3.1 gives the expected values under the geometric distribution fitted by 

maximum likelihood. 

Cycle Observed 

values 

Simple likelihood Multinomial likelihood 

1 198 163.9 161.2 

2 107 108.6 107.7 

3 55 72 72 

4 38 47.7 48.1 

5 18 31.6 32.2 

6 22 21 21.5 

7 7 13.9 14.4 

8 9 9.2 9.6 

9 5 6.1 6.4 

10 3 4 4.3 

11 6 2.7 2.9 
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12 6 1.8 1.9 

>12 12 3.5 3.9 

Total Total 486 486 

Table 3.1: expected values under a geometric distribution when p is estimated by 

simple and multinomial likelihood. 

The expected values were calculated by n��, 1 ≤ j ≤ 13		where i = 486 and �� 
denotes the probabilities of the 13 categories, and the ��’s are calculated in two ways, 

first using the M.L.E. from the simple log-likelihood and the second time the M.L.E. 

from the multinomial log-likelihood. Since there are expected frequencies below 5 we 

are going to amalgamate the groups so we are going to have k = 10 groups instead of 

13. In the matrix above we can see that the last 4 groups have expected frequencies 

less than 5 so we are going to take them into consideration as 1 group, resulting in 10-

1-1=8 degrees of freedom. 

For the simple log-likelihood: 

∑ (no*po)Wpo+ �:+  = (+¨�*+��.¨)W+��.¨  + (+ �*+ �.�)W+ �.�  + (©©*��)W��  + (��*��.�)W��.�  + 

(+�*�+.�)W�+.�  + (��*�+)W�+  + (�*+�.¨)W+�.¨  + (¨*¨.�)W¨.�  + (©*�.+)W�.+  + (��*+�)W+�  = 41.38 

$� = ∑ (no*po)Wpo+ �:+  ~  $�,+*¦�  = 15.51 ,  for α = 0.05 we have that 41.38>15.51 

where 15.51 is the critical value of $�,+*¦�  with α = 0.05. We reject the null 

hypothesis that the data are geometrically distributed. 

For the multinomial log-likelihood: 

∑ (no*po)Wpo+ �:+  = (+¨�*+�+.�)W+�+.�  + (+ �*+ �.�)W+ �.�  + (©©*��)W��  + (��*��.+)W��.+  + 

(+�*��.�)W��.�  + (��*�+.©)W�+.©  + (�*+�.�)W+�.�  + (¨*¨.�)W¨.�  + (©*�.�)W�.�  + 
(��*+�.¨)W+�.¨  = 40.37 

$� = ∑ (no*po)Wpo+ �:+  ~  $�,+*¦�  , for α = 0.05 we have that 40.37 > 15.51 where 

15.51 is the critical value of $�,+*¦�  with α = 0.05. The result is that the null 
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hypothesis that the data are geometrically distributed is rejected and so this model is 

not appropriate for continuing our research. 

From the above, we reach the conclusion that whatever likelihood we use simple or 

multinomial, the data are not distributed geometrically. There is the possibility that an 

alternative model would be a mixture of 2 geometric distributions but  let’s examine 

the possibility that the data are distributed beta-geometrically. 

 

3.5 Goodness of fit testing that the data follow a beta-geometric distribution 

In this section we examine the possibility that there is a variation in the probability of 

conception between women, resulting for example from individual heterogeneity. 

This gives rise to a hierarchical model but in this case we need to find the marginal 

distribution. So we define the Hierarchical Model: 

$	|�	~Geometric (�)  
�	~	�(�) and we focus on                                                                                      

�	~ Beta(α,β)  

�(�) 	= +«(¦,¬)�­*+(1 − �)¬*+, α > 0 and β > 0  

The marginal distribution for	$	which is calculated in the following steps: 

P($ = �)= ® �(�, �)¯�+  = ® �d�│�e�(�)¯�+   

                =® �(1 − �)x*+ +«(­,¬)
+ �­*+(1 − �)¬*+¯�	 

                = °(­�¬)°(­)°(¬)® �(¦�+)*++ (1 − �)(¬�x*+)*+¯�                                       

                = 
°(­�¬)°(­)°(¬) °

(­�+)°(¬�x*+)°(­�¬�x) =	±(­�+,¬�x*+)±(­,¬) 	 (� = 1,2,3, … ), 
where -(
, �) = ²(
)²(�)²(
+�) , is the beta function. 

This is known as the beta-geometric distribution. 
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     3.5.1   Computation of simple log-likelihood, hessian matrix, variance-covariance 

matrix and standard error 

Suppose that data are available on i individuals as ��, l = 1,2, … , i. The likelihood 

function for data based on beta-geometric distribution with parameters ==(α,β) is 

given by: 

L(=)=∏ -(
+1,�+�l−1)-(
,�)2�:+  

and the corresponding log-likelihood, ℓ(=), is given as 

ℓ(=) = ∑ 	(2�:+ log -(
 + 1, � + �� − 1)) – i log(-(
, �)). 
The components of the score vector u(=) = (Eℓ(³)E­ , Eℓ(³)E¬ )´ is given by: 

 
Eℓ(³)E­  = N·ψ(
+1) +N·ψ(
+	�) – ∑ µ(2�:+ 	�� + 
+	�+1) – Nψ(
) 

 
Eℓ(³)E¬  = ∑ µ2�:+ (�� + �) + N·ψ(
+	�) – ∑ µ(2�:+ 	�� + 
+	�+1) – Nψ(¶) 

where ψ(x) = 
°΄(x)°(x)  

The maximum likelihood estimates 
 and � can be obtained either by directly 

maximizing the log likelihood function with respect to	θ or by solving the two 

simultaneous equations obtained by equating u(=) =0. The results are 
� = 4.276 and �
  
= 6.539. The mean and the variance of the fitted Beta are k(�) = ­¥­¥�¬� =0.395, £�#(�) 
= ­¥¬�

d­¥�¬�eW(­¥�¬��+) = 0.0202. There is a small difference in these values compared with 

the values from the geometric.  

The hessian matrix from the simple log-likelihood is the 2 x 2 matrix:   

                                  ¹dθ�e = º17.338121 −9.234814−9.234814 5.138331 » 
 and thus the variance – covariance matrix of F� =(��, �
) is : 
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£�#(F�) =¡− º17.338121 −9.234814−9.234814 5.138331 »¢*+= º1.349633 2.4256152.425615 4.554029». This results 

in the standard errors 1.161737 and 2.134017 for	�� and �
  respectively:   

 ¼¥ (standard error) ½�	(standard error) 

Simple log-likelihood 4.28 (1.1617) 6.54(2.1340) 

 

 

       3.5.2 Computation of multinomial log-likelihood, hessian matrix, variance-

covariance matrix and standard error 

The simple likelihood assumes that the observed cycles above 12 are all equal to 13. 

We can avoid arbitrarily setting the unknown number of cycles above 12 to 13 by 

assuming a multinomial likelihood structure. 

Multinomial likelihood function: 

The log-likelihood is given by  ℓ(p) = ¾ + (	∑ i�{|}	(��)��:+ ) where the ¾ is a constant 

which does not affect the maximization, i� denote the observed frequencies and 

where the cell probabilities are defined by the marginal distribution of X: 

�� = -(
+1,�+�l−1)-(
,�) , for 1 ≤ l < 13 and  

	�+�= "(� ≥ 13) = 1	 − (∑ "($ = l)+��:+ )= 1 – ∑ ±(­�+,¬�xo*+)±(­,¬)+��:+ . 

The optimization of the multinomial log-likelihood, through the BFGS method 
(Broyden, Fletcher, Goldfarb and Shanno method), gives the maximum likelihood 
estimates  
	¥= 2.987  and �	�= 4.333 for the group of non smokers. The mean and the 

variance of the fitted Beta are k(�̂) = ­¥­¥�¬� =0.408, £�#(�̂) = ¦�¬�
d¦��¬�eW(¦��¬��+) = 0.029.  

The hessian matrix from the multinomial log-likelihood is the 2 x 2 matrix: 

                               ¹dθ�e = º				34.6496			 −18.51060−18.51060 10.66369			», 
and thus the variance – covariance matrix of F� =(
�, �
) now is : 
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£�#(��) =¡− º				34.6496			 −18.51060−18.51060 10.66369			»¢
*+

= º0.3971559 0.68940450.6894045 1.2904816». This 

results in the standard errors 0.6302 and 1.1352 for 
� and �
  respectively: 

 ¼¥ (standard error) ½�	(standard error) 

Multinomial log-

likelihood 

2.987 (0.6302) 4.333 (1.1359) 

 

The difference in the maximum likelihood estimates between simple and multinomial 

likelihoods is interesting. 

3.6  Chi-squared test 

As in the previous section, we evaluate the goodness of fit of the beta-geometric 

distribution using a chi-square test. Table 2 provides the expected values under the 

beta-geometric fitted by simple and multinomial likelihood. For both likelihoods, 

there are three expected frequencies below 5, which we amalgamate into one, so we 

shall have 11 groups minus 1 and minus 2 for the two parameters (α,β) resulting into 

8 degrees of freedom.                           

Number of 

cycles 

Observed values Simple log-likelihood Multinomial log-

likelihood 

1 198 192.2 198.4 

2 107 106.4 103.3 

3 55 62.6 59.1 

4 38 38.7 36.3 

5 18 24.9 23.5 

6 22 16.6 15.9 

7 7 11.4 11.1 

8 9 8 8 

9 5 5.8 5.9 

10 3 4.2 4.5 

11 6 3.2 3.5 
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12 6 2.4 2.7 

>12 12 9.8 13.9 

Total 486 486 486 

Table 3.2: Women non-smokers observed and expected values under a beta-geometric 

distribution when parameters are estimated by simple and multinomial likelihood. 

Thus for the simple log-likelihood: 

 ∑ (no*po)Wpo++�:+  = (+¨�*+¨�.�)W+¨�.�  + (+ �*+ �.�)W+ �.�  + (©©*��.�)W��.�  + (��*��.�)W��.�  + 

(+�*��.¨)W��.¨  + (��*+�.�)W+�.�  + (�*++.�)W++.�  + (¨*�)W�  + (©*©.�)W©.�  + (+©*¨.�)W¨.�  + (+�*¨.�)W¨.� 	= 

9.7 

$� =  ∑ (no*po)Wpo++�:+  ~  $�,+*¦� = 15.51 , for 
 = 0.05 since 9.7 < 15.51 where 15.51 

is the critical value of $�,+*¦�  with 
	= 0.05. The result is that the null hypothesis, 

that the data are beta-geometrically distributed, is not rejected. 

 For multinomial log-likelihood: 

 ∑ (no*po)Wpo++�:+  = (+¨�*+¨�.�)W+¨�.�  + (+ �*+ �.�)W+ �.�  + (©©*©¨.+)W©¨.+  + (��*��.�)W��.�  + 

(+�*��.©)W��.©  + (��*+©.¨)W+©.¨  + (�*++.+)W++.+  + (¨*�)W�  + (©*©.¨)W©.¨  + (+©*+ .�)W+ .�  + 
(+�*+�.¨)W+�.¨  

= 6.721 

$� =  ∑ (no*po)Wpo++�:+  ~  $�,+*¦�  =15.51, for 
 = 0.05 since 6.721 < 15.51 where 

15.51 is the critical value of $©,+*¦�  with 
	= 0.05. The result is that we accept the 

null hypothesis that the beta-geometric fits the data.                                                    
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                                                     CHAPTER 4 

           Using bootstrap methods to test the goodness of fit of a model 

4.1 Historical background of bootstrap methods 

The ‘’bootstrap’’ is one of a number of techniques that is now part of the broad 
umbrella of non-parametric statistics that are commonly called resampling methods 
Some of the techniques are far older than the bootstrap. Permutation methods go back 
to Fisher (1935) and Pitman (1937,1938), and the jackknife started with Quenouille 
(1949). Bootstrapping was made practical through the use of the Monte Carlo 
approximation, but it goes back to the beginning of computers in the early 1940s. 

However, 1979 is a critical year for the bootstrap because that is when Brad Efron’s 
paper in the Annals of Statistics was published (Efron, 1979). Efron had defined a 
resampling procedure that he coined as bootstrap. He constructed it as a simple 
approximation to the jackknife (an earlier resampling method that was developed by 
John Tukey), and his original motivation was to derive properties of the bootstrap to 
better understand the jackknife. However in many situations, the bootstrap is as good 
as or better than the jackknife as a resampling procedure. The jackknife is primarily 
useful for small samples, becoming computationally inefficient for larger samples but 
has become more feasible as computer speed increases. A clear description of the 
jackknife and its connection to the bootstrap can be found in the SIAM monograph 
Efron (1982).  

Although permutation tests were known in the 1930s, an impediment to their use was 
the large number (i.e., n!) of distinct permutations available for samples of size n. 
Since ordinary bootstrapping involves sampling with replacement n times for a 
sample n, there are i2 possible distinct ordered bootstrap samples (though some are 
equivalent under the exchageability assumption because they are permutations of each 
other). So, complete enumeration of all the bootstrap samples becomes infeasible 
except in very small sample sizes. Random sampling from the set of possible 
bootstrap samples becomes viable way to approximate the distribution of bootstrap 
samples. The same problem exists for permutations and the same remedy is possible. 
The only difference is that n!  does not grow as fast as  i2, and complete enumeration 
of permutation is possible for larger n than for the bootstrap. 

The idea of taking several Monte Carlo samples of size n with replacement from the 
original observations was certainly an important idea expressed by Efron but was 
clearly known and practiced prior to Efron (1979). Although it may not be the first 
time it was used, Julian Simon laid claim to priority for the bootstrap based on his use 
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of the Monte Carlo approximation in Simon (1969). But Simon was only 
recommending the Monte Carlo approach as a way to teach probability and statistics 
in a more understandable way. After Efron made the bootstrap popular, Simon and 
Bruce joined the campaign (see Simon and Bruce, 1991, 1995). 

Efron, however, starting with Efron (1979), first connected bootstrapping to the 
jackknife, delta method, cross-validation, and permutation tests. He was the first to 
show it to be a real competitor to the jackknife and delta method for estimating the 
standard error of an estimator. Also quite early on, Efron recognized the broad 
applicability of bootstrapping for confidence intervals, hypothesis testing, and more 
complex problems. These ideas were emphasized in Efron and Gong (1983), Diaconis 
and Efron (1983), Efron and Tibshirani (1986), and the SIAM monograph (Efron 
1982). These influential articles along with the SIAM monograph led to a great new 
deal of research during the 1980s and 1990s. The explosion of bootstrap papers grew 
at an exponential rate. Key probabilistic results appeared in Singh (1981), Bickel and 
Freedman (1981, 1984), Beran (1982), Martin(1990), Hall (1986, 1988), Hall and 
Martin (1988), and Navidi (1989). 

In a very remarkable paper, Efron (1983) used simulation comparisons to show that 
the use of bootstrap bias correction could provide better estimates of classification 
error rate than the very popular cross-validation approach (often called leave-one-out 
and originally proposed by Lachenbruch and Mickey, 1968). These results applied 
when the sample size was small, and classification was restricted to two or three 
classes only, and the predicting features had multivariate Gaussian distributions. 
Efron compared several variants of the bootstrap with cross-validation and the 
resubstitution methods. This led to several follow up articles that widened the 
applicability and superiority of a version of the bootstrap called 632. See Chatterjee 
and Chattejee (1983), Chernick et al. (1985, 1986, 1988a,b), Jain et al. (1987), and 
Efron and Tibshirani (1997). 

Chernick was a graduate student at Stanford in the late 1970s when the bootstrap 
activity began on the Stanford and Berkeley campuses. However, oddly the bootstrap 
did not catch on with many graduate students. Even Brad Efron’s graduate students 
chose other topics for their dissertation. Gail Gong was the first student of Efron to do 
a dissertation on the bootstrap. She did very useful applied work on using the 
bootstrap in model building (particularly for logistic regression subset selection). See 
Gong (1986). After Gail Gong, a number of graduate students wrote dissertations on 
the bootstrap under Efron, including Terry Therneau, Rob Tibshirani, and Tim 
Hesterberg. Michael Martin visited Stanford while working on his dissertation on 
bootstrap confidence intervals under Peter Hall. At Berkeley, William Navidi did his 
thesis on bootstrapping in regression and econometric models under David Freedman. 

While exciting theoretical results developed for the bootstrap in the 1980s and 1990s, 
there were also negative results where it was shown that the bootstrap estimate is not 
‘’consistent’’ in the probabilistic sense. Examples included the mean when the 
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population distribution does not have a finite variance and when the maximum or the 
minimum is taken from a sample. This is illustrated in Athreya (1987a,b), Knight 
(1989), Angus (1993), and Hall et al. (1993). The first published example of an 
inconsistent bootstrap estimate appeared in Bickel and Freedman (1981). Shao et al. 
(2000) showed that a particular approach to bootstrap estimation of individual 
bioequivalence is also inconsistent. They also provide a modification that is 
consistent. Generally, the bootstrap is consistent when the central limit theorem 
applies (a sufficient condition is Lyapanov’s condition that requires existence of the 2 
+ δ moment of the population distribution). Consistency results in the literature are 
based on the existence of Edgeworth expansions; so, additional smoothness 
conditions for the expansion to exist have also been assumed (but it is not known 
whether or not they are necessary). 

One extension of the bootstrap called q-out of-i was suggested by Bickel and Ren 
(1996) in light of previous research on it, and it has been shown to be a method to 
overcome inconsistency of the bootstrap in several instances. In the q-out of-i	bootstrap, sampling is with replacement from the original sample but with value of q	that is smaller than i. See Bickel et al. (1997). 

Some bootstrap approaches in time series have been shown to be inconsistent. Lahiri 
(2003) covered the use of bootstrap in time series and other dependent cases. He 
showed that there are remedies for the q-dependent and moving block bootstrap 
cases that are consistent. 

4.2 Definition and relationship to the delta method and other resampling methods 

We will first provide an informal definition of bootstrap to provide intuition and 
understanding before a more formal mathematical definition. The objective of 
bootstrapping is to estimate the distribution of a statistic based on the data, such as a 
mean, median, or standard deviation. We are also interested in the properties of the 
distribution for the parameter’s estimate and may want to construct confidence 
intervals. But we do not want to make overly restrictive assumptions about the form 
of the distribution that the observed data came from. 

For the simple case of independent observations coming from the same population 
distribution, the basic element for bootstrapping is the empirical distribution. The 
empirical distribution is just the discrete distribution that gives equal weight to each 
data point (i.e., it assigns probability 1/i to each of the original i observations and 
shall be denoted  À2). 

Most of the common parameters that we consider are functionals of the unknown 
population distribution. A functional is simply a mapping that takes a function À into 
a real number. In our case, we are only interested in the functional of cumulative 
probability distribution functions. So, for example, the mean and the variance of a 
distribution can be represented as functional in the following way. Let µ be the mean 
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for a distribution function F, then µ = ® � ¯À(�). Let Á� be the variance then Á� = ®(� − Â)� ¯À(�). These integrals over the entire possible set of � values in the 
domain of F are particular examples of functional. It is interesting that the sample 
estimates most commonly used for these parameters are the same functional applied 
to the À2. 

Now the idea of bootstrap is to use only what you know from the data and not 
introduce extraneous assumptions about the population distribution. The “ bootstrap 
principle’’ says that when À is the population distribution and Ã(À) is the functional 
that defines the parameter, we wish to estimate based on a sample of size	i, let À2 
play the role of F and À2∗, the empirical distribution function of the bootstrap sample 
(soon to be defined), play the role of À2 in the resampling process. Note that the 
original sample is a sample of i	independent identically distributed observations from 
the distribution À and the sample estimate of the parameter is Ã(À2). So, in 
bootstrapping we let À2 play the role of À and take i	independent and identically 
distributed observations from À2. Since À2 is the empirical distribution, this is just 
sampling randomly with replacement from the original data. 

Suppose we have i = 5 and the observations are $+=7, $�=5, $�=3, $�=9 and $©=6 
and that we are estimating the sample mean, (7 +5+ 3 + 9 + 6)/5 = 6.0. Then sampling 
from the data with replacement generates what we call a bootstrap sample. 

The bootstrap sample is denoted $+∗, $�∗, $�∗, $�∗, and $©∗. The distribution for sampling 
with replacement from À2 is called the bootstrap distribution, which we previously 
denoted by À2∗. The bootstrap estimate is then T(À2∗). So the bootstrap sample might 
be $+∗=5, $�∗=9, $�∗=7, $�∗=7, and $©∗=5. 

Note that, although it is possible to get the original sample back typically some values 
get repeated one or more times and consequently others get omitted. For his bootstrap 
sample, the bootstrap estimate of the mean is (5 + 9 + 7 + 7 + 5)/5 = 6.6. Note that the 
bootstrap estimate differs from the original sample estimate, 6.0. If we take another 
bootstrap sample, we may get another estimate that may be different from the 
previous one and the original sample. Assume for the second bootstrap sample we get 
in this case the observation equal to 9 repeated twice. Then, for this bootstrap sample, $+∗=9, $�∗=9, $�∗=6, $�∗=7, and $©∗=5, and the bootstrap estimate for the mean is 7.2. 

If we repeat this many times, we get a histogram of values for the mean, which we 
will call the Monte Carlo approximation to the bootstrap distribution. The average of 
all these values will be very close to 6.0 since the theoretical mean of the bootstrap 
distribution is the sample mean. But from the histogram (i.e., resampling distribution), 
we can also see the variability of these estimates and can use the histogram to 
estimate skewness, kurtosis, standard deviation and confidence intervals. 

In theory, the exact bootstrap estimate of the distribution of the parameter-estimate 
could be calculated by averaging appropriately over all possible bootstrap samples, 
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and in this example for the mean, that value would be 6.0. As noted before, there can 
be i2 distinct bootstrap samples (taking account of the ordering of the observations), 
and so even for i = 10, this becomes very large (i.e., 10 billion). So, in practice, a 
Monte Carlo approximation is used. 

If you randomly generate �	= 10,000 or 100,000 bootstrap samples, the distribution 
of bootstrap estimates will approximate the bootstrap distribution for the estimate. 
The larger � is the closer the histogram approaches the true bootstrap distribution. 
Here is how the Monte Carlo approximation works: 

1. Generate a sample with replacement from the empirical distribution for the 
data ( this is a bootstrap sample). 

2. Compute T(À2∗) the bootstrap estimate of T(F). This is a replacement of the 
original sample with a bootstrap sample and the bootstrap estimate of T(F) in 
place of the sample estimate of T(F). 

3. Repeat steps 1 and 2 � times where �	is large, say 100,000. 

Now a very important thing to remember is that with the Monte Carlo approximation 
to the bootstrap, there are two sources of error: 

1. The Monte Carlo approximation to the bootstrap distribution, which can be 
made as small as you like by making � large; 

2. The approximation of the bootstrap distribution  Ã(À2∗) − Ã(À2) to the 
distribution of Ã(À2) − Ã(À). 

If Ã(À2∗) − Ã(À2) converges as i→∞ to the same limit as the distribution of Ã(À2) −Ã(À), then bootstrapping works.  

The probability theory associated with the bootstrap is beyond the scope of this text 
and can be found in books such as Hall (1992). What is important is that we know that 
consistency of bootstrap estimates has been demonstrated in many cases and 
examples where certain bootstrap estimates fail to be consistent are also known. There 
is a middle ground, which are cases where consistency has been neither proved nor 
disproved. In those cases, simulation studies can be used to confirm or deny the 
usefulness of the bootstrap estimate. Also, simulation studies can be used when the 
sample size is too small to count on asymptotic theory, and its use in small to 
moderate sample sizes needs to be evaluated.  

But we need to mention that the above method is a non parametric bootstrap and there 
is also the method of parametric bootstrap which we are going to use in the following 
chapters.  Whereas non parametric bootstraps make no assumptions about how your 
observations are distributed, and resample your original sample, parametric bootstraps 
resample a known distribution function, whose parameters are estimated from your 
sample. These bootstrap estimates are either used to attach confidence limits non 
parametrically-or a second and more parametric models are fitted using parameters 
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estimated from the distribution of the bootstrap estimates, from which for example, 
confidence limits are obtained analytically. 

The advantages of this approach compared to the non parametric bootstrapping can be 
summarized as follows: 

a) In non parametric bootstrap, samples are drawn from a discrete set of i	observations. This can be a serious disadvantage in small sample sizes 
because spurious fine structure in the original sample, but absent from the 
population sampled, may be faithfully reproduced in the simulated data. 

b) Another concern is that because small samples have only a few values, 
covering a restricted range, non parametric bootstrap samples underestimate 
the amount of variation in the population you originally sampled. As a result, 
statisticians generally see samples of 10 or less as too small for reliable non 
parametric bootstrapping. 

 

4.2.1 Jackknife 

The jackknife was introduced by Quenouille (1949). Quenouille’s aim was to improve 
an estimate by correcting for its bias. Later on, Tukey (1958) popularized the method 
and found that a more important use of the jackknife was to estimate standard errors 
of an estimate. It was Tukey who coined the name jackknife because it was a 
statistical tool with many purposes. While bootstrapping uses the bootstrap samples to 
estimate variability, the jackknife uses what are called pseudovalues. 

First consider an estimate ÅÆ  based on a sample of size i of observations 
independently drawn from a common distribution F. Here, just as with the bootstrap, 
we again let À2 be the empirical distribution for this data set and assume that the 
parameter u = Ã(À),	a functional; ÅÆ  = T(À2), ÅÆ	(�) = T(À2(�)), where À2(�) is the 
empirical distribution function for the i-1 observations obtained by leaving the i-th 
observation out. If ÅÆ  is the population variance, the jackknife estimate of variance of Á� is obtained as follows: 

                                          Á�¦Ç)�  = i∑ (�È	(o)*�∗)W2*+2�:+ , 

where Å∗ = ∑ �È	(o)22�:+  . The jackknife estimate of standard error for ÅÆ  is just the 

square root for Á�¦Ç)� . Tukey defined the pseudovalue as ÅÉÈ  = ÅÆ  + (i-1)(ÅÆ  - ÅÆ	(�)). Then 

the jackknife estimate of the parameter u is Å�¦Ç) = ∑ �È	o22�:+ . So the name 

pseudovalue comes about because the estimate is the average of pseudovalues. 
Expressing the estimate of the variance of the estimate ÅÆ  in terms of the pseudovalues 
we get: 
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                                      Á�¦Ç)�  = ∑ (�È	o*�XÊËÌ)W2(2*+)2�:+ . 

In this form, we see that the variance is the usual estimate for variance of a sample 
mean. In this case, it is the sample mean of pseudovalues. Like the bootstrap, the 
jackknife has been a very useful tool in estimating variances for more complicated 
estimators such as trimmed or Winsorized means. 

One of the great surprises about the bootstrap is that in cases like trimmed mean, the 
bootstrap does better than the jackknife (Efron, 1982, pp. 28-29). For the sample 
median, the bootstrap provides a consistent estimate of the variance but the jackknife 
does not! See Efron (1982, p. 16 and chapter 6). In that monograph, Efron also 
showed, using Theorem 6.1, that the jackknife estimate of standard error is essentially 
the bootstrap estimate with the parameter estimate replaced by a linear approximation 
of it. In this way, there is a close similarity between the two methods, and if the linear 
approximation is a good approximation, the jackknife and the bootstrap will both be 
consistent. However, there are complex estimators where this is not the case. 

 

 

4.2.2 Delta method 

It is often the case that we are interested in the moments of an estimator. In particular, 
for these various methods, the variance is the moment we are most interested in. To 
illustrate the delta method, let us define Í	= �(
) where the parameters φ and α are 
both one-dimensional variables and f	 is a function differentiable with respect to α. So 
there exists a Taylor series expansion for f	at a point 
 . Carrying it out only to first 
order, we get Í	=	�(
)	=	�(	α )	+	(
-α )f 3(α ) + remainder terms and dropping the 
remainder terms leaves: 

                                       Í	=	�(
)	=	�(	
 )	+	(
 − 
 )�3(
 )	
or 

 

                                          �(
)	-	�(	
 )	=	(
 − 
 )�3(
 ). 
Squaring both sides of the last equation gives us: 

                                    [f(α) − 	f(
 )]�	=	(α − 
 )�[�3(
 )]�.	
Now we want to think φ	=	f(α) as a random variable, and upon taking expectations 
of the random variables on each side of the equation, we get: 

                              	k[f(α) − 	f(	
 )]�	=	k(α − 
 )�[�3(
 )]�.												                (1.1) 
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Here, 
 and �(
) are random variables, and 
 , f(	
 ), and �3(
 ) are all constants. 
Equation 1.1 provides delta method approximation to the variance of  Í	 = 	�(
) 
since the left-hand side is approximately the variance of φ and the right-hand side is 
the variance of α multiplied by the constant [�3(
 )]� if we choose 
  to be the mean 
of α.  

4.3 Deviance 

Deviance is a quality of fit statistic for a model that is often used for statistical 
hypothesis testing. It is a generalization of the idea of using the sum of squares of 
residuals in ordinary least squares to cases where model-fitting is achieved by 
maximum likelihood. 

The deviance for a model � , based on a data set y, is defined as: 

D(y) = - 2( log( p(y│�� )) – log(p(y│��Ñ))). 
Here �� denotes the estimated values of the parameters in model � , while �Ñ�  denotes 
the parameter estimates for the “full’’ (or saturated) model. Both sets of parameter 
estimates are implicitly functions of the observations y. Here the saturated model is a 
model with a parameter for every observation so that the data are fitted exactly. This 
expression is simply -2 times the log-likelihood ratio of the reduced model compared 
to the saturated model. The deviance is used to compare two models – in particular in 
the case of generalized linear models where it has a similar role to residual variance 
from AN.O.VA. in linear models (RSS). 

Suppose in the framework of the generalized linear models, we have two nested 
models, �+ and ��. In particular, suppose that  �+ contains the parameters in �� and & additional parameters. Then under the null hypothesis that �� is the true model, the 
difference between the deviances for the two models follows an approximate chi-
squared distribution with	& degrees of freedom. 

4.4  Testing  goodness of fit in the fertility problem using the bootstrap 

For the fertility problem, the log-likelihood for the saturated model minus the constant 
which does not affect the maximizations is: 

log(p(y|�Ñ))=∑ i�{|}Ò�+��:+ , where Ò�= 2o2 , l=1,…,13.  

For the non-smokers data, the saturated log-likelihood is: 

{|}(�(Ó|�Ñ)) = 	198{|}(+¨����) 	+ 	107{|}(+ ����) 	+ 	55{|}( ©©���) 	+ 	38{|}( �����) 	+	18{|}( +����) 	+ 	22{|}( �����) 	+ 	7{|}( ����) 	+ 	9{|}( ¨���) 	+ 	5{|}( ©���) 	+	3{|}( ����) 	+ 	6{|}( ����) 	+ 	6{|}( ����) 	+ 	12{|}( +����) 	= 	−884.7072  
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For the geometric distribution, model �+, the maximized multinomial log-likelihood, 
minus the same constant, is, from Chapter 3  

{|}(�(Ó|�+)) = 	−907.2,	
resulting in the observed deviance �+(y) = 46.49125.  

We next use the parametric bootstrap to generate 500 samples from	�+ and calculate 
the deviance from each sample. We could then make a histogram to see where the 
observed deviance is located relative to the other deviances from the simulated 
samples. It is important to mention that the log- likelihoods are multinomial log-
likelihoods. 

 

Figure 4.1: Histogram of simulated deviances from geometric distribution. The red line indicates the 
location of the observed deviance. 

Fig.4.1 provides a histogram of the simulated deviances from the geometric 
distribution. The location of the observed deviance is indicated by the red line. We 
can see that the geometric model using multinomial log-likelihood does not fit the 
data well (p-value=0) because the red line is not inside the histogram, on the contrary 
it is far right. The real question is to find out how good is the beta-geometric model in 
contrast to the geometric model. 
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For the beta-geometric distribution (model ��), the maximized multinomial log-
likelihood is -890.3918, resulting in the observed deviance: 

��(y)= -2(-890.3918-(-884.7072) = 11.36915 

We then use parametric bootstrap sampling to check the fit of the beta-geometric 
distribution using 500 samples as above. Fig. 4.2 provides a histogram of the 
simulated deviances relative to the observed deviance, indicated by the red line. 

 

Figure 4.2: Histogram of the simulated deviances from beta-geometric distribution. The red line 
indicates the location of the observed deviance. 

We can see that the red line is close enough to the centre of the histogram and we can 
say that the beta-geometric fits the observed data well (p-value=0.358). Thus the 
results from the bootstrap are consistent with the results from the chi-square test in 
Chapter 3, however the former procedure requires fitting the model many times while 
the latter is strictly speaking asymptotic. In the next chapter we consider a new 
method called calibrated simulation. 
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                                                     Chapter 5    

                                   CALIBRATED SIMULATION                   

5.1 Introduction  

In the context of integrated population modeling in ecology, where potentially several 

data sets are being analyzed in combination, Besbeas and Morgan (2014) proposed a 

new approach, called calibrated simulation, for judging how well models fit data.  

Here comparative data sets are obtained from simulating data when model parameter 

values are obtained from the assumed asymptotic normal distribution of the 

maximum-likelihood estimators from the real data. The approach is motivated and 

justified by Bayesian p-values. It is attractively simple, as it limits the additional 

model-fitting that is required, and an appreciable improvement in efficiency is 

obtained relative to the bootstrap. Calibration of the resulting statistics is achieved as 

repeated data sets are easily simulated from the fitted model, and time-consuming 

multiple Markov chain Monte Carlo runs are not required. The method requires the 

specification of model discrepancy measures and the authors show how different 

measures can highlight different aspects of fit. 

In this chapter we illustrate the use of calibrated simulation to examine how well the 

geometric and the beta-geometric distributions fit the women non-smokers data set. 

We also consider an unpublished modification of the method where simulated data 

sets are obtained from the maximum likelihood point estimates. 

5.2 Calibrated simulation 

The idea of calibrated simulation was suggested by Brooks et al (2000) in the context 

of the analysis of mark recovery and recapture data from wild birds, and it is also 

suggested by Johnson (2004). The approach is motivated by Bayesian p-values; see 

eg., Brooks et al (2000), where multiple simulations are obtained from posterior 

distribution for the parameters of the model being considered. The method was 
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proposed by Besbeas and Morgan in the context of integrated population modeling in 

ecology. Once the integrated model is fitted to all of the data then s simulated data 

sets, of dimensions matched to those of the real data sets, are obtained repeatedly 

from the component models, each one with parameter values obtained by simulating 

from the assumed asymptotic multivariate normal distribution of the maximum-

likelihood parameter estimates from fitting the real data. 

In detail, suppose that �� and �� are respectively the maximum-likelihood estimates 

from fitting the real data, and associated dispersion matrix obtained from inverting the 

observed information matrix evaluated at ��. For each simulated parameter value �� ~ 

N (��,	��) we might calculate a measure of the discrepancy between the data, x and the 

corresponding model, D(x;��), and for each simulated parameter value �� we also 

simulate a new data set ��. For each new data set we then calculate D(��;	��), and a 

scatter plot is obtained of D(��;	��) vs D(x;��). If the model fits the data well then one 

would expect approximately half of the points in the scatter plot to be above the line 

of unit slope through the origin as recommended by Brooks, S.P, Catchpole, E.A., and 

Morgan, B.J.T. (2000). The goodness of fit p-values we use are Fisherian p-values, 

i.e. probabilities of seeing something as weird or weirder than we actually saw. We 

denote the proportion of points above the line of unit slope by �Ç = iÇ/s (we shall call 

those �Ç’s as p-values), where iÇ is the corresponding number of points above the 

line. An attraction of this approach is that there is complete freedom in the choice of 

the measures of discrepancy that may be used, and furthermore more than one might 

be used for each data set, as recommended by Gelman et al (1996). For example, 

Millar and Meyer (2000) used four different measures when assessing the fit of a 

surplus – production model for fisheries data; one was a standard chi-square, while 

the other three were specific to the problem. They obtained p-values of 0.69, 0.27, 

0.50, and 0.42 which they judged indicated that the model fitted the data sufficiently 

well. However we note the variation in the p-values obtained, which indicates the 

importance of taking several measures highlighting different aspects of fit. As 

observed by Johnson (2004), it also demonstrates that the distribution of p-values is 

unknown, and they cannot be calibrated. By running simulations for bootstrapped 

versions of the real data we provide such a calibration for the methods in this project, 

without the need for multiple Markov chain Monte Carlo simulations. 
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If uninformative prior distributions are assumed for the model parameters, and if the 

assumption of asymptotic normality for the distribution of maximum–likelihood 

estimators is justified then simulating as we do from the multivariate normal 

distribution will be equivalent to simulating from posterior distribution for the 

parameters, producing Bayesian p-values. It is therefore important to check the 

assumption of multivariate normality for the problems that we consider. Should the 

assumption of multivariate normality not hold then a possible approach, which we do 

not consider here, would be to sample from a kernel density estimate from additional 

bootstrap sampling. 

   5.4  Choice of discrepancy measure 

5.4.1 Mark recovery data 

For ring recovery data there are different discrepancy measures that may be used. 

Brooks et al (2000) use the Freeman–Tukey statistic (Freeman and Tukey, 1950) in 

which, for expected values {Ô�}, we define the following discrepancy measure: 

                                     �Õ´ (�; θ) = ∑ (Ö�� −ÖÔ�)�� , 

and an alternative is the Pearson chi – square statistic, incorporating an amalgamation 

level q to accommodate small values. Details of these two measures and their 

asymptotic equivalence when the model is correct, are provided by Bishop et al 

(1975, p513). The difficulty with using the chi–square measure when data are sparse 

is the need for pooling cells with small expected values, which is not only arbitrary 

but results in differential weighting of the cells. If matching such extreme values is 

seen to be important then the chi–square discrepancy measure will indicate poor fit of 

the model. This explains how different discrepancy measures can lead to different 

values and indeed different conclusions. We therefore select the Freeman–Tukey 

measure for use in the work of this paper.  

 

5.4.2 Census data 

For any time series {0!} there are many alternative discrepancy measures that be 

used, based on the prediction errors, {0! − 0!¥ }, where  0!¥  are fitted values. Besbeas 
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and Morgan (2014) used two simple measures in their paper; these are the mean 

absolute percent prediction error ( MAPE ), 

                                           �×ØÙp(Ó;θ) = +  2 ∑ | (ÚÛ	*	ÚÛÜ)ÚÛ2!:+ |, 
where i is the number of (non-missing) prediction errors, and the maximum percent 

error (MPE), 

                                           �×Ùp(Ó;θ) = 100max {(ÚÛ	*	ÚÛÜ)ÚÛ }. 

In both cases the observations where 0! = 0 are ignored. In practice careful thought 

needs to be given to the selection of an appropriate discrepancy measure and there is a 

wide range of alternatives that may be appropriate in different applications. 

 

        5.5 Examining the fertility problem using the new method 

In this section we consider the fertility problem assuming that the number of cycles to 

conception follows a geometric or a beta-geometric distribution and we shall examine 

the goodness of fit of both of these models using calibrated simulation. We focus on 

the non-smokers data, which are provided in Table 1.1. 

The work of this chapter is based on the multinomial likelihood which is more 

appropriate for these data than the simple likelihood as the numbers of cycles >12 are 

amalgamated and from that likelihood we are going to compute the maximum 

likelihood estimator. 

          5.5.1 Goodness of fit testing that the data follow a geometric distribution using 

calibrated simulation  

From Chapter 3, the maximum likelihood estimates from the geometric distribution 

are: 

Estimate of   Value of log-likelihood Hessian matrix 

0.3317 (0.0125) -907.2 6446.462 
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Following Besbeas and Morgan (2014) we are going to use the Freeman-Tukey 

discrepancy measure given by: 

                              �Õ´ (x; θ) = ∑ (Ö�� −ÖÔ�)�� ,  i= 1,2,3,….#classes  

where �� and Ô� are the observed and expected frequencies, respectively. 

We proceed by generating parameter values �̂� from the asymptotic normal 

distribution of the maximum-likelihood estimator �̂: 

                                 ��~�(0.3317,0.0125�), l = 1,2, … ,500 

Thus the first 150 of the simulated parameter values are:               

0.3255 0.3358 0.3218 0.3451 0.3425 

0.3276 0.3377 0.3443 0.349 0.3338 

0.321 0.3371 0.3459 0.3114 0.3194 

0.3194 0.338 0.3202 0.3176 0.3174 

0.3408 0.3424 0.33 0.3205 0.3507 

0.3469 0.3437 0.3298 0.3573 0.3316 

0.3353 0.3234 0.3261 0.3209 0.3524 

0.339 0.3294 0.3378 0.3451 0.3108 

0.3411 0.3431 0.3516 0.2991 0.3365 

0.3445 0.3397 0.3334 0.3447 0.3306 

0.3232 0.3431 0.3301 0.3397 0.3264 

0.3346 0.3252 0.318 0.3486 0.3261 

0.3406 0.3281 0.3435 0.3336 0.3355 

0.3335 0.34 0.3595 0.3403 0.3328 

0.3156 0.3567 0.3362 0.337 0.3134 

0.3235 0.3391 0.308 0.3378 0.3189 

0.3216 0.3596 0.3284 0.3074 0.3194 

0.3166 0.3282 0.3289 0.3119 0.3217 

0.3107 0.3351 0.3435 0.3342 0.3274 

0.3114 0.3365 0.3455 0.3406 0.3341 

0.3312 0.3375 0.3358 0.3468 0.3361 

0.3269 0.3342 0.3336 0.3266 0.337 

0.3389 0.3388 0.3332 0.3462 0.3407 

0.3421 0.3388 0.3083 0.3212 0.3179 

0.3111 0.3189 0.3395 0.311 0.3119 

0.3407 0.3386 0.3496 0.3201 0.3473 

0.3326 0.3562 0.3369 0.332 0.3406 

0.3446 0.3244 0.3019 0.3166 0.3225 

0.3354 0.3125 0.3225 0.3337 0.3117 
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0.3322 0.33 0.3332 0.351 0.3427 

 

For each simulated parameter value �̂� we simulate data sets �� from the model, of 

dimensions matched to the observed data, ie i=486.  The first 7 out of a total of 500 

simulated data sets are shown below: 

 

We also calculate corresponding expected values under the model using �̂� and we are 

going to have 500 sets of expected values different from each other. The expected 

frequencies corresponding to the 7 simulated data sets  above are shown below: 

 

 Expected frequencies Ý� using   ¥� , �=1,2,…..500 

cycle 1 2 3 4 5 6 7 

1 166 154 169 158 157 151 162 

2 109 105 110 107 106 104 108 

3 72 72 72 72 72 72 72 

4 47 49 47 49 49 49 48 

5 31 33 31 33 33 34 32 

6 21 23 20 22 22 23 21 

7 14 16 13 15 15 16 14 

8 9 11 8 10 10 11 9 

9 6 7 6 7 7 8 6 

10 4 5 4 5 5 5 4 

  
Simulated sets	�� using	 ¥�, �=1,…,7 

cycle Observed 

frequencies 1 2 3 4 5 6 7 

1 198 144 150 165 165 151 153 142 

2 107 112 123 104 114 99 114 108 

3 5 82 60 82 83 73 67 84 

4 38 45 38 42 28 51 48 59 

5 18 43 34 32 27 35 38 37 

6 22 22 32 18 27 21 21 14 

7 7 18 16 16 12 17 17 12 

8 9 4 12 10 7 19 14 11 

9 5 6 11 0 7 6 5 8 

10 3 1 4 9 3 7 4 2 

11 6 2 2 2 4 2 1 3 

12 6 2 3 1 3 1 0 1 

>12 12 5 1 5 6 4 4 5 
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11 3 3 2 3 3 4 3 

12 2 2 2 2 2 3 2 

>12 3 5 3 4 4 6 4 

 

For each set of expected frequencies, we calculate a measure of the discrepancy 

between the observed data, �, and the assumed model, �(�; ��) using the Freeman-

Tukey measure. Here are demonstrated the first 150 from the 500 calculated values: 

D(�;  �), �=1,2,…,150 

10.912 11.25 11.013 11.173 11.075 

11.911 11.008 11.267 10.885 11.516 

10.874 11.123 11.151 10.877 11.409 

11.412 10.875 10.997 11.057 11.25 

11.543 10.921 12.41 11.797 11.081 

12.499 10.952 11.263 11.041 11.062 

11.065 11.142 11.129 10.874 10.878 

10.874 11.431 11.844 11.601 11.153 

11.824 10.967 10.892 11.449 11.552 

11.073 11.072 12.9 10.879 10.882 

11.344 10.89 11.065 12.131 11.875 

11.252 10.879 11.333 12.188 11.07 

11.876 10.896 10.908 11.528 10.998 

12.92 10.985 11.043 11.839 11.986 

11.058 11.147 11.748 12.394 11.552 

10.897 11.042 10.908 11.436 10.938 

10.875 12.983 12.643 11.991 11.036 

10.911 11.381 11.191 12.108 10.883 

11.173 11.446 11.103 11.32 10.909 

13.12 10.973 10.984 10.917 11.496 

11.813 12.26 11.866 11.189 10.982 

11.201 10.95 11.383 10.89 10.917 

10.874 11.135 11.53 11.685 11.123 

11.057 11.596 11.685 11.398 10.875 

12.264 11.319 11.012 10.874 11.039 

11.705 10.874 11.772 11.429 10.904 

12.468 10.912 12.999 13.519 10.924 

11.469 11.133 11.715 11.6 12.541 

12.896 10.91 11.79 13.742 11.276 

10.938 11.389 10.924 11.701 11.215 

Our next step is to calculate the Freeman–Tukey discrepancy measure to find the 

value between the simulated ��’s sets and the 500 different expected values and the 

result is 500 values. Here are demonstrated 150 from 500 values: 
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D(��;  �), �	= 1,2,…,150 

45.774 56.132 26.379 46.162 42.372 

4.931 15.519 15.242 90.544 35.003 

79.713 13.759 34.651 16.638 14.722 

47.867 22.101 51.217 17.547 2.548 

2.316 47.599 37.862 16.667 13.296 

45.282 35.459 43.378 45.243 4.06 

35.498 56.339 20.999 11.781 33.346 

3.044 29.227 41.317 34.652 41.007 

22.318 19.357 42.392 29.881 40.547 

43.209 32.541 62.169 2.352 56.764 

51.154 15.671 29.955 51.921 32.056 

49.798 2.808 4.718 29.648 13.595 

47.318 88.489 4.356 31.883 31.605 

2.011 20.053 38.546 58.932 45.249 

2.619 45.595 22.489 41.819 47.904 

62.649 2.098 22.084 3.209 29.908 

23.024 10.931 36.805 10.498 60.593 

50.173 13.877 22.644 16.515 49.716 

3.939 11.366 38.891 34.171 23.607 

21.639 28.689 27.665 47.797 29.399 

1.11 32.443 27.757 38.538 31.783 

4.283 30.009 46.664 27.123 67.773 

60.835 24.878 23.575 27.489 60.854 

13.056 28.553 23.022 29.261 18.544 

12.087 1.089 2.795 80.704 17.983 

22.897 17.216 32.517 11.981 23.506 

43.124 30.273 22.892 16.231 24.206 

35.386 63.357 26.585 32.343 3.514 

25.729 39.854 74.187 44.709 17.287 

51.408 33.284 41.815 3.497 27.374 

We need to mention that the discrepancy values (observed (�(�; �l¥)), expected 

(�(��; �̂�))  are in matched pairs e.g. 10.912 is matched to 45.774 as we shall see in a 

plot later.  

Our step move is to find a p-value. This is necessary in order to check the fit of the 

model. It is calculated by how many of these values derived from the simulated data 

are greater from those derived from the observed data and divided by their number 

which is 500. The p-value (p-value = 

Þ�ÑÇßà5¦2ÇÚ	á¦â�àÑ	ãßäå	Ñ�å�â¦!àÞ		Þ¦!¦	æÞ�ÑÇßà5¦2ÇÚ	á¦â�à	ãßäå	!çà	äèÑàßáàÞ	Þ¦!¦2�åèàß	äã	!çà	Ñ�å�â¦!àÞ	Þ¦!¦	Ñà!Ñ
)   is 0.002 and then we have the following plot: 
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                                             Figure 5.1: Scatter plot of D(x;�̂�  ) vs D(��;�̂�  ) 
 

Fig.5.1 provides a scatter plot of �(�; �̂�	) vs �(��; �̂�). The proportion of points 

above the diagonal is the p-value of this method which is 0.002 < 0.05 and therefore 

the geometric distribution does not fit well. Also the plot of the empirical 

concentrated distribution function of the p-values is: 
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                                                  Figure 5.2: Plot of the p-values’s e.c.d.f. 

         5.5.2 Calibrated simulation using the maximum-likelihood estimate  

In this section, we consider a new variant of the method where the simulated data sets 

�� l=1,…,500, are obtained using the maximum-likelihood point estimate �̂ as 

opposed to random values from the asymptotic normal distribution.  

The simulated data sets �� from �̂ are not very different from the data sets �� above as 

the precision of the maximum-likelihood estimator is high. For comparison the first 7 

of these data sets are presented below: 

 

  Simulated sets ��  using   ¥ 

Cycle Observed 

frequencies 1 2 3 4 5 6 7 

1 198 163 161 161 149 163 164 138 

2 107 102 116 98 114 115 92 107 

3 55 71 83 72 76 69 66 90 

4 38 49 47 57 51 57 59 59 

5 18 41 28 31 27 25 39 29 

6 22 20 17 25 23 19 20 27 

7 7 16 10 13 18 14 17 12 

8 9 4 9 10 7 8 12 6 
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9 5 7 6 8 7 8 6 4 

10 3 1 2 1 1 2 7 5 

11 6 3 3 2 3 2 3 5 

12 6 1 1 6 7 1 1 1 

>12 12 8 3 2 3 3 0 3 

  

       The expected frequencies under the geometric distribution are given by: 

 

Cycle Expected 

frequencies 

using ¤¥ 

1 161 

2 108 

3 72 

4 48 

5 32 

6 21 

7 14 

8 10 

9 6 

10 4 

11 3 

12 2 

>12 4 

 

which are the same for each simulated data set �� as a result of all depending on �̂.  

The Freeman–Tukey discrepancy measure between the observed data and the model  

�(�; �̂) =  11.15178.  We are going to use that value 500 times as we shall see below. 

As above we also calculate the Freeman–Tukey discrepancy measure between the 

simulated data set �� and the model D(��;�̂) and we provide the first 150 of the 500 

values below:  

D(��; ¥), i=1,2…,150 

3.959 1.453 3.84 2.189 2.129 

2 2.995 2.08 3 2.688 

3.537 3.081 3.128 2.877 3.405 

3.892 1.947 5.609 0.613 3.164 

1.929 4.323 3.073 3.102 1.949 

6.263 5.784 5.271 2.44 1.667 

4.19 3.544 2.045 1.136 3.72 
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4.053 2.35 3.353 6.752 4.653 

2.451 6.712 2.583 1.093 4.121 

2.147 3.818 3.652 3.088 3.498 

2.505 5.074 2.907 2.384 5.643 

1.565 3.278 6.507 2.77 2.88 

7.483 3.028 2.248 1.583 4.984 

3.532 4.558 3.265 1.645 2.796 

5.036 2.769 4.541 4.948 4.085 

1.952 5.239 2.49 2.463 3.249 

2.449 3.744 2.942 5.152 4.083 

2.865 1.808 1.687 2.79 4.467 

1.462 2.545 4.579 2.11 4.221 

2.971 7.341 3.986 1.149 6.58 

7.506 4.252 4.392 7.215 8.303 

3.153 3.137 3.663 2.396 2.415 

1.606 2.347 5.492 1.265 3.757 

2.878 1.878 3.438 1.885 2.396 

5.862 2.114 2.165 3.314 1.276 

1.833 2.54 2.585 1.62 1.672 

2.086 3.359 3.872 4.489 3.896 

3.898 1.856 5.34 3.299 1.452 

2.922 3.257 3.185 5.893 3.647 

1.682 1.852 4.283 3.631 2.24 

It is obvious that the values are different so our next step is to find a p-value. As 

above this p-value is calculated by how many of the values derived from the 

simulated  data are greater from the one derived from the observed data and we are 

going to divide their sum by their number which is 500. The p-value (p-value = 

Þ�ÑÇßà5¦2ÇÚ	á¦â�àÑ	ãßäå	Ñ�å�â¦!àÞ		Þ¦!¦	æÞ�ÑÇßà5¦2ÇÚ	á¦â�à	ãßäå	!çà	äèÑàßáàÞ	Þ¦!¦2�åèàß	äã	!çà	Ñ�å�â¦!àÞ	Þ¦!¦	Ñà!Ñ
)   is 0.004 and then we are going to see the follow plot. 
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                                                         Figure 5.3: Scatter plot of D(x;�̂) vs D(��: �̂�) 
 

It is obvious that the points lie on a straight line since we use the M.L.E. The p-value 

of the method is thus 0.004<0.05 and therefore we also conclude that the geometric 

distribution does not fit the data well in line with previous methods. Also the plot of 

the empirical concentrated distribution function of the p-values is: 
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                                              Figure 5.4: Plot of the p-values’s e.c.d.f. 

 

          5.5.3  Sampling distribution of p-value 

In general, the sampling distribution of the p-value of the method is unknown and 

Besbeas and Morgan (2014) propose the use of further simulation to calibrate the 

observed p-value. We describe and illustrate this procedure below. 

We are going to generate 100 simulated “observed” data sets from which we are 

going to find 100 p-values for each case. The 100 simulated “observed” data sets are 

going to be generated using the M.L.E. from the observed data and the geometric 

distribution and we are going to calibrate the p-value from the original approach as 

well as the new variant. First let’s calibrate the p-value from the variant, where the 

��’s are generated from the M.L.E. 
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Figure 5.5: Boxplot of the simulated p-values. The circle indicates the location from the observed data 

We can see that the sampling distribution of the p-value under the null is nearly 

uniform, and that the observed p-value (0.004) is far in the bottom of the boxplot. The 

observed p-value is therefore extreme and we can say that the geometric model is not 

suitable for the data. We repeat the procedure for the original approach where the �� 
are generated from the �̂� which in turn are generated from the asymptotic normal 

distribution of the maximum-likelihood estimator from each “observed” data set. 
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Figure 5.6:Boxplot of the p-values from the original approach. The circle indicates the location from 

the observed data. 

 

We can see that the observed p-value (0.002) is also far in the bottom of the box-plot 

and so we can say here too that the geometric model is not appropriate for the original 

set of data. 

           5.5.4 Goodness of fit testing that the data follow a beta-geometric distribution 

using calibrated simulation 

We now examine the goodness-of-fit of the beta-geometric distribution. Recall that 

the maximum likelihood estimates of the parameters based on the multinomial 

likelihood are as follows: 

Estimate of ¼ Estimate of ½ Value of log-likelihood 

2.986042 (0.630) 4.328728 (1.1359) -890.3918 

and the hessian matrix is: 

                               ¹dθ�e = º				34.6496			 −18.51060−18.51060 10.66369			» 
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As in Section 5.5.1 we are going to use the Freeman-Tukey discrepancy measure 

given by: 

                                          �Õ´ (x; θ) = ∑ (Ö�� −ÖÔ�)�� . 

where �� and Ô� are the observed and the expected frequencies respectively. 

We proceed by generating values ���=(
��,�
�) from the asymptotic multivariate normal 

distribution of the maximum-likelihood estimator ��. Thus 

      é
���
�	ê~N¡º2.9864.328» , º0.3971559 0.68940450.6894045 1.2904816»¢, l=1,2,…,500 

and the first 24 sets of simulated parameter are shown below: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 � ¼¥� ½�� 
1 3.022 3.269 

2 2.904 6.315 

2 3.209 4.404 

3 2.737 4.817 

4 2.193 4.401 

5 2.587 6.75 

6 2.757 4.11 

7 3.088 3.515 

8 3.449 2.582 

9 3.805 4.384 

10 4.02 5.738 

11 3.311 4.197 

12 2.545 4.557 

13 2.812 3.622 

14 4.18 3.313 

15 2.747 3.157 

16 1.784 2.972 

17 2.458 4.775 

18 2.597 3.941 

19 2.394 4.771 

20 3.501 2.282 

21 2.712 2.781 

22 4.258 3.346 

23 3.125 3.049 

24 2.857 6.202 
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For each pair of simulated parameters (
��,�
�) we simulate data sets �� from the 

model, of dimensions matched to the observed data, ie i	= 486. The first 7 out of a 

total of 500 simulated data sets are shown below:  

 

We also calculate corresponding expected values under the model using the 
�� and �
�, 
and we are going to have 500 sets of expected values different from each other in 

comparison with what we were doing in the previous section when we were using the 

M.L.E from each data set from the above 500. The expected frequencies  

corresponding to the 7 ëlqÅ{�ìÔ¯ data sets above are shown below: 

 Expected frequencies Ý� using ¼¥� and ½��, �=1,…,7 

Cycle 1 2 3 4 5 6 7 

1 168.152 160.75 278.261 163.364 182.321 190.476 199.082 

2 99.623 97.187 97.897 94.912 98.328 98.281 101.304 

3 62.515 62.143 43.981 59.557 58.484 56.968 57.585 

4 41.073 41.55 22.925 39.587 37.332 35.805 35.422 

5 28.02 28.812 13.218 27.519 25.141 23.889 23.12 

6 19.723 20.595 8.201 19.829 17.657 16.688 15.805 

7 14.257 15.104 5.38 14.713 12.828 12.092 11.213 

8 10.544 11.323 3.689 11.188 9.583 9.025 8.201 

9 7.953 8.652 2.621 8.686 7.329 6.905 6.153 

  Simulated data set �� using  ¼¥�, ½��	�=1,2,…,7 

Cycle Observed 

frequencies 1 2 3 4 5 6 7 

1 198 169 133 276 155 188 189 196 

2 107 95 111 87 100 103 96 102 

3 55 68 71 50 75 56 56 71 

4 38 54 56 27 29 33 37 31 

5 18 27 25 14 34 17 24 26 

6 22 15 11 7 18 23 16 18 

7 7 13 16 9 10 18 12 9 

8 9 9 14 8 10 12 10 6 

9 5 8 10 0 9 6 4 4 

10 3 3 7 1 11 1 6 3 

11 6 4 4 1 8 7 5 3 

12 6 5 3 2 3 2 5 4 

>12 12 16 25 4 24 20 26 13 
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10 6.104 6.722 1.917 6.865 5.717 5.394 4.717 

11 4.757 5.3 1.438 5.511 4.537 4.289 3.684 

12 3.759 4.234 1.101 4.484 3.655 3.464 2.924 

>12 19.519 23.627 5.371 29.784 23.086 22.725 16.791 

 

For each set of expected frequencies, we calculate a measure of the discrepancy 

between the observed data, ��, and the assumed model using the Freeman-Tukey 

measure.  

D[x;(¼¥�,½��)] i=1,2,…,100 

2.959 3.018 2.928 2.82 2.986 

3.495 3.202 3.427 3.728 3.56 

3.113 4.14 2.91 2.82 4.398 

3.447 2.883 3.468 3.513 3.087 

3.028 4.731 2.767 3.874 7.959 

2.796 2.749 3.67 2.843 3.748 

3.347 3.524 2.807 3.23 3.153 

3.232 3.068 4.04 3.113 4.788 

2.868 3.234 2.816 3.821 3.009 

3.027 2.886 2.781 3.84 3.525 

3.059 3.048 2.856 3.584 3.141 

3.186 3.359 2.969 3.222 3.167 

3.612 3.522 2.842 2.833 3.46 

3.06 3.537 4.754 3.21 2.839 

3.516 3.175 2.768 3.813 2.739 

6.789 2.77 3.224 2.916 2.989 

2.745 2.909 2.95 2.904 5.827 

3.602 3.725 2.936 3.185 3.227 

2.786 3.053 2.983 3.016 29.815 

3.021 2.894 3.076 3.511 3.197 

We also calculate the Freeman-Tukey discrepancy measure between the simulated 

data �� and the assumed model, D(��; (
��,�
�)) The first 145 discrepancy values 

D(�;(
��,�
�)) and  D(��;(
��,�
�))are shown in each case: 

D[��;(¼¥�, ½��)] �=1,2,…,145 

4.024 4.954 4.705 1.794 3.125 

4.086 2.873 1.783 1.715 3.706 

3.606 3.085 5.786 2.139 1.653 

3.885 4.389 3.138 4.776 2.798 

2.785 2.298 2.656 4.07 1.811 

1.802 2.108 5.042 1.356 3.679 

2.156 2.487 1.504 3.635 3.343 
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2.48 2.033 2.409 1.751 2.146 

2.188 2.043 7.507 1.33 6.743 

2.989 4.126 6.18 2.215 4.078 

3.472 1.144 4.897 2.316 4.937 

3.951 2.289 4.379 3.648 4.067 

3.941 4.835 2.885 5.39 3.317 

3.362 7.493 2.597 2.442 2.344 

3.127 3.03 2.114 1.864 4.145 

2.048 3.455 3.065 2.176 1.98 

1.67 2.462 3.687 1.768 1.472 

2.895 2.814 6.381 3.534 5.001 

3.057 6.085 2.083 3.137 7.423 

3.892 4.3 4.008 1.391 1.816 

5.177 2.682 4.392 4.658 4.492 

3.695 2.572 6.003 1.957 1.801 

3.469 5.172 2.159 1.874 1.911 

2.581 4.874 3.795 4.536 2.682 

5.185 4.279 2.657 3.229 2.403 

3.787 3.403 2.415 6.883 3.562 

1.946 4.98 3.782 2.861 2.41 

4.528 3.525 4.154 2.311 3.939 

1.891 3.905 7.724 2.715 3.302 

Note that these discrepancy measures are in matched pairs e.g.: 2.959 is matched to 

4.024 etc. Fig 5.5 provides a scatter plot of D(�;(
��,�
�)) vs  D(��; (
��,�
�)). The 

proportion of points above the diagonal, which is the p-value of the method is 

0.176>0.05 and therefore the beta-geometric distribution appear to fit the data well. 
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                             Figure 5.7: Scatter plot of D(��;(	
��,�
�)) vs D(��;(	
��,�
�))  
Also the plot of the empirical concentrated distribution function of the p-values is: 

 

                                               Figure 5.8: Plot of the p-values’s e.c.d.f. 
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           5.5.5 Calibrated simulation using the maximum-likelihood point estimates 

In this section we consider a new variant of the method where the simulated data sets 

��, l = 1,… 500 obtained using the maximum likelihood point estimates (
�,�
) as 

opposed to random values from the asymptotic normal distribution. The simulated 

data sets �� are not very different from the data sets �� above as precision of the 

maximum-likelihood estimator is high. For comparison the first 7 of these data sets 

are presented below: 

  Simulated sets ��-using (¼¥,½�) 

Cycle Observed 

frquencies 1 2 3 4 5 6 7 

1 198 186 196 187 198 181 199 194 

2 107 102 113 106 94 101 100 128 

3 55 66 69 66 68 68 60 46 

4 38 36 33 38 35 39 45 29 

5 18 26 19 26 24 13 23 19 

6 22 28 17 12 17 17 23 14 

7 7 7 3 12 11 15 14 11 

8 9 7 9 11 9 5 7 12 

9 5 2 6 6 7 10 1 6 

10 3 6 1 8 4 6 5 7 

11 6 2 2 1 1 8 0 5 

12 6 2 2 2 1 4 1 0 

>12 12 16 16 11 17 19 8 15 

The expected frequencies under the beta-geometric distribution are given by: 

 

cycle 

Expected 

frequencies 

using (¼¥,½�) 

1 198.395 

2 103.286 

3 59.087 

4 36.253 

5 23.482 

6 15.881 

7 11.127 

8 8.029 

9 5.939 

10 4.488 

11 3.455 

12 2.703 

>12 13.875 
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Which are the same for each simulated data set �� as a result of all depending on 

(��,¶�). The Freeman–Tukey discrepancy measure between the observed data and the 

model is : D(�;(
�,�
)) =  2.747282 and we are going to use that value 500 times as we 

shall see below. 

 As above we also calculate the Freeman–Tukey discrepancy measure between the 

simulated data set �� and the model, D(��;(
�,�
)) and we provide 150 example values 

of 500: 

D(��;(¼¥, ½�))	�=1,…150 

4.159 3.115 1.568 1.887 2.461 

5.119 3.885 5.368 4.448 1.581 

2.444 5.822 2.403 5.367 4.15 

1.961 3.495 3.981 3.495 1.172 

5.082 7.217 3.99 1.951 6.321 

8.114 1.841 1.934 2.685 2.63 

6.411 3.295 2.053 1.286 4.444 

3.532 2.354 9.571 1.44 2.582 

4.338 2.95 5.985 2.467 1.05 

1.677 2.001 1.788 1.853 3.974 

3.772 5.725 4.914 3.263 3.524 

5.613 3.877 2.942 2.183 7.476 

3.077 4.159 6.742 2.287 4.319 

2.597 2.976 3.817 5.984 3.041 

1.151 2.224 2.634 2.572 1.725 

1.361 3.688 1.978 2.686 3.278 

2.304 2.37 1.955 2.984 3.348 

2.086 3.094 3.596 5.12 2.907 

1.416 3.169 1.957 3.258 4.08 

3.083 2.542 1.419 3.878 4.031 

3.777 1.028 4.483 5.951 3.169 

2.701 5.053 3.139 3.988 4.042 

3.473 6.522 1.897 4.102 1.976 

5.021 2.545 2.931 4.99 2.882 

1.531 1.379 9.921 7.224 5.341 

3.254 2.707 5.022 4.718 3.641 

3.759 3.373 1.356 3.196 3.342 

2.731 2.693 1.461 1.853 1.63 

4.135 3.825 4.411 2.259 5.511 

1.509 3.786 3.551 2.12 2.217 

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



75 

 

 

1.068 2.673 3.028 3.253 9.438 

2.184 2.561 3.516 2.665 4.565 

3.793 2.321 3.055 5.106 1.109 

2.389 1.576 3.261 3.938 2.575 

3.731 1.618 8.388 2.055 0.91 

6.365 5.887 1.355 5.3 3.077 

3.742 1.742 2.27 4.318 1.887 

 

Fig. 5.6 provides a scatter-plot of D(�;(
�,�
)) vs D(��;(
�,�
)). The proportion of points 

above the diagonal which is the p-value of the method, is 0.588>0.05 and therefore 

the conclusion from the new variant is in agreement with that from the original 

method in Section 5.5.2. 

 

                            Figure 5.9: Scatter plot D(��;(��,�
))vs D(�; (��,�
)) 
Also the plot of the empirical concentrated distribution function of the p-values is: 
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                                                      Figure 5.10: Plot of the p-values’s e.c.d.f. 

          5.5.6 Sampling distribution of p-value 

In general, the sampling distribution of the p-value of the method is unknown, and 

Besbeas and Morgan (2014) propose the use of further simulation to calibrate the 

observed p-value. We describe and illustrate this procedure below. 

We are going to generate 100 simulated “observed” data sets from which we are 

going to find 100 p-values for each case. The 100 simulated “observed” data sets are 

going to be generated using the M.L.E. from the observed data and the beta-geometric 

distribution and we are going to calibrate the p-value from the original approach as 

well the new variant. First let’s calibrate the p-value from the variant, where the ��’s 

are generated from the M.L.E. 
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Figure 5.11: Boxplot of the simulated p-values from the variant. The circle indicates the location of the 

p-value from the observed data. 

As we can see from Fig. 5.7 the observed p-value (0.588) is not extreme, and 

therefore we conclude that the beta-geometric distribution fits the non-smokers data 

well. We repeat the procedure for the original approach, where the �� are generated 

from the (
��,�
�) which in turn are generated from the asymptotic normal distribution 
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of the maximum-likelihood estimators from each observed data set. 

 

Figure 5.12: Boxplot of the p-values from the original approach. The circle indicates the location of the 

p-value from the observed data. 

As we can see in Fig.5.8 the observed p-value (0.176) is not extreme, and we reach 

the same conclusion as above, but the sampling distribution of the p-value is now not 

uniform, so that calibration is required in this case. 
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                                        CHAPTER 6 

                                           METHOD COMPARISON 

In this chapter we  examine the relative performance of the bootstrap and simulated 

calibration methods for evaluating the goodness-of-fit of a model. We compare 

performance by calculating the p-value of each method when the model is true using 

the same data to find the two p-values. We thus have 500 deviances in the bootstrap 

method and we calculate how many of these deviances are greater than the observed 

deviance divided by 500, and we calculate the corresponding p-value using  calibrated 

simulation as described in chapter 5. We repeat the procedure for 100 data sets under 

the assumed model resulting in 100 pairs of p-values per model, and we generate data 

under two models: geometric and beta-geometric. The main finding of this chapter is 

that the p-values from the two methods are very correlated. Fig 6.1 provides a scatter 

plot of the p-values from the two methods when the assumed model is the geometric 

distribution. The p-values from the bootstrap are shown on the x-axis and the p-values 

from the calibrated simulation on the y-axis. 

   
Figure 6.1: Scatter plot of p-values from the bootstrap vs calibrated simulation when the assumed 

model is the  geometric distribution. 
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As we can see there is a strong positive correlation between the p-values from the two 

methods Fig. 6.2 provides the corresponding scatter-plot when the assumed model is 

beta-geometric. 

Figure 6.2: Scatter plot of p-values from the bootstrap vs calibrated simulation when the assumed 

model is the beta-geometric distribution 

Again we can see that there is a strong positive correlation between the two methods 

but there is now an interesting difference in Fig. 6.2.  

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

bootstrap's p-values

c
a

li
b

ra
te

d
 s

im
u

la
ti
o

n
's

 p
-v

a
lu

e
s

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



82 

 

 

                                                       CHAPTER 7 

                                 CAPTURE RECAPTURE MODELS 

7.1 Introduction 

In a typical capture-recapture experiment in ecology, we place traps or nets in the 

study area and sample the population several times. At the first trapping sample a 

number of animals are captured; the animals are uniquely tagged or marked and 

released into the population. Then at each subsequent trapping sample we record and 

mark every unmarked animal, record the capture of any animal that has been 

previously marked, and return all animals to the population. At the end of the 

experiment the complete capture history for each animal is known. The capture 

histories of all individuals are arranged in a capture history matrix �í, as illustrated in 

Table 7.1: 

 Capture occasion j 

Animal i 1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 1 0 0 1 1 1 

3 1 1 0 0 1 1 

4 1 1 0 1 1 1 

5 1 1 1 1 1 1 

6 1 1 0 1 1 1 

7 1 1 1 1 1 0 

8 1 1 1 0 0 1 

9 1 1 1 1 1 1 

10 1 1 0 1 1 1 

Table 7.1 

Such experiments are also called mark-recapture, tag-recapture, and multiple record 

systems in the literature. The simple type only includes two samples: one is the 

capture sample and the other the recapture sample. 

The capture-recapture technique has been used to estimate population sizes and 

related parameters such as survival rates, birth rates and migration rates. Biologists 
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and ecologists recognized that the proportion of previously marked animals in the 

recapture samples provides a basis for estimating population size. Intuitively, when 

recaptures in subsequent samples are few, we know that size is much higher than the 

number of distinct captures. However, if the recapture rate is quite high, then we are 

likely to have caught most of the animals. 

The first use of the capture-recapture technique can be traced back to Laplace, who 

used it to estimate the population of France in 1786. The earliest applications to 

ecology include Petersen’s work on fish populations in 1896 and Lincoln’s work on 

waterfowl in the 1930’s. Capture-recapture has become immensely popular for 

estimating animal abundance, vital rates and community dynamics for many different 

species. Currently it is also used in a variety of other research fields including 

sociology and health science. For example, it is now used to estimate the U.S. Census 

undercount and the incidence of disease. 

The models are generally classified as either closed population or open population 

models. In a closed population, the size of the population, which is the main interest, 

is assumed to be constant over the trapping times. The closure assumption is usually 

valid for data collected in a relatively short time during a non-breeding season. Open 

populations may have demographic changes (birth or mortality) or migration 

(immigration or emigration). Open models are usually used to model data from long 

term studies. Here, in addition to the population size at each sampling time, the 

parameters of interest also include the survival rates and number of births between 

sampling times. Here we concentrate on closed models, which also have applications 

to epidemiology and health science. 

7.2 Schnabel census and likelihood functions 

The simplest mark-recapture experiment, known as the Lincoln-Petersen procedure, 

consists of only two samples and provides the most basic estimator for estimating the 

size N.  

A natural extension of the Petersen experiment is the so called Schnabel experiment 

or multiple recapture cencus in which &	(& > 2) consecutive samples are taken from 

the population. If i� animals are caught in sample l, and q� are the number found to 

be marked on a previous sampling occasion, then the Å� (= i� −q�) unmarked are 
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given a mark and the whole sample returned to the population. If individual numbered 

marks or tags are used, then animals have to be tagged only once, the first time they 

are caught. Depending whether the i� are regarded as fixed or random, both the 

Hyper-geometric and multinomial models readily generalize to this case and for 

example we have the joint probability: 

"#(O
íS) 	= 	 �!∏ 
í! (î − #)!í ïð*ßñòí­óí
	= 	 �!∏ 
í! (î − #)!í 	ñ��2oô�ð*2o

)

�:+
	

in obvious notation, where 
í denotes the frequency for observable capture history 

õ, and #	denotes the number of marked animals, � the total population and ��(= 1 −
ô�) is the probability of capture in sample l.  
The assumptions underlying the Petersen method must apply to all the samples in a 

Schnabel cencus so that any departures from these assumptions can seriously affect 

the validity of  ��. Since variation in catchability seems to be a fact of life, Otis et al 

(1978) devised a basis of models for estimating �, where these allow capture 

probabilities to vary with respect to one or more of the factors of time, behavior 

response, and individual response. In particular, they proposed the following eight 

models: �  (no variation), �! (variation with time), �ç(variation by individual 

response or heterogeneity), and various combinations �!è, �èç, �!ç, and �!èç. 

If ��� is the probability that the l-th animal (l=1,2,…,�) is caught in the _-th sample 

(_=1,2,3,…,&) and we can assume that the animals are independent of one another as 

far as catching is concerned, then the likelihood function is: 

                                               ∏ ∏ ���xoX(1 − ���)+*xoX)�:+ð�:+ , 

where ���=1 if the l-th animal is caught in the _-th sample ���=0 otherwise. The 

various models can now be described mathematically by specifying ���. 
 

         7.3 Goodness of fit capture-recapture models 

           7.3.1     Model M0: ��� = � 
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This is the simplest model where the capture probability is constant over the capture 

occasions. There are only two parameters in the model, � = (�, �),	and the joint 

probability distribution for the data can be written as: 

                        "#(O�íS|�) 	= 	 ð!∏ ­ó!(ö*ß)!ó �2.(1 − �))ð*2. 
where i. = 	i+ +⋯…+ i) denotes the total number of captures. The maximum 

likelihood estimates of � and �	can be obtained using numerical methods. A large – 

sample variance for �� is given by ( Darroch 1958) 

                             £�#(��) 	= 	 ð(+*5)�Ì�()*+)*)(+*5)�J 

White et al (1982, p48) provide a complete capture history matrix from model �  

with � = 50, � = 0.3	and & = 6 occasions: 

 

Occasions 

 

1 2 3 4 5 6 

1 1 1 1 1 0 0 

2 1 0 0 0 0 0 

3 1 0 1 0 0 1 

4 1 0 0 0 0 1 

5 1 0 0 0 0 0 

6 1 1 0 0 0 0 

7 1 1 0 0 0 0 

8 1 0 1 0 1 1 

9 1 0 0 0 1 0 

10 1 1 1 0 0 0 

11 1 0 0 0 0 0 

12 1 0 0 0 0 0 

13 1 0 0 1 0 0 

14 1 0 0 1 1 0 

15 1 0 1 0 0 0 

16 1 0 1 0 0 0 

17 0 1 0 0 0 1 

18 0 1 0 0 0 1 

19 0 1 0 0 1 0 

20 0 1 0 0 0 0 

21 0 1 1 1 0 1 

22 0 1 0 0 1 1 

23 0 1 0 0 1 0 

24 0 0 1 0 1 0 

25 0 0 1 0 0 0 
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26 0 0 1 0 0 1 

27 0 0 1 0 0 0 

28 0 0 1 1 0 0 

29 0 0 1 0 1 0 

30 0 0 1 0 0 1 

31 0 0 1 0 0 1 

32 0 0 0 1 0 0 

33 0 0 0 1 0 0 

34 0 0 0 1 0 0 

35 0 0 0 1 0 1 

36 0 0 0 1 0 0 

37 0 0 0 1 0 1 

38 0 0 0 1 1 0 

39 0 0 0 1 1 1 

40 0 0 0 1 0 0 

41 0 0 0 0 1 0 

42 0 0 0 0 1 0 

43 0 0 0 0 1 1 

44 0 0 0 0 1 1 

45 0 0 0 0 0 1 

46 0 0 0 0 0 1 

47 0 0 0 0 0 1 

table 7.2: Capture-recapture data from White et al (1982). 

We are going to check  the goodness of fit of the �  model. The capture-recapture 

summary statistics from the 6 occasions are: i+=16, i�=11, i�=15, i�=14, i©=14, 

i�=18, # = 47	for each occasion, then we are taking the likelihood from above and 

we are finding the log – likelihood which is: 

log(u) = 	 log N! − log(î − #) + (ùi�
�

�:+
) log(�) + (6� − (ùi�

�

�:+
)) log(1 − �) 

The maximum likelihood estimates of = are: 

Estimate of N Estimate of p 

55.247  0.265 

 

And the hessian matrix is: 

                            H(��) = º0.09625797 8.1685898.168589 1699.935180» 
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resulting in the variance-covariance matrix of ��: 
                                           £�#d��e = º17.542 −0.084−0.084 0.001 » 
We proceed by generating parameters values ���, �̂� from the asymptotic normal 

distribution of the maximum-likelihood estimates ��, �̂. Thus 

         é����̂�	ê	~ N¡º55.2470.265 » , º17.542 −0.084−0.084 0.001 »¢,	l=1,2,…,500 

We are going to demonstrate a few of the simulated parameter values: 

� ú� �  ¥�  
1 57.012 0.243 

2 58.536 0.213 

3 50.736 0.288 

4 54.713 0.226 

5 52.673 0.299 

6 51.52 0.318 

7 54.842 0.289 

8 60.321 0.191 

9 53.086 0.275 

10 57.826 0.243 

11 55.396 0.262 

12 50.277 0.3 

13 51.651 0.314 

14 64.335 0.247 

15 56.971 0.243 

16 55.457 0.238 

17 59.188 0.204 

18 58.444 0.231 

19 60.051 0.245 

20 46.318 0.303 

 

 

For each pair of simulated parameters values (���, �̂�) we simulate data sets �� from 

the model, of dimensions matched to the observed data. 
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The code in the R programming language is interesting because I have to generate 500 

matrices and then calculate the capture-recapture summary statistics i� and # of each 

matrix. Let’s see an example of the code: 

M<-matrix(rbinom(round(Nhat)*6,1,phat),nrow=round(Nhat),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

where the variables Nhat and phat contain the parameter values of � and � 

respectively. 

The first 7 out of a total of 500 simulated data sets are shown below: 

Number of 

animals 

captured the 

day j, j=1,…6 

Simulated sets �� using (ú� �,  ¥�),	�=1,2,…,7 

1 2 3 4 5 6 7 BC 13 15 14 11 16 13 19 Bû 11 15 16 12 15 14 14 Bü 15 17 13 8 14 17 13 Bý 8 11 12 12 15 17 21 Bþ 14 16 17 13 15 13 12 B� 13 11 15 20 12 22 13 

 

There are several ways to form expected values for a capture-recapture study. On the 

average for model � , we would expect to catch kbi�f = �� animals on the _!ç 

occasion, and we can readily compute expected number of animals caught at each 

occasion for the observed and simulated data sets. 

The expected values for the 7 simulated data sets above are: 

Expected frequencies Ý�, �=1,…,7 

13.832 12.476 14.595 12.392 15.758 16.376 15.842 

 

We then calculate a measure of the discrepancy between the observed data � and the 

assumed model using the Freeman-Tukey measure. Here we demonstrate the first 125 

values: 
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D(x;ú� �,  ¥�), �=1,2,…,125 

0.54 0.481 0.789 0.555 0.518 

0.974 0.697 0.797 0.479 0.522 

0.479 0.555 0.481 0.513 0.515 

1.016 0.771 0.48 0.832 0.483 

0.615 0.525 0.573 0.489 1.146 

0.79 0.5 1.177 0.592 0.52 

0.635 0.885 0.505 0.814 0.694 

1.544 1.154 0.514 0.914 0.764 

0.479 0.66 0.613 0.518 0.669 

0.512 0.722 0.684 1.007 0.525 

0.48 0.585 0.626 0.596 0.715 

0.505 0.482 0.999 0.68 0.571 

0.739 0.48 0.803 0.484 0.519 

0.644 0.571 0.712 0.785 0.57 

0.533 0.681 0.531 0.601 0.539 

0.689 0.551 0.672 0.631 0.753 

1.201 1.505 1.044 0.48 0.736 

0.607 0.637 0.655 1.515 0.594 

0.481 0.48 0.719 0.49 0.498 

0.51 0.997 0.482 0.539 0.645 

0.587 0.553 0.772 0.54 0.657 

0.48 0.487 0.483 1.143 0.491 

0.48 0.51 0.589 0.486 0.551 

0.977 0.837 0.627 0.519 0.62 

0.567 0.77 0.574 0.915 0.494 

 

We also calculate the Freeman–Tukey discrepancy measure between the simulated 

data set �� and the assumed model D(��; ���, �̂�). The first 125 discrepancy values are 

shown below: 

�(��; ú� �,  ¥�)	�=1,2,...,125 

1.005 0.285 0.236 0.15 0.85 

0.893 2.386 1.294 1.062 0.49 

0.306 0.879 0.468 1.001 1.849 

1.44 1.516 0.786 1.353 1.612 

0.337 0.176 0.618 2.637 1.289 

0.908 1.028 0.913 1.238 1.196 

1.11 1.231 0.485 1.823 0.658 

0.536 0.436 1.999 2.285 0.753 

2.601 2.332 0.993 0.219 1.6 

1.633 0.502 0.42 1.701 0.373 
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1.835 0.567 0.552 0.927 0.669 

0.31 2.013 1.279 0.737 1.585 

0.755 1.524 0.378 1.119 0.357 

0.308 1.038 0.75 2.209 1.122 

1.942 2.125 1.236 1.055 0.585 

1.229 2.241 0.651 0.738 0.195 

0.334 1.834 0.365 0.367 2.086 

1.86 0.709 0.809 0.916 1.778 

2.308 1.943 0.438 1.034 0.803 

1.069 0.943 1.722 0.613 1.539 

0.293 2.191 1.557 0.389 1.441 

0.652 0.515 3.222 1.34 0.86 

1.205 0.456 0.659 0.966 0.48 

1.887 0.466 1.501 0.616 0.602 

0.903 0.414 1.561 1.312 2.812 

As in Chapter 6, the observed and simulated discrepancy values D(�;�É� , �É¥ ) and 

D(��; ���, �̂�)  are in matched pairs e.g. 0.54 is matched to 1.005. The p-value of the 

method for the goodness of fit of model �  to the data in table 7.1 is thus 0.736 

resulting in the following plot: 

 

                                      Figure 7.1: Scatter plot of D(�; ��� , �̂�) vs D(�� ; ��� , �̂�)   
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We now consider a new variant of the method where the simulated data sets ��, are 

obtained using the maximum likelihood point estimates ��, �̂, as opposed to random 

values from the asymptotic normal distribution.  

We simulate 500 data sets, as above. The first 7 of these data sets are presented 

below:  

Number of 

animals 

captured the 

day	�,	�=1,…6 

Simulated sets �� using  ú� ,  ¥, � =1,…,7 

1 2 3 4 5 6 7 BC 15 23 19 19 13 15 21 Bû 13 13 19 13 20 13 13 Bü 13 15 16 12 9 9 13 Bý 15 14 16 14 18 9 14 Bþ 10 11 15 14 11 11 11 B� 16 16 22 11 11 17 11 

 

The expected number of animals caught at occasion _ is 14.667 for all 500 sets 

because the expected value is E(i�) = ��·�̂ and in this case in particular 55.247· 0.265 

which is the same for each simulated data set �� as a result of all depending on ��,�̂. 

The Freeman–Tukey discrepancy measure between the observed data and the model 

is D(x;��, �̂ ) =  0.4802. We are going to use that value 500 times as we shall see 

below. 

As above we also calculate the Freeman–Tukey discrepancy measure between the 

simulated data set �� and the model D(��;��, �̂)  and we provide example values below 

for l=1,…,150 of 500 which we have actually calculated: 

D(��;ú�,  ¥)  �=1,…,150 

0.579 0.834 1.356 1.621 0.829 

1.285 0.252 2.036 1.763 1.154 

1.361 0.798 1.135 1.088 0.344 

0.743 0.533 1.853 0.612 1.82 

1.848 0.975 0.847 0.344 0.186 

1.778 4.588 0.606 0.402 1.318 

1.202 1.776 1.17 0.852 0.381 

0.685 0.225 1.363 0.919 0.836 

0.972 0.518 2.822 0.807 0.23 

0.593 2.1 1.866 0.719 0.715 
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0.702 0.935 1.17 2.22 1.003 

0.408 1.388 1.015 1.719 0.408 

2.491 0.665 1.297 1.591 0.711 

0.627 1.262 0.914 2.321 1.145 

1.296 0.125 0.701 1.334 0.454 

0.498 0.774 1.645 1.835 1.198 

1.093 2.544 2.123 0.548 1.454 

1.818 1.074 0.915 0.678 0.523 

0.968 2.092 1.214 0.372 1.205 

0.392 1.999 0.974 0.776 1.537 

0.218 0.747 0.555 0.393 1.169 

1.637 0.203 0.93 0.471 0.823 

0.513 2.462 2.407 0.521 0.585 

0.943 0.809 0.702 1.198 1.282 

0.792 0.956 0.588 0.514 1.663 

1.132 2.576 0.355 1.34 1.322 

1.616 2.416 0.436 2.014 1.927 

1.387 0.959 0.657 2.468 2.866 

0.508 1.192 0.309 0.57 1.161 

 

Fig. 7.2 provides a scatter plot of �(�;��, �̂) vs �(��; 	��, �̂). It is obvious that the 

points lie on a straight line since we use the maximum likelihood estimates. The p-

value of the variant is 0.868 which is in agreement with the original approach. 
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                          Figure 7.2: Scatter plot of D(x;���̂ ) vs D(��;���̂) from the variant  

We calibrate the observed p-values, as described in Sections 5.5.1.2 and 5.5.2.2. Thus 

we are going to generate 100 simulated “observed” data sets from which we are going 

to find 100 p-values for each case. The 100 simulated “observed” data sets are going 

to be generated using the M.L.E. from the observed data and the binomial distribution 

and we are going to calibrate the p-value from the original approach as well the new 

variant. First let’s calibrate the p-value from the original approach where the data sets 

��’s are generated from	���, �̂� which in turn are generated from the asymptotic normal 

distribution of the maximum likelihood estimators from each “observed” data set. Fig 

7.3 provides a boxplot of the simulated p-values. 
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Figure 7.3: Boxplot of the simulated p-values. The circle indicates the location of the p-value from the 

observed data. 

We can see the observed p-value (0.736) is above the box so we could say that the 

model is fitted well and the �  is a good model for our data. The corresponding 

boxplot from the variant where the ��’s are generated from the M.L.E. is presented in 

Fig7.4: 
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Figure 7.4: Boxplot of the simulated p-values from the variant. The circle indicates the location of the 

p-value from the observed data. 

We can see that the observed p-value (0.868) is above the black line in the boxplot so 

we could say that our model is good and fits well our data. 

         7.3.2 Model ��: ��� =	�� 
This model allows the capture probabilities to vary with time and reduces to the 

Lincoln-Petersen model when &	 = 	2. In general, there are & + 1	parameters, 

(�, �+, … , �)), and the (multinomial) likelihood is given from: 

    

"#(O�íS) 	= 	 ð!∏ ¦ó!(ö*ß)!ó ïð*ß∏ òí¦óí = ð!∏ ¦ó!(ö*ß)!ó 	∏ ��2Xô�ð*2X)�:+ 	
The log – likelihood which derives from above is: 

log u = log�! − log(� − #) ! + ∑ i� log 2Xð©�:+ + ∑ d� − i�elog	(1 − 2Xð©�:+ )  (eq.7.1) 

We need to mention that in examining the goodness of fit of this model we have to do 

some small changes in comparison to � . In Section 7.3.1 we used the observed and 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



96 

 

 

expected number of captures at each occasion in order to examine the goodness of fit 

of the model. In the �!  model this is not possible because the expected value at 

occasion _ is ���̂j, which coincides with the observed number i� . So in this model we 

are going to use the capture frequencies �� instead where �� represents the number of 

animals captured _ times. We shall have the observed frequencies and the expected 

frequencies and we shall continue doing our work the same way as in previous 

sections. First we need some capture – recapture data which are the following based 

on capture-recapture summary statistics provided by White et al (1982, p52): 

Animal Occasion j 

1 2 3 4 5 

1 1 1 1 1 0 

2 1 1 1 1 0 

3 1 1 1 1 0 

4 1 1 1 0 0 

5 1 1 1 0 0 

6 1 1 1 0 0 

7 1 1 1 0 0 

8 1 1 1 0 0 

9 1 1 1 0 0 

10 1 1 1 0 0 

11 1 1 1 0 0 

12 1 1 1 0 0 

13 1 1 1 0 0 

14 1 1 1 0 0 

15 1 1 1 0 0 

16 1 1 1 0 0 

17 1 1 1 0 0 

18 1 1 1 0 0 

19 1 1 1 0 0 

20 1 1 1 0 0 

21 1 1 1 0 0 

22 1 1 1 0 0 

23 1 1 1 0 0 

24 1 1 0 0 0 

25 1 1 0 0 0 

26 1 1 0 0 0 

27 1 1 0 0 0 

28 1 1 0 0 0 

29 1 1 0 0 0 

30 1 1 0 0 0 

31 1 1 0 0 0 
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32 1 1 0 0 0 

33 1 1 0 0 0 

34 1 1 0 0 0 

35 1 1 0 0 0 

36 1 1 0 0 0 

37 1 1 0 0 0 

38 1 1 0 0 0 

39 1 1 0 0 0 

40 1 1 0 0 0 

41 1 1 0 0 0 

42 1 1 0 0 0 

43 1 1 0 0 0 

44 1 1 0 0 0 

45 1 1 0 0 0 

46 1 1 0 0 0 

47 1 1 0 0 0 

48 1 1 0 0 0 

49 1 1 0 0 0 

50 1 1 0 0 0 

51 1 1 0 0 0 

52 1 1 0 0 0 

53 1 1 0 0 0 

54 1 1 0 0 0 

55 1 1 0 0 0 

56 1 1 0 0 0 

57 1 1 0 0 0 

58 1 1 0 0 0 

59 1 1 0 0 0 

60 1 1 0 0 0 

61 1 1 0 0 0 

62 1 1 0 0 0 

63 1 1 0 0 0 

64 1 1 0 0 0 

65 1 1 0 0 0 

66 1 1 0 0 0 

67 1 1 0 0 0 

68 1 1 0 0 0 

69 1 1 0 0 0 

70 1 1 0 0 0 

71 1 0 1 0 0 

72 1 0 1 0 0 

73 1 0 1 0 0 

74 1 0 1 0 0 

75 1 0 1 0 0 
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76 0 0 1 0 0 

77 0 0 1 0 0 

78 0 0 1 0 0 

79 0 0 1 0 0 

80 0 0 1 0 0 

81 0 0 1 0 0 

82 0 0 1 0 0 

83 0 0 1 0 0 

84 0 0 1 0 0 

85 0 0 1 0 0 

86 0 0 1 0 0 

87 0 0 1 0 0 

88 0 0 1 0 0 

89 0 0 1 0 0 

90 0 0 1 0 0 

91 0 0 1 0 0 

92 0 0 1 0 0 

93 0 0 1 0 0 

94 0 0 1 0 0 

95 0 0 1 0 0 

96 0 0 1 0 0 

97 0 0 1 0 0 

98 0 0 1 0 0 

99 0 0 1 0 0 

100 0 0 1 0 0 

101 0 0 0 1 0 

102 0 0 0 1 0 

103 0 0 0 1 0 

104 0 0 0 1 0 

105 0 0 0 1 0 

106 0 0 0 1 0 

107 0 0 0 1 0 

108 0 0 0 1 0 

109 0 0 0 1 0 

110 0 0 0 1 0 

111 0 0 0 1 0 

112 0 0 0 1 0 

113 0 0 0 1 0 

114 0 0 0 1 0 

115 0 0 0 1 0 

116 0 0 0 1 0 

117 0 0 0 1 0 

118 0 0 0 1 0 

119 0 0 0 1 0 
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120 0 0 0 1 0 

121 0 0 0 1 0 

122 0 0 0 0 1 

123 0 0 0 0 1 

124 0 0 0 0 1 

125 0 0 0 0 1 

126 0 0 0 0 1 

127 0 0 0 0 1 

Table 7.3 

The summary statistics here are i+ = 29,	i� = 56, i� = 61, i� = 52, i© = 37. These 

are the numbers of animal caught in 5 different occasions and the total number of 

animals caught respectively. The maximum likelihood estimate of � is from Eq.7.1: 

Estimate of ú Value of log - likelihood 

132.7933 -103.5676 

 

The estimated probabilities for each occasion are given by �̂�= 
2Xð� , _=1,2,3,4,5, the 

results are �̂+= 0.186, �̂�= 0.352, �̂�= 0.332, �̂�= 0.398, �̂©= 0.245 

and the variance-covariance matrix of �� = (��,	�̂+,…, �̂©) is: 

                                             

£�#d��e =
G
��
H
0.036 1.228 1.542 1.496 1.661 1.3251.228 996.551 0 0 0 01.542 0 661.154 0 0 01.496 0 0 679.952 0 01.661 0 0 0 629.077 01.325 0 0 0 0 813.825M

��
N	

 

To check the goodness of fit of the model, we proceed by generating parameter values 

�� from the asymptotic normal distribution of �� 
���~N¡��, £�#d��e¢ , l = 1,… ,500 

and for each simulated set of parameter values we simulate data sets �� from the 

model. 
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The first 13 simulated parameter values ��� are shown below: 

� ú� �  ¥C�  ¥û�  ¥ü�  ¥ý�  ¥þ� 
1 148.672 0.201 0.356 0.317 0.427 0.235 

2 156.678 0.211 0.406 0.325 0.374 0.302 

3 150.201 0.125 0.385 0.225 0.37 0.284 

4 148.177 0.2 0.315 0.39 0.402 0.201 

5 150.536 0.168 0.356 0.362 0.481 0.209 

6 151.321 0.201 0.283 0.346 0.396 0.253 

7 142.422 0.209 0.352 0.304 0.354 0.21 

8 152.605 0.156 0.32 0.283 0.305 0.257 

9 144.964 0.228 0.32 0.366 0.386 0.246 

10 158.116 0.184 0.377 0.37 0.359 0.227 

11 157.153 0.137 0.351 0.289 0.394 0.23 

12 154.017 0.183 0.374 0.289 0.423 0.283 

13 146.933 0.127 0.378 0.339 0.366 0.209 

 

We next calculate the capture frequencies �� representing the number of animals 

captured	_ times. The probability of an animal to be captured the _ times in 5 

occasions is:  

 "#(¾�Å}ℎì	1	ìlqÔ) = �+(1 − ��)	(1 − ��)(1 − ��)(1 − �©) + (1 − �+)	��(1 −
��)	(1 − ��)(1 − �©) + (1 − �+)(1 − ��)��(1 − ��)(1 − �©) + (1 − �+)(1 −
��)	(1 − ��)��(1 − �©) + (1 − �+)(1 − ��)(1 − ��)(1 − ��)�©. 
"#(¾�Å}ℎì	2	ìlqÔë) = �+��(1 − ��)(1 − ��)(1 − �©) + �+(1 − ��)��(1 −�41−�5+�1(1−�2)	
(1 − ��)��(1 − �©) + �+(1 − ��)(1 − ��)(1 − ��)�© + (1 − �+)����(1 − ��)(1 −
�©) + (1 − �+)��(1 − ��)��(1 − �©) + (1 − �+)��(1 − ��)(1 − ��)�© + (1 −
�+)(1 − ��)����(1 − �©) + (1 − �+)(1 − ��)��(1 − ��)�© + (1 − �+)(1 − ��)(1 −
��)���©.  "#(¾�Å}ℎì	3	ìlqÔë) = 	�+����(1 − ��)(1 − �©) + �+��(1 − ��)	��(1 − �©) +
�+��(1 − ��)(1 − ��)�© + �+(1 − ��)����(1 − �©) + �+(1 − ��)	(1 − ��)	���© +
(1 − �+)��(1 − ��)���© + (1 − �+)������(1 − �©) + (1 − �+)(1 − ��)�����©.  
"#(¾�Å}ℎì	4	ìlqÔë) = 	�+������(1 − �©) + (1 − �+)�������© + �+(1 −
��)�����© + �+��(1 − ��)���© + �+����(1 − ��)�©.  
"#(¾�Å}ℎì	5	ìlqÔë) = 	�+�������©  
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So the discrete probability distribution of a sum of independent Bernoulli trials that 

are not necessarily identically distributed is the Poisson binomial distribution. Now 

we can calculate the expected frequencies since we know that the number of animals 

caught in 5 trials follows the Poisson binomial distribution. Similarly we calculate the 

observed frequencies �� from the observed data �:  

Frequencies 	�  from the observed data 

1 2 3 4 5 

55 48 20 4 0 

 

and the 500 simulated data sets ��. The observed frequencies from the first 7 

simulated data sets are shown below: 

	��	‘s from the simulated data sets �� using the ú� �,  ¥
�,�=1,…,500,	�=1,…,5 

 1 2 3 4 5 6 7 �+� 51 59 47 43 53 52 44 ��� 43 47 46 51 51 46 48 ��� 18 18 21 28 22 19 24 ��� 4 3 4 7 4 4 6 �©� 0 0 0 1 0 0 0 

 

The corresponding expected frequency values for these 7 data sets are: 

Expected values of frequencies (Ý��)	�=1,…,500,	�=1,…,5 

 1 2 3 4 5 6 7 Ô+� 60.167 62.3 57.782 61.494 63.923 60.107 57.44 Ô�� 38.39 45.229 42.857 46.795 42.035 42.192 45.812 Ô�� 10.318 14.04 13.606 14.586 11.293 12.696 14.8 Ô�� 0.949 1.568 1.53 1.508 1.003 1.362 1.505 Ô©� 0 0 0 0 0 0 0 

 

For each set of expected frequencies, we then calculate a measure of the discrepancy 

between the observed frequencies �� and the assumed model using the Freeman-

Tukey measure. 

� ¡	�;ú� �,  ¥��¢ , �=1,…5, �=1,…,65 

3.292 4.834 2.554 1.745 3.392 
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1.353 0.424 0.886 2.851 2.302 

1.376 1.207 1.064 0.53 1.346 

1.211 3.233 1.633 0.871 0.939 

2.766 1.41 1.63 2.655 2.341 

1.821 2.565 1.552 3 1.692 

1.04 0.994 1.471 1.717 3.461 

1.442 1.346 1.975 0.581 4.635 

1.518 1.447 2.493 3.661 2.586 

2.125 2.935 1.479 1.377 1.674 

1.814 3.788 1.678 2.705 0.406 

1.136 2.388 2.243 0.236 1.932 

1.529 1.512 0.418 3.284 2.761 

and we also calculate the Freeman–Tukey discrepancy measure D(���;���, �̂��) between 

the simulated frequencies ���  and the assumed model. The first 65 discrepancy values 

are shown in each case. 

D(	��;�
�, ¥��) �=1,…5, �=1,…,65 

2.624 1.203 0.312 1.46 3.049 

0.538 5.306 5.369 3.312 2.287 

1.993 4.735 2.235 5.435 1.477 

6.918 1.377 3.567 1.921 1.74 

3.71 2.47 3.738 1.474 6.384 

1.703 1.49 1.591 3 5.586 

3.521 1.19 0.371 4.871 1.89 

5.67 2.408 1.093 0.171 1.529 

4.966 1.874 1.245 0.705 1.055 

3.065 2.743 1.53 0.412 1.359 

1.773 1.728 2.747 2.623 3.766 

0.371 6.491 2.39 0.277 4.82 

0.436 0.613 1.402 1.991 1.388 

1.16 2.943 2.004 2.273 0.984 

2.291 1.108 3.282 3.363 4.494 

3.49 1.952 1.186 1.735 1.341 

5.588 1.2 0.297 0.538 4.961 

1.053 0.49 0.812 6.461 1.009 

2.959 6.041 0.971 2.663 3.643 

4.73 1.83 2.656 1.522 6.919 

Fig. 7.5 provides a scatter plot of �(��; ���, �̂��) vs �(���; ���, �̂��).	 The p-value of the 

method is 0.634, and as such model �! appears to fit the data well. 
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                               Figure 7.5: Scatter plot of values �(��; ��� , �̂��) vs �(���; ��� , �̂��)	      
We now consider the variant of the method where the observed and simulated 

discrepancy values are based on the maximum likelihood point estimates. We thereby 

simulate 500 data sets �� using �� and calculate simulated frequencies ���. The first 7 

sets of simulated frequencies are shown below: 

	��	‘s from the simulated data sets �� using the	ú�  and  ¥�, �=1,2,3,4,5, �=1,2,…,7 

 1 2 3 4 5 6 7 �+ 52 54 58 54 56 54 59 �� 47 50 47 44 46 48 51 �� 20 21 19 18 18 21 22 �� 4 4 4 3 4 4 4 �© 0 0 0 0 0 0 0 

 

We next calculate the expected frequencies from the original observed data: 

Expected values of frequencies (Ý�) �=1,2,3,4,5 

54.428 47.61 20.127 4.093 0.319 
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which are also the same for each simulated data set  ���	 as a result of all depending on �� 

and �̂� , _=1,2,3,4,5. The Freeman–Tukey discrepancy measure between the observed 

frequencies �� and the model �(��; ��� , �̂��)  = 0.529 and we are going to use that value 

500 times as we shall see below. 

We also calculate the Freeman–Tukey discrepancy measure between the simulated 

frequencies ��� and the model �d���; ���, �̂��eand we provide the first 70 of 500 

discrepancy values below. 

�d	��; ú� �,  ¥
�e,	j=1,…,5, i=1,…,70 

0.35 0.545 1.115 0.385 0.402 

0.359 0.444 0.331 0.389 0.359 

0.395 0.807 0.431 0.479 0.612 

0.535 0.498 0.584 0.384 0.348 

0.404 0.658 0.584 1.035 0.387 

0.331 0.665 0.402 0.85 0.68 

0.512 0.606 0.331 0.36 0.677 

0.796 0.348 1.623 0.435 0.774 

0.351 0.332 0.847 0.395 1.12 

0.606 0.463 0.417 0.429 0.66 

0.463 0.4 0.604 0.366 0.349 

0.463 0.441 0.347 1.13 0.545 

0.964 0.978 0.415 0.361 0.507 

0.99 1.228 0.522 1.093 0.382 

 

Fig. 7.6 provides a scatter plot of �(��; ���, �̂��) vs �(���; ���, �̂��).	 The p-value of the 

variant is 0.872 which is in agreement with the original approach. 
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                                Figure 7.6: Scatter-plot of �(��; ��� , �̂��) vs �(���; ��� , �̂��). 
We calibrate the observed p-values based on 100 simulated “observed” data sets, as 

described in Section 7.3.1.. Fig. 7.7 provides a boxplot of the simulated p-values from 

the original approach. 
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Figure 7.7: Boxplot of the simulated p-values from the original approach. The circle indicates the 

location of the p-value from the observed data. 

 

We can see the observed p-value (0.634) is above the black line so we could say that 

the model fits the data well and the �! is a good model for our data. We repeat the 

procedure for the new variant where the  �� data sets are generated from the 

maximum likelihood estimates. 
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Figure 7.8: Boxplot of the simulated p-values from the variant. The circle indicates the location of the 

p-value from the observed data. 

We can see that the observed p-value (0.872) is almost on the black line in the box-

plot so we could say that our model fits very well our data. 
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                                          APPENDIX 

#Fecundability example#. 

dat<-c(rep(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12))) 

data<-cbind(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12)) 

satlogl<-function(x,y){ 

n<-nrow(x) 

sum(x[1:n,2]*log(x[1:n,2]/length(y))) 

} 

#geom# 

#simple loglikelihood# 

geom1<-function(x,p){ 

p*(1-p)^(x-1) 

} 

loglik<-function(x,p){ 

-sum(log(geom1(x,p))) 

} 

a1<-optim(p=0.5,loglik,x=dat,method="BFGS",hessian=TRUE) 

se1<-sqrt(diag(solve(a1$hessian))) 

expec1<-geom1(1:12,a1$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

chisqstat1<-sum((data[1:9,2]-expec1[1:9])^2/(expec1[1:9])) 

pval1<-pchisq(chisqstat1,7,lower.tail=FALSE) 

slog<-satlogl(data,dat) 

Dev1<-(-2*(-a1$value-slog)) 

#multinomial likelihood# 

mulik<-function(x,p){ 

n<-nrow(x) 

a<-sum(x[1:n-1,2]*log(geom1(x[1:n-1,1],p))) 

b<-(x[n,2]*log(1-sum(geom1(x[1:n-1,1],p)))) 

-a-b 

} 

b1<-optim(p=0.5,mulik,x=data,method="BFGS",hessian=TRUE) 

se2<-sqrt(diag(solve(b1$hessian))) 
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expec2<-geom1(1:12,b1$par)*486 

expec2<-c(expec2,486-sum(expec2)) 

chisqstat2<-sum((data[1:9,2]-expec2[1:9])^2/(expec2[1:9])) 

pval2<-pchisq(chisqstat2,11,lower.tail=FALSE) 

Dev2<-(-2*(-b1$value-slog)) 

#Boostrap# 

R1<-rep(0,500) 

R2<-rep(0,500) 

R3<-rep(0,500) 

R4<-rep(0,500) 

dens1<-rep(0,13) 

for(i in 1:500){ 

bsdat<-rgeom(486,a1$par)+1 

for(j in 1:12){ 

if (length(bsdat[bsdat[]==j]>0)) 

dens1[j]<-length(bsdat[bsdat[]==j]) 

else{ 

dens1[j]<-1 

} 

} 

dens1[13]<-length(bsdat[bsdat[]>=13]) 

bsdata<-cbind(1:13,dens1) 

bsmle<-optim(p=0.5,mulik,x=bsdata,method="BFGS",hessian=TRUE) 

slog<-satlogl(bsdata,bsdat) 

R1[i]<-bsmle$par 

R2[i]<-bsmle$value 

R3[i]<-bsmle$hessian 

R4[i]<-slog 

} 

DEV1<-(-2*(-R2-R4)) 

#histogram# 

hist(DEV1,xlab="Deviances",main=paste("HistogramofDeviaces"),xlim=range(0,50)) 

abline(v=Dev2,col="18") 
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#betageometric# 

#simple loglikelihood# 

marg<-function(x,ab){ 

(beta(ab[1]+1,x+ab[2]-1))/(beta(ab[1],ab[2])) 

} 

slik<-function(x,ab){ 

-sum(log(marg(x,ab))) 

} 

a2<-optim(c(2,3),slik,x=dat,method="BFGS",hessian=TRUE) 

se4<-sqrt(diag(solve(a2$hessian))) 

expec4<-marg(1:12,a2$par)*486 

expec4<-c(expec4,486-sum(expec4)) 

chisqstat4<-sum((data[1:9,2]-expec4[1:9])^2/(expec4[1:9])) 

pval4<-pchisq(chisqstat4,11,lower.tail=FALSE) 

slog<-satlogl(data,dat) 

Dev3<-(-2*(-a2$value-slog)) 

#multinomial likelihood# 

mulm<-function(x,ab){ 

n<-nrow(x) 

lm1<-(sum(x[1:n-1,2]*log(marg(x[1:n-1,1],ab)))) 

lm2<-(x[n,2]*log(1-sum(marg(x[1:n-1,1],ab)))) 

-lm1-lm2 

} 

b2<-optim(c(2,3),mulm,x=data[,1:2],method="BFGS",hessian=TRUE) 

se3<-sqrt(diag(solve(b2$hessian))) 

expec3<-marg(1:12,b2$par)*486 

expec3<-c(expec3,486-sum(expec3)) 

chisqstat3<-sum((data[1:9,2]-expec3[1:9])^2/(expec3[1:9])) 

pval3<-pchisq(chisqstat3,7,lower.tail=FALSE) 

slog<-satlogl(data,dat) 

Dev4<-(-2*(-b2$value-slog)) 

#Boostrap# 

K1<-rep(0,500) 
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K2<-rep(0,500) 

K3<-rep(0,500) 

K4<-rep(0,500) 

dens1<-rep(0,13) 

for(i in 1:500){ 

bsdat1<-rbetageom(486,a2$par[1],a2$par[2])+1 

for(j in 1:12){ 

if (length(bsdat1[bsdat1[]==j]>0)) 

dens1[j]<-length(bsdat1[bsdat1[]==j]) 

else{ 

dens1[j]<-1 

} 

} 

dens1[13]<-length(bsdat1[bsdat1[]>=13]) 

bsdata1<-cbind(1:13,dens1) 

bsmle1<-optim(c(2,3),mulm,x=bsdata1,method="BFGS",hessian=TRUE) 

slog1<-satlogl(bsdata1,bsdat1) 

K1[i]<-bsmle1$par 

K2[i]<-bsmle1$value 

K3[i]<-bsmle1$hessian 

K4[i]<-slog1 

} 

DEV2<-(-2*(-K2-K4)) 

#Histogram# 

hist(DEV2,xlab="Deviances",main=paste("Histogram of Deviaces")) 

abline(v=Dev4,col="18") 

#Geometric with the new method# 

dat<-c(rep(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12))) 

data<-cbind(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12)) 

geom1<-function(x,p){ 

p*(1-p)^(x-1) 

} 

mulik<-function(x,p){ 

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



112 

 

 

n<-nrow(x) 

a<-sum(x[1:n-1,2]*log(geom1(x[1:n-1,1],p))) 

b<-(x[n,2]*log(1-sum(geom1(x[1:n-1,1],p)))) 

-a-b 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

b1<-optim(p=0.5,mulik,x=data,method="BFGS",hessian=TRUE) 

se2<-sqrt(diag(solve(b1$hessian))) 

pi<-rnorm(500,b1$par,se2) 

phats<-matrix(pi,500,1) 

#a)  Χ's  generate by rgeom with p=MLE# 

chihats1<-matrix(0,13,500) 

for( i in 1:500){ 

chis1<-rgeom(486,b1$par)+1 

dens1<-rep(0,13) 

dens1[13]<-length(chis1[chis1[]>=13]) 

for(j in 1:12){ 

dens1[j]<-length(chis1[chis1[]==j]) 

} 

chihats1[,i]<-dens1 

} 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-geom1(1:12,b1$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

DFTa<-matrix(0,500,1) 
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for (i in 1:500){ 

disc<-Dft(data[1:13,2],expval[1:13,i]) 

DFTa[i,]<-disc 

} 

DFT1<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:13,i],expval[1:13,i]) 

DFT1[i,]<-disc 

} 

sum(DFT1>DFTa)/500 

plot(DFTa,DFT1,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1) 

#β) Χ's generate by rgeom with p=phats# 

chihats2<-matrix(0,13,500) 

for( i in 1:500){ 

chis2<-rgeom(486,phats[i,])+1 

dens2<-rep(0,13) 

dens2[13]<-length(chis2[chis2[]>=13]) 

for(j in 1:12){ 

dens2[j]<-length(chis2[chis2[]==j]) 

} 

chihats2[,i]<-dens2 

} 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-geom1(1:12,phats[i,])*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 
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DFTb<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(data[1:13,2],expval[1:13,i]) 

DFTb[i,]<-disc 

} 

DFT2<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats2[1:13,i],expval[1:13,i]) 

DFT2[i,]<-disc 

} 

sum(DFT2>DFTb)/500 

plot(DFTb,DFT2,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1) 

#For Calibration we do as follow# 

#a) Χ's generate by rgeom with p=MLE# 

box1<-rep(0,100) 

for( k in 1:100){ 

obs<-cbind(1:13,rep(0,13)) 

obs1<-rgeom(486,b1$par)+1 

for( m in 1:13){ 

obs[m,2]<-length(obs1[obs1[]==m]) 

} 

b1<-optim(p=0.5,mulik,x=obs,method="BFGS",hessian=TRUE) 

se2<-sqrt(diag(solve(b1$hessian))) 

pi<-rnorm(500,b1$par,se2) 

phats<-matrix(pi,500,1) 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-geom1(1:12,b1$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 
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DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs[1:13,2],expval[1:13,i]) 

DFT0[i,]<-disc 

} 

chihats1<-matrix(0,13,500) 

for( i in 1:500){ 

chis1<-rgeom(486,b1$par)+1 

dens1<-rep(0,13) 

dens1[13]<-length(chis1[chis1[]>=13]) 

for(j in 1:12){ 

dens1[j]<-length(chis1[chis1[]==j]) 

} 

chihats1[,i]<-dens1 

} 

DFT3<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:13,i],expval[1:13,i]) 

DFT3[i,]<-disc 

} 

Pc<-sum(DFT3>DFT0)/500 

box1[k]<-Pc 

} 

boxplot(box1) 

points((sum(DFT1>DFTa))/500,col=2) 

#β) Χ's  generate by rgeom with p=phats# 

box2<-rep(0,100) 

for( k in 1:100){ 

obs<-cbind(1:13,rep(0,13)) 

obs1<-rgeom(486,b1$par)+1 

for( m in 1:13){ 

obs[m,2]<-length(obs1[obs1[]==m]) 

} 
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b1<-optim(p=0.5,mulik,x=obs,method="BFGS",hessian=TRUE) 

se2<-sqrt(diag(solve(b1$hessian))) 

pi<-rnorm(500,b1$par,se2) 

phats<-matrix(pi,500,1) 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-geom1(1:12,phats[i,])*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs[1:13,2],expval[1:13,i]) 

DFT0[i,]<-disc 

} 

chihats2<-matrix(0,13,500) 

for( i in 1:500){ 

chis2<-rgeom(486,phats[i,])+1 

dens2<-rep(0,13) 

dens2[13]<-length(chis2[chis2[]>=13]) 

for(j in 1:12){ 

dens2[j]<-length(chis2[chis2[]==j]) 

} 

chihats2[,i]<-dens2 

} 

DFT4<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats2[1:13,i],expval[1:13,i]) 

DFT4[i,]<-disc 

} 

Pc<-sum(DFT4>DFT0)/500 

box2[k]<-Pc 

} 
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boxplot(box2) 

points((sum(DFT2>DFTb))/500,col=2) 

#Beta-Geometric with the new method# 

dat<-c(rep(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12))) 

data<-cbind(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12)) 

marg<-function(x,ab){ 

(beta(ab[1]+1,x+ab[2]-1))/(beta(ab[1],ab[2])) 

} 

mulm<-function(x,ab){ 

n<-nrow(x) 

lm1<-(sum(x[1:n-1,2]*log(marg(x[1:n-1,1],ab)))) 

lm2<-(x[n,2]*log(1-sum(marg(x[1:n-1,1],ab)))) 

-lm1-lm2 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

b2<-optim(c(2,3),mulm,x=data[,1:2],method="BFGS",hessian=TRUE) 

se3<-sqrt(diag(solve(b2$hessian))) 

phats<-matrix(0,500,2) 

for( i in 1:2){ 

pi<-rnorm(500,b2$par[i],se3[i]) 

phats[,i]<-pi 

} 

#a) Χ'ς  generated by rbetageom with a,b=MLE# 

chihats1<-matrix(0,13,500) 

for( i in 1:500){ 

chis1<-rbetageom(486,b2$par[1],b2$par[2])+1 

dens1<-rep(0,13) 

dens1[13]<-length(chis1[chis1[]>=13]) 

for(j in 1:12){ 

dens1[j]<-length(chis1[chis1[]==j]) 

} 

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



118 

 

 

chihats1[,i]<-dens1 

} 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-marg(1:12,b2$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFTa<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(data[1:13,2],expval[1:13,i]) 

DFTa[i,]<-disc 

} 

DFT1<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:13,i],expval[1:13,i]) 

DFT1[i,]<-disc 

} 

sum(DFT1>DFTa)/500 

plot(DFTa,DFT1,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1,col=18) 

#β)Χ's  generated by  rbetageom with a=ahats,b=bhats, phats[ahats,bhats]# 

chihats2<-matrix(0,13,500) 

for( i in 1:500){ 

chis2<-rbetageom(486,phats[i,1],phats[i,2])+1 

dens2<-rep(0,13) 

dens2[13]<-length(chis2[chis2[]>=13]) 

for(j in 1:12){ 

dens2[j]<-length(chis2[chis2[]==j]) 

} 

chihats2[,i]<-dens2 

} 
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expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-marg(1:12,phats[i,])*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFTb<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(data[1:13,2],expval[1:13,i]) 

DFTb[i,]<-disc 

} 

DFT2<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats2[1:13,i],expval[1:13,i]) 

DFT2[i,]<-disc 

} 

sum(DFT2>DFTb)/500 

plot(DFTb,DFT2,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1,col=18) 

#For calibration we do as follow# 

#a) Χ's generated by rbetageom with a,b=MLE# 

box1<-rep(0,100) 

for( k in 1:100){ 

obs<-cbind(1:13,rep(0,13)) 

obs1<-rbetageom(486,b2$par[1],b2$par[2])+1 

for( m in 1:13){ 

obs[m,2]<-length(obs1[obs1[]==m]) 

} 

b2<-optim(c(2,3),mulm,x=obs[,1:2],method="BFGS",hessian=TRUE) 

se3<-sqrt(diag(solve(b2$hessian))) 

phats<-matrix(0,500,2) 

for( i in 1:2){ 
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pi<-rnorm(500,b2$par[i],se3[i]) 

phats[,i]<-pi 

} 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-marg(1:12,b2$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs[1:13,2],expval[1:13,i]) 

DFT0[i,]<-disc 

} 

chihats1<-matrix(0,13,500) 

for( i in 1:500){ 

chis1<-rbetageom(486,b2$par[1],b2$par[2])+1 

dens1<-rep(0,13) 

dens1[13]<-length(chis1[chis1[]>=13]) 

for(j in 1:12){ 

dens1[j]<-length(chis1[chis1[]==j]) 

} 

chihats1[,i]<-dens1 

} 

DFT3<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:13,i],expval[1:13,i]) 

DFT3[i,]<-disc 

} 

Pc<-sum(DFT3>DFT0)/500 

box1[k]<-Pc 

} 

boxplot(box1) 
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points((sum(DFT1>DFTa))/500,col=2) 

#β)Χ's  generated by rbetageom with a=ahats,b=bhats, phats[ahats,bhats]# 

box2<-rep(0,100) 

for( k in 1:100){ 

obs<-cbind(1:13,rep(0,13)) 

obs1<-rbetageom(486,b2$par[1],b2$par[2])+1 

for( m in 1:13){ 

obs[m,2]<-length(obs1[obs1[]==m]) 

} 

b2<-optim(c(2,3),mulm,x=obs[,1:2],method="BFGS",hessian=TRUE) 

se3<-sqrt(diag(solve(b2$hessian))) 

phats<-matrix(0,500,2) 

for( i in 1:2){ 

pi<-rnorm(500,b2$par[i],se3[i]) 

phats[,i]<-pi 

} 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-marg(1:12,phats[i,])*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs[1:13,2],expval[1:13,i]) 

DFT0[i,]<-disc 

} 

chihats2<-matrix(0,13,500) 

for( i in 1:500){ 

chis2<-rbetageom(486,phats[i,1],phats[i,2])+1 

dens2<-rep(0,13) 

dens2[13]<-length(chis2[chis2[]>=13]) 

for(j in 1:12){ 
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dens2[j]<-length(chis2[chis2[]==j]) 

} 

chihats2[,i]<-dens2 

} 

DFT4<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats2[1:13,i],expval[1:13,i]) 

DFT4[i,]<-disc 

} 

Pc<-sum(DFT4>DFT0)/500 

box2[k]<-Pc 

} 

boxplot(box2) 

points((sum(DFT2>DFTb))/500,col=2) 

#geometric comparison between the bootstrap method and the new method# 

dat<-c(rep(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12))) 

data<-cbind(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12)) 

geom1<-function(x,p){ 

p*(1-p)^(x-1) 

} 

satlogl<-function(x,y){ 

n<-nrow(x) 

sum(x[x[1:n,2]>0,2]*log(x[x[1:n,2]>0,2]/length(y))) 

} 

loglik<-function(x,p){ 

-sum(log(geom1(x,p))) 

} 

mulik<-function(x,p){ 

n<-nrow(x) 

a<-sum(x[1:n-1,2]*log(geom1(x[1:n-1,1],p))) 

b<-(x[n,2]*log(1-sum(geom1(x[1:n-1,1],p)))) 

-a-b 

} 
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Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

a1<-optim(p=0.5,loglik,x=dat,method="BFGS",hessian=TRUE) 

b1<-optim(p=0.5,mulik,x=data,method="BFGS",hessian=TRUE) 

se2<-sqrt(diag(solve(b1$hessian))) 

pi<-rnorm(500,b1$par,se2) 

phats<-matrix(pi,500,1) 

slog1<-satlogl(data,dat) 

Dev1<-(-2*(-a1$value-slog1)) 

Dev2<-(-2*(-b1$value-slog1)) 

#a)p=M.L.E.# 

obsv<-matrix(0,13,100) 

obsv1<-matrix(0,486,100) 

for( k in 1:100){ 

obs<-cbind(1:13,rep(0,13)) 

obs1<-rgeom(486,b1$par)+1 

for (m in 1:12){ 

obs[m,2]<-length(obs1[obs1[]==m]) 

} 

obs[13,2]<-length(obs1[obs1[]>=13]) 

obsv[,k]<-obs[,2] 

obsv1[,k]<-obs1 

} 

box1<-rep(0,100) 

for (k in 1:100){ 

R1<-rep(0,500) 

R2<-rep(0,500) 

R3<-rep(0,500) 

dens2<-rep(0,13) 

a11<-optim(p=0.5,mulik,x=cbind(1:13,obsv[,k]),method="BFGS") 

for(i in 1:500){ 

bsdat<-rgeom(486,a11$par)+1 
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for(j in 1:12){ 

dens2[j]<-length(bsdat[bsdat[]==j]) 

} 

dens2[13]<-length(bsdat[bsdat[]>=13]) 

bsdata<-cbind(1:13,dens2) 

bsmle<-optim(p=0.5,mulik,x=bsdata,method="BFGS") 

slog<-satlogl(bsdata,bsdat) 

R1[i]<-bsmle$par 

R2[i]<-bsmle$value 

R3[i]<-slog 

} 

DEV1a<-(-2*(-a11$value-satlogl(cbind(1:13,obsv[,k]),obsv1[,k]))) 

DEV1<-(-2*(-R2-R3)) 

Pcb<-sum(DEV1>DEV1a)/500 

box1[k]<-Pcb 

} 

box2<-rep(0,100) 

for( k in 1:100){ 

obsv11<-cbind(1:13,obsv[,k]) 

b11<-optim(p=0.5,mulik,x=obsv11,method="BFGS",hessian=TRUE) 

se2<-sqrt(diag(solve(b11$hessian))) 

pi<-rnorm(500,b11$par,se2) 

phats<-matrix(pi,500,1) 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-geom1(1:12,b11$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obsv11[1:13,2],expval[1:13,i]) 

DFT0[i,]<-disc 
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} 

chihats1<-matrix(0,13,500) 

for( i in 1:500){ 

chis1<-rgeom(486,b11$par)+1 

dens1<-rep(0,13) 

dens1[13]<-length(chis1[chis1[]>=13]) 

for(j in 1:12){ 

dens1[j]<-length(chis1[chis1[]==j]) 

} 

chihats1[,i]<-dens1 

} 

DFT3<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:13,i],expval[1:13,i]) 

DFT3[i,]<-disc 

} 

Pc<-sum(DFT3>DFT0)/500 

box2[k]<-Pc 

} 

plot(box1,box2,xlab="first method's p-values", ylab="second method's p-values") 

#beta-geometric comparison between the bootstrap method and the new method# 

dat<-c(rep(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12))) 

data<-cbind(1:13,c(198,107,55,38,18,22,7,9,5,3,6,6,12)) 

satlogl<-function(x,y){ 

n<-nrow(x) 

sum(x[x[1:n,2]>0,2]*log(x[x[1:n,2]>0,2]/length(y))) 

} 

marg<-function(x,ab){ 

(beta(ab[1]+1,x+ab[2]-1))/(beta(ab[1],ab[2])) 

} 

mulm<-function(x,ab){ 

n<-nrow(x) 

lm1<-(sum(x[1:n-1,2]*log(marg(x[1:n-1,1],ab)))) 
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lm2<-(x[n,2]*log(1-sum(marg(x[1:n-1,1],ab)))) 

-lm1-lm2 

} 

slik<-function(x,ab){ 

-sum(log(marg(x,ab))) 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

b2<-optim(c(2,3),mulm,x=data[,1:2],method="BFGS",hessian=TRUE) 

se3<-sqrt(diag(solve(b2$hessian))) 

phats<-matrix(0,500,2) 

for( i in 1:2){ 

pi<-rnorm(500,b2$par[i],se3[i]) 

phats[,i]<-pi 

} 

slog1<-satlogl(data,dat) 

Dev4<-(-2*(-b2$value-slog1)) 

#For calibration we do as follow# 

#a) Χ's generated by rbetageom with a,b=MLE# 

obsv<-matrix(0,13,100) 

obsv1<-matrix(0,486,100) 

for( k in 1:100){ 

obs<-cbind(1:13,rep(0,13)) 

obs1<-rbetageom(486,b2$par[1],b2$par[2])+1 

for (m in 1:12){ 

obs[m,2]<-length(obs1[obs1[]==m]) 

} 

obs[13,2]<-length(obs1[obs1[]>=13]) 

obsv[,k]<-obs[,2] 

obsv1[,k]<-obs1 

} 

box1<-rep(0,100) 
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for (k in 1:100){ 

K1<-rep(0,500) 

K2<-rep(0,500) 

K3<-rep(0,500) 

dens2<-rep(0,13) 

b111<-optim(c(2,3),mulm,x=cbind(1:13,obsv[,k]),method="BFGS") 

for(i in 1:500){ 

bsdat1<-rbetageom(486,b111$par[1],b111$par[2])+1 

for(j in 1:12){ 

dens2[j]<-length(bsdat1[bsdat1[]==j]) 

} 

dens2[13]<-length(bsdat1[bsdat1[]>=13]) 

bsdata1<-cbind(1:13,dens2) 

bsmle1<-optim(c(2,3),mulm,x=bsdata1,method="BFGS") 

slog<-satlogl(bsdata1,bsdat1) 

K1[i]<-bsmle1$par 

K2[i]<-bsmle1$value 

K3[i]<-slog 

} 

DEV2b<-(-2*(-b111$value-satlogl(cbind(1:13,obsv[,k]),obsv1[,k]))) 

DEV2<-(-2*(-K2-K3)) 

Pcb<-sum(DEV2>DEV2b)/500 

box1[k]<-Pcb 

} 

box2<-rep(0,100) 

for( k in 1:100){ 

obs12<-cbind(1:13,obsv[,k]) 

b22<-optim(c(2,3),mulm,x=obs12,method="BFGS",hessian=TRUE) 

se3<-sqrt(diag(solve(b22$hessian))) 

phats<-matrix(0,500,2) 

for( i in 1:2){ 

pi<-rnorm(500,b22$par[i],se3[i]) 

phats[,i]<-pi 
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} 

expval<-matrix(0,13,500) 

for(i in 1:500){ 

expec1<-marg(1:12,b22$par)*486 

expec1<-c(expec1,486-sum(expec1)) 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs12[1:13,2],expval[1:13,i]) 

DFT0[i,]<-disc 

} 

chihats1<-matrix(0,13,500) 

for( i in 1:500){ 

chis1<-rbetageom(486,b22$par[1],b22$par[2])+1 

dens1<-rep(0,13) 

dens1[13]<-length(chis1[chis1[]>=13]) 

for(j in 1:12){ 

dens1[j]<-length(chis1[chis1[]==j]) 

} 

chihats1[,i]<-dens1 

} 

DFT3<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:13,i],expval[1:13,i]) 

DFT3[i,]<-disc 

} 

Pc<-sum(DFT3>DFT0)/500 

box2[k]<-Pc 

} 

plot(box1,box2) 

#�  model# 

dat<-c(16,11,15,14,14,18) 
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mulik<-function(x,r,Np){ 

a<-lfactorial(Np[1])-lfactorial(Np[1]-r) 

b<-(sum(x))*log(Np[2])+(6*Np[1]-sum(x))*log(1-Np[2]) 

-a-b 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

b1<-optim(c(55,0.3),mulik,x=dat,r=47,method="BFGS",hessian=TRUE) 

mu<-c(b1$par[1],b1$par[2]) 

Nphats<-mvrnorm(500,mu,solve(b1$hessian)) 

#a) Χ's generated by rbinom with p=MLE,N=MLE# 

chihats1<-matrix(0,6,500) 

r1<-matrix(0,1,500) 

for(i in 1:500){ 

M<-matrix(rbinom(round(b1$par[1])*6,1,b1$par[2]),nrow=round(b1$par[1]),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

r1[,i]<-r0 

chihats1[,i]<-m0 

} 

expval<-matrix(0,6,500) 

ex<-matrix(0,6,1) 

for(i in 1:500){ 

for(j in 1:6){ 

expec1<-((b1$par[1])*b1$par[2]) 

ex[j,]<-expec1 

} 

expval[,i]<-expec1 

} 

Dft<-function(x,y){ 
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sum((sqrt(x)-sqrt(y))^2) 

} 

DFTa<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(dat[1:6],expval[1:6,i]) 

DFTa[i,]<-disc 

} 

DFT1<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:6,i],expval[1:6,i]) 

DFT1[i,]<-disc 

} 

sum(DFT1>DFTa)/500 

plot(DFTa,DFT1,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1,col=18) 

 

#β) Χ's generated rbinom with N,p=Nphats# 

chihats2<-matrix(0,6,500) 

r2<-matrix(0,1,500) 

for(i in 1:500){ 

M<-

matrix(rbinom(round(Nphats[i,1])*6,1,Nphats[i,2]),nrow=round(Nphats[i,1]),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

r2[,i]<-r0 

chihats2[,i]<-m0 

} 

expval<-matrix(0,6,500) 

ex<-matrix(0,6,1) 

for(i in 1:500){ 
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for(j in 1:6){ 

expec1<-((Nphats[i,1])*Nphats[i,2]) 

ex[j,]<-expec1 

} 

expval[,i]<-expec1 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

DFTb<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(dat[1:6],expval[1:6,i]) 

DFTb[i,]<-disc 

} 

DFT2<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats2[1:6,i],expval[1:6,i]) 

DFT2[i,]<-disc 

} 

sum(DFT2>DFTb)/500 

plot(DFTb,DFT2,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1,col=18) 

 

 

 

#For calibration we as follow# 

 

#a)Χ's generated by rbinom with p=MLE,N=MLE# 

 

box1<-rep(0,100) 

b2est<-matrix(0,100,2) 

for( k in 1:100){ 
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obs<-rep(0,6) 

M<-matrix(rbinom(round(b1$par[1])*6,1,b1$par[2]),nrow=round(b1$par[1]),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

obs<-m0 

b2<-optim(c(55,0.3),mulik,x=obs,r=r0,method="BFGS",hessian=TRUE) 

mu<-c(b2$par[1],b2$par[2]) 

Nphats<-mvrnorm(500,mu,solve(b2$hessian)) 

expval<-matrix(0,6,500) 

ex<-matrix(0,6,1) 

for(i in 1:500){ 

for(j in 1:6){ 

expec1<-((b2$par[1])*b2$par[2]) 

ex[j,]<-expec1 

} 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs[1:6],expval[1:6,i]) 

DFT0[i,]<-disc 

} 

chihats1<-matrix(0,6,500) 

r1<-matrix(0,1,500) 

for(i in 1:500){ 

M<-matrix(rbinom(round(b2$par[1])*6,1,b2$par[2]),nrow=round(b2$par[1]),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

r1[,i]<-r0 
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chihats1[,i]<-m0 

} 

DFT3<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats1[1:6,i],expval[1:6,i]) 

DFT3[i,]<-disc 

} 

Pc<-sum(DFT3>DFT0)/500 

box1[k]<-Pc 

b2est[k,1]<-b2$par[1] 

b2est[k,2]<-b2$par[2] 

} 

hist(b2est[,1]) #histogram of Nhats# 

hist(b2est[,2]) #histogram of phats# 

boxplot(box1) 

points((sum(DFT1>DFTa))/500,col=2) 

#β)Χ's generated by rbinom with N=Nhats,p=phats# 

box2<-rep(0,100) 

b2est<-matrix(0,100,2) 

for( k in 1:100){ 

obs<-rep(0,6) 

M<-matrix(rbinom(round(b1$par[1])*6,1,b1$par[2]),nrow=round(b1$par[1]),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

obs<-m0 

b2<-optim(c(56,0.3),mulik,x=obs,r=r0,method="BFGS",hessian=TRUE) 

mu<-c(b2$par[1],b2$par[2]) 

Nphats<-mvrnorm(500,mu,solve(b2$hessian)) 

expval<-matrix(0,6,500) 

ex<-matrix(0,6,1) 

for(i in 1:500){ 
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for(j in 1:6){ 

expec1<-((Nphats[i,1])*Nphats[i,2]) 

ex[j,]<-expec1 

} 

expval[,i]<-expec1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(obs[1:6],expval[1:6,i]) 

DFT0[i,]<-disc 

} 

chihats2<-matrix(0,6,500) 

r2<-matrix(0,1,500) 

for(i in 1:500){ 

M<-

matrix(rbinom(round(Nphats[i,1])*6,1,Nphats[i,2]),nrow=round(Nphats[i,1]),ncol=6) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

r2[,i]<-r0 

chihats2[,i]<-m0 

} 

DFT4<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(chihats2[1:6,i],expval[1:6,i]) 

DFT4[i,]<-disc 

} 

Pc<-sum(DFT4>DFT0)/500 

box2[k]<-Pc 

b2est[k,1]<-b2$par[1] 

b2est[k,2]<-b2$par[2] 

} 
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hist(b2est[,1]) #histogram of Nhats# 

hist(b2est[,2]) #histogram of phats# 

boxplot(box2) 

points((sum(DFT2>DFTb))/500,col=2) 

#�! model# 

dat<-c(28,53,50,60,37) 

r<-127 

fi<-c(52,52,20,3,0) 

mulik<-function(x,r,N){ 

a<-lfactorial(N)-lfactorial(N-r)+x[1]*log(x[1]/N)+(N-x[1])*log(1-(x[1]/N)) 

b<-x[2]*log(x[2]/N)+(N-x[2])*log(1-(x[2]/N))+x[3]*log(x[3]/N)+(N-x[3])*log(1-

(x[3]/N)) 

c<-x[4]*log(x[4]/N)+(N-x[4])*log(1-(x[4]/N))+x[5]*log(x[5]/N)+(N-x[5])*log(1-

(x[5]/N)) 

-a-b-c 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

b1<-optim(150,mulik,x=dat,r=127,method="BFGS",hessian=TRUE) 

pi<-matrix(0,1,5) 

for (i in 1:5){ 

pi[i]<-dat[i]/b1$par 

} 

Npih<-c(b1$par,pi) 

pid<-function(x,N,p){ 

-(x/(p^2))-((N-x)/((1-p)^2)) 

} 

Niv<-(1/b1$par)-(1/(b1$par-r)) 

piv<-pid(dat[1:5],b1$par,pi[1:5]) 

Npiv<-c(Niv,piv) 

piN<-function(x){ 

-1/(1-x) 
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} 

piNh<-piN(pi[1:5]) 

varpN<-matrix(0,6,6) 

for(i in 1:6){ 

varpN[i,i]<-Npiv[i] 

} 

for(i in 1:5){ 

varpN[1,1+i]<-piNh[i] 

varpN[1+i,1]<-piNh[i] 

} 

Nphats<-mvrnorm(500,Npih,solve(-varpN)) 

#a)Χ's generated by rbinom with p=MLE,N=MLE# 

fchihats1<-matrix(0,5,500) 

for(i in 1:500){ 

M<-matrix(0,nrow=round(b1$par),ncol=5) 

fix<-rep(0,5) 

for( j in 1:5){ 

M[,j]<-matrix(rbinom(round(b1$par)*5,1,pi[j]),nrow=round(b1$par),ncol=1) 

} 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

g<-apply(m,1,sum) 

for (k in 1:5){ 

fix[k]<-sum(g==k) 

} 

fchihats1[,i]<-fix 

} 

fiexp<-matrix(0,5,500) 

for (i in 1:500){ 

fiexp1<-(dpoibin(kk=1:5,pp=pi[1:5],wts=NULL)*(b1$par)) 

fiexp[,i]<-fiexp1 

} 

Dft<-function(x,y){ 

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



137 

 

 

sum((sqrt(x)-sqrt(y))^2) 

} 

DFTa<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fi[1:5],fiexp[1:5,i]) 

DFTa[i,]<-disc 

} 

DFT1<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fchihats1[1:5,i],fiexp[1:5,i]) 

DFT1[i,]<-disc 

} 

sum(DFT1>DFTa)/500 

plot(DFTa,DFT1,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1,col=18) 

 

#β)Χ's generated by rbinom with N,p=Nphats# 

fchihats2<-matrix(0,5,500) 

r2<-matrix(0,1,500) 

for(i in 1:500){ 

fix<-rep(0,5) 

M1<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,2]),nrow=round(Nphats[i,1]),ncol=1) 

M2<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,3]),nrow=round(Nphats[i,1]),ncol=1) 

M3<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,4]),nrow=round(Nphats[i,1]),ncol=1) 

M4<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,5]),nrow=round(Nphats[i,1]),ncol=1) 

M5<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,6]),nrow=round(Nphats[i,1]),ncol=1) 

M<-cbind(M1,M2,M3,M4,M5) 
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indx<-apply(M,1,sum)>0 

m<-M[indx,] 

g<-apply(m,1,sum) 

for (k in 1:5){ 

fix[k]<-sum(g==k) 

} 

fchihats2[,i]<-fix 

} 

fiexp<-matrix(0,5,500) 

for (i in 1:500){ 

fiexp2<-(dpoibin(kk=1:5,pp=Nphats[i,2:5],wts=NULL)*(Nphats[i,1])) 

fiexp[,i]<-fiexp2 

} 

Dft<-function(x,y){ 

sum((sqrt(x)-sqrt(y))^2) 

} 

DFTb<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fi[1:5],fiexp[1:5,i]) 

DFTb[i,]<-disc 

} 

DFT2<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fchihats2[1:5,i],fiexp[1:5,i]) 

DFT2[i,]<-disc 

} 

sum(DFT2>DFTb)/500 

plot(DFTb,DFT2,xlab="discrepancy values from the observed data", 

ylab="discrepancy values from the simulated data") 

abline(0,1,col=18) 

#For calibration we do as follow# 

#a)Χ's generated by rbinom with p=MLE,N=MLE# 

box1<-rep(0,100) 
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for( k in 1:100){ 

fio<-rep(0,5) 

M<-matrix(0,nrow=round(b1$par),ncol=5) 

for( j in 1:5){ 

M[,j]<-matrix(rbinom(round(b1$par)*5,1,pi[j]),nrow=round(b1$par),ncol=1) 

} 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

g<-apply(m,1,sum) 

for (j in 1:5){ 

fio[j]<-sum(g==j) 

} 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

b2<-optim(c(150),mulik,x=m0,r=r0,method="BFGS") 

pif<-rep(0,5) 

for (j in 1:5){ 

pif[j]<-m0[j]/b2$par 

} 

fiexp<-matrix(0,5,500) 

for (i in 1:500){ 

fiexp1<-dpoibin(kk=1:5,pp=pif[1:5],wts=NULL)*(b2$par) 

fiexp[,i]<-fiexp1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fio[1:5],fiexp[1:5,i]) 

DFT0[i,]<-disc 

} 

fchihats1<-matrix(0,5,500) 

for(i in 1:500){ 

M<-matrix(0,nrow=round(b2$par),ncol=5) 

fix2<-rep(0,5) 
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for( j in 1:5){ 

M[,j]<-matrix(rbinom(round(b2$par)*5,1,pif[j]),nrow=round(b2$par),ncol=1) 

} 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

g<-apply(m,1,sum) 

for (j in 1:5){ 

fix2[j]<-sum(g==j) 

} 

fchihats1[,i]<-fix2 

} 

DFT3<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fchihats1[1:5,i],fiexp[1:5,i]) 

DFT3[i,]<-disc 

} 

Pc<-sum(DFT3>DFT0)/500 

box1[k]<-Pc 

} 

boxplot(box1) 

points((sum(DFT1>DFTa))/500,col=2) 

#β)Χ's generated by rbinom with N=Nhats,p=phats# 

box2<-rep(0,100) 

for( k in 1:100){ 

fio<-rep(0,5) 

M<-matrix(0,nrow=round(b1$par),ncol=5) 

for( j in 1:5){ 

M[,j]<-matrix(rbinom(round(b1$par)*5,1,pi[j]),nrow=round(b1$par),ncol=1) 

} 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

g<-apply(m,1,sum) 

for (j in 1:5){ 
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fio[j]<-sum(g==j) 

} 

m0<-apply(m,2,sum) 

r0<-nrow(m) 

b2<-optim(c(150),mulik,x=m0,r=r0,method="BFGS",hessian=TRUE) 

pif<-rep(0,5) 

for (j in 1:5){ 

pif[j]<-m0[j]/b2$par 

} 

b2f<-c(b2$par,pif) 

piv1<-pid(m0[1:5],b2$par,pif[1:5]) 

Niv1<-(1/b2$par)-(1/(b2$par-r0)) 

Npiv1<-c(Niv1,piv1) 

piNh1<-piN(pif[1:5]) 

varpN1<-matrix(0,6,6) 

for(j in 1:6){ 

varpN1[j,j]<-Npiv1[j] 

} 

for(j in 1:5){ 

varpN1[1,1+j]<-piNh1[j] 

varpN1[1+j,1]<-piNh1[j] 

} 

Nphats<-mvrnorm(500,b2f,solve(-varpN1)) 

fiexp<-matrix(0,5,500) 

for (i in 1:500){ 

fiexp1<-dpoibin(kk=1:5,pp=Nphats[i,2:6],wts=NULL)*(Nphats[i,1]) 

fiexp[,i]<-fiexp1 

} 

DFT0<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fio[1:5],fiexp[1:5,i]) 

DFT0[i,]<-disc 

} 
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fchihats2<-matrix(0,5,500) 

r2<-matrix(0,1,500) 

for(i in 1:500){ 

fix<-rep(0,5) 

M1<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,2]),nrow=round(Nphats[i,1]),ncol=1) 

M2<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,3]),nrow=round(Nphats[i,1]),ncol=1) 

M3<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,4]),nrow=round(Nphats[i,1]),ncol=1) 

M4<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,5]),nrow=round(Nphats[i,1]),ncol=1) 

M5<-

matrix(rbinom(round(Nphats[i,1]),1,Nphats[i,6]),nrow=round(Nphats[i,1]),ncol=1) 

M<-cbind(M1,M2,M3,M4,M5) 

indx<-apply(M,1,sum)>0 

m<-M[indx,] 

g<-apply(m,1,sum) 

for (j in 1:5){ 

fix[j]<-sum(g==j) 

} 

fchihats2[,i]<-fix 

} 

DFT4<-matrix(0,500,1) 

for (i in 1:500){ 

disc<-Dft(fchihats2[1:5,i],fiexp[1:5,i]) 

DFT4[i,]<-disc 

} 

Pc<-sum(DFT4>DFT0)/500 

box2[k]<-Pc 

} 

boxplot(box2) 

points((sum(DFT2>DFTb))/500,col=2) 
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