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ABSTRACT 

 

 

Dimitra Zioga 

 

Influenza rates among different age groups in the federal states of 

Germany - A statistical analysis 

May 2018 

 

This thesis follows the influenza surveillance data and analysis of  the German 

federation from  2001-2015  for understanding the patterns exhibited in each German 

federal state. The statistical analysis defines patterns per age group as it was expected, 

as well as per state. This surveillance platform follows influenza pandemic events 

during these years and this affect seasonal epidemic statistics. The analysis is 2-fold 

(exploratory analysis and model-based inference) employing conventional statistics as 

well as Zero Inflated Model (ZIP) and Autoregressive Conditional Poisson (ACP) 

models. Many of the theories related with the transmissibility between human and 

avian species, observation of upward trends after a pandemic and the age group 

specific characteristics that may be related with incomplete vaccination appear 

throughout this analysis. In conclusion, this valuable methodology can correlate 

demographic and population elements, with the actual biology of the infection and 

provide a roadmap for influenza surveillance and prevention. 
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ΠΕΡΙΛΗΨΗ  

 

Δήκεηξα Ζηώγα 

 

Ποζοζηά γπίπηρ μεηαξύ διαθοπεηικών ηλικιακών ομάδων ζηα 

ομοζπονδιακά κπαηίδια ηηρ Γεπμανίαρ - ΢ηαηιζηική ανάλςζη 

                        Μάηνο 2018 

 

Η παξνύζα δηπισκαηηθή εξγαζία παξαθνινπζεί ηα δεδνκέλα επηηήξεζεο θαη 

αλάιπζεο ηεο γξίπεο ηεο γεξκαληθήο νκνζπνλδίαο από ην 2001-2015 γηα ηελ 

θαηαλόεζε ησλ κνηίβσλ πνπ παξαηεξνύληαη ζε θάζε γεξκαληθό νκνζπνλδηαθό 

θξαηίδην. Η ζηαηηζηηθή αλάιπζε πξνζδηνξίδεη ηα κνηίβα αλά ειηθηαθή νκάδα όπσο 

αλακελόηαλ, θαζώο θαη αλά θξαηίδην. Απηή ε πιαηθόξκα παξαθνινύζεζεο 

αθνινπζεί ηα γεγνλόηα παλδεκίαο γξίπεο θαηά ηε δηάξθεηα απηώλ ησλ εηώλ θαη απηό 

επεξεάδεη ηηο ζηαηηζηηθέο επνρηθήο επηδεκίαο. Η αλάιπζε απνηειείηαη από δύν κέξε 

(δηεξεπλεηηθή αλάιπζε θαη ζπκπεξάζκαηα κε βάζε ην κνληέιν) πνπ ρξεζηκνπνηνύλ 

ζπκβαηηθά ζηαηηζηηθά ζηνηρεία, θαζώο επίζεο κνληέια (ZIP) θαη απηνπαιίλδξνκα 

κνληέια Poisson (ACP). Πνιιέο από ηηο ζεσξίεο πνπ ζρεηίδνληαη κε ηε 

κεηαδνηηθόηεηα κεηαμύ αλζξώπσλ θαη εηδώλ πηελώλ, ε παξαηήξεζε ησλ αλνδηθώλ 

ηάζεσλ κεηά από κηα παλδεκία θαη ηα εηδηθά ραξαθηεξηζηηθά ηεο νκάδαο ειηθηώλ πνπ 

κπνξεί λα ζρεηίδνληαη κε ηνλ ειιηπή εκβνιηαζκό εκθαλίδνληαη ζε όιε ηελ αλάιπζε. 

΢πκπεξαζκαηηθά, απηή ε πνιύηηκε κεζνδνινγία κπνξεί λα ζπζρεηίζεη ηα 

δεκνγξαθηθά ζηνηρεία θαη ηα ζηνηρεία ηνπ πιεζπζκνύ, κε ηελ πξαγκαηηθή βηνινγία 

ηεο κόιπλζεο θαη λα παξέρεη έλαλ νδηθό ράξηε γηα ηελ επηηήξεζε θαη ηελ πξόιεςε 

ηεο γξίπεο. 
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1. Introduction 

 
Influenza or „‟flu‟‟ is a highly contagious infectious disease that attacks the human 

respiratory track, the nose, throat and lungs. Is caused by the influenza RNA virus and 

has a toll in people of all age groups. A number of influenza epidemics in the 20th 

century is responsible for millions of deaths worldwide. The list includes the worst 

epidemic in American history, the Spanish influenza outbreak that took the life of 

more than 500,000 people in 1918. Today influenza persists as an extremely serious 

infectious disease, although the mortality rates and the threat to the general population 

has substantially decrease. The significance as a public health threat is evident with 

20000 lives lost on US alone on an annual basis. Approximately 20,000 people die of 

the flu in the United States every year. The influenza virus attacks the human 

respiratory tract, causing symptoms such as fever, headaches, fatigue, coughing, sore 

throat, nasal congestion, and body aches. 

 

Figure 1 Understanding Influenza (Flu) Infection: An Influenza Virus Binds to a Respiratory 

Tract Cell https://www.cdc.gov/flu/images.htm 

There are four types of influenza viruses: A, B, C and D with the first three types 

known to affect humans. Human influenza A and B viruses cause seasonal winter 

epidemics of disease (almost every winter). The emergence of novel diverse type A 

influenza virus can cause an influenza pandemic upon infection in humans. Influenza 

type C infections generally present mild respiratory illnesses and are not considered to 

be associated with epidemics, unlike influenza D viruses that have not been reported 

https://www.cdc.gov/flu/images.htm
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to infect or cause illness symptoms to humans. influenza D viruses primer target is 

cattle. Influenza A virus (IAV) is an envelope form, segmented, single, negative-

stranded RNA virus that belongs to the family Orthomyxoviridae. The waterfowl that 

migrates are the natural reservoirs for IAVs, but these viruses have a broad range of 

organisms that infect predominantly humans, domestic and wild birds, dogs, cats, 

dogs horses, mink and marine mammals, including seals and whales (Webster, 

1992).IAVs are classified into subtypes based on two surface viral proteins 

hemagglutinin (H) and neuraminidase (N). There are 18 different hemagglutinin 

subtypes and 11 different neuraminidase subtypes. ( H1 through H18 and N1 through 

N11 respectively). IAV can be further divided into different strains. Current subtypes 

of human influenza A viruses are influenza A (H1N1) and influenza A (H3N2) 

viruses. In the spring of 2009, a new very different influenza A (H1N1) human virus 

(CDC 2009 H1N1 Flu website) emerged and caused illness. This new different virus 

was the cause of the first influenza pandemic in more than 40 years. That virus was 

tagged as the “2009 H1N1”, and now is the predominant H1N1 virus subtype, that 

circulate among humans. 

Type A is considered the most virulent and is attributed for some of the most lethal 

pandemics in the 20th century (Table 1). 

 

Table 1. Lethal influenza pandemics in the 20th century 

Virus Type Pandemic Mortality 

H1N1 Spanish flu in 1918, 20-100 million 

H2N2 Asian flu in 1957 1 - 1.5 million 

H3N2 Hong Kong flu in 1968 0.75 - 1 million 

H5N1 Avian flu in 2004 106.000 - 396.000 

  
There is no similar subtype classification for Influenza B viruses (IBVs) but a division 

exists into lineages and strains. From the current circulating influenza B viruses, two 

key lineages are recognized: B/Yamagata and B/Victoria. CDC has developed an 

international acclaimed nomenclature for influenza viruses that was accepted and 

communicated by WHO in 1980 Bulletin of the World Health Organization (Bulletin, 

1980).  

http://www.cdc.gov/h1n1flu/
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Briefly, this system employs antigenicity (A, B, C), the host of origin for non-human 

viruses (swine, chicken), the geographical origin (Hong Kong, Taiwan) the strain 

number (7, 12) the year of isolation (1968, 2009). For IAVs, as more information is 

available with the surface antigen proteins this is also provided.  

IAVs (H1N1), (H3N2), and at least one or two IBVs are included in manufacturing 

each year‟s influenza vaccine. The exact type and ratio varies on the vaccine type. 

The flu vaccine protects against viruses that are either identical or share a degree of 

similarity to the viruses in the vaccine. The seasonal flu vaccine does not offer 

protection against the less prevalent influenza C viruses (ICVs). Also, this generic 

vaccine will not prevent infection and illness caused by other viruses or they may 

appear flu-like symptoms and they are spread out during the flu season. 

The seasonal outbreaks predominantly occur in autumn, winter or within the early 

spring months. They are also termed as „‟flu waves‟‟. There are three major virus 

transmission paths, as they may spread 1) directly, through the air, when inhaling 

respiratory droplets produced by an infected individual during coughing or sneezing 

(> 500.000 virus particles are released, when a person's sneezes), 2) through hand-to-

eye, hand-to-mouth, or hand-to-nose transmission. Children are more infectious than 

adults and can transmit the virus from just before the development of symptoms, till 

up to two weeks after infection, while immunocompromised individuals can shed the 

virus for longer time, or 3) contact with contaminated objects or surfaces IAVs can 

also be transmitted through contact with contaminated objects or surfaces, due to their 

persistence there for about fifteen minutes. 

 

The characteristics of flu are sudden onset, high-grade fever, chills, runny nose, sore 

throat, cough, muscle tenderness and/or headache. Every year, many people are 

hospitalized and some of them die, due to flu-associated complications, such as 

pneumonia. People at high risk to develop serious complications, due to age, 

occupation, pregnancy, underlying medical conditions, immunosuppression, should 

be yearly vaccinated routinely, in order to prevent them. The flu can be, frequently, a 

reason for school and workplace abstinence. 
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2. Influenza epidemiology 

 

2.1 Symptoms and Diagnosis 

 

The influenza virus attacks the human respiratory tract, causing symptoms such as 

fever, headaches, fatigue, coughing, sore throat, nasal congestion, and body aches.  

 

Table 2 presents the most common symptoms and their differences between the flu 

and a cold.  

Table 2 Influenza and cold symptoms (according to the CDC flu website) 

Flu vs Cold 

Signs and Symptoms Influenza Cold 

Symptom onset Abrupt Gradual 

Fever Usual; lasts 3-4 days Rare 

Aches Usual; often severe Slight 

Chills Fairly common Uncommon 

Fatigue, weakness Usual Sometimes 

Sneezing Sometimes Common 

Stuffy nose Sometimes Common 

Sore throat Sometimes Common 

Chest discomfort, 

cough 

Common; can be severe Mild to moderate; hacking cough 

Headache Common Rare 
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2.1.1 Diagnostic Methods adopted by Alison et al (Allison, 2016) 

 

As influenza viruses target respiratory epithelium; thus procedures that sufficiently  

sample this site provide the best diagnostic yield, and as a result, nasopharyngeal (NP) 

swabs or nasal washes are more sensitive compared to less invasive throat swabs 

(Atmar Ral, 2011; Hayden FaP, 2009).  The laboratory methods used for diagnosis are 

either direct or indirect immunofluorescence, viral culture, rapid antigen detection and 

molecular detection (Landry, 2011; Atmar Ral, 2011; Hayden FaP, 2009).
 
Table 

3 highlights some of the key differences between these methodologies. Molecular 

diagnostics are not cost effective but becoming increasingly common. Based on 

participation data from College of American Pathology (CAP) surveys, the number of 

laboratories utilizing molecular methods increased from approximately 217 in 2013 to 

approximately 360 in 2014. Nevertheless, the use of rapid antigen tests remain the 

most popular according to CAP survey participation data, according to whom at least 

2,205 laboratories in 2013were using them and increased to 2,900 in 2014. 

 

Table 3 Comparison of Methods for Influenza Detection (adopted from (Allison, 

2016) 

Method  Sensitivity

  

Specificity

  

Potential 

to Detect 

Other 

Respirator

y Viruses  

Turnaround 

Time  

Cost  Hands 

On/Expert

ise  

Culture   High Very high Very High Low Average

  

Low 

DFA 
a
  Average  High Average  Average Average Low 

Antigen  Low High Average  Very High Very 

High  

 Very High 

Nucleic 

acid 

detection

  

Very High Very High Variable   High Low Variable  

a
 Direct fluorescent antibody; rating scale Low to Very High, with  Very 

High indicating that the method is very favorable for a particular attribute.  
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2.2 Prevention - Management  
 
The best way to prevent seasonal flu and its transmission, is annual vaccination, as 

well as respecting hygiene rules, for example covering of the mouth  with the forearm 

during cough and frequent hand washing.  

According to the CDC recommendations, a number of vaccines are available for 

influenza viral infections. This list includes inactivated and recombinant influenza 

vaccines. These therapeutic options are available for the winter season of 2017-2018. 

Both trivalent (three-component) and quadrivalent (four-component) flu vaccines will 

be available. The vaccine is seasonal meaning that the result of the application during 

the flu season, directs and affects the development of more effective vaccines for the 

seasons to come. The traditional flu vaccine is made to protect against a major trio of 

viruses (thus called trivalent): the H1N1 (A virus), the H3N2 (A virus) and an 

influenza B virus. Trivalent flu vaccines, that consists of three different parts include: 

Standard-dose trivalent shots (IIV3), that are manufactured using virus grown in eggs. 

with different flu shots to be approved for different age groups. Most shots are 

injected intramuscularly in the arm with a needle and they have different formulation 

or/and content according to the age group that they are addressed. For the older (>65 

years) a high dose trivalent shot is given, where as a recombinant trivalent egg-free 

shot is preferred for adults (18-65) and pregnant women, and an alternative trivalent 

shot with an adjuvant immune-stimulant has been in the circulation for the >65 years 

bracket.  

The quadrivalent flu vaccine is designed to be more diverse and therefore protecting 

against four different flu viruses; two influenza A viruses and two influenza B viruses. 

The selection of the second B virus was not straightforward, as two very different B 

viral lineages have circulated in the general population.   

The quadrivalent flu vaccines provide more options as they are approved for 

administration to a broader age bracket including 6 year old kids, an intradermal (ID) 

variety for the general population (18-65) to skip the IM delivery with a smaller 

needle, a flu shot that contains virus growing in cell culture (4 years or older) and the 

recombinant shot for the broader population (18-65).  

 

https://www.cdc.gov/flu/about/qa/flushot.htm
https://www.cdc.gov/flu/protect/vaccine/how-fluvaccine-made.htm#egg-based
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Infection Control 

Reasonably effective ways to reduce the transmission of influenza include 

good personal health and hygiene habits such as 1) avoiding contact with 

eyes, nose or mouth, 2) frequent hand washing with soap and water, or with 

alcohol-based hand rubs, 3) covering the mouth and nose, while coughing and 

sneeze, using the forearm. Other effective measures to prevent spread and 

infection is the reduction of visits in crowded places during an outbreak, the 

avoidance of close contact with sick people and staying at home, if infected. 

Although face masks might help prevent transmission, there is mixed 

evidence on the beneficial effects in the community.  Smoking raises the risk 

of contracting influenza, as well as producing more severe disease symptoms.   

Since influenza spreads through both aerosols and contact with contaminated 

surfaces, surface sanitizing may help prevent some infections.  Alcohol is an 

effective sanitizer against influenza viruses, while quaternary ammonium 

compounds can be used with alcohol, so that the sanitizing effect lasts  

longer.
 
In hospitals, quaternary ammonium compounds and bleach are used to 

sanitize rooms or equipment that have been used in by or during the care of  

patients with influenza symptoms. At home, this can be done effectively with 

a diluted chlorine bleach.  

Social distancing strategies used during past pandemics, such as closing 

schools, churches and theaters, slowed the spread of the virus but did not have 

a large effect on the overall death rate. It is uncertain if reducing public 

gatherings, by for example closing schools and workplaces, will reduce 

transmission since people with influenza may just be moved from one area to 

another; such measures would also be difficult to enforce and might be 

unpopular. When small numbers of people are infected, isolating the sick 

might reduce the risk of transmission. 

 

 

 

https://en.wikipedia.org/wiki/Hand_washing
https://en.wikipedia.org/wiki/Surgical_mask
https://en.wikipedia.org/wiki/Particulate
https://en.wikipedia.org/wiki/Alcohol
https://en.wikipedia.org/wiki/Quaternary_ammonium_cation
https://en.wikipedia.org/wiki/Quaternary_ammonium_cation
https://en.wikipedia.org/wiki/Bleach
https://en.wikipedia.org/wiki/Social_distancing
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2.3 Flu Complications 

The majority of the flu infected individuals will recover in a timeframe of days and no 

more than two weeks. A number of people may develop complications as the 

aftermath of flu with more characteristic the example of pneumonia. Occasionally, flu 

complications may escalade in life threatening conditions that vary on the infected 

individual and may lead to death. The list of complications besides pneumonia 

includes bronchitis sinus and ear infection. Chronic health conditions will most 

probably worsen by a flu infection. Flue triggers for example asthma complications or 

chronic congestive heart failure. 

 

2.4 Influenza therapeutics 

https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm 

 

A  number of antiviral medications target influenza viruses have been proven a crucial 

adjunct to influenza vaccines for the effective management and control of  influenza 

infections. This list includes 5 available, FDA approved, prescribed antiviral drugs 

that they either treat or prevent influenza:  

Oseltamivir (oral administration, available as a generic version or under the name 

Tamiflu®),  

Zanamivir (Relenza®) inhalatory,  

Peramivir (Rapivab®) intravenous.  

These drugs are chemically related antivirals as they share the same target 

(neuraminidase inhibition) and have been found against both influenza A and B 

viruses. 

Oseltamivir was approved by the FDA and became available at the end of 2016. 

Amantadine and rimantadine are antivirals belong in the class of  adamantanes. The 

latest two medications are active against influenza A, but share no activity for 

influenza B viruses. Amantadines present site effects that have been a potential 

limitation to their use. Nausea, dizziness and insomnia, have been reported as the 

most common adverse effects from their use.  

 

 

https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm514854.htm
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3. Influenza Surveillance 

 

The health toll of influenza remains high through the years and a major public 

concern. Although there is a variation, it can be estimated with certainty that it causes 

3-5 million cases of severe illnesses that resulted in 250–500 thousand deaths 

annually around the world (WHO, 2009). The pandemics that occur for the rise of a 

new antigenic subtype from time to time, especially for the last 100 years that a 

reasonable tracking system exist, will spread for person to person raising a new red 

alert. The epidemics will keep up occurring on a constant annual basis, leaving a 

considerable portion of the public constantly susceptible as a result of the virus A 

evolution that leads in the evasion of human immunity. Temperature, as it was 

mentioned so crucial for the occurrence of the epidemics, with the low winter 

temperatures to be dominant for these events with the exception of regions in the 

tropics. For many countries, traditional sentinel surveillance systems exist that trace 

and track influenza-like illness (ILI) occurrence and the prevalence of PCR-confirmed 

influenza samples among tested specimens. The product of these quantities has been 

proposed as a proxy for the incidence of influenza, up to an unknown multiplicative 

constant, under certain assumptions (Goldstein, 2011).  

CDC has a comprehensive collection of ILI weekly surveillance data that were 

gathered routinely for over 3 decades. At the same time a number of algorithms have 

been developed to foster the estimation for ILI based on online search queries 

(Ginsberg, 2009); the Google Flu Trends (GFT) real time ILI data are now available 

in 29 countries around the globe. The surveillance data have actual value to assess the 

activity of the virus in the general population, but at the same time such measures 

typically do not reflect the actual influenza infection rates. For example, the ILI is 

determined through the number of patients that would be diagnosed with the infection 

during the visit to the physician in US but this is rather limited for the sick non 

diagnosed. In addition, the underreporting occurs commonly due to asymptomatic 

infections and a substantial number of symptomatic but unattended. These monitoring 

pitfalls, taken together with other monitoring errors, create a number of challenges for 

highlighting the complete picture for the influenza epidemiologic basis utilizing these 

data.  
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To cover this gap, Bayesian inference methods have been developed and exist. When 

these methods would be coupled with dynamical models, they can offer accurate 

approximations to these data and partially translate dynamical systems (Shaman, 

2012). The work of including previous publication (WELCH, 2011) focuses in the 

application of Bayesian inference frameworks (also known as data assimilation 

methods) that essentially simulate seasonal outbreaks and demonstrated that there is a 

possibility to make reliable predictions of the peak timing of seasonal influenza 

employing GFT ILI data combined with regional isolation data of viral influenza 

(called and ILI+) (Shaman, 2012). By using the same inference methods the 

researchers were able to estimate key epidemiological parameters for both pandemic 

and seasonal outbreaks, employing the total number of outbreaks in 115 major US 

cities from the 2003–2004 through 2012–2013 influenza seasons, and demonstrate 

how big-data-driven surveillance can be valuable to reveal the transmission dynamics 

of influenza among the general population. 

Annual influenza epidemics significantly burden health care. The anticipation of a 

influenza epidemics has the marginal advantage of timely preparation. A recent 

survey from the Belgian Scientific Institute of Public Health (WIV-ISP) monitors 

both influenza and influenza-like illnesses (ILIs) incidences and provides reports on a 

weekly basis (Michiels, 2017). The system is electronically organized in a such a 

form that allows general practitioners and specialized physicians that works in out-of-

hour cooperatives (OOH GPCs) to register ILIs diagnosis. This accessible electronic 

system that constitutes these records (EHR) appears as an interesting working tool. 

EHR was recently identified as a core of exploring two objectives the putative value 

of EHR to model seasonal influenza epidemics in combination with ILI data from the 

OOH GPC Deurne-Borgerhout, Belgium as well as to assess the quality of these data 

for the accurate prediction of potential new epidemics that ultimately will strengthen 

the national influenza surveillance by WIV-ISP. 

The methodology included assessment of the validity for the OOH GPC data set with 

a direct comparison of OOH GPC ILI data with WIV-ISP ILI data for the time period 

2003-2012 and by employing Pearson's correlation. The best fitting prediction model 

employing the OOH GPC data that was developed on 2003-2012 data was further 

validated on the 2012-2015 data. This model was further compared with other 

commonly used and well established. This analysis performed, formulated an 1-week 

and one-season ahead prediction. In the OOH GPC, 72,792 contacts were recorded 

from 2003 to 2012 and a total number of 31,844 for the time period from 2012 to 
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2015. The mean ILI diagnosis/week was calculated in 4.77 (Interquartile Range, IQR, 

3.00) and 3.44 (IQR 3.00) for the two time periods selected respectively.  

The correlation among OOHs and WIV-ISP ILI incidence was calculated high 

ranging from 0.83 up to 0.97. The addition of a secular trend (or otherwise a 

5 year cycle) and the use of an first-order autoregressive modeling accounting for the 

epidemic component in coordination with the use of Poisson likelihood yielded the 

best predictive results. The selected model was capable for the best 1-week ahead 

prediction performance when compared to the existing surveillance methods. There 

was less accuracy prediction for the starting week of the epidemic (±3 weeks), fact 

that didn't apply for the predicted duration of the next season. 

In conclusion, the OOH GPC data are amenable for extensive use  to 

predict influenza epidemics both in accuracy and in speed for 1-week and one-season 

ahead. There is also a plausible complementary use for the 

national influenza surveillance systems that will facilitate optimal preparation upon 

epidemic anticipation.  
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3.1 Surveillance of influenza in Germany  
 
The impact of influenza pandemics have been enumerated and evaluated extensively 

in Germany (Buchholz, 2016). Analysis of the literature and the available data sets 

has revealed that dissection of 4 pandemics and calculation based on monthly and 

weekly all dead statistics provide 426,600 (1918-1919), 29,100 (1957-1958), 46,900 

(1968-1970) and 350 (2009) excess pandemic-related deaths. There also 

determination of excess mortality ranging between  For 691 per 100,000 (0.69 % in 

1918-1919) and 0.43 per 100,000 (0.00043 % in 2009). These numbers are not very 

different for the pandemic mortality calculations and estimations globally. 

 

The available influenza surveillance systems in Germany include the one based on 

information from the Robert Koch Institute (RKI) that incorporates primarily data of 

the national sentinel system of the "Working Group Influenza" (Arbeitsgemeinschaft 

Influenza) that enlist reports of primary care physicians about patients with acute 

respiratory illnesses and results of laboratory tests of respiratory samples taken from 

patients with influenza-like illness. The virological lab results are supplemented by 

data from the state laboratories of Baden-Wuerttemberg, Bavaria, Mecklenburg-

Western Pomerania, Saxony, Saxony-Anhalt and Thuringia. The mandatory reports of 

laboratory confirmed influenza submitted by county health departments via state 

health departments to RKI were analyzed as well as results from the internet based 

»GrippeWeb« surveillance of syndromic reporting from the general population about 

the individual occurrence of acute respiratory illnesses. This analysis is more 

structured and intuitive but less thorough than the generic respiratory infections 

control and prevention system that calculates the number of positive infectious 

disease diagnoses (pathogens / people affected), that are reported and published, 

according to the federal legislation. The Public Health local services collect data with 

influenza patient-identifier elements including age, sex, weight, medical treatment and 

details on residence. 

 

Depending on the most serious influenza outbreak, we have registered the specific 

year with the corresponding federal state and we have check (monitored) the patients, 

so we can identify specifically the etiology behind distinct increase of flu patients.  
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In 2001, the surveillance system for diseases that require notification was 

standardized in Germany through establishing the Protection against Infection Act 

(Infektionsschutzgesetz: IfSG) ((2000)). This resulted to a direct implementation of an 

electronic surveillance system to monitor infectious diseases outbreaks within the 

national public health institute in Germany, the Robert Koch Institute (RKI). This 

model system was embedded within the case-based electronic surveillance 

system SurvNet@RKI (Faensen, 2006). This effort and others made clear that a 

comprehensive, electronic surveillance system was absolutely necessary. This in fact 

prompted parallel efforts in Germany as well as other countries to establish similar 

reporting systems (Gómez-Outes, 2012). 

 

RKI has provided in detail analyses for recent influenza epidemics (RKI, 2016). 

Among samples of the sentinel the first case was laboratory confirmed in calendar 

week (CW) 41/2015. Laboratory confirmed influenza was detected since CW 46 

continuously and the proportion of positive samples (positivity rate) increased 

substantially in CW 2/2016. The positivity rate is one relatively consistent indicator 

for the determination of the Germany influenza season time frame. The positivity rate 

is an indicator for the determination of the beginning and the influenza season end in 

Germany. Acute respiratory diseases activity that happens in the sentinel practices and 

had surpassed the low background threshold activity in CW 1/2016, reaching 

maximum level between CW 7 and 11/2016. Despite this observed activity, these 

values still remained significantly lower when compared with the observed 2014/15 

and 2012/13 peak week observations. During the influenza epidemic, the influenza-

associated consultations (estimated influenza consultations vs. the expected without 

influenza) were in excess and specifically was 4/100 000 (95 % confidence interval 

(CI) 3 500 000 – 4 500 000). The calculated estimate for the number of influenza-

associated sick certificates (reflects the number of patients in certified healthcare  

need and in fact is fundamental for infants and children, that will not get a certified 

leave of absence) was defined in 2 200 000 (95 % CI 1 900 000 – 2 500 000) and the 

estimation for the infected that were held in the hospital for treatment was 16 000 (95 

% CI 13 000 – 19 000). All these estimated numbers were lower when compared with 

the intense influenza seasons 2012/13 and 2014/15 but significantly in contrast with 

the mild 2013/14 season. Direct comparison with the season 2014/15, reveals less 

number of severe cases  that were observed in the oldest age group (≥ 60 years). 

mailto:SurvNet@RKI
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As the epidemic started, the circulating influenza A(H1N1)pdm09 viruses had a huge 

toll in the younger fraction of the general population. The 2015/16 season, was also 

characterized from an atypical spatial distribution with respect to the influenza 

activity with increasing observed levels from east to west. The molecular 

characterization by the National Reference Center for Influenza (NIC), identified 

Influenza B  at a 55 % for all the respiratory samples with a positive preliminary 

result, 43 % for A(H1N1) pdm09 followed as a close second. There was also a 

sporadic and limited presence for Influenza A(H3N2) viruses that were circulated at 2 

% sporadically. During the next season (2015/16) the majority of the A(H1N1) 

pdm09 viruses had antigenically similar features in alignment to the vaccine virus 

A/California/7/2009. However, the undisputed majority (96 %) of the identified as 

influenza B viruses were members of the Victoria lineage. Notably, that season, this 

B-lineage was not a part of the trivalent influenza vaccine. A number of influenza 

viruses were tested for antiviral efficacy by the NIC and none was even remotely 

sensitive to either oseltamivir or zanamivir. Additional information is gathered by 

additional surveillance systems especially during the hype of the infection seasons. 

For example the results available from the internet platforms such GrippeWeb are in 

agreement and they exhibit good correlation between the Medically Attended Acute 

Respiratory Infection (MAARI) numbers from GrippeWeb and the 

Arbeitsgemeinschaft Influenza supporting the accuracy of the estimates in both 

systems. According to a number of pilot studies from GrippeWeb Plus, in the swabs 

that obtained from a subgroup of participants, through self-administered sampling, 

respiratory viruses were identified in 72 % of samples from patients that were 

symptomatic. The data from a new syndromic sentinel hospital system (»ICOSARI«), 

that uses a case-based, ICD-10- coded information present the analysis of severe acute 

respiratory infections (SAARI) in within the hospital patients grouped by age in three 

recent seasons.  
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4. Methodology 
 (adapted by http://soc-research.info/quantitative_eng/7.html )  

 

4.1 Data  

 
Structure of the German surveillance system that was utilized: In Germany, the 

“Act on the Prevention and Control of Infectious Diseases ” 

 (Infektionsschutzgesetz – IfSG) defines infectious diseases and specifies positive 

diagnoses of pathogens according to federal legislation. The act also explicates two 

separate paths of notification:  

1. The local health public departments are notified for diseases and pathogens. It is 

the responsibility of the local authorities to exhaustively investigate on a case by case 

basis and tracing potential contacts related with these infections. When an 

epidemiological connection is established the notification data are connected on a 

different level For every occasion and notification that qualifies as a case for the RKI 

the anonymity of the data is sustained and the subsequent transfer between the 

corresponding federal state health department to RKI.  

2. There are occasions, where pathogens and infections are notified directly to RKI 

depending on specific case criteria are met. Pathogens are notified to the RKI 

directly, where they are evaluated according to specific case criteria. 

Data collected under provisions (1) and (2) are analyzed and periodically they are 

included in a detailed publication by the RKI Department for Infectious Disease 

Epidemiology.  

There are also specific state regulation for reporting a number of diseases and 

pathogens Bavaria, Berlin, Brandenburg, Hessen, Mecklenburg-W, Rhineland-

Palatinate, Saarland, Saxony, Saxony-Anhalt and Thuringia) only. In this occasion 

even the case definition is altered for a number of diseases and they often published 

in the Epidemiological Bulletin 5/2009. In the database SurvStat@RKI2.0, data 

related with these specific diseases that are reported locally and regionally can be 

retrieved by making the appropriate word selections (eg. “via local and state health 

department”) and setting the appropriate filter that matches with under the 

investigation attribute and  regulation to <according to state specific regulations>.  

 The data update happens on a weekly basis and this update involves both  diseases   

and pathogens reported via local and state health departments or occasionally on a 

monthly basis (for diseases/pathogens notified directly to RKI) and this is 

http://www.rki.de/EN/Content/Prevention/Inf_Dis_Surveillance/inf_dis_down.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2009/Ausgaben/05_09.pdf?__blob=publicationFile
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synchronized  with the reference date that are deployed for publication in 

the Epidemiological Bulletin. These datasets status is time and quality different for 

the two notification paths thus is displayed separately, with the respective reporting 

period added in parentheses.  

There is detailed information available on the causative pathogen and can be 

obtained for most of the diseases. For a number of diseases with an excessive 

number of defined pathogen subtypes or subspecies, these are subsumed to wider 

subcategories.  

Place: Cases reported through the local and state health departments, inserted in the 

notification system are allocated by the local health department county which files 

the case (most often at the residence of the case person). For the cases reported 

directly to RKI the allocation occurs by the residence first three digits of the five 

digit postal code. There are different filters and levels to display  the reported cases 

either by Federal state or Territorial Unit (NUTS Level 2) or County. For the 

cases reported directly to RKI the lowest level, called Region subdivides each 

territorial unit between larger cities and the rural region. For the interpretation of the 

data it should be considered that the localization of cases only reveals the place of 

residence of the case related persons. Information about the place of infection is not 

available in SurvStat@RKI 2.0.  

The recommendation for the comparison between different diseases frequencies in 

the available classes of regions (state, territorial unit or county/region) is 

using incidence assessed in cases / 100,000 inhabitants/ time period) where as the 

case numbers, are a working measure to calculate differences within the population. 

The same measure also applies for direct comparisons between different age groups 

and/or sexes. As it is possible, a simple spike of 1 or 2 cases to lead in big 

measurable incidence in low population group differences is suggested to follow 

thoroughly always both the absolute case numbers and incidence. For example  

when the measured and reported Incidences <0.01, there is always rounding to 0.00. 

The total incidence calculated, refers to the entire period selected from the "Filter 

Settings" segment unless a time period is specified, for example let's say that 

somebody calculate incidence for the entire reporting period since 2011. This was 

common in the earlier SurvStat versions where incidence was calculated for a time 

period of several years. SurvStat@RKI 2.0, provides the option to obtain the mean 

http://www.rki.de/DE/Content/Infekt/EpidBull/epid_bull_node.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction
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incidence by dividing by dividing the total incidence for a number of years by the 

relevant number of years selected in the specific query.  

The population data necessary for the incidence calculation is provided by the states‟ 

statistical offices and updated regularly. To calculate the incidence for a time period 

covering several calendar years, SurvStat@RKI 2.0 computes an average population 

from the population data of the relevant years.  

      SurvStat@RKI 2.0 carries modified and updated time variables that have been 

embedded and they are readily available. The new attributes season 

week and season year come both in two variations, under the names (27) and (40). 

The season year (27) initiates from the 27
th

 calendar week and ends with the 

26
th

 week of the following calendar year. Thus, the first season week (27) is defined 

as the 27
th

 week of the calendar year. This provides a more comprehensive view and 

assist the display for seasonal infectious diseases that present lowest case numbers  

lowest case numbers in the middle of the calendar year (for example norovirus or 

gastroenteritis-presenting infections). Season week (27) will be used as the key 

attribute for column display of the table that carries the results. This variable shifts 

the time-axis by 26 weeks, affecting the resulting diagram that in order to display the 

disease seasonality where the total phenomenon will also be in full display with an 

uninterrupted rise, maximum and fall a far as it concerns case numbers. In the case of 

influenza where the highest case numbers are reported in the first quarter of the year 

a different season week (40) is recommended for a more relevant and detailed 

display. The option to filter the off season weeks by the deselection in the "Filter 

Settings" section in the query form. This will narrow down data vision to a time span 

for the on season influenza season for example (calendar week 40 to week 20 of the 

following year).   

 

Data collection   We primarily collect patient data from SurvStat@RKI2.0  

Höhle, Michael; Riebler, Andrea (2005) : The R-Package surveillance, Discussion 

paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München, 

No. 422, (cases per 100,000 inhabitants per time period) from a number of different 

federal Germany states from 2000 until 2015. These regions include Baden-

Wurttemberg, Bavaria, Berlin, Brandenburg, Bremen, Hamburg, Hessen, 
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Mecklenburg-Vorpommern, Lower Saxony, North Rhine-Westphalia, Rhineland-

Palatinate, Saarland, Saxony, Saxony-Anhalt, Schleswig-Holstein and Thuringia.  

 

Software The RStudio, SPSS, and the GraphPad Prism (Version 7) were used for data 

analysis, and plotting.  

Statistics Values are means of three separate experiments and bars are SEM. 

Differences between means were tested for significance by one-way ANOVA (R 

Studio / SPSS). The significance level was set at P < 0.05. 
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4.2 Models 

 

Zero Inflated Model  

(adapted by SAS/ETS(R) 13.1 User's Guide and wiki/Zero-inflated model) 

Zero-Inflated Count Regression Overview 

A zero-inflated model is a model employed in statistical analysis that is based on the 

probability distribution zero-inflated, for example, a distribution that permits for 

frequent zero-valued observations. The first zero-inflated model is the zero-inflated 

Poisson distribution-based model, that focuses on a random event that contains excess 

zero-count data assessed when time applies as the unit (Lambert, 1992). As a typical 

real life example, the number of insurance claims within a given population and for a 

specific type of risk would be zero-inflated by this faction of the people who have not 

include in their policies insurance against the risk and thus are unable to claim. The 

zero-inflated Poisson (ZIP) model employs two basic components corresponding to 

two zero generating processes. The result of a Bernoulli trial is used to determine 

which of the two processes is used. For observation , Process 1 is chosen with 

probability  and Process 2 with probability . Process 1 generates only zero 

counts. Process 2 generates counts from either a Poisson or a negative binomial 

model. In general, 

 

Therefore, the probability of  can be described as 

 

where  follows either the Poisson or the negative binomial distribution.  

When the probability  depends on the characteristics of observation ,  is expressed 

as a function of , where  is the  vector of zero-inflation covariates and 

 is the  vector of zero-inflation coefficients to be estimated. (The zero-

inflation intercept is ; the coefficients for the  zero-inflation covariates are )  

 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Insurance_claim
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The function  that relates the product  (which is a scalar) to the probability  is 

called the zero-inflation link function,  

  

In the zero-inflated Poisson (ZIP) regression model, the data generation process as it 

was briefly described  

 

where . 

Thus the ZIP model is defined as 

 

The conditional expectation and conditional variance of  are given by 

 

 

Note that the ZIP model (as well as the ZINB model) exhibits overdispersion 

because . 

In general, the log-likelihood function of the ZIP model is 

 

After a specific link function (either logistic or standard normal) for the probability 

 is chosen, it is possible to write the exact expressions for the log-likelihood function 

and the gradient.  
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Autoregressive Conditional Poisson Models (employ elements from 

(Ghahramania, 2009) 

 

The Autoregressive Conditional Poisson (CAR or ACP) models are following 

observations are they are initially developed by Heinen in 2003 (Heinen, 2003). These 

models have as basic characteristic that they handle observations and data with 

discreteness. They attempt to address over-dispersion and place a special emphasis in 

serial correlation in data-series. There are many variations of these models in 

numerous applications, estimations can be made using maximum likelihood 

techniques and the easily incorporation of explanatory variables is easy (Holloway, 

2010).  

It is important to state, that the ACP models have been gradually developed on the 

need to process phenomenically complex financial volatile time data series, including 

returns on stocks and stock options,  returns based on foreign exchange rates, that 

vary due to time. These observations were firstly made by the analysis of Nicholls and 

Quinn (Nicholls, 1982) and Engle with all his colleagues but predominantly his work 

with González-Rivera (1991) (Engle, 1991; Engle, 1982). These observations 

gradually led in the development of the Random Coefficient Autoregressive (RCA) 

models by Nicholls and Quinn (Nicholls, 1982), the Autoregressive Conditional 

Heteroscedastic (ARCH) model (Engle, 1982). At the same time a specialized 

platform including the Generalized Autoregressive Conditional Heteroscedastic 

(ARCH) and (GARCH) models (Bollerslev, 1986) have provided a more convenient 

framework for the study of the volatility stemming from time in financial and 

economic-driven observations. This has become a matter of continuous interest and 

dissect the high impact components of GARCH models (Thavaneswaran, 2009). This 

line of research is directly related with the ACP models. The issues of discreteness, 

overdispersion and autocorrelation are further analyzed to address modern and post 

modern financial issues with extensive transformations that compile both auto 

regression model families.   

Spatial Data as a Gaussian Random Field Model 

http://mc-stan.org/documentation/case-studies/IAR_Stan.html 

When data are presented with a spatio-temporal structure and when observations from 

proximal (or neighboring regions) demonstrate higher correlation than observations 

http://www.sciencedirect.com/science/article/pii/S0165176509002808#bib8
http://www.sciencedirect.com/science/article/pii/S0165176509002808#bib8
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between distant regions, this correlation can be attributed for using the class of spatial 

models called “CAR” models (Conditional Auto-Regressive) introduced by Besag 

and collaborators (Besag, 1991) . 

A full mathematical articulation and description has been provided through years and 

let in the development of ACP models (According to The following math and its 

notation is taken from “Gaussian Random Field Models for Spatial Data” by Murali 

Haran, which is Chapter 18 of the “Handbook of Markov Chain Monte Carlo”). 

For the first time, it has been shown by Besag in 1974 (Besag, 1974) that encoding for 

the proximal relations among spatial regions (in a similar fashion with a lattice), in 

addition to acquiring as well as adjusting results from the lattice systems physics of 

particles and the Hammersly-Clifford theorem provide an equivalent distribution. This 

distribution between the local specification of the conditional distribution for each 

particle given the proximal (neighboring) particles as well as the global specification 

of the joint distribution of all particles. This specification of the joint distribution via 

the local specification of the conditional distributions of the individual variables is 

defined as a Markov random field specification. 

Therefore, for a given set of observations that were taken at n different sub regions of 

a region with a number of dimensions D (for spatio-temporal data, the number of 

dimensions is usually between 1 and 4, for example, 1-3 spatial dimensions and 1 

time dimension), spatial interactions between regions ni and nj can be modeled 

conditionally as a spatial random variable w as follows: 

 Let ω−i denote the n- length vector ω excluding ωi. 

 We model each ωi in terms of its full conditional distribution which is its 

distribution given the remaining random variables, w−i: 

(c i j ω j ,κ i
− 1)  i=1,…,n ω i  |w − i ,Θ∼N 

 

where cij describes the neighborhood structure such that cij is nonzero only 

if i and j are neighbors and κ is the precision (inverse variance) parameter. 
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CAR Models 

The neighborhood structure of the κ and cij elements can be stored in 

an n×n×n matrix Q where the diagonal elements represent each of the n sub regions 

with value κi and the off-diagonal elements contain −κicij if subregions i and j are 

adjacent and 0 otherwise. Usually a common precision parameter τ, is assumed, 

where κi= =η for all i. 

When the matrix Q is symmetric and positive definite, this specifies a valid joint 

distribution, 

ω|Θ∼N(0,Q
−1

) 

with Θ the vector of the precision parameters. This provides a proper prior for a CAR 

model. However evaluation of σ requires computing the covariance matrix Q
−1

, which 

is computationally expensive for large values of n. 

 

CAR priors for spatial random effects 

Conditional autoregressive (CAR) models are popular as prior distributions for spatial 

random effects with areal spatial data. If we have a random 

quantity ϕ=(ϕ1,ϕ2,...,ϕn)′ at n areal locations, the CAR model is often expressed via 

full conditional distributions: 

 

ϕi∣ϕj, j≠i∼N (α                  bijϕj,η i 
−1

i) 
 

ηi a spatially varying precision parameter, and bii=0  

By Brook‟s Lemma, the joint distribution of ϕ is then: 

ϕ∼N(0,[Dη(I−αB)]
−1

) 

By the following assumptions: 

 Dτ=τD  

 D=diag(mi) an n×n diagonal matrix with mi = the number of neighbors for 

location i 

 I: an n×n identity matrix 

 α: a parameter that controls spatial dependence (α=0 implies spatial 

independence and α=1 collapses to an intrinsic conditional 

autoregressive (IAR) specification) 
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 B=D
−1

W: the scaled adjacency matrix 

 W: the adjacency matrix (σi=0, if i is a neighbor of j, and σij=0 otherwise) 

then the CAR prior specification simplifies to: 

ϕ∼N(0,[η(D−αW)]
−1

) 

 

The α parameter ensures propriety of the joint distribution of ϕ as long 

as |α|<1| (Gelfand, 2003) However, α is often taken as 1, leading to the IAR 

specification which creates a singular precision matrix and an improper prior 

distribution. 

A Poisson specification 

With the hypothesis that data from counts have been accumulated y1,y2,...,yn at a 

number of n locations, and is anticipated that the neighboring locations will have 

similar counts. With a Poisson likelihood: 

yi∼Poisson (exp (Xiβ+ϕi+log(offseti) 

 

 Xi is a design vector (the i
th

 row from a design matrix),  

β is a vector of coefficients,  

ϕi is a spatial adjustment, and log(offseti)accounts for differences in expected values 

or exposures at the spatial units (popular choices include area for physical processes, 

or population size for disease applications). 

If we specify a proper CAR prior for ϕ, then we have 

that ϕ∼N(0,[η(D−αW)]
−1

) where η(D−αW) is the precision matrix ΢
−1

. A complete 

Bayesian specification would include priors for the remaining parameters α, τ, and β, 

such that our posterior distribution is: 

p(ϕ,β,α,τ∣y)∝p(y∣β,ϕ)p(ϕ∣α,τ)p(α)p(η)p(β) 
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5. Results 

 

5.1. Exploratory analysis 

 
The first part of the approach was to identify the distribution and the significance of 

data curated per federal state per year. Fig. 1 illustrates a box-plot with the influenza 

infection rates in respective German federal states through the years 2000-2015 as 

they become available through the RKI surveillance resources. The key observation is 

that influenza infection rates appear higher in Bavaria and Saxony, thus the virus 

affects more inhabitants independent of age in this states. The lower infection rates  

also correlate with less populated  states including Hessen and Saarland, with the 

lowest rates observed in Hessen. 

 
 

 
 
Figure 2. Box plot of influenza infection rates for German federal states from 2000-2015. 

Data were from the case-based electronic surveillance system SurvNet@RKI 

 

 
 

 

mailto:SurvNet@RKI
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Table 4  Descriptive influenza data in 2014 for all federal states. The table presents 

the basic descriptive measures of the number of patients (per 100,000 inhabitants) 

with influenza for all German federal states collectively (minimum, median and first 

and third quartile). 

 

min 

 

1
st

 Qu. 

 

Median 

 

mean 

 

3
rd 

Qu. 

 

max 

 

10.45 49.49 104.60 123.90 158.15 307.16 

 

Table 4 places emphasis in the brief cumulative all state available data of influenza 

patients in 2014. It is observed an 123.90 (per 100,000 inhabitants) average number of 

patients. The minimum number of patients was reported as 10.45 in the state of 

Bremen. What we deserve to comment on the year 2014, is that the average number 

of patients was 123.90 (per 100,000 inhabitants). The lowest number of patients was 

10.45 (specifically in the state of Bremen) whereas the highest number of patients 

observed was 307.16 (specifically in the state of Saxony). 

 

Table 5 Descriptive influenza data within all the RKI reporting German regions from 

2000 to 2015: 

 
State min 1

st
Qu. median mean 3

rd
 Qu. Max 

Baden-Württemberg 3.200 4.408 16.720 26.060 34.460 106.100 

Bavaria 2.600 8.468 28.600 43.310 62.290 171.600 

Berlin 4.240 6.978 16.870 36.160 49.970 126.600 

Brandenburg 1.870 7.505 12.600 39.280 43.100 148.600 

Bremen 0.760 3.405 10.450 12.080 16.500 31.790 

Hamburg 0.40 2.07 9.81 40.77 44.52 173.40 

Hessen 1.10 2.90 4.92 14.29 17.66 50.75 

Mecklenburg-

Vorpommern 

1.260 7.248 11.390 59.610 69.780 250.700 

Lower Saxony 1.86 4.83 10.64 21.83 34.74 61.29 

North_Rhine_Westphalia 0.610 1.870 2.955 11.170 13.750 37.710 

Rhineland-Palatinate 4.270 7.432 21.460 35.040 52.870 103.100 

Saarland 0.97 2.00 4.48 11.44 14.30 45.11 

Saxony 6.14 11.68 29.35 74.82 75.05 307.20 

Saxony-Anhalt 7.69 12.05 23.54 75.30 64.15 287.60 

Schleswig-Holstein 1.910 3.355 10.070 19.920 18.290 79.420 

Thuringia 2.47 10.16 19.53 57.83 59.44 285.60 
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Table 5 presents the basic descriptive measures of the number of patients (per 

100,000 inhabitants) with Influenza and cover each German federal state that reports 

in the RKI system separately (these metrics include minimum, median, mean, 

maximum, as well as assessments in the first and third quartile). A common feature 

that can be noticed at a glance, is that data for every state exhibit strong positive 

asymmetry (the average is higher than the median) which is clearly reflected also in 

the statistics and the graphs. The highest average number of patients who have the 

Influenza virus is in Mecklenburg-Vorpommern (59.61). The lower number of 

patients who have the virus is in the Land of Hamburg (0.40), while the highest is 

reported for the state of Saxony (307.20). 

This dataset incorporates patients from 16 federal states (as they are incorporated in 

the RKI reporting system) in Germany and covers a chronological span of 16 

consecutive years. To determine potential differences between mean patient numbers 

among different states, a statistical approach was followed. We proceeded by 

checking for equality employing the tests ANOVA and KRUSKAL-WALLIS. The 

hypothesis of equality of means was rejected, so the corresponding state plays an 

important role statistically. 

Table 6: ONE WAY ANOVA cases by (State). 

Analysis of Variance Table    

Response: Cases     

 DF Sum of 

Square 

MS F value  

State 15 111326 7421.7 2.3753 0.003298 

Residuals 239 746752 3124.5   

 

Table 7: ONE WAY ANOVA cases by (Year). 

Analysis of Variance Table    

Response: Cases     

 DF Sum of 

Square 

MS F value  

Year 15 475370 31691 19.791 <0.001 

Residuals 239 382708 1601   

 

Table 8: TWO WAY ANOVA cases by (State) and (Year).  

Analysis of Variance Table    

Response: Cases     

 DF Sum of 

Square 

MS F value  

State 15 111326 7422 6.1635 <0.001 

Year 15 477024 31802 26.4101 <0.001 

Residuals 224 269728 1204   
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Figure 3: Error bar cases by (State) 

 

The analysis in Table 6 reveals that the State is statistically significant. There is no 

difference in the number of cases per state, therefore the average number of cases is 

different per state. This is also clearly illustrated from Fig 2 that covers all 

represented states and influenza cases within these states with means and error bars. Is 

in fact visible that the confidence intervals of the cases depicted on the federal 

states as well as we are able to notice that some of those have no common 

points, thus rejected the equality of means.  

 

Table 7 depicts that the Year is statistically significant, as there is no difference in the 

number of cases per year. The average number of cases is different every year, and 

this is clearly observed in Fig 3 (error bar / means diagram) where there is a (total) 

growth trend of average number of cases over time. 
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Figure 4: Error bar cases by (Year) 

 

 

The mean error-bar plots reveal additional differences for age groups (Fig 2S A, B) as 

well as individual states (Fig 3S A, B). Fig 2S emphasizes in two age groups (0-4, A 

and 5-14 B) where years with no cases are reported, years with no statistical 

significance are also visible with the majority of occasions to share statistical 

significance. Fig 3S and the two indicative example-states Bavaria (A) and Berlin (B) 

provide a similar picture pinpointing the need for a secondary deeper analysis of the 

data-set available.   

 

Table 8 dictates that while the State and Year is statistically significant, there is a 

difference in the number of cases per year, and also per state. 

What become evident in the Kruskal-Wallis test (P< 0.015) and in the head to head 

comparison of the separate states with the Dunn's Multiple Comparison Test (Table 

S2). According to this statistical significant differences can be verified only for the 

pairs North Rhine-Westphalia vs Saxony (P<0.05) and North Rhine-Westphalia vs 

Saxony-Anhalt (P<0.05) respectively. This analysis clarifies that the differences 

observed for the different federal states in their majority are not statistically 

significant in the Kruskal-Wallis test.  

This doesn't underestimate the substantial differences observed between states. These 

differences can be visualized in a frequency distribution histogram where the % of 

frequency of occurrence per state is represented (Fig 4) 
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We retrieved the same database (SurvStat@RKI2.0) and assembled the same patient 

dataset that includes cases per 100,000 inhabitants per time period from the federal 

German states, in the time period (2000-2015) but we incorporated a filter for distinct 

different age groups. These age groups are from 0 – 4, 5 – 14, 15 – 44, 45 – 64 and 

>65 years old respectively.   

 

Figure 5 : Line plot about rates in time by age groups 

 

 

Fig 5 Illustrates rates of cases per age group through time (2000-2015) where is 

evident that the younger brakets (0-4, 5-14) are more susceptible to influenza. This 

pattern is directly related with time. The 0-4 age bracket, has a quite variable response 

in the first 5 years of the time frame examined (2000-2005) and although remains 

variable within the next 10 years (2005-2015) appear significant spikes in observed 

rates. These spikes are potential ourbreaks and appeared reletively consistent occured 

in three year time periods (2006, 2009,2012,2015) respectively. The pattern may be 

more complicated but it requires additional information for a more coherent 

examination. The 5-14 age bracket appears more consistnt with higher rates of 

influenza infected patients between the years 2000-2009. This rate is increasing 

lineary through time and around 2009 exhibits a drow couples with relative pattern 

inconsistency. Despite the observed high rates (at least higher than all the other age 

groups but the 0-4) the 0-4 group outbreaks exhibits higher rates.  
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There are also hints that the 0-4 and 5-14 brackets patterns share some similarity 

during the 2009-2015 time frame, as for example for every 0-4 spike there is a less 

pronaunce 5-14 spike, but this analysis will require more information in order to be 

thoroughly explained. The brackets corresponding to older ages are far more 

consistant with limited variation through time and presenting a limited number of 

influenza infected patients. It is also worth noticing, that this analysis, illustrate less 

number of patients as the age is increasing. Generally, influenza patients are closer to 

50 for each category (15 – 44, 45 – 64 and >65) with the 15-44 group to clearly 

reaching over 50 cases through time and for the longest period of time (2005-2015 

with the possible exception of year 2011). The age group 15-44 reaches and surpass 

50 cases in years 2012-2015 with this increase to be marginal and relatively less 

significant when compared with the 15-44 group. The oldest portion of the population 

has a negligible spike in 2014 where marginally the cases are reaching beyond 50. 

The pattern comparison is extremely interesting and may also provide additional 

information regarding the immune response of the patient as well as the total response 

in combination of course with additional not necessarily statistic information. 

 

 
 

Figure 6 Histogram that correlates density of events with influenza infection rates for the 

selected age groups in patients from the German federal states reporting system 
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Fig 6 provides more insight for the pattern of influenza infectious diseases rates in 

German federal states It is worth noticing, that the most dense are the one 

corresponding to the oldest age brackets (15 – 44, 45 – 64 and >65) but the infection 

rates are extremely. As it is illustrated in Fig in all these cases we are discussing for 

less than 100 incidences. On the contrary the influenza cases stemming from the 

younger segments of the population (0-4, 5-14) are not as dense (dense rarely goes 

above 0.01) but the rates of cases appear consistently high. In other words, the high 

level of cases in the latter occasion are not consistent and frequent but leads to higher 

numbers of infected individuals. This analysis correlates well with the previous Fig 5 

and in fact it complements it. The inconsistency observed before is illustrated with 

accuracy in this one. Another very important item, has to do with the distinct 

differentiation between age group 0-4 and 5-14 rates. Age group 0-4 presents a huge 

variation of rates (0-400) and 5-14 although variable (100-300 plus) is in between the 

younger and the oldest age brackets in terms of variability. This late observation of 

course correlates well with all the illustrations in Fig 3. 

 

The analysis in Table 9,10,11 reveals that the age Group is statistically significant. 

The average number of cases is different per age group. This is also clearly illustrated 

from Figures 5 and 6 that covers all represented states and influenza cases within 

these age groups. Is in fact visible that the confidence intervals of the cases 

depicted on the age groups as well as we are able to notice that some of those 

have no common points, thus rejected the equality of means.  

This was evident in the Kruskal-Wallis test (P< 0.0001) and in the head to head 

comparison of the separate age groups with the Dunn's Multiple Comparison Test 

(Table S1). According to this statistical significance can be verified for 0-4 vs. >65 

(P< 0.0001), 5-14 vs. 15 – 44 (P< 0.05), 5-14 vs. 45-64(P< 0.0001), 5-14 vs. >65 (P< 

0.0001),  15 – 44 vs. >65 (P<0.05) respectively. This analysis clarifies that the 

differences observed for the older population group are statistically significant against 

all other population groups throughout the time frame evaluated in this study, 

followed by the 5-14 group that exhibited significance against all but the 0-4 group, 

the 15-44 group where as in the case of the 0-4 group significance was sporadic and 

was exhibited only against the older group. 

 

 



 

 

33 

 

Table 9 ONE WAY ANOVA cases by (Age Group). 

Analysis of Variance Table    

Response: rates     

 DF Sum of Square MS F value  
Age Group 5 349900 87470 20.52 < 0.0001 

Residuals 75 319700 4263   

 
Table 10 ONE WAY ANOVA cases by (Year). 

Analysis of Variance Table    

Response: Cases     

 DF Sum of Square MS F value  
Year 16 117700 7847 0.9100 0.0184 

Residuals 79 551900 8623   

 

Table 11 TWO WAY ANOVA cases by (Age Group) and (Year) 

Analysis of Variance Table    

Response: Cases     

 DF Sum of Square MS F value  
Age Group 4 349900 87470 25.98 <0.001 

Year 15 117700 7847 2.331 0.0107 

Residuals 60 202000 3366   

 

The assessments and the observations that are reflected from the cumulative data, 

statistics and graphical representation when dissected in separate analysis for each 

federal states reveal some interesting patterns critical for the overall influenza 

surveillance in Germany for the years 2000-2015. There are obviously some common 

features worth noticing. 

There are 3 different period-patterns based on the frequency influenza of incidences, 

2000-2005, 2005-2009, 2009-2015. The number of cases is gradually increasing, 

starting off from extremely low numbers (2000), following by moderately but worth 

mentioning low numbers (2009) and reaching a significant number of infected 

patients at the end of this period (2005) with a substantial spike in 2014.  

This pattern applies for the majority of federal states excluding in principle Bremen 

where the pattern is inconsistent through time (Fig S1, E ). Unlike all the other federal 

states, in Bremen the number of spikes appears in a few years (2002, 2010, 2012) and 

the number of cases corresponding to 2014 is extremely low.  Another case of relative 

inconsistency appears in the case of Lower-Saxony (Fig S1, I ) but the general pattern 

is closer to the other states. 

The 3 patterns share also some additional features that in a degree may be expected: 

The first time period as a lower degree of variability with the pattern inconsistency to 
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appear enhanced but close to the first in the second. Notable exception to this pattern 

is the increased variability observed in Bremen, Lower-Saxony and Mecklenburg-

Vorpommern (Fig S1, E, I, H ). The third time period has higher, noticeable number 

of cases, that are not consistent and may very well be attributed to potential influenza 

outbreaks. There is not a German federal state with a regular, consistent per year 

pattern. Apart from the repetitive pattern of high influenza frequency in all, there is a 

constant repetition from a year where the number of cases is diminished. The only 

exception to this observation, lies in the last two years of this time frame (2014, 2015) 

where the results in terms of infected patients are comparable and stay relatively high. 

There is also a variation among federal states, for the pattern that relates both 

frequencies in 2014 and 2015. In a number of cases there is an incline observed and in 

a significant number of federal cases a minor decline. These alterations will be 

probably more challenging to interpret but safe assumptions can be made.   
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5.2 Model-based inference 

 
acp model 

 

 

 

We retrieved the same database (SurvStat@RKI2.0) and assembled the same patient 

dataset that includes cases per 100,000 inhabitants per time period from the federal 

German states, in the time period (2001-2016), with the same filter for distinct 

different age groups. These age groups are from 0 – 4, 5 – 14, 15 – 44, 45 – 64 and 

>65 years old respectively.   
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zip model 

 

 

The results from both models indicate relative convergence for the zip model, but not 

for the acp model when this include the non-statistical significant values. Nevertheless 

it is visible a trend that correlates frequency of cases and Age Group. The number of 

estimated cases appears to decrease as the age bracket is increasing leading to a 

minimum estimation for the 65+ group (-0.0233 for the acp and -3.412 respectively) . 

Despite the statistical variation that is visible for both models, there is an additional 

trend occurring for the estimate of cases per state as it is reflected from the 

observation that states with the higher estimate are aligning in both models.  
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Most notable are the estimates for Saxony-Anhalt (1.55 and 3.39 and Thuringia (1.41 

and 2.78 respectively). The same trend seems to apply in states where case estimates 

is the lowest (for example Lower Saxony). 

This dual clarification reflects a trend for the state and age group estimation and 

allows further analysis. 

Table 12. Summary of Poisson and binomial analysis 

  95% Confidence interval 

  2.5 % 97.5 % 

Poisson part (P(Y>0))    

Intercept 2,7529 2,6344 2,8767 

Bavaria 1,5670 1,4971 1,6401 

Berlin 1,4409 1,3750 1,5100 

Brandenburg 1,8948 1,8111 1,9823 

Bremen 0,9275 0,8739 0,9845 

Hamburg 1,8725 1,7894 1,9595 

Lower Saxony 1,2363 1,1758 1,3000 

Mecklenburg-Vorpommern 2,8225 2,7045 2,9456 

North Rhine-Westphalia 0,8232 0,7734 0,8763 

Rhineland-Palatinate 1,6678 1,5926 1,7466 

Saarland 0,8774 0,8249 0,9332 

Saxony 2,8381 2,7217 2,9594 

Saxony-Anhalt 3,3926 3,2568 3,5342 

Thuringia 2,7897 2,6747 2,9096 

5-14 1,4150 1,3930 1,4374 

15-44 0,4621 0,4508 0,4737 

45-64 0,2981 0,2884 0,3080 

65+ 0,1678 0,1592 0,1768 

Year 1,0908 1,0888 1,0927 

Period_Summer 0,2718 0,2624 0,2816 

Binomial part (P(Y=0))    

Intercept 2,6854 2,6083 2,7649 

Period_Summer 8,6746 8,0569 9,3396 

 

 

Poisson analysis. By removing the non statistical significant federal states of Hesse 

and Schleswig-Holstein) and applying as a level of reference the state Baden-

Wurttemberg and the age group of 0-4 years there are the following observations: 

 There is an increase in the estimated cases around 9%. for every increase in 

the Year increments  

 There is a substantial, quantifiable decrease for the estimated cases number of 

73% [(1-0.27)*100] during the summer period when compared with the winter 

months given that every other variable under consideration by the model 

remains constant 

https://en.wikipedia.org/wiki/Confidence_interval
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 The estimated cases in Brandenburg is at 89% higher when compared with the 

reference level (state of Baden-Wurttemberg) given that every other variable 

under consideration by the model remains constant  

 The estimated cases in the aged bracket 65+ is calculated at 83% [(1-

0.17)*100] lower when compared with the reference level age group 0-4 ) 

given that every other variable under consideration by the model remains 

constant  

Binomial analysis The binomail analysis provides an estimate for the seasonal impact 

of flue as the prediction was that cases during the summer months are approximately 

8.67 less possible when it compared with the winter months (pattern that fits to 

already existing patterns and existing flu predictive models, see discussion for detail) . 
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6. Discussion 

 

The Federal Republic of Germany has a long standing tradition of increased influenza 

case numbers throughout the individual states. This fact is reflected with a number of 

deaths throughout the pandemics as well as the epidemic seasons. There is a clear 

variation between the federal states as it is reflected from (Die, 2017) where the flu 

hits harder in some when compared with others. This is reflected simply with number 

of cases and not with additional statistical analysis.  

In the last influenza season in Germany, from October 2016 till the first week of 

February 2017 the total toll of deaths have been above 100 and the confirmed 

influenza cases reached 43000. The first week up to February 5th saw more than 

14000 confirmed cases in all federal states that includes 32 larger outbreaks reported. 

According to Silke Buda from the RKI “A lot of people are complaining of 

respiratory problems that are generally caused by influenza.” The epidemics has 

already reached a death toll of 126, that are mainly senior citizens over the age of 60.  

The infection outbreaks are attributed to the H3N3 type of virus, that has been also a 

dominant killer in Germany in the winter of 2014-15. Dr. Buda suggested caution, as 

the virus can cause unimaginable damage when large crowds are gathering in the 

schooling system as well as in the healthcare and retirement facilities. The federal 

states suffered most from the outbreak were Bavaria and Baden-Württemberg with 

6,275 confirmed infections between January 30th and February 5th.  The problem 

appeared equally severe in Eastern Germany, including Berlin where 5,455 new cases 

have been reported. The toll was less severe in the west where 2,529 new cases from 

Saarland up to North Rhine-Westphalia have been reported. The threats of large 

crowds and gatherings remained and RKI and the public health officials push forward 

towards the avoidance of events that may made the situation more complicated. The 

only regions that experienced a less severe version of the epidemic was the northwest 

part of Germany where only 1,115 new cases were reported in the first week of 

February 

According to what it has been observed the seasonal influenza epidemics regularly 

lead to a gradual increase in the mortality rates in Germany (Huy, 2012). The trend is 

quite similar in other western European industrialized nations as well as globally. In a 

relatively recent study, there is a more specific and statistically important study that 
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follows all these mortality rates and the seasonal influenza wave variation. The 

federal state of Baden-Wuerttemberg was selected and a number of cases and relevant 

data were retrieved. The time frame that has been selected was 2001-2006 and an 

attempt to implicate the role of the environmental temperature was made. This within 

the frame of visual methodology and statistics. The mortality peaks were correlating 

with viral influence waves and notably, they were coming after exactly an 

environmental temperature drop. The numbers of death causality during epidemics 

they correlate with chronic co-existing conditions, the environmental temperature 

factor and a variety underlying diseases in different level of escalation when the 

seasonal epidemic arrived. The general conclusion was that the number of deaths and 

the overall impact of viral influenza mortality was severely underestimated in  Baden-

Wuerttemberg and by extrapolation in Germany  

. 

The Influenza pandemics have been associated with an extensive number of deaths 

and prolonged illnesses and hospitalizations. Each pandemic differs, from the way of 

manifestation where a gray uncertain area always exist, to the way that the virus 

emerges, expand, getting diagnosed and potentially treated (Lehners, 2013). A classic 

recent and relative to this work example is the novel influenza A (H1N1) pdm09 virus 

that emerged in Mexico in April 2009 and instantly spread out globally (Fraser, 

2009). It is worth mentioning that the nature of an influenza infection is generally 

self-limiting with systemic and respiratory symptoms that often resolve in less than 

one week. Most people infected with the 2009 A (H1N1) pdm09 virus experienced 

uncomplicated illness and recovered fully within one week, even without any 

therapeutic intervention; only one small subset of patients developed progressive 

disease (Cullen, 2009). In principle viral pneumonia was the most common from the 

findings in severe cases, but secondary bacterial infections played a pivotal role in 

approximately 30% of fatal cases ((CDC), 2009). Patients that spent time in the 

hospital, were often affected by co-morbidities, with a list that includes diabetes, 

cardiovascular, neurological and pulmonary diseases (Jain, 2009b). The therapeutic 

advances in cancers, autoimmune diseases, late-stage of organ failure related diseases 

prolonged survival, but this increased physiological challenge lead to an increased 

number of immunosuppressed patients. This, leads to a vicious cycle increasing the 

risk for patients to acquire opportunistic and community-acquired infections, such as 
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respiratory virus infections, increasing considerably the number of illnesses and 

deaths (Ljungman, 1993). 

Although patients hospitalized during the pandemic with the viral A(H1N1)pdm09 

infection got a subsequent severe illness, the overall number of people died was 

initially overestimated. The overall mortality rate from this pandemic was similar to 

that attributed to seasonal influenza and for sure lower than that of previous 

enumerated pandemics (Donaldson, 2009). Most victims died by respiratory failure 

(Estenssoro, 2010). Other reported causes of death included pneumonia, high fever (it 

lead mainly to neurologic sequelae), dehydration (from excessive vomiting and 

diarrhea), as well as electrolyte imbalance. The eldest patients, were related more 

frequently with severe cases as a result of chronic and co-existing conditions 

(Estenssoro, 2010). The virulence pattern between A(H1N1)pdm09 strains and 

seasonal influenza strains appear to be similar, the course of the pandemic attributed 

virus seems to get a more aggressive course in specific populations, that include 

young patients and pregnant women (Chowell, 2009; Jamieson, 2009). Further risk 

factors include obesity, chronic manifested conditions (lung disease, heart disease, 

renal disease, diabetes mellitus), and severe immunosuppression (Jain, 2009a; 

Influenza, 2010). The results reported with respect to the infection severity during the 

pandemic season are also conflicting. A number of researchers supported that there 

are no differences in terms of the disease severity among the first and the second 

pandemic outbreaks in 2009 (Ramakrishna, 2011). In retrospective there is a study 

available that reports a 4-fold increase in hospitalized patients and a 5-fold increase in 

the mortality frequency in the second pandemic wave (Truelove, 2011). The fact 

remains that the data available regarding mortality and disease frequencies among the 

first and second waves in 2009 remain purely analyzed and elusive.  

A retrospective analysis was performed of all patients with laboratory-confirmed 

influenza A(H1N1)pdm09 virus infection who were hospitalized at the University 

Hospital Heidelberg, Germany, in the pandemic season 2009–10 and the first post 

pandemic season 2010–11 to compare the rates of severely diseased patients in both 

seasons and to identify possible risk factors associated with severe clinical outcome. 

An factor analysis for the severity of the clinical outcome in patients taht have been 

treated in the hospital with influenza A(H1N1) pdm09 infection with laboratory-

confirmed findings in years 2009, 2010 (pandemic and first post-pandemic seasons) 
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within the  University Hospital Heidelberg system. 102 patients identified in 2009–10 

and 76 in 2010–11. The severity for hospitalized patients was increased dramatically 

from 14% (2009–10) to 46% (2010–11) and the same applies for the mortality rate 

(5%–12% respectively). The patients in the that first post pandemic season belonged 

to an older age group (38 vs. 18 years) and the infection was coupled with co-existing 

medical conditions (75% vs. 51%). 28% of these patients had a severe clinical 

outcome, resulting in 14 deaths. The general trend and the overall analysis, revealed 

enhanced fatal cases in the post pandemic season. This fact basically, reinforces the 

argument that early medical care hospitalization and treatment will be the only way to 

reduce mortality in the future. 

The data available for the circulation and transmissibility of the avian influenza in 

Latin America provide also a picture that is scary not only in poultry and wild birds. 

A systematic review identifies that the characteristics  of the AIVs can generate new 

viral variants that can elevate events beyond the outbreak to the zoonotic and 

pandemic potential (Afanador-Villamizar, 2017) There is a lack of understanding for 

the effect of these viruses in a regional level, especially in Latin America where they 

have been extensively identified. A systematic analysis based on the PRISMA and 

STROME guidelines peer reviewed research published between 2000 to 2015 and 

classified based on country, viral subtype, avian species, and phylogenetic origins. 

271 studies were initially detected, but only twenty-six met the inclusion criteria. The 

AIVs-driven infections were detected in all Latin American countries with a ranking 

between the predominant Mexican research for the period that the study was 

performed towards Chile and Argentina that followed the list. The majority of the 

AIVs subtypes suvvelied and reported were of low pathogenicity and virulence 

(92.9%) and a small fraction was of high pathogenicity (7.1%). Apart from the 

specific details from the origin of the AIVs (whether they carry a domestic bird 

origin, the order that they belong etc). It was clear that the field was not exploied 

extensively as even the map of the AIVs in South America is far from completed.   

Avian influenza viruses such as the A(H5N8) are highly pathogenic and they have 

correlated since 2010 with extensive outbreaks mainly in the region of the  south-east 

Asia. The A(H5N8) virus was first detected in domestic ducks in China during routine 

surveillance activities at a live poultry market (Wu, 2014). Since the beginning of 

2014, several outbreaks involving novel reassortant influenza A(H5N8) viruses have 
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been detected in poultry and wild bird species in South Korea (Jeong, 2014) as well as 

in China (Wu, 2014; Fan, 2014). The viruses have been detected in captured and 

apparently healthy wild migratory birds and dead wild birds, as well as in domestic 

chickens, geese and ducks (Jeong, 2014; Fan, 2014). Avian influenza A(H5N8) 

viruses have shown moderate pathogenicity in domestic ducks in South Korea (0–

20% mortality rate) and do not cause severe illness or death in wild mallard ducks. 

One study reported that viral replication and shedding was greater in mallards infected 

with A(H5N8) influenza viruses than in mallards infected with A(H5N1) viruses. 

Transmission of A(H5N8) viruses between wild bird species and poultry/domestic 

birds may occur by direct contact. Mammals such as ferrets, dogs and cats can be 

infected experimentally, but results indicate that a recent H5N8 isolate was less 

virulent in mice and ferrets than (A)H5N1 in mammalian species (Kim, 2014). 

Natural infection of dogs with A(H5N8) has been reported from South Korea. Avian 

influenza A(H5N8) viruses from South Korea bind strongly to alpha 2-3 sialic 

receptors and, to a lesser degree, to alpha 2-6 receptors (Kim, 2014). However, the 

results from the ferret model are inconclusive in terms of virulence for humans. The 

spread of the virus may occur via migratory bird flyways (Fan, 2014; Kang, 2015). 

Legal import of live poultry and live captive birds into the EU is not authorized from 

the east Asian region. Treated egg products and eggs for processing may be imported 

into the EU from South Korea and China. Heat-treated poultry meat products are 

authorized for import into the EU from South Korea and from one Chinese province 

(Shandong). No imports of any poultry commodities are permitted from Japan, where 

outbreaks caused by the H5N8 virus have also occurred. Given the very heat-labile 

nature of all influenza viruses, these commodities are not considered to pose a risk of 

influenza virus transmission to consumers. No human cases of avian influenza 

A(H5N8) have been reported related to the current circulating virus. Event 

background information Germany notified the European Commission and the World 

Organization for Animal Health (OIE) on 6 November 2014 of an outbreak of highly 

pathogenic avian influenza of subtype H5N8 at a poultry holding in the north-east of 

Germany (OIE, 2014). The holding was keeping approximately 31 000 fattening 

turkeys, 5 000 of which were infected, and 1 880 died within two days. The outbreak 

affected 15-week-old birds in one of five sheds at the holding. An increase in 

mortality was observed after 1 November 2014 and a private laboratory subsequently 

identified an avian influenza A(H5) virus. The National Reference Laboratory for 
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avian influenza at the Friedrich-Loeffler-Institute (FLI) in Germany confirmed the 

highly pathogenic avian influenza A(H5N8) on 5 November 2014. The virus is of 

South Korean origin, clustering in clade 2.3.4.6. There was no evidence of this virus 

being present in wild birds captured for routine surveillance. The reference laboratory 

reported that the virus is detectable using EU-recommended laboratory methods (M 

1.2 and H5). The authorities placed the infected holding under restrictions as of 4 

November 2014 and took measures required by Directive 2005/94/EC, including the 

establishment of a protection zone of 3 km radius and a surveillance zone of 10 km 

radius (Commission, 2014). Culling and safe disposal of the turkeys at the infected 

holding started on 6 November 2014 and poultry kept at other farms located within 

the protection zone were also culled. These actions were completed by 8 November 

2014. Investigations have been initiated at poultry holdings within the surveillance 

zone to try to determine how the virus entered the turkey holding. Germany reported 

that no live poultry or poultry meat from the affected holding has been shipped to 

other regions of Germany, other EU Member States or third countries. 

 

On 6 November 2014, the German authorities have reported an outbreak of the highly 

pathogenic avian influenza virus A(H5N8) at a turkey holding facility. When the 

H5N8 was initiated the response of developing and establishing protection and 

surveillance zones was instant aiming in identifying the causative effect. A(H5N8) 

has been detected among wild birds in southeast Asia and has been the causative 

agent for many outbreaks on farms that carry poultry in S. Korea and China. The 2014 

outbreak is the first relative outbreak in Europe and up today it remains perplexing the 

appearance of the virus in the German turkey holding. The level of such a public 

health threat has been assessed and found to be in a minimal level. The reported 

datasets globally leading to the same conclusion as no human infections have been 

reported as well as the EU/EEA monitoring systems predict that the risk of zoonotic 

transmission is considered insignificant and below reportable levels.  

Nevertheless, the capabilities of this extremely virulent avian influenza virus to infect 

wild birds with the absence of typical symptoms, increases the threat of extensive 

geographical spread, that may lead to outbreaks like the ones observed in South 

Korea. The systems of robust monitoring and virulence assessment for wild birds as 

well as domestic poultry remains important in EU and tightly connected with the 

detection of other virus occurrences. The viable threat of viral spread prompt the EC 
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to issue the Directive 2005/94/EC that requires Member States to have prepared and 

execute contingency plans and detailing defined measures for the eradication and 

secure disposal of infected poultry, all the potentially contaminated equipment as well 

as the procedures and methods for cleaning and disinfection. Every person in direct 

contact that handles diseased poultry, turkey or other birds (this list includes farmers, 

veterinary and labor personnel), are by definition at risk. Public health authorities 

should work in collaboration to enforce contingency plans to protect everyone 

exposed and foresee which one on site or on proximity is in viable danger to be 

potentially protected from infection.  

 

The hypothesis that the avian influenza may infect human as well as transferring in 

other organisms was formulated in the hype of the H5N1 strains occurrence in Asia 

(Lewis, 2006). The hypothesis was based on the fact that H5N1 was in fact infecting 

humans  causing outbreaks and deaths. This become evident in other mammals such 

as cats and pigs. This evidence was crucial to suggest that the possibility of a 

pandemic exists, as a human to human transfer will prompt the occurrence of 

additional mutations, as well as the possibility of additional mutations in the human 

IVAs, will make them resistant in the current antiviral and vaccines available.  

The threat of avian influenza spread in migratory birds and poultry has been urging 

the affiliated with influenza surveillance but also other relative professionals to 

closely monitor and evaluate these trends  (Riley, 2007). Do these trends share the 

possibility to upgrade in a precursor of a human pandemic like the previous ones and 

specifically the 1918-like one? The supply and available stockpiles of human pre-

pandemic vaccine, that targets  the avian strains are being considered as a formidable 

alternative. There are obvious constrains and limitations to deploy these stockpiles 

with the major one being the total amount of the antigen can be contained. For a 

number of countries around the word, these constrains form a real hesitation with 

respect to the total amount of antigen contained in the vaccine. For many countries, 

the principal constraint for these vaccine stockpiles will be the total mass of antigen 

maintained. A hypothesis that even these lower dosage which lies below the 

recommended therapeutic dosage for complete protection maybe a sufficient 

preventive tool as the wider vaccine coverage and usage of the vaccine stockpile has a 

benefit and not generating a problem. 

To test this hypothesis, mathematical models that have validity taking under 

consideration different datasets and policies have been developed. For example, a 
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prominent one, incorporates the individual response to different doses of a potential 

vaccine but also includes the process of individual transmit ion of the pandemic 

influenza from a person to another. It was demonstrated that the reduction in the 

infection attack rate are significant especially when vaccines are up taken by more 

people in lower dosage. The data applies equally for the 3 vaccine candidates 

available. The major attempt here is to understand the magnitude of the effect and this 

has been achieved by epidemic simulation deploying the available historical studies 

on immunogenicity. As an example of the approach it should be highlighted that for 

one out of the three vaccines with available data, the infection attack rate would drop 

9.9% (from 67.6% to 58.7%) if an optimal vaccine dose is given in approximately 

50% of the US population. In retrospective, when the maximal protective dose (as it is 

determined from the US National Pandemic Preparedness Plan) the attack protected 

general population would be significantly lower than 10%. Σhese data don't reflect in 

accuracy the number of alternative events and possibilities that will define in detail 

the nature of the vaccine protection. This is a model one way or another. The different 

population groups including the sensitive where the infection rates are always higher 

(infants, elderly) has not been assessed. A number of other similar factors have been 

under evaluated.   

In conclusion, it appears as totally necessary to take under consideration the 

population-based implications for the designed vaccine programs. These 

considerations are directly related with dose and stockpile size. Reducing th vaccine 

dosage will not harm, in fact it may be more productive as more people will be 

covered and maybe some of the potential adverse effects will minimize.  

 

Surveillance 

Σhe IAVs can be transmitted in humans via aerosol and intercontinental spread that is 

facilities by migratory birds. This complex situation complicates on the one hand  

surveillance, but on the other hand this is the most critical point to manage globally 

IAVs (Donatelli, 2016; Alexander, 2000).  WHO has established a Global Influenza 

Surveillance and Response System (GISRS) consisting from a number of 

collaborating centers and reference laboratories. The GISRS has 113 member states 

that contribute by conducting influenza virus surveillance and update on a regular 

basis for recommendations that define the laboratory diagnosis, the use of the most 
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appropriate vaccines, the existing and projecting antiviral susceptibility tests as well 

as the overall risk assessment. Most importantly, GISRS provides global alerts on the 

emergence of novel influenza viruses including of course potential outbreaks and 

pandemics.. This task list makes GISRS a single point, timely reference source on 

worldwide status and management of the influenza virus, including drug-resistant 

phenomena that complicate even more IAV-mediated infections. GISRS works 

closely with CDC which also have a tendency to act as a consistent reporter for 

updates and advisories on IVAs. 

There are indeed data that support the increased presence of incidences in the 

pediatric intensive care units (PICU) following  the 2009 pandemic (Streng 2015). 

This has been evaluated with active screening of the clinical characteristics and the 

incidence for children  during the first three post-pandemic influenza seasons. 

According to this evaluation, a total of 24/7/20 influenza-associated PICU admissions 

were noticed in the respective post-pandemic seasons 1/2/3;. The incidence estimates 

per 100,000 children were 1.72/0.76/1.80, respectively. Out of the total 51 patients, 

80% was infected with influenza A, including 65% with A(H1N1)pdm09. The 

pandemic causative agent H1N1 pdm09 was virtually absent in season 2 (incidence 

0.11), but was dominant in PICU admissions for seasons 1 (incidence 1.35) and 3 

(incidence 1.17). According to the available clinical data for 47 influenza patients; the 

median age was 4.8 years (IQR 1.6-11.0). The most frequent diagnoses varied 

from influenza-associated pneumonia (62%), followed by bronchitis/bronchiolitis 

(32%), secondary bacterial pneumonia (26 %), and ARDS (21%). Thirty-six patients 

(77 %) presented with a number of  underlying medical conditions. 47% of the 

patients received mechanical ventilation, and one patient (2%) extracorporeal 

membrane oxygenation; 19% were treated with the antiviral oseltamivir. 11% had 

pulmonary sequelae and the mortality rate was  11%, correlating with underlying co-

existing chronic conditions and the causative infective agent was A(H1N1)pdm09. It 

was concluded that this high occurrence was related with underestimation of the 

pandemic as wel as the post pandemic effects. Hypothetical articulation was 

formulated for the severity of the infection towards the younger fraction of the 

population as it is considered obvious that the older fractions of the population 

develop immunity towards the virus.   
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These results are supported by more extensive surveillance analyses  like for example 

the ones that monitor total attended "acute respiratory infection" (MAARI) (An der 

Heiden, 2017). The German physician sentinel is sensitive; however, it requires the 

development of appropriate modeling techniques to acquire  and relate estimates 

of disease that are attributed to influenza. The data on MAARI and relevant 

virological results of respiratory samples for 2001/02 until 2014/15 were used. 

Statistical regression models were constructed to identify potential trends. These 

influenza-attributable MAARI (iMAARI) estimates were then distributed among the 

different subtypes of the virological sentinel. The analysis reveals dominance of 

A(H3), and iMAARI attack rate of the pandemic 2009 (A(H1)pdm09) was 4.9%. The 

youngest portion of the population again is the most vulnerable, reaching frequently 

levels up to 15%-20%. Similarly, influenza B affected the age group of 5- to 14-year-

old children substantially more than any other age group. This model covers the past 

but can be extremely valuable in predicting and following disease in the future. 

Schmid et al address (Schmid, 2017) a very significant issue for the increased 

mortality and infection rates in extensive epidemics and pandemics is the so called 

Influenza vaccine hesitancy. The reluctant uninformed special public groups in high 

risk they can skyrocket deaths and populate hospitals during the influenza season. 

This is a global threat and the barriers have been more or less been identified but there 

are culture barriers, therefore intensive research efforts are constantly developed. This 

knowledge will eventually bridge the gap, consist the foundation of well educated 

awareness campaigns and essentially will increase eventually the number of 

vaccinated individuals. A number of studies analyzing comparatively vaccination, risk 

groups the general public. Based on this information the knowledge gap is attempted 

to be mapped sufficiently and the psychological factor is addressed. To address this 

challenge an intense literature search covering 13 databases for diverse scientific 

discipline articles was assessed from 2005 to 2016. Emphasis was given to analyze 

mathematically these articles for a framework based on the Theory of Planned 

behavior. The majority of the publications were coming from the Americas and 

Europe. Researchers were studying health care professionals and the general public. 

The parental decisions for children and their health understudied populations and 

concepts were also included. A number of barriers were identified for the uptake of 

the vaccine especially in risk groups. These barriers are mostly psychological and 
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conceptual as different levels of confidence, convenience, financial calculation and 

complacency were highlighted. In fact most of these reasons are often related with 

social status and demographics. It was also considered that the majority of these 

factors are addressing the uptake vaccine hesitance, they can't provide a rationale for 

quantitative assessments such as intense or emergent uptake. It became obvious that 

these studies should be comparative and take under consideration a variety of 

additional factors, otherwise they will be simply supportive.  

Influenza Virus Vaccination in Germany – Results of the »German Health Update« 

study (GEDA) 2009 (RKI, 2011) 

What will be the pivotal factor in influenza infection rates in Germany? All the factors 

described in this discussion section (environmental temperature, translocation and 

immigration waves, the enhanced possibility of transfer and occurrence of new 

recombinant viruses as well as the antiviral resistance patterns) have a significant 

portion in the resistant patterns, mortality rates, annual influenza epidemics, a large 

number of lost working hours and severe infections in Germany as well as worldwide 

(RKI 2010a, 2011). Influenza is seasonal with a season beginning with the new year 

(January-February) lasting for approximately eight to ten weeks. The preventive 

influenza consensus, requires vaccination according of course in the annual 

predominant viruses that are circulating. In Germany, the Standing Committee on 

Vaccination (STIKO) recommends seasonal influenza vaccinations for special 

population groups (senior citizens. healthcare workers, pregnant women and 

underlying diseases) (RKI 2010b). Despite the presence of comprehensive vaccination 

programs in the majority of the western European countries Unlike several other 

European countries, in Germany a central vaccination register has not been 

established. The statistical analysis of vaccinated individuals per annum deploying 

tools such as telephone surveys, health insurance data and records, as well as 

commercially available household surveys (e.g. the 2003 microcensus). These 

elements were the primary calculators to determine state and country rates for 

vaccination coverage (Blank et al 2009; Blank et al 2008; Wiese-Posselt 2006; Reuss 

et al 2010; Rehmet et al 2002; Statistisches Bundesamt 2004). If somebody will 

follow the available datasets, the influenza vaccination rates have not changed 

significantly since 2005/06 although a rise have been noticed after 2000. The decline 

in vaccination coverage is more apparent among the specific risk populations  in 

Germany (Blank et al 2009). Is also obvious that the vaccination coverage campaigns 
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lack objective measurement and metrics to evaluate and optimize if needed. (BZgA 

2011). RKI fostered telephonic health survey the "German Health Update" (GEDA) 

that was conducted by the Department of Epidemiology and Health Reporting 

(www.rki.de/geda), it was one step in the development of continuous vaccination 

coverage assessment for everybody and not necessarily in special groups. One 

comparative advantage when compared with other similar telephonic surveys on 

influenza vaccination is the size of the sample size as it contains about 21,000 (e. g. 

Blank et al 2009; Blank et al 2008; Wiese-Posselt 2006). This provides opportunities 

for classifications regionally as well as for specific groups plus the statistics are 

compelling, thus analysis related of socio-demographic and socio-economic factors. 

Subsequently, fostering new vaccination initiatives will be probably one of the most 

important factors in reducing influenza severity in Germany. This analysis should be 

viewed in context with existing efforts and health surveys from the RKI (GSTel03 – 

GSTel07, RKI 2008). Vaccination coverage apparently is a multi factorial health issue 

and has to be viewed as such.  
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A. Abbreviations 
 

 
ABBREVIATIONS 

ARDS Acute Respiratory Distress Syndrome 

BARDA Biomedical Advanced Research and Development Authority 

CDC Center of Diseases Control and Prevention 

CI Confidence Interval 

CW Calendar Week 

GFT 

HPV 

IAV 

Google Flu Trends  

Human Papilloma Virus 

Influenza A virus 

IBV Influenza B virus 

ICV Influenza C viruses 

ILI Influenza-Like Illness  

IQR Interquartile Range 

IDSA 

IfSG 

MAARI 

Infectious Diseases Society of America 

Infektionsschutzgesetz 

Medically Attended Acute Respiratory Infection 

NAATs Nucleic Acid Amplification Tests 

NAI Neuraminic Acid Inhibitors 

NIC National Reference Center for Influenza 

NP NasoPharyngeal  

NHS National Health System, UK 

PICU Pediatric Intensive Care Unit  

OOH GPCs Out-of-Our General Physicians Cooperatives 

RIDT Rapid Influenza Detection Tests 

RKI Robert Koch Institute 

SIV Swine Influenza Virus 

VPD Vaccine Preventable Diseases 

WHO World HealthOrganization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiPneHC2pvYAhWPalAKHe_hDBsQFggnMAA&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4384846%2F&usg=AOvVaw27K0bAhzuvBEibfOOWtq-1
https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0ahUKEwihv_Dz2pvYAhUHZlAKHYgQChoQFghXMAU&url=https%3A%2F%2Fwww.phe.gov%2Fbarda&usg=AOvVaw0RTuTIwYnan1lbeHVcCaGo
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B. R code 

 

Code in “R”: 
#data states: 

a<-read.csv("C:\\Users\\MY 

PC\\Desktop\\dataflu.csv",sep=";",header=TRUE,dec=".") 

a 

names(a)<-

c("2000/01","2001/02","2002/03","2003/04","2004/05","2005/06","2006/07",

"2007/08","2008/09","2009/10","2010/11","2010/11","2011/12","2012/13","2

013/14","2014/15","2015/16") 

names(a) 

dates<-

c("2000","2001","2002","2003","2004","2005","2006","2007","2008","2009",

"2010","2011","2012","2013","2014","2015") 

dates<-as.numeric(dates) 

dates 

Baden_Wrttemberg<-as.numeric(a[1,][2:17]) 

Baden_Wrttemberg 

plot(dates,Baden_Wrttemberg,type="l") 

Bavaria<-as.numeric(a[2,][2:17]) 

plot(dates,Bavaria,type='l') 

Berlin<-as.numeric(a[3,][2:17]) 

plot(dates,Berlin,type='l') 

Brandeburg<-as.numeric(a[4,][2:17]) 

plot(dates,Brandeburg,type='l') 

Bremen<-as.numeric(a[5,][2:17]) 

plot(dates,Bremen,type='l') 

Hamburg<-as.numeric(a[6,][2:17]) 

plot(dates,Hamburg,type='l') 

Hesse<-as.numeric(a[7,][2:17]) 

plot(dates,Hesse,type='l') 

Mecklenburg_Vorpommern<-as.numeric(a[8,][2:17]) 

plot(dates,Mecklenburg_Vorpommern,type='l')  

Lower_Saxony<-as.numeric(a[9,][2:17]) 

plot(dates,Lower_Saxony,type='l')  

 

North_Rhine_Westphalia<-as.numeric(a[10,][2:17]) 

plot(dates,North_Rhine_Westphalia,type='l')  

Rhineland_Palatinate<-as.numeric(a[11,][2:17]) 

plot(dates,Rhineland_Palatinate,type='l')  

Saarland<-as.numeric(a[12,][2:17]) 

plot(dates,Saarland,type='l') 

Saxony<-as.numeric(a[13,][2:17]) 

plot(dates,Saxony,type='l') 

Saxony_Anhalt<-as.numeric(a[14,][2:17]) 

plot(dates,Saxony_Anhalt,type='l')  

Schleswig_Holstein<-as.numeric(a[15,][2:17]) 

plot(dates,Schleswig_Holstein,type='l')  

Thuringia<-as.numeric(a[16,][2:17]) 
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plot(dates,Thuringia,type='l') 

boxplot(Baden_Wrttemberg,Bavaria,Berlin,Brandeburg,Bremen,Hamburg,Hes

se,Mecklenburg_Vorpommern,Lower_Saxony,North_Rhine_Westphalia,Rhine

land_Palatinate,Saarland,Saxony,Saxony_Anhalt,Schleswig_Holstein,Thuring

ia,names=c('Baden','Bavaria','Berlin','Brandeburg','Bremen','Hamburg','Hesse',

'Mecklenburg','Lower_Saxony','North_Rhine_Westphalia','Rhineland','Saarlan

d','Saxony','Saxony_Anhalt','Schleswig','Thuringia'))  

boxplot(Baden_Wrttemberg,Bavaria,Berlin,Brandeburg,Bremen,Hamburg,Hes

se,Mecklenburg_Vorpommern,Lower_Saxony,North_Rhine_Westphalia,Rhine

land_Palatinate,Saarland,Saxony,Saxony_Anhalt,Schleswig_Holstein,Thuring

ia) 

summary(a) 

summary(Berlin) 

summary(Baden_Wrttemberg) 

summary(Bavaria) 

summary(Brandeburg) 

summary(Bremen) 

summary(Hamburg) 

summary(Hesse) 

summary(Mecklenburg_Vorpommern) 

summary(Lower_Saxony) 

summary(North_Rhine_Westphalia) 

summary(Rhineland_Palatinate) 

summary(Saarland) 

summary(Saxony) 

summary(Saxony_Anhalt) 

summary(Schleswig_Holstein) 

summary(Thuringia) 

 

dim(a) 

A=a[,-1] 

Names=a[,1] 

Names 

t(A) 

c(t(A)) 

Names<-as.factor(rep(Names,each=16)) 

Y=c(t(A)) 

NData=data.frame(Y,Names) 

install.packages("ggplot2") 

library(ggplot2) 

ggplot(NData, aes(Y, fill = Names)) + geom_density(alpha = 0.2)  

npk.aov <- aov(NData[,1] ~ NData[,2]) # test anova 

summary(npk.aov) 

kruskal.test(NData[,1] ~ NData[,2]) # kruskal_wallis test boxplot(NData[,1] ~ 

NData[,2])  
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Dataflu<-read.csv("C:/Users/Dimitra/Desktop/dataflu.csv", sep=";")  

 

StatesNam<-Dataflu[,1] 

 

Dataflu<-Dataflu[,-1] 

 

ANDataFlu=data.frame(Cases=c(t(Dataflu)),State=rep(StatesNam,each=16),Y

ear=rep(2000:2015,times=16)) 

 

anova(lm(Cases~State, ANDataFlu)) 

anova(lm(Cases~ Year, ANDataFlu)) 

anova(lm(Cases~ State+Year, ANDataFlu)) 

 

library(Hmisc) 

 

myerrorbar(ANDataFlu$Cases,ANDataFlu$State,horizontal=T)  

myerrorbar(ANDataFlu$Cases,ANDataFlu$Year,horizontal=F) 

 

#Data_age-rates 

 

Data<-read.csv(file.choose(),sep="",header=TRUE,dec=".")  

Data 

colnames(Data)<-c(2000:2015) 

length(c(2000:2015))  

rownames(Data)<-c("0-4","5-14","15-44","45-64","65+") 

Data<-t(Data) 

range(c(Data)) 

agegroup=rep(c("0-4","5-14","15-44","45-64","65+"),each=16) 

agegroup<-factor(agegroup, levels = c("0-4","5-14","15-44","45-64","65+") ) 

df=data.frame(y=c(Data),agegroup=agegroup,year=rep(c(2000:2015),5))  

ggplot(data = df, aes(x=year, y=y)) + geom_line(aes(colour=agegroup))  

plot(Data[,1],type="l",ylim=c(0,35000)) 

lines(Data[,2],type="l",col=2) 

lines(Data[,3],type="l",col=3) 

lines(Data[,4],type="l",col=4) 

lines(Data[,5],type="l",col=5) 

 

 

 

 

library(ggplot2) 

 

Rates<-matrix( 

c(8.14,16.54,78.6,33.96,74.55,20.72,176.75,81.73,216.54,326.74,243.44,86.4

2,384.69,47.97,326.14,391.35, 

142.43,150.97,160.85,170.57,183.54,193.61,210.46,221.97,238.49,254.17,155

.86,149.03,175.59,158.32,228.7,265.03, 

39.14,41.55,44.32,47.19,50.81,54.48,59.63,65.05,71.86,78.6,48.09,47.57,57.5

5,54.01,77.23,77.3, 

23.79,25.32,27.05,28.88,31.19,33.58,36.83,40.39,44.77,49.41,45.85,49.29,60.
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07,55.56,79.73,59.33, 

13.16,14.02,14.98,15.99,17.23,18.43,20.2,22.09,24.6,27.3,30.37,35.21,35.21,

44.41,63.7,34.22) 

,ncol=16,,nrow=5,byrow=TRUE) 

 

colnames(Rates)<-

c(2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,201

3,2014,2015) 

 

rownames(Rates)<-c("0-4","5-14","15-44","45-64","65+") 

 

Rates<-t(Rates) 

 

range(c(Rates)) 

 

agegroup=rep(c("0-4","5-14","15-44","45-64","65+"),each=16) 

agegroup<-factor(agegroup, levels = c("0-4","5-14","15-44","45-64","65+") ) 

 

df=data.frame(y=c(Rates),agegroup=agegroup,year=rep(c(2000:2015),5))  

ggplot(data = df, aes(x=year, y=y)) + geom_line(aes(colour=agegroup))  

 

plot(Rates[,1],type="l",ylim=c(0,400)) 

lines(Rates[,2],type="l",col=2) 

lines(Rates[,3],type="l",col=3) 

lines(Rates[,4],type="l",col=4) 

lines(Rates[,5],type="l",col=5) 

 

hist(Rates[,1]) 

hist(Rates[,2]) 

hist(Rates[,3]) 

hist(Rates[,4]) 

hist(Rates[,5]) 

 

HistData<-data.frame( c(Rates), agegroup) 

ggplot(HistData, aes(c.Rates., fill = agegroup)) + geom_density(alpha = 0.2)  

 

 

 

#ACP model 

 

Data <- read.csv(file.choose(), sep=";") 

dim(Data) 

Data$value[is.na(Data$value)]<-0 

head(Data) 

summary(Data) 

trend=c() 

sin12=c() 

cos12=c() 
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for (i in 1:max(Data$NewVar)){ 

     trend[Data$NewVar==i]<-i/848 

} 

 

for (i in 1:max(Data$NewVar)){ 

     cos12[Data$NewVar==i]<-cos((2*pi*i)/12) 

} 

 

for (i in 1:max(Data$NewVar)){ 

     sin12[Data$NewVar==i]<-sin((2*pi*i)/12) 

} 

 

Data$trend<-trend 

Data$cos12<-cos12 

Data$sin12<-sin12 

Data<-Data[,-c(1,4,6,7)] 

head(Data);dim(Data) 

 

### poisson model 

library(acp) 

model<-

acp(value/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data=

Data, family="poisson") 

summary(model)$AIC  

Data<-data.frame(Data) 

 

Data$value2<-Data$value+1 

 

mod110 <- 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 1 ,q = 0) 

summary(mod110)$AIC 

 

mod101 <- 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 0 ,q = 1) 

summary(mod101 )$AIC 

 

mod120 <- 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 2 ,q = 0) 

summary(mod120 )$AIC  

summary(mod120 ) 

 

mod102 <- 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 0 ,q = 2) 

summary(mod102 )$AIC 

 

mod11 <- 



 

 

59 

 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 1 ,q = 1) 

summary(mod11)$AIC  

 

mod12 <- 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 1 ,q = 2) 

summary(mod12)$AIC  

 

mod21 <- 

acp(value2/10~as.factor(AgeGroup)+as.factor(State)+trend+cos12+sin12,data

=Data, p = 2 ,q = 1) 

summary(mod21)$AIC  

summary(mod21) 

 

 

plot(fitted.values(mod120),type="l",ylim=c(0,50))  

lines(log(Data$value2),col="red",type="l") 

 

#ZIP model 

 

library(pscl) 

library(boot) 

library(nortest) 

library(Hmisc) 

library(lmtest) 

library(plyr) 

library(car) 

 

Data <- read.csv(file.choose(), sep=";") 

x=sample(1:67840,67840) 

length(unique(x)) 

Data=Data[x,] 

dim(Data) 

Data$value[is.na(Data$value)]<-0 

head(Data) 

summary(Data) 

Period<-rep("Hot_Period",dim(Data)[1]) 

Period[Data$Week %in% c(1:15,45:53)]<-"Cold_Period" 

Data$Period<-Period 

mean(Data$value[Data$Period=="Cold_Period"])  

mean(Data$value[Data$Period=="Hot_Period"])  

table(Data$Period) 

Data<-Data[,c(2,3,5,6,9)] 

str(Data);summary(Data) 

Data$Year<-Data$Year-2000 

ZIPmodel <- zeroinfl(floor(value/10) ~ State+AgeGroup+Year| Period , data 

= Data) 

summary(ZIPmodel) 

InDOnes=exp(confint(ZIPmodel)[,1])<1 & exp(confint(ZIPmodel)[,2])>=1  
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cbind(exp(cbind(Est_Coef = coef(ZIPmodel), confint(ZIPmodel)) )) 

dwtest(ZIPmodel) 

 

sum(abs(resid(ZIPmodel) > 2)) 

breaks <- seq(-0.5,20.5,1) 

par(mfrow=c(2,1)) 

hist(floor(Data$value/10)) 

hist(fitted(ZIPmodel )) 

 

ZIPmodel2 <- zeroinfl(floor(value/10) ~ State+AgeGroup+Year+Period | 

Period , data = Data) 

summary(ZIPmodel2 ) 

cbind(exp(cbind(Est_Coef = coef(ZIPmodel2 ), confint(ZIPmodel2 ))))  

 

I<-which(Data$State=="Schleswig-Holstein" | Data$State=="Hesse" | 

Data$State=="Bremen" | Data$State=="North Rhine-Westphalia" | 

Data$State=="Saarland" ) 

ZIPmodel3 <- zeroinfl(floor(value/10) ~ State+AgeGroup+Year+Period | 

Period , data = Data[-I,]) 

summary(ZIPmodel3 ) 

cbind(exp(cbind(Est_Coef = coef(ZIPmodel3 ), confint(ZIPmodel3 ))))  

 

Data <- read.csv(file.choose(), sep=";") 

Data$value[is.na(Data$value)]<-0 

dim(Data) 

head(Data) 

summary(Data) 

table(Data$AgeGroup) 

NewValue<-sapply(split(Data$ value,Data$NewVar),mean,na.rm=TRUE) 

plot(1:848,NewValue,type="l") 

install.packages((gplots)) 

library(gplots) 

library(Hmisc) 

 

#ERROR BAR 

 

library(Hmisc) 

myerrorbar<-function(x,y, horizontal=F){ 

 a<-0.05 

 sdata <- split(x,y) 

 means <- sapply( sdata,mean,na.rm=TRUE ) 

 sds <- sapply( split(x,y), sd,na.rm=TRUE  ) 

 ns <- table(y) 

 LB <- means + qnorm( a/2 ) * sds /sqrt(ns) 

 UB <- means + qnorm( 1-a/2 ) * sds /sqrt(ns) 

 nlev <- nlevels(y) 

 if (horizontal) { errbar( levels(y), means, UB, LB, las=2 )  

                        par(las=2) 

                        } else { 

                     par(las=2) 
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     errbar( 1:nlev, means, UB, LB, xlim=c(0,nlev+1), 

axes=F, xlab='',las=2 )  

     axis(2,las=2) 

     axis(1, at=0:(nlev+1), labels=c('',levels(y),''))  

   } 

 

} 

 

#AGE GROUP 0-4 

Data04<-subset(Data,Data$AgeGroup=="00-04");head(Data04);dim(Data04) 

NewValue<-sapply(split(Data04$ value,Data04$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(Data04$ Year,Data04$NewVar),mean,na.rm=TRUE) 

Dat04<-data.frame(Cases=NewValue,Year=NewYear) 

plot(1:848,NewValue,type="l") 

plotmeans(Dat04$Cases~Dat04$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(Dat04$Cases,as.factor(Dat04$Year))  

 

#AGE GROUP 5-14 

Data514<-

subset(Data,Data$AgeGroup=="05.14");head(Data514);dim(Data514)  

NewValue<-sapply(split(Data514$ 

value,Data514$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(Data514$ 

Year,Data514$NewVar),mean,na.rm=TRUE) 

Data514<-data.frame(Cases=NewValue,Year=NewYear) 

plot(1:848,NewValue,type="l") 

plotmeans(Data514$Cases~Data514$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(Data514$Cases,as.factor(Data514$Year))  

 

 

 

#AGE GROUP 15-44 

1Data1544<-subset(Data,Data$AgeGroup=="15-

44");head(Data1544);dim(Data1544) 

NewValue<-sapply(split(Data1544$ 

value,Data1544$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(Data1544$ 

Year,Data1544$NewVar),mean,na.rm=TRUE) 

Data1544<-data.frame(Cases=NewValue,Year=NewYear) 

plot(1:848,NewValue,type="l") 

plotmeans(Data1544$Cases~Data1544$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases") 

myerrorbar(Data1544$Cases,as.factor(Data1544$Year))  

 

#AGE GROUP 45-64 

Data4564<-subset(Data,Data$AgeGroup=="45-

64");head(Data4564);dim(Data4564) 

NewValue<-sapply(split(Data4564$ 
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value,Data4564$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(Data4564$ 

Year,Data4564$NewVar),mean,na.rm=TRUE) 

Data4564<-data.frame(Cases=NewValue,Year=NewYear) 

plot(1:848,NewValue,type="l") 

plotmeans(Data4564$Cases~Data4564$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(Data4564$Cases,as.factor(Data4564$Year)) 

 

#AGE GROUP 65+ 

Data65p<-

subset(Data,Data$AgeGroup=="65+");head(Data65p);dim(Data65p)  

NewValue<-sapply(split(Data65p$ 

value,Data65p$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(Data65p$ 

Year,Data65p$NewVar),mean,na.rm=TRUE) 

Data65p<-data.frame(Cases=NewValue,Year=NewYear) 

plot(1:848,NewValue,type="l") 

plotmeans(Data65p$Cases~Data65p$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(Data65p$Cases,as.factor(Data65p$Year))  

 

#STATES 

DataOr<-Data 

Ind<-which(Data$State=="Schleswig-Holstein" | Data$State=="Hesse") 

Data<-Data[-Ind,]  

table(Data$State) 

 

#STATE Baden-Wurttemberg 

DataBW<-subset(Data,Data$State=="Baden-

W?rttemberg");head(DataBW);dim(DataBW) 

NewValue<-sapply(split(DataBW$ 

value,DataBW$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataBW$ 

Year,DataBW$NewVar),mean,na.rm=TRUE) 

DataBW<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataBW$Cases~DataBW$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataBW$Cases,as.factor(DataBW$Year))  

 

#STATE Bavaria 

DataBVR<-

subset(Data,Data$State=="Bavaria");head(DataBVR);dim(DataBVR) 

NewValue<-sapply(split(DataBVR$ 

value,DataBVR$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataBVR$ 

Year,DataBVR$NewVar),mean,na.rm=TRUE) 

DataBVR<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataBVR$Cases~DataBVR$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  
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myerrorbar(DataBVR$Cases,as.factor(DataBVR$Year))  

 

#STATE Berlin 

DataBrl<-subset(Data,Data$State=="Berlin");head(DataBrl);dim(DataBrl)  

NewValue<-sapply(split(DataBrl$ 

value,DataBrl$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataBrl$ Year,DataBrl$NewVar),mean,na.rm=TRUE)  

DataBrl<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataBrl$Cases~DataBrl$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataBrl$Cases,as.factor(DataBrl$Year))  

 

#STATE Brandenburg 

DataBrnd<-

subset(Data,Data$State=="Brandenburg");head(DataBrnd);dim(DataBrnd)  

NewValue<-sapply(split(DataBrnd$ 

value,DataBrnd$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataBrnd$ 

Year,DataBrnd$NewVar),mean,na.rm=TRUE) 

DataBrnd<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataBrnd$Cases~DataBrnd$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataBrnd$Cases,as.factor(DataBrnd$Year))  

 

#STATE Bremen 

DataBRmn<-

subset(Data,Data$State=="Bremen");head(DataBRmn);dim(DataBRmn) 

NewValue<-sapply(split(DataBRmn$ 

value,DataBRmn$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataBRmn$ 

Year,DataBRmn$NewVar),mean,na.rm=TRUE) 

DataBRmn<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataBRmn$Cases~DataBRmn$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataBRmn$Cases,as.factor(DataBRmn$Year))  

 

 

 

 

#STATE  Hamburg 

DataHmrg<-

subset(Data,Data$State=="Hamburg");head(DataHmrg);dim(DataHmrg)  

NewValue<-sapply(split(DataHmrg$ 

value,DataHmrg$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataHmrg$ 

Year,DataHmrg$NewVar),mean,na.rm=TRUE) 

DataHmrg<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataHmrg$Cases~DataHmrg$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataHmrg$Cases,as.factor(DataHmrg$Year)) 
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#STATE Lower Saxony 

DataLS<-subset(Data,Data$State=="Lower 

Saxony");head(DataLS);dim(DataLS) 

NewValue<-sapply(split(DataLS$ value,DataLS$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataLS$ Year,DataLS$NewVar),mean,na.rm=TRUE) 

DataLS<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataLS$Cases~DataLS$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataLS$Cases,as.factor(DataLS$Year))  

 

#STATE Mecklenburg-Vorpommern 

DataMV<-subset(Data,Data$State=="Mecklenburg-

Vorpommern");head(DataMV);dim(DataMV) 

NewValue<-sapply(split(DataMV$ 

value,DataMV$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataMV$ 

Year,DataMV$NewVar),mean,na.rm=TRUE) 

DataMV<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataMV$Cases~DataMV$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataMV$Cases,as.factor(DataMV$Year))  

 

#STATE North Rhine-Westphalia 

DataNRW<-subset(Data,Data$State=="North Rhine-

Westphalia");head(DataNRW);dim(DataNRW) 

NewValue<-sapply(split(DataNRW$ 

value,DataNRW$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataNRW$ 

Year,DataNRW$NewVar),mean,na.rm=TRUE) 

DataNRW<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataNRW$Cases~DataNRW$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataNRW$Cases,as.factor(DataNRW$Year)) 

 

#STATE Rhineland-Palatinate 

DataRPl<-subset(Data,Data$State=="Rhineland-

Palatinate");head(DataRPl);dim(DataRPl) 

NewValue<-sapply(split(DataRPl$ 

value,DataRPl$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataRPl$ 

Year,DataRPl$NewVar),mean,na.rm=TRUE) 

DataRPl<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataRPl$Cases~DataRPl$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataRPl$Cases,as.factor(DataRPl$Year))  

 

#STATE Saarland 

DataSaaRld<-

subset(Data,Data$State=="Saarland");head(DataSaaRld);dim(DataSaaRld)  
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NewValue<-sapply(split(DataSaaRld$ 

value,DataSaaRld$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataSaaRld$ 

Year,DataSaaRld$NewVar),mean,na.rm=TRUE) 

DataSaaRld<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataSaaRld$Cases~DataSaaRld$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataSaaRld$Cases,as.factor(DataSaaRld$Year))  

 

#STATE Saxony 

DataSxn<-subset(Data,Data$State=="Saxony");head(DataSxn);dim(DataSxn)  

NewValue<-sapply(split(DataSxn$ 

value,DataSxn$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataSxn$ 

Year,DataSxn$NewVar),mean,na.rm=TRUE) 

DataSxn<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataSxn$Cases~DataSxn$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataSxn$Cases,as.factor(DataSxn$Year))  

 

#STATE Saxony-Anhalt 

DataSxnAn<-subset(Data,Data$State=="Saxony-

Anhalt");head(DataSxnAn);dim(DataSxnAn) 

NewValue<-sapply(split(DataSxnAn$ 

value,DataSxnAn$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataSxnAn$ 

Year,DataSxnAn$NewVar),mean,na.rm=TRUE) 

DataSxnAn<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataSxnAn$Cases~DataSxnAn$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataSxnAn$Cases,as.factor(DataSxnAn$Year))  

 

 

#STATE Thuringia 

DataThr<-

subset(Data,Data$State=="Thuringia");head(DataThr);dim(DataThr)  

NewValue<-sapply(split(DataThr$ 

value,DataThr$NewVar),sum,na.rm=TRUE) 

NewYear<-sapply(split(DataThr$ 

Year,DataThr$NewVar),mean,na.rm=TRUE) 

DataThr<-data.frame(Cases=NewValue,Year=NewYear) 

plotmeans(DataThr$Cases~DataThr$Year,  

n.label=F,connect=F,xlab="Year",ylab="Cases")  

myerrorbar(DataThr$Cases,as.factor(DataThr$Year))  
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C. Supplementary figures and tables 

 
A. 

 
B. 

 
C. 
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Q. 

 

Figure S1. (A-Q )Cases per federal German state (2000-2015) 
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A. 
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B.

  
Figure S2 (A-B)  Plot of means and errors vs. year for age groups 0-4 (A) and 5-14 

(B) respectively.   
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Bavaria   

 

A. 
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Berlin  

 
 

 

B. 

 

Figure S3 (A-B) Plot of means and errors vs. year for states Bavaria (A) and Berlin 

(B) respectively. 
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Table S1 Data 1     
        
Kruskal-Wallis test       

P value 0.0015     

Exact or approximate P value? Gaussian Approximation     

P value summary **     

Do the medians vary signif. (P < 0.05) Yes     

Number of groups 16     

Kruskal-Wallis statistic 36.40     

        
Dunn's Multiple Comparison Test Difference in rank sum Significant? P 

< 0.05? 

Summary 

Baden-Wÿrttemberg vs Bavaria -22.25 No ns 

Baden-Wÿrttemberg vs Berlin -14.16 No ns 

Baden-Wÿrttemberg vs Brandenburg -5.406 No ns 

Baden-Wÿrttemberg vs Bremen 22.78 No ns 

Baden-Wÿrttemberg vs Hamburg 21.88 No ns 

Baden-Wÿrttemberg vs Hesse 26.28 No ns 

Baden-Wÿrttemberg vs Mecklenburg-Vorpommern -5.750 No ns 

Baden-Wÿrttemberg vs Lower Saxony 9.406 No ns 

Baden-Wÿrttemberg vs North Rhine-Westphalia 55.28 No ns 

Baden-Wÿrttemberg vs Rhineland-Palatinate -18.00 No ns 

Baden-Wÿrttemberg vs Saarland 51.88 No ns 

Baden-Wÿrttemberg vs Saxony -39.13 No ns 

Baden-Wÿrttemberg vs Saxony-Anhalt -38.56 No ns 

Baden-Wÿrttemberg vs Schleswig-Holstein 23.56 No ns 

Baden-Wÿrttemberg vs Thuringia -20.81 No ns 

Bavaria vs Berlin 8.094 No ns 

Bavaria vs Brandenburg 16.84 No ns 

Bavaria vs Bremen 45.03 No ns 

Bavaria vs Hamburg 44.13 No ns 

Bavaria vs Hesse 48.53 No ns 

Bavaria vs Mecklenburg-Vorpommern 16.50 No ns 

Bavaria vs Lower Saxony 31.66 No ns 

Bavaria vs North Rhine-Westphalia 77.53 No ns 

Bavaria vs Rhineland-Palatinate 4.250 No ns 

Bavaria vs Saarland 74.13 No ns 

Bavaria vs Saxony -16.88 No ns 

Bavaria vs Saxony-Anhalt -16.31 No ns 

Bavaria vs Schleswig-Holstein 45.81 No ns 

Bavaria vs Thuringia 1.438 No ns 

Berlin vs Brandenburg 8.750 No ns 

Berlin vs Bremen 36.94 No ns 

Berlin vs Hamburg 36.03 No ns 

Berlin vs Hesse 40.44 No ns 

Berlin vs Mecklenburg-Vorpommern 8.406 No ns 

Berlin vs Lower Saxony 23.56 No ns 

Berlin vs North Rhine-Westphalia 69.44 No ns 

Berlin vs Rhineland-Palatinate -3.844 No ns 

Berlin vs Saarland 66.03 No ns 

Berlin vs Saxony -24.97 No ns 

Berlin vs Saxony-Anhalt -24.41 No ns 

Berlin vs Schleswig-Holstein 37.72 No ns 

Berlin vs Thuringia -6.656 No ns 

Brandenburg vs Bremen 28.19 No ns 

Brandenburg vs Hamburg 27.28 No ns 

Brandenburg vs Hesse 31.69 No ns 

Brandenburg vs Mecklenburg-Vorpommern -0.3438 No ns 

Brandenburg vs Lower Saxony 14.81 No ns 

Brandenburg vs North Rhine-Westphalia 60.69 No ns 
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Brandenburg vs Rhineland-Palatinate -12.59 No ns 

Brandenburg vs Saarland 57.28 No ns 

Brandenburg vs Saxony -33.72 No ns 

Brandenburg vs Saxony-Anhalt -33.16 No ns 

Brandenburg vs Schleswig-Holstein 28.97 No ns 

Brandenburg vs Thuringia -15.41 No ns 

Bremen vs Hamburg -0.9063 No ns 

Bremen vs Hesse 3.500 No ns 

Bremen vs Mecklenburg-Vorpommern -28.53 No ns 

Bremen vs Lower Saxony -13.38 No ns 

Bremen vs North Rhine-Westphalia 32.50 No ns 

Bremen vs Rhineland-Palatinate -40.78 No ns 

Bremen vs Saarland 29.09 No ns 

Bremen vs Saxony -61.91 No ns 

Bremen vs Saxony-Anhalt -61.34 No ns 

Bremen vs Schleswig-Holstein 0.7813 No ns 

Bremen vs Thuringia -43.59 No ns 

Hamburg vs Hesse 4.406 No ns 

Hamburg vs Mecklenburg-Vorpommern -27.63 No ns 

Hamburg vs Lower Saxony -12.47 No ns 

Hamburg vs North Rhine-Westphalia 33.41 No ns 

Hamburg vs Rhineland-Palatinate -39.88 No ns 

Hamburg vs Saarland 30.00 No ns 

Hamburg vs Saxony -61.00 No ns 

Hamburg vs Saxony-Anhalt -60.44 No ns 

Hamburg vs Schleswig-Holstein 1.688 No ns 

Hamburg vs Thuringia -42.69 No ns 

Hesse vs Mecklenburg-Vorpommern -32.03 No ns 

Hesse vs Lower Saxony -16.88 No ns 

Hesse vs North Rhine-Westphalia 29.00 No ns 

Hesse vs Rhineland-Palatinate -44.28 No ns 

Hesse vs Saarland 25.59 No ns 

Hesse vs Saxony -65.41 No ns 

Hesse vs Saxony-Anhalt -64.84 No ns 

Hesse vs Schleswig-Holstein -2.719 No ns 

Hesse vs Thuringia -47.09 No ns 

Mecklenburg-Vorpommern vs Lower Saxony 15.16 No ns 

Mecklenburg-Vorpommern vs North Rhine-Westphalia 61.03 No ns 

Mecklenburg-Vorpommern vs Rhineland-Palatinate -12.25 No ns 

Mecklenburg-Vorpommern vs Saarland 57.63 No ns 

Mecklenburg-Vorpommern vs Saxony -33.38 No ns 

Mecklenburg-Vorpommern vs Saxony-Anhalt -32.81 No ns 

Mecklenburg-Vorpommern vs Schleswig-Holstein 29.31 No ns 

Mecklenburg-Vorpommern vs Thuringia -15.06 No ns 

Lower Saxony vs North Rhine-Westphalia 45.88 No ns 

Lower Saxony vs Rhineland-Palatinate -27.41 No ns 

Lower Saxony vs Saarland 42.47 No ns 

Lower Saxony vs Saxony -48.53 No ns 

Lower Saxony vs Saxony-Anhalt -47.97 No ns 

Lower Saxony vs Schleswig-Holstein 14.16 No ns 

Lower Saxony vs Thuringia -30.22 No ns 

North Rhine-Westphalia vs Rhineland-Palatinate -73.28 No ns 

North Rhine-Westphalia vs Saarland -3.406 No ns 

North Rhine-Westphalia vs Saxony -94.41 Yes * 

North Rhine-Westphalia vs Saxony-Anhalt -93.84 Yes * 

North Rhine-Westphalia vs Schleswig-Holstein -31.72 No ns 

North Rhine-Westphalia vs Thuringia -76.09 No ns 

Rhineland-Palatinate vs Saarland 69.88 No ns 

Rhineland-Palatinate vs Saxony -21.13 No ns 

Rhineland-Palatinate vs Saxony-Anhalt -20.56 No ns 
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Rhineland-Palatinate vs Schleswig-Holstein 41.56 No ns 

Rhineland-Palatinate vs Thuringia -2.813 No ns 

Saarland vs Saxony -91.00 No ns 

Saarland vs Saxony-Anhalt -90.44 No ns 

Saarland vs Schleswig-Holstein -28.31 No ns 

Saarland vs Thuringia -72.69 No ns 

Saxony vs Saxony-Anhalt 0.5625 No ns 

Saxony vs Schleswig-Holstein 62.69 No ns 

Saxony vs Thuringia 18.31 No ns 

Saxony-Anhalt vs Schleswig-Holstein 62.13 No ns 

Saxony-Anhalt vs Thuringia 17.75 No Ns 

Schleswig-Holstein vs Thuringia -44.38 No Ns 

 

 

Table S2 Age Groups     

        
Kruskal-Wallis test       

P value < 0.0001     

Exact or approximate P value? Gaussian Approximation     

P value summary ***     

Do the medians vary signif. (P < 0.05) Yes     

Number of groups 5     

Kruskal-Wallis statistic 45.69     

        

Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 

0-4 vs 5-14 -15.59 No ns 

0-4 vs 15 – 44 10.38 No ns 

0-4 vs 45-64 21.22 No ns 

0-4 vs >65 35.72 Yes *** 

5-14 vs 15 – 44 25.97 Yes * 

5-14 vs 45-64 36.81 Yes *** 

5-14 vs >65 51.31 Yes *** 

15 – 44 vs 45-64 10.84 No ns 

15 – 44 vs >65 25.34 Yes * 

45-64 vs >65 14.50 No ns 
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