

Athens University of Economics and Business
Department of Management Science and Technology

Combining Relational and Stream Data

for Real-Time Analytics

Yannis Sotiropoulos

Thesis submitted for the degree of

Doctor of Philosophy

July 2013

Abstract

Nowadays, more and more organizations realize the importance of analyzing available data.

While most of the times data is stored, over the last years there is a growing amount of stream

data. Such data arrives on-line from multiple sources in a continuous, rapid and time-varying

fashion. Some well-known stream applications are: sensor networks, RFID supply chain

management, financial analysis, network and environmental monitoring. The importance of stream

data management has been identified by many researchers and as a result stream data processing

has gain the focus of intense research activity in the past few years. Moreover processing data

streams has been identified as a crucial element for real-time enterprises (RTEs).

Currently, most stream management applications and systems exploit stream data with the

objective to answer monitoring queries. However, the real potential of stream data lies in the

possibility to capture new types of information in (near) real-time and support decisions. To

support this kind of analysis we need analytics queries that can support multiple and correlated

stream aggregates over stream data coming from multiple and heterogeneous stream sources.

Moreover a wide range of analytics applications need to combine already available data (e.g.

stored data) and stream data to empower business with (near) real-time insights that can be used

for improved decision making. As relational databases are extremely widespread our research

focuses on how relation data can support relational-stream analytics applications. Overall, this

thesis provides query formulation methods and tools that combine relational and stream data to

support (near) real-time data analysis.

In this thesis we introduce stream variables to support analytics over stream data. This kind of

analytics queries can contain multiple stream aggregates, correlated stream aggregates and use data

from multiple and heterogeneous stream sources. We provide SQL language extensions to support

this kind of queries. These extensions are minimal, succinct and easily understandable by common

SQL users. Moreover we provide a spreadsheet-like approach to perform stream analytics. The

intuition is that stream queries can by defined in a column-by-column fashion. The columns can

contain either relational data or stream aggregates. We argue for the easiness of this approach and

that the developed tool can be useful in real world applications.

The thesis studies how to extend current Relational Database Management Systems (RDBMSs)

to handle stream data for (near) real-time decision making. We present a relational-based

integration framework that sits atop any RDBMS and mix RDBMS’ data and stream aggregates

managed by different stream systems. A SQL extension is provided to define relational-stream

views and an API is developed to carry out the required communication between the relational and

the stream systems. The proposed framework can serve as a standard for relational-stream

interoperability.

Table of Contents

1 Introduction .. 1

1.1 Overview and Motivation .. 1

1.2 Research Challenges ... 3

1.3 Contributions ... 5

1.4 Thesis Outline ... 6

2 Background and Related Work .. 7

2.1 Data Streams ... 7

2.1.1 Introduction ... 7

2.1.2 Data Stream Management Systems ... 11

2.1.3 Stream Query Languages .. 15

2.1.4 Data Stream Applications .. 17

2.2 Data Analytics ... 20

2.2.1 Offline Data Analytics... 20

2.2.2 Stream Data Analytics ... 26

3 SQL Extensions for Real-Time Analytics .. 30

3.1 Introduction ... 30

3.2 Rationale and Motivation .. 30

3.2.1 Motivating Examples .. 31

3.3 Stream Variables ... 36

3.3.1 Theoretical Framework ... 36

3.3.2 Query Definitions ..
 38

3.4 Query Language .. 43

3.4.1 Syntactic Constructs ..
 43

3.4.2 Example Queries ... 44

3.5 Evaluation and Optimizations ... 48

3.5.1 Evaluation Algorithm for Stream Variable Queries .. 48

3.5.2 Optimizations .. 48

3.6 Implementation and Experiments .. 49

3.6.1 Stream Variables System... 49

3.6.2 Experiments ... 50

3.7 Summary and Conclusions .. 52

4 Spreadsheet-like Stream Processing ... 53

4.1 Introduction ... 53

4.2 Challenges ... 53

4.3 Radio Frequency Identification (RFID) Technology and Applications 54

4.4 RFID Motivating Application ... 56

4.4.1 Application Scenarios..
 56

4.4.2 Example Queries ... 59

4.5 Continuous Spreadsheet-like Computations ... 62

4.5.1 Theoretical Framework ... 62

4.6 Query Language .. 64

4.6.1 SQL Extensions ... 64

4.6.2 Example Queries ... 65

4.6.3 Requirements ... 67

4.7 Query Evaluation and Implementation .. 67

4.7.1 Query Evaluation ... 67

4.7.2 Optimizations .. 68

4.7.3 COSTES System ... 70

4.7.4 Experiments... 73

4.8 Summary and Conclusions .. 76

5 An Integration Framework for Relational and Stream Systems ... 78

5.1 Introduction ... 78

5.2 Motivation and Issues .. 79

5.2.1 Motivating Example .. 79

5.2.2 Example Queries ... 84

5.2.3 Miscellaneous Applications .. 86

5.3 Challenges and Contributions ... 88

5.4 LinkView Semantics ... 89

5.4.1 Rationale .. 89

5.4.2 LinkView Theoretical Definitions ... 89

5.4.3 Query Processing ... 90

5.4.4 LinkView Implementation Structure ... 91

5.5 LinkView SQL Extensions .. 93

5.5.1 Example Queries ... 94

5.6 LinkView Architecture .. 96

5.6.1 DBMS-SME Application Programming Interface .. 99

5.7 Implementation and Optimizations ... 101

5.7.1 LinkView System .. 101

5.7.2 LV-Eval Operator Implementation ... 103

5.7.3 Optimizations .. 104

5.8 Experiments and Performance... 107

5.9 Summary and Conclusions .. 111

6 Conclusions ... 113

6.1 Summary ... 113

6.2 Future Work .. 114

7 Bibliography ... 116

List of Figures

Figure 2.1: One-time queries vs. continuous queries 9

Figure 2.2: Generic architecture for a Data Stream Management System 12

Figure 3.1: Instances of results for queries Q1 to Q7 34

Figure 3.2: Representation of query Q3 using queues 35

Figure 3.3: Stream Variables system 50

Figure 3.4: Query Q2 completion time 51

Figure 3.5: Query Q2 evaluation time for different base relation sizes 52

Figure 4.1: Application scenarios setup 58

Figure 4.2: Instances of results for queries Q1 to Q4 60

Figure 4.3: COSTES system 70

Figure 4.4: Query Q1 definition 72

Figure 4.5: Query Q1 results 72

Figure 4.6: Query Q1 execution time varying the number of tuples 73

Figure 4.7: Q1 execution time varying the window size 75

Figure 4.8: Query Q3 execution time varying the number of data sources 76

Figure 5.1: Prices view and abstract representation of the linkage with stream systems 80

Figure 5.2: LinkViews architecture 97

Figure 5.3: QE2D tasks 109

Figure 5.4: QE2M tasks 110

Figure 5.5: QE3 tasks 110

Figure 5.6: QE1Mθ 111

List of Tables

Table 5.1: Request types of DBMS-SME API 99

Table 5.2: SQL queries execution time (seconds) 109

Chapter 1

1 Introduction
1.1 Overview and Motivation

Today’s complex world requires state-of-the-art data analysis over truly massive data sets.

Until recently, data were stored and processed in database systems. Processing persistent data has

been the main focus of the database research community for many years. However the

technological advances in sensor technology along with the emergence of web and mobile services

gave birth to a new generation of data applications. These applications must handle data items that

arrive on-line from multiple sources in a continuous, rapid and time-varying fashion [21]. Example

applications include financial applications (streams of transactions or stock ticks), network

monitoring (stream of packets), telecommunications data management (stream of calls), web

applications (click-streams), sensor networks (RFID data) and location-based services (GPS data).

This new class of data stream applications has recently attracted a lot of attention from database

research community and the current thesis belongs to this area of research.

The volume and the high speed of continuous data flows make extremely hard to store the data

in a database system. Also, the “store-and-then-query” data processing paradigm is not suitable for

stream data. In most cases users need to get results as fast as possible so the computation must be

performed on-the-fly as the data enters the processing system. In stream applications data is

processed with “continuous queries” [22], which provide results continually as new stream data

arrives from stream sources. Continuous queries are used for monitoring and alerting operations

i.e. when a condition is satisfied or a specific event takes place an alert mechanism is triggered.

Additionally, some stream data may need to be stored for offline data analysis.

The database research community has responded to data stream application needs with an

abundance of ideas, prototypes and architectures to address the new issues involved in this field.

From a relational perspective the stream data is modeled not as persistent relations but rather as

transient relations [12]. Apart from simple and efficient stream querying (e.g. simple filtering

queries over streams), how to best model, express and evaluate analytics over data streams is a

challenging problem. The purpose of analytics is to help analysts make informed decisions by

Chapter 1: Introduction 2

uncovering insights hidden in large volume of data. Analytics over data streams can be used for

real-time decision making. For example the ability to make decisions on-line (i.e. as data stream

arrives) is extremely important for critical tasks that have significant economic benefits for large

companies (e.g. telecom fraud detection). Stream analytics requires data modeling, rich querying

capabilities and novel evaluation processing techniques. Additionally the time plays a central role

in stream analytics as metrics of interest (e.g. moving average) are computed over different time-

scales (e.g. hours, minutes or seconds). Stream querying with these characteristics will be a crucial

component of any future data management and decision support system [4][39]. One of the most

challenging tasks in decision making using stream data is the transformation of raw stream

observations to information that is understandable by analysts [151]. In most cases raw stream data

lacks semantic meaning, making them inappropriate for business applications. Furthermore stream

enabled infrastructures generate large volume of raw data and passing high volume raw stream

data observations directly to applications and users is not a proper solution. To support stream data

analysis and alleviate the high volume problem stream data must be summarized and analyzed

continuously as the data arrives i.e. we need continuous analytics over stream data.

Data streaming technologies are an evolutionary concept in the field of databases. While a lot

of work has been done in analytics over offline data [47][48] the support of analytics over streams

is in ongoing research and the thesis studies this problem. The continuous flow of stream data

makes such queries difficult to be defined and evaluated. Online computation is one aspect of

applying analytics over stream data. On the other hand, analytics over data streams involves data

synthesis of stream data with other types of data. As relational database systems are the most

popular and widely used data systems for the storage of structured data, the capability to combine

stream and relational data for analytics purposes and decision making is of great importance. A

key observation is that in most cases stream values are bound to a relational value. For example a

stock has a price; a sensor provides a stream of temperature measurements and a web user with a

specific internet address generates a stream of clicks. The details of stocks, sensors and users are

stored in a relational database and provide the semantic meaning that can be associated with

stream data.

Applying continuous analytics over stream data is a crucial element for real-time enterprises

(RTE). Until recently data is collected in centralized places allowing analysts to extract useful

information by issuing decision support queries. In a typical scenario, an organization stores

detailed records of its operations in a database, which are then analyzed to improve efficiency,

detect sales opportunities, identify irregularities, verify hypotheses, segment customer base, and so

on. Performing complex analysis on this data is an essential component of these organizations’

businesses. These technologies are collectively known as Business Intelligence (BI). However, in

stream applications the huge amounts of continuous data makes it impractical to store all the data

Chapter 1: Introduction 3

at a centralized site. Real-Time Business Intelligence (RTBI) is a new research area providing

techniques that can be used for analysis of data and events as they occur. RTBI enables passive

organizations to be transformed to active in order to respond immediately to business needs. As a

result decision making is “tactical” rather than “strategic”. Stream data analysis is a common RTBI

technique and has gain many supporters in recent years. In this thesis we provide methods and

tools to support Real-Time Business Intelligence applications. A real-time data report that

combines relational and stream data for analytics purposes is a useful tool to achieve this goal. The

current thesis describes query languages, architectures and frameworks on how we can define and

evaluate such (near) real-time data reports.

Except from combining relational and stream data at the logical level (relational tuples with

stream data) the capability of current Relational Database Management Systems (RDBMSs) to

handle stream data enables relational-stream system level integration. In this way users/analysts

can use stream data inside their current database systems. As a result they can express queries that

can use the already available relational data exists in their relational database systems. The

challenge is that while the stream data is provided by a stream source or by a specialized stream

processing engine, stream data must be transparent to RDBMS users. Being able to easily express

and efficiently evaluate queries over heterogeneous stream data sources and combine stream data

with relational data to create integrated analytics applications is a major challenge in data

management field and is the focus of the current research.

As stream sources continue to increase a vast amount of data will become available. The

analysis of stream data is becoming crucial for companies and organizations as there are many

practical applications and business needs. Combining relational data with stream data for analytics

purposes and decision making is a large part of these applications and motivates the research

described in this thesis. Also providing to users the capability to use stream data in their current

relational database systems makes stream processing available to a large number of current

database users showing the practical aspect and the usefulness of the research conducted in the

current thesis.

1.2 Research Challenges

The goal of this research work is to design query formulation methods and query processing

algorithms for stream data. The focus is on queries that can use stream data coming from

heterogeneous and possible distributed stream data sources. Such queries process stream data on

the fly and provide results continuously. Moreover, these queries can use relational data either to

define the semantic meaning of stream data (e.g. for each stock compute the running maximum

and average price) or the relational data enhances query results with historic information (e.g. for

each stock compute the running maximum and average price and compare with the maximum

Chapter 1: Introduction 4

prices of previous week). In both cases stock’s details are available in relational data existing in a

RDBMS while the running maximum and average prices are computed on-the-fly from stream

data.

The first challenge is how the relational and stream data can be combined to form analytics

queries in a semantic level. The focus of our research is on analytics queries similar to group-by

aggregate queries. The group-by attribute is the relational part while the aggregates are produced

from stream data. The second challenge is how to provide richer analytics than simple group-by

aggregate queries. Complex queries can contain multiple group-by attributes and stream

aggregates, correlated stream aggregates and stream aggregates from multiple and heterogeneous

data stream sources. Such queries are useful for (near) real-time decision making. We provide two

methods to achieve this: an SQL-like approach and a spreadsheet approach. In the first case the

theoretical foundations and an extension of SQL is provided to support stream analytics queries. In

the second case a spreadsheet-like query method is provided that enables the declaration of

complex analytics queries in a spreadsheet fashion, column-by-column.

Moreover extending a relational Database Management System to combine already available

relational data with stream data coming from various sources for (near) real-time data analysis and

decision making is a major challenge. A framework that uses the database engine in a

collaborative fashion with stream engines is provided.

To address these challenges several issues have to be taken into consideration, both from a

theoretical and a practical perspective:

 Analytics over stream data: The main approach to process infinite data streams is

continuous queries, which provide results continually as new data arrives from stream

sources. In most cases such queries are simple monitoring queries. On the other hand,

applying analytics over stream data is useful for (near) real-time decision support. Such

queries use multiple and heterogeneous stream sources, combine multiple stream

aggregates and can use offline relational data. So, the research questions are:

• How one can model and perform analytics over stream data?

• What are the semantics of the query language to support this kind of queries?

A number of issues must be taken under consideration trying to answer these

challenges. Firstly, the provided query formulation methods must be expressed through

a simple language that it is easily understood. Also efficient evaluation and

optimizations must be supported.

 Relational Database Management Systems (RDBMSs) and stream system

integration: One of the main concerns is how to extend current RDBMSs to handle

Chapter 1: Introduction 5

queries that use stream data. While many systems have been developed to address the

various challenges present in stream applications, few deal with simple SQL extensions

to incorporate stream processing in present relational systems. Additionally a relational

and sound theoretical framework must be provided. So the research questions are:

• How database users can use stream data in their current relational database

systems?

• What is a relationally sound framework for RDBMS-stream systems

integration?

Similarly a number of issues must be taken under consideration trying to answer these

challenges. The most important requirement is that the usage of stream data in the

RDBMS must be transparent to database users. Relational semantics must be applied in

the RDBMS while stream engines must handle stream data using their native stream

processing language. A data protocol between RDBMS and stream engines must be

developed to allow the usage of stream data from database systems.

1.3 Contributions

The goal of the thesis is to provide methods and tools on how stream and relational data can be

combined in order to be used for real-time analytics. Real-time analytics involves rich querying

capabilities for (near) real-time decision support. We focus on analytics queries that aggregate

stream data and combine them with relational data. Below we provide the contributions of the

thesis:

 We provide a theoretical framework to support continuous queries than can contain

multiple stream aggregates, correlated stream aggregates and can use data from

multiple and heterogeneous stream sources. Also, we define SQL language extensions

to support this kind of queries. The provided SQL extensions are minimal, succinct and

easily understandable by common SQL users.

 We introduce a spreadsheet-like approach to perform stream analytics. The intuition is

that continuous queries can be defined in a column-by-column fashion. This simple

approach enables a number of optimizations for efficient stream query processing. A

simple SQL-like language and a tool are provided for the definition and the

computation of stream analytics.

 Stream analytics applications need to integrate and manage aggregates produced by a

variety of stream engine tools, complete Data Stream Management Systems (DSMSs)

or stand-alone stream-handling components. We present a relational-based integration

framework that sits atop any relational DBMS and mix DBMS’ data and stream

Chapter 1: Introduction 6

aggregates managed by different stream systems. A SQL extension is provided to

define views that contain both relational and stream data. We developed an Application

Protocol Interface (API) to carry out the required communication between the

relational and the stream systems. The proposed framework can serve as a standard for

relational-stream interoperability.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 contains an overview on stream data, applications and systems. It also provides

background information on stream query languages and stream processing. Related work on

spreadsheets and data analysis is given. We outline existing work in analytics for relational and

stream data.

Chapter 3 discusses stream variables, an approach for the formulation of continuous queries

that can be used for analytics purposes. The theoretic framework is provided and SQL extensions

to support multiple and correlated stream aggregates in queries are defined. Additionally a

thorough number of examples are provided. Finally evaluation algorithms and performance results

are given.

Chapter 4 presents a spreadsheet-like approach for stream queries that are useful for real-time

decision making. A real case application is described and the challenges are identified. We present

how these challenges are handled by our spreadsheet framework. We describe optimizations and

performance results are provided. Finally we describe and preview the developed spreadsheet tool.

Chapter 5 describes a special type of view that can contain relational data and stream

aggregates from multiple and heterogeneous stream engines. We present the theoretical

foundations and a framework to enable relational-stream integration. An Application Protocol

Interface (API) is defined to support the communication between RDBMSs and stream engines.

An SQL-like language is presented for the definition of relational-stream integrated views. A

relational evaluation operator is described for query evaluation. Finally a prototype system is

described along with optimizations and performance results.

Chapter 6 summarizes the results of this work, discusses open issues and suggests areas for

future work.

Chapter 2

2 Background and Related Work
2.1 Data Streams

2.1.1 Introduction

The proliferation of computer technology has brought big changes in data management. Data is

produced in greater amounts and in most cases is inherently distributed. In many applications, the

data is generated in real-time, in a continuous and transient manner a concept known as data

streams [21]. To accommodate the enormous processing requirements of these applications, novel

architectures have been proposed as conventional database management systems (DBMS) cannot

handle real-time data processing [27]. For example Relational Database Management Systems

(RDBMS) follow a “store-then-process” data processing model: data records are stored in disk

and users can query the data using a query language (e.g. SQL). However, in case of data streams

the database management systems have not the entire data set when a query is issued and common

query processing techniques [74] cannot be applied. In addition continuous data must be processed

on-the-fly and queries results must be provided in (near) real-time. These challenges [89] along

with real world applications that require to process voluminous amounts of stream data have given

an increased priority to the design and development of novel data stream engines.

Formally, a data stream can be described as a sequence of data items that produced

continuously in real-time. The unique characteristics of data streams [71] are:

 Data streams are unbounded in size. Due to the large size it is not feasible to locally

store a stream in its entirety.

 Applications that process stream data cannot control the order in which data items

arrive.

 The data items are processed once or a small number of times due to: (a) the large

volume (b) the processing time constraints and (c) the limited computation and storage

capabilities of the processing system. In most cases the data stream items that are

processed are discarded or archived making difficult to retrieve and process them

multiple times.

Chapter 2: Background and Related Work 8

 The processing of stream items are happen in-memory. The memory is small relative to

the size of stream data and as a result there is an increased query processing cost for

processing stream data items that are not in memory.

These unique characteristics of data stream create some challenging research questions such as:

 How data streams are modeled?

 How data streams can be queried?

 How an infinite data stream can be processed in bounded memory?

A partial list of research work trying to address these issues is given below:

Data stream modeling: Data streams can adhere to the relational model i.e. a data stream is a

sequence of relational tuples [108]. We can classify such streams either as transactional data

streams or measurement data streams. Transactional data streams contain tuples that log

interactions between entities while measurement streams contain tuples coming from the

monitoring of the evolution of a phenomenon. In most cases a phenomenon can have a number of

entity states that may change during time. Examples of transactional streams are credit card

transactions and web logs. In both cases a customer or a web user interacts with a system leaving

transactional trails. Measurements streams contain tuples coming from the monitoring of a

network (e.g. tuples containing IP packets fields) or sensor observations (e.g. temperature

observations). More formally a data stream can be modeled as sequence of tuples with schema (v,

t) where v is a single value or a vector of values and t is the timestamp that defines the order of

the sequence [79]. The timestamp can be attached to the data stream item when it is first created

(in stream source) or assigned from the stream system when it arrives. In [109] a data stream is

modeled as a n dimension vector a�⃗ = (a1, …, an) initialized to 0 and updates presented to it in a

stream. In the Cash Register Model each update has the form (ai, I), so that ai is incremented by

some positive integer I. In the Turnstile Model each update is in the form (ai, I), so that ai is

incremented by some (possible negative) integer I.

Querying data streams: Queries over data streams differ from traditional database queries.

Traditional database queries are one-time queries i.e. issued once and applied over static data exist

in the disk. Such queries compose a query plan consists of operators. Query plan evaluation returns

a complete result set. On the other hand, queries over data streams are “continuous”: the answer to

a continuous query is produced over time, reflecting the stream data seen so far [140]. As new data

stream items arrive the continuous query updates the results on-the-fly. So the query output is not a

Chapter 2: Background and Related Work 9

static and finite result but can be seen as a new data stream. The differences between one-time and

continuous queries are depicted in Figure 2.1.

Figure 2.1: One-time queries vs. continuous queries

Consequently continuous queries can be added and deleted in a stream system at run-time. In

case of query addition the queries can be either predefined or ad-hoc. Predefined continuous

queries are registered to stream system before any relevant data stream item has arrived. On the

other hand, ad-hoc queries are register when a data stream has begun.

In traditional Relational Database Management Systems (RDBMSs) queries are converted in an

ordered set of steps composed of relational operators (query plan). In such a query plan data enters

at the leaves, tuples are processed from the intermediate operator nodes and the result is given at

the root of the tree. The evaluation of a continuous query using this approach is not always

possible because an operator may need the complete data set from a previous operator (e.g. group

by). But a stream is infinite and has no end. Such blocking operators can be replaced with no-

blocking operators when it is possible [71]. Another approach is the usage of special assertions

(e.g. punctuations [138][139]) that provide information what data items can and cannot appear in

the stream. Their semantics can define the partial results that can be output from the stream

system. Also, for a large number of applications only a subset from the whole data stream might be

important. For example a simple query is to find the average temperature in a room only for the

last ten minutes. In this case we are only interest for recent data. Prior data are not important and

can be discarded. Such constructs that can define the range of items over a data stream are named

windows [67]. Windows can be classified according to the following criteria [71]:

Chapter 2: Background and Related Work 10

 Based on window endpoints: A window contains stream items that are enclosed in a

starting endpoint and ending endpoint. The direction of movement of these endpoints

corresponds to the following types of windows:

 Landmark windows have a variable size extending from a fixed point in the

stream to the latest received tuple.

 Sliding windows have fixed size and both ends of the window moving (slide) as

new tuples appear in the stream.

 Fixed windows have stable endpoints resulting in a data stream snapshot for the

defining range between the two endpoints.

 Count-based or time-based windows: continuous queries can restrict the range of

stream data to a window that contains the last N items or those items that have arrived

in the last t time units. The former are called count-based or logical windows and the

latter are called time-based or physical windows.

 Window evaluation strategy: aggregates or other computations over windows can be

done in a batch mode or per each arrived data stream element. The appropriate

evaluation strategy can be decided based on performance/accuracy requirements and

the need for near or real-time results.

Queries for distributed stream processing studied in [1][152][51]. In such environments, remote

stream nodes process stream data and push asynchronously results to the main stream engine or the

stream nodes are part of a query execution plan. Several problems arise in these architectures as:

operator placement, load sharing and resource aware query execution.

Some researchers study the usage of standard database engines for stream processing. In [140]

authors study how DBMS features like transaction management and concurrency control can be

used for stream processing. Similarly in [81] authors study stream processing performance by

tuning a standard DBMS system using already available features (e.g. indexes, triggers). In [82] a

DBMS engine is extended to provide stream querying functionality. Stream operators are

developed as UDFs (User-Defined Functions) and queries process chunks of stream data. Authors

in [93] extend a column oriented database system to support stream queries.

Memory bounded processing of streams: Due to the infinite size of data streams there are cases

that the amount of storage required for an answer of a continuous query may be unbounded [21]

(e.g. if a continuous query is a self-join). In [11] authors provide the theoretical foundations and

an algorithm for determining if a conjunctive query with arithmetic comparisons can be evaluated

using bounded memory. Several other techniques are proposed from various researchers to handle

Chapter 2: Background and Related Work 11

the infinite size of streams: processing only a part of a stream (windows), approximate answers

and query optimization.

Stream window constructs transform infinite data streams to finite sets allowing continuous

queries to be evaluated in bounded memory. For example in most cases joining two infinite data

streams requires unbounded memory while a window construct over the data streams enable

memory bounded computation [72].

Another approach to alleviate the problem of unbounded memory is to use small space

structures (e.g. synopsis) that provide a concise representation of stream seen so far at the expense

of some accuracy (e.g. approximate answers) [70]. In [68] wavelet based approaches are presented

to summarize aggregates over streams. Algorithms for the computation of approximate frequency

counts of elements in a data stream are described in [107][55]. The proposed algorithms require a

small main memory footprint. Such algorithms are useful in group-by queries that the user is

interested in only those groups whose frequency exceeds a certain threshold. Authors in [63] study

the problem of approximately answering possibly multi-join, aggregate SQL queries over

continuous data streams with limited memory. They suggest randomizing techniques that compute

small summaries of the streams that are able to provide approximate answers to aggregate queries

with provable guarantees on the approximation error.

Also due to the long-standing nature of a continuous query the query plan might change

dynamically to handle fluctuations in memory resources. In [15][103] an adaptive query

processing operator called eddy is proposed that is able to reorder operators in a continuous query

plan. Operators can be reorder on the fly based on runtime selectivity and query execution cost

leading to better memory utilization. In [20] an operator scheduling strategy is proposed to

minimize run-time memory usage for continuous queries involving selections, projections, joins

with stored relations and sliding-windows joins.

2.1.2 Data Stream Management Systems

Traditional Database Management Systems (DBMSs) are designed to support applications that

use static data stored in disk. Stream applications require on-the-fly processing of data (no disk

storage) and (near) real-time results. A new type of systems named Data Stream Management

Systems (DSMSs) is designed to support continuous queries over stream data. DSMSs have the

following requirements [71]:

 Query plans must contain operators that can provide results even if the input is infinite.

In other words they must support non-blocking operators. Also query plan must

optimized continuously due to dynamic changes in system conditions (e.g. available

resources) or changes in stream characteristics (e.g. bursts, unreliable data)

Chapter 2: Background and Related Work 12

 Processing algorithms have limited or no access to data streams elements that have

already processed by the system. In most cases old data are dropped and stream system

can make only one pass over the data.

 Continuous queries must be supported and query results must be provided in (near)

real-time. Results can be exact or approximate due to performance and storage

constraints. Also query semantics must support order and time operators due to data

stream sequential nature.

A generic DSMS architecture [71] is depicted in Figure 2.2.

Figure 2.2: Generic architecture for a Data Stream Management System

Input monitor receives data streams and can apply load shedding techniques to regulate the

input rate. Continuous queries declared by users are stored in the query repository. Queries that

contain window structures keep the data in the working storage. Data synopses and other

approximate-based structures are stored in summary storage. Static storage holds metadata for

queries and data stream sources. The query processor processes streams and may re-optimize

query plans base on stream rate, Quality of Service specifications and system resources. Query

results are buffered or streamed out to the users.

Some early works on active databases present how Relational Database Management Systems

(RDBMSs) can handle streams using triggers and Event-Condition-Act rules (ECA) [106][123].

However the large volume of stream data makes these approaches not suitable for stream

applications as they cannot scale. For this reason a number of DSMSs have been developed either

as research prototypes or as commercial ones. Most of these stream systems extend SQL [14] to

support continuous queries or the queries are built as data flow graphs [83]. These graphs contain

Chapter 2: Background and Related Work 13

stream sources management elements, stream processing operators and output components. Below

we provide a partial list of DSMSs:

 Tribeca: In [131] authors describe an early version of a Data Stream Management

System (DSMS) named Tribeca that is used for network traffic analysis. Tribeca

provides a data flow language that can process stream data applying sequences of

simple operators (aggregates, filtering).

 CQ project: The CQ project [96][95] proposes a distributed architecture that can

monitor real-time updates in web pages and other sources (databases, files) using

monitoring programs (CQ robots). When updates are detected in each distributed node

the robots return results to the central system. Continuous queries in distributed sources

are defined as a sequence of a SQL query, a trigger and a stop operation. When the

trigger condition applies, the SQL query is executed. The stop condition terminates the

monitoring operation.

 NiagaraCQ: The NiagaraCQ [49] system is similar to the CQ project but enables

optimization for multiple monitoring continuous queries over distributed XML data

sets. The proposed optimization approach it is based on the fact that many web

monitoring queries share similar structures and conditions. In general NiagaraCQ

enables shared computation and better memory utilization for multiple continuous

queries applied over web sources.

 Aurora: The Aurora system [2][3] is a data flow system using a network of operators

to process incoming streams. Aurora supports Quality of Service (QoS) specifications

that control how resources are allocated for each query based on response times, on the

percentage of tuples delivered and on the importance of values produced (some values

are more important than others). Aurora can shed load data to satisfy QoS

specifications by dynamically inserting and removing drop operators into query plans

[133].

 Gigascope: is a special purpose stream engine used for network applications (traffic

analysis, network monitoring, etc) [57][58]. It supports two kinds of queries: the low-

level queries (LFTAs) which monitor network interfaces (i.e. the data stream sources)

and higher-level queries (HFTAs) that act on LFTAs results. Gigascope is a stream

database i.e. it consumes streams and produces streams.

 PSoup: supports queries that need data that arrived prior and after the query

specification [32]. Data and queries are stored in special purpose data structures called

State Modules (SteMs). There is one SteM for all continuous queries defined in the

system and one SteM for each data stream. When a new stream data item is inserted in

the data SteM it probes the query SteM to evaluate all the registered queries.

Chapter 2: Background and Related Work 14

Symmetrically when a new query is inserted in the query SteM it applied to the data in

the data SteM. These characteristics make PSoup appropriate for applications that

periodically connect to the internet and not need to get stream results continually. For

example mobile users may be offline for extended time duration but when they

connected back to the network they want to be informed about query results. Also users

might want to be informed periodically and not continually. This enables users to avoid

information overload and the network can have better bandwidth utilization. PSoup

achieves these functionalities supporting pre-computation and materialization of stream

results.

 STREAM: is a general-purpose DSMS supporting continuous queries over multiple

data streams and stored relations [12]. STREAM is based on relational semantics

supporting windows, relation-to-stream and relational operators. For each continuous

query an execution plan it is generated. A query plan is composed of: (a) operators, (b)

operators’ queues to keep stream data, (c) synopses containing operator state

information and statistics. Plan sharing and approximation techniques are used for

query optimization [108]. Moreover optimization algorithms for reducing operators’

queue sizes are proposed to reduce query memory overhead.

 TelegraphCQ: extends PostgreSQL DBMS to support continuous queries over high

volume and high variable data streams [31][103][86]. Streams can be created using

Data Definition Language statements (e.g. CREATE STREAM) and continuous

queries are SQL statements with an optional window clause. TelegraphCQ focuses on

shared and adaptive processing of continuous queries.

 Continuous Adaptive Query Processing Engine (CAPE): [121] is stream engine

designed to handle streams of varying rates providing an adaptive optimization

framework with the following unique characteristics: (a) online query optimization

with adaptive operator scheduling that can change operator scheduling algorithm

dynamically based on system resources (b) plan distribution among multiple machines

(c) punctuations on streams [139].

 SPADE: is a large-scale, distributed data stream processing system [66]. It provides a

rapid application front-end and an intermediate language for composition of parallel

and distributed data-flow graphs. It supports a large number of built-in stream-

relational operators (e.g. windows). Also users can build their own user-defined

operators which can integrate with the built-in operators. A data-flow graph is consists

of processing elements containing connected operators. Finally a broad range of stream

adapters is provided to enable connectivity from stream sources and publish data to

external repositories.

Chapter 2: Background and Related Work 15

Moreover, specialized stream handling components have been developed to support stream

processing: MapReduce online [54] adds pipeline functionality between Map and Reduce

operators [59][60] for stream data processing; [87] describes how a Map-Reduce operator can be

used in stream queries that are defined as data flow graphs; [98] studies stream processing in a

cloud architecture; [112] depicts a stream manager that supports disk-based incremental

processing. Finally a large number of stream applications are built from scratch using general

purpose programming languages. Stream programming libraries [125][136] can also be used for

the development of custom stream applications.

2.1.3 Stream Query Languages

Continuous queries are defined in Data Stream Management Systems via a stream query

definition language. A number of stream query languages have been proposed and developed from

database researchers. The querying paradigms can be distinguished on relational-based languages,

object-based languages and procedural languages [71]. Relational based languages model streams

and windows as relations ordered by timestamp. Object-query languages assume that each stream

element is an object that can be manipulated with object-oriented methods or processed inside a

class hierarchy. Procedural languages define exactly how streams are processed either by a

workflow of operators or by specialized commands applied over stream data elements in a

sequential manner. A partial list of stream query languages is provided below:

 Tapestry Query Language (TPL): is a SQL-like language proposed in [134]. TPL

supports continuous queries for append-only databases. In append-only databases only

the new added records are of interest while the old ones are never deleted.

Consequently, users issue continuous queries and notified whenever new incoming

data matches the query. TPL enforces that deterministic results will be provided to

users applying the following query semantics: “the results of a continuous query is the

set of data that would be returned if the query were executed at every instant in time”.

This introduce the notion of monotonic query: if Q(t) is the set of records returned by

query Q over a database at time t (one-time query) then the monotone query QM(t)

denotes the set of all records returned by executing Q up until time t. Monotonicity of

a continuous query implies that any tuple that appears in the answer at any point

continues to do so forever. Monotonic queries can be transformed to incremental

periodic SQL queries implementing continuous query semantics. TPL transforms each

user query into an incremental query that is run periodically. This is similar to execute

the user query after every update of the database. Tapestry system use TPL for filtering

mail and news messages.

Chapter 2: Background and Related Work 16

 Hancock: is a domain-specific language that defines efficient signature programs [56].

A signature provides a compact view of the evolving behavior of an entity. For

example in a telecommunications application a signature might contain a measurement

showing the five most frequent telephone numbers placed from a specific number.

Hancock query processing is based on event detection and event response over data

stream items (e.g. when a new phone number is detected system re-initializes a counter

as a response).

 Continuous Query Language (CQL): The STREAM system [12][108] implements

the Continuous Query Language (CQL) [14] that derives from SQL:1999. CQL can

support in the “from” clause streams, relations or both. A stream is considered as a

multiset of relational tuples arriving at time Τ and consider append-only. Relations are

an unordered set of tuples supporting time-stamped insertions, deletions and updates.

Also derived streams (streams that are the result of sub-queries) can be handled

efficiently. Sliding windows can be applied over streams and relations can be mapped

to streams with specialized operators (Istream, Dstream). CQL processing emphasizes

on memory usage optimization and operator scheduling.

 ATLAS: is a database language and system that allows users to develop data mining

and data stream applications in SQL [141]. ATLAS SQL supports User Defined

Aggregates (UDAs) that can contain an initialize, an iterate and a terminate

computation statement. These statements are defined in a single procedure written in

SQL. ATLAS SQL is Turing-complete and can easily support the definition of

standard aggregates (e.g. avg, sum), online averages and stream window aggregates.

For stream applications the terminate computation is replaced with the revise

computation. The revise step is take place when the window is full. In that case the

tuples contained in the window expire and the expired tuples participate in the

computation of the wanted aggregate.

 Gigascope query language (GSQL): is a restricted SQL-like language consuming

streams and producing streams [57]. Its declarative nature allows query composition

and query optimization that is similar to SQL. GSQL query model is based on the

ordered attributes of the input stream. In most network applications there is a

timestamp attribute or a sequence number per stream data element. GSQL uses the

ordering characteristic (e.g. always increasing, no repeating, etc) of these fields to

execute a query. For example a group-by query that groups on an ordered attribute can

emit results when a tuple arrives with an ordered attributed that is larger than any

current group. This simple evaluation scheme result to increased performance during

Chapter 2: Background and Related Work 17

query execution. The GSQL supports selection, join between streams, aggregation and

stream merge (union streams from multiple sources).

2.1.4 Data Stream Applications

A number of applications need to process stream data continuously and provide (near) real-time

results. Some well-known application areas that validate the importance of stream processing are:

 Network monitoring: these applications process rapid and continuous data streams as

packet traces and error signals. Typical scenarios that such applications are used are

protocol performance analysis, network traffic analysis, detection of anomalies (link

congestion), intrusion detection, billing, etc. For example a useful query is to monitor

the load of a backbone link over 5-minute periods and inform a network operator if the

load exceeds a threshold [22]. Also analytics and trend analysis over network data is

important (e.g. find the total number of incoming calls for a region and compare with

the total number of incoming calls for another region in the past three hours). Another

application is to use continuous queries for load balancing and for the redirection of

traffic to another router or server. While there are specialized tools for network

monitoring in most cases are inflexible [58]. On the other hand modeling network

flows as data streams leads to a unified database-oriented approach for processing

network data. As a result, a database stream-oriented network management approach

can provide a structured query environment for network data applications making

complex network analysis an easy task.

 Web site monitoring: the always increasing growth of World Wide Web (WWW)

creates a data overload problem for users as pages change constantly and dynamically.

Users want to monitor changes in web pages while avoiding visit pages multiple times

to find the information they want. Continuous queries over web pages and XML

sources (e.g. RSS) can provide the mentioned functionality to users [96][95][49].

 Road traffic management: real-time traffic analysis is of great importance for

efficient street and car usage utilization. Sensors can be embedded on highways and

GPS-enabled cars can provide in real-time the position of cars. Stream engines process

these data and provide useful information to drivers as car flow and volume statistics

[103]. The benefits from such applications can be the reduction of traffic, the reduction

of carbon dioxide emissions and the lower traveling times through hints for alternate

driving routes. Other examples are variable tolling, speed estimates, real-time accident

detection and notification.

 Healthcare applications: live patient data (e.g. blood pressure, pulse rate) is provided

by smart sensors by monitoring patients either in their home or in a hospital room [23].

Chapter 2: Background and Related Work 18

In this way doctors and healthcare professionals can react in real-time in critical

incidents. The monitoring of patients can be achieved with a network of smart sensors

and a network-enabled infrastructure. Reliability is a crucial issue for healthcare

monitoring applications i.e. the failures must be handled efficiently. This can be done

with backup sensors and alternative communications channels (e.g. cable, wireless,

mobile). As a last resort in case of a sever failure there must be an alarm informing

about this situation. The combination of live patient data with historical data (e.g.

patient record data) can be used for information correlation enabling better medical

diagnosis for patients.

 Radio Frequency Identification (RFID): is a key technology with a wide number of

applications including supply chain (e.g. inventory monitoring) and asset monitoring.

RFID tags enable unique product identification and can be used in any object such as

pallets, cases or individual items. RFID readers scan tagged products and generate a

stream of data consist of the unique product identification and the capture-time

timestamp. The high volume of the scanned data poses several challenges requiring in

most cases to process the generated data with specialized stream engines [145].

 Environmental monitoring: sensors can be deployed in wide geographic areas to

monitor physical phenomena [7][104][61][102]. Example applications are temperature

monitoring, monitor volcanic activity, water quality monitoring, animal monitoring etc.

Also outlier detection over sensor measurements provided by distributed sensor nodes

can help on detection of chemical spills or other disasters.

 Energy management: the utilization of energy lines and the reduction of consumption

are of great importance for large factories in order to decrease costs per produced unit.

Energy monitoring via smart energy meters can provide alerts for increased

consumption in real-time resulting in economic benefits. Also real-time monitoring can

detect power failures or power spike problems in large energy corporations enhancing

the safety standards. Moreover, retail customers can analyze in real-time their

consumption and compare it with the consumption of other customers or with older

consumption rates statistics. Such analysis can help users to identify better energy

consumption habits. In a more advanced scenario the energy management system can

provide hints for energy conservation.

 Financial applications: financial transactions, stock ticks, currency exchange

transactions can be seen as a stream of data. A large number of real-time decision

queries over stocks are described in [45] and [91]. Such queries can provide

information to financial analysts to sell or buy a stock or plan their trading actions.

Algorithms for the identification of correlations between pairs of stocks, a useful

Chapter 2: Background and Related Work 19

technique for stock trading, are described in [156]. Similarly, querying stream data,

news and historical companies’ data can be useful for trends identification and for the

detection of sell/buy opportunities.

 Ambient devices: can change their characteristics based on real-time data in order to

provide access to information at a glance. For example these devices translate data

information into color, motion or sound representations (output) which are easily

captured by human sensory modalities. In most cases ambient devices use simple

conditions to monitor changes. However complex condition can be supported. For

example in a weather application a monitor query can calculate the average

temperature per day (drill up per day) and change the color of the ambient device if

today’s temperature is greater than a previous day. Also, monitoring of composite

measures can be achieved using multiple different data sources (i.e. in the weather

application we can change the device color based on the temperature and the speed of

the wind).

 Click-stream analysis: web site personalization and advertisements campaigns need to

process users click-streams in real-time to identify and predict users’ preferences. For

example a useful stream query can be: “Which products advertised in a web page are

currently the most popular?” [19]. Having such insights in real-time an analyst can

change the advertisement strategy dynamically for products with few sales. Another

example is the prediction of the next web page request for a user using previous click-

streams and the time spend on each page [69]. As a result the web site can provide a

next web page recommendation list while the user is surfing the page.

 Sensor networks: consists of small sensors and actuators that can “sense” the real

world and provide real-time measurements. Some of the aforementioned applications

(e.g. environmental monitoring, healthcare applications etc) use sensors. Sensors

characterized by limited communication bandwidth, limited energy supply, limited

computation power and uncertainly in sensor readings due to the environmental noise.

Most research in sensor networks tries to alleviate these limitations. In [149] a database

oriented approach is used: a sensor network is viewed as a distributed database where

sensor nodes hold part of data. In this way users can declare declarative queries over a

sensor network while the processing of data can be done inside the network resulting to

minimized communication costs. Authors of [100][101] describe a complete system

architecture for sensor data management. Their focus is on managing multiple queries

over many sensors by limiting sensor resource demands while maintaining high query

throughput. Except from small sensors with limited processing power there exist

powerful sensing devices (e.g. webcams, microphones). Such devices create a

Chapter 2: Background and Related Work 20

distributed network providing voluminous streams and can be used for a number of

useful applications [62]. For example a parking can be monitored by a webcam and

continuous queries over the provided stream can be used for a parking space finder

service.

2.2 Data Analytics

Data analytics refers to combination of methods and techniques for the analysis of large amount

of data with the purpose of gain better insights and facilitate decision making across a wide range

of applications domains [94]. Until recently analytics methods and techniques applied over offline

data [107]. However the need to shorten the time between data acquisition and decision making

give birth to stream data analytics [48]. For offline data sets, data collection and extraction

technologies (e.g. data warehouses, Extract-Transform-Load tools) are support large scale data

analytics. The main goal of data analytics is to apply data analysis over these collections. Data

analysis is performed via aggregation queries, analytical queries (OLAP) and reporting tools that

can visualize the important data characteristics. In most cases these tools provide next-day

analytics i.e. data are collected incrementally and analysis is performed over historical data.

Another aspect of data analysis is data mining used for pattern discovery and predictions

(predictive analytics). In stream analytics the data analyzed online as they arrive and there is no

requirement to load and store the data on large data warehouses.

2.2.1 Offline Data Analytics

The need of complex data analysis involving aggregation of data became apparent since the

conception of Database Management Systems (DBMSs). While the group by clause was sufficient

at the beginning, the dawn of new applications in the last ten years, such as web analysis, social

networks and others, necessitated advanced grouping constructs (cubes, grouping variables,

windows) and novel programming paradigms such as MapReduce [59].

Grouping was the first approach in database theory to support data analysis: the relation is

partitioned based on one or more attributes and column-based aggregates are computed over each

partition. Modeled as a relational operator (e.g. [64]), with multiple implementation algorithms

(e.g. [74]), incorporated in query optimization (e.g. [46],[150]) and with a simple SQL syntax, it

became an essential part of any DBMS. For complex analytics, users have to rely on multiple view

definitions or nested queries. Usually, most commercial systems’ performance break in queries

representing trends, correlations or hierarchical aggregation.

Chapter 2: Background and Related Work 21

With the rise of data warehousing and OLAP [47] came the need of multi-dimensional analysis,

i.e. aggregations over multiple combinations of group by attributes. While traditional group by

could be used to express and evaluate multidimensional analysis, there were significant linguistic

and implementation benefits in introducing a new grouping construct, called cube [75], which

computes an aggregate over all possible subsets of an attribute set. The cube by clause, an SQL

syntactic sugaring extension, made it easier for users and allowed the optimizer to use efficient

evaluation algorithms [6], [118] to compute the cube – mainly by overlapping computation. While

a major breakthrough, it lacked the aspect of separating the base values definition and the subset

formation process as two distinct phases. For example, one may want to provide an ad-hoc set of

group by attribute combinations and not the entire powerset, or compute multiple aggregations

constrained by different conditions for the same group by attributes (e.g. [119])

A set variable is a variable containing rows of a table, i.e. denotes a subset of the table. It is

usually the result of a selection operation. It is frequent in data analysis to define a set variable for

each distinct value of a column (or combination of columns) and then compute some aggregated

value. For example assuming a relation named Stocks that contains the opening and closing

prices per day for each stock:

Stocks(stockID,descriptio,openingPrice,closingPrice,date)

A useful query is: “for each stock, get the opening prices of that stock in January”. For each

distinct value s of column stockID we should define a set variable as the rows of table Stocks

having stockID = s and month(date) = 1. A grouping variable, introduced in [42] and described

in [34][35][85][36], depicts this idea. A grouping variable is attached to a group by clause and for

each distinct value of the grouping attributes a new set variable is instantiated. The definition of

the grouping variable is given with the newly introduced clause “such that”. The previous example

could be expressed as:

group by stockID; X

such that X.stockID=stockID and month(date)=1

The syntactic extensions are:

 Group By clause. The group by clause is the same as in standard SQL, with the

following addition: after specifying the grouping columns, it may contain a list of

grouping variables. For example, we may write:

Chapter 2: Background and Related Work 22

 group by stockID; X1, X2, …, Xn

 Such that clause. This newly introduced clause contains one defining condition for

each grouping variable, separated by commas. Each defining condition is similar to a

where clause. For example, we may write:

such that C1, C2, …, Cn

Each Ci is a (potentially complex) condition used to define Xi grouping variable, i =

1, 2, …, n. It may involve (i) attributes of Xi, (ii) constants, (iii) grouping columns, (iv)

aggregates of the group and (v) aggregates of the X1, …, Xi-1 grouping variables. Part (v)

implies that aggregates of grouping variables appearing earlier in the list can be used to

define grouping variables later in the list.

 Select clause. The select clause is the same as in standard SQL, with the following

addition: attributes and aggregates of the grouping variables can also appear in the

select clause.

 Having clause. The having clause is extended to contain aggregates of the grouping

variables.

With these syntactic extensions, the group by clause acts as an implicit iterator over the

values of the grouping attributes. The group itself can be considered as another grouping variable,

denoted as X0. Aggregates of the group are considered as aggregates of the X0 grouping variable.

The standard SQL formulation is cumbersome to express in SQL, requiring repeated joins, group-

bys and views. The following example describes a representative ad hoc data analysis/decision

support query on a Stocks table (a pivoting example).

Example: Assume that we want to find for each stock of 2005 the average opening price in

January and February (in two columns, one next to the other), but only if the latter is greater than

the former. The having clause can be used to select the appropriate groups.

select stockID, avg(X.openingPrice), avg(Y.openingPrice)

from Stocks

where year = 2005

group by stockID; X,Y

Chapter 2: Background and Related Work 23

such that X.stockID = stockID and month(X.date) = 1,

 Y.stockID = stockID and month(Y.date) = 2

having avg(X.openingPrice) < avg(Y.openingPrice)

In this example, for each stock stockID, X grouping variable contains the rows of table

Stocks that agree on stockID and have month equals to 1 (i.e. the prices of stock stockID

in January) and Y grouping variable contains the sales of stock stockID in February. For each

stock, we just want to print out the average of the opening price of X and Y subsets, if the latter is

greater than the former.

A grouping variable X expresses the following idea: for each distinct value v in grouping

attribute(s) C of relation R, define a subset Xv using a condition θ and compute one or more

aggregated values over Xv. Then attach these aggregated values next to v to formulate the output

row of the resulting table. This is expressed in relational algebra via the MD-Join operator

[43][8][9], which generalizes the conventional notion of group-by: it distinguishes between the

definition of the “base values” used to aggregate-by and the actual computation of aggregates of

these. Grouping variables represent the later. Formally the MD-Join has the following definition:

MD-Join: Let B and R be relations, θ a condition involving attributes of B and R and l a list of

aggregate functions (f1, f2, … , fn) over attributes c1, c2, …, cn of R. A new relational operator

between B and R, called the MD-join is denoted as:

MD(B, R, l, θ)

with the following semantics:

 table B is augmented with as many columns as the number of aggregate functions in l.

Each column is named as fi_R_ci, i = 1, …, n (e.g. avg_Sales_sale). If a duplicate name

is generated, the table R must be renamed.

 for each row r of table B we find the set S of tuples in R that satisfy θ with respect to

r, i.e. when B’s attributes in θ are replaced by the corresponding r’s values. Then, the

value of column fi_R_ci of row r is the fi(ci) computed over tuples of S, i = 1, …, n. B

is called the base-values relation (or table) and R is called the detail relation (or table).

B represents the group-by structure of an EMF (Extended Multi-Feature) SQL query [34];

condition θ corresponds to the defining condition of the grouping variable in the such that

Chapter 2: Background and Related Work 24

clause; the list of aggregate functions l corresponds to the grouping variable’s aggregates

mentioned in the select, having or such that clauses. The definition of the MD-join

operator allows the user a tremendous amount of flexibility in defining an aggregation query, as B

and R can be arbitrary relational expressions and θ can be an arbitrary join predicate. The row

count of the result of the MD-join is the same as the row count of B (i.e., the MD-join performs an

outer join) and as a result this semantics captures more accurately the user’s intentions than the

standard aggregation does. In addition, this property is valuable for efficient implementation and

optimization. Note also that the MD-join operator can be considered as a shortcut for a somewhat

more complex expression. However, the expression that the MD-join represents occurs very often

in OLAP queries and the properties of the operator enable to easily obtain many query

transformations leading to efficient execution plans.

The associated set (ASSET) query concept is described in [44] and [38]. It is applicable in both

continuous and traditional data settings. The idea of ASSET queries is: “Given a set of values B,

an associated set over B is just a collection of annotated data multisets, one for each value of B”.

The goal is to efficiently compute aggregates over these data sets. An ASSET query consists of

repeated definitions of associated sets and aggregates of these, possibly correlated. The ability to

loop over the values of a domain and perform a task for each value is the main construct in

programming languages and its presence leads to very strong theoretical results. Formally an

associated set is simply a set of potential subsets of a data source S, one for each value b of a

domain B, i.e. {Sb : b∈B}. An associated set instance (just called associated set) is a set of actual

subsets of S. B is usually a relation (the base relation), the data source S can be anything with a

relational interface and an iterator defined over it, and is a defining condition that constraints

(creates) the associated set instances. This simple approach: (a) generalizes most grouping

analytics in existence today, (b) separates the relational concept from the analysis (grouping)

concept, (c) can lead to rich optimization frameworks, and (d) provides a formal (and semi-

declarative) base for MapReduce [59]. For example, given a relation B of all 2009’s sales, the

associated set (instance) {Sb={s in Sales, such that Sales.date <= b and Sales.year = 2009},

b∈B} could be used to compute the daily cumulative sales of 2009. An associated set instance is

just a collection of multisets. Although aggregation is a separate process, significant optimization

can take place for the built-in aggregate functions. An ASSET query consists of the computation

of one or more associated sets, recursively defined: starting from a base table B0, associated set

(i+1) uses as its base table the base table of associated set i extended by its aggregates. This

approach has as result that a significant class of data analysis queries can be easily represented and

efficiently evaluated through this formalism. ASSET queries can be useful in:

Chapter 2: Background and Related Work 25

 Incorporating heterogeneous data sources: the data source of an associated set can

be anything with a relational iterator defined over it – different database vendors, flat

files, even the output of the query defined so far.

 Distributed OLAP computation: if the data source of an associated set is distributed

to more than one nodes, the subset formation process can be easily distributed to these

nodes – that does not mean that the associated set is materialized.

 Performance: as no traditional relational optimization can be applied over the data

sources, he optimization process (indexing, decorrelation, specialized join algorithms,

distributed computation) is shifted/replicated to the data structure representing the

ASSET query answer – which can always be made memory resident.

SQL/OLAP Amendment introduced certain new features in SQL language to support on-line

analytical processing. One of the significant extensions is the ability to define windows over rows.

A window enables users to determine the set of rows over which calculations can be performed

with respect to the current selected row. In detail, in a window clause declaration we can define:

the attribute list used for partitioning, the ordering of rows within partitions and an aggregation

group. The aggregation group specifies which rows of each partition, with respect to the current

row under examination, should participate in the evaluation of declared aggregate functions. This

construct enable advanced data analysis over data.

Spreadsheet is a well know paradigm to analyze data and spreadsheet applications are

accessible and used by millions of users. It is the de-facto application for day to day computations

and has been used in many different domains. A spreadsheet consists of a grid made from columns

and rows. The intersection of columns and rows represents cells. In most spreadsheet applications

rows are represented by a number and columns by a letter. In this way each cell can be referenced

by its column letter and its row number. For example C7 denotes the cell in the third column and

in seventh line. The start cell of a spreadsheet is the A1. Additionally we can refer to more than

one cell (e.g. C7, C8 using comma as a separator) and in a range of cells listing the first and last

cell in the range (e.g. E1:E10 using colon as a separator). Each cell can contain data values (i.e.

numbers, text) or formulas. Formulas express calculations using other cells, formulas and

constants. For example we can express arithmetic operations between cells (e.g. =E1+E2 where

the equal sign defines a formula) and use specialized formulas (called functions) to perform

calculations over data (e.g. min(E1:E10) to find the minimum value in a range). Formulas can

depend on other formulas and cells. These dependencies create a dependency graph guiding the

ordering of computations. Also spreadsheet applications support many spreadsheets (called

worksheets) inside one workbook to break our data analysis task in small and concrete subparts.

During the years spreadsheets grew from simple applications to complex analytics tools offering

Chapter 2: Background and Related Work 26

advance database and OLAP capabilities. In [143] and [144] authors propose spreadsheet-like

computations in Relational Database Management Systems through extensions to SQL. By this

approach relations can be viewed as n-dimensional arrays and formulas can be defined over their

cells. The SQL extensions can be used for array based calculations for complex data analysis. In

[97] a spreadsheet-like algebra that is consists of a set of operators that can express simple SQL

queries and can be intuitively implement visually in a spreadsheet is proposed. Query definition is

a sequence of progressive steps. In each step the intermediate results are provided helping user

reformulating and refining the query. Such direct manipulation interface where queries can be

defined with clicks and drags is more intuitive for non-technical database users and as result they

can perform data analysis tasks in a simple manner.

Also large-scale data analytics platforms have recently been introduced and becoming widely

applicable to the real world. MapReduce is a well-known programming paradigm to perform

large-scale data analysis [59][60]. It is consisting of two phases, modeled as functions: the

mapping phase, where a set of values is derived, each associated with a list of values, and the

reduce phase, where each list is reduced by some ad hoc aggregation method. It can express and

evaluate in a natively parallel and fault tolerant way simple analytics (similar to group-bys in SQL-

based systems). While this approach offers significant procedural flexibility over declarative

approaches and employs a simple computational model, it lacks the optimizability and ease of use

of modern database systems [114]. In [111][137][5] authors propose the addition of declarative

interfaces on top of MapReduce implementations. A comparison of parallel DBMS and

MapReduce-based platforms for data analytics is given in [127].

2.2.2 Stream Data Analytics

Real-time decision support can be achieved by continuous analytics queries [65]. In [124]

authors provide an architecture called decision-centric information monitoring (DCIM) that enable

users to monitor information that can change a decision. Relevant information for a decision is

identified via sensitivity analysis of decision models on distributed and heterogeneous databases.

The window construct defined in the SQL/OLAP Amendment is applicable in data stream

processing [21]. Due to the infinite nature of data streams in most cases analysts are interested

only in recent data while older data are less significant [52]. Windows can limit the unbounded

size of a data stream by defining time or count-based conditions. Stream data flow in and out of

the defined window and aggregates computed continually over window transient data. Moreover,

correlating aggregates over windows existing in multiple streams is important for real-time data

analysis [155][77].

Chapter 2: Background and Related Work 27

Stream aggregates can be defined with User-Defined Aggregates (UDAs) as described in [89]

and [99]. Correlated aggregates define dependencies over aggregates (depended/independent

aggregates) requiring multiple pass over data for their evaluation [42][34]. As this is not feasible

for data streams efficient approximate computation of correlated aggregates over data streams is

studied in [67]. Authors provide one-pass algorithms for computation of correlated aggregates over

landmark and sliding windows. Online aggregation [80] is another approach to support continuous

analytics: traditional data sets are consider as infinite and early query results are provided as a

running aggregate with associated error bounds. Temporal aggregates [153] over data streams

maintain aggregates at multiple levels of temporal granularities i.e. recent data is aggregated with

finer detail while older aggregated at a coarser time granularity. Aggregating at different

granularities resembles the roll-up operation in traditional analytics but in case of streams the roll-

up task is happen automatically and on-the-fly [154]. In [157] authors study the problem of finding

abnormal aggregates over windows with different time intervals which can be used for outlier

detection analysis. A query evaluation framework for hierarchical aggregates is proposed in [37].

Such aggregates can be used in applications where stream sessions can be organized in

hierarchical fashion e.g. sessions may contain sub-sessions. A session is modeled as an object

allowing rich querying capabilities over streams for this kind of applications. Finally, Complex

Event Processing engines [147] allow event pattern detection over streams of data.

In [151] authors identify the problem that OLAP-like queries that provide real-time

multidimensional and summarized views of stream data are not well supported from current stream

solutions. They introduce a multi-dimensional stream query language that can turn low-level data

streams into high-level aggregates. Real-time OLAP-like analysis of streams is achieved with a

cube algebra supporting continuous operators that can convert continuous streams into

conventional cubes and the opposite. Moreover operators that resemble roll-up and drill-down

operations exist on traditional data cubes are provided for stream data. The question how online

analytical tasks can be applied over data streams is studied in [50]. The stream cube [78] is an

architecture used for on-line, multidimensional and multilevel analysis of stream data. A tilted

time frame is proposed where more recent data are registered at finer resolution, where older data

at coarser resolution. Such an approach is useful for stream analytics as in most stream

applications the most recent data are more important. A traditional cube contains cuboids

describing a subset of its dimensions. In stream cube only a small number of dimensions are

materialized based on two types of layer: (a) observation layer which is the layer that an analyst

would like to check for data analysis and decision making tasks (b) the minimal interesting layer

which is the minimal layer that an analyst would like to examine. Computing only aggregates

corresponding to the two layers leads to performance benefits which is necessary due to the large

volume and high speed of data streams.

Chapter 2: Background and Related Work 28

A number for analytics solution for RFID data have been proposed from database researchers.

FlowCube [73] is a method used to construct a warehouse of RFID trails for analytics purposes.

RFID-enable devices (e.g. pallets, items) generate a large flow of data containing the full history

of the locations that this item passed (e.g. from a production line in a factory to the store). Analysts

would like to track this movement in the entire supply chain. FlowCube is an OLAP cube

aggregate item flows at a given abstraction level. The difference is that a FlowCube does not

contain scalar aggregates but flow-graphs representing the movement trends and deviations of the

items aggregated in each cell. Also the item’s flow paths can been seen at different level of

abstraction enabling complex analysis over RFID data. SQL/OLAP functionality for handling

anomalies in RFID reads is proposed in [117]. RFID readers can provide duplicate and missed

reads to stream applications. To handle this problem, authors propose a declarative based language

that uses SQL/OLAP functionality to support data cleansing methods for anomalies detection and

removal. A number of architectures operate over traditional data warehouses to enable (near) real-

time analytics. In [122] a data store is proposed that monitor workflow business operating over a

data warehouse to enable real-time decision making. MeshJoin [115] is introduced in to support

on-line warehouse refreshment for applications requiring up-to-date information. MeshJoin is used

for joining a fast stream of source updates with a disk-based relation in a data warehouse under the

constraint of limited power. Such operation transforms passive data warehouses to active in order

to support real-time analytics.

The usage of spreadsheets for managing and processing sensor stream data is depicted in [146].

Authors provide an Excel based interface for sensor data management and programming. What is

making spreadsheets widely acceptable is the simple interface that is well understood by the end

users. In [40][41], we consider how spreadsheets can be used to model and express complex

spreadsheet-like continuous queries over RFID data. We argue that the advantage of a spreadsheet-

like query interface is the concise and intuitive representation of queries. This research is described

on Chapter 4 of the current thesis.

Data integration has multiple applications and a wealth of techniques have been developed

from database researchers. The main goal of data integration is to combine data residing at

different sources and provide users with a unified view of the data. Our work in Chapter 5 is

toward this goal and we focus specifically on relational and stream data. The challenges for DBMS

and stream systems integration are presented in [132]. Authors emphasize that this is a new and

challenging research area as current trend mostly focus on static data integration. Also the

importance of integration of stream and stored data is analyzed in [128]. These authors discuss

integration of stream and relational data from a stream system perspective i.e. how a stream system

can use offline data. In [26] authors propose a descriptive model to analyze the execution behavior

of heterogeneous stream processing engines. MaxStream [24] is a data integration system that can

Chapter 2: Background and Related Work 29

use multiple stream engines and databases for real-time business intelligence applications.

MaxStream queries are translated into the native language of each stream system and the

architecture is similar to federation database systems [25] i.e. it consists from a middleware and a

set of data wrappers interacting with each stream engine. A framework for situation aware

applications that use stream and stored data is described in [28][29]. A data flow interface is

proposed for building situational aware applications.

 Chapter 3

3 SQL Extensions for Real-Time Analytics

3.1 Introduction

The ability to query data streams is of increasing importance and has been identified as a

crucial element for modern organizations and agencies. In this chapter a class of useful and

practical analytical continuous queries is examined. Analytical continuous queries are used for

decision making in (near) real-time. We demonstrate that such queries can be concisely modeled

by a simple relational approach coupled with a simple SQL extension. We introduce the notion of

a stream variable, a conceptual entity representing an ordered subset of a data stream, aggregated

and attached next to a standard relational schema as a new column. A logical expression that

involves the relation’s attributes and the entity’s methods determines whether a stream data should

be added to the stream variable. The ability to define in the same query multiple, consecutive,

possibly correlated stream variables allows for great flexibility in expressing complex analytical

continuous queries. Moreover, such an approach presents several opportunities for efficient

optimizations.

3.2 Rationale and Motivation

The technological explosion in the web, mobile communications, sensor/wireless technology,

as well as the need for security, personalization, fraud detection, real-time billing, dynamic

pricing, and others emphasize the necessity of real-time analysis and “stream” systems. We are

moving toward real-time enterprises (RTE) and a stream world. Examples of stream applications

include financial systems, network monitoring, security, telecommunications data management,

web applications, manufacturing, sensor networks, environmental monitoring, ambient intelligent

systems and others.

Queries over data streams are quite different than traditional ones. In data streams we usually

have continuous queries [134][22]. The answer to a continuous query is produced over time,

reflecting the stream data seen so far. The database research community has responded with an

abundance of ideas, prototypes and architectures to address the new issues involved in data stream

Chapter 3: Continuous Queries with Stream Variables 31

processing [152][135][100][57]. However, expressing complex data analysis queries on top of data

streams is a major challenge.

While many systems have been developed to address the various challenges present in stream

applications [27], few deal with simple SQL extensions that can be used for analytic tasks over

data streams. For this purpose we formally define a stream variable: a collection of data structures

(representing queues), each functionally dependent on a subset of a relation’s R attributes,

continuously reporting one or more aggregate values. These values are “attached” as separate

columns to R. A simple SQL extension is used to express stream variables corresponding to a

straightforward execution plan for query evaluation. By defining a series of stream variables one

can express complex analytics queries over one or more data streams.

3.2.1 Motivating Examples

We use a financial application as a motivating example. There are two relations, Stocks and

Categories, storing the opening and closing prices per day for each stock and category, and

two data streams, Prices, Volumes reporting several times within the unit of time the current

price of a stock and the volume of the stock executed from the previous reported value. Schemas

of relations and data streams are presented below:

Relations:

Stocks(stockID, description, categoryID, openingPrice,

closingPrice, date)

Category(categoryID, description, openingPrice, closingPrice,

date)

Data streams:

Prices(stockID, price, timestamp)

Volumes(stockID, volume, timestamp)

There are several interesting continuous queries one can register on top of Prices and Volumes

streams to monitor stock activity for analytics purposes. Below we provide some examples:

Q1. Assume that we want to monitor for each stock the minimum, maximum and average price

that has been seen so far. With this query we can detect severe fluctuations of a stock’s

performance at real time.

Chapter 3: Continuous Queries with Stream Variables 32

Q2. Sometimes it is useful to monitor the minimum, maximum and average price of a stock’s

performance not from the beginning of the day but only within a specified moving window, e.g.

for the last 100 reported prices.

Q3. Being able to express continuous values at different granularities and compare these is an

important aspect of financial applications. For example, we may want to find for each stock the

percentage variation between the running average reported price and yesterday’s closing price and

compare it with the percentage variation between the running average reported value and

yesterday’s closing price of the stock’s category. With such a query, we may find buy or sell

opportunities on a category basis.

Q4. It is also crucial to integrate in a simple and succinct way values from different stream

sources in a single query. For example, we may want to combine in a continuous report aggregated

values from both Prices and Volumes streams: find for each stock the total volume of the last

10 reported volumes, the maximum price of the last 10 reported prices and contrast these with the

total volume and maximum price from the beginning of the day.

Q5. In many occasions it is useful to express correlated aggregation [42][34][67] in the context of

data streams, i.e. use a continuously aggregated value to constraint a subset of stream data. For

example, we may be interested in monitoring the running total volume of each stock, but

summation should take place only when the average price of the last 10 reported prices is greater

than the running average price of the stock. Then, we want to contrast this with the (regular)

running total volume. This query can show periods of time of increased volume traffic.

Q6. Assume that we want for each stock to continuously know when its average price of the last

10 reported prices is greater than its running average price. In that case, a “True” value should

appear next to the stock id, otherwise a “False” is displayed. This query can be used to alert

analysts for “hot” periods of a stock.

Q7. Finally, in many cases we want to monitor a stream of data and treat the generated values as a

new data stream (composability). For example, assume that we monitor for each stock the average

price of the last 10 reported prices and we want to also monitor the maximum of these averages. In

this case we can identify when (within a window of 10 values) the maximum average price

occurred.

Figure 3.1 (a) to (g) shows instances of the results of queries Q1 to Q7 respectively. Let us first

consider query Q1. In this example, we want to keep for each stock s the reported prices for s

(since the registration of the query with the system) and compute the min, max and average price

of this data set (the running min, max and average prices). In other words, for each stockID we

want to define a data set, modeled as a queue, QstockID, and compute several aggregates over this

Chapter 3: Continuous Queries with Stream Variables 33

queue. Each aggregate can be “appended” next to the stockID column of the answer (Figure

3.1(a)) to form a “table” that has two (vertical) sections: a relational part represented by column

stockID, coming from a relational expression and a stream part represented by columns

min_price, max_price and avg_price coming from aggregation over QstockID. The bold

line in Figure 3.1(a) shows this division. Note that each QstockID’s aggregate is functionally

dependent on the stockID attribute.

stockID min_price max_price avg_price
MSFT 29.12 29.31 29.15
ORCL 19.12 19.19 19.17
BAC 54.48 54.81 54.67
… … … …
GM 35.35 35.87 35.54

(a)

stockID min_price max_price avg_price
MSFT 29.14 29.28 29.16
ORCL 19.17 19.19 19.18
BAC 54.55 54.78 54.65
… … … …
GM 35.43 35.87 35.59

(b)

stock
ID

stock_closi
ng_price

category

ID

category_cl
osing_price

stock_var
iation

category_va
riation

MSFT 29.15 AppSft 45.34 0.997 1.024
ORCL 19.16 AppSft 45.34 0.998 1.024
BAC 54.58 Bank 86.49 1.012 1.006

… … … … … …
GM 35.46 Auto 56.74 1.016 0.985

(c)

stockID sum_vol_10 max_price_10 sum_vol max_price
MSFT 230.873 29.25 43.120.345 29.31
ORCL 145.899 19.18 12.178.981 19.19
BAC 82.630 54.76 8.230.778 54.81
… … … … …
GM 34.982 35.75 4.195.946 35.87

(d)

Chapter 3: Continuous Queries with Stream Variables 34

stockID sum_vol_prc sum_vol
MSFT 10.185.445 43.120.345
ORCL 8.128.559 12.178.981
BAC 1.263.983 8.230.778
… … …
GM 2.078.878 4.195.946

(e)

stockID alert_flag
MSFT True
ORCL False
BAC False
… …
GM True

 (f)

stockID avg_price_10 max_avg_price
MSFT 29.17 29.28
ORCL 19.14 19.17
BAC 54.68 54.68
… … …
GM 35.42 35.76

 (g)

Figure 3.1: Instances of results for queries Q1 to Q7

Now consider query Q3. In this case we want for each stockID to compute the running

average price, divide it with the stock’s previous day’s closing price, do the same for the stock’s

category and have these two values attached next to the stockID. In other words, for each row of

the relation shown at the left of the bold line of Figure 3.1(c) – which contains all the necessary

information for the computation – we want to define two data sets, QstockID and QcategoryID, aggregate

over these and attach the aggregates next to the relation (shown at the right of the bold line).

Figure 3.2 depicts graphically the idea.

Chapter 3: Continuous Queries with Stream Variables 35

Figure 3.2: Representation of query Q3 using queues

Note that in this case we can keep a data set for each category value and not for each row,

which is a form of decorrelation. This is not always the case. For example in query Q5, one can

see that the definition of the queue that keeps the volume values depends on aggregates of other

stream data sets.

Figure 3.2 shows the idea we model: a relational expression “extended” by one or more

columns, where each column represents a stream aggregate of a queue (in principle it can be any

abstract data type). We may have more than one queues contributing columns in one such query

and there may be interdependencies on the definition of the queues, i.e. a stream aggregate of one

queue can be used to restrict the definition of another queue. This approach allows succinct and

concise representations of many practical and real-life analytical continuous queries both at user,

algebraic and evaluation levels.

Chapter 3: Continuous Queries with Stream Variables 36

3.3 Stream Variables

In this section we define the concept of stream variables to formalize the idea of attaching

stream aggregates to relational rows. We use a dynamic queue to store the part of the data stream

that is relevant to a relation’s row, using a condition θ to determine both containment and queue’s

size and properties.

3.3.1 Theoretical Framework

Definition 3.1: (Stream Source) A stream tuple s is an ordered list of n values (s1, s2, …, sn) (an

n-tuple), where each value is either an element of a domain Ai or a NULL value. A stream source S

is any medium able to generate a sequence of stream tuples s (an ordered list of n values (s1, s2, …,

sn)) in the unit of time. The schema of S is denoted as S(S1, S2, …, Sn). Each value si∈dom(Si),

i=1, 2, …, n �

Definition 3.2: (Stream Variable) Assume a relation R(A1, A2, …, An). A stream variable X over R

is defined as a quadruple (A, S, Q, θ), where:

 A is a subset of the attributes of R, i.e. A = 𝐴𝐴𝑖𝑖1 ,𝐴𝐴𝑖𝑖2,… ,𝐴𝐴𝑖𝑖𝑘𝑘 where {i1, i2, …, ik}⊆{1, 2, …, n}.

 S is a data stream source with schema S(S1, S2, …, Sm).

 Q is a collection of parameterized dynamic queues holding S’s stream tuples, Q = {Qt,

t∈πA(R)}. Implementation-wise one can think Q as an object-oriented class implementing

a queue. Instances of this class correspond to Qt.

 θ is a condition determining what stream data get pushed and popped to which queue.

Formally, θ is a (potentially complex) logical expression where each atomic boolean

expression has either the form (a) X.Si <relop> v, i∈{1, 2, …, m}, or (b) X.f(p) <relop> v,

where:

o f(p) a function defined over Q having a set of parameters p

o <relop> is a relational operator such as =,>,< etc.

o v is either a constant or an attribute of A (or an attribute of R functionally

dependent on A).

We denote this condition as X.θ �

Intuitively, a stream variable represents a collection of queues, one for each row of the relation

R. The logical expression θ determines, given a stream tuple s, to which queues of Q this tuple is

Chapter 3: Continuous Queries with Stream Variables 37

pushed: if θ evaluates to true with respect to Qt and s (Definition 3.3), then s is pushed to Qt.

Note that a stream tuple may be pushed to several queues of Q.

Definition 3.3: (Containment Test) Given a relation R, a tuple r of R, a stream variable over R X =

(A, Q, S, θ) and a stream tuple s of S, we say that X.θ evaluates to true with respect to r and s, iff

the logical expression θ’, constructed by the method below evaluates to true:

 Let Qt the specific queue of Q corresponding to r, (t = πA(r)),

 Each term of θ defined as X.Si <relop> v is replaced by s.Si <relop> v,

 Each term of θ defined as X.f(p) < relop > v is replaced by Qt.f(p) <relop> v. �

We want to be able to “attach” aggregated value(s) of each queue Qt next to the corresponding

row t. We define below the notion of a reporting function over a stream variable.

Definition 3.4: (Reporting Functions) Assume a stream variable X = (A, S, Q, θ). Any function fp :

Q → D, where p a set of parameters and D a domain of atomic values, is called a reporting

function with respect to X �

Examples include the well-known aggregate functions min, max, sum, count and average as

well as UDAFs (user-defined aggregate functions).

Definition 3.5: (Widened Relations) Assume a relation R(A1, A2, …, An), a stream variable X = (A,

S, Q, θ) over R and a set of reporting functions f = (f1(p1), f2(p2), …, fk(pk)). We define the

widened relation with respect to R, X and f, denoted as:

WD(R, X, f)

as a new relation with schema (A1, A2, …, An, f1_p1, f2_p2, …, fk_pk) and instance: for each tuple t of

R, there is a new tuple t’, formed by t’s values followed by k additional values, the results of

(f1(p1), f2(p2), …, fk(pk)) applied on 𝑄𝑄𝜋𝜋𝐴𝐴 (𝑡𝑡). �

Chapter 3: Continuous Queries with Stream Variables 38

Definition 3.6: (Mapping to Stream Variables) Assume a query named QR that contains stream

variables. The QR produces a relation using the relational attributes and stream variables, called

the widened relation with respect to QR and is given by the following method:

Algorithm 3.1: Stream variable query output relation schema

1: A list of stream variables {Xi, i=1,2,…,n}

2: R a relation with schema (A1,A2,…,Ak) computed by the

select..from..where clause

3: f1����⃗ , f2�����⃗ , …, fn����⃗ are the reporting functions of X1,X2,…,Xn

respectively

4: X1 = (R,S1,Q1,θ1)

5: V = WD(R,X1,f1����⃗)

6: for i = 2,…,n do

7: Xi = (V,Si,Qi,θi)

8: V’ = WD(V,Xi,fi����⃗)

9: V = V’

10: end for

Note that a stream variable is defined over all the attributes of the previously defined widened

relation, which is inefficient in some cases since we create a queue for every row of the resulting

relation. For instance, in Q3 this is not necessary. By syntactically analyzing the defining condition

θ, we can reduce this number, which is a form of decorrelation.

3.3.2 Query Definitions

In this section we use the theoretical definitions of previous section (3.3.1) to describe the

examples given in section 3.2.

Example 3.1: Consider query Q1. We first define a relation R as R = πstockID(Stocks). This way

we get in a column all the distinct stockIDs. Then, we define a stream variable X over R as:

X = ({stockID}, Prices, Q, (X.stockID = stockID and X.size() = 0))

The first condition of the θ expression of X ensures that a stream tuple s will only be added to the

queue that agrees on s’ value of stockID. The second condition is a built-in function over Q that

Chapter 3: Continuous Queries with Stream Variables 39

allows a queue to have “infinite” size. The fact that a queue is declared with infinite size does not

necessarily imply an analogous implementation. For example for distributive [75] reporting

functions we can have a queue of size 1. The result of query Q1 is given as the widened relation:

WD(R, X, min(price), max(price), avg(price)).

Example 3.2: For query Q2 we first define a relation R as R = πstockID(Stocks) to get in a column

all the distinct stockIDs. Then, we define the stream variable X over R as:

X = ({stockID}, Prices, Q, (X.stockID = stockID and X.size() = 100))

The first part of θ expression of X ensures that a stream tuple s will only be added to the queue

that agrees on s’ value of stockID. X.size() = 100 condition is a built-in function over Q that

determines that queue size is equal to 100. The result of query Q2 is given as the widened relation:

WD(R, X, min(price), max(price), avg(price)).

Example 3.3: Consider query Q3. In this case we need a relation:

R(stockID,stock_closing_price,categoryID,category_closing_price)

where each row contains information on the stock, its closing price of the previous day, its

category and the category’s closing price of the previous day. This can be expressed in relational

algebra as a join between Stocks and Category on categoryID, a subsequent selection on

the closingPrice (equal to date()-1) –for both Stocks and Category tables- and a

projection to keep only the necessary attributes with proper renaming

(stock_closing_price ← Stocks.closingPrice, category_closing_price

← Category.closingPrice). Then, we define two stream variables over R, X and Y, where:

X = {stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 0))

Y = ({categoryID}, Prices, Q2, (Y.categoryID = categoryID and Y.size() = 0))

Chapter 3: Continuous Queries with Stream Variables 40

We now get the answer to query Q3 as:

R1(R, stock_variation) ← WD(R, X, avg(price)/stock_closing_price),

R2(R1, category_variation)←WD(R1, Y, avg(price)/category_closing_price)

Note that we use the standard renaming relational operator (←) [64] to rename the produced

widened relation reporting function names (Definition 3.5).

Example 3.4: For query Q4 we project from Stocks table the stockIDs, R = πstockID(Stocks)

and we define four stream variables over R, X, Y, Z and W, where

X = ({stockID}, Volume, Q1, (X.stockID = stockID and X.size() = 10))

Y = ({stockID}, Prices, Q2, (Y.stockID = stockID and Y.size() = 10))

Z = ({stockID}, Volume, Q3, (Z.stockID = stockID))

W = ({stockID}, Prices, Q4, (W.stockID = stockID))

For X, Y we define a window with size 10, while for Z,W we define an infinite window. We now

get the answer to query Q4 using a sequence of widened relation transformations presented below:

R1(R, sum_volume_10) ← WD(R, X, sum(volume))

R2(R1, max_price_10) ← WD(R1, Y, max(price))

R3(R2, sum_volume) ← WD(R2, Z, sum(volume))

R4(R3, max_price) ← WD(R3, W, max(price))

Example 3.5: In query Q5 we want to use a queue for each stockID in order to keep the volume

values for the stock. But we should keep the volume value only if the average price of the last 10

reported values of this stock is greater than the running average price. Once again, we first define a

relation R as R = πstockID(Stocks) and then define two stream variables X and Y as:

X = ({stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 0))

Y = ({stockID}, Prices, Q2, (Y.stockID = stockID and Y.size() = 10))

Chapter 3: Continuous Queries with Stream Variables 41

to continuously monitor the running average price and the last 10 reported values of each stock.

Then, we integrate R, X and Y in a widened relation R1 defined as:

R1(R, avgPrice, avgPrice10) ← WD(WD(R, X, avg(price)), Y, avg(price))

Widened relation is a standard relation and we can apply rename operation on its schema using

relational algebra renaming operator. What we need now to complete the answer to query Q5 is

one stream variable Z over R1 to sum volume values if avgPrice10 is greater than avgPrice

and one stream variable W over R1 for the running volume total to use for the comparison:

Z = ({stockID}, Volumes, Q3, (Z.stockID = stockID and Z.size() = 0 and

 avgPrice10 > avgPrice))

W = ({stockID}, Volumes, Q4, (W.stockID = stockID and W.size() = 0))

We can use avgPrice and avgPrice10 for the θ condition of Z because they are functionally

dependent on stockID. Otherwise we should have them as attributes of the A set (Definition

3.2) of Z. This is not always the case. The answer that contains all the required information to

select from is given by the widened relation:

R2(R1, sum_vol_prc)←WD(R1, Z, sum(volume))

R3(R2, sum_vol)←WD(R2, W, sum(volume))

Finally we use πstockID, sum_ vol_prc, sum_vol(R3) to get the final result.

Example 3.6: For query Q6 we first define a relation R as R = πstockID(Stocks) to get in a column

all the distinct stockIDs. Then, we define two stream variables X, Y over R as:

X = ({stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 0))

Y = ({stockID}, Prices, Q2, (Y.stockID = stockID and Y.size() = 10))

Chapter 3: Continuous Queries with Stream Variables 42

to continuously monitor the running average price and the last 10 reported values of each stock.

The first condition of the θ expression of X and Y ensures that a stream tuple s will only be added

to the queue that agrees on s’ value of stockID. The second condition is a built-in function over

Q1 and Q2 that allows a queue to have “infinite” size and size of ten respectively. We integrate R,

X and Y in a widened relation R2 applying the following transformations:

R1(R, avgPrice) ← WD(R, X, avg(price))

R2(R1, avgPrice10) ← WD(R1, Y, avg(price))

Finally we use πstockID, avgPrice10>avgPrice(R2) to get the final result. The avgPrice10>avgPrice

boolean condition returns either “True” or “False”

Example 3.7: Finally we consider query Q7. This will require treating a stream variable as a new

data stream source. We define a relation R as R = πstockID(Stocks) and then define a stream

variable X and a widened relation R1 as:

X = ({stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 10))

R1(R, avgPrice) ← WD(R, X, avg(price))

We now define the stream variable Y over R1 as:

Y = ({stockID}, X(avg(price)), Q2, (Y.stockID = stockID and Y.size() = 0))

Note that the stream source for Y is X with schema avg_price (the reporting function

avg(price) will be renamed to avg_price (Definition 3.5)). We can now use Y to define a

widened relation to get Q7’s answer:

WD(R1, Y, max(avg_price))

Chapter 3: Continuous Queries with Stream Variables 43

3.4 Query Language

In this section we propose a syntactic extension of SQL to handle the incorporation of stream

variables and we provide several examples using the new constructs.

3.4.1 Syntactic Constructs

The general syntax is:

monitor A1,A2,…,Am,Xi1
.f1(p1),Xi2.f2(p2),…,Xik.fk(pk)

from R1,R2,…,Rl:X1(S1),X2(S2),…,Xn(Sn)

where θ

attach when θ1,θ2,…,θn

where A1, A2, …, Am are attributes of relations R1, R2, …, Rl, {i1, i2, … , ik} ∈ {1, 2, … , n}, and f1(p1),

f2(p2), …, fk(pk) are reporting functions (Definition 3.5). In particular the added syntactic

constructs are described below:

 monitor: This newly introduced clause is identical to select when applied on relational

columns. When applied on reporting functions of stream variables, it rather follows a link

to the appropriate queue and shows the current value. We introduce the monitor clause

in order not to change the semantics of the projection operator. One can still use select,

but reporting functions of stream variables evaluate to a special constant value (similar to

NULL and ALL).

 from: This clause is extended to contain relation names and stream variables, separated by

colon. After specifying the participating relations, one may declare one or more stream

variables, separated by commas, in the form of: <stream_variable_name>

(<stream_source>). The <stream source> is an alias name for a data stream that has

been declared in a configuration metadata catalog.

 attach when: This newly introduced clause contains the defining expressions of the

stream variables, separated by commas. The format of each θi, i = 1, 2, … ,n is as

described in Definition 3.2

Chapter 3: Continuous Queries with Stream Variables 44

3.4.2 Example Queries

We provide the definition of queries [Q1-Q7] given in section 3.2.1 using the proposed

syntactic extensions given in the previous section.

Query example 3.1: Using the proposed SQL extensions, query Q1 can be expressed as:

monitor stockID,

X.min(price) as min_price,

X.max(price) as max_price,

X.avg(price) as avg_price

from Stocks : X(Prices)

attach when X.stockID = stockID

Query Q1 uses the Stocks relation and Prices data stream. The detailed information how

to access relations and data streams is stored on stream variable system metadata catalog. We

define the X stream variable over the Stocks relation that uses stream data from Prices stream.

The condition “X.stockID = stockID” defines that for each stockID we hold stock

prices values in X’s queue. The X.min(price), X.max(price), X.avg(price) are

reporting functions computing the running minimum, maximum and average stock price

respectively over X’s queue.

Query example 3.2: Query Q2 can be expressed as:

monitor stockID,

X.min(price) as min_price,

X.max(price) as max_price,

X.avg(price) as avg_price

from Stocks : X(Prices)

attach when X.stockID = stockID and X.size() = 100

For query Q2 we define the X stream variable over the Stocks relation that uses stream data

from Prices stream. The “X.stockID=stockID and X.size()=100” condition defines

Chapter 3: Continuous Queries with Stream Variables 45

that for each stockID the query keeps the stock price values in a sliding window of size 100.

The query calculates the minimum, maximum and average price over this queue using the

reporting functions: X.min(price), X.max(price), X.avg(price) respectively. The

size() function is a custom function defining a sliding window holding the last 100 reported

prices. In other words it defines a queue of size 100. The output of reporting functions becomes

the columns min_price, max_price and avg_price next to the stockID column.

Query example 3.3: Using the proposed SQL extensions, query Q3 can be expressed as:

monitor stockID, stock_closing_price, categoryID,

 category_closing_price,

 X.avg(price)/stock_closing_price as stock_variation,

 Y.avg(price)/category_closing_price as category_variation

from Stocks as S, Category as C: X(Prices),Y(Prices)

where S.categoryID = C.categoryID and S.date = date()-1

attach when X.stockID = stockID and X.size() = 0,

 Y.categoryID = categoryID and Y.size() = 0

Query Q3 defines a join between Stocks and Category. The where clause restricts the

query result to contain the stock and category closing prices of the previous date (date =

date()-1). There exist two stream variables X and Y using the Prices data stream. The

condition “X.stockID = stockID and X.size() = 0” defines that for each

stockID we hold the running average price in X’s queue. Y’s defining condition has the same

operation for stock categories. The X.avg(price) computes the running average reported

price per stock and the Y.avg(price)the running average reported price per stock category.

Using these values in the select clause, the query computes the percentage variation of both stock

and category prices using yesterday’s prices.

Chapter 3: Continuous Queries with Stream Variables 46

Query example 3.4: The query Q4 can be expressed as:

monitor stockID, X.sum(volume) as sum_vol_10,

 Y.max(price) as max_price_10,

 Z.sum(volume) as sum_vol,

 W.max(price) as max_price

from Stocks: X(Prices), Y(Volumes), Z(Volume), W(Prices)

attach when X.stockID = stockID and X.size() = 10,

 Y.stockID = stockID and Y.size() = 10,

 Z.stockID = stockID and Z.size() = 0,

 W.stockID = stockID and W.size() = 0

For query Q4 we define four stream variables: X, Y, Z and W. X and Y receive data from the

Prices stream and Z and W from the Volumes stream. Both X and Y define a window of size 10,

while Z and W an infinite window. The reporting functions in the select clause compute the

aggregates specified in the query definition.

Query example 3.5: Using the proposed SQL extensions, query Q5 can be expressed as:

monitor stockID,

 Z.sum(volume) as sum_vol_prc,

 W.sum(volume) as sum_vol

from Stocks: X(Prices), Y(Prices), Z(Volume), W(Volume)

attach when X.stockID = stockID and X.size() = 0,

 Y.stockID = stockID and Y.size() = 10,

 Z.stockID = stockID and Z.size() = 0 and

 Y.avg(price)>X.avg(volume),

 W.stockID = stockID and W.size() = 0

For query Q5 we define four stream variables: X, Y, Z and W. X and Y receive data from the

Prices stream and Z and W from the Volumes stream. The X stream variable computes the

running average price per stock and Y computes the average stock price for the last 10 reported

Chapter 3: Continuous Queries with Stream Variables 47

stock prices. The Z’s condition “Y.avg(price)>X.avg(volume)” specifies that the

reporting function Z.sum(volume)is computed only when the running average price is greater

than the average price of the 10 last prices. This is a type of correlated aggregation [42][67]. The W

stream variable calculates the running total volume for each stock.

Query example 3.6: Using the proposed SQL extensions, query Q6 can be expressed as:

monitor stockID, (Y.avg(price)>X.avg(price)) as alert_flag

from Stocks: X(Prices), Y(Prices)

attach when X.stockID = stockID and X.size() = 0,

 Y.stockID = stockID and Y.size() = 10

The query Q6 contains two stream variables X and Y that use the Prices stream. X defines

an infinite queue and Y defines a queue of size 10. The monitor clause identifies in real time if the

running average price is greater than the average price of the last 10 reported values. This

predicate is a boolean condition resulting to either a “True” or a “False” value.

Query example 3.7: Using the proposed SQL extensions, query Q7 is:

monitor stockID,

 X.avg(price) as avg_price_10

 Y.max(price) as max_avg_price

from Stocks: X(Prices), Y(avg_price_10)

attach when X.stockID = stockID and X.size() = 10,

 Y.stockID = stockID and Y.size() = 0

The query Q7 contains two stream variables X and Y. X uses the Prices stream and defines

a queue with size 10. The Y stream variable uses as a source the aggregates of X stream variable

(avg_price_10). Over these aggregates an infinite queue is defined and the condition

“Y.stockID = stockID and Y.size() = 0” computes the maximum of these

aggregates.

Chapter 3: Continuous Queries with Stream Variables 48

3.5 Evaluation and Optimizations

In this section we provide a straightforward evaluation algorithm for stream variable queries

and several optimizations.

3.5.1 Evaluation Algorithm for Stream Variable Queries

The computation of stream variable queries is based on a straightforward but highly

optimizable evaluation algorithm presented below:

Algorithm 3.2: Evaluation algorithm of a stream variable query (W)

1: variables

2: A list of stream variables {Xi, i=1,2,…,n}

3: A list of queues for each stream variable {Qt, t=1,2,…,m}

4: A data source S producing tuples s(a1,a2,…,ak)

5: end variables

6: when a tuple s from S becomes available do

7: for each stream variable Xr of W query such that the

 data source for Xr is S do

8: for each row r of the widened relation with respect to W

such that Xr.θ evaluates to true with respect to r and s

 do

9: push s into Qt

10: calculate Xr reporting functions over queue Qt

11: end do

12: end for

13: end for

14: end when

The algorithm operates as follows: for a given stream tuple s of stream source S and for each

stream variable Xr that mentions S as its source, we check all rows of the widened relation w.r.t W

to see whether they satisfy Xr’s condition.

3.5.2 Optimizations

This simple algorithm can be very expensive if the widened relation w.r.t W is large. There are

several optimizations that can be applied to reduce this cost, mentioned briefly below:

 Indexing: It is important to analyze the θ condition of a stream variable in order to

deduct (if possible) which rows of the widened relation w.r.t W will be updated and

Chapter 3: Continuous Queries with Stream Variables 49

avoid a full scan. In most of the cases, it is only a few. By using cleverly created

indices, cost can be reduced further.

 Decorrelation: By default, according to mapping of Definition 3.6, stream variables

are defined over the relation of the previous widened relation. However, sometimes this

is not necessary, as in Q3. By performing some syntactic analysis of the θ condition of

a stream variable, several rows of the widened relation w.r.t W may use the same

queue.

 Parallelism: One can horizontally partition the widened relation w.r.t W to several

processing nodes and distribute the stream tuples to all of these. The result is the union

of all the sub-results.

3.6 Implementation and Experiments

3.6.1 Stream Variables System

We have developed a prototype system which incorporates many of the concepts described in

the previous sections. Our system has been implemented in C/C++ and follows the general DSMS

architecture described in [21]. The main purpose was to build a prototype system to be used as a

proof of concept.

Our prototype system follows a component-based architecture. Each component has a well

specified API which increases code reusability and makes future improvements easier. Figure 3.4

shows the main components of our system.

Initially the user formulates a query following the syntactic extensions described in subsection

3.4.1. Query parser validates query’s syntax and Query optimizer analyzes the query for possible

optimizations (as described in Section 3.5.2). Once the base relation has been computed and

loaded and the window structures initialized and linked to the base relation, the Scheduler starts

probing input queues (one for each data source) in a round robin fashion for incoming stream

tuples. These are forwarded to the Executor for processing. Executor implements Algorithm 3.2.

Base relation and window structures are stored in memory. Metadata catalog provides information

for data source names and types, window schemas, etc.

Chapter 3: Continuous Queries with Stream Variables 50

Figure 3.3: Stream Variables system

3.6.2 Experiments

We conducted some experiments to measure the efficiency and scalability of Stream Variable

system. Our tests were performed on an Intel Core 2 CPU @ 2.0Ghz with 2GB main memory,

running Windows XP

Figure 3.5 shows performance results for query Q2 with different optimization parameters. In

this test we use a flat file as a data stream source (Prices data stream). The base relation

contains 100 values (read from a flat size) and we varied the size of the incoming stream (read

from a flat file) from 20000 to 100000 tuples with a step of 20000. We plot the query completion

time. The completion time contains: (a) reading from disk the base relation values, (b) building

windows, (c) reading from disk the incoming stream tuples and (d) query evaluation (Algorithm

3.2). For both line plots the optimizer identifies the equality predicate in such that clause and

the executor built a memory hash index (C++ hash map) on stockIDs. For the top line plot, we

force optimizer not to identify that the declared aggregate functions (min, max, avg) can be

evaluated using a window of size 1. In this case executor builds a sliding window (in-memory

array) of size 100 and re-evaluates the min, max and avg functions over 100 values when a new

Chapter 3: Continuous Queries with Stream Variables 51

value inserted in the window. For the bottom line plot, executor uses a window of size 1 resulting

in better performance results. This simple example indicates that our system behaves satisfactory

in processing high-rate streams coming from disk.

Figure 3.4: Query Q2 completion time

Similarly, Figure 3.6 shows performance results for query Q2. In this case stream tuples

(Prices) are kept in memory to avoid disk reading. Also we do not count the time the system

needs to load the base relation values from disk, the time for building the appropriate window

structures and the time needs to build a hash-index for the base relation values. We focus only on

the performance of evaluating the query Q2 using Algorithm 3.2. The windows used for the

computation of min, max, avg are of size 1 and are common C++ memory arrays. We varied the

size of the incoming memory stream from 100000 to 500000 tuples with a step of 100000 and

plotted the query Q2 evaluation time when the relation size of the base relation ranges from 100 to

500 tuples with a step of 100. This simple example indicates that our evaluation algorithm

performs well in processing high-rate streams (existing in-memory), while it scales well as the

base relation size increases. Comparing with the plot in Figure 3.5 we can see that there is a lot of

overhead in the Scheduler (reading from disk) and the Windows object manager (creating window

structures).

Chapter 3: Continuous Queries with Stream Variables 52

Figure 3.5: Query Q2 evaluation time for different base relation sizes

3.7 Summary and Conclusions

Data stream management systems have been the focus of intense research activity in the past

few years. Real-time analytics and continuous queries become increasingly important topics both

in the research and the industry worlds. The goal of this work is not to build a complete data

stream system, handling issues such as load shedding, approximate answers and others, but to

model and handle useful class of continuous queries for real-time analytics.

A simple SQL extension is introduced in order to facilitate the succinct expression of analytics

over stream data. These analytics queries consist of aggregates of repeated, multiple, possibly

correlated and at different granularities stream selections. We presented a motivating application

from the financial world along with several query examples. We define the concept of widened

relations. The key idea is that aggregates over stream data can be repeatedly added to a base

relation.

The proposed language can provide a generic framework for declaring analytics queries over

stream data coming from multiple stream sources.

Chapter 4

4 Spreadsheet-like Stream Processing
4.1 Introduction

Decision support systems (DSS) are based on data stored statically and persistently in a

database, typically in a data warehouse. The queries applied over these data enable analysts to take

proper and efficient decisions. In many applications however, it may not be possible to process

queries within a Database Management System (DBMS). These applications involve data items

that arrive on-line from multiple sources in a continuous fashion [27]. In Data Streams

Management Systems (DSMSs) we usually have “continuous” queries [21][71] rather than “one-

time”. Computing real-time analytics (potentially complex) on top of data streams is an essential

component of the real-time enterprise and an essential requirement of DSMSs.

In this chapter we present the theoretic foundations and a system called COSTES (Continuous

Spreadsheet-Like Computations) that allows users to formulate easily continuous queries for

analytics and decision purposes. These queries mingle traditional and stream data in a single,

correlated view. This class of queries – which resemble spreadsheet documents, where the

definition of a column usually depends on previously defined columns and some initial “basic”

columns - is particular suitable for stream data management and are used mainly for decision

support. As a result, the purpose of COSTES is not to serve as a complete and generic Data Stream

Management System (DSMS), but rather to form a useful and practical tool for stream queries

used in (near) real-time decision making.

4.2 Challenges

Stream queries used for decision support tasks are important for companies and organizations

to gain insight about their operations in (near) real-time. The goal is to provide a theory and a

platform for real-time analytics beyond common offline and ad-hoc analytics which are quite

common. In order to support decision support stream queries a theoretical framework and a proper

language must be defined.

To achieve this goal a number of requirements should fulfilled:

Chapter 4: Spreadsheet-like Stream Processing 54

 Continuous queries (R1): The nature of the queries should be continuous, i.e. the

result is updated as new data arrives.

 Tabular format (R2): The output of such a query should be in tabular format,

appropriate for (subsequent) traditional database processing or input to visual tools.

 Multiple data sources (R3): The language should allow consolidation/aggregation of

multiple data streams with different schemata into one query.

 Balancing declarative/procedural tradeoffs (R4): We should specify declaratively

most of the query - ripping the benefits from traditional database access methods, while

allowing procedural flexibility in the aggregation part.

 Correlated computations (R5): Many queries have a common pattern: the leftmost

column(s) consists of one or more fixed values (e.g. stock names, vehicle IDs, sensor

IDs etc) and possibly related information, while the remaining columns are defined

successively based on previously defined columns.

 Optimizations (R6): The proposed approach must enable a set of optimizations for

performance and efficiency reasons. This is important as (near) real-time decision

support systems must handle high throughput stream data and compute results in a fast

manner.

4.3 Radio Frequency Identification (RFID) Technology and

Applications

We use a motivating application from the supply chain management field. Radio Frequency

Identification (RFID) technology is used for real-time product monitoring and supply chain

automation. In this chapter we provide background details about these areas.

In the recent years, the development of automatic identification technologies, such as Radio

Frequency Identification (RFID) paired with sensor–based technologies and ubiquitous computing

have caused an explosion in data capturing and real-time information processing requirements,

presenting new challenges and opportunities for the development of data stream management

applications.

RFID technology has been extensively used for a diversity of applications ranging from access

control systems to airport baggage handling, livestock management systems, automated toll

collection systems, theft-prevention systems, electronic payment systems, and automated

production systems. Nevertheless, what has made this technology popular nowadays is the

application of RFID for the identification of consumer products and the management of supply-

chain processes. Tagging individual product instances at item level and tracking them across the

supply chain generates immense streams of data at various stages. The challenge is to efficiently

Chapter 4: Spreadsheet-like Stream Processing 55

filter these data to support real-time decisions in the context of various business applications, from

upstream warehouse and distribution management down to retail-outlet operations, including shelf

management, promotions management and innovative consumer services.

As a result the emergence of new automatic identification technology (RFID) is expected to

revolutionize many of the supply chain operations by reducing costs, improving service levels and

offering new possibilities for identifying unique product instances. The advanced data capture

capabilities of RFID technology coupled with unique product identification and real-time

information integrated from different data sources define a new and rich information environment

that opens up new horizons for efficient management of supply chain processes and decision

support.

Currently, most applications of RFID in supply chain management exploit the automation

capabilities of the technology with the objective to speed-up processes and reduce costs, such as

the automatic identification of incoming and outgoing goods in warehouse operations or asset

tracking in closed-loop applications. However, the real potential of RFID lies in the possibility to

capture new types of information in real-time and support decisions. We are towards that RFID

tags are not simply used to replace barcodes and automate processes, but to provide real-time

information in order to create new business opportunities and experiences for the customers.

Real-time information capturing and decision support present complex technical challenges,

related to managing huge streams of data coming from multiple data sources and converting them

into meaningful information in a way to support decisions. Until recently, decision support

systems (DSS) were based on data that were stored statically and persistently in a database,

typically in a data warehouse. Complex queries and analysis were carried out upon this data to

produce useful results for managers. In many RFID applications however, it may not be possible to

process queries within a database management system. RFID applications involve data items that

arrive on-line from multiple sources in a continuous fashion. This data may or may not be stored in

a database. We must have “continuous” queries rather than “one-time”. The answer to a

continuous query is produced over time, reflecting the stream data seen so far. Computing real-

time analytics (potentially complex) on top of RFID data streams is an essential component of the

real-time supply chain enterprises and an essential requirement for decision making.

Supply chain applications range from upstream warehouse and distribution management down

to retail-outlet operations, including shelf management, promotions management and innovative

consumer services [116]. Most of these applications are characterized as “open-loop”, meaning

that they require the involvement of different supply chain partners in an open environment in

order to be implemented, as, for example, the involvement of the supplier/manufacturer to attach

an RFID tag to the product and the involvement of the distributor or retailer to monitor product

movement in warehouses or stores by installing RFID readers at various locations.

Chapter 4: Spreadsheet-like Stream Processing 56

This fact is probably what poses the greatest challenge for the application of RFID technology

in supply chain management today, as the involved partners cannot equally share the associated

costs and benefits. For suppliers, RFID, as a tag that has to be placed on their products, is often

considered to be an unfortunate strategic necessity [18] they have to comply with in order to

satisfy the plans of their big customers for increased internal efficiency. For suppliers to benefit

from RFID they need to share RFID information with their partners and exploit this information in

order to streamline supply chain processes and gain new market knowledge [130]. At the same

time, for both retailers and suppliers, investments in RFID technology cannot be justified by

operational gains alone and more strategic benefits need be materialized through advanced

information acquisition and decision support.

Overall, and in line with [90], the gradual contribution of RFID in supply chain management,

as an automatic product identification technology, across the following axes:

 the automation of existing processes, leading to time/cost savings and more efficient

operations;

 the enablement of new or transformed business processes and innovative consumer

services, such as providing consumer self check-out or product-information services;

 the availability of richer and more accurate information in real-time, offering the

potential for advanced decision support and market knowledge acquisition.

In order to move from the level of automation and operational benefits to the level of advanced

decision support we need to efficiently and effectively transform RFID data into meaningful

reports, both internally within a company and in a collaborative supply chain environment where

information is shared among supply chain partners.

4.4 RFID Motivating Application

4.4.1 Application Scenarios

An RFID system consists of RFID readers with antennas, host computers and transponders or

RF tags. The EPC (Electronic Product Code) standard specifies unique product IDs in the supply

chain environment. RFID applications generate large volume of streaming data, which have to be

automatically filtered, processed, grouped and transformed into meaningful information to be used

in business applications.

This need is better illustrated by the following two application scenarios. These scenarios

employ product item-level RFID tags, while RFID readers and antennas are placed on store

shelves, so that the product movement on and off the shelf is monitored.

Chapter 4: Spreadsheet-like Stream Processing 57

The first scenario monitors shelf availability. This scenario refers to the possibility of

monitoring the existence or not of products on supermarket shelves in order to replenish them on

time. Given the negative impact that “out-of-shelf” (OOS) has on consumer attitude, sales and

loyalty, retailers and suppliers have raised this issue to a top priority for their industry today and

confront RFID as a possible solution to this problem. The requirements for a real-time report

monitoring shelf availability would be as following:

 The report presents the remaining quantity of each product on the shelf, where a

product is identified by its description at the product type level.

 The report is updated in real-time, depicting product sales off the shelf as well as shelf

replenishment activities.

 A user, e.g. store employee or supplier, can view the report or get OOS notification

alerts in order to make shelf replenishment decisions.

 When the last item of a product on the shelf has been sold, an OOS is reported.

 The duration of the OOS is tracked until the shelf is replenished back.

The second scenario relates to products’ promotion management. A particularly important

marketing activity for fast moving consumer goods is sales promotions, which represent the

majority of manufacturers’ marketing budgets. Despite the importance of sales promotions and the

amount of revenues devoted to them, suppliers often fail to evaluate sales promotion effectiveness

and when they do so, this is usually several weeks after a promotion has ended. Being able to

monitor the effectiveness of in-store sales promotions in real-time gives a supplier the possibility

to act proactively and ensure the success of a sales promotion. In order to do so, a supplier should

have access to real-time information about product sales in the store, including information about:

 The sales off-take from a specific promotional stand versus the shelf or other locations

in a store. If a location is underperforming, then the supplier should probably request

the store to change the location of a promotion.

 The availability of products on both the shelf and the promotion stands in order to drive

replenishment decisions.

 The products that a consumer has already put in her basket when selecting a product

from a promotional stand or those that she replaces as a response to a sales promotion.

The above application scenarios and respective reports are indicative examples that

demonstrate the need for real-time decisions in supply chain management, exploiting the

possibilities offered for automatic and unique product identification through the use of RFID

technology. In the next sections of the current chapter we propose a decision support tool, utilizing

Chapter 4: Spreadsheet-like Stream Processing 58

a data stream management system to aggregate RFID data, addressing the aforementioned

requirements for real-time decisions in the supply chain context.

For both applications scenarios we assume that we have installed RFID readers in a super

market monitoring the presence of products on shelves and five promotional stands. The

application-level-event (ALE) middleware services [10] retrieve filtered RFID data from RFID

readers. Particularly, the asynchronous subscribe mode of ALE service, where a client registers a

subscription and the ALE service periodically sends aggregated events back to the client. Our

system manages data streams over ALE. The setting is described in Figure 4.1:

.

Figure 4.1: Application scenarios setup

Let’s assume that a product may be displayed at more than one location in the store, e.g. the

regular shelf position and a promotional stand. The schemata of the RFID data streams presented

to our system, after filtered and aggregated by the ALE middleware, are:

Readings(EPCProdCode, quantity, timestamp)

Stand1(EPCProdCode, quantity, timestamp)

Stand2(EPCProdCode, quantity, timestamp)

ALE/

RFID Event Filtering

Spreadsheet-like

Reports
Relational

Database

RFID Reader

Data Stream

Management System

COSTES

A A A
A A AA

A A A
A A AA

A A AA A AA

SELF

Chapter 4: Spreadsheet-like Stream Processing 59

Stand3(EPCProdCode, quantity, timestamp)

Stand4(EPCProdCode, quantity, timestamp)

Stand5(EPCProdCode, quantity, timestamp)

Each stream tuple reports the EPC product-type code (EPCProdCode), the measured quantity

of the product (quantity) and the timestamp of the measurement (timestamp). Streams are

aggregated by the ALE service at the product-type level, i.e. the GTIN number occupying the first

13 digits of an EPC (usually referred to as barcode). Readings report products’ status placed on

regular shelves and Stand1 to Stand5 report products’ status placed on stands one to five

respectively. We assume that a product exists only in one location at the store’s shelves and

possibly at one promotional stand. While customers often misplace products, ALE middleware

only reports product quantities found at their designated places (regular shelf and promotional

stands). In other words, Readings and Stand1 to Stand5 streams report clean data.

Also we assume the presence of two tables in our system:

Products(prodCode, threshold,…)

Promotions(promCode, standNumber, prodCode, profit, …)

Products stores information about products, such as product code, minimum threshold

values, location, etc. and Promotions stores information about past promotions.

4.4.2 Example Queries

There are several useful continuous queries one can register on top of these streams to monitor

shelf replenishment and compare sales of the same product placed at different locations:

Q1. Shelf replenishment has been identified as one of the main benefits of RFID technology. It is

important to know when a product’s quantity on the shelf has reached a critical threshold and

notify the store’s manager to replenish it.

Q2. Similarly, it is useful to know how long it takes to replenish the shelf (for each product),

starting counting from the first occurrence of “below-the-threshold” event, in order to monitor

product availability on the shelf and duration of out-of-stocks.

Chapter 4: Spreadsheet-like Stream Processing 60

Q3. During promotional periods of a compilation of products placed on a stand we are interested

in measuring the effectiveness of the promotion. We can do so by comparing the sales rate of the

same product from the shelf and the promotional stand.

Q4. A more demanding report would be computing the time a product takes to get from its average

quantity on the self to its threshold. This would allow store managers to better understand and

schedule shelf replenishments and make shelf-space allocation decisions.

Instances of the output of query Q1 to Q4 are is shown in Figure 4.2 (a) to (d):

EPCProdCode threshold max_quantity alert
1 10 47 FALSE
2 12 7 TRUE
3 8 22 FALSE
4 15 11 FALSE
… … …

(a)

EPCProdCode threshold time_to_repl
1 10 NULL
2 12 3200
3 8 NULL
4 15 1800
… … …

(b)

EPCProdCode self_variance stand_variance
1 0.61 0.82
2 0.43 0.35
3 0.81 0.84
4 0.35 0.61
… … …

(c)

EPCProdCode threshold avg_quantity time_to_threshold
1 10 48 32400
2 12 53 267988
3 8 26 169366
4 15 39 92102
… … … …

(d)

Figure 4.2: Instances of results for queries Q1 to Q4

Chapter 4: Spreadsheet-like Stream Processing 61

All queries have a common pattern: the leftmost part of the resulting table corresponds to a

traditional relational expression, while the rest of the columns represent aggregates over sets of

values formed over stream data. Let us consider Query Q2. The idea we want to express is the

following:

Algorithm 4.1: Query Q2 evaluation algorithm

1: compute table R(EPCProdCode, Threshold);

2: add column time_to_repl to R;

3: for each row r of R do

4: define an ordered set Sr of real type values

5: empty Sr;

6: r.time_to_repl = null;

7: end-for

8: for each stream tuple (p, q, t) from Readings do

9: for each r in R do

10: if (r.EPCProdCode==p && (r.threshold > q || empty())) do

11: push t to Sr;

12: r.time_to_repl = Sr.last_elem - Sr.first_elem;

13: end-if

14: end-for

15: end-for

16:

17: function bool empty()

18: begin-function

19: if(r.Time_to_Repl is null)

20: return false;

21: end-if

22: else

23: set r.Time_to_Repl to (last_elem - first_elem of Sr);

24: store r;

25: clear Sr;

26: r.time_to_repl = null;

27: return false;

28: end-else

29: end-function

Chapter 4: Spreadsheet-like Stream Processing 62

Table R is computed by a traditional relational expression. Then, for each row of R we define

an ordered data set that contains values (timestamps) from the Readings stream. The

timestamp of a stream data must be appended to a row’s data set if a condition is satisfied – in our

case if the reported EPCProdCode corresponds to the row’s EPCProdCode and the reported

quantity is below the row’s threshold. However, when the condition does not hold, the data set

must be emptied - empty() is a function returning always false, having as a side effect to empty

the ordered set of the row (Sr). It also calculates and stores the out-of-stock duration and clears the

out-of-stock variable (line 26) at the first occurrence of “above the threshold” event. Note that we

have short-circuited evaluation. One could examine only the row that agrees on the

EPCProdCode, but this is an optimization specific on the condition. In other examples, a stream

value may be inserted to more than one data sets.

This is the idea we model: start from a relational expression (the base table), use each row as a

parameter to define one or more, possibly correlated, parameterized subsets of stream sources

(associated sets) and extend the schema with aggregates over these. Membership to these sets

should be defined declaratively, while the aggregate computations can be any user-defined

aggregate function. We argue that this approach allows succinct and concise representations of

many practical monitoring queries. The challenge is to have a simple query language to express

and an efficient, optimizable, algorithm to evaluate such queries. Note that each ordered data set

Sr is “attached” to a persistent relational value, i.e. Sr can be thought as labeled by a “stable”

value. This can be used to develop a relational operator to express this class of queries.

4.5 Continuous Spreadsheet-like Computations

4.5.1 Theoretical Framework

Below we provide the definitions of our framework to support queries as those given in the

previous section and taking into consideration the requirements mentioned in section 4.2.

Definition 4.1: (Associated Set) Given a relational schema B, a relational schema of a stream

source S and a condition θ involving attributes of B and S and constants, then we define the

associated set of B, S and θ, denoted as Assoc(B, S, θ), as a collection of parameterized multi-sets

able of storing S’s tuples, where the columns of B serve as the parameters. Each parameterized

multi-set of Assoc(B, S, θ) is denoted as Assocr(B,S,θ), where r is a row of B. B is called the base-

values table, S the source and θ the defining condition of the associated set. Assocr(B, S, θ) is

called the instance of the associated set with respect to r. �

Chapter 4: Spreadsheet-like Stream Processing 63

Implementation and selection of these data structures (e.g. multisets) are left to the optimizer.

Note that associated sets can also be defined over traditional data sources, such as flat files and

relations, as long as they present a relational interface and there is a tuple iterator over the data

source.

The class of queries that we want to support (COntinuous SpreadsheeT-likE computations -

COSTES query-) is based on repeated, consecutive definitions of associated sets and their schema

can be described by the following algorithm:

Algorithm 4.2: COSTES queries schema evaluation algorithm

1: assume S1,S2,...,Sn stream sources;

2: B is the initial schema of the base-values table;

3: for (i=1 to n) do

4: let Θi be a condition involving attributes of B and S and

 constants;

5: Ai = Assoc(Bi, Si, θi);

6: let f1(si1),f2(si2),…,fk(sik) a set of aggregate functions on

 attributes of Si;

7: extend B’s schema with k columns, Ai_fj(sij), j=1,2,…k

 and name it B1;

8: attach a null value to Ari at row r and column Ai_fj(sij),

 j=1,…,k;

9: B = B1;

10: end-for

Algorithm 4.1 is just the schema of a COSTES query. How such a query is evaluated is

explained in section 4.7.

Definition 4.2: (Associated Set Membership Test) given a stream tuple s of Sj we say that s

satisfies the membership test for associated set Ari, if i=j and θi evaluates to true with respect to r

and s. In all other cases the return value is NULL.

Chapter 4: Spreadsheet-like Stream Processing 64

4.6 Query Language

 The goal is to express a large class of practical continuous queries as those shown in the

mentioned application (Section 4.4.2) using some intuitive extension of SQL.

4.6.1 SQL Extensions

The syntactic constructs of the proposed language is as follows:

select A1, A2, …, Am, {Ci.fj(S1)}i =1,…,d

from R1, R2, …, Rk

<where θ>

<group by A1, A2, …, Am>

extended by C1(S1), C2(S2), …, Cn(Sn)

such that θ1, θ2, …, θn

where A1, A2, …, Am attributes of R1, R2, … , Rk tables, i in {1, 2, …, n}, fj an available aggregate

function and Sl an attribute of Si’s schema. The newly introduced extended by and such

that clauses define the additional columns that will be “attached” to the relation defined by the

select…from…where…group by clause (the initial base-values table). In particular the added

syntactic constructs are described below:

 select: The select clause may contain one or more aggregate functions of the

associated sets defined by the extended by clause. Since more than one aggregate

functions per associated set is possible, we may have more than m+n columns in the

output table.

 extended by: This clause is used to declare the names and the data sources of the

associated sets, in a comma-separated list.

 such that: This is a comma-separated list of the defining conditions of the associated

sets. Condition θi involves attributes of the initial base-values table, constants and

aggregates of associated sets C1…Ci-1.

Given the nature of the such that clause, all continuously updated associated sets are

functionally dependent on some column(s) of the initial base-values table (directly or transitively).

Chapter 4: Spreadsheet-like Stream Processing 65

4.6.2 Example Queries

In this section we show how queries Q1 to Q4 described in section 4.4.2 can be expressed with the

proposed SQL extensions.

Query example 4.1: Using the proposed SQL extensions, query Q1 can be expressed as:

select prodCode as EPCProdCode, threshold,

 X.max(quantity) as max_quantity,

 (X.max(quantity)<threshold) as alert

from Products

extended by X(Readings)

such that X.EPCProdCode=prodCode and X.size()=1

Query Q1 requires an associated set of size 1 to be defined for each prodCode tuple of

Products – to keep only the last quantity reported. We use the max aggregate function to

retrieve this single value. size()is a method that enforces X to have size 1 (implementation wise,

these are methods of the data structures that will implement associated sets.) Threshold is also

required in the base table because it is used in an expression in the select clause.

Query example 4.2: Using the proposed SQL extensions, query Q2 can be expressed as:

select prodCode as EPCProdCode, threshold,

 X.diff(timestamp) as time_to_repl

from Products

extended by X(Readings)

such that X.EPCProdCode=prodCode and

 (X.quantity < threshold cor empty())

This query requires an associated set X for each prodCode, which is populated by the

stream’s timestamp when the reported quantity drops below the threshold. However, this set

has to empty whenever this condition does not hold. We use a system function called empty()

which always returns false and as a side effect empties the corresponding set. cor is the short-

Chapter 4: Spreadsheet-like Stream Processing 66

circuited disjunction operator. The aggregate function diff computes the difference between the

last and the first element of X – forcing the optimizer to use an ordered data set for X.

Query example 4.3: Using the proposed SQL extensions, query Q3 can be expressed as:

select ProdCode as EPCProdCode,

 X.var(quantity) as shelf_variance,

 Y.var(quantity) as stand_variance

from Promotions

where promCode=172 and standNumber=1

extended by X(Readings), Y(Stand1)

such that X.EPCProdCode=prodCode and X.size()=200,

 Y.EPCProdCode=prodCode and Y.size()=200

Assume that, for those products participating in promotion 172, we want to compare their sales

rate from the self and the first stand. For each such product code, we define two associated sets of

maximum size 200, named X and Y, where X and Y contain the reported quantity from the standard

stream (Readings) and first stand’s (Stand1) streams. We want to monitor the variance of

those sets.

Query example 4.4: Using the proposed SQL extensions, query Q4 can be expressed as:

select prodCode as EPCProdCode, threshold,

 X.avg(quantity) as avg_quantity,

 Y.diff(timestamp) as time_to_threshold

from Products

extended by X(Readings), Y(Readings)

such that X.EPCProdCode=prodCode,

 Y.EPCProdCode=prodCode and ((Y.quantity > threshold

 and Y.quantity < X.avg(quantity) cor empty())

Chapter 4: Spreadsheet-like Stream Processing 67

Finally, Query Q4 is similar to Q2, but an extra comparison between the reported quantity and

the shelf’s running average is required. Consequently, we need to define for each prodCode a

data set X keeping the reported quantities and use X’s average to constrain membership to Y.

4.6.3 Requirements

By construction, the output of our queries is continuous and tabular (Requirements [R1] and

[R2].) By allowing associated sets to be defined over different data sources we address

requirement [R3]. Membership to associated sets is defined declaratively through the such that

clause, which allows selection of the access methods that can be used. Aggregate computation

over the defined associated sets can be anything, which adds to procedural flexibility. However,

even in this case some optimization is possible, such as appropriate selection of data representation

(e.g. stacks, queues, min-max heaps, etc.) of the associated sets (Requirement [R4].) Finally, the

fact that aggregates of an associated set may constrain the definition of subsequent associated sets,

as in Query Q4, addresses Requirement [R5].

4.7 Query Evaluation and Implementation

In this section we describe the query evaluation algorithm and suggest possible optimizations

for COSTES queries. We present our implementation and provide query performance results.

4.7.1 Query Evaluation

A COSTES query can be continuously updated in a very simple manner. The evaluation

algorithm operates as follows:

Algorithm 4.3: COSTES (naïve) evaluation algorithm

1: for a tuple s of data source S do

2: for each associated set X having source S do

3: for each row r of B do

4: if(θx is true with respect to r and s) do

5: append s into associated set instance Xr;

6: evaluate X’s aggregate functions mentioned in select

 clause over associated set instance Xr;

7: end-if

8: end-for

9: end-for

10: end-for

Chapter 4: Spreadsheet-like Stream Processing 68

4.7.2 Optimizations

Although the evaluation algorithm is rather simple, several optimizations are possible:

 Optimization 4.1 - Projection: Line 5 dictates that a stream tuple s must be appended

to the data structure representing associated set instance Xr. A naive approach for

associated sets’ implementation is to store the complete data stream tuples. However,

one can parse the select and such that clauses and identify the necessary attributes to

keep. So, one can append to Xr only those attributes of s needed to the computation of

aggregates of X. For example, in query Q3, only quantity will be appended to

associated sets X and Y.

 Optimization 4.2 - Filtering: Parts of the defining condition θx may be relevant just to

the stream tuples, i.e. the defining condition may be rewritten as θx = θ’x ⋀ θc where θc

is an expression involving only attributes of S and constants. Some systems allow

pushing simple filtering conditions to the stream source, saving iterations of the main

loop at Line 3. Push simple selections to the source of the stream, is similar to

Gigascope’s approach of low- and high- levels of query processing [57][58] or low-

level filtering in sensor networks [86], to avoid extra processing power or battery

consumption respectively. For example, in query Q3 we may want to consider

Readings tuples for X associated set only if the quantity is greater than a

constant value (e.g. threshold). The defining condition of X would be in this case:

X.EPCProdCode=ProdCode and X.quantinty>threshold and X.size()=200. This

could be broken down to two generic windows, X1 and X2, X1 having as defining

condition X.quantinty>threshold and X.size()=200 and source the Readings

stream and X2 having as defining condition X.EPCProdCode=ProdCode and

X.size()=200 and source the X1 stream. X1 can then be pushed to the source of

Readings stream, if possible.

 Optimization 4.3 - Sources-sets mapping: In some cases, we may have queries with a

large number of associated sets, or multiple queries with a significant number of

associated sets defined in each. Given a tuple s of a data source S, it is important to

quickly locate the associated sets this tuple affects (Line 2). Besides simple data

source-associated sets mapping techniques, we can also build a query index scheme

[113] based on the defining conditions and data stream sources, to continuously

determine which associated sets must be evaluated.

 Optimization 4.4 - Base-table indexing: One can analyze the defining condition of an

associated set and build appropriate indexes in order to quickly locate matching rows

Chapter 4: Spreadsheet-like Stream Processing 69

of the base table, avoiding thus the full scan of Line 3. For example, all example

queries (Section 4.4.2) could benefit from the existence of a hash index on ProdCode

on the associated sets, to quickly identify the matching instances to the incoming

EPCProdCode.

 Optimization 4.5 - Data structure selection: An associated set is a collection of

multisets. The representation of associated set instances is a major issue and

contributes significantly to the performance of query evaluation. So another

optimization is to use data structures to most appropriately represent associated sets,

based to declared aggregate functions and methods. For example, if we want to

compute the running max quantity of each product, an infinite multiset is required for

each instance. Of course, such queries are never implemented as such, since a single

value for each product suffices. However, this should be an optimization issue and not

left to the semantics of the aggregate function. Another example is the computation of

a min (or max) value of a sliding window (i.e. size()<>0). The most appropriate

representation of the associated set instances is a circular queue with a min (or max)

tracking algorithm implemented (keeps the minimum of the queue and checks at

dequeuing time whether the deleted element is the minimum). A rule-based approach

seems appropriate for such data structure selection.

 Optimization 4.6 - Scheduling: One can think associated sets as containers (or object

instances) that are sent to different data sources in a distributed stream environment.

The computation takes place locally at the stream source. However, there are many

open issues that should be investigated (rate of updating results at the coordinator,

distributed architecture, information to be sent, synchronization, etc.)

 Optimization 4.7 - Parallelism: Each associated set can be assigned to a different

thread, run on a separate processor of the same node, or even on different nodes. In that

case, parallelism can be achieved in query evaluation. Additionally horizontal

portioning is possible to parallelize the computation of associated sets: the base relation

R can be horizontally partitioned and each partition processed separately. Formally if R

= R1⋃R2⋃…⋃Rk then Assoc(R, S, θ) = ⋃i=1,…,kAssoc(Ri, S, θ).

 Optimization 4.8 - Eager Evaluation: We assume that a stream source S is able to

indicate the end of stream (EOS) event and the engine can detect it - this could be

implemented via time-outs. In that case, associated columns corresponding to

associated sets of source S can be evaluated and become traditional relational columns.

In some cases this can be done earlier and for selected rows, if we can deduct that

steam tuples further in the stream will not affect references of these rows. This is

usually the case with expressions involving temporal conditions [16][142]. For

Chapter 4: Spreadsheet-like Stream Processing 70

example, assume that you have a set of package IDs stored as a relation and a sequence

of RFID readings (package_id, product_id, timestamp) meaning that product

product_id has been placed to package package_id. We want to monitor the number of

products per package. Since packaging takes place in consecutive packages, we know

that if a package’s window instance has not been updated for a time period exceeding a

threshold to, then this package can be considered “completed”. In this case the system

can replace the associated column value of that row with the actual value, although the

Readings stream has not reported an EOS. One can periodically issue insert/delete

SQL statements to store or delete these “completed” rows (e.g. delete from

ProdsInPacks where X_count_all >= 0 - the where clause evaluates to FALSE only

for associated-valued columns).

4.7.3 COSTES System

COSTES is a C/C++ system tool able to execute continuous queries using the proposed SQL

syntax described in 4.6.1. Figure 4.1 shows the main COSTES components:

Figure 4.3: COSTES system

Chapter 4: Spreadsheet-like Stream Processing 71

Below we give a brief description of each module:

 Query input: provides an interface where users can declare and manage COSTES queries.

Users can use a textual interface to write the query or formulate it using graphical

components. Additionally in this module users declare data source parameters (e.g.

schema, type etc). This module generates an XML file, which contains an intermediate

representation of the query.

 Query parser: validates the query and store information in the metadata catalog. For

example such information is base table schema, data source names and schemas,

associated sets characteristics and aggregate functions. The metadata catalog is used by

other modules during query execution.

 Query optimizer: syntactically analyzes the query and consult metadata catalog in order

to identify possible optimizations, as described in subsection 4.7.2. Optimization details

are stored as metadata and used by the query executor.

 Data stream source manager (DSSM): provides functionality for handling data stream

sources. Currently our system supports as data sources: flat files, databases (ODBC), web

sources (HTTP protocol) and XML sources. DSSM is a multithreaded module allowing

concurrent data retrieval from many data sources. To allow synchronized data retrieval,

DSSM creates a FIFO queue for each data source and provides push and pop functions for

each queue. DSSM obtain information for data sources from the metadata catalog.

 Scheduler: retrieves stream tuples from DSSM queues in a round robin fashion and

forwards them to query executor. Moreover, user can prioritize stream tuple forwarding

between data sources.

 Associated sets manager: build and handle suitable data structures for associated sets.

Currently our system supports logical and time windows through appropriate method

declaration in the such that clause.

 Query executor: implements the evaluation algorithm (Algorithm 4.3), taking into

consideration optimizations that have been made by the query optimizer module. Query

Executor allocates the initial base table, builds evaluation trees for the defining conditions

and creates index structures according to optimization parameters. It interacts with the

scheduler to receive stream tuples and with the associated sets manager to access

(insert/delete) the implemented data structures.

They have implemented two versions one console based and a Graphical User Interface (GUI)

version. Figure 4.2 shows the definition of associated set X of query Q1 using COSTES graphical

interface and Figure 4.3 shows the query results.

Chapter 4: Spreadsheet-like Stream Processing 72

Figure 4.4: Query Q1 definition

Figure 4.5: Query Q1 results

Chapter 4: Spreadsheet-like Stream Processing 73

4.7.4 Experiments

We conducted several experiments to measure the efficiency and scalability of our system. Our

tests were performed on a Pentium M 1.6GHz with 1GB main memory running Windows XP. In

all tests we used flat files as data stream sources, since we were primarily interested in measuring

the stream rate that our system could handle – the stream rate of the actual configuration was quite

low. In all the experiments the base table has 5000 distinct values (i.e. 5000 distinct product codes)

and the incoming stream contains pseudo-random tuples, based on actual measurements. We run

three experiments, varying the size of the input stream, the size of the associated sets and the

number of the data sources. The experiments are described below:

Experiment 4.1. In this experiment we measured the completion time of query Q1, varying the

input stream size from 20,000 to 100,000 tuples having a step of 20,000, with and without

Optimization 5.4. Results are shown in Figure 4.6

Figure 4.6: Query Q1 execution time varying the number of tuples

Q1-Hash line shows the performance of our system with a hash index built on the base table’s

attribute ProdCode, since the optimizer has identified the (X.EPCProdCode = ProdCode)

term in associated set X’s defining condition. To measure the non-indexed performance (Q1-

NoHash line), we forced executor not to build the hash index and proceed with a naive evaluation,

i.e. a full scan of the base table for each incoming stream tuple. As expected, the former evaluation

plan performs much better than the later (a factor of 2.5). Currently, COSTES system only

supports single hash indexing, identified by equality predicates in conjunctive conditions. Other

Chapter 4: Spreadsheet-like Stream Processing 74

indexes can be support for other type of queries (e.g. range queries), multi-query optimization

techniques and query indexes [113]. Another observation is that COSTES system can consume

about 5000 stream tuples per second, applying unoptimized executions on similarly sized base

tables. While this is a relatively good number, given that COSTES queries are specified and

executed within a fully runtime environment (i.e. they are not compiled), it also shows that there is

significant overhead within our system’s components. Although our system performs linearly

proving that it scales well as the number of stream tuples increases.

Experiment 4.2. In this experiment, we used a variant of query Q1, where a “true” value is

reported if the product’s quantity on the shelf has reached a critical threshold within a sliding

window οf size n > 1, i.e. associated set X has size() greater than 1 (the minimum value of this

set is computed). We measured the performance (execution time) ranging X’s size from 100 to 500

with a step of 100 and an input stream of 40.000 tuples, with and without applying Optimization

4.5. In both cases, there is a hash index built on the base table’s attribute ProdCode

(Optimization 4.4). Results are shown in Figure 4.7

. Q1-NoDSS line shows the performance of COSTES system with no special data structure

selected for the implementation of the associated set X (a plain queue is used). There is an increase

in performance compared to Q1-Hash of Experiment 5.1 due to the management overhead of

associated set X (is not a single value any long) and the linear search within the queue to locate the

minimum element. Again our system performs linearly but the stream rate is significant lower

compared Q1 due to X’s management overhead. This gap widens as the size of the queue increases

from 100 to 500. Q1-DSS line shows the performance of COSTES system with a circular queue

equipped with a min tracking algorithm for the representation of the associated set X. While there

is an increase in performance compared to Q1-Hash of Experiment 5.1 due to the management

overhead of associated set X (as before), the amortized cost to find the minimum element within

the queue is constant. As a result, the completion time remains the same as the queue size

increases.

Chapter 4: Spreadsheet-like Stream Processing 75

Figure 4.7: Q1 execution time varying the window size

Experiment 4.3. In this experiment we measured the performance of query Q3 varying the

number of data sources from 1 to 100 with a step of 20. We can have a large number of stream

sources in the presence of multiple stores and/or promotions. The input stream size was 40,000

tuples. Results are shown in Figure 4.8. The incoming tuples were evenly distributed among

associated sets. We assume equal arrival rate for all stream sources and one associated set defined

for each data source. The optimizer builds a hash index on base table’s attribute ProdCode

(Optimization 4.4). There is a small increase in completion time due to the additional queues that

the DSSM module maintains for each data source. However, as the number of queues increases,

the size of each queue decreases and the data is consumed quickly by the scheduler. The

construction/destruction of queue objects is the main reason for the additional performance

overhead. In general, the figure shows that multiple data streams can be handled efficiently by

COSTES system.

Chapter 4: Spreadsheet-like Stream Processing 76

Figure 4.8: Query Q3 execution time varying the number of data sources

4.8 Summary and Conclusions

The RFID technology has been widely praised for its ability to streamline supply chain

processes. This is achieved from its unique data capturing characteristics to support real-time

decision making. Being able to efficiently perform complex real-time analysis on top of RFID

event streams is a key challenge for modern applications. This provides management with a novel

data analysis mechanism to allow better, tactical, on time, well-informed decisions. The two main

issues in RFID data management (RFDM) concern expressibility (how to simply and concisely

express stream queries) and performance (how to efficiently evaluate stream queries).

In this chapter we described a decision support system incorporating a simple and powerful

extension of SQL to express spreadsheet-like continuous computations. We argued that such an

extension is particularly useful in RFID data management and presented it in the context of real-

time supply chain decisions. However, this extension can be useful in other data stream application

domains, such as analysis of financial streams. Finally we presented a fully functional prototype

that implements this extension in a user-friendly and efficient manner.

Overall, the proposed decision support system links continuous RFID data streams with

product information stored in a relational database in order to support real-time supply chain

decisions. This decision support system is applied in a distributed system architecture that enables

information sharing between retailers and suppliers in order to enable real-time decisions in an

open supply chain environment [17]. While current RFID deployment efforts mainly deal with

integrating RFID-based relational databases with existing legacy/ERP systems, this research

Chapter 4: Spreadsheet-like Stream Processing 77

moves beyond these efforts in supporting continuous queries and real-time decisions. It further

contributes to transforming RFID data streams into meaningful real-time information, thus

unveiling the information potential of this technology and justifying RFID investments for

different supply chain partners.

Chapter 5

5 An Integration Framework for Relational and
Stream Systems
5.1 Introduction

Many practical applications [27] need to process continuous flows of data in real-time. Well-

known stream applications involve sensor networks, RFID product tracking, network and

environmental monitoring, smart grids and others. In the era of Big Data, a wide range of analytics

applications need to combine persistent and stream data in a simple and efficient way. For

example, situational awareness [29] is a term used to describe the capability of an organization to

become aware of what is happening in its immediate business environment and how internal or

external events affect organization’s daily operations. Situational aware applications require the

collection of information from multiple data stream sources. These stream data must be combined

with persistent data for analytic purposes.

The need for processing different types of data has led to the development of multiple and

diverse systems. In the case of data streams, processing can be carried out by generic stream

engines, standalone stream-handling components or custom stream applications. In the case of

persistent data, relational technology has proven itself for reliably managing data for many

decades now. In addition, SQL is a standard language for querying data with a wide acceptance

from the IT industry and with a large base of knowledgeable users and resources. As a result,

relational databases have a large market share and will continue to be used extensively, according

to our view. As stream data will become more available and common, it will be important for

database users to easily integrate it within the schema and transparently use it in their queries.

However, there is no standard query language for streams [84] and as a result each stream system

has its own features and specifications. This issue creates a three-fold problem for database users:

First, they must learn a new system from scratch if they want to process and query stream data.

Second, they must find a way to combine relational and stream data. Third, they need a query

language to query integrated data.

Chapter 5: An Integration Framework for Relational and Stream Systems 79

In this chapter we propose a view layer defined over standard relational systems to handle this

mismatch. DBAs define a special type of views (called LinkViews) which combine relational data

and stream aggregates. The columns of a LinkView are either columns of the relational schema

(called base columns) or “placeholders” to be filled-in with stream values whenever necessary

(called linked columns). As far as naive SQL users is concerned, a LinkView can be part of an

SQL statement as any other relational view. We define a Key-Value interface between relational

and stream systems and an Application Protocol Interface (API) is proposed for the exchange of

data (send keys, retrieve values). Our API follows a web-like approach where a web server

executes programs/scripts using the parameters that receives from clients (web forms). Parameters

in our case are distinct values (keys) found in the base columns of a LinkView. This is the

common case in most operational business environments, as most of the time the analytic queries

that utilize stream data use an identifying “persistent” value such as a tag ID, a location ID, a stock

ID, or something else that is usually stored in a traditional database. Our goal is to create a

framework that allows database users to be completely unaware of the implementation details and

inner workings of stream systems but be able to use stream aggregates (i.e. the results of stream

queries) in their database systems.

5.2 Motivation and Issues

In this subsection we provide a motivating example and describe the issues that must be

addressed. In addition we present a wide variety of miscellaneous applications where our proposed

framework can be used. Finally we provide several examples that will be used throughout the rest

of sections.

5.2.1 Motivating Example

A financial firm maintains in a relational system historical data on stock performance (opening

and closing prices, variations, volumes, etc.) At the same time, it has access to two systems (e.g.

Reuters and Bloomberg), lets call them A and B, that provide real-time information on stock prices

and volumes respectively. These systems A and B could be anything, for example a SQL-based

DSMS such as STREAM [12] or a Java-based component using sockets. Analysts would like to

utilize in their relational queries real-time data (e.g. the running average price per stock) in a

stream-transparent way, i.e. without knowledge either of the presence of stream systems or the

continuous nature of the stream data. For example, to select those stocks that their previous day’s

closing price is greater than their current running average price, one would like to write a SQL

query similar to the following:

Chapter 5: An Integration Framework for Relational and Stream Systems 80

select stockID

from Historical H, Prices P

where H.stockID = P.stockID AND

 H.closingPrice > P.price AND

H.date = date() – 1;

Historical is a relation containing historical data for the stocks and Prices is a relation

with schema (stockID, price), where price is the running average price of the stockID.

Whenever Prices is used within a query, price column is updated with the current value.

While the transient nature of column price does not comply with the relational model, the

“evaluate-whenever-used” approach reminds relational views, which are evaluated whenever used

within a query. Let us now make Prices a little bit richer in information, by adding a couple

more of these transient columns. The new schema would be:

Prices (stockID, price, price10, volume)

where price is the running average price, price10 is the average price of a 10-minute sliding

window and volume is the running total volume of the stockID. While column stockID is a

column found in the relational schema, columns price, price10 and volume do not involve

relational data and represent aggregate values over stream data found in systems A and B. Figure

5.1 depicts the idea.

 Figure 5.1: Prices view and abstract representation of the linkage with stream systems

Chapter 5: An Integration Framework for Relational and Stream Systems 81

This figure suggests that the stream structures are handled by the stream systems, while the

relational system has access to these structures through a handler, which returns a single value to

be placed into the column. While this concept is simple and quite common in interoperability and

collaborative systems, there are certain subtle issues that have to be addressed – and decided.

These issues are described below.

A. Stream structure definition

The first issue has to do with who provides the definition of these stream structures, the DBA or

the stream programmer (stream system expert)? In the first case (DBA), this definition should be

part of the SQL defining statement of the LinkView and all stream systems should adhere to, i.e.

be able to map to their own native language. For example, Prices view, following syntax similar to

to those given in Chapter 2 and 3 of the current thesis ([40][41][45]) would be:

create view Prices as

select stockID,

 X.avg(price) as price,

 Y.avg10(price) as price10,

 Z.avg(volume) as volume

from stocks

extended by X(PriceStream), Y(PriceStream), Z(VolumeStream)

such that X.stockID = stockID,

 Y.stockID = stockID AND Y.size() = 10,

 Z.stockID = stockID

PriceStream and VolumeStream are stream sources that provide real-time data (stock’s

price and volume) to stream systems A and B respectively. The idea is that for each stockID

we define three sets of stream values X, Y and Z, according to their “such that” condition. For

example, the “Y.stockID=stockID and Y.size()=10” condition defines that for each

stockID the stream system must define a set Y which keeps the price values in a sliding 10-

minute window and calculate the average price, Y.avg10(price) which becomes column

price10 in the output of the query. In this case, stream systems A and B must receive the SQL

definitions of X, Y and Z and implement them in their native stream language.

Chapter 5: An Integration Framework for Relational and Stream Systems 82

The drawbacks of this approach are: (a) the case specific stream processing that applications

frequently require (e.g. different window types, peculiar pattern matching, exception handling), (b)

complexities involved in mapping to specific systems and languages, and (c) acceptance of the

proposed SQL syntax from the stream systems community. For example, while mapping could be

simple for STREAM [12], it might not be so simple for Aurora [2] or Java programs. In addition,

the DBA should be aware of the stream schema, something that is not always possible. Moreover,

stream sources can change dynamically and as a result the declared views may become invalid.

This tight coupling between DBMSs and stream systems makes view composition and evaluation

hard.

In the latter case, stream programmers define the required stream structures through programs

written in the native language of their system. For example, if system A is STREAM, a CQL

(Continuous Query Language) [14] statement should be issued to compute the running and

window-based average prices. These programs should be able to have access to a set of input keys,

supplied by the DBMS. In Figure 5.1 we see that the stream structures of systems A and B are

aware of the stockID keys, sent by the DBMS. Symmetrically, the DBA should be aware of the

name of the programs that implements these stream structures, so s/he uses them in the SQL

definition of the LinkView. A web-like paradigm, where the application logic programmer

provides a program P to HTML form authors – who are completely unaware of how P manipulates

form parameters – becomes very suitable. DBAs are informed by stream programmers of the name

of the program(s) that handle stream structures. When a LinkView is initiated, these programs

execute, receiving the distinct values of the appropriate base columns as input (the keys). Each

program maintains a stream structure and computes an aggregate value for each input key. For

example, Prices view in this case could be defined as:

create view Prices as

 select stockID

 from stocks

 using stockID

 exec program A.P1() for price

 exec program A.P2() for price10

 exec program B.P3() for volume

P1(), P2() and P3() are programs written by stream programmers of systems A and B

implementing stream structures. The using keyword defines the base column (stockID) whose

Chapter 5: An Integration Framework for Relational and Stream Systems 83

values will be used as input parameters to programs P1, P2, and P3. We assume that programs

receive the complete list of stockIDs and return results for all stockIDs. Each program match

the input keys with values (stream aggregates), in a key-value structure, which then becomes a

new column in the view (price, price10, volume). These key-value structures

correspond to the stream structures mentioned above. Note that DBAs must only know the

program names to define the view (in the previous approach DBAs needed to know the actual

stream schemas). Under this perspective the analogy is: one program computes stream aggregates

for the keys supplied by the database. These stream aggregates are all of the same type i.e. the

average price of a 10-minute sliding window (price10). However this is not an optimal design

pattern for stream programs as we force stream programmer to write one program per stream

aggregate. Computing multiple aggregates in one program gives better optimization possibilities:

sharing database data (keys) and sharing stream aggregation computation [76]. In addition there is

less overhead for stream systems as we have less number of programs. So, a better approach is to

let stream programmers implement one or more stream aggregates in one stream program. The

analogy is: one program implements one or more stream structures and each stream structure

contains stream aggregates of the same type (e.g. avg). Each stream structure is tagged with a label

that can be used in view declaration. In this way DBAs must know only the label and not the

stream structure schema to access a stream aggregate. The label is useful for DBAs as they can

choose which stream aggregate will use in a LinkView in case the program provides multiple

aggregates. Also the label is useful if for example the stream programmer decides to extend the

program to compute another stream aggregate. The label of old stream structures remains the

same so the view definition is still valid. In general the stream program hides the schemas of

stream sources and the actual implementation of stream aggregates while the label hides the

schemas of stream structures. Stream programmers implement stream programs based on what

aggregates they want to provide to database users but they do not know the exact key data i.e. they

know only the key semantics and not the actual values. For example the same stream program can

be used for all or only a part of stockIDs (e.g. only belonging in a category).

B. Query processing

Once Prices view has been defined, it can be used by naive SQL users as any other view in the

DBMS. When used in an SQL statement, the key-value structures corresponding to columns

price, price10 and volume must be accessed to materialize Prices, which then

participates in query processing as any other relation. Doing that efficiently presents a number of

challenges. For example, a query may ask for the stockIDs having price > 10. Apparently,

the key-value structures of price10 and volume are not necessary and Prices view will only

Chapter 5: An Integration Framework for Relational and Stream Systems 84

be partially materialized. In addition, the condition (price > 10) can be applied either directly

in the key-value structure of price or later, during query processing of the SQL statement in the

DBMS.

C. Stream programs execution: The third issue has to do with the implementation model at the

stream system i.e. how stream programs actually work. There are two evaluation approaches for a

stream structure:

1. A stream program executes for each key

2. A stream program executes for the entire keys’ set

In 1st case we have as many stream programs as the number of keys. Each stream program

contributes to the stream structure supplying the computed stream aggregate for the specific key.

In 2nd case we have one stream program that computes a stream aggregate for each key and assign

the results to the stream structure. As most stream systems enable optimizations (e.g. sharing keys

and aggregation computation) for the 2nd case we choose this approach. Additionally having less

stream programs is more appropriate for performance reasons. There is an advantage of the 1st

approach: we can compute different stream aggregate functions per key if we pass a parameter to

stream program to differentiate stream program’s executions. Our theoretic framework (Subsection

5.4) is valid for both cases.

All these issues must be carried out though a well-designed API between the DBMS and stream

systems.

5.2.2 Example Queries

We provide some examples containing LinkViews. The first part of them is describing LinkView

definition and the second one SQL queries that contain LinkViews.

Example 5.1 - Using LinkViews in SQL queries: The motivating example (Subsection 5.2.1)

uses the Prices view as shown in Figure 5.1. We repeat Prices here.

LV1. Prices(stockID, price, price10, volume)

Chapter 5: An Integration Framework for Relational and Stream Systems 85

price and price10 are computed from stream system A, while volume from stream system B.

An example SQL query using LV1 is:

Q1. Find those stocks that their previous day’s closing price is greater than their current running

average

Example 5.2 - Stream programs with parameters: A stream program may have parameters. For

example, instead of having two programs for columns price and price10, one can write a

program that gets as parameter the size of the sliding window (in minutes), with size=0 meaning a

running average. In this case, there will be two execution instances of the same program. In both

cases Prices schema is the same, but the LinkView definition is different.

LV2. Prices2(stockID, price, price10, volume)

Stream programs with parameters can be used for a wide range of tasks (provide filtering

conditions, thresholds, window sizes, select which aggregate to output, and many others).

Example 5.3 - Querying LinkView’s stream columns: We assume the following view:

LV3. MinMaxPriceCategory(categoryID, minPrice, maxPrice)

Stocks belong to several categories, identified by a categoryID. For each category, minPrice

(maxPrice) is the current minimum (maximum) price of the category’s stocks. Both aggregates

are computed by a single program in a stream system. Some SQL examples using LV3 are:

Q2. Find the categoryIDs having minPrice greater than 10

Q3. Show the categoryIDs and the maxPrice for categories that have minPrice above

 10 and maxPrice below 12

Chapter 5: An Integration Framework for Relational and Stream Systems 86

Example 5.4 - LinkViews with multiple base columns: we assume the following view:

LV4. StockCategoryPrice(stockID, categoryID, price, categoryPrice)

stockID and categoryID are columns drawn from the database. price and

categoryPrice are the running average prices of the stock and the category respectively.

These are computed by two distinct stream programs in a stream system.

Example 5.5 - Saving LinkView snapshots: sometimes it is useful to store in the database system

an evaluated snapshot (a LinkView with all columns filled with values) of a LinkView for future

use. For example a useful query is:

Q5. Daily, at a certain time, store the closing price of stocks.

The closing price is provided by a LinkView and it can be stored in a database table with a SQL

insert-into-select query. This query can be scheduled to run automatically daily at a certain time.

5.2.3 Miscellaneous Applications

Stream platforms are becoming essential for many organizations due to the usefulness of

stream applications and the always increasing volume of stream data. As a result, in the following

years stream processing software will be used to a larger extent by organizations. Moreover

stream service providers [98] can provide stream processing services to organizations. The

integration of database systems currently available in many organizations with stream platforms

and applications will allow analysts to have on-time information and make timely and efficient

decisions. Our proposed framework enables analysts to use their relational database systems for

the integration of stored and stream data. Below we describe some representative applications:

 Radio-Frequency Identification (RFID): technology enables the automation of

several applications as inventory control, asset management and product tracking. Such

applications are very common in supply chain environments [40][41]. A supply chain

is a system involving people, processes, equipment and has as main goal the movement

of products from suppliers to stores. RFID technology is used to provide real-time

information about products allowing analysts to get better decisions. For example a

useful query for a supplier is: “What is the current inventory of supplied products on

stores A and B?” In this scenario each store uses RFID tags in its warehouse and a

stream system monitors the product’s stock level. With our integration framework the

Chapter 5: An Integration Framework for Relational and Stream Systems 87

stream system can receive a list of products from the supplier and return the current

inventory per product. Suppliers’ analysts can compare real-time information with

historic data existing in their databases like product sales predictions or average

delivery time in order to optimize the distribution process of their products.

 Social networks and web advertising campaigns: companies launch online

campaigns to promote their products [30]. Such campaigns make use of web and social

media advertisements. A useful query for campaign applications is to see how well the

campaign performs by comparing current sales per product with the average sales of an

older but similar campaign. Additionally analysts may want to correlate this

information with the click through rate of ads (the number of clicks of an ad divided

with the number of times the same ad is shown) for each product while taking into

consideration users’ product reviews from social networks. Such a query requires

stored and stream data from multiple systems. Product information, advertisement

details, sales and historical data about previous or similar campaigns are stored in a

local database while the web and social media sites run stream systems able to handle

customers’ click streams. Such analytics queries that contain historical and real-time

data are very useful for web campaign evaluation and can be supported easily by our

framework: database users send the keys to the stream systems and retrieve the

available information.

 Financial data analysis: In many financial applications a small number of streams

(e.g. NASDAQ stock price and volume streams) are used by a large number of

financial analysts [76][148]. Each analyst uses the stream for his own analytic tasks

and has different requirements from the stream system. For example, a financial analyst

may use in his trading strategy an average price window for the last 10 minutes while

another financial analyst may want to find the average price only for the last 1000

prices. Analysts want to combine this real-time information with historical or other

useful data stored in their databases. This scenario can be handled easily by our

proposed framework: analysts create views that compute stream aggregates by using

programs provided by stream platforms. Those programs may receive parameters that

define the computation behavior of each program i.e. the last 10 minutes or the last

1000 values. Then, they can execute SQL queries over these views.

Chapter 5: An Integration Framework for Relational and Stream Systems 88

5.3 Challenges and Contributions

The main goal of this work is to integrate stream aggregates, possibly from different stream

systems, within a relational framework. The challenges are:

 Sound relational semantics. What are the appropriate constructs and semantics to

integrate relational and transient data in a theoretically sound way?

 Simplicity and stream-transparency. We want to impose minimal changes to the

relational system, have simple and intuitive syntactic constructs to define linking

between stream and the relational system, and completely hide the stream presence

from end SQL users.

 Efficiency and scalability. Modern applications require the collection and analysis of

stream aggregates produced by systems very different in nature. In addition, today’s

relational data sets can be humongous. Query processing must be done efficiently - if

possible in a distributed and parallel fashion – and stream systems should be easily and

quickly added to the integration framework.

Our work contributes to a rather uninvestigated research area that deals with the integration of

relational systems with heterogeneous stream systems [132]. The goal is to standardize the way a

relational system interacts with several stream systems. Specifically, the main contributions of this

work are:

 LinkViews and linked columns. We propose a new kind of view, called LinkView,

where some columns are materialized with relational data and some columns are

populated by external systems through a well-defined and efficient API. We argue that

the semantics of LinkViews are relationally proper and can be implemented on top of

any relational database system. Finally, end users can use LinkViews in their SQL

statements as any other view.

 Key-value-based interfaces and web-like protocol. By introducing a key-value interface

between DBMS and stream systems, we adequately handle scalability and efficiency

issues. In addition, some query processing can be delegated to the key-value stores

(e.g. pushing selections or even joins.) By allowing LinkViews to specify stream

programs to execute at the stream system’s side, we offer a clean distinction between

DBAs, naive database users, and stream programmers. An approach similar to HTTP

request and response protocol, but with the concept of sending keys and getting values

is provided.

Chapter 5: An Integration Framework for Relational and Stream Systems 89

 Address an overlooked class of queries. Discuss a class of queries that hasn’t been

properly addressed in the past: ad hoc queries using stream data in a database-oriented

(pull) fashion.

 Prototyping. We have built a prototype system over PostgreSQL, integrating with

C/C++ programs managing synthetic stream data, to serve as a proof of concept.

5.4 LinkView Semantics

In this section we formally define LinkViews and describe query processing when LinkViews

are mentioned in users’ queries. We also provide LinkViews implementation semantics.

5.4.1 Rationale

We would like to extend view definitions with columns that contain aggregates of stream data,

as highlighted in Section 5.2. However, to have proper relational semantics, these values should

not change over time. To overcome this difficulty, we use the concept of pointers, as in

programming languages. While the name of a pointer remains the same over the time of an

execution, the contents of the object it points to may change. In addition, these objects may reside

in different systems, which facilitates the distributed, heterogeneous nature of modern stream

systems. When a LinkView is mentioned within a user’s query, it has to first be evaluated and then

used in an evaluation plan. Of course, there are optimization rules than can be applied.

5.4.2 LinkView Theoretical Definitions

Definition 5.1 (Containers) Given a domain D, a container S over D is a named object that points

to some subset of D (using multi-set semantics). The latter is called the contents of the container. �

Essentially, this definition provides for named objects for stream data. D is the domain of the

stream data (e.g. prices, volume). The contents of a container may change, while the name remains

the same, as in regular pointer semantics in programming languages.

Definition 5.2 (Links) Given a domain D, a container S over D and an aggregate function f:

Pow(D) N, where Pow(D) is the power set of D and N is the set if all permissible outputs of f,

then the pair (S, f) is called a link L over D. The value of the link, denoted as val(L), is defined as

the return value of f when applied over the contents of container S. S is called the container and f

is the aggregator of the link. �

Chapter 5: An Integration Framework for Relational and Stream Systems 90

Note that although a link remains unchanged over time, it may evaluate to different values at

different times, since the contents of the container may change over time.

Definition 5.3 (Linked Column) Given:

 a materialized view V having schema V = (A1, A2,…, An),

 a subset A of V , A = (Ai1,, Ai2, …, Aim), i1, i2, … im in {1, 2, …, n},

 a set of links L = {Lk: k ∈ πΑ(V)}, i.e. a link for each distinct value k in column(s) A,

then we can extend the schema with a column A′, where the value of A′ at row r is the link

Lr.A, i.e. the link corresponding to the value of column(s) A at row r. A′ is called a linked column

of V. A is called the base column(s) of A′. �

Observation 5.1 A functionally determines A′.

Observation 5.2 Although the value of links may change over time, the links per se remain fixed,

providing for proper relational semantics.

Note that this definition is more general than how it used in next sections of this chapter. It states

that for each value in A, A′ contains a link. These links could have containers over different

domains and different aggregators.

Definition 5.4 (LinkView) Any view V, extended with one or more linked columns is called a

LinkView. �

5.4.3 Query Processing

The question is how a traditional relational query processor can be modified to handle queries

that involve LinkViews. The simplest approach is to define a relational operator, called LV-Eval

that gets a LinkView and transforms it to a relation with the links of the linked columns replaced

by their values.

Chapter 5: An Integration Framework for Relational and Stream Systems 91

Definition 5.5 (LV-Eval Operator) Given a LinkView V with schema (A1, A2, …, An, Α′1, A′2, …,

A′k), where Α′1, A′2, …, A′k are linked columns, the LV-Eval(V) is defined as a relation with the

same schema of V and constructed in the following manner: for each row r of V, we have a row r′

= (r.A1, r.A2, …, r.An, val(r.Α′1), val(r.A′2), …, val(r.A′k)) in LV-Eval(V). �

If a user’s query Q mentions one or more LinkViews, these are replaced in the query plan by

their respective LV-Eval instances.

5.4.4 LinkView Implementation Structure

We now turn to the proposed architecture. We assume a single DBMS and several stream

management entities (SME), which can range from complete data stream management systems

(DSMS) to simple Java programs, possibly employing different querying paradigms (e.g. CQL

[14], operators in a workflow [2][3]). A SME also incorporates integration modules (described

below) specified by our framework. The idea is that LinkViews reside in the DBMS, while the

contents of link containers and aggregators reside and managed by the SMEs. The DBMS is

interested only on the values of the links.

The fundamental question is who defines the links of the linked columns of a LinkView, i.e.

who defines the contents of link containers and select aggregators. One approach would be to let

LinkView creators (e.g. DBAs) to do so, through a standardized language and set of aggregate

functions. Then, these definitions are send to the SMEs to be implemented by the native language

of the SME. However, this approach suffers from the drawbacks mentioned in Subsection 5.2.1

(Stream Structure Definition)

The web client/server model where a web server executes a script/program using the

parameters provided by a web form (client) is simple yet flexible and efficient. Presentation layer

developers (e.g. html designers) are only aware of the server’s program name that executes when a

form is submitted, along with the names of the parameters that the program handles. On the server

side, programs have to be invocable and able to read in the submitted parameters and values,

through a well-defined interface. The output of these programs is directed back to the browser.

This simple model seems appropriate also for our case: LinkView creators only know the stream

program’s name at a SME, responsible for managing the links of a linked column; this program

should be able to obtain the values of the base column(s) of the linked column (the keys), since it

has to use them during its execution and associate the keys with values (the values of the links);

the DBMS should be able to retrieve these values. All these are achieved through a request-

response API between the DBMS and the SMEs. Note that the program executing at the SME

could be written in any programming formalism (CQL [14], JAVA/C++, etc.). Also, its semantics

Chapter 5: An Integration Framework for Relational and Stream Systems 92

is completely transparent to the database person – s/he does not really know how the task is carried

out.

Definition 5.6 (Implementation Structures) Assume a LinkView V with schema (A1, A2, …, An,

Α′1, A′2, …, A′k), where Α′1, A′2, …, A′k are linked columns. For each linked column Α′i we define a

quadruple Qi = (S, P(c1, c2, …, cm), A, KV), where:

 S is a stream management entity,

 P is a program that executes within S and process data streams. P(c1, c2, …, cm) is a

specific invocation of P with parameter values c1, c2, …, cm,

 A is a named output value of P, and,

 KV is a Key-Value structure, where the keys are the values of the base column(s) of Α′i.

 Qi is called the implementation structure of linked column Α′i. S is the source of Α′i , P is

the execution of Α′i and A is the label of Α′i. �

An implementation structure describes the implementation details of a linked column. The

source S is the SME that provides the stream data for the link containers of the linked column. P

is a program that resides in and can be executed within S, e.g. a CQL statement. This program is

responsible to maintain/manage the link containers and (continuously) produce their values

according to the aggregator. To do so it has to have access to a Key-Value structure KV, where the

keys consists of the values of the base column(s) of the linked column. P uses the keys to define

the contents of link containers and the associated values to place the output of the aggregator. In

practice, P does not have to maintain link containers or apply aggregators, this is at the conceptual

level. The only requirement for P is to access the keys of KV and set the corresponding values.

A program P may produce several named output values per key, for efficiency and/or

reusability reasons. For example, P may be a CQL[14] statement, computing the min, max and

average price of a sliding window of size 10 for each stockID. It would be inefficient1 to have

three distinct programs to separately compute min, max and average. Since a link evaluates to a

single value, the output values of P must be named and the designated output value for the linked

column must be specified. This is the label of the linked column. In addition, the provider of the

stream data (e.g. Bloomberg, Reuters) may write generic programs with multiple output values to

cover several cases of its client’s requirements.

1 To be precise, it is inefficient, unless the optimizer of the stream system is able to apply multi-query

optimization techniques (in the case of SQL-oriented systems) or execution sharing (e.g. MR-Share [110] on

MapReduce online [54])

Chapter 5: An Integration Framework for Relational and Stream Systems 93

Finally, an execution P may have parameters. For example, it may implement a sliding window

of a specific size. This size could be a parameter of P, specified by the LinkView creator during

the definition of the linked column. It may be a threshold value, if P manages temperature sensors.

Or it could be a string representing a filtering condition that P applies on the stream data or the

name of an aggregate function. In other words, LinkView creators use specific call instances of P

to define linked columns.

5.5 LinkView SQL Extensions

We propose the following extension of SQL syntax to facilitate LinkView definitions in

relational systems:

create linkview name as

SQL statement

[using BaseCol link with P(c1, …, cm) of S

 add column L1 as (data-type) A1

 ...

 add column Ln as (data-type) An

]+

A create linkview statement creates a LinkView database object. It consists of a

standard SQL statement, which defines a materialized view, followed by one or more using

statements.

A using statement is used to define one or more linked columns, A1, …, An, having the same

base column(s) BaseCol – an arbitrary subset of the schema of the materialized view – and sharing

the same execution P(c1, …, cm) at stream management entity S. L1, …, Ln are the labels of A1, …, An

respectively. In other words, each using statement defines n linked columns, A1, …, An, with

implementation structures Qi = {S, P(c1, …, cm), Li, KVi} where i in {1, 2, …, n}. Note that the

LinkView author has to specify the datatype of the linked columns, since this information can not

be retrieved by the SME as stream semantics are completely transparent to database users.

Chapter 5: An Integration Framework for Relational and Stream Systems 94

5.5.1 Example Queries

We provide below the syntactic definition of the LinkViews presented in section 5.2.2:

Example 5.1: The definition of LV1 is:

create linkview Prices as

select stockID

from stocks

using stockID link with pPrice() of A

 add column priceL as (real)price

using stockID link with pPrice10() of A

 add column price10L as (real)price10

using stockID link with pVol() of B

 add column volumeL as (int)volume

LinkView LV1 uses two stream management systems named A and B. The actual connection

information (e.g. network address/port) for each system is stored on LinkViews’ metadata catalog.

Stream system A can invoke executions of programs pPrice() and pPrice10().

pPrice()computes the running average price for each stock. pPrice10() computes the

average price within a 10-minute sliding window for each stock. System B implements

pVol()program that computes the running total volume for each stock. The DBMS can use

programs’ output by referring to the named outputs (labels) of each program. The label for

pPrice()program is priceL, the label for pPrice10() program is price10L and the

label for pVol() program is volumeL. price, price10 and volume are respectively the

names of the linked columns corresponding to these outputs. The data type of each linked column

is mentioned right before its name, using parentheses in the add column statements.

Chapter 5: An Integration Framework for Relational and Stream Systems 95

Example 5.2: The definition of LV2 is:

create linkview Prices2 as

select stockID

from stocks

using stockID link with pPriceV(0) of A

add column priceL as (real)price

using stockID link with pPriceV(10) of A

add column priceL as (real)price10

using stockID link with pVol() of B

add column volumeL as (int)volume

In this case, stream system A has access to a parameterized program named pPriceV(int

size), where size denotes the size of the sliding window (size=0 means a running average.)

pPriceV(0)computes the running average price per stock and pPriceV(10) the running

average price per stock within a 10-minute sliding window. pVol () is the same as in LV1.Note

that parameterized executions allow for a wide range of options in terms of functionality.

Parameters may involve filtering conditions, threshold values, selecting aggregate functions, etc.

Example 5.3 The definition of LV3 is:

create linkview MinMaxPriceCategory as

select categoryID

from categories

using categoryID link with pMinMax() of A

add column min_priceL as (real)minPrice

add column max_priceL as (real)maxPrice

MinMaxPriceCategory LinkView uses pMinMax() program of stream system A.

pMinMax() computes two stream aggregates – the minimum and maximum price per category –

and provides its results through two labeled outputs, min_priceL and max_priceL.

Chapter 5: An Integration Framework for Relational and Stream Systems 96

Example 4.4 The definition of LV4 is:

create linkview StockCategoryPrice as

select stockID, categoryID

from stocks S

using stockID link with pPrice() of A

add column priceL as (real)price

using categoryID link with pCat() of A

add column cat_priceL as (real)categoryPrice

This examples simply demonstrates the usage of multiple base columns in the same create

linkview statement.

5.6 LinkView Architecture

The proposed architecture to support the LinkView integration framework is shown in Figure

5.2. The parser and the LinkView manager sit on top of any DBMS, while Stream Management

Entities (SMEs) must implement the Key-Value layer and provide a Key-Value access interface to

the application layer that contains the actual stream system.

Chapter 5: An Integration Framework for Relational and Stream Systems 97

Figure 5.2: LinkViews architecture

Below we describe the system modules:

The LinkView SQL (LV-SQL) Parser: This component is responsible to parse out queries

submitted by the users. A query can be either a LinkView definition, submitted by a user with

administration privileges (e.g. DBA), or a standard SQL query, submitted by a naïve user. In the

first case, the parsed query is passed to the LinkView Definition Interpreter (LDI) subcomponent.

In the latter case, if the SQL statement involves LinkViews is directed to the Optimization Engine

(OE), otherwise is directed to the database system’s SQL component. LV-SQL also includes

LinkViews management statements (e.g. init, cache policies) which are passed to the Commands

Manager Module (COM)

Chapter 5: An Integration Framework for Relational and Stream Systems 98

The LinkView Manager (LVM): The LinkView Manager is the core component of our

architecture. It stores metadata for LinkViews and implements the API for DBMS/SMEs

communication. The Execution Engine (EE) of LVM is responsible for the execution of SQL

queries involving LinkViews issued by naïve users. The Cache Manager (CM) is responsible for

storing/caching linked columns, implementing various data refreshing policies, specified by the

DBA. That means that linked columns may be refreshed with stream data at regular intervals and

query processing may utilize cached linked columns instead of requesting actual stream data.

Commands Manager (COM) handles statements for the management of LinkViews (e.g. init

LinkView, drop LinkView, setting caching policies, etc)

Stream Management Entity (SME): A Stream Management Entity is a module that process

stream data and contains subcomponents that enable the communication with a DBMS. It consists

of two layers. The Key-Value layer contains the Request Manager (RM) and the Key-Value

Engine (KVE). The Request Manager receives requests from the LVM and implements the API.

The Key-Value Engine manages the key-value system to realize the implementation structures at

the SME (Key-Value structures). The values of these structures are provided by the stream system

(Application Layer). A KVE can be a Key-Value store, a custom solution, a database etc. In most

cases Key-Value Engines support a simplistic query language to query keys and/or values, but it

could also be a strict Key-Value store, only supporting key retrieval. The Application layer is the

actual stream system that process data streams. Any stream system may exist in this layer. The

only requirement is the ability of stream programs to access the keys and values of the Key-Value

structures. This could be done either natively – i.e. the Key-Value structures reside within the

stream system and are directly accessible by the stream programs – or externally – i.e. the Key-

Value structures are accessible through an API between the stream programs and the Key-Value

store. Both approaches have pros and cons and our architecture does not assume the one or the

other. In native implementations, the obvious benefits are performance and updatability – keys and

values are always up to date, since programs directly manipulate these structures. The drawback is

that one has to implement Key-Value structures’ functionality within the stream system. In

external implementations, one can use ready-to-use Key-Value stores, offering scalability and

fault-tolerance. In fact, in many real applications this is the only possible approach – e.g. banking

systems handling streams are application-specific and closed, offering a limited API, which could

be used to update Key-Value structures.

Some well-known stream systems can easily support the implementation of Key-Value

structures. For example the STREAM system [12] supports the CQL [14] language for the

declaration of stream queries. STREAM supports the TableSource and QueryOutput interfaces

[129] to import keys and output results. AURORA [3] can use connections points to static data

Chapter 5: An Integration Framework for Relational and Stream Systems 99

sets to get keys from a DBMS and to output results to a Key-Value structure. For MapReduce

Online [54] a possible solution is the usage of custom Java code to import keys from a DBMS and

the usage of online aggregation snapshots functionality to output computed aggregates.

5.6.1 DBMS-SME Application Programming Interface

Communication between the DBMS and a SME is carried out through a set of primitives

implementing a request-response protocol. There are four different request types in order to define

implementation structures at the SME, initiate program execution at the SME and manage the

Key-Value Engine (send keys and retrieve values). Table 5.1 summarizes the request types, along

with the responses of the SME. Note that all communication is DBMS driven.

Table 5.1: Request types of DBMS-SME API

Request type: define

Description Defines the implementation structure of a linked column at the SME.

Parameters handlerID: a unique identifier assigned to each linked column by the LinkView

Manager,

execName: a string containing the program name and the parameters’ values for the

call,

label: a string containing the named output of the execution.

Response true/false

Request type: sendKeys

Description Sends to the SME a (subset of) the values of the base column(s) of one (or more)

linked columns.

Parameters H: a list of handlerIDs,

K: a set of keys.

Response true/false

Chapter 5: An Integration Framework for Relational and Stream Systems 100

Request type: getValues

Description Retrieves the values of the links of a linked column.

Parameters handlerID: the handlerID of the linked column,

θ: a logical expression, involving only the linked column and its base column(s).

Response A list of key-value pairs.

Request type: delKeys

Description Deletes entries of Key-Value structure according to a set of keys K and/or a logical

expression θ.

Parameters handlerID: the handlerID of a linked column,

θ: a logical expression, involving only the linked column and its base column(s),

K: a set of keys.

Response true/false

define request defines the implementation structure of a linked column at the SME. It also

sends a unique (cross-DBMS) identifier to the SME, the handlerID. All further communication

between the DBMS and the SMEs are carried out through this handlerID. At the SME, a Key-

Value structure is defined for each handlerID and is named using the label parameter. Stream

programs output values to these labeled Key-Value structures.

sendKeys request sends a set of keys K that update (append mode) the Key-Value structure of

those handlerIDs mentioned in H. The linked columns corresponding to the handlerIDs of H must

have the same base column(s). Allowing a sendKeys request to affect several Key-Value structures

is something useful performance-wise (bandwidth). When the sendKeys request is issued for the

first time for a handlerID, it also initiates the program execution of that handlerID. Recall that the

base columns of a LinkView correspond to a materialized view. When the base part of a LinkView

is updated (i.e. during view maintenance, for example a new stock is inserted to the Stocks

table) the sendKeys primitive is invoked to send the new keys to the SME.

getValues request is used during query processing for linked columns evaluation i.e. when a

user submit a SQL query. It asks for the pairs of the Key-Value structure of handlerID. It may

retrieve all key-value pairs corresponding to the submitted handlerID or it may retrieve key-value

pairs according to a selection condition θ over the schema of the Key-Value structure (i.e. a

condition mentioning keys and values.) For example, Query Q2 asks for the categoryIDs

Chapter 5: An Integration Framework for Relational and Stream Systems 101

having minPrice greater than 10 using LinkView LV3 and its linked column minPrice. This

filtering could be pushed to the Key-Value Engine using the above-mentioned condition. The SME

may or may not support the mapping of θ to the native language of the Key-Value engine. In the

latter case, θ is ignored and all key-value pairs are returned.

delKeys request is useful once again during view maintenance. It deletes the entries of the Key-

Value structure of handlerID that exists in set K and according to the condition θ. This is feasible

if the SME can map θ to the native language of the Key-Value Engine, otherwise θ is ignored and

only keys mentioned in K are deleted.

5.7 Implementation and Optimizations

The proposed architecture can have different implementations based on the application we want

to support. For example the need for real-time acquisition of stream data can be better supported

by an in-memory DBMS, an in-memory Key-Value Engine and by a high-performance cluster

based stream system (e.g. financial applications). On the other hand, for less critical applications

(e.g. product information in a RFID supply chain environment) the requirement for near real-time

acquisition of stream data can be achieved with a distributed architecture where SMEs are in

different network locations than the LVM.

In this section we provide details on our prototype system, how it operates, API

implementation, and we describe SME implementation details. Also we provide a design example

on how a stream program can be implemented by a stream programmer. Finally we describe how

LV-Eval operator is implemented over a relational DBMS.

5.7.1 LinkView System

LinkView Manager (LVM) is implemented in C/C++ and operates over any relational database

system using ODBC. In our prototype system we used the PostgreSQL DBMS. The default mode

of LVM (prompt mode) accepts “create linkview” definitions and SQL queries. LVM supports a

set of commands that define its operation. These commands are handled by the Commands

Manager (COM) module. The commands are explained below:

 init <LinkView name>: it invokes the first sendkeys request for the LinkView.

 drop <LinkView name>: deletes a LinkView and stop associated stream program

executions at the SMEs,

 view <LinkView name>: enables users to view the defined LinkViews and other

miscellaneous statistics (e.g. linked column last update time etc)

 readQ <filename>: reads and executes from a file a LinkView definition/command or

a SQL query

Chapter 5: An Integration Framework for Relational and Stream Systems 102

API requests are XML-based messages. Requests and responses involving data (key-value

pairs) use comma-separated format (CSV). Communication between LVM and the implemented

SME takes place via sockets. Our SME is written in C/C++. Key-Value Engine implements C++

hash maps, natively accessible by C++ threads manipulating stream data (stream programs)

In our framework stream programmers must implement stream processing queries/programs in

their stream systems. A stream query/program is an invocation of a stream query/program

implementation (we can have multiple invocations of the same query/program). A sample design

pattern for those queries/programs is given below:

stream_qprogram (params, …) {

input = get($_keys);

queryStr =

 select I.Key, avg(S.value) as $_values

 from stream_data[window 60sec] S,

 input I

 where S.key = I.key;

qptr = query.Prepare(queryStr);

qptr.addLabel($_values,”label”);

queryAdapter.put(qptr);

qptr.Exec();

}

$_keys is a variable containing the keys received from the DBMS. It can be a pointer to a Key-

Value structure that contains keys and can be accessed from the stream system. Query is written in

the supported language of each stream system and executed when SME receives the sendKeys

request (init command). The program assigns labels to each possible query output and the put

method defines how the computed values are stored in the Key-Value structure. This is a sample

design pattern and is use a SQL-like stream language. The only requirement of a stream system is

to be able to access the Key-Value structure to get keys and put values. Note that the

Chapter 5: An Integration Framework for Relational and Stream Systems 103

queryAdapter class can implement periodic or continuous update of aggregates in the Key-

Value structure.

5.7.2 LV-Eval Operator Implementation

Since we implemented LVM on top of a DBMS instead of within, LV-Eval operator is realized

through query rewriting, prior to actual query processing. Each LinkView in an SQL statement is

rewritten as a join between its base part and its linked columns. Specifically, assume a LinkView

L, which consists of a materialized view V extended by n linked columns Li, i=1,2,…,n. Lets

denote the base column of Li as Ai. For each Li we define a temporary table L′i, i=1,2,…, n, with

schema (Ai , V), where V is a column with data type the one mentioned in the add column

statement of Li. In essence, L′i corresponds to the materialization of the response (i.e. key-value

pairs) of a getValues request for linked column Li. Each occurrence of L in an SQL statement is

replaced by the following expression:

V⋈A1 L′1⋈ A2 L′2⋈… ⋈An L′n

Since LV-Eval is not natively implemented in the DBMS, any optimization of it must be done

before query rewriting by the LVM. In our prototype we implemented two simple optimization

techniques:

 Avoiding unnecessary materializations of L′i : identify the linked columns of the

LinkView that do not participate in the SQL statement and exclude them from the

rewriting expression. This is equivalent to pushing down projections to the LV-Eval

operator. For example, Query Q1 only requires the price column of LinkView LV1.

Linked columns price10 and volume do not appear in the rewritten expression.

 Reducing the size of L′i : identify selection conditions involving linked columns and

apply them directly to the response of the getValues requests, prior to the materialization

of L′i s. This is equivalent to pushing down selections to the LV-Eval operator. For

example, Query Q2 asks for the categoryIDs having minPrice greater than 10. The

predicate ((real) value > 10) can be applied to the key-value pairs returned by the

getValues request on minPrice linked column of LV3.

Chapter 5: An Integration Framework for Relational and Stream Systems 104

5.7.3 Optimizations

Several techniques can be applied at various stages of query evaluation to improve

performance. We briefly mention here some of the ad-hoc methods we implemented, we describe

open issues and describe some optimizations that can be applied across LinkView architecture i.e.

not specifically in DBMS side.

LVM can improve performance by analyzing the definitions of linked columns and try to

identify interrelationships (e.g. sharing keys and/or values.) For example, sendKeys request can

send keys for multiple handlerIDs. In addition, there are several open issues that LVM should

handle:

 how to handle (evaluate, optimize) LinkView definitions based on previously defined

LinkViews, similar to [53]

 when a linked column can be inferred by another?

Quality of Service (QoS) is a well-known concept in stream literature [3]. In our framework,

linked columns can be cached at the LVM’s Cache Manager and used during query evaluation,

instead of issuing getValues requests to the SME. This is particularly useful when a large number

of queries access a small number of LinkViews. Caching policies could be set with specialized

commands. In our implementation, a freshness parameter (in seconds) can be specified and is

applicable to all linked columns of all LinkViews. Note that the CM could act proactively and

issue getValues requests independently of SQL queries.

In section 5.7.2 we discussed how to reduce the size of the received columns, by pushing down

predicates to the response of a getValues request. In fact, we can even push the predicate to the

corresponding key-value structure of the linked column – if selectivity is low and the Key-Value

Engine supports it – to avoid communication cost. The design of the getValues request allows

something like that. This is a specific case of a more general problem, mapping relational

operators to Key-Value Engine’s operations. For example, if two linked columns share the same

base column(s), the join could take place in the KVE and the response could be in the form (key,

value1, value2). Depending on the KVE, this could be much more efficient than performing the

join in the DBMS. In addition, it would result in communication cost savings. Several other

optimizations can be supported across all layers of our framework. Below we describe some

possibilities:

 Optimization 5.1 - Keys re-using: a LinkView definition can contain multiple “using”

declarations. The using keyword defines the keys that the DBMS must send to a SME.

These keys are put in a Key-Value structure and a SME compute aggregates using

them. We can avoid sending the same keys if the keys have already be sent in a

Chapter 5: An Integration Framework for Relational and Stream Systems 105

previous using declaration. The same can apply between multiple LinkViews

definitions. With this optimization we can minimize the startup-time of a stream

query/program and save bandwidth if the LinkView Manager and SMEs are on

different machines (e.g. network, cluster)

 Optimization 5.2 - Sharing keys in SME: in our architecture a Key-Value structure is

used to store the keys retrieved by the DBMS. Strictly a Key-Value structure is a

container that for each key has a value. A different implementation approach is: for

each key there exist multiple values. In this way keys are shared between multiple

aggregates. In any case the LinkView Manager must be able to access any value using

the assigned label i.e. the Key-Value interface must be used independently of the Key-

Value structure implementation. This optimization leads to compact Key-Value

structures and allow the retrieval of multiple aggregates per key.

 Optimization 5.3 - Periodic or request based aggregate updates between Key-

Value structure and stream system: a stream system uses keys from the Key-Value

Engine to compute stream aggregates. When a stream system computes a value it must

put this value back to the Key-Value structure. This can be happen 1) in a best effort

mode i.e. continually update the Key-Value structure 2) in a periodic mode -e.g. a

Service Level Agreement may define that the values are refreshed every 5 minutes- 3)

put values to the Key-Value structure per user requests. These different configurations

enable Key-Value Engine to act as a caching layer. Proper usage of these techniques

can lead to better utilization of SMEs from multiple users.

 Optimization 5.4 - Linked columns caching: when a naïve user executes a SQL

query, the linked columns replaced by stream values. In a multi-user environment a

large number of users issue SQL queries in a small number of LinkViews within a

small time interval. This will lead to multiple LinkViews evaluations and bad

performance. Cache Manager can cache linked columns values and we can define a

condition if they will be reused by next SQL queries. For example we may define that

the cached linked columns which are not over 1 minute old can be used as a result in a

SQL query.

 Optimization 5.5 - Links sharing: there are cases that multiple links point to the same

value of a Key-Value structure. This is frequent in LinkViews that their base table

contains composite keys. For example in LV4 multiple stocks belong to a category. In

this case the average price of a category is the same for multiple rows (stocksID). A

proper implementation can update multiple pointers at once. Moreover the using

Chapter 5: An Integration Framework for Relational and Stream Systems 106

keyword on LinkView definition syntax can send only the distinct values of such a

column.

 Optimization 5.6 - Stream program sharing: Stream systems can share program

executions among LinkViews. If a new LinkView uses a linked column computed by

an already invoked program, SME can avoid starting a new process. This is feasible by

assigned the same handlerID to multiple LinkView definitions. Additionally, shared

query execution strategies can be applied among program executions in SMEs [13].

[155] studies optimization techniques for similar stream aggregation queries differing

in the grouping attributes (keys). Optimization techniques for window aggregates

within a single query are given in [92]. Similarly, in [76] optimizations for multiple

aggregate continuous queries are provided. Such techniques can be used in our

framework for programs containing multiple stream aggregates. In our architecture,

stream programs can be invoked with parameters which can define program’s

execution behavior. Parameterized continuous queries for complex pattern detection

have been studied in [148]. The described techniques can be used in our framework.

 Optimization 5.7 - LV-Eval Operator optimizations: The LV-Eval is a unary

operator that produces a table replacing the links of linked columns with stream

aggregates when a LinkView is used in a SQL query. Standard relational optimization

techniques [74] can be applied on queries containing LinkViews. For example heuristic

based optimization techniques can be used to apply re-ordering in the operators in the

query tree. The main goal is to apply first operations that reduce the size of

intermediate results in the execution plan. This size decrement can be in number of

rows or in number of columns or both. For the first case the getValue request will

return fewer results if a θ condition is supported. For the second case note that the LV-

Eval operator calls getValue request multiple times, once per linked column. If some

columns projected out then getValue request will be called fewer times. For example a

relational algebra expression for Q1 can be: πH.stockID(σH.stockID=P.stockID AND H.closingPrice>P.price

AND H.date=date()–1(Historical x Prices)). The Prices LinkView is evaluated to a table and is

used in a cartesian product with Historical table. Selections applied in the result of the

cartesian product and finally the stockID column is retrieved. An equilevant relational

algebra expression is: πH.stockID((σH.date=date()–1 (Historical)⋈H.stockID=P.stockID AND

H.closingPrice>P.price (πP.price, P.stockIDPrices)). In this case projection pushdown is applied to the

Price Linkview. In this way the LV-Eval Operator calls getValues request only once

for the stream structure with the price label. Predicate and projection pushdown is a

widely used technique in relational systems and can be used with the LV-Eval

Chapter 5: An Integration Framework for Relational and Stream Systems 107

Operator. In our system we use a small number of rules for query rewriting to enable

this kind of optimization.

 Optimization 5.8 - Predicate migration to SME: Many queries apply predicates over

linked columns. For example in LV3 for both Queries 2 and 3 there exist a predicate

over linked columns. As described in Section 6.4 such a query is first evaluated in a

table and then the selection operations are applied. An alternative implementation is to

pass this predicate as a condition θ to SME system and in particular to the Key-Value

Engine. Most Key-Values Engines support fast retrieval of values if we provide the

Key but they can also support predicates over values. With this optimization the key-

value data file that is send back to the DBMS when a user issue a SQL query can

become smaller.

 Qptimization 5.9 - Joining base table with Key-Value structures: For each

requested linked column an outer join operation must be applied with the base table of

LinkView. Having multiple columns may lead to bad performance. One option is to

generate in the Key-Value Engine a key-value data file that combines multiple values

per key. As a result the number of joins is decreased. Other optimization techniques

that can be used are given on [88]. These techniques are based on padding the Key-

Value tuples with nulls and apply a union to get the complete result of an outer join.

Alternatively we can use a more efficient algorithm to implement the join on the LVM

and not use the database system.

5.8 Experiments and Performance

Measuring the performance of a LinkView system has some inherent difficulties. First, there

are different architecture configurations (e.g. SMEs can be in different network locations, KVE

implementations can be native or external etc). Second, SMEs may represent stream systems and

performance can considerably fluctuate.

Our testing platform has the following characteristics: Windows 7, 2.13 GHz Intel Core i3

Processor i3-330M and 4 GB of RAM. We conducted our experiments in a single machine i.e.

both LVM and SME run on the same node. LVM uses data stored in PostgreSQL DBMS and

access is via ODBC. The financial database used in our experiments contains synthetic data sets.

SME is a process and is composed of stream programs implementing LinkViews LV1 to LV4 and

an embedded in-memory Key-Value engine (C++ hash table). SME is fed with tuples generated by

a custom C/C++ stream generator running as a process in the same machine. The provided tuples

have the following schema: <stock_id, category_id, stock_price>. Stream generator-SME

interprocess communication is achieved via shared memory. LVM-SME communication is done

via sockets.

Chapter 5: An Integration Framework for Relational and Stream Systems 108

We measured the execution time for several SQL queries applied over LinkViews. We used

LV3 (MinMaxPriceCategory) and the following SQL queries in our experiment:

QE1. select categoryID, minPrice

 from MinMaxPriceCategory

QE2. select categoryID, minPrice, maxPrice

 from MinMaxPriceCategory

QE3. select M.categoryID, M.minPrice,

 H.yesterdayMinPrice

from MinMaxPriceCategory M,

 HistoricalMinPCategory H

where M.categoryID = H.categoryID

MinMaxPriceCategory uses pMinMax()from the SME to get values for minPrice and

maxPrice columns. HistoricalMinPCategory is a database table containing previous

day’s minimum prices per category and has schema: <categoryID, yesterdayMinPrice>. When an

SQL query issued on LVM the getValues request is called for each linked column and the SME

returns a batch of key-value pairs to the LVM. These pairs of data are stored as CSV files in LVM

machine and loaded in the DBMS as two-column Key-Value tables. We used the COPY command

of PostgreSQL to load the CSV files. For QE3 the minPrice column is memory-resident while

HistoricalMinPCategory is a disk-resident table. We annotate queries that use disk Key-

Value tables with D and queries use memory Key-Value tables with M. The execution times of

SQL queries (in seconds) are shown in Table 2. We varied key size (categoryID) from 50000

to 300000 for MinMaxPriceCategory with a step of 50000. The

HistoricalMinPCategory in QE3 has the same number of rows as the specified size.

Chapter 5: An Integration Framework for Relational and Stream Systems 109

Table 5.2: SQL queries execution time (seconds)

 Query
Number of keys

50000 100000 150000 200000 250000 300000

QE1M 0.565 1.033 1.546 2.045 2.588 3.175

QE1D 0.698 1.257 1.868 2.594 3.096 4.049

QE2M 1.208 2.157 3.275 4.230 5.351 6.286

QE2D 1.468 2.708 3.797 5.098 6.763 7.656

QE3 0.667 1.343 1.924 2.447 3.432 4.071

Note that queries using disk Key-Value tables (QE1D, QE2D) are slower than queries with in

memory Key-Value tables (QE1M, QE2M). QE3 requires only one linked column from SME and its

performance is similar to QE1. Also both versions of QE2 are slower than QE1. QE1 can be

executed without a join i.e. all columns mentioned in the select clause can be retrieved by the

created Key-Value table with schema <categoryID, minPrice>. On the other hand for QE2 a join

between the Key-Value table with schema <categoryID, minPrice> and the Key-Value table with

schema <categoryID, maxPrice> must be performed. In particular, QE2 evaluation requires the

following tasks: 1) request of key-value data from SMEs (getValues API call) and storage as CSV

files 2) create Key-Value tables and load the corresponding CSV files, 3) join of Key-Value tables

and execution of the issued SQL query. Details on how these tasks affect linked columns

evaluation can give better insights about performance bottlenecks in a LinkView system. Figures

5.3, 5.4, and 5.5 show the execution time of queries QE2D, QE2M and QE3, split by task.

Figure 5.3: QE2D tasks

50000 100000 150000 200000 250000 300000
0

10

20

30

40

50

60

70

80

90

100

Q
E2

D
 e

xe
cu

tio
n

tim
e

(%
)

Number of keys

 SQL
 load data
 getValues

Chapter 5: An Integration Framework for Relational and Stream Systems 110

Figure 5.4: QE2M tasks

Figure 5.5: QE3 tasks

getValues request shows small variations in execution time for each query as the data

transferred from SME to LVM is particular small: each key-value pair consists of an integer and a

real value. For QE3 we transfer key-value pairs for one column (minPrice) and for QE2 for two

columns (minPrice, maxPrice). QE2M spends less time than QE2D on loading data as it

stores the received key-value pairs from SME in memory, avoiding disk writing. QE3 spends less

time on loading data than QE2M as it creates and loads only one in-memory Key-Value table. QE3

uses a hash index on categoryID of HistoricalMinPCategory table which enables

faster query execution than QE2M that does not use any index. Such plots can help users to

diagnose bottlenecks in their LinkView system and apply optimizations as those given in

subsection 5.7.3.

50000 100000 150000 200000 250000 300000
0

10

20

30

40

50

60

70

80

90

100

Q
E2

M
 e

xe
cu

tio
n

tim
e

(%
)

Number of keys

 SQL
 load data
 getValues

50000 100000 150000 200000 250000 300000
0

10

20

30

40

50

60

70

80

90

100

Q
E3

 e
xe

cu
tio

n
tim

e
(%

)

Number of keys

 SQL
 load data
 getValues

Chapter 5: An Integration Framework for Relational and Stream Systems 111

We test our system in case we push a predicate to the implemented SME. getValues may

retrieve key-value pairs according to a selection condition θ if supported by the KVE. We used a

modified version of QE1M to study the performance of this optimization:

QE1Mθ. select categoryID, minPrice

 from MinMaxPriceCategory

 where categoryID<x

where x ranges from 20000 to 100000 with a step of 20000. The number of keys used for the

definition of MinMaxPriceCategory is 100000. Figure 5.6 shows execution time (in

seconds) when (a) the predicate can be pushed to the SME, and (b) when selection takes place in

the DBMS.

Figure 5.6: QE1Mθ

5.9 Summary and Conclusions

Applications and utilization of stream data can be found today not only in “traditional” real-

time environments, such as finance and telecommunications, but also in a wide variety of domains

and settings, such as supply chain (through RFID sensors), energy management (through smart

meters), social networks (through status updates) and many others. While data stream management

systems (DSMS) are technologically mature and address most of the challenges in stream

processing, they lack standardization in terms of modeling, querying and interoperability. So far,

stream processing was confined within an organization. However, modern applications need to

20000 40000 60000 80000 100000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Ex
ec

ut
io

n
tim

e
(s

ec
)

Number of records satisfy θ

 DBMS (θ)
 SME (θ)

Chapter 5: An Integration Framework for Relational and Stream Systems 112

integrate and manage aggregates produced by a variety of stream engines, from complete Data

Stream Management Systems (DSMSs) to stand-alone stream-handling components.

We have presented an integration framework for relational database management systems and

heterogeneous stream systems. In the proposed framework keys are managed by databases and

stream data sets corresponding to these keys are managed by stream systems. A theoretical

framework has been developed and a key-value based interface has been proposed. We argued for

the advantages of such an approach. A prototype system has been implemented and can operate on

top of any relational database management system. The goal of this research is to bring stream

aggregates to naïve database users and analysts in a stream-transparent way. As most users are

familiar with traditional relational systems and SQL, bringing stream support within such

environments is of major importance.

Chapter 6

6 Conclusions
6.1 Summary

Modern applications require advanced data analysis over voluminous and continuous data sets.

These streams of data must be processed in (near) real-time and results must be provided

continuously. Applying analytics over stream data transforms passive organizations to active i.e.

an organization becomes aware of what is happening in its immediate business environment and

how internal or external events affect organization’s daily operations in (near) real-time. Moreover

considering that relational model and relational Database Management Systems (RDBMSs) are the

de-facto approach for storing and processing structured data, integrating RDBMSs/relational

model with stream data is of major importance. The current thesis tries to solve the above

problems. In particular in this thesis we provide methods and tools to combine relational and

stream data for real-time analytics. Additionally, we provide a framework that enables RDBMSs to

interoperate with heterogeneous stream engines.

To support analytics over stream data SQL-like extensions are proposed in Chapter 3. The

intuition is that for each relational value exists in a table we can attach a stream aggregate.

Moreover we can attach multiple aggregates from multiple sources. Correlated aggregates are also

feasible enabling complex data analysis over streams. The definition of such queries is simple and

easily understandable by database users.

A spreadsheet-like approach for stream analytics is developed in Chapter 4. Spreadsheet tools

are used by millions of users for offline data analysis. A method that resembles the common usage

of spreadsheets (column-by-column) is proposed for stream query definition. The queries that can

be defined using this method comprise a class of useful and practical queries that can be used for

decision making.

In Chapter 5 we introduce a relational-based integration framework that sits atop any relational

DBMS and mix DBMS’ data and stream aggregates managed by different stream systems. We

propose a special view layer defined over standard relational schemas: views in that layer, called

LinkViews, consist of base- and linked- columns. A linked column is associated to a base column

Chapter 6: Conclusions 114

in the view and a program at a stream engine. The program matches the keys of the base column

with values, which then become the content of the linked column during query evaluation. We

propose an SQL extension to define link views and an API to carry out the required

communication between the relational and the stream systems. We claim that this framework: (a)

is suitable for simple database users, (b) addresses an important and useful class of queries,

overlooked so far, (c) presents numerous optimization opportunities to minimize communication

and processing costs, and (d) can serve as a standard for relational-stream interoperability.

6.2 Future Work

This section describes further work on each chapter.

Chapter 3 - SQL Extensions for Real-Time Analytics: Stream variable queries modeling and

evaluation assumes one machine i.e. the widened relation existed in one partition. We can

horizontally partition the widened relation to several processing nodes and distribute the stream

tuples to all of these. Having multiple machines requires a distributed evaluation algorithm for the

computation of stream variable aggregates. This direction can be studied further. Stream variables

can have a large number of function members allowing for logical or physical windows, flushing

the contents of a queue at any time, pausing or restarting a queue, etc. An extensibility framework

that enables developers to define their own functions could be useful. In this way a set of useful

functions (library) can be created that can be used from multiple users enhancing the usefulness of

stream variables. In some applications the large volume of stream data and the requirement for

only one pass over stream data has give a birth to stream processing techniques that compute

approximate answers. In chapter 3 stream variable queries provide exact answers assuming that

each data stream element can be efficiently handled by our system. Further work can be done on

how stream variables can support reporting functions that provide approximate answers (e.g. data

synopses). Moreover Quality of Service (QoS) specifications can be used for the same reason.

These extensions are suitable for stream variable system as reporting functions can easily enclose

approximate algorithms. However correlated stream aggregates that use data synopsis need further

investigation.

Chapter 4 - Spreadsheet-like Stream Processing: More theoretical work could be developed

about the expressive power and the limitations of the proposed spreadsheet-like approach for

stream querying. Spreadsheets can support array-style computations (e.g. compare two consecutive

cells). How we can enable array-style processing for stream data is an interesting problem.

Chapter 6: Conclusions 115

Spreadsheets provide a simple and intuitive interface to express complex relationships among

cells, columns and rows. Our approach uses a column-by-column approach for the definition of

stream queries. Further research can consider how spreadsheet constructs (i.e. cells, rows) can

support complex stream queries. Such a spreadsheet-like query interface can be appropriate for

naïve users. As a result, the development time and cost of data stream applications will decrease

and stream systems will become accessible to many more people (i.e. not necessarily experts).

Furthermore, spreadsheet query formulation is likely to serve as the basis for identifying efficient

implementations, since succinct, concise and compact representations at the conceptual level lead

to efficient optimizations at the processing level. Overall a platform that can support the

declaration of stream queries using spreadsheets (i.e. define queries similar to the operations

supported in Excel) can bring stream data processing to masses.

Also query-streams-by-example using the spreadsheet interface (i.e. defining a query stream

example pattern in a spreadsheet on how a stream element processing is happen and how this is

applied in a series of stream elements) can be studied further. Human computer interaction

research for databases is an undistinguished research area despite its importance. Spreadsheets can

be used to further investigate this research area.

Chapter 5 - An Integration Framework for Relational and Stream Systems: Further work

includes the investigation on how LinkView definitions could be incorporated into a relational

optimizer. It would be interesting to investigate and develop a cloud infrastructure for the

implementation of LinkView framework. Such an infrastructure can be used by stream providers

to provide services (programs) to database users. A better study is need for the interface between

the streaming applications and the Key-Value store, and the policies governing how the streaming

results are materialized on the Key-Value store. Moreover more work can be done for the

definition of a stream program design pattern that can be used from SMEs in LinkView

framework. Reusable modules and code is important for the wide acceptance of LinkView

framework. Finally LinkViews can be used to link to other non-stream systems, allowing the

creation of a generic integration platform for different types of data and systems (e.g. MapReduce,

Big Data platforms, etc.)

Bibliography

7 Bibliography
[1] Abadi J. Daniel, Ahmad Yanif, Balazinska Magdalena, Cetintemel Ugur, Cherniack Mitch,

Hwang Jeong-Hyon, Lindner Wolfgang, Maskey Anurag, Rasin Alex, Ryvkina Esther,

Tatbul Nesime, Xing Ying, B. Zdonik Stanley: The Design of the Borealis Stream

Processing Engine. CIDR 2005:277-289

[2] Abadi J. Daniel, Carney Donald, Cetintemel Ugur, Cherniack Mitch, Convey Christian, Lee

Sangdon, Stonebraker Michael, Tatbul Nesime: a new model and architecture for data

stream management. VLDB J. (VLDB) 12(2):120-139 (2003)

[3] Abadi J. Daniel, Carney Donald, Cetintemel Ugur, Cherniack Mitch, Convey Christian,

Erwin C., Galvez F. Eduardo, Hatoun M., Maskey Anurag, Rasin , Singer A., Stonebraker,

Michael, Tatbul Nesime, Xing Ying, Yan R., Zdonik B. Stanley: Aurora: A Data Stream

Management System. SIGMOD 2003:666

[4] Abiteboul Serge, Agrawal Rakesh, Bernstein A. Philip, Carey J. Michael, Ceri Stefano,

Croft W. Bruce, DeWitt J. David, Franklin J. Michael, Garcia-Molina Hector, Gawlick

Dieter, Gray Jim, Haas M. Laura, Halevy Y. Alon, Hellerstein M. Joseph, Ionnidis E.

Yannis, Kersten L. Martin, Pazzani J. Michael, Lesk Michael, Maier David, Naughton F.

Jeffrey, Schek Hans-Jorg, Sellis K. Timos, Silberschatz Avi, Stonebraker Michael,

Snodgrass T. Richard, Ullman D. Jeffrey, Weikum Gerhard, Widom Jennifer, Zdonik B.

Stanley: The Lowell database research self-assessment. Commun. ACM (CACM)

48(5):111-118 (2005)

[5] Abouzeid Azza, Bajda-Pawlikowski Kamil, Abadi J. Daniel, Rasin Alexander, Silberschatz

Avi: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for

Analytical Workloads. PVLDB 2(1):922-933 (2009)

[6] Agarwal Sameet, Agrawal Rakesh, Deshpande Prasad, Gupta Ashish, F. Naughton Jeffrey,

Ramakrishnan Raghu, Sarawagi Sunita: On the Computation of Multidimensional

Aggregates. VLDB 1996:506-521

Bibliography 117

[7] Ailamaki Anastassia, Faloutsos Christos, Fischbeck S. Paul, Small J. Mitchell, VanBriesen

M. Jeanne: An environmental sensor network to determine drinking water quality and

security. SIGMOD Record (SIGMOD) 32(4):47-52 (2003)

[8] Akinde O. Michael, Bohlen H. Michael: Generalized MD-Joins: Evaluation and Reduction

to SQL. Databases in Telecommunications 2001:52-67

[9] Akinde O. Michael, Bohlen H. Michael, Johnson Theodore, Lakshmanan V. S. Laks,

Srivastava Divesh: Efficient OLAP Query Processing in Distributed Data Warehouses.

EDBT 2002:336-353

[10] Application Level Events (ALE) Standard, http://www.gs1.org/gsmp/kc/epcglobal/ale (last

accessed February 2013)

[11] Arasu Arvind, Babcock Brian, Babu Shivnath, McAlister Jon, Widom Jennifer:

Characterizing Memory Requirements for Queries over Continuous Data Streams. PODS

2002:221-232

[12] Arasu Arvind, Babcock Brian, Babu Shivnath, Datar Mayur, Ito Keith, Motwani Rajeev,

Nishizawa Itaru, Srivastava Utkarsh, Thomas Dilys, Varma Rohit, Widom Jennifer:

STREAM: The Stanford Stream Data Manager. IEEE Data Eng. Bull. 26(1): 19-26 (2003)

[13] Arasu Arvind, Widom Jennifer: Resource Sharing in Continuous Sliding-Window

Aggregates. VLDB 2004:336-347

[14] Arasu Arvind, Babu Shivnath, Widom Jennifer: The CQL continuous query language:

semantic foundations and query execution. VLDB J. (VLDB) 15(2):121-142 (2006)

[15] Avnur Ron, Hellerstein M. Joseph: Eddies: Continuously Adaptive Query Processing

SIGMOD 2000:261-272

[16] Bai Yijian, Wang Fusheng, Liu Peiya, Zaniolo Carlo, Liu Shaorong: RFID Data Processing

with a Data Stream Query Language. ICDE 2007:1184-1193

[17] Bardaki Cleopatra, Pramatari, Katerina, 2007: RFID-enabled supply chain collaboration

services in a networked retail environment. In: Proceedings of the 20th International Bled

Electronic Commerce Conference, Bled, Slovenia, June 3–6.

[18] Barua Anitesh, Lee Byungtae, 1997. An economic analysis of the introduction of an

electronic data interchange system. Information Systems Research 8 (4), 398–422.

[19] Babcock Brian, Olston Chris: Distributed Top-K Monitoring. SIGMOD 2003:28-39

[20] Babcock Brian, Babu Shivnath, Datar Mayur, Motwani Rajeev: Chain : Operator Scheduling

for Memory Minimization in Data Stream Systems. SIGMOD 2003:253-264

Bibliography 118

[21] Babcock Brian, Babu Shivnath, Datar Mayur, Motwani Rajeev, Widom Jennifer: Models

and Issues in Data Stream Systems. PODS 2002:1-16

[22] Babu Shivnath, Widom Jennifer: Continuous Queries over Data Streams. SIGMOD Record

(SIGMOD) 30(3):109-120 (2001)

[23] Brettlecker Gert, Schuldt Heiko, Schek Hans-Jorg: Towards Reliable Data Stream

Processing with OSIRIS-SE. BTW 2005:405-414

[24] Botan Irina, Cho Younggoo, Derakhshan Roozbeh, Dindar Nihal, Gupta Ankush, M. Haas

Laura, Kim Kihong, Lee Chulwon, Mundada Girish, Shan Ming-Chien, Tatbul Nesime, Yan

Ying, Yun Beomjin, Zhang Jin: A demonstration of the MaxStream federated stream

processing system. ICDE 2010:1093-1096

[25] Botan Irina, Cho Younggoo, Derakhshan Roozbeh, Dindar Nihal, Haas M. Laura, Kim

Kihong, Tatbul Nesime: Federated Stream Processing Support for Real-Time Business

Intelligence Applications. BIRTE 2009:14-31

[26] Botan Irina, Derakhshan Roozbeh, Dindar Nihal, Haas M. Laura, J. Miller Renee, Tatbul

Nesime: SECRET: A Model for Analysis of the Execution Semantics of Stream Processing

Systems. PVLDB 3(1):232-243 (2010)

[27] Carney Donald, Cetintemel Ugur, Cherniack Mitch, Convey Christian, Lee Sangdon,

Seidman Greg, Stonebraker Michael, Tatbul Nesime, Zdonik B. Stanley: Monitoring

Streams - A New Class of Data Management Applications. VLDB 2002:215-226

[28] Castellanos Malu, Gupta Chetan, Wang Song, Dayal Umeshwar: Leveraging web streams

for contractual situational awareness in operational BI. EDBT/ICDT Workshops 2010

[29] Castellanos Malu, Wang Song, Dayal Umeshwar, Gupta Chetan: SIE-OBI: a streaming

information extraction platform for operational business intelligence. SIGMOD 2010:1105-

1110

[30] Chan David, Ge Rong, Gershony Ori, Hesterberg Tim, Lambert Diane: Evaluating online ad

campaigns in a pipeline: causal models at scale. KDD 2010:7-16

[31] Chandrasekaran Sirish, Cooper Owen, Deshpande Amol, Franklin J. Michael, Hellerstein M.

Joseph, Hong Wei, Krishnamurthy Sailesh, Madden Samuel, Raman Vijayshankar, Reiss

Frederick, Shah A. Mehul: TelegraphCQ: Continuous Dataflow Processing for an Uncertain

World. In Proceedings of the 1st Biennial Conference on Innovative Data Systems Research.

CIDR’03.

[32] Chandrasekaran Sirish, Franklin J. Michael: PSoup: a system for streaming queries over

streaming data. VLDB J. (VLDB) 12(2):140-156 (2003)

Bibliography 119

[33] Chatziantoniou Damianos: The PanQ Tool and EMF SQL for Complex Data Management.

KDD 1999:420-424

[34] Chatziantoniou Damianos: Evaluation of Ad Hoc OLAP: In-Place Computation. SSDBM

1999:34-43

[35] Chatziantoniou Damianos: Ad Hoc OLAP: Expression and Evaluation. ICDE 1999:250

[36] Chatziantoniou Damianos: Using grouping variables to express complex decision support

queries. Data Knowl. Eng. (DKE) 61(1):114-136 (2007)

[37] Chatziantoniou Damianos, Anagnostopoulos Achilleas: NESTREAM: Querying Nested

Streams. SIGMOD Record (SIGMOD) 33(3):71-78 (2004)

[38] Chatziantoniou Damianos, Tzortzakakis Elias: ASSET queries: a declarative alternative to

MapReduce. SIGMOD Record (SIGMOD) 38(2):35-41 (2009)

[39] Chatziantoniou Damianos, Doukidis George: Incorporating Data Stream Analysis into

Decision Support Systems. Encyclopedia of Information Science and Technology (III)

2005:1431-1439

[40] Chatziantoniou Damianos, Pramatari Katerina, Sotiropoulos Yannis: COSTES: Continuous

spreadsheet-like computations. ICDE Workshops. In International Workshop on RFID Data

Management. ICDE Workshops, RFDM’08, 82-87.

[41] Chatziantoniou Damianos, Pramatari Katerina, Sotiropoulos Yannis: Supporting real-time

supply chain decisions based on RFID data streams. Journal of Systems and Software (JSS)

84(4):700-710 (2011)

[42] Chatziantoniou Damianos, Ross A. Kenneth: Querying Multiple Features of Groups in

Relational Databases. VLDB 1996:295-306

[43] Chatziantoniou Damianos, Akinde O. Michael, Johnson Theodore, Kim Samuel: The MD-

join: An Operator for Complex OLAP. ICDE 2001:524-533

[44] Chatziantoniou Damianos, Sotiropoulos Yannis: ASSET Queries: A Set-Oriented and

Column-Wise Approach to Modern OLAP. BIRTE 2009:66-83

[45] Chatziantoniou Damianos, Sotiropoulos Yannis: Stream Variables: A Quick but not Dirty

SQL Extension for Continuous Queries. ICDE Workshops 2007:19-28

[46] Chaudhuri Surajit, Shim Kyuseok: Including Group-By in Query Optimization. VLDB

1994:354-366

[47] Chaudhuri Surajit, Dayal Umeshwar: An Overview of Data Warehousing and OLAP

Technology. SIGMOD Record (SIGMOD) 26(1):65-74 (1997)

Bibliography 120

[48] Chaudhuri Surajit, Dayal Umeshwar,. Narasayya R. Vivek: An overview of business

intelligence technology. Commun. ACM (CACM) 54(8):88-98 (2011)

[49] Chen Jianjun, DeWitt J. David, Tian Feng, Wang Yuan: NiagaraCQ: A Scalable Continuous

Query System for Internet Databases. SIGMOD 2000:379-390

[50] Chen Yixin, Dong Guozhu, Han Jiawei, Pei Jian, W. Wah Benjamin, Wang Jianyong:

Online Analytical Processing Stream Data: Is It Feasible? DMKD 2002

[51] Cherniack Mitch, Balakrishnan Hari, Balazinska Magdalena, Carney Donald, Cetintemel

Ugur, Xing Ying, Zdonik B. Stanley: Scalable Distributed Stream Processing. In

Proceedings of the 1st Biennial Conference on Innovative Data Systems Research.

CIDR’03.

[52] Cohen Edith, Strauss Martin: Maintaining time-decaying stream aggregates. PODS

2003:223-233

[53] Colby S. Latha, Kawaguchi Akira, Lieuwen F. Daniel, Mumick Inderpal Singh, Ross A.

Kenneth: Supporting Multiple View Maintenance Policies. In Proceedings of the ACM

SIGMOD International Conference on Management of Data. SIGMOD’97, 405-416.

[54] Condie Tyson, Conway Neil, Alvaro Peter, M. Hellerstein Joseph, Elmeleegy Khaled, Sears

Russell: MapReduce Online. In Proceedings of the 7th USENIX Symposium on Networked

Systems Design and Implementation. NSDI ‘10:313-328

[55] Cormode Graham, Korn Flip, Muthukrishnan S., Srivastava Divesh: Finding Hierarchical

Heavy Hitters in Data Streams. VLDB 2003:464-475

[56] Cortes Corinna, Fisher Kathleen, Pregibon Daryl, Rogers Anne, Smith Frederick: Hancock:

A language for analyzing transactional data streams. ACM Trans. Program. Lang. Syst.

(TOPLAS) 26(2):301-338 (2004)

[57] Cranor D. Charles, Johnson Theodore, Spatscheck Oliver, Shkapenyuk Vladislav:

Gigascope: A Stream Database for Network Applications. SIGMOD 2003:647-651

[58] Cranor D. Charles, Gao Yuan, Johnson Theodore, Shkapenyuk Vladislav, Spatscheck

Oliver: Gigascope: high performance network monitoring with an SQL interface. SIGMOD

2002:623

[59] Dean Jeffrey, Ghemawat Sanjay: MapReduce: Simplified Data Processing on Large

Clusters. OSDI 2004:137-150

[60] Dean Jeffrey, Ghemawat Sanjay: MapReduce: a flexible data processing tool. Commun.

ACM (CACM) 53(1):72-77 (2010)

Bibliography 121

[61] Demirbas Murat, Chow Ken Yian, Wan Chieh Shyan: INSIGHT: Internet-Sensor Integration

for Habitat Monitoring. WOWMOM 2006:553-558

[62] Deshpande Amol, Nath Suman, B. Gibbons Phillip, Seshan Srinivasan: Cache-and-Query

for Wide Area Sensor Databases. SIGMOD 2003:503-514

[63] Dobra Alin, Garofalakis N. Minos, Gehrke Johannes, Rastogi Rajeev: Processing complex

aggregate queries over data streams. SIGMOD 2002:61-72

[64] Elmasri Ramez, Navathe B.Shamkant: Fundamentals of Database Systems, 5nd Edition.

Benjamin/Cummings 2010

[65] Franklin J. Michael, Krishnamurthy Sailesh, Conway Neil, Li Alan, Russakovsky Alex,

Thombre Neil: Continuous Analytics: Rethinking Query Processing in a Network-Effect

World. CIDR 2009

[66] Gedik Bugra, Andrade Henrique, Wu Kun-Lung, S. Yu Philip, Doo Myungcheol: SPADE:

the system s declarative stream processing engine. SIGMOD 2008:1123-1134

[67] Gehrke Johannes, Korn Flip, Srivastava Divesh: On Computing Correlated Aggregates Over

Continual Data Streams. SIGMOD 2001:13-24

[68] Gilbert C. Anna, Kotidis Yannis, Muthukrishnan S., Strauss Martin: Surfing Wavelets on

Streams: One-Pass Summaries for Approximate Aggregate Queries. VLDB 2001:79-88

[69] Gunduz Sule, Ozsu M. Tamer: A Web page prediction model based on click-stream tree

representation of user behavior. KDD 2003:535-540

[70] Ganguly Sumit, Garofalakis N. Minos, Rastogi Rajeev: Processing Set Expressions over

Continuous Update Streams. SIGMOD 2003:265-276

[71] Golab Lukasz, Ozsu M. Tamer: Issues in data stream management. SIGMOD Record

(SIGMOD) 32(2):5-14 (2003)

[72] Golab Lukasz, Ozsu M. Tamer: Processing Sliding Window Multi-Joins in Continuous

Queries over Data Streams. VLDB 2003:500-511

[73] Gonzalez Hector, Han Jiawei, Li Xiaolei: FlowCube: Constructuing RFID FlowCubes for

Multi-Dimensional Analysis of Commodity Flows. VLDB 2006:834-845

[74] Graefe Goetz: Query Evaluation Techniques for Large Databases. ACM Comput. Surv.

(CSUR) 25(2):73-170 (1993)

[75] Gray Jim, Chaudhuri Surajit, Bosworth Adam, Layman Andrew, Reichart Don, Venkatrao

Murali, Pellow Frank, Pirahesh Hamid: Data Cube: A Relational Aggregation Operator

Bibliography 122

Generalizing Group-by, Cross-Tab, and Sub Totals. Data Min. Knowl. Discov.

(DATAMINE) 1(1):29-53 (1997)

[76] Guirguis Shenoda, A. Sharaf Mohamed, K. Chrysanthis Panos, Labrinidis Alexandros:

Three-Level Processing of Multiple Aggregate Continuous Queries. In 28th International

Conference on Data Engineering. ICDE’12, 929-940.

[77] Guha Sudipto, Gunopulos Dimitrios, Koudas Nick: Correlating synchronous and

asynchronous data streams. KDD 2003:529-534

[78] Han Jiawei, Chen Yixin, Dong Guozhu, Pei Jian, Wah W. Benjamin, Wang Jianyong, Dora

Y. Cai: Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams.

Distributed and Parallel Databases (DPD) 18(2):173-197 (2005)

[79] Hammad A. Moustafa, Aref G. Walid, Elmagarmid K. Ahmed: Stream Window Join:

Tracking Moving Objects in Sensor-Network Databases. SSDBM 2003:75-84

[80] Hellerstein M. Joseph, Haas J. Peter, Wang J. Helen: Online Aggregation. SIGMOD

1997:171-182

[81] Hoppe Andrzej, Gryz Jarek: Stream Processing in a Relational Database: a Case Study. In

7th International Database Engineering and Applications Symposium. IDEAS’07, 216-224.

[82] Hsu Meichun, Chen Qiming, Wu Ren, Zhang Bin, Zeller Hans: Generalized UDF for

Analytics Inside Database Engine. Generalized UDF for Analytics Inside Database Engine.

In 11th International Conference Web-Age Information Management. WAIM ’10, 742-754.

[83] Jain Navendu, Amini Lisa, Andrade Henrique, King Richard, Park Yoonho, Selo Philippe,

Venkatramani Chitra: Design, implementation, and evaluation of the linear road bnchmark

on the stream processing core. In Proceedings of the ACM SIGMOD International

Conference on Management of Data. SIGMOD’06, 431-442.

[84] Jain Namit, Mishra Shailendra, Srinivasan Anand, Gehrke Johannes, Widom Jennifer,

Balakrishnan Hari, Cetintemel Ugur, Cherniack Mitch, Tibbetts Richard, Zdonik B.

Stanley: aming SQL standard. Towards a streaming SQL standard. In Proceedings of the

Very Large Databases. PVLDB 1, 2, (August 2008), 1379-1390.

[85] Johnson Theodore, Chatziantoniou Damianos: Extending Complex Ad-Hoc OLAP. CIKM

1999:170-179

[86] Krishnamurthy Sailesh, Chandrasekaran Sirish, Cooper Owen, Deshpande Amol, Franklin J.

Michael, M. Hellerstein Joseph, Hong Wei, Madden Samuel, Reiss Frederick, Shah A.

Mehul: TelegraphCQ: An Architectural Status Report. IEEE Data Eng. Bull. (DEBU)

26(1):11-18 (2003)

Bibliography 123

[87] Kumar Vibhore, Andrade Henrique, Gedik Bugra, Wu Kun-Lung: DEDUCE: at the

intersection of MapReduce and stream processing. In 13th International Conference on

Extending Database Technology. EDBT’10, 657-662.

[88] Larson Per-Ake, Zhou Jingren: Efficient Maintenance of Materialized Outer-Join Views.

ICDE 2007:56-65

[89] Law Yan-Nei, Wang Haixun, Zaniolo Carlo: Query Languages and Data Models for

Database Sequences and Data Streams. VLDB 2004:492-503

[90] Lee L. Hau, 2007. Peering through a glass darkly. International Commerce Review 7 (1),

60–78.

[91] Lerner Alberto, Shasha Dennis: The Virtues and Challenges of Ad Hoc + Streams Querying

in Finance. IEEE Data Eng. Bull. (DEBU) 26(1):49-56 (2003)

[92] Li Jin, Maier David, Tufte Kristin, Papadimos Vassilis, Tucker A. Peter: No pane, no gain:

efficient evaluation of sliding-window aggregates over data streams. SIGMOD Record 34, 1,

(March 2005), 39-44.

[93] Liarou Erietta, Goncalves Romulo, Idreos Stratos: Exploiting the power of relational

databases for efficient stream processing. In 12th International Conference on Extending

Database Technology. EDBT’09, 323-334.

[94] Lim Ee-Peng, Chen Hsinchun, Chen Guoqing: Business Intelligence and Analytics:

Research Directions. ACM Trans. Management Inf. Syst. (TMIS) 3(4):17 (2013)

[95] Liu Ling, Pu Calton, Tang Wei: Continual Queries for Internet Scale Event-Driven

Information Delivery. IEEE Trans. Knowl. Data Eng. (TKDE) 11(4):610-628 (1999)

[96] Liu Ling, Pu Calton, Tang Wei, Buttler David, Biggs John, Zhou Tong, Benninghoff Paul,

Han Wei, Yu Fenghua: CQ: A Personalized Update Monitoring Toolkit. SIGMOD

1998:547-549

[97] Liu Bin, Jagadish H. V.: A Spreadsheet Algebra for a Direct Data Manipulation Query

Interface. ICDE 2009:417-428

[98] Loesing Simon, Hentschel Martin, Kraska Tim, Kossmann Donald: Stormy: an elastic and

highly available streaming service in the cloud. In Data ANAlytics in the Cloud.

EDBT/ICDT Workshop, DANAC’12, 55-60.

[99] Luo Chang, Thakkar Hetal, Wang Haixun, Zaniolo Carlo: A native extension of SQL for

mining data streams. SIGMOD 2005:873-875

Bibliography 124

[100] Madden Samuel, Franklin J. Michael: Fjording the Stream: An Architecture for Queries

Over Streaming Sensor Data. ICDE 2002:555-566

[101] Madden Samuel, Franklin J. Michael, Hellerstein M. Joseph, Hong Wei: TinyDB: an

acquisitional query processing system for sensor networks. ACM Trans. Database Syst.

(TODS) 30(1):122-173 (2005)

[102] Madden Samuel, Franklin J. Michael, Hellerstein M. Joseph, Hong Wei: The Design of an

Acquisitional Query Processor For Sensor Networks. SIGMOD 2003:491-502

[103] Madden Samuel, Shah A. Mehul, Hellerstein M. Joseph, Raman Vijayshankar: Continuously

adaptive continuous queries over streams. SIGMOD 2002:49-60

[104] Mainwaring M. Alan, Culler E. David, Polastre Joseph, Szewczyk Robert, Anderson John:

Wireless sensor networks for habitat monitoring. WSNA 2002:88-97

[105] Mamoulis Nikos: Efficient Processing of Joins on Set-valued Attributes. SIGMOD

2003:157-168

[106] McCarthy R. Dennis, Dayal Umeshwar: The Architecture Of An Active Data Base

Management System. SIGMOD 1989:215-224

[107] Manku Gurmeet Singh, Motwani Rajeev: Approximate Frequency Counts over Data

Streams. VLDB 2002:346-357

[108] Motwani Rajeev, Widom Jennifer, Arasu Arvind, Babcock Brian, Babu Shivnath, Datar

Mayur, Singh Manku Gurmeet, Olston Chris, Rosenstein Justin, Varma Rohit: Query

Processing, Approximation, and Resource Management in a Data Stream Management

System. CIDR 2003

[109] Muthukrishnan S.: Data Streams: Algorithms and Applications. Foundations and Trends in

Theoretical Computer Science (FTTCS) 1(2) (2005)

[110] Nykiel Tomasz, Potamias Michalis, Mishra Chaitanya, Kollios George, Koudas Nick:

MRShare: Sharing Across Multiple Queries in MapReduce. In Proceedings of the Very

Large Databases. PVLDB 3, 1, (September 2010), 494-505.

[111] Olston Christopher, Reed Benjamin, Srivastava Utkarsh, Kumar Ravi, Tomkins Andrew: Pig

latin: a not-so-foreign language for data processing. SIGMOD 2008:1099-1110

[112] Olston Christopher, Chiou Greg, Chitnis Laukik, Liu Francis, Han Yiping, Larsson Mattias,

Neumann Andreas, Rao B. N. Vellanki, Sankarasubramanian Vijayanand, Seth Siddharth,

Tian Chao, ZiCornell Topher, Wang Xiaodan: Nova: continuous Pig/Hadoop workflows. In

Bibliography 125

Proceedings of the ACM SIGMOD International Conference on Management of Data.

SIGMOD’11, 1081-1090.

[113] Park Jaekwan, Hong Bonghee, Ban ChaeHoon: A Continuous Query Index for Processing

Queries on RFID Data Stream. RTCSA 2007:138-145

[114] Pavlo Andrew, Paulson Erik, Rasin Alexander, J. Abadi Daniel, J. DeWitt David, Madden

Samuel, Stonebraker Michael: A comparison of approaches to large-scale data analysis.

SIGMOD 2009:165-178

[115] Polyzotis Neoklis, Skiadopoulos Spiros, Vassiliadis Panos, Simitsis Alkis, Frantzell Nils-

Erik: Supporting Streaming Updates in an Active Data Warehouse. ICDE 2007:476-485

[116] Pramatari Katerina, Doukidis George, Kourouthanassis Panos, 2005. Towards ‘smarter’

supply and demand-chain collaboration practices enabled by RFID technology. In: Vervest,

P., Van Heck, E., Preiss, K., Pau, L.F. (Eds.), Smart Business Networks. Springer Verlag,

ISBN 3-540-22840-3.

[117] Rao Jun, Doraiswamy Sangeeta, Thakkar Hetal, Colby S. Latha: A Deferred Cleansing

Method for RFID Data Analytics. VLDB 2006:175-186

[118] Ross A. Kenneth, Srivastava Divesh: Fast Computation of Sparse Datacubes. VLDB

1997:116-125

[119] Ross A. Kenneth, Srivastava Divesh, Chatziantoniou Damianos: Complex Aggregation at

Multiple Granularities. EDBT 1998:263-277

[120] Roth A, Mark, Korth F. Henry, Silberschatz Abraham: Extended Algebra and Calculus for

Nested Relational Databases. ACM Trans. Database Syst. (TODS) 13(4):389-417 (1988)

[121] Rundensteiner A. Elke, Ding Luping, Sutherland M. Timothy, Zhu Yali, Pielech Bradford,

Mehta K. Nishant: CAPE: Continuous Query Engine with Heterogeneous-Grained

Adaptivity. VLDB 2004:1353-1356

[122] Schiefer Josef, List Beate, Bruckner M. Robert: Process Data Store: A Real-Time Data Store

for Monitoring Business Processes. DEXA 2003:760-770

[123] Schreier Ulf, Pirahesh Hamid, Agrawal Rakesh, Mohan C.: Alert: An Architecture for

Transforming a Passive DBMS into an Active DBMS. VLDB 1991:469-478

[124] Seligman J. Leonard, E. Lehner Paul, P. Smith Kenneth, Elsaesser Chris, Mattox David:

Decision-Centric Information Monitoring. J. Intell. Inf. Syst. (JIIS) 14(1):29-50 (2000)

Bibliography 126

[125] Spring Jesper Honig, Privat Jean, Guerraoui Rachid, Vitek Jan: Streamflex: high-throughput

stream programming in java. In Proceedings of the 22nd Annual Conference on Object-

Oriented Programming, Systems, Languages, and Applications. OOPSLA’07, 211-228.

[126] Steenhagen J. Hennie, Apers M. G. Peter, Blanken M. Henk: Optimization of Nested

Queries in a Complex Object Model. EDBT 1994:337-350

[127] Stonebraker Michael, Abadi J. Daniel, DeWitt J. David, Madden Samuel, Paulson Erik,

Pavlo Andrew, Rasin Alexander: MapReduce and parallel DBMSs: friends or foes?

Commun. ACM (CACM) 53(1):64-71 (2010)

[128] Stonebraker Michael, Cetintemel Ugur, Zdonik B. Stanley: The 8 requirements of real-time

stream processing. SIGMOD Record 34, (March 2005), 42-47.

[129] STREAM: The Stanford Stream Data Manager, User Guide and Design Document.

http://infolab.stanford.edu/stream/code/user.pdf (last accessed 22-May-2013).

[130] Subramani, M., 2004. How do suppliers benefit from information technology use in supply

chain relationships? MIS Quarterly 28 (1), 45–73.

[131] Sullivan Mark: Tribeca: A Stream Database Manager for Network Traffic Analysis. VLDB

1996:594

[132] Tatbul Nesime: Streaming data integration: Challenges and opportunities. In 2nd

International Workshop on New Trends in Information Integration. NTII'10, 155-158.

[133] Tatbul Nesime, Cetintemel Ugur, Zdonik B. Stanley, Cherniack Mitch, Stonebraker

Michael: Load Shedding in a Data Stream Manager. VLDB 2003:309-320

[134] Terry B. Douglas, Goldberg David, Nichols A. David, Oki M. Brian: Continuous Queries

over Append-Only Databases. SIGMOD 1992:321-330

[135] The Stanford Stream Data Management (STREAM) Project. Available at: http://www-

db.stanford.edu/stream (last accessed March 2013)

[136] Thies William, Karczmarek Michal, Amarasinghe P. Saman: StreamIt: A Language for

Streaming Applications. In 11th International Conference Compiler Construction. CC’02,

179-196.

[137] Thusoo Ashish, Sen Sarma Joydeep, Jain Namit, Shao Zheng, Chakka Prasad, Zhang Ning,

Anthony Suresh, Liu Hao, Murthy Raghotham: Hive - a petabyte scale data warehouse using

Hadoop. ICDE 2010:996-1005

Bibliography 127

[138] Tucker A. Peter, Maier David, Sheard Tim, Fegaras Leonidas: Exploiting Punctuation

Semantics in Continuous Data Streams. IEEE Trans. Knowl. Data Eng. 15(3): 555-568

(2003)

[139] Tucker A. Peter, Maier David, Sheard Tim, Stephens Paul: Using Punctuation Schemes to

Characterize Strategies for Querying over Data Streams. IEEE Trans. Knowl. Data Eng.

19(9): 1227-1240 (2007)

[140] Vossough Ehsan: A System for Processing Continuous Queries over Infinite Data Streams.

In 15th International Conference Database and Expert Systems Applications. DEXA’04,

720-729.

[141] Wang Haixun, Zaniolo Carlo, Luo Chang: ATLAS: A Small but Complete SQL Extension

for Data Mining and Data Streams. VLDB 2003:1113-1116

[142] Wang Fusheng, Liu Shaorong, Liu Peiya, Bai Yijian: Bridging Physical and Virtual Worlds:

Complex Event Processing for RFID Data Streams. EDBT 2006:588-607

[143] Witkowski Andrew, Bellamkonda Srikanth, Bozkaya Tolga, Naimat Aman, Sheng Lei,

Subramanian Sankar, Waingold Allison: Query By Excel. VLDB 2005:1204-1215

[144] Witkowski Andrew, Bellamkonda Srikanth, Bozkaya Tolga, Dorman Gregory, Folkert

Nathan, Gupta Abhinav, Sheng Lei, Subramanian Sankar: Spreadsheets in RDBMS for

OLAP. SIGMOD 2003:52-63

[145] Wang Fusheng, Liu Peiya: Temporal Management of RFID Data. VLDB 2005:1128-1139

[146] Woo Alec, Seth Siddharth, Olson Tim, Liu Jie, Zhao Feng: A spreadsheet approach to

programming and managing sensor networks. IPSN 2006:424-431

[147] Wu Eugene, Diao Yanlei, Rizvi Shariq: High-performance complex event processing over

streams. In Proceedings of the ACM SIGMOD International Conference on Management of

Data.SIGMOD’06,407-418.

[148] Yang Di, Rundensteiner A. Elke, Ward O. Matthew: Shared execution strategy for

neighbor-based pattern mining requests over streaming windows. ACM Trans. Database

Sys. 37, 1, (Feb 2012), 5.

[149] Yao Yong, Gehrke Johannes: The Cougar Approach to In-Network Query Processing in

Sensor Networks. SIGMOD Record (SIGMOD) 31(3):9-18 (2002

[150] Yan P. Weipeng, Larson Per-Ake: Eager Aggregation and Lazy Aggregation. VLDB

1995:345-357

Bibliography 128

[151] Yin Xuepeng, Pedersen Torben Bach: What Can Hierarchies Do for Data Streams? BIRTE

2006:4-19

[152] Zdonik B. Stanley, Stonebraker Michael, Cherniack Mitch, Cetintemel Ugur, Balazinska

Magdalena, Balakrishnan Hari: The Aurora and Medusa Projects. IEEE Data Eng. Bull.

(DEBU) 26(1):3-10 (2003)

[153] Zhang Donghui, Gunopulos Dimitrios, Tsotras Vassilis J., Seeger Bernhard: Temporal

Aggregation over Data Streams Using Multiple Granularities. EDBT 2002:646-663

[154] Zhang Donghui, Gunopulos Dimitrios, Tsotras J. Vassilis, Seeger Bernhard: Temporal and

spatio-temporal aggregations over data streams using multiple time granularities. Inf. Syst.

(IS) 28(1-2):61-84 (2003)

[155] Zhang Rui, Koudas Nick, Chin Ooi Beng, Srivastava Divesh: Multiple Aggregations Over

Data Streams. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. SIGMOD'05, 299-310

[156] Zhu Yunyue, Shasha Dennis: StatStream: Statistical Monitoring of Thousands of Data

Streams in Real Time. VLDB 2002:358-369

[157] Zhu Yunyue, Shasha Dennis: Efficient elastic burst detection in data streams. KDD

2003:336-345

