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Abstract 

Nowadays, more and more organizations realize the importance of analyzing available data. 

While most of the times data is stored, over the last years there is a growing amount of stream 

data. Such data arrives on-line from multiple sources in a continuous, rapid and time-varying 

fashion. Some well-known stream applications are: sensor networks, RFID supply chain 

management, financial analysis, network and environmental monitoring. The importance of stream 

data management has been identified by many researchers and as a result stream data processing 

has gain the focus of intense research activity in the past few years. Moreover processing data 

streams has been identified as a crucial element for real-time enterprises (RTEs). 

Currently, most stream management applications and systems exploit stream data with the 

objective to answer monitoring queries. However, the real potential of stream data lies in the 

possibility to capture new types of information in (near) real-time and support decisions. To 

support this kind of analysis we need analytics queries that can support multiple and correlated 

stream aggregates over stream data coming from multiple and heterogeneous stream sources. 

Moreover a wide range of analytics applications need to combine already available data (e.g. 

stored data) and stream data to empower business with (near) real-time insights that can be used 

for improved decision making. As relational databases are extremely widespread our research 

focuses on how relation data can support relational-stream analytics applications. Overall, this 

thesis provides query formulation methods and tools that combine relational and stream data to 

support (near) real-time data analysis.   

In this thesis we introduce stream variables to support analytics over stream data. This kind of 

analytics queries can contain multiple stream aggregates, correlated stream aggregates and use data 

from multiple and heterogeneous stream sources. We provide SQL language extensions to support 

this kind of queries. These extensions are minimal, succinct and easily understandable by common 

SQL users. Moreover we provide a spreadsheet-like approach to perform stream analytics. The 

intuition is that stream queries can by defined in a column-by-column fashion. The columns can 

contain either relational data or stream aggregates. We argue for the easiness of this approach and 

that the developed tool can be useful in real world applications.  

The thesis studies how to extend current Relational Database Management Systems (RDBMSs) 

to handle stream data for (near) real-time decision making. We present a relational-based 

integration framework that sits atop any RDBMS and mix RDBMS’ data and stream aggregates 

managed by different stream systems. A SQL extension is provided to define relational-stream 

views and an API is developed to carry out the required communication between the relational and 

the stream systems. The proposed framework can serve as a standard for relational-stream 

interoperability.
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Chapter 1 

 

1 Introduction 
1.1 Overview and Motivation 

Today’s complex world requires state-of-the-art data analysis over truly massive data sets. 

Until recently, data were stored and processed in database systems. Processing persistent data has 

been the main focus of the database research community for many years. However the 

technological advances in sensor technology along with the emergence of web and mobile services 

gave birth to a new generation of data applications. These applications must handle data items that 

arrive on-line from multiple sources in a continuous, rapid and time-varying fashion [21]. Example 

applications include financial applications (streams of transactions or stock ticks), network 

monitoring (stream of packets), telecommunications data management (stream of calls), web 

applications (click-streams), sensor networks (RFID data) and location-based services (GPS data). 

This new class of data stream applications has recently attracted a lot of attention from database 

research community and the current thesis belongs to this area of research. 

The volume and the high speed of continuous data flows make extremely hard to store the data 

in a database system. Also, the “store-and-then-query” data processing paradigm is not suitable for 

stream data. In most cases users need to get results as fast as possible so the computation must be 

performed on-the-fly as the data enters the processing system. In stream applications data is 

processed with “continuous queries” [22], which provide results continually as new stream data 

arrives from stream sources. Continuous queries are used for monitoring and alerting operations 

i.e. when a condition is satisfied or a specific event takes place an alert mechanism is triggered. 

Additionally, some stream data may need to be stored for offline data analysis. 

The database research community has responded to data stream application needs with an 

abundance of ideas, prototypes and architectures to address the new issues involved in this field. 

From a relational perspective the stream data is modeled not as persistent relations but rather as 

transient relations [12]. Apart from simple and efficient stream querying (e.g. simple filtering 

queries over streams), how to best model, express and evaluate analytics over data streams is a 

challenging problem. The purpose of analytics is to help analysts make informed decisions by 
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uncovering insights hidden in large volume of data.  Analytics over data streams can be used for 

real-time decision making. For example the ability to make decisions on-line (i.e. as data stream 

arrives) is extremely important for critical tasks that have significant economic benefits for large 

companies (e.g. telecom fraud detection). Stream analytics requires data modeling, rich querying 

capabilities and novel evaluation processing techniques. Additionally the time plays a central role 

in stream analytics as metrics of interest (e.g. moving average) are computed over different time-

scales (e.g. hours, minutes or seconds). Stream querying with these characteristics will be a crucial 

component of any future data management and decision support system [4][39]. One of the most 

challenging tasks in decision making using stream data is the transformation of raw stream 

observations to information that is understandable by analysts [151]. In most cases raw stream data 

lacks semantic meaning, making them inappropriate for business applications. Furthermore stream 

enabled infrastructures generate large volume of raw data and passing high volume raw stream 

data observations directly to applications and users is not a proper solution. To support stream data 

analysis and alleviate the high volume problem stream data must be summarized and analyzed 

continuously as the data arrives i.e. we need continuous analytics over stream data.  

Data streaming technologies are an evolutionary concept in the field of databases. While a lot 

of work has been done in analytics over offline data [47][48] the support of analytics over streams 

is in ongoing research and the thesis studies this problem. The continuous flow of stream data 

makes such queries difficult to be defined and evaluated. Online computation is one aspect of 

applying analytics over stream data. On the other hand, analytics over data streams involves data 

synthesis of stream data with other types of data. As relational database systems are the most 

popular and widely used data systems for the storage of structured data, the capability to combine 

stream and relational data for analytics purposes and decision making is of great importance. A 

key observation is that in most cases stream values are bound to a relational value. For example a 

stock has a price; a sensor provides a stream of temperature measurements and a web user with a 

specific internet address generates a stream of clicks. The details of stocks, sensors and users are 

stored in a relational database and provide the semantic meaning that can be associated with 

stream data. 

Applying continuous analytics over stream data is a crucial element for real-time enterprises 

(RTE). Until recently data is collected in centralized places allowing analysts to extract useful 

information by issuing decision support queries. In a typical scenario, an organization stores 

detailed records of its operations in a database, which are then analyzed to improve efficiency, 

detect sales opportunities, identify irregularities, verify hypotheses, segment customer base, and so 

on. Performing complex analysis on this data is an essential component of these organizations’ 

businesses. These technologies are collectively known as Business Intelligence (BI). However, in 

stream applications the huge amounts of continuous data makes it impractical to store all the data 
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at a centralized site. Real-Time Business Intelligence (RTBI) is a new research area providing 

techniques that can be used for analysis of data and events as they occur. RTBI enables passive 

organizations to be transformed to active in order to respond immediately to business needs. As a 

result decision making is “tactical” rather than “strategic”. Stream data analysis is a common RTBI 

technique and has gain many supporters in recent years. In this thesis we provide methods and 

tools to support Real-Time Business Intelligence applications. A real-time data report that 

combines relational and stream data for analytics purposes is a useful tool to achieve this goal. The 

current thesis describes query languages, architectures and frameworks on how we can define and 

evaluate such (near) real-time data reports.  

Except from combining relational and stream data at the logical level (relational tuples with 

stream data) the capability of current Relational Database Management Systems (RDBMSs) to 

handle stream data enables relational-stream system level integration. In this way users/analysts 

can use stream data inside their current database systems. As a result they can express queries that 

can use the already available relational data exists in their relational database systems. The 

challenge is that while the stream data is provided by a stream source or by a specialized stream 

processing engine, stream data must be transparent to RDBMS users.  Being able to easily express 

and efficiently evaluate queries over heterogeneous stream data sources and combine stream data 

with relational data to create integrated analytics applications is a major challenge in data 

management field and is the focus of the current research. 

As stream sources continue to increase a vast amount of data will become available. The 

analysis of stream data is becoming crucial for companies and organizations as there are many 

practical applications and business needs. Combining relational data with stream data for analytics 

purposes and decision making is a large part of these applications and motivates the research 

described in this thesis. Also providing to users the capability to use stream data in their current 

relational database systems makes stream processing available to a large number of current 

database users showing the practical aspect and the usefulness of the research conducted in the 

current thesis. 

1.2 Research Challenges  

The goal of this research work is to design query formulation methods and query processing 

algorithms for stream data. The focus is on queries that can use stream data coming from 

heterogeneous and possible distributed stream data sources. Such queries process stream data on 

the fly and provide results continuously. Moreover, these queries can use relational data either to 

define the semantic meaning of stream data (e.g. for each stock compute the running maximum 

and average price) or the relational data enhances query results with historic information (e.g. for 

each stock compute the running maximum and average price and compare with the maximum 
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prices of previous week). In both cases stock’s details are available in relational data existing in a 

RDBMS while the running maximum and average prices are computed on-the-fly from stream 

data. 

The first challenge is how the relational and stream data can be combined to form analytics 

queries in a semantic level. The focus of our research is on analytics queries similar to group-by 

aggregate queries. The group-by attribute is the relational part while the aggregates are produced 

from stream data. The second challenge is how to provide richer analytics than simple group-by 

aggregate queries. Complex queries can contain multiple group-by attributes and stream 

aggregates, correlated stream aggregates and stream aggregates from multiple and heterogeneous 

data stream sources. Such queries are useful for (near) real-time decision making. We provide two 

methods to achieve this: an SQL-like approach and a spreadsheet approach. In the first case the 

theoretical foundations and an extension of SQL is provided to support stream analytics queries. In 

the second case a spreadsheet-like query method is provided that enables the declaration of 

complex analytics queries in a spreadsheet fashion, column-by-column.  

Moreover extending a relational Database Management System to combine already available 

relational data with stream data coming from various sources for (near) real-time data analysis and 

decision making is a major challenge. A framework that uses the database engine in a 

collaborative fashion with stream engines is provided.  

To address these challenges several issues have to be taken into consideration, both from a 

theoretical and a practical perspective: 

 Analytics over stream data: The main approach to process infinite data streams is 

continuous queries, which provide results continually as new data arrives from stream 

sources. In most cases such queries are simple monitoring queries. On the other hand, 

applying analytics over stream data is useful for (near) real-time decision support. Such 

queries use multiple and heterogeneous stream sources, combine multiple stream 

aggregates and can use offline relational data. So, the research questions are:  

• How one can model and perform analytics over stream data?  

• What are the semantics of the query language to support this kind of queries? 

 

A number of issues must be taken under consideration trying to answer these 

challenges. Firstly, the provided query formulation methods must be expressed through 

a simple language that it is easily understood. Also efficient evaluation and 

optimizations must be supported.  

 Relational Database Management Systems (RDBMSs) and stream system 

integration: One of the main concerns is how to extend current RDBMSs to handle 
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queries that use stream data. While many systems have been developed to address the 

various challenges present in stream applications, few deal with simple SQL extensions 

to incorporate stream processing in present relational systems. Additionally a relational 

and sound theoretical framework must be provided. So the research questions are: 

• How database users can use stream data in their current relational database 

systems?  

• What is a relationally sound framework for RDBMS-stream systems 

integration? 

 

Similarly a number of issues must be taken under consideration trying to answer these 

challenges. The most important requirement is that the usage of stream data in the 

RDBMS must be transparent to database users. Relational semantics must be applied in 

the RDBMS while stream engines must handle stream data using their native stream 

processing language. A data protocol between RDBMS and stream engines must be 

developed to allow the usage of stream data from database systems.  

1.3 Contributions 

The goal of the thesis is to provide methods and tools on how stream and relational data can be 

combined in order to be used for real-time analytics. Real-time analytics involves rich querying 

capabilities for (near) real-time decision support. We focus on analytics queries that aggregate 

stream data and combine them with relational data. Below we provide the contributions of the 

thesis: 

 We provide a theoretical framework to support continuous queries than can contain 

multiple stream aggregates, correlated stream aggregates and can use data from 

multiple and heterogeneous stream sources. Also, we define SQL language extensions 

to support this kind of queries. The provided SQL extensions are minimal, succinct and 

easily understandable by common SQL users.  

 We introduce a spreadsheet-like approach to perform stream analytics. The intuition is 

that continuous queries can be defined in a column-by-column fashion. This simple 

approach enables a number of optimizations for efficient stream query processing. A 

simple SQL-like language and a tool are provided for the definition and the 

computation of stream analytics. 

 Stream analytics applications need to integrate and manage aggregates produced by a 

variety of stream engine tools, complete Data Stream Management Systems (DSMSs) 

or stand-alone stream-handling components. We present a relational-based integration 

framework that sits atop any relational DBMS and mix DBMS’ data and stream 
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aggregates managed by different stream systems. A SQL extension is provided to 

define views that contain both relational and stream data. We developed an Application 

Protocol Interface (API) to carry out the required communication between the 

relational and the stream systems. The proposed framework can serve as a standard for 

relational-stream interoperability. 

 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows.  

Chapter 2 contains an overview on stream data, applications and systems. It also provides 

background information on stream query languages and stream processing. Related work on 

spreadsheets and data analysis is given. We outline existing work in analytics for relational and 

stream data. 

Chapter 3 discusses stream variables, an approach for the formulation of continuous queries 

that can be used for analytics purposes. The theoretic framework is provided and SQL extensions 

to support multiple and correlated stream aggregates in queries are defined. Additionally a 

thorough number of examples are provided. Finally evaluation algorithms and performance results 

are given. 

Chapter 4 presents a spreadsheet-like approach for stream queries that are useful for real-time 

decision making. A real case application is described and the challenges are identified. We present 

how these challenges are handled by our spreadsheet framework. We describe optimizations and 

performance results are provided. Finally we describe and preview the developed spreadsheet tool. 

Chapter 5 describes a special type of view that can contain relational data and stream 

aggregates from multiple and heterogeneous stream engines. We present the theoretical 

foundations and a framework to enable relational-stream integration. An Application Protocol 

Interface (API) is defined to support the communication between RDBMSs and stream engines. 

An SQL-like language is presented for the definition of relational-stream integrated views. A 

relational evaluation operator is described for query evaluation. Finally a prototype system is 

described along with optimizations and performance results.  

Chapter 6 summarizes the results of this work, discusses open issues and suggests areas for 

future work. 

 



 

 

Chapter 2 

 

2 Background and Related Work 
2.1 Data Streams 

2.1.1 Introduction 

The proliferation of computer technology has brought big changes in data management. Data is 

produced in greater amounts and in most cases is inherently distributed. In many applications, the 

data is generated in real-time, in a continuous and transient manner a concept known as data 

streams [21]. To accommodate the enormous processing requirements of these applications, novel 

architectures have been proposed as conventional database management systems (DBMS) cannot 

handle real-time data processing [27]. For example Relational Database Management Systems 

(RDBMS) follow a “store-then-process” data processing model:  data records are stored in disk 

and users can query the data using a query language (e.g. SQL).  However, in case of data streams 

the database management systems have not the entire data set when a query is issued and common 

query processing techniques [74] cannot be applied. In addition continuous data must be processed 

on-the-fly and queries results must be provided in (near) real-time. These challenges [89] along 

with real world applications that require to process voluminous amounts of stream data have given 

an increased priority to the design and development of novel data stream engines.  

Formally, a data stream can be described as a sequence of data items that produced 

continuously in real-time. The unique characteristics of data streams [71] are: 

 Data streams are unbounded in size. Due to the large size it is not feasible to locally 

store a stream in its entirety. 

 Applications that process stream data cannot control the order in which data items 

arrive. 

 The data items are processed once or a small number of times due to: (a) the large 

volume (b) the processing time constraints and (c) the limited computation and storage 

capabilities of the processing system. In most cases the data stream items that are 

processed are discarded or archived making difficult to retrieve and process them 

multiple times. 
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 The processing of stream items are happen in-memory. The memory is small relative to 

the size of stream data and as a result there is an increased query processing cost for 

processing stream data items that are not in memory. 

 

These unique characteristics of data stream create some challenging research questions such as: 

 How data streams are modeled? 

 How data streams can be queried? 

 How an infinite data stream can be processed in bounded memory? 

 

A partial list of research work trying to address these issues is given below:  

 

Data stream modeling:  Data streams can adhere to the relational model i.e. a data stream is a 

sequence of relational tuples [108]. We can classify such streams either as transactional data 

streams or measurement data streams. Transactional data streams contain tuples that log 

interactions between entities while measurement streams contain tuples coming from the 

monitoring of the evolution of a phenomenon. In most cases a phenomenon can have a number of 

entity states that may change during time. Examples of transactional streams are credit card

transactions and web logs. In both cases a customer or a web user interacts with a system leaving 

transactional trails. Measurements streams contain tuples coming from the monitoring of a 

network (e.g. tuples containing IP packets fields) or sensor observations (e.g. temperature 

observations).  More formally a data stream can be modeled as sequence of tuples with schema (v, 

t) where v  is a single value or a vector of values and t  is the timestamp that defines the order of 

the sequence [79].  The timestamp can be attached to the data stream item when it is first created 

(in stream source) or assigned from the stream system when it arrives. In [109] a data stream is 

modeled as a n dimension vector a�⃗  = (a1, …, an) initialized to 0 and updates presented to it in a 

stream. In the Cash Register Model each update has the form (ai, I), so that ai is incremented by 

some positive integer I. In the Turnstile Model each update is in the form (ai, I), so that ai is 

incremented by some (possible negative) integer I.  

 

Querying data streams: Queries over data streams differ from traditional database queries. 

Traditional database queries are one-time queries i.e. issued once and applied over static data exist 

in the disk. Such queries compose a query plan consists of operators. Query plan evaluation returns 

a complete result set. On the other hand, queries over data streams are “continuous”: the answer to 

a continuous query is produced over time, reflecting the stream data seen so far [140]. As new data 

stream items arrive the continuous query updates the results on-the-fly. So the query output is not a 
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static and finite result but can be seen as a new data stream. The differences between one-time and 

continuous queries are depicted in Figure 2.1.  

 

 

Figure 2.1: One-time queries vs. continuous queries 

 

Consequently continuous queries can be added and deleted in a stream system at run-time. In 

case of query addition the queries can be either predefined or ad-hoc. Predefined continuous 

queries are registered to stream system before any relevant data stream item has arrived. On the 

other hand, ad-hoc queries are register when a data stream has begun. 

In traditional Relational Database Management Systems (RDBMSs) queries are converted in an 

ordered set of steps composed of relational operators (query plan). In such a query plan data enters 

at the leaves, tuples are processed from the intermediate operator nodes and the result is given at 

the root of the tree. The evaluation of a continuous query using this approach is not always 

possible because an operator may need the complete data set from a previous operator (e.g. group 

by). But a stream is infinite and has no end. Such blocking operators can be replaced with no-

blocking operators when it is possible [71]. Another approach is the usage of special assertions 

(e.g. punctuations [138][139]) that provide information what data items can and cannot appear in 

the stream. Their semantics can define the partial results that can be output from the stream 

system. Also, for a large number of applications only a subset from the whole data stream might be 

important. For example a simple query is to find the average temperature in a room only for the 

last ten minutes. In this case we are only interest for recent data. Prior data are not important and 

can be discarded. Such constructs that can define the range of items over a data stream are named 

windows [67]. Windows can be classified according to the following criteria [71]: 
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 Based on window endpoints: A window contains stream items that are enclosed in a 

starting endpoint and ending endpoint. The direction of movement of these endpoints 

corresponds to the following types of windows: 

 Landmark windows have a variable size extending from a fixed point in the 

stream to the latest received tuple.  

 Sliding windows have fixed size and both ends of the window moving (slide) as 

new tuples appear in the stream. 

 Fixed windows have stable endpoints resulting in a data stream snapshot for the 

defining range between the two endpoints. 

 Count-based or time-based windows: continuous queries can restrict the range of 

stream data to a window that contains the last N  items or those items that have arrived 

in the last t  time units. The former are called count-based or logical windows and the 

latter are called time-based or physical windows. 

 Window evaluation strategy: aggregates or other computations over windows can be 

done in a batch mode or per each arrived data stream element. The appropriate 

evaluation strategy can be decided based on performance/accuracy requirements and 

the need for near or real-time results.  

 

Queries for distributed stream processing studied in [1][152][51]. In such environments, remote 

stream nodes process stream data and push asynchronously results to the main stream engine or the 

stream nodes are part of a query execution plan. Several problems arise in these architectures as: 

operator placement, load sharing and resource aware query execution.  

Some researchers study the usage of standard database engines for stream processing. In [140] 

authors study how DBMS features like transaction management and concurrency control can be 

used for stream processing. Similarly in [81] authors study stream processing performance by 

tuning a standard DBMS system using already available features (e.g. indexes, triggers). In [82] a 

DBMS engine is extended to provide stream querying functionality. Stream operators are

developed as UDFs (User-Defined Functions) and queries process chunks of stream data. Authors 

in [93] extend a column oriented database system to support stream queries.  

 

Memory bounded processing of streams: Due to the infinite size of data streams there are cases 

that the amount of storage required for an answer of a continuous query may be unbounded  [21]  

(e.g. if a continuous query is a self-join).  In [11] authors provide the theoretical foundations and 

an algorithm for determining if a conjunctive query with arithmetic comparisons can be evaluated 

using bounded memory. Several other techniques are proposed from various researchers to handle 
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the infinite size of streams: processing only a part of a stream (windows), approximate answers 

and query optimization.  

Stream window constructs transform infinite data streams to finite sets allowing continuous 

queries to be evaluated in bounded memory. For example in most cases joining two infinite data 

streams requires unbounded memory while a window construct over the data streams enable 

memory bounded computation [72].  

Another approach to alleviate the problem of unbounded memory is to use small space 

structures (e.g. synopsis) that provide a concise representation of stream seen so far at the expense 

of some accuracy (e.g. approximate answers) [70]. In [68] wavelet based approaches are presented 

to summarize aggregates over streams. Algorithms for the computation of approximate frequency 

counts of elements in a data stream are described in [107][55]. The proposed algorithms require a 

small main memory footprint. Such algorithms are useful in group-by queries that the user is 

interested in only those groups whose frequency exceeds a certain threshold. Authors in [63] study 

the problem of approximately answering possibly multi-join, aggregate SQL queries over 

continuous data streams with limited memory. They suggest randomizing techniques that compute 

small summaries of the streams that are able to provide approximate answers to aggregate queries 

with provable guarantees on the approximation error.  

Also due to the long-standing nature of a continuous query the query plan might change 

dynamically to handle fluctuations in memory resources. In [15][103] an adaptive query 

processing operator called eddy is proposed that is able to reorder operators in a continuous query 

plan. Operators can be reorder on the fly based on runtime selectivity and query execution cost 

leading to better memory utilization. In [20] an operator scheduling strategy is proposed to 

minimize run-time memory usage for continuous queries involving selections, projections, joins 

with stored relations and sliding-windows joins.  

 

2.1.2 Data Stream Management Systems 

Traditional Database Management Systems (DBMSs) are designed to support applications that 

use static data stored in disk. Stream applications require on-the-fly processing of data (no disk 

storage) and (near) real-time results. A new type of systems named Data Stream Management 

Systems (DSMSs) is designed to support continuous queries over stream data.  DSMSs have the 

following requirements [71]:  

 Query plans must contain operators that can provide results even if the input is infinite. 

In other words they must support non-blocking operators. Also query plan must 

optimized continuously due to dynamic changes in system conditions (e.g. available 

resources) or changes in stream characteristics (e.g. bursts, unreliable data) 
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 Processing algorithms have limited or no access to data streams elements that have 

already processed by the system. In most cases old data are dropped and stream system 

can make only one pass over the data.  

 Continuous queries must be supported and query results must be provided in (near) 

real-time. Results can be exact or approximate due to performance and storage 

constraints. Also query semantics must support order and time operators due to data 

stream sequential nature.  

 

A generic DSMS architecture [71] is depicted in Figure 2.2.  

 

 

Figure 2.2: Generic architecture for a Data Stream Management System 

 

Input monitor receives data streams and can apply load shedding techniques to regulate the 

input rate. Continuous queries declared by users are stored in the query repository. Queries that 

contain window structures keep the data in the working storage.  Data synopses and other 

approximate-based structures are stored in summary storage. Static storage holds metadata for 

queries and data stream sources. The query processor processes streams and may re-optimize 

query plans base on stream rate, Quality of Service specifications and system resources. Query 

results are buffered or streamed out to the users.   

Some early works on active databases present how Relational Database Management Systems 

(RDBMSs) can handle streams using triggers and Event-Condition-Act rules (ECA) [106][123]. 

However the large volume of stream data makes these approaches not suitable for stream 

applications as they cannot scale. For this reason a number of DSMSs have been developed either 

as research prototypes or as commercial ones. Most of these stream systems extend SQL [14] to 

support continuous queries or the queries are built as data flow graphs [83]. These graphs contain 
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stream sources management elements, stream processing operators and output components. Below 

we provide a partial list of DSMSs: 

 Tribeca: In [131] authors describe an early version of a Data Stream Management 

System (DSMS) named Tribeca that is used for network traffic analysis. Tribeca 

provides a data flow language that can process stream data applying sequences of 

simple operators (aggregates, filtering).  

 CQ project: The CQ project [96][95] proposes a distributed architecture that can 

monitor real-time updates in web pages and other sources (databases, files) using 

monitoring programs (CQ robots). When updates are detected in each distributed node 

the robots return results to the central system. Continuous queries in distributed sources 

are defined as a sequence of a SQL query, a trigger and a stop operation. When the 

trigger condition applies, the SQL query is executed. The stop condition terminates the 

monitoring operation.  

 NiagaraCQ: The NiagaraCQ [49] system is similar to the CQ project but enables 

optimization for multiple monitoring continuous queries over distributed XML data 

sets. The proposed optimization approach it is based on the fact that many web 

monitoring queries share similar structures and conditions. In general NiagaraCQ 

enables shared computation and better memory utilization for multiple continuous 

queries applied over web sources.  

 Aurora: The Aurora system [2][3] is a data flow system using a network of operators 

to process incoming streams. Aurora supports Quality of Service (QoS) specifications 

that control how resources are allocated for each query based on response times, on the 

percentage of tuples delivered and on the importance of values produced (some values 

are more important than others). Aurora can shed load data to satisfy QoS 

specifications by dynamically inserting and removing drop operators into query plans 

[133]. 

 Gigascope: is a special purpose stream engine used for network applications (traffic 

analysis, network monitoring, etc) [57][58]. It supports two kinds of queries: the low-

level queries (LFTAs) which monitor network interfaces (i.e. the data stream sources) 

and higher-level queries (HFTAs) that act on LFTAs results. Gigascope is a stream 

database i.e. it consumes streams and produces streams.  

 PSoup: supports queries that need data that arrived prior and after the query 

specification [32]. Data and queries are stored in special purpose data structures called 

State Modules (SteMs). There is one SteM for all continuous queries defined in the 

system and one SteM for each data stream. When a new stream data item is inserted in 

the data SteM it probes the query SteM to evaluate all the registered queries. 



Chapter 2: Background and Related Work 14 

 

Symmetrically when a new query is inserted in the query SteM it applied to the data in 

the data SteM. These characteristics make PSoup appropriate for applications that 

periodically connect to the internet and not need to get stream results continually. For 

example mobile users may be offline for extended time duration but when they 

connected back to the network they want to be informed about query results. Also users 

might want to be informed periodically and not continually. This enables users to avoid 

information overload and the network can have better bandwidth utilization. PSoup 

achieves these functionalities supporting pre-computation and materialization of stream 

results. 

 STREAM: is a general-purpose DSMS supporting continuous queries over multiple 

data streams and stored relations [12]. STREAM is based on relational semantics 

supporting windows, relation-to-stream and relational operators. For each continuous 

query an execution plan it is generated. A query plan is composed of: (a) operators, (b) 

operators’ queues to keep stream data, (c) synopses containing operator state 

information and statistics.  Plan sharing and approximation techniques are used for 

query optimization [108]. Moreover optimization algorithms for reducing operators’ 

queue sizes are proposed to reduce query memory overhead.  

 TelegraphCQ: extends PostgreSQL DBMS to support continuous queries over high 

volume and high variable data streams [31][103][86]. Streams can be created using 

Data Definition Language statements (e.g. CREATE STREAM) and continuous 

queries are SQL statements with an optional window clause. TelegraphCQ focuses on 

shared and adaptive processing of continuous queries.  

 Continuous Adaptive Query Processing Engine (CAPE):  [121] is  stream engine 

designed to handle streams of varying rates providing an adaptive optimization 

framework with the following unique characteristics: (a) online query optimization 

with adaptive operator scheduling that can change operator scheduling algorithm 

dynamically based on system resources  (b) plan distribution among multiple machines 

(c) punctuations on streams [139].  

 SPADE: is a large-scale, distributed data stream processing system [66]. It provides a 

rapid application front-end and an intermediate language for composition of parallel 

and distributed data-flow graphs. It supports a large number of built-in stream-

relational operators (e.g. windows). Also users can build their own user-defined 

operators which can integrate with the built-in operators. A data-flow graph is consists 

of processing elements containing connected operators. Finally a broad range of stream 

adapters is provided to enable connectivity from stream sources and publish data to 

external repositories.  
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Moreover, specialized stream handling components have been developed to support stream 

processing: MapReduce online [54] adds pipeline functionality between Map and Reduce 

operators [59][60] for stream data processing; [87] describes how a Map-Reduce operator can be 

used in stream queries that are defined as data flow graphs; [98] studies stream processing in a 

cloud architecture; [112] depicts a stream manager that supports disk-based incremental 

processing. Finally a large number of stream applications are built from scratch using general 

purpose programming languages. Stream programming libraries [125][136] can also be used for 

the development of custom stream applications. 

 

2.1.3 Stream Query Languages 

Continuous queries are defined in Data Stream Management Systems via a stream query 

definition language. A number of stream query languages have been proposed and developed from 

database researchers. The querying paradigms can be distinguished on relational-based languages, 

object-based languages and procedural languages [71]. Relational based languages model streams 

and windows as relations ordered by timestamp. Object-query languages assume that each stream 

element is an object that can be manipulated with object-oriented methods or processed inside a 

class hierarchy. Procedural languages define exactly how streams are processed either by a 

workflow of operators or by specialized commands applied over stream data elements in a 

sequential manner. A partial list of stream query languages is provided below: 

 Tapestry Query Language (TPL): is a SQL-like language proposed in [134]. TPL 

supports continuous queries for append-only databases. In append-only databases only 

the new added records are of interest while the old ones are never deleted. 

Consequently, users issue continuous queries and notified whenever new incoming 

data matches the query. TPL enforces that deterministic results will be provided to 

users applying the following query semantics: “the results of a continuous query is the 

set of data that would be returned if the query were executed at every instant in time”. 

This introduce the notion of monotonic query: if Q(t) is the set of records returned by 

query Q  over a database at time t (one-time query) then the monotone query QM(t) 

denotes the set of all records returned by executing Q  up until time t. Monotonicity of 

a continuous query implies that any tuple that appears in the answer at any point 

continues to do so forever. Monotonic queries can be transformed to incremental 

periodic SQL queries implementing continuous query semantics. TPL transforms each 

user query into an incremental query that is run periodically. This is similar to execute 

the user query after every update of the database. Tapestry system use TPL for filtering 

mail and news messages. 
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 Hancock: is a domain-specific language that defines efficient signature programs [56]. 

A signature provides a compact view of the evolving behavior of an entity. For 

example in a telecommunications application a signature might contain a measurement 

showing the five most frequent telephone numbers placed from a specific number.  

Hancock query processing is based on event detection and event response over data 

stream items (e.g. when a new phone number is detected system re-initializes a counter 

as a response).  

 Continuous Query Language (CQL): The STREAM system [12][108] implements 

the Continuous Query Language (CQL) [14]  that derives from SQL:1999. CQL can 

support in the “from” clause streams, relations or both. A stream is considered as a 

multiset of relational tuples arriving at time Τ and consider append-only. Relations are 

an unordered set of tuples supporting time-stamped insertions, deletions and updates. 

Also derived streams (streams that are the result of sub-queries) can be handled 

efficiently. Sliding windows can be applied over streams and relations can be mapped 

to streams with specialized operators (Istream, Dstream). CQL processing emphasizes 

on memory usage optimization and operator scheduling.  

 ATLAS:  is a database language and system that allows users to develop data mining 

and data stream applications in SQL [141]. ATLAS SQL supports User Defined 

Aggregates (UDAs) that can contain an initialize, an iterate and a terminate 

computation statement. These statements are defined in a single procedure written in 

SQL. ATLAS SQL is Turing-complete and can easily support the definition of 

standard aggregates (e.g. avg, sum), online averages and stream window aggregates. 

For stream applications the terminate computation is replaced with the revise 

computation. The revise step is take place when the window is full. In that case the 

tuples contained in the window expire and the expired tuples participate in the 

computation of the wanted aggregate.  

 Gigascope query language (GSQL): is a restricted SQL-like language consuming 

streams and producing streams [57]. Its declarative nature allows query composition 

and query optimization that is similar to SQL. GSQL query model is based on the 

ordered attributes of the input stream. In most network applications there is a 

timestamp attribute or a sequence number per stream data element. GSQL uses the 

ordering characteristic (e.g. always increasing, no repeating, etc) of these fields to 

execute a query.  For example a group-by query that groups on an ordered attribute can 

emit results when a tuple arrives with an ordered attributed that is larger than any 

current group. This simple evaluation scheme result to increased performance during 



Chapter 2: Background and Related Work 17 

 

query execution. The GSQL supports selection, join between streams, aggregation and 

stream merge (union streams from multiple sources).  

 

2.1.4 Data Stream Applications 

A number of applications need to process stream data continuously and provide (near) real-time 

results. Some well-known application areas that validate the importance of stream processing are:  

 Network monitoring: these applications process rapid and continuous data streams as 

packet traces and error signals. Typical scenarios that such applications are used are 

protocol performance analysis, network traffic analysis, detection of anomalies (link 

congestion), intrusion detection, billing, etc. For example a useful query is to monitor 

the load of a backbone link over 5-minute periods and inform a network operator if the 

load exceeds a threshold [22]. Also analytics and trend analysis over network data is 

important (e.g. find the total number of incoming calls for a region and compare with 

the total number of incoming calls for another region in the past three hours). Another 

application is to use continuous queries for load balancing and for the redirection of 

traffic to another router or server. While there are specialized tools for network 

monitoring in most cases are inflexible [58].  On the other hand modeling network 

flows as data streams leads to a unified database-oriented approach for processing 

network data. As a result, a database stream-oriented network management approach 

can provide a structured query environment for network data applications making 

complex network analysis an easy task.  

 Web site monitoring: the always increasing growth of World Wide Web (WWW) 

creates a data overload problem for users as pages change constantly and dynamically. 

Users want to monitor changes in web pages while avoiding visit pages multiple times 

to find the information they want. Continuous queries over web pages and XML 

sources (e.g. RSS) can provide the mentioned functionality to users [96][95][49].  

 Road traffic management: real-time traffic analysis is of great importance for 

efficient street and car usage utilization. Sensors can be embedded on highways and 

GPS-enabled cars can provide in real-time the position of cars. Stream engines process 

these data and provide useful information to drivers as car flow and volume statistics 

[103]. The benefits from such applications can be the reduction of traffic, the reduction 

of carbon dioxide emissions and the lower traveling times through hints for alternate 

driving routes. Other examples are variable tolling, speed estimates, real-time accident 

detection and notification.  

 Healthcare applications: live patient data (e.g. blood pressure, pulse rate) is provided 

by smart sensors by monitoring patients either in their home or in a hospital room [23]. 
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In this way doctors and healthcare professionals can react in real-time in critical 

incidents. The monitoring of patients can be achieved with a network of smart sensors 

and a network-enabled infrastructure. Reliability is a crucial issue for healthcare 

monitoring applications i.e. the failures must be handled efficiently. This can be done 

with backup sensors and alternative communications channels (e.g. cable, wireless, 

mobile). As a last resort in case of a sever failure there must be an alarm informing 

about this situation.  The combination of live patient data with historical data (e.g. 

patient record data) can be used for information correlation enabling better medical 

diagnosis for patients. 

 Radio Frequency Identification (RFID): is a key technology with a wide number of 

applications including supply chain (e.g. inventory monitoring) and asset monitoring.  

RFID tags enable unique product identification and can be used in any object such as 

pallets, cases or individual items. RFID readers scan tagged products and generate a 

stream of data consist of the unique product identification and the capture-time 

timestamp. The high volume of the scanned data poses several challenges requiring in 

most cases to process the generated data with specialized stream engines [145].  

 Environmental monitoring: sensors can be deployed in wide geographic areas to 

monitor physical phenomena [7][104][61][102]. Example applications are temperature 

monitoring, monitor volcanic activity, water quality monitoring, animal monitoring etc. 

Also outlier detection over sensor measurements provided by distributed sensor nodes 

can help on detection of chemical spills or other disasters.  

 Energy management: the utilization of energy lines and the reduction of consumption 

are of great importance for large factories in order to decrease costs per produced unit. 

Energy monitoring via smart energy meters can provide alerts for increased 

consumption in real-time resulting in economic benefits. Also real-time monitoring can 

detect power failures or power spike problems in large energy corporations enhancing 

the safety standards. Moreover, retail customers can analyze in real-time their 

consumption and compare it with the consumption of other customers or with older 

consumption rates statistics. Such analysis can help users to identify better energy 

consumption habits. In a more advanced scenario the energy management system can 

provide hints for energy conservation. 

 Financial applications: financial transactions, stock ticks, currency exchange 

transactions can be seen as a stream of data. A large number of real-time decision 

queries over stocks are described in [45] and [91]. Such queries can provide 

information to financial analysts to sell or buy a stock or plan their trading actions. 

Algorithms for the identification of correlations between pairs of stocks, a useful 
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technique for stock trading, are described in [156]. Similarly, querying stream data, 

news and historical companies’ data can be useful for trends identification and for the 

detection of sell/buy opportunities.  

 Ambient devices: can change their characteristics based on real-time data in order to 

provide access to information at a glance. For example these devices translate data 

information into color, motion or sound representations (output) which are easily 

captured by human sensory modalities. In most cases ambient devices use simple 

conditions to monitor changes. However complex condition can be supported. For 

example in a weather application a monitor query can calculate the average 

temperature per day (drill up per day) and change the color of the ambient device if 

today’s temperature is greater than a previous day. Also, monitoring of composite 

measures can be achieved using multiple different data sources (i.e. in the weather 

application we can change the device color based on the temperature and the speed of 

the wind). 

 Click-stream analysis: web site personalization and advertisements campaigns need to 

process users click-streams in real-time to identify and predict users’ preferences. For 

example a useful stream query can be: “Which products advertised in a web page are 

currently the most popular?” [19]. Having such insights in real-time an analyst can 

change the advertisement strategy dynamically for products with few sales. Another 

example is the prediction of the next web page request for a user using previous click-

streams and the time spend on each page [69].  As a result the web site can provide a 

next web page recommendation list while the user is surfing the page.   

 Sensor networks: consists of small sensors and actuators that can “sense” the real 

world and provide real-time measurements. Some of the aforementioned applications 

(e.g. environmental monitoring, healthcare applications etc) use sensors. Sensors 

characterized by limited communication bandwidth, limited energy supply, limited 

computation power and uncertainly in sensor readings due to the environmental noise. 

Most research in sensor networks tries to alleviate these limitations. In [149] a database 

oriented approach is used: a sensor network is viewed as a distributed database where 

sensor nodes hold part of data. In this way users can declare declarative queries over a 

sensor network while the processing of data can be done inside the network resulting to 

minimized communication costs. Authors of [100][101] describe a complete system 

architecture for sensor data management. Their focus is on managing multiple queries 

over many sensors by limiting sensor resource demands while maintaining high query 

throughput. Except from small sensors with limited processing power there exist 

powerful sensing devices (e.g. webcams, microphones). Such devices create a 
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distributed network providing voluminous streams and can be used for a number of 

useful applications [62]. For example a parking can be monitored by a webcam and 

continuous queries over the provided stream can be used for a parking space finder 

service. 

 

2.2 Data Analytics 

Data analytics refers to combination of methods and techniques for the analysis of large amount 

of data with the purpose of gain better insights and facilitate decision making across a wide range 

of applications domains [94].  Until recently analytics methods and techniques applied over offline 

data [107]. However the need to shorten the time between data acquisition and decision making 

give birth to stream data analytics [48]. For offline data sets, data collection and extraction 

technologies (e.g. data warehouses, Extract-Transform-Load tools) are support large scale data 

analytics. The main goal of data analytics is to apply data analysis over these collections. Data 

analysis is performed via aggregation queries, analytical queries (OLAP) and reporting tools that 

can visualize the important data characteristics. In most cases these tools provide next-day 

analytics i.e. data are collected incrementally and analysis is performed over historical data. 

Another aspect of data analysis is data mining used for pattern discovery and predictions 

(predictive analytics). In stream analytics the data analyzed online as they arrive and there is no 

requirement to load and store the data on large data warehouses.  

 

2.2.1 Offline Data Analytics 

The need of complex data analysis involving aggregation of data became apparent since the 

conception of Database Management Systems (DBMSs). While the group by clause was sufficient 

at the beginning, the dawn of new applications in the last ten years, such as web analysis, social 

networks and others, necessitated advanced grouping constructs (cubes, grouping variables, 

windows) and novel programming paradigms such as MapReduce [59]. 

Grouping was the first approach in database theory to support data analysis: the relation is 

partitioned based on one or more attributes and column-based aggregates are computed over each 

partition. Modeled as a relational operator (e.g. [64]), with multiple implementation algorithms 

(e.g. [74]), incorporated in query optimization (e.g. [46],[150]) and with a simple SQL syntax, it 

became an essential part of any DBMS. For complex analytics, users have to rely on multiple view 

definitions or nested queries. Usually, most commercial systems’ performance break in queries 

representing trends, correlations or hierarchical aggregation.  
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With the rise of data warehousing and OLAP [47] came the need of multi-dimensional analysis, 

i.e. aggregations over multiple combinations of group by attributes. While traditional group by 

could be used to express and evaluate multidimensional analysis, there were significant linguistic 

and implementation benefits in introducing a new grouping construct, called cube [75], which 

computes an aggregate over all possible subsets of an attribute set. The cube by clause, an SQL 

syntactic sugaring extension, made it easier for users and allowed the optimizer to use efficient 

evaluation algorithms [6], [118] to compute the cube – mainly by overlapping computation. While 

a major breakthrough, it lacked the aspect of separating the base values definition and the subset 

formation process as two distinct phases. For example, one may want to provide an ad-hoc set of 

group by attribute combinations and not the entire powerset, or compute multiple aggregations 

constrained by different conditions for the same group by attributes (e.g. [119]) 

A set variable is a variable containing rows of a table, i.e. denotes a subset of the table. It is 

usually the result of a selection operation. It is frequent in data analysis to define a set variable for 

each distinct value of a column (or combination of columns) and then compute some aggregated 

value. For example assuming a relation named Stocks that contains the opening and closing 

prices per day for each stock: 

 

Stocks(stockID,descriptio,openingPrice,closingPrice,date) 

 

A useful query is: “for each stock, get the opening prices of that stock in January”. For each 

distinct value s of column stockID we should define a set variable as the rows of table Stocks 

having stockID = s and month(date) = 1. A grouping variable, introduced in [42] and described 

in [34][35][85][36], depicts this idea. A grouping variable is attached to a group by clause and for 

each distinct value of the grouping attributes a new set variable is instantiated. The definition of 

the grouping variable is given with the newly introduced clause “such that”. The previous example 

could be expressed as: 

 

group by stockID; X 

such that X.stockID=stockID and month(date)=1 

 

The syntactic extensions are: 

 Group By clause. The group by clause is the same as in standard SQL, with the 

following addition: after specifying the grouping columns, it may contain a list of 

grouping variables. For example, we may write:  
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     group by stockID; X1, X2, …, Xn 

 Such that clause. This newly introduced clause contains one defining condition for 

each grouping variable, separated by commas. Each defining condition is similar to a 

where clause. For example, we may write:  

 

such that C1, C2, …, Cn 

 

Each Ci  is a (potentially complex) condition used to define Xi grouping variable, i = 

1, 2, …, n. It may involve (i) attributes of Xi, (ii) constants, (iii) grouping columns, (iv) 

aggregates of the group and (v) aggregates of the X1, …, Xi-1 grouping variables. Part (v) 

implies that aggregates of grouping variables appearing earlier in the list can be used to 

define grouping variables later in the list. 

 Select clause. The select clause is the same as in standard SQL, with the following 

addition: attributes and aggregates of the grouping variables can also appear in the 

select clause. 

 Having clause. The having clause is extended to contain aggregates of the grouping 

variables.  

 

With these syntactic extensions, the group by clause acts as an implicit iterator over the 

values of the grouping attributes. The group itself can be considered as another grouping variable, 

denoted as X0. Aggregates of the group are considered as aggregates of the X0 grouping variable. 

The standard SQL formulation is cumbersome to express in SQL, requiring repeated joins, group-

bys and views. The following example describes a representative ad hoc data analysis/decision 

support query on a Stocks  table (a pivoting example).  

 

Example: Assume that we want to find for each stock of 2005 the average opening price in 

January and February (in two columns, one next to the other), but only if the latter is greater than 

the former. The having clause can be used to select the appropriate groups. 

 

select stockID, avg(X.openingPrice), avg(Y.openingPrice) 

from Stocks 

where year = 2005 

group by stockID; X,Y



Chapter 2: Background and Related Work 23 

 

such that X.stockID = stockID and month(X.date) = 1, 

          Y.stockID = stockID and month(Y.date) = 2 

having avg(X.openingPrice) < avg(Y.openingPrice) 

 

In this example, for each stock stockID, X grouping variable contains the rows of table 

Stocks that agree on stockID and have month equals to 1 (i.e. the prices of stock stockID 

in January) and Y grouping variable contains the sales of stock stockID in February. For each 

stock, we just want to print out the average of the opening price of X and Y subsets, if the latter is 

greater than the former. 

A grouping variable X expresses the following idea: for each distinct value v in grouping 

attribute(s) C of relation R, define a subset Xv using a condition θ and compute one or more 

aggregated values over Xv. Then attach these aggregated values next to v to formulate the output 

row of the resulting table. This is expressed in relational algebra via the MD-Join operator 

[43][8][9], which generalizes the conventional notion of group-by: it distinguishes between the 

definition of the “base values” used to aggregate-by and the actual computation of aggregates of

these. Grouping variables represent the later. Formally the MD-Join has the following definition:  

 

MD-Join: Let B  and R  be relations, θ a condition involving attributes of B and R and l a list of 

aggregate functions (f1, f2, … , fn) over attributes c1, c2, …, cn of R. A new relational operator 

between B and R, called the MD-join is denoted as: 

 

MD(B, R, l, θ) 

 

with the following semantics:  

 table B  is augmented with as many columns as the number of aggregate functions in l. 

Each column is named as fi_R_ci, i = 1, …, n (e.g. avg_Sales_sale). If a duplicate name 

is generated, the table R  must be renamed.  

 for each row r  of table B  we find the set S  of tuples in R  that satisfy θ  with respect to 

r, i.e. when B’s attributes in θ  are replaced by the corresponding r’s values. Then, the 

value of column fi_R_ci  of row r  is the fi(ci) computed over tuples of S, i = 1, …, n. B 

is called the base-values relation (or table) and R  is called the detail relation (or table). 

 

B represents the group-by structure of an EMF (Extended Multi-Feature) SQL query [34]; 

condition θ corresponds to the defining condition of the grouping variable in the such that 
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clause; the list of aggregate functions l corresponds to the grouping variable’s aggregates 

mentioned in the select, having or such that clauses. The definition of the MD-join 

operator allows the user a tremendous amount of flexibility in defining an aggregation query, as B 

and R can be arbitrary relational expressions and θ can be an arbitrary join predicate. The row 

count of the result of the MD-join is the same as the row count of B  (i.e., the MD-join performs an 

outer join) and as a result this semantics captures more accurately the user’s intentions than the 

standard aggregation does. In addition, this property is valuable for efficient implementation and 

optimization. Note also that the MD-join operator can be considered as a shortcut for a somewhat 

more complex expression. However, the expression that the MD-join represents occurs very often 

in OLAP queries and the properties of the operator enable to easily obtain many query 

transformations leading to efficient execution plans. 

The associated set (ASSET) query concept is described in [44] and [38].  It is applicable in both 

continuous and traditional data settings. The idea of ASSET queries is: “Given a set of values B, 

an associated set over B  is just a collection of annotated data multisets, one for each value of B”. 

The goal is to efficiently compute aggregates over these data sets. An ASSET query consists of 

repeated definitions of associated sets and aggregates of these, possibly correlated. The ability to 

loop over the values of a domain and perform a task for each value is the main construct in 

programming languages and its presence leads to very strong theoretical results. Formally an 

associated set is simply a set of potential subsets of a data source S, one for each value b of a 

domain B, i.e. {Sb : b∈B}. An associated set instance (just called associated set) is a set of actual 

subsets of S. B  is usually a relation (the base relation), the data source S can be anything with a 

relational interface and an iterator defined over it, and  is a defining condition that constraints 

(creates) the associated set instances. This simple approach: (a) generalizes most grouping 

analytics in existence today, (b) separates the relational concept from the analysis (grouping) 

concept, (c) can lead to rich optimization frameworks, and (d) provides a formal (and semi-

declarative) base for MapReduce [59]. For example, given a relation B of all 2009’s sales, the 

associated set (instance) {Sb={s in Sales, such that Sales.date <= b and Sales.year = 2009}, 

b∈B} could be used to compute the daily cumulative sales of 2009. An associated set instance is 

just a collection of multisets. Although aggregation is a separate process, significant optimization 

can take place for the built-in aggregate functions. An ASSET query consists of the computation 

of one or more associated sets, recursively defined: starting from a base table B0, associated set 

(i+1)  uses as its base table the base table of associated set i  extended by its aggregates. This 

approach has as result that a significant class of data analysis queries can be easily represented and 

efficiently evaluated through this formalism. ASSET queries can be useful in: 
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 Incorporating heterogeneous data sources: the data source of an associated set can 

be anything with a relational iterator defined over it – different database vendors, flat 

files, even the output of the query defined so far. 

 Distributed OLAP computation: if the data source of an associated set is distributed 

to more than one nodes, the subset formation process can be easily distributed to these 

nodes – that does not mean that the associated set is materialized. 

 Performance: as no traditional relational optimization can be applied over the data 

sources, he optimization process (indexing, decorrelation, specialized join algorithms, 

distributed computation) is shifted/replicated to the data structure representing the 

ASSET query answer – which can always be made memory resident. 

 

SQL/OLAP Amendment introduced certain new features in SQL language to support on-line 

analytical processing. One of the significant extensions is the ability to define windows over rows. 

A window enables users to determine the set of rows over which calculations can be performed 

with respect to the current selected row. In detail, in a window clause declaration we can define: 

the attribute list used for partitioning, the ordering of rows within partitions and an aggregation 

group. The aggregation group specifies which rows of each partition, with respect to the current 

row under examination, should participate in the evaluation of declared aggregate functions. This 

construct enable advanced data analysis over data. 

Spreadsheet is a well know paradigm to analyze data and spreadsheet applications are 

accessible and used by millions of users. It is the de-facto application for day to day computations 

and has been used in many different domains. A spreadsheet consists of a grid made from columns 

and rows. The intersection of columns and rows represents cells. In most spreadsheet applications 

rows are represented by a number and columns by a letter.  In this way each cell can be referenced 

by its column letter and its row number. For example C7 denotes the cell in the third column and 

in seventh line. The start cell of a spreadsheet is the A1. Additionally we can refer to more than 

one cell (e.g. C7, C8 using comma as a separator) and in a range of cells listing the first and last 

cell in the range (e.g. E1:E10 using colon as a separator). Each cell can contain data values (i.e. 

numbers, text) or formulas. Formulas express calculations using other cells, formulas and 

constants. For example we can express arithmetic operations between cells (e.g. =E1+E2 where 

the equal sign defines a formula) and use specialized formulas (called functions) to perform 

calculations over data (e.g. min(E1:E10) to find the minimum value in a range). Formulas can 

depend on other formulas and cells. These dependencies create a dependency graph guiding the 

ordering of computations. Also spreadsheet applications support many spreadsheets (called 

worksheets) inside one workbook to break our data analysis task in small and concrete subparts. 

During the years spreadsheets grew from simple applications to complex analytics tools offering 
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advance database and OLAP capabilities. In [143] and [144] authors propose spreadsheet-like 

computations in Relational Database Management Systems through extensions to SQL. By this 

approach relations can be viewed as n-dimensional arrays and formulas can be defined over their 

cells. The SQL extensions can be used for array based calculations for complex data analysis. In 

[97] a spreadsheet-like algebra that is consists of a set of operators that can express simple SQL 

queries and can be intuitively implement visually in a spreadsheet is proposed. Query definition is 

a sequence of progressive steps. In each step the intermediate results are provided helping user 

reformulating and refining the query. Such direct manipulation interface where queries can be 

defined with clicks and drags is more intuitive for non-technical database users and as result they 

can perform data analysis tasks in a simple manner. 

Also large-scale data analytics platforms have recently been introduced and becoming widely 

applicable to the real world.  MapReduce is a well-known programming paradigm to perform 

large-scale data analysis [59][60].  It is consisting of two phases, modeled as functions: the 

mapping phase, where a set of values is derived, each associated with a list of values, and the 

reduce phase, where each list is reduced by some ad hoc aggregation method. It can express and 

evaluate in a natively parallel and fault tolerant way simple analytics (similar to group-bys in SQL-

based systems). While this approach offers significant procedural flexibility over declarative 

approaches and employs a simple computational model, it lacks the optimizability and ease of use 

of modern database systems [114]. In [111][137][5] authors propose the addition of declarative 

interfaces on top of MapReduce implementations. A comparison of parallel DBMS and 

MapReduce-based platforms for data analytics is given in [127]. 

 

2.2.2 Stream Data Analytics 

Real-time decision support can be achieved by continuous analytics queries [65]. In [124] 

authors provide an architecture called decision-centric information monitoring (DCIM) that enable 

users to monitor information that can change a decision. Relevant information for a decision is 

identified via sensitivity analysis of decision models on distributed and heterogeneous databases. 

The window construct defined in the SQL/OLAP Amendment is applicable in data stream 

processing [21]. Due to the infinite nature of data streams in most cases analysts are interested 

only in recent data while older data are less significant [52].  Windows can limit the unbounded 

size of a data stream by defining time or count-based conditions. Stream data flow in and out of 

the defined window and aggregates computed continually over window transient data. Moreover, 

correlating aggregates over windows existing in multiple streams is important for real-time data 

analysis [155][77]. 



Chapter 2: Background and Related Work 27 

 

Stream aggregates can be defined with User-Defined Aggregates (UDAs) as described in [89] 

and [99]. Correlated aggregates define dependencies over aggregates (depended/independent 

aggregates) requiring multiple pass over data for their evaluation [42][34]. As this is not feasible 

for data streams efficient approximate computation of correlated aggregates over data streams is 

studied in [67]. Authors provide one-pass algorithms for computation of correlated aggregates over 

landmark and sliding windows. Online aggregation [80] is another approach to support continuous 

analytics: traditional data sets are consider as infinite and early query results are provided as a 

running aggregate with associated error bounds. Temporal aggregates [153] over data streams 

maintain aggregates at multiple levels of temporal granularities i.e. recent data is aggregated with 

finer detail while older aggregated at a coarser time granularity. Aggregating at different 

granularities resembles the roll-up operation in traditional analytics but in case of streams the roll-

up task is happen automatically and on-the-fly [154]. In [157] authors study the problem of finding 

abnormal aggregates over windows with different time intervals which can be used for outlier 

detection analysis.  A query evaluation framework for hierarchical aggregates is proposed in [37]. 

Such aggregates can be used in applications where stream sessions can be organized in 

hierarchical fashion e.g. sessions may contain sub-sessions. A session is modeled as an object 

allowing rich querying capabilities over streams for this kind of applications. Finally, Complex 

Event Processing engines [147] allow event pattern detection over streams of data. 

In [151] authors identify the problem that OLAP-like queries that provide real-time 

multidimensional and summarized views of stream data are not well supported from current stream 

solutions. They introduce a multi-dimensional stream query language that can turn low-level data 

streams into high-level aggregates.  Real-time OLAP-like analysis of streams is achieved with a 

cube algebra supporting continuous operators that can convert continuous streams into 

conventional cubes and the opposite. Moreover operators that resemble roll-up and drill-down 

operations exist on traditional data cubes are provided for stream data. The question how online 

analytical tasks can be applied over data streams is studied in [50].  The stream cube [78] is an 

architecture used for on-line, multidimensional and multilevel analysis of stream data. A tilted 

time frame is proposed where more recent data are registered at finer resolution, where older data 

at coarser resolution. Such an approach is useful for stream analytics as in most stream 

applications the most recent data are more important. A traditional cube contains cuboids 

describing a subset of its dimensions. In stream cube only a small number of dimensions are 

materialized based on two types of layer: (a) observation layer which is the layer that an analyst 

would like to check for data analysis and decision making tasks (b) the minimal interesting layer 

which is the minimal layer that an analyst would like to examine. Computing only aggregates 

corresponding to the two layers leads to performance benefits which is necessary due to the large 

volume and high speed of data streams. 
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A number for analytics solution for RFID data have been proposed from database researchers. 

FlowCube [73] is a method used to construct a warehouse of RFID trails for analytics purposes. 

RFID-enable devices (e.g. pallets, items) generate a large flow of data containing the full history 

of the locations that this item passed (e.g. from a production line in a factory to the store). Analysts 

would like to track this movement in the entire supply chain. FlowCube is an OLAP cube 

aggregate item flows at a given abstraction level. The difference is that a FlowCube does not 

contain scalar aggregates but flow-graphs representing the movement trends and deviations of the 

items aggregated in each cell. Also the item’s flow paths can been seen at different level of 

abstraction enabling complex analysis over RFID data. SQL/OLAP functionality for handling 

anomalies in RFID reads is proposed in [117]. RFID readers can provide duplicate and missed 

reads to stream applications. To handle this problem, authors propose a declarative based language 

that uses SQL/OLAP functionality to support data cleansing methods for anomalies detection and 

removal. A number of architectures operate over traditional data warehouses to enable (near) real-

time analytics. In [122] a data store is proposed that monitor workflow business operating over a 

data warehouse to enable real-time decision making. MeshJoin [115] is introduced in to support 

on-line warehouse refreshment for applications requiring up-to-date information. MeshJoin is used 

for joining a fast stream of source updates with a disk-based relation in a data warehouse under the 

constraint of limited power. Such operation transforms passive data warehouses to active in order 

to support real-time analytics.  

The usage of spreadsheets for managing and processing sensor stream data is depicted in [146]. 

Authors provide an Excel based interface for sensor data management and programming.  What is 

making spreadsheets widely acceptable is the simple interface that is well understood by the end 

users. In [40][41], we consider how spreadsheets can be used to model and express complex 

spreadsheet-like continuous queries over RFID data. We argue that the advantage of a spreadsheet-

like query interface is the concise and intuitive representation of queries. This research is described 

on Chapter 4 of the current thesis. 

Data integration has multiple applications and a wealth of techniques have been developed 

from database researchers. The main goal of data integration is to combine data residing at 

different sources and provide users with a unified view of the data. Our work in Chapter 5 is 

toward this goal and we focus specifically on relational and stream data. The challenges for DBMS 

and stream systems integration are presented in [132]. Authors emphasize that this is a new and 

challenging research area as current trend mostly focus on static data integration. Also the 

importance of integration of stream and stored data is analyzed in [128]. These authors discuss 

integration of stream and relational data from a stream system perspective i.e. how a stream system 

can use offline data. In [26] authors propose a descriptive model to analyze the execution behavior 

of heterogeneous stream processing engines. MaxStream  [24] is a data integration system that can 
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use multiple stream engines and databases for real-time business intelligence applications. 

MaxStream queries are translated into the native language of each stream system and the 

architecture is similar to federation database systems [25]  i.e. it consists from a middleware and a 

set of data wrappers interacting with each stream engine. A framework for situation aware 

applications that use stream and stored data is described in [28][29]. A data flow interface is 

proposed for building situational aware applications.  

 

 



 

 

  Chapter 3 

 
3 SQL Extensions for Real-Time Analytics 

3.1 Introduction 

The ability to query data streams is of increasing importance and has been identified as a 

crucial element for modern organizations and agencies. In this chapter a class of useful and 

practical analytical continuous queries is examined. Analytical continuous queries are used for 

decision making in (near) real-time. We demonstrate that such queries can be concisely modeled 

by a simple relational approach coupled with a simple SQL extension. We introduce the notion of 

a stream variable, a conceptual entity representing an ordered subset of a data stream, aggregated 

and attached next to a standard relational schema as a new column. A logical expression that 

involves the relation’s attributes and the entity’s methods determines whether a stream data should 

be added to the stream variable. The ability to define in the same query multiple, consecutive, 

possibly correlated stream variables allows for great flexibility in expressing complex analytical 

continuous queries. Moreover, such an approach presents several opportunities for efficient 

optimizations.  

3.2 Rationale and Motivation 

The technological explosion in the web, mobile communications, sensor/wireless technology, 

as well as the need for security, personalization, fraud detection, real-time billing, dynamic 

pricing, and others emphasize the necessity of real-time analysis and “stream” systems. We are 

moving toward real-time enterprises (RTE) and a stream world. Examples of stream applications 

include financial systems, network monitoring, security, telecommunications data management, 

web applications, manufacturing, sensor networks, environmental monitoring, ambient intelligent 

systems and others. 

Queries over data streams are quite different than traditional ones. In data streams we usually 

have continuous queries [134][22]. The answer to a continuous query is produced over time, 

reflecting the stream data seen so far. The database research community has responded with an 

abundance of ideas, prototypes and architectures to address the new issues involved in data stream 
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processing [152][135][100][57]. However, expressing complex data analysis queries on top of data 

streams is a major challenge. 

While many systems have been developed to address the various challenges present in stream 

applications [27], few deal with simple SQL extensions that can be used for analytic tasks over 

data streams. For this purpose we formally define a stream variable: a collection of data structures 

(representing queues), each functionally dependent on a subset of a relation’s R attributes, 

continuously reporting one or more aggregate values. These values are “attached” as separate 

columns to R. A simple SQL extension is used to express stream variables corresponding to a 

straightforward execution plan for query evaluation.  By defining a series of stream variables one 

can express complex analytics queries over one or more data streams. 

3.2.1 Motivating Examples 

We use a financial application as a motivating example. There are two relations, Stocks and 

Categories, storing the opening and closing prices per day for each stock and category, and 

two data streams, Prices, Volumes reporting several times within the unit of time the current 

price of a stock and the volume of the stock executed from the previous reported value. Schemas 

of relations and data streams are presented below: 

 

Relations: 

Stocks(stockID, description, categoryID, openingPrice, 

closingPrice, date) 

Category(categoryID, description, openingPrice, closingPrice, 

date) 

 

Data streams: 

Prices(stockID, price, timestamp) 

Volumes(stockID, volume, timestamp) 

 

There are several interesting continuous queries one can register on top of Prices and Volumes 

streams to monitor stock activity for analytics purposes. Below we provide some examples: 

 

Q1.  Assume that we want to monitor for each stock the minimum, maximum and average price 

that has been seen so far. With this query we can detect severe fluctuations of a stock’s 

performance at real time. 
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Q2.  Sometimes it is useful to monitor the minimum, maximum and average price of a stock’s 

performance not from the beginning of the day but only within a specified moving window, e.g. 

for the last 100 reported prices. 

Q3.  Being able to express continuous values at different granularities and compare these is an 

important aspect of financial applications. For example, we may want to find for each stock the 

percentage variation between the running average reported price and yesterday’s closing price and 

compare it with the percentage variation between the running average reported value and 

yesterday’s closing price of the stock’s category. With such a query, we may find buy or sell 

opportunities on a category basis. 

Q4.  It is also crucial to integrate in a simple and succinct way values from different stream 

sources in a single query. For example, we may want to combine in a continuous report aggregated 

values from both Prices and Volumes streams: find for each stock the total volume of the last 

10 reported volumes, the maximum price of the last 10 reported prices and contrast these with the 

total volume and maximum price from the beginning of the day. 

Q5.  In many occasions it is useful to express correlated aggregation [42][34][67] in the context of 

data streams, i.e. use a continuously aggregated value to constraint a subset of stream data. For 

example, we may be interested in monitoring the running total volume of each stock, but 

summation should take place only when the average price of the last 10 reported prices is greater 

than the running average price of the stock. Then, we want to contrast this with the (regular) 

running total volume. This query can show periods of time of increased volume traffic. 

Q6.  Assume that we want for each stock to continuously know when its average price of the last 

10 reported prices is greater than its running average price. In that case, a “True” value should 

appear next to the stock id, otherwise a “False” is displayed. This query can be used to alert 

analysts for “hot” periods of a stock. 

Q7.  Finally, in many cases we want to monitor a stream of data and treat the generated values as a 

new data stream (composability). For example, assume that we monitor for each stock the average 

price of the last 10 reported prices and we want to also monitor the maximum of these averages. In 

this case we can identify when (within a window of 10 values) the maximum average price 

occurred. 

 

Figure 3.1 (a) to (g) shows instances of the results of queries Q1 to Q7 respectively. Let us first 

consider query Q1. In this example, we want to keep for each stock s the reported prices for s 

(since the registration of the query with the system) and compute the min, max and average price 

of this data set (the running min, max and average prices). In other words, for each stockID we 

want to define a data set, modeled as a queue, QstockID, and compute several aggregates over this 
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queue. Each aggregate can be “appended” next to the stockID column of the answer (Figure 

3.1(a)) to form a “table” that has two (vertical) sections: a relational part represented by column 

stockID, coming from a relational expression and a stream part represented by columns 

min_price, max_price and avg_price coming from aggregation over QstockID. The bold 

line in Figure 3.1(a) shows this division. Note that each QstockID’s aggregate is functionally 

dependent on the stockID attribute. 

 

stockID min_price max_price avg_price 
MSFT 29.12 29.31 29.15 
ORCL 19.12 19.19 19.17 
BAC 54.48 54.81 54.67 
… … … … 
GM 35.35 35.87 35.54 

(a) 

 

stockID min_price max_price avg_price 
MSFT 29.14 29.28 29.16 
ORCL 19.17 19.19 19.18 
BAC 54.55 54.78 54.65 
… … … … 
GM 35.43 35.87 35.59 

(b) 

 

stock
ID 

stock_closi
ng_price 

 
category

ID 
 

 
category_cl
osing_price 

 

stock_var
iation 

category_va
riation 

MSFT 29.15 AppSft 45.34 0.997 1.024 
ORCL 19.16 AppSft 45.34 0.998 1.024 
BAC 54.58 Bank 86.49 1.012 1.006 

… … … … … … 
GM 35.46 Auto 56.74 1.016 0.985 

(c) 

 

stockID sum_vol_10 max_price_10 sum_vol max_price 
MSFT 230.873 29.25 43.120.345 29.31 
ORCL 145.899 19.18 12.178.981 19.19 
BAC 82.630 54.76 8.230.778 54.81 
… … … … … 
GM 34.982 35.75 4.195.946 35.87 

(d) 
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stockID sum_vol_prc sum_vol 
MSFT 10.185.445 43.120.345 
ORCL 8.128.559 12.178.981 
BAC 1.263.983 8.230.778 
… … … 
GM 2.078.878 4.195.946 

(e) 

 

stockID alert_flag 
MSFT True 
ORCL False 
BAC False 
… … 
GM True 

 (f) 

 

stockID avg_price_10 max_avg_price 
MSFT 29.17 29.28 
ORCL 19.14 19.17 
BAC 54.68 54.68 
… … … 
GM 35.42 35.76 

 (g) 

Figure 3.1: Instances of results for queries Q1 to Q7 

Now consider query Q3. In this case we want for each stockID to compute the running 

average price, divide it with the stock’s previous day’s closing price, do the same for the stock’s 

category and have these two values attached next to the stockID. In other words, for each row of 

the relation shown at the left of the bold line of Figure 3.1(c) – which contains all the necessary 

information for the computation – we want to define two data sets, QstockID and QcategoryID, aggregate 

over these and attach the aggregates next to the relation (shown at the right of the bold line). 

Figure 3.2 depicts graphically the idea.  
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Figure 3.2: Representation of query Q3 using queues 

 

Note that in this case we can keep a data set for each category value and not for each row, 

which is a form of decorrelation. This is not always the case. For example in query Q5, one can 

see that the definition of the queue that keeps the volume values depends on aggregates of other 

stream data sets. 

Figure 3.2 shows the idea we model: a relational expression “extended” by one or more 

columns, where each column represents a stream aggregate of a queue (in principle it can be any 

abstract data type). We may have more than one queues contributing columns in one such query 

and there may be interdependencies on the definition of the queues, i.e. a stream aggregate of one 

queue can be used to restrict the definition of another queue. This approach allows succinct and 

concise representations of many practical and real-life analytical continuous queries both at user, 

algebraic and evaluation levels. 
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3.3 Stream Variables 

In this section we define the concept of stream variables to formalize the idea of attaching 

stream aggregates to relational rows. We use a dynamic queue to store the part of the data stream 

that is relevant to a relation’s row, using a condition θ  to determine both containment and queue’s 

size and properties. 

 

3.3.1 Theoretical Framework 

Definition 3.1: (Stream Source) A stream tuple s  is an ordered list of n  values (s1, s2, …, sn) (an 

n-tuple), where each value is either an element of a domain Ai  or a NULL value. A stream source S 

is any medium able to generate a sequence of stream tuples s  (an ordered list of n values (s1, s2, …, 

sn)) in the unit of time. The schema of S is denoted as S(S1, S2, …, Sn). Each value si∈dom(Si), 

i=1, 2, …, n � 

 

Definition 3.2: (Stream Variable) Assume a relation R(A1, A2, …, An). A stream variable X over R 

is defined as a quadruple (A, S, Q, θ), where: 

 A  is a subset of the attributes of R, i.e. A = 𝐴𝐴𝑖𝑖1 ,𝐴𝐴𝑖𝑖2,… ,𝐴𝐴𝑖𝑖𝑘𝑘 where {i1, i2, …, ik}⊆{1, 2, …, n}. 

 S  is a data stream source with schema S(S1, S2, …, Sm). 

 Q is a collection of parameterized dynamic queues holding S’s stream tuples, Q = {Qt, 

t∈πA(R)}. Implementation-wise one can think Q as an object-oriented class implementing 

a queue. Instances of this class correspond to Qt. 

 θ  is a condition determining what stream data get pushed and popped to which queue. 

Formally, θ is a (potentially complex) logical expression where each atomic boolean 

expression has either the form (a) X.Si <relop> v, i∈{1, 2, …, m}, or (b) X.f(p) <relop> v, 

where: 

o  f(p) a function defined over Q  having a set of parameters p 

o  <relop> is a relational operator such as =,>,< etc. 

o  v is either a constant or an attribute of A (or an attribute of R functionally 

dependent on A).  

We denote this condition as X.θ  � 

 

Intuitively, a stream variable represents a collection of queues, one for each row of the relation 

R. The logical expression θ  determines, given a stream tuple s, to which queues of Q this tuple is 
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pushed: if θ  evaluates to true with respect to Qt and s (Definition 3.3), then s is pushed to Qt. 

Note that a stream tuple may be pushed to several queues of Q. 

 

Definition 3.3: (Containment Test) Given a relation R, a tuple r of R, a stream variable over R X = 

(A, Q, S, θ) and a stream tuple s of S, we say that X.θ  evaluates to true with respect to r and s, iff 

the logical expression θ’, constructed by the method below evaluates to true: 

 Let Qt the specific queue of Q corresponding to r, (t = πA(r)), 

 Each term of θ defined as X.Si <relop> v is replaced by s.Si <relop> v, 

 Each term of θ defined as X.f(p) < relop > v is replaced by Qt.f(p) <relop> v. � 

 

We want to be able to “attach” aggregated value(s) of each queue Qt  next to the corresponding 

row t. We define below the notion of a reporting function over a stream variable. 

 

Definition 3.4: (Reporting Functions) Assume a stream variable X = (A, S, Q, θ). Any function fp : 

Q → D, where p a set of parameters and D  a domain of atomic values, is called a reporting 

function with respect to X  � 

 

Examples include the well-known aggregate functions min, max, sum, count and average as 

well as UDAFs (user-defined aggregate functions). 

 

Definition 3.5: (Widened Relations) Assume a relation R(A1, A2, …, An), a stream variable X = (A, 

S, Q, θ) over R and a set of reporting functions f = (f1(p1), f2(p2), …, fk(pk)). We define the 

widened relation with respect to R, X and f, denoted as: 

 

WD(R, X, f) 

 

as a new relation with schema (A1, A2, …, An, f1_p1, f2_p2, …, fk_pk) and instance: for each tuple t of 

R, there is a new tuple t’, formed by t’s values followed by k  additional values, the results of 

(f1(p1), f2(p2), …, fk(pk)) applied on 𝑄𝑄𝜋𝜋𝐴𝐴 (𝑡𝑡). �  
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Definition 3.6: (Mapping to Stream Variables) Assume a query named QR that contains stream 

variables. The QR produces a relation using the relational attributes and stream variables, called 

the widened relation with respect to QR and is given by the following method: 

 

Algorithm 3.1: Stream variable query output relation schema 

 
1: A list of stream variables {Xi, i=1,2,…,n} 

2: R a relation with schema (A1,A2,…,Ak) computed by the 

select..from..where clause 

3: f1����⃗ , f2�����⃗ , …, fn����⃗  are the reporting functions of X1,X2,…,Xn 

respectively    

4: X1 = (R,S1,Q1,θ1) 

5: V = WD(R,X1,f1����⃗ ) 

6: for i = 2,…,n do 

7:   Xi = (V,Si,Qi,θi) 

8:   V’ = WD(V,Xi,fi����⃗ ) 

9:   V = V’ 

10: end for 

 

Note that a stream variable is defined over all the attributes of the previously defined widened 

relation, which is inefficient in some cases since we create a queue for every row of the resulting 

relation. For instance, in Q3 this is not necessary. By syntactically analyzing the defining condition 

θ, we can reduce this number, which is a form of decorrelation. 

3.3.2 Query Definitions 

In this section we use the theoretical definitions of previous section (3.3.1) to describe the 

examples given in section 3.2. 

 

Example 3.1: Consider query Q1. We first define a relation R  as R = πstockID(Stocks). This way 

we get in a column all the distinct stockIDs. Then, we define a stream variable X over R as: 

 

X = ({stockID}, Prices, Q, (X.stockID = stockID and X.size() = 0)) 

 

The first condition of the θ expression of X  ensures that a stream tuple s  will only be added to the 

queue that agrees on s’ value of stockID. The second condition is a built-in function over Q that 
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allows a queue to have “infinite” size. The fact that a queue is declared with infinite size does not 

necessarily imply an analogous implementation. For example for distributive [75] reporting 

functions we can have a queue of size 1. The result of query Q1 is given as the widened relation: 

 

WD(R, X, min(price), max(price), avg(price)). 

 

Example 3.2: For query Q2 we first define a relation R  as R = πstockID(Stocks) to get in a column 

all the distinct stockIDs. Then, we define the stream variable X over R as:  

 

X = ({stockID}, Prices, Q, (X.stockID = stockID and X.size() = 100)) 

 

The first part of θ expression of X ensures that a stream tuple s  will only be added to the queue 

that agrees on s’ value of stockID. X.size() = 100  condition is a built-in function over Q that 

determines that queue size is equal to 100. The result of query Q2 is given as the widened relation: 

 

WD(R, X, min(price), max(price), avg(price)). 

 

Example 3.3: Consider query Q3. In this case we need a relation: 

 

R(stockID,stock_closing_price,categoryID,category_closing_price) 

 

where each row contains information on the stock, its closing price of the previous day, its 

category and the category’s closing price of the previous day. This can be expressed in relational 

algebra as a join between Stocks and Category on categoryID, a subsequent selection on 

the closingPrice (equal to date()-1) –for both Stocks and Category tables- and a 

projection to keep only the necessary attributes with proper renaming 

(stock_closing_price ← Stocks.closingPrice, category_closing_price 

← Category.closingPrice). Then, we define two stream variables over R, X  and Y, where: 

 

X = {stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 0)) 

Y = ({categoryID}, Prices, Q2, (Y.categoryID = categoryID and Y.size() = 0)) 
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We now get the answer to query Q3 as: 

 

R1(R, stock_variation) ← WD(R, X, avg(price)/stock_closing_price), 

R2(R1, category_variation)←WD(R1, Y, avg(price)/category_closing_price) 

 

Note that we use the standard renaming relational operator (←) [64] to rename the produced 

widened relation reporting function names (Definition 3.5).  

 

Example 3.4: For query Q4 we project from Stocks table the stockIDs, R = πstockID(Stocks) 

and we define four stream variables over R, X, Y, Z and W, where 

 

X = ({stockID}, Volume, Q1, (X.stockID = stockID and X.size() = 10)) 

Y = ({stockID}, Prices, Q2, (Y.stockID = stockID and Y.size() = 10)) 

Z = ({stockID}, Volume, Q3, (Z.stockID = stockID)) 

W = ({stockID}, Prices, Q4, (W.stockID = stockID)) 

 

For X, Y  we define a window with size 10, while for Z,W we define an infinite window. We now 

get the answer to query Q4 using a sequence of widened relation transformations presented below: 

 

R1(R, sum_volume_10) ← WD(R, X, sum(volume)) 

R2(R1, max_price_10) ← WD(R1, Y,  max(price)) 

R3(R2, sum_volume) ← WD(R2, Z,  sum(volume)) 

R4(R3, max_price) ←  WD(R3, W, max(price)) 

 

Example 3.5: In query Q5 we want to use a queue for each stockID in order to keep the volume 

values for the stock. But we should keep the volume value only if the average price of the last 10 

reported values of this stock is greater than the running average price. Once again, we first define a 

relation R as R = πstockID(Stocks) and then define two stream variables X and Y as: 

 

X = ({stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 0)) 

Y = ({stockID}, Prices, Q2, (Y.stockID = stockID and Y.size() = 10)) 
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to continuously monitor the running average price and the last 10 reported values of each stock. 

Then, we integrate R, X and Y in a widened relation R1 defined as: 

 

R1(R, avgPrice, avgPrice10) ← WD(WD(R, X, avg(price)), Y, avg(price)) 

 

Widened relation is a standard relation and we can apply rename operation on its schema using 

relational algebra renaming operator. What we need now to complete the answer to query Q5 is 

one stream variable Z over R1  to sum volume values if avgPrice10 is greater than avgPrice 

and one stream variable W over R1 for the running volume total to use for the comparison: 

 

Z = ({stockID}, Volumes, Q3, (Z.stockID = stockID and Z.size() = 0 and 

         avgPrice10 > avgPrice)) 

W = ({stockID}, Volumes, Q4, (W.stockID = stockID and W.size() = 0)) 

 

We can use avgPrice and avgPrice10 for the θ  condition of Z  because they are functionally 

dependent on stockID. Otherwise we should have them as attributes of the A  set (Definition 

3.2) of Z. This is not always the case. The answer that contains all the required information to 

select from is given by the widened relation: 

 

R2(R1, sum_vol_prc)←WD(R1, Z, sum(volume)) 

R3(R2, sum_vol)←WD(R2, W,  sum(volume)) 

 

Finally we use πstockID, sum_ vol_prc, sum_vol(R3) to get the final result. 

 

Example 3.6:  For query Q6 we first define a relation R  as R = πstockID(Stocks) to get in a column 

all the distinct stockIDs. Then, we define two stream variables X, Y over R as: 

 

X = ({stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 0)) 

Y = ({stockID}, Prices, Q2, (Y.stockID = stockID and Y.size() = 10)) 
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to continuously monitor the running average price and the last 10 reported values of each stock. 

The first condition of the θ expression of X and Y ensures that a stream tuple s will only be added 

to the queue that agrees on s’ value of stockID. The second condition is a built-in function over 

Q1  and Q2  that allows a queue to have “infinite” size and size of ten respectively. We integrate R, 

X  and Y in a widened relation R2 applying the following transformations: 

 

R1(R, avgPrice) ← WD(R, X, avg(price)) 

R2(R1, avgPrice10) ← WD(R1, Y, avg(price)) 

 

Finally we use πstockID, avgPrice10>avgPrice(R2) to get the final result. The avgPrice10>avgPrice 

boolean condition returns either “True” or “False” 

 

Example 3.7: Finally we consider query Q7. This will require treating a stream variable as a new 

data stream source. We define a relation R as R = πstockID(Stocks) and then define a stream 

variable X and a widened relation R1 as: 

 

X = ({stockID}, Prices, Q1, (X.stockID = stockID and X.size() = 10)) 

R1(R, avgPrice) ← WD(R, X, avg(price)) 

 

We now define the stream variable Y over R1 as: 

 

Y = ({stockID}, X(avg(price)), Q2, (Y.stockID = stockID and Y.size() = 0)) 

 

Note that the stream source for Y is X with schema avg_price (the reporting function 

avg(price) will be renamed to avg_price (Definition 3.5)). We can now use Y  to define a 

widened relation to get Q7’s answer: 

 

WD(R1, Y, max(avg_price)) 
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3.4 Query Language 

In this section we propose a syntactic extension of SQL to handle the incorporation of stream 

variables and we provide several examples using the new constructs.  

3.4.1 Syntactic Constructs 

The general syntax is: 

 

monitor A1,A2,…,Am,Xi1
.f1(p1),Xi2.f2(p2),…,Xik.fk(pk)    

from R1,R2,…,Rl:X1(S1),X2(S2),…,Xn(Sn) 

where θ 

attach when θ1,θ2,…,θn 

 

where A1, A2, …, Am  are attributes of relations R1, R2, …, Rl, {i1, i2, … , ik} ∈ {1, 2, … , n}, and f1(p1), 

f2(p2), …, fk(pk) are reporting functions (Definition 3.5). In particular the added syntactic 

constructs are described below: 

 monitor: This newly introduced clause is identical to select when applied on relational

columns. When applied on reporting functions of stream variables, it rather follows a link 

to the appropriate queue and shows the current value. We introduce the monitor clause 

in order not to change the semantics of the projection operator. One can still use select, 

but reporting functions of stream variables evaluate to a special constant value (similar to 

NULL and ALL). 

 from: This clause is extended to contain relation names and stream variables, separated by 

colon. After specifying the participating relations, one may declare one or more stream 

variables, separated by commas, in the form of: <stream_variable_name> 

(<stream_source>). The <stream source> is an alias name for a data stream that has 

been declared in a configuration metadata catalog.  

 attach when: This newly introduced clause contains the defining expressions of the 

stream variables, separated by commas. The format of each θi, i = 1, 2, … ,n  is as 

described in Definition 3.2 
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3.4.2 Example Queries 

We provide the definition of queries [Q1-Q7] given in section 3.2.1 using the proposed 

syntactic extensions given in the previous section. 

 

Query example 3.1: Using the proposed SQL extensions, query Q1 can be expressed as: 

 

monitor stockID,  

X.min(price) as min_price, 

X.max(price) as max_price, 

X.avg(price) as avg_price 

from Stocks : X(Prices) 

attach when X.stockID = stockID 

  

Query Q1 uses the Stocks relation and Prices data stream. The detailed information how 

to access relations and data streams is stored on stream variable system metadata catalog. We 

define the X stream variable over the Stocks relation that uses stream data from Prices stream. 

The condition “X.stockID = stockID” defines that for each stockID we hold stock 

prices values in X’s queue.  The  X.min(price),  X.max(price),  X.avg(price) are 

reporting functions computing the running minimum, maximum and average stock price 

respectively over X’s queue.  

 

Query example 3.2: Query Q2 can be expressed as: 

 

monitor stockID,  

X.min(price) as min_price, 

X.max(price) as max_price, 

X.avg(price) as avg_price 

from Stocks : X(Prices) 

attach when X.stockID = stockID and X.size() = 100 

 

For query Q2 we define the X stream variable over the Stocks relation that uses stream data 

from Prices stream. The “X.stockID=stockID and X.size()=100” condition defines 
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that for each stockID the query  keeps the stock price values in a sliding  window of size 100. 

The query calculates the minimum, maximum and average price over this queue using the 

reporting functions: X.min(price), X.max(price), X.avg(price) respectively.  The 

size() function is a custom function defining a sliding window holding the last 100 reported 

prices. In other words it defines a queue of size 100.   The output of reporting functions becomes 

the columns min_price, max_price and avg_price next to the stockID column.  

 

Query example 3.3: Using the proposed SQL extensions, query Q3 can be expressed as: 

 

monitor stockID, stock_closing_price, categoryID, 

      category_closing_price,  

      X.avg(price)/stock_closing_price as stock_variation, 

      Y.avg(price)/category_closing_price as category_variation 

from Stocks as S, Category as C: X(Prices),Y(Prices) 

where S.categoryID = C.categoryID and S.date = date()-1 

attach when X.stockID = stockID and X.size() = 0, 

 Y.categoryID = categoryID and Y.size() = 0 

 

Query Q3 defines a join between Stocks and Category. The where clause restricts the 

query result to contain the stock and category closing prices of the previous date (date = 

date()-1). There exist two stream variables X and Y using the Prices data stream. The 

condition “X.stockID = stockID and X.size() = 0” defines that for each 

stockID we hold the running average price in X’s queue.  Y’s defining condition has the same 

operation for stock categories.  The X.avg(price) computes the running average reported 

price per stock and the Y.avg(price)the running average reported price per stock category. 

Using these values in the select clause, the query computes the percentage variation of both stock 

and category prices using yesterday’s prices. 
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Query example 3.4:  The query Q4 can be expressed as: 

 

monitor stockID, X.sum(volume) as sum_vol_10, 

        Y.max(price) as max_price_10, 

        Z.sum(volume) as sum_vol, 

        W.max(price) as max_price 

from Stocks: X(Prices), Y(Volumes), Z(Volume), W(Prices) 

attach when X.stockID = stockID and X.size() = 10, 

  Y.stockID = stockID and Y.size() = 10, 

  Z.stockID = stockID and Z.size() = 0, 

  W.stockID = stockID and W.size() = 0 

 

For query Q4 we define four stream variables:  X, Y, Z and W.  X and Y receive data from the 

Prices stream and Z and W from the Volumes stream. Both X and Y define a window of size 10, 

while Z and W an infinite window. The reporting functions in the select clause compute the 

aggregates specified in the query definition.  

 

Query example 3.5: Using the proposed SQL extensions, query Q5 can be expressed as: 

 

monitor stockID, 

        Z.sum(volume) as sum_vol_prc, 

        W.sum(volume) as sum_vol 

from Stocks: X(Prices), Y(Prices), Z(Volume), W(Volume) 

attach when X.stockID = stockID and X.size() = 0, 

 Y.stockID = stockID and Y.size() = 10, 

 Z.stockID = stockID and Z.size() = 0 and 

 Y.avg(price)>X.avg(volume), 

 W.stockID = stockID and W.size() = 0 

 

For query Q5 we define four stream variables:  X, Y, Z and W.  X and Y receive data from the 

Prices stream and Z and W from the Volumes stream.  The X stream variable computes the 

running average price per stock and Y computes the average stock price for the last 10 reported 
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stock prices. The Z’s condition “Y.avg(price)>X.avg(volume)”  specifies that the 

reporting function Z.sum(volume)is computed only when the running average price is greater 

than the average price of the 10 last prices. This is a type of correlated aggregation [42][67]. The W 

stream variable calculates the running total volume for each stock.  

 

Query example 3.6: Using the proposed SQL extensions, query Q6 can be expressed as: 

 

monitor stockID, (Y.avg(price)>X.avg(price)) as alert_flag 

from Stocks: X(Prices), Y(Prices) 

attach when X.stockID = stockID and X.size() = 0, 

            Y.stockID = stockID and Y.size() = 10 

 

The query Q6 contains two stream variables X and Y that use the Prices stream. X defines 

an infinite queue and Y defines a queue of size 10. The monitor clause identifies in real time if the 

running average price is greater than the average price of the last 10 reported values. This 

predicate is a boolean condition resulting to either a “True” or a “False” value.  

 

Query example 3.7: Using the proposed SQL extensions, query Q7 is: 

 

monitor stockID,  

        X.avg(price) as avg_price_10 

        Y.max(price) as max_avg_price 

from Stocks: X(Prices), Y(avg_price_10) 

attach when X.stockID = stockID and X.size() = 10, 

            Y.stockID = stockID and Y.size() = 0 

 

The query Q7 contains two stream variables X and Y.  X uses the Prices stream and defines 

a queue with size 10. The Y stream variable uses as a source the aggregates of X stream variable 

(avg_price_10). Over these aggregates an infinite queue is defined and the condition 

“Y.stockID = stockID and Y.size() = 0” computes the maximum of these 

aggregates.  
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3.5 Evaluation and Optimizations 

In this section we provide a straightforward evaluation algorithm for stream variable queries 

and several optimizations. 

3.5.1 Evaluation Algorithm for Stream Variable Queries 

The computation of stream variable queries is based on a straightforward but highly 

optimizable evaluation algorithm presented below: 

 

Algorithm 3.2: Evaluation algorithm of a stream variable query (W ) 
 

1: variables 

2: A list of stream variables {Xi, i=1,2,…,n} 

3: A list of queues for each stream variable {Qt, t=1,2,…,m} 

4: A data source S producing tuples s(a1,a2,…,ak) 

5: end variables 

6: when a tuple s from S becomes available do   

7:   for each stream variable Xr of W query such that the  

  data source for Xr is S do  

8:     for each row r of the widened relation with respect to W 

such that Xr.θ evaluates to true with respect to r and s 

  do 

9:         push s into Qt 

10:         calculate Xr reporting functions over queue Qt 

11:       end do 

12:     end for 

13:   end for 

14: end when 

 

The algorithm operates as follows: for a given stream tuple s of stream source S and for each 

stream variable Xr that mentions S  as its source, we check all rows of the widened relation w.r.t W 

to see whether they satisfy Xr’s condition. 

3.5.2 Optimizations 

This simple algorithm can be very expensive if the widened relation w.r.t W is large. There are 

several optimizations that can be applied to reduce this cost, mentioned briefly below: 

 Indexing: It is important to analyze the θ condition of a stream variable in order to 

deduct (if possible) which rows of the widened relation w.r.t W will be updated and 
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avoid a full scan. In most of the cases, it is only a few. By using cleverly created 

indices, cost can be reduced further. 

 Decorrelation: By default, according to mapping of Definition 3.6, stream variables 

are defined over the relation of the previous widened relation. However, sometimes this 

is not necessary, as in Q3. By performing some syntactic analysis of the θ condition of 

a stream variable, several rows of the widened relation w.r.t W may use the same 

queue. 

 Parallelism: One can horizontally partition the widened relation w.r.t W to several 

processing nodes and distribute the stream tuples to all of these. The result is the union 

of all the sub-results. 

 

3.6 Implementation and Experiments 

3.6.1 Stream Variables System 

We have developed a prototype system which incorporates many of the concepts described in

the previous sections. Our system has been implemented in C/C++ and follows the general DSMS 

architecture described in [21]. The main purpose was to build a prototype system to be used as a 

proof of concept.  

Our prototype system follows a component-based architecture. Each component has a well 

specified API which increases code reusability and makes future improvements easier. Figure 3.4 

shows the main components of our system.  

Initially the user formulates a query following the syntactic extensions described in subsection 

3.4.1. Query parser validates query’s syntax and Query optimizer analyzes the query for possible 

optimizations (as described in Section 3.5.2). Once the base relation has been computed and 

loaded and the window structures initialized and linked to the base relation, the Scheduler starts 

probing input queues (one for each data source) in a round robin fashion for incoming stream 

tuples. These are forwarded to the Executor for processing. Executor implements Algorithm 3.2. 

Base relation and window structures are stored in memory. Metadata catalog provides information 

for data source names and types, window schemas, etc. 
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Figure 3.3: Stream Variables system 

 

3.6.2 Experiments 

We conducted some experiments to measure the efficiency and scalability of Stream Variable 

system. Our tests were performed on an Intel Core 2 CPU @ 2.0Ghz with 2GB main memory, 

running Windows XP 

Figure 3.5 shows performance results for query Q2 with different optimization parameters. In 

this test we use a flat file as a data stream source (Prices data stream). The base relation 

contains 100 values (read from a flat size) and we varied the size of the incoming stream (read 

from a flat file) from 20000 to 100000 tuples with a step of 20000. We plot the query completion 

time. The completion time contains: (a) reading from disk the base relation values, (b) building 

windows, (c) reading from disk the incoming stream tuples and (d) query evaluation (Algorithm 

3.2).  For both line plots the optimizer identifies the equality predicate in such that clause and 

the executor built a memory hash index (C++ hash map) on stockIDs. For the top line plot, we 

force optimizer not to identify that the declared aggregate functions (min, max, avg) can be 

evaluated using a window of size 1. In this case executor builds a sliding window (in-memory 

array) of size 100 and re-evaluates the min, max and avg functions over 100 values when a new 
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value inserted in the window. For the bottom line plot, executor uses a window of size 1 resulting 

in better performance results. This simple example indicates that our system behaves satisfactory 

in processing high-rate streams coming from disk. 

 

 

Figure 3.4: Query Q2 completion time 

 

Similarly, Figure 3.6 shows performance results for query Q2. In this case stream tuples 

(Prices) are kept in memory to avoid disk reading. Also we do not count the time the system 

needs to load the base relation values from disk, the time for building the appropriate window 

structures and the time needs to build a hash-index for the base relation values. We focus only on 

the performance of evaluating the query Q2 using Algorithm 3.2. The windows used for the 

computation of min, max, avg are of size 1 and are common C++ memory arrays. We varied the 

size of the incoming memory stream from 100000 to 500000 tuples with a step of 100000 and 

plotted the query Q2 evaluation time when the relation size of the base relation ranges from 100 to 

500 tuples with a step of 100. This simple example indicates that our evaluation algorithm 

performs well in processing high-rate streams (existing in-memory), while it scales well as the 

base relation size increases. Comparing with the plot in Figure 3.5 we can see that there is a lot of 

overhead in the Scheduler (reading from disk) and the Windows object manager (creating window 

structures).  
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Figure 3.5: Query Q2 evaluation time for different base relation sizes 

3.7 Summary and Conclusions 

Data stream management systems have been the focus of intense research activity in the past 

few years. Real-time analytics and continuous queries become increasingly important topics both 

in the research and the industry worlds. The goal of this work is not to build a complete data 

stream system, handling issues such as load shedding, approximate answers and others, but to 

model and handle useful class of continuous queries for real-time analytics. 

A simple SQL extension is introduced in order to facilitate the succinct expression of analytics 

over stream data. These analytics queries consist of aggregates of repeated, multiple, possibly 

correlated and at different granularities stream selections. We presented a motivating application 

from the financial world along with several query examples. We define the concept of widened 

relations. The key idea is that aggregates over stream data can be repeatedly added to a base 

relation.  

The proposed language can provide a generic framework for declaring analytics queries over 

stream data coming from multiple stream sources.  
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4 Spreadsheet-like Stream Processing 
4.1 Introduction 

Decision support systems (DSS) are based on data stored statically and persistently in a 

database, typically in a data warehouse. The queries applied over these data enable analysts to take 

proper and efficient decisions. In many applications however, it may not be possible to process 

queries within a Database Management System (DBMS). These applications involve data items 

that arrive on-line from multiple sources in a continuous fashion [27]. In Data Streams 

Management Systems (DSMSs) we usually have “continuous” queries [21][71] rather than “one-

time”. Computing real-time analytics (potentially complex) on top of data streams is an essential 

component of the real-time enterprise and an essential requirement of DSMSs.  

In this chapter we present the theoretic foundations and a system called COSTES (Continuous 

Spreadsheet-Like Computations) that allows users to formulate easily continuous queries for 

analytics and decision purposes. These queries mingle traditional and stream data in a single, 

correlated view. This class of queries – which resemble spreadsheet documents, where the 

definition of a column usually depends on previously defined columns and some initial “basic” 

columns - is particular suitable for stream data management and are used mainly for decision 

support. As a result, the purpose of COSTES is not to serve as a complete and generic Data Stream 

Management System (DSMS), but rather to form a useful and practical tool for stream queries 

used in (near) real-time decision making. 

4.2 Challenges 

Stream queries used for decision support tasks are important for companies and organizations 

to gain insight about their operations in (near) real-time. The goal is to provide a theory and a 

platform for real-time analytics beyond common offline and ad-hoc analytics which are quite 

common. In order to support decision support stream queries a theoretical framework and a proper 

language must be defined.  

To achieve this goal a number of requirements should fulfilled: 
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 Continuous queries (R1): The nature of the queries should be continuous, i.e. the 

result is updated as new data arrives. 

 Tabular format (R2): The output of such a query should be in tabular format, 

appropriate for (subsequent) traditional database processing or input to visual tools. 

 Multiple data sources (R3): The language should allow consolidation/aggregation of 

multiple data streams with different schemata into one query. 

 Balancing declarative/procedural tradeoffs (R4): We should specify declaratively 

most of the query - ripping the benefits from traditional database access methods, while 

allowing procedural flexibility in the aggregation part. 

 Correlated computations (R5): Many queries have a common pattern: the leftmost 

column(s) consists of one or more fixed values (e.g. stock names, vehicle IDs, sensor 

IDs etc) and possibly related information, while the remaining columns are defined 

successively based on previously defined columns. 

 Optimizations (R6): The proposed approach must enable a set of optimizations for 

performance and efficiency reasons. This is important as (near) real-time decision 

support systems must handle high throughput stream data and compute results in a fast 

manner. 

4.3 Radio Frequency Identification (RFID) Technology and 

Applications 

We use a motivating application from the supply chain management field. Radio Frequency 

Identification (RFID) technology is used for real-time product monitoring and supply chain 

automation. In this chapter we provide background details about these areas.  

In the recent years, the development of automatic identification technologies, such as Radio 

Frequency Identification (RFID) paired with sensor–based technologies and ubiquitous computing 

have caused an explosion in data capturing and real-time information processing requirements, 

presenting new challenges and opportunities for the development of data stream management 

applications.  

RFID technology has been extensively used for a diversity of applications ranging from access 

control systems to airport baggage handling, livestock management systems, automated toll 

collection systems, theft-prevention systems, electronic payment systems, and automated 

production systems. Nevertheless, what has made this technology popular nowadays is the 

application of RFID for the identification of consumer products and the management of supply-

chain processes. Tagging individual product instances at item level and tracking them across the 

supply chain generates immense streams of data at various stages. The challenge is to efficiently 
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filter these data to support real-time decisions in the context of various business applications, from 

upstream warehouse and distribution management down to retail-outlet operations, including shelf 

management, promotions management and innovative consumer services. 

As a result the emergence of new automatic identification technology (RFID) is expected to 

revolutionize many of the supply chain operations by reducing costs, improving service levels and 

offering new possibilities for identifying unique product instances. The advanced data capture 

capabilities of RFID technology coupled with unique product identification and real-time 

information integrated from different data sources define a new and rich information environment 

that opens up new horizons for efficient management of supply chain processes and decision 

support. 

Currently, most applications of RFID in supply chain management exploit the automation 

capabilities of the technology with the objective to speed-up processes and reduce costs, such as 

the automatic identification of incoming and outgoing goods in warehouse operations or asset 

tracking in closed-loop applications. However, the real potential of RFID lies in the possibility to 

capture new types of information in real-time and support decisions. We are towards that RFID 

tags are not simply used to replace barcodes and automate processes, but to provide real-time 

information in order to create new business opportunities and experiences for the customers. 

Real-time information capturing and decision support present complex technical challenges, 

related to managing huge streams of data coming from multiple data sources and converting them 

into meaningful information in a way to support decisions. Until recently, decision support 

systems (DSS) were based on data that were stored statically and persistently in a database, 

typically in a data warehouse. Complex queries and analysis were carried out upon this data to 

produce useful results for managers. In many RFID applications however, it may not be possible to 

process queries within a database management system. RFID applications involve data items that 

arrive on-line from multiple sources in a continuous fashion. This data may or may not be stored in 

a database. We must have “continuous” queries rather than “one-time”. The answer to a 

continuous query is produced over time, reflecting the stream data seen so far. Computing real-

time analytics (potentially complex) on top of RFID data streams is an essential component of the 

real-time supply chain enterprises and an essential requirement for decision making. 

Supply chain applications range from upstream warehouse and distribution management down 

to retail-outlet operations, including shelf management, promotions management and innovative 

consumer services [116]. Most of these applications are characterized as “open-loop”, meaning 

that they require the involvement of different supply chain partners in an open environment in 

order to be implemented, as, for example, the involvement of the supplier/manufacturer to attach 

an RFID tag to the product and the involvement of the distributor or retailer to monitor product 

movement in warehouses or stores by installing RFID readers at various locations.  
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This fact is probably what poses the greatest challenge for the application of RFID technology 

in supply chain management today, as the involved partners cannot equally share the associated 

costs and benefits. For suppliers, RFID, as a tag that has to be placed on their products, is often 

considered to be an unfortunate strategic necessity [18] they have to comply with in order to 

satisfy the plans of their big customers for increased internal efficiency. For suppliers to benefit 

from RFID they need to share RFID information with their partners and exploit this information in 

order to streamline supply chain processes and gain new market knowledge [130]. At the same 

time, for both retailers and suppliers, investments in RFID technology cannot be justified by 

operational gains alone and more strategic benefits need be materialized through advanced 

information acquisition and decision support.  

Overall, and in line with [90], the gradual contribution of RFID in supply chain management, 

as an automatic product identification technology, across the following axes:  

 the automation of existing processes, leading to time/cost savings and more efficient 

operations;  

 the enablement of new or transformed business processes and innovative consumer 

services, such as providing consumer self check-out or product-information services;  

 the availability of richer and more accurate information in real-time, offering the 

potential for advanced decision support and market knowledge acquisition.  

 

In order to move from the level of automation and operational benefits to the level of advanced 

decision support we need to efficiently and effectively transform RFID data into meaningful 

reports, both internally within a company and in a collaborative supply chain environment where 

information is shared among supply chain partners.  

4.4 RFID Motivating Application 

4.4.1 Application Scenarios 

An RFID system consists of RFID readers with antennas, host computers and transponders or 

RF tags. The EPC (Electronic Product Code) standard specifies unique product IDs in the supply 

chain environment. RFID applications generate large volume of streaming data, which have to be 

automatically filtered, processed, grouped and transformed into meaningful information to be used 

in business applications.  

This need is better illustrated by the following two application scenarios. These scenarios 

employ product item-level RFID tags, while RFID readers and antennas are placed on store 

shelves, so that the product movement on and off the shelf is monitored.  
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The first scenario monitors shelf availability. This scenario refers to the possibility of 

monitoring the existence or not of products on supermarket shelves in order to replenish them on 

time. Given the negative impact that “out-of-shelf” (OOS) has on consumer attitude, sales and 

loyalty, retailers and suppliers have raised this issue to a top priority for their industry today and 

confront RFID as a possible solution to this problem. The requirements for a real-time report 

monitoring shelf availability would be as following:  

 The report presents the remaining quantity of each product on the shelf, where a 

product is identified by its description at the product type level.  

 The report is updated in real-time, depicting product sales off the shelf as well as shelf 

replenishment activities.  

 A user, e.g. store employee or supplier, can view the report or get OOS notification 

alerts in order to make shelf replenishment decisions.  

 When the last item of a product on the shelf has been sold, an OOS is reported.  

 The duration of the OOS is tracked until the shelf is replenished back.  

 

The second scenario relates to products’ promotion management. A particularly important 

marketing activity for fast moving consumer goods is sales promotions, which represent the 

majority of manufacturers’ marketing budgets. Despite the importance of sales promotions and the 

amount of revenues devoted to them, suppliers often fail to evaluate sales promotion effectiveness 

and when they do so, this is usually several weeks after a promotion has ended. Being able to 

monitor the effectiveness of in-store sales promotions in real-time gives a supplier the possibility 

to act proactively and ensure the success of a sales promotion. In order to do so, a supplier should 

have access to real-time information about product sales in the store, including information about:  

 The sales off-take from a specific promotional stand versus the shelf or other locations 

in a store. If a location is underperforming, then the supplier should probably request 

the store to change the location of a promotion.  

 The availability of products on both the shelf and the promotion stands in order to drive 

replenishment decisions.  

 The products that a consumer has already put in her basket when selecting a product 

from a promotional stand or those that she replaces as a response to a sales promotion.  

 

The above application scenarios and respective reports are indicative examples that 

demonstrate the need for real-time decisions in supply chain management, exploiting the 

possibilities offered for automatic and unique product identification through the use of RFID 

technology. In the next sections of the current chapter we propose a decision support tool, utilizing 
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a data stream management system to aggregate RFID data, addressing the aforementioned 

requirements for real-time decisions in the supply chain context. 

For both applications scenarios we assume that we have installed RFID readers in a super 

market monitoring the presence of products on shelves and five promotional stands. The 

application-level-event (ALE) middleware services [10] retrieve filtered RFID data from RFID 

readers. Particularly, the asynchronous subscribe mode of ALE service, where a client registers a 

subscription and the ALE service periodically sends aggregated events back to the client. Our 

system manages data streams over ALE. The setting is described in Figure 4.1: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

. 

 

 

 

 

Figure 4.1: Application scenarios setup 

 

Let’s assume that a product may be displayed at more than one location in the store, e.g. the 

regular shelf position and a promotional stand. The schemata of the RFID data streams presented 

to our system, after filtered and aggregated by the ALE middleware, are:  

 

Readings(EPCProdCode, quantity, timestamp) 

Stand1(EPCProdCode, quantity, timestamp)  
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Stand3(EPCProdCode, quantity, timestamp)  

Stand4(EPCProdCode, quantity, timestamp)  

Stand5(EPCProdCode, quantity, timestamp) 

 

Each stream tuple reports the EPC product-type code (EPCProdCode), the measured quantity 

of the product (quantity) and the timestamp of the measurement (timestamp). Streams are 

aggregated by the ALE service at the product-type level, i.e. the GTIN number occupying the first 

13 digits of an EPC (usually referred to as barcode). Readings report products’ status placed on 

regular shelves and Stand1 to Stand5 report products’ status placed on stands one to five 

respectively. We assume that a product exists only in one location at the store’s shelves and 

possibly at one promotional stand.  While customers often misplace products, ALE middleware 

only reports product quantities found at their designated places (regular shelf and promotional 

stands). In other words, Readings and Stand1 to Stand5 streams report clean data. 

Also we assume the presence of two tables in our system: 

 

Products(prodCode, threshold,…)  

Promotions(promCode, standNumber, prodCode, profit, …) 

 

Products stores information about products, such as product code, minimum threshold 

values, location, etc. and Promotions stores information about past promotions. 

 

4.4.2 Example Queries 

There are several useful continuous queries one can register on top of these streams to monitor 

shelf replenishment and compare sales of the same product placed at different locations: 

 

Q1. Shelf replenishment has been identified as one of the main benefits of RFID technology. It is 

important to know when a product’s quantity on the shelf has reached a critical threshold and 

notify the store’s manager to replenish it. 

Q2. Similarly, it is useful to know how long it takes to replenish the shelf (for each product), 

starting counting from the first occurrence of “below-the-threshold” event, in order to monitor 

product availability on the shelf and duration of out-of-stocks. 
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Q3. During promotional periods of a compilation of products placed on a stand we are interested 

in measuring the effectiveness of the promotion. We can do so by comparing the sales rate of the 

same product from the shelf and the promotional stand. 

Q4. A more demanding report would be computing the time a product takes to get from its average 

quantity on the self to its threshold. This would allow store managers to better understand and 

schedule shelf replenishments and make shelf-space allocation decisions. 

 

Instances of the output of query Q1 to Q4 are is shown in Figure 4.2 (a) to (d): 

 

EPCProdCode threshold max_quantity alert 
1 10 47 FALSE 
2 12 7 TRUE 
3 8 22 FALSE 
4 15 11 FALSE 
… …  … 

(a) 

 

EPCProdCode threshold time_to_repl 
1 10 NULL 
2 12 3200 
3 8 NULL 
4 15 1800 
… … … 

(b) 

 

EPCProdCode self_variance stand_variance 
1 0.61 0.82 
2 0.43 0.35 
3 0.81 0.84 
4 0.35 0.61 
… … … 

(c) 

 

EPCProdCode threshold avg_quantity time_to_threshold 
1 10 48 32400 
2 12 53 267988 
3 8 26 169366 
4 15 39 92102 
… … … … 

(d) 

 

Figure 4.2: Instances of results for queries Q1 to Q4 
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All queries have a common pattern: the leftmost part of the resulting table corresponds to a 

traditional relational expression, while the rest of the columns represent aggregates over sets of 

values formed over stream data. Let us consider Query Q2. The idea we want to express is the 

following: 

 

Algorithm 4.1: Query Q2 evaluation algorithm  

 
1: compute table R(EPCProdCode, Threshold); 

2: add column time_to_repl to R; 

3: for each row r of R do 

4:  define an ordered set Sr of real type values 

5:  empty Sr; 

6:  r.time_to_repl = null; 

7: end-for 

8: for each stream tuple (p, q, t) from Readings do 

9:  for each r in R do 

10:   if (r.EPCProdCode==p && (r.threshold > q || empty())) do 

11:    push t to Sr; 

12:    r.time_to_repl = Sr.last_elem - Sr.first_elem;  

13:   end-if 

14:  end-for 

15: end-for 

16:  

17: function bool empty() 

18:  begin-function 

19:   if(r.Time_to_Repl is null) 

20:    return false; 

21:   end-if 

22:   else  

23:    set r.Time_to_Repl to (last_elem - first_elem of Sr); 

24:    store r; 

25:    clear Sr; 

26:    r.time_to_repl = null; 

27:   return false; 

28:  end-else 

29: end-function 
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Table R is computed by a traditional relational expression. Then, for each row of R we define 

an ordered data set that contains values (timestamps) from the Readings stream. The 

timestamp of a stream data must be appended to a row’s data set if a condition is satisfied – in our 

case if the reported EPCProdCode corresponds to the row’s EPCProdCode and the reported 

quantity is below the row’s threshold. However, when the condition does not hold, the data set 

must be emptied - empty() is a function returning always false, having as a side effect to empty 

the ordered set of the row (Sr). It also calculates and stores the out-of-stock duration and clears the 

out-of-stock variable (line 26) at the first occurrence of “above the threshold” event. Note that we 

have short-circuited evaluation. One could examine only the row that agrees on the 

EPCProdCode, but this is an optimization specific on the condition. In other examples, a stream 

value may be inserted to more than one data sets. 

This is the idea we model: start from a relational expression (the base table), use each row as a 

parameter to define one or more, possibly correlated, parameterized subsets of stream sources 

(associated sets) and extend the schema with aggregates over these. Membership to these sets 

should be defined declaratively, while the aggregate computations can be any user-defined 

aggregate function. We argue that this approach allows succinct and concise representations of 

many practical monitoring queries. The challenge is to have a simple query language to express 

and an efficient, optimizable, algorithm to evaluate such queries. Note that each ordered data set 

Sr is “attached” to a persistent relational value, i.e. Sr can be thought as labeled by a “stable” 

value. This can be used to develop a relational operator to express this class of queries. 

4.5 Continuous Spreadsheet-like Computations 

4.5.1 Theoretical Framework 

Below we provide the definitions of our framework to support queries as those given in the 

previous section and taking into consideration the requirements mentioned in section 4.2. 

 

Definition 4.1: (Associated Set) Given a relational schema B, a relational schema of a stream 

source S and a condition θ involving attributes of B and S and constants, then we define the 

associated set of B, S and θ, denoted as Assoc(B, S, θ), as a collection of parameterized multi-sets 

able of storing S’s tuples, where the columns of B serve as the parameters. Each parameterized 

multi-set of Assoc(B, S, θ) is denoted as Assocr(B,S,θ), where r is a row of B. B is called the base-

values table, S the source and θ the defining condition of the associated set. Assocr(B, S, θ) is 

called the instance of the associated set with respect to r. � 
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Implementation and selection of these data structures (e.g. multisets) are left to the optimizer.  

Note that associated sets can also be defined over traditional data sources, such as flat files and 

relations, as long as they present a relational interface and there is a tuple iterator over the data 

source. 

The class of queries that we want to support (COntinuous SpreadsheeT-likE computations -

COSTES query-) is based on repeated, consecutive definitions of associated sets and their schema 

can be described by the following algorithm: 

 

Algorithm 4.2: COSTES queries schema evaluation algorithm  

 
1: assume S1,S2,...,Sn stream sources; 

2: B is the initial schema of the base-values table; 

3: for (i=1 to n) do  

4:  let Θi be a condition involving attributes of B and S and 

 constants; 

5:  Ai = Assoc(Bi, Si, θi); 

6:  let f1(si1),f2(si2),…,fk(sik) a set of aggregate functions on 

 attributes of Si; 

7:  extend B’s schema with k columns, Ai_fj(sij), j=1,2,…k  

 and name it B1; 

8:  attach a null value to Ari at row r and column Ai_fj(sij), 

 j=1,…,k; 

9:  B = B1; 

10: end-for 

 

Algorithm 4.1 is just the schema of a COSTES query. How such a query is evaluated is 

explained in section 4.7.  

 

Definition 4.2: (Associated Set Membership Test) given a stream tuple s of Sj we say that s 

satisfies the membership test for associated set Ari, if i=j and θi evaluates to true with respect to r 

and s. In all other cases the return value is NULL. 

 



Chapter 4: Spreadsheet-like Stream Processing 64 

 

4.6 Query Language 

   The goal is to express a large class of practical continuous queries as those shown in the 

mentioned application (Section 4.4.2) using some intuitive extension of SQL.  

4.6.1 SQL Extensions 

The syntactic constructs of the proposed language is as follows: 

 

select A1, A2, …, Am, {Ci.fj(S1)}i =1,…,d    

from R1, R2, …, Rk 

<where θ> 

<group by A1, A2, …, Am> 

extended by C1(S1), C2(S2), …, Cn(Sn) 

such that θ1, θ2, …, θn 

 

where A1, A2, …, Am attributes of R1, R2, … , Rk tables, i in {1, 2, …, n}, fj an available aggregate 

function and Sl an attribute of Si’s schema. The newly introduced extended by and such 

that clauses define the additional columns that will be “attached” to the relation defined by the 

select…from…where…group by clause (the initial base-values table). In particular the added 

syntactic constructs are described below: 

 select: The select clause may contain one or more aggregate functions of the 

associated sets defined by the extended by clause. Since more than one aggregate 

functions per associated set is possible, we may have more than m+n columns in the 

output table. 

 extended by: This clause is used to declare the names and the data sources of the 

associated sets, in a comma-separated list. 

 such that: This is a comma-separated list of the defining conditions of the associated 

sets. Condition θi involves attributes of the initial base-values table, constants and 

aggregates of associated sets C1…Ci-1. 

 

Given the nature of the such that clause, all continuously updated associated sets are 

functionally dependent on some column(s) of the initial base-values table (directly or transitively). 
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4.6.2 Example Queries 

In this section we show how queries Q1 to Q4 described in section 4.4.2 can be expressed with the 

proposed SQL extensions. 

 

Query example 4.1: Using the proposed SQL extensions, query Q1 can be expressed as: 

 

select prodCode as EPCProdCode, threshold, 

       X.max(quantity) as max_quantity, 

      (X.max(quantity)<threshold) as alert 

from Products 

extended by X(Readings) 

such that X.EPCProdCode=prodCode and X.size()=1 

 

Query Q1 requires an associated set of size 1 to be defined for each prodCode tuple of 

Products – to keep only the last quantity reported. We use the max aggregate function to 

retrieve this single value. size()is a method that enforces X to have size 1 (implementation wise, 

these are methods of the data structures that will implement associated sets.) Threshold is also 

required in the base table because it is used in an expression in the select clause. 

 

Query example 4.2: Using the proposed SQL extensions, query Q2 can be expressed as: 

 

select prodCode as EPCProdCode, threshold, 

       X.diff(timestamp) as time_to_repl 

from Products 

extended by X(Readings) 

such that X.EPCProdCode=prodCode and  

          (X.quantity < threshold cor empty()) 

 

This query requires an associated set X for each prodCode, which is populated by the 

stream’s timestamp when the reported quantity drops below the threshold. However, this set 

has to empty whenever this condition does not hold. We use a system function called empty() 

which always returns false and as a side effect empties the corresponding set. cor is the short-
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circuited disjunction operator. The aggregate function diff computes the difference between the 

last and the first element of X – forcing the optimizer to use an ordered data set for X. 

 

Query example 4.3: Using the proposed SQL extensions, query Q3 can be expressed as: 

 

select ProdCode as EPCProdCode, 

       X.var(quantity) as shelf_variance, 

       Y.var(quantity) as stand_variance 

from Promotions 

where promCode=172 and standNumber=1 

extended by X(Readings), Y(Stand1) 

such that X.EPCProdCode=prodCode and X.size()=200, 

          Y.EPCProdCode=prodCode and Y.size()=200 

 

Assume that, for those products participating in promotion 172, we want to compare their sales 

rate from the self and the first stand. For each such product code, we define two associated sets of 

maximum size 200, named X and Y, where X and Y contain the reported quantity from the standard 

stream (Readings) and first stand’s (Stand1) streams. We want to monitor the variance of 

those sets. 

 

Query example 4.4: Using the proposed SQL extensions, query Q4 can be expressed as: 

 

select prodCode as EPCProdCode, threshold, 

       X.avg(quantity) as avg_quantity, 

       Y.diff(timestamp) as time_to_threshold 

from Products 

extended by X(Readings), Y(Readings) 

such that X.EPCProdCode=prodCode, 

          Y.EPCProdCode=prodCode and ((Y.quantity > threshold 

          and Y.quantity < X.avg(quantity) cor empty()) 
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Finally, Query Q4 is similar to Q2, but an extra comparison between the reported quantity and 

the shelf’s running average is required. Consequently, we need to define for each prodCode a 

data set X keeping the reported quantities and use X’s average to constrain membership to Y. 

4.6.3 Requirements 

By construction, the output of our queries is continuous and tabular (Requirements [R1] and 

[R2].) By allowing associated sets to be defined over different data sources we address 

requirement [R3]. Membership to associated sets is defined declaratively through the such that 

clause, which allows selection of the access methods that can be used. Aggregate computation 

over the defined associated sets can be anything, which adds to procedural flexibility. However, 

even in this case some optimization is possible, such as appropriate selection of data representation 

(e.g. stacks, queues, min-max heaps, etc.) of the associated sets (Requirement [R4].) Finally, the 

fact that aggregates of an associated set may constrain the definition of subsequent associated sets, 

as in Query Q4, addresses Requirement [R5]. 

 

4.7 Query Evaluation and Implementation 

In this section we describe the query evaluation algorithm and suggest possible optimizations 

for COSTES queries. We present our implementation and provide query performance results. 

4.7.1 Query Evaluation 

A COSTES query can be continuously updated in a very simple manner. The evaluation 

algorithm operates as follows: 

 

Algorithm 4.3: COSTES (naïve) evaluation algorithm  

 
1: for a tuple s of data source S do 

2:  for each associated set X having source S do 

3:   for each row r of B do 

4:    if(θx is true with respect to r and s) do 

5:     append s into associated set instance Xr; 

6:     evaluate X’s aggregate functions mentioned in select   

    clause over associated set instance Xr; 

7:    end-if 

8:   end-for 

9:  end-for 

10: end-for 
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4.7.2 Optimizations 

Although the evaluation algorithm is rather simple, several optimizations are possible: 

 

 Optimization 4.1 - Projection: Line 5 dictates that a stream tuple s must be appended 

to the data structure representing associated set instance Xr. A naive approach for 

associated sets’ implementation is to store the complete data stream tuples. However, 

one can parse the select and such that clauses and identify the necessary attributes to 

keep. So, one can append to Xr only those attributes of s needed to the computation of 

aggregates of X. For example, in query Q3, only quantity will be appended to 

associated sets X and Y. 

 Optimization 4.2 - Filtering: Parts of the defining condition θx may be relevant just to 

the stream tuples, i.e. the defining condition may be rewritten as θx = θ’x ⋀ θc  where θc  

is an expression involving only attributes of S and constants. Some systems allow 

pushing simple filtering conditions to the stream source, saving iterations of the main 

loop at Line 3. Push simple selections to the source of the stream, is similar to 

Gigascope’s approach of low- and high- levels of query processing [57][58] or low-

level filtering in sensor networks [86], to avoid extra processing power or battery 

consumption respectively. For example, in query Q3 we may want to consider 

Readings tuples for X associated set only if the quantity is greater than a 

constant value (e.g. threshold). The defining condition of X would be in this case: 

X.EPCProdCode=ProdCode and X.quantinty>threshold and X.size()=200. This 

could be broken down to two generic windows, X1 and X2, X1 having as defining 

condition X.quantinty>threshold and X.size()=200 and source the Readings 

stream and X2 having as defining condition X.EPCProdCode=ProdCode and 

X.size()=200 and source the X1 stream. X1 can then be pushed to the source of 

Readings stream, if possible. 

 Optimization 4.3 - Sources-sets mapping: In some cases, we may have queries with a 

large number of associated sets, or multiple queries with a significant number of 

associated sets defined in each. Given a tuple s of a data source S, it is important to 

quickly locate the associated sets this tuple affects (Line 2). Besides simple data 

source-associated sets mapping techniques, we can also build a query index scheme 

[113] based on the defining conditions and data stream sources, to continuously 

determine which associated sets must be evaluated. 

 Optimization 4.4 - Base-table indexing: One can analyze the defining condition of an 

associated set and build appropriate indexes in order to quickly locate matching rows 
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of the base table, avoiding thus the full scan of Line 3. For example, all example 

queries (Section 4.4.2) could benefit from the existence of a hash index on ProdCode 

on the associated sets, to quickly identify the matching instances to the incoming 

EPCProdCode. 

 Optimization 4.5 - Data structure selection: An associated set is a collection of 

multisets. The representation of associated set instances is a major issue and 

contributes significantly to the performance of query evaluation. So another 

optimization is to use data structures to most appropriately represent associated sets, 

based to declared aggregate functions and methods. For example, if we want to 

compute the running max quantity of each product, an infinite multiset is required for 

each instance. Of course, such queries are never implemented as such, since a single 

value for each product suffices. However, this should be an optimization issue and not 

left to the semantics of the aggregate function. Another example is the computation of 

a min (or max) value of a sliding window (i.e. size( )<>0). The most appropriate 

representation of the associated set instances is a circular queue with a min (or max) 

tracking algorithm implemented (keeps the minimum of the queue and checks at 

dequeuing time whether the deleted element is the minimum). A rule-based approach 

seems appropriate for such data structure selection. 

 Optimization 4.6 - Scheduling: One can think associated sets as containers (or object 

instances) that are sent to different data sources in a distributed stream environment. 

The computation takes place locally at the stream source. However, there are many 

open issues that should be investigated (rate of updating results at the coordinator, 

distributed architecture, information to be sent, synchronization, etc.) 

 Optimization 4.7 - Parallelism: Each associated set can be assigned to a different 

thread, run on a separate processor of the same node, or even on different nodes. In that 

case, parallelism can be achieved in query evaluation. Additionally horizontal 

portioning is possible to parallelize the computation of associated sets: the base relation 

R can be horizontally partitioned and each partition processed separately. Formally if R 

= R1⋃R2⋃…⋃Rk then Assoc(R, S, θ) = ⋃i=1,…,kAssoc(Ri, S, θ).  

 Optimization 4.8 - Eager Evaluation: We assume that a stream source S is able to 

indicate the end of stream (EOS) event and the engine can detect it - this could be 

implemented via time-outs. In that case, associated columns corresponding to 

associated sets of source S can be evaluated and become traditional relational columns. 

In some cases this can be done earlier and for selected rows, if we can deduct that 

steam tuples further in the stream will not affect references of these rows. This is 

usually the case with expressions involving temporal conditions [16][142]. For 
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example, assume that you have a set of package IDs stored as a relation and a sequence 

of RFID readings (package_id, product_id, timestamp) meaning that product 

product_id has been placed to package package_id. We want to monitor the number of 

products per package. Since packaging takes place in consecutive packages, we know 

that if a package’s window instance has not been updated for a time period exceeding a 

threshold to, then this package can be considered “completed”. In this case the system 

can replace the associated column value of that row with the actual value, although the 

Readings stream has not reported an EOS. One can periodically issue insert/delete 

SQL statements to store or delete these “completed” rows (e.g. delete from 

ProdsInPacks where X_count_all >= 0 - the where clause evaluates to FALSE only 

for associated-valued columns).  

 

4.7.3 COSTES System  

COSTES is a C/C++ system tool able to execute continuous queries using the proposed SQL 

syntax described in 4.6.1. Figure 4.1 shows the main COSTES components: 

 

 

Figure 4.3: COSTES system 
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Below we give a brief description of each module: 

 Query input: provides an interface where users can declare and manage COSTES queries. 

Users can use a textual interface to write the query or formulate it using graphical 

components. Additionally in this module users declare data source parameters (e.g. 

schema, type etc). This module generates an XML file, which contains an intermediate 

representation of the query. 

 Query parser: validates the query and store information in the metadata catalog. For 

example such information is base table schema, data source names and schemas, 

associated sets characteristics and aggregate functions. The metadata catalog is used by 

other modules during query execution. 

 Query optimizer: syntactically analyzes the query and consult metadata catalog in order 

to identify possible optimizations, as described in subsection 4.7.2. Optimization details 

are stored as metadata and used by the query executor. 

 Data stream source manager (DSSM): provides functionality for handling data stream 

sources. Currently our system supports as data sources: flat files, databases (ODBC), web 

sources (HTTP protocol) and XML sources. DSSM is a multithreaded module allowing 

concurrent data retrieval from many data sources. To allow synchronized data retrieval, 

DSSM creates a FIFO queue for each data source and provides push and pop functions for 

each queue. DSSM obtain information for data sources from the metadata catalog. 

 Scheduler: retrieves stream tuples from DSSM queues in a round robin fashion and 

forwards them to query executor. Moreover, user can prioritize stream tuple forwarding 

between data sources. 

 Associated sets manager: build and handle suitable data structures for associated sets. 

Currently our system supports logical and time windows through appropriate method 

declaration in the such that clause. 

 Query executor: implements the evaluation algorithm (Algorithm 4.3), taking into 

consideration optimizations that have been made by the query optimizer module. Query 

Executor allocates the initial base table, builds evaluation trees for the defining conditions 

and creates index structures according to optimization parameters. It interacts with the 

scheduler to receive stream tuples and with the associated sets manager to access 

(insert/delete) the implemented data structures. 

 

They have implemented two versions one console based and a Graphical User Interface (GUI) 

version. Figure 4.2 shows the definition of associated set X of query Q1 using COSTES graphical 

interface and Figure 4.3 shows the query results. 
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Figure 4.4: Query Q1 definition 

 

 

Figure 4.5: Query Q1 results 
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4.7.4 Experiments 

We conducted several experiments to measure the efficiency and scalability of our system. Our 

tests were performed on a Pentium M 1.6GHz with 1GB main memory running Windows XP. In 

all tests we used flat files as data stream sources, since we were primarily interested in measuring 

the stream rate that our system could handle – the stream rate of the actual configuration was quite 

low. In all the experiments the base table has 5000 distinct values (i.e. 5000 distinct product codes) 

and the incoming stream contains pseudo-random tuples, based on actual measurements. We run 

three experiments, varying the size of the input stream, the size of the associated sets and the 

number of the data sources. The experiments are described below: 

 

Experiment 4.1. In this experiment we measured the completion time of query Q1, varying the 

input stream size from 20,000 to 100,000 tuples having a step of 20,000, with and without 

Optimization 5.4. Results are shown in Figure 4.6 

 

Figure 4.6: Query Q1 execution time varying the number of tuples 

 

Q1-Hash line shows the performance of our system with a hash index built on the base table’s 

attribute ProdCode, since the optimizer has identified the (X.EPCProdCode = ProdCode) 

term in associated set X’s defining condition. To measure the non-indexed performance (Q1-

NoHash line), we forced executor not to build the hash index and proceed with a naive evaluation, 

i.e. a full scan of the base table for each incoming stream tuple. As expected, the former evaluation 

plan performs much better than the later (a factor of 2.5). Currently, COSTES system only 

supports single hash indexing, identified by equality predicates in conjunctive conditions. Other 
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indexes can be support for other type of queries (e.g. range queries), multi-query optimization 

techniques and query indexes [113]. Another observation is that COSTES system can consume 

about 5000 stream tuples per second, applying unoptimized executions on similarly sized base 

tables. While this is a relatively good number, given that COSTES queries are specified and 

executed within a fully runtime environment (i.e. they are not compiled), it also shows that there is 

significant overhead within our system’s components. Although our system performs linearly 

proving that it scales well as the number of stream tuples increases. 

 

Experiment 4.2. In this experiment, we used a variant of query Q1, where a “true” value is 

reported if the product’s quantity on the shelf has reached a critical threshold within a sliding 

window οf size n > 1, i.e. associated set X  has size( ) greater than 1 (the minimum value of this 

set is computed). We measured the performance (execution time) ranging X’s size from 100 to 500 

with a step of 100 and an input stream of 40.000 tuples, with and without applying Optimization 

4.5. In both cases, there is a hash index built on the base table’s attribute ProdCode 

(Optimization 4.4). Results are shown in Figure 4.7 

. Q1-NoDSS line shows the performance of COSTES system with no special data structure 

selected for the implementation of the associated set X (a plain queue is used). There is an increase 

in performance compared to Q1-Hash of Experiment 5.1 due to the management overhead of 

associated set X (is not a single value any long) and the linear search within the queue to locate the 

minimum element. Again our system performs linearly but the stream rate is significant lower 

compared Q1 due to X’s management overhead. This gap widens as the size of the queue increases 

from 100 to 500. Q1-DSS line shows the performance of COSTES system with a circular queue 

equipped with a min tracking algorithm for the representation of the associated set X. While there 

is an increase in performance compared to Q1-Hash of Experiment 5.1 due to the management 

overhead of associated set X (as before), the amortized cost to find the minimum element within 

the queue is constant. As a result, the completion time remains the same as the queue size 

increases. 
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Figure 4.7: Q1 execution time varying the window size 

 

Experiment 4.3. In this experiment we measured the performance of query Q3 varying the 

number of data sources from 1 to 100 with a step of 20. We can have a large number of stream 

sources in the presence of multiple stores and/or promotions. The input stream size was 40,000 

tuples. Results are shown in Figure 4.8. The incoming tuples were evenly distributed among 

associated sets. We assume equal arrival rate for all stream sources and one associated set defined 

for each data source. The optimizer builds a hash index on base table’s attribute ProdCode 

(Optimization 4.4). There is a small increase in completion time due to the additional queues that 

the DSSM module maintains for each data source. However, as the number of queues increases, 

the size of each queue decreases and the data is consumed quickly by the scheduler. The 

construction/destruction of queue objects is the main reason for the additional performance 

overhead. In general, the figure shows that multiple data streams can be handled efficiently by 

COSTES system. 
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Figure 4.8: Query Q3 execution time varying the number of data sources 

 

4.8 Summary and Conclusions 

The RFID technology has been widely praised for its ability to streamline supply chain 

processes. This is achieved from its unique data capturing characteristics to support real-time 

decision making. Being able to efficiently perform complex real-time analysis on top of RFID 

event streams is a key challenge for modern applications. This provides management with a novel 

data analysis mechanism to allow better, tactical, on time, well-informed decisions. The two main 

issues in RFID data management (RFDM) concern expressibility (how to simply and concisely 

express stream queries) and performance (how to efficiently evaluate stream queries). 

In this chapter we described a decision support system incorporating a simple and powerful 

extension of SQL to express spreadsheet-like continuous computations. We argued that such an 

extension is particularly useful in RFID data management and presented it in the context of real-

time supply chain decisions. However, this extension can be useful in other data stream application 

domains, such as analysis of financial streams. Finally we presented a fully functional prototype 

that implements this extension in a user-friendly and efficient manner. 

Overall, the proposed decision support system links continuous RFID data streams with 

product information stored in a relational database in order to support real-time supply chain 

decisions. This decision support system is applied in a distributed system architecture that enables 

information sharing between retailers and suppliers in order to enable real-time decisions in an 

open supply chain environment [17]. While current RFID deployment efforts mainly deal with 

integrating RFID-based relational databases with existing legacy/ERP systems, this research 
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moves beyond these efforts in supporting continuous queries and real-time decisions. It further 

contributes to transforming RFID data streams into meaningful real-time information, thus 

unveiling the information potential of this technology and justifying RFID investments for 

different supply chain partners. 

 

 

 



 

 

Chapter 5 

 

5 An Integration Framework for Relational and 
Stream Systems 
5.1 Introduction 

Many practical applications [27] need to process continuous flows of data in real-time. Well-

known stream applications involve sensor networks, RFID product tracking, network and 

environmental monitoring, smart grids and others. In the era of Big Data, a wide range of analytics 

applications need to combine persistent and stream data in a simple and efficient way. For 

example, situational awareness [29]  is a term used to describe the capability of an organization to 

become aware of what is happening in its immediate business environment and how internal or 

external events affect organization’s daily operations. Situational aware applications require the 

collection of information from multiple data stream sources. These stream data must be combined 

with persistent data for analytic purposes.  

The need for processing different types of data has led to the development of multiple and 

diverse systems. In the case of data streams, processing can be carried out by generic stream 

engines, standalone stream-handling components or custom stream applications. In the case of 

persistent data, relational technology has proven itself for reliably managing data for many 

decades now. In addition, SQL is a standard language for querying data with a wide acceptance 

from the IT industry and with a large base of knowledgeable users and resources. As a result, 

relational databases have a large market share and will continue to be used extensively, according 

to our view. As stream data will become more available and common, it will be important for 

database users to easily integrate it within the schema and transparently use it in their queries. 

However, there is no standard query language for streams [84] and as a result each stream system 

has its own features and specifications. This issue creates a three-fold problem for database users: 

First, they must learn a new system from scratch if they want to process and query stream data. 

Second, they must find a way to combine relational and stream data. Third, they need a query 

language to query integrated data.  
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In this chapter we propose a view layer defined over standard relational systems to handle this 

mismatch. DBAs define a special type of views (called LinkViews) which combine relational data 

and stream aggregates. The columns of a LinkView are either columns of the relational schema 

(called base columns) or “placeholders” to be filled-in with stream values whenever necessary 

(called linked columns). As far as naive SQL users is concerned, a LinkView can be part of an 

SQL statement as any other relational view. We define a Key-Value interface between relational 

and stream systems and an Application Protocol Interface (API) is proposed for the exchange of 

data (send keys, retrieve values). Our API follows a web-like approach where a web server 

executes programs/scripts using the parameters that receives from clients (web forms). Parameters 

in our case are distinct values (keys) found in the base columns of a LinkView. This is the 

common case in most operational business environments, as most of the time the analytic queries 

that utilize stream data use an identifying “persistent” value such as a tag ID, a location ID, a stock 

ID, or something else that is usually stored in a traditional database. Our goal is to create a 

framework that allows database users to be completely unaware of the implementation details and 

inner workings of stream systems but be able to use stream aggregates (i.e. the results of stream 

queries) in their database systems. 

5.2 Motivation and Issues 

In this subsection we provide a motivating example and describe the issues that must be 

addressed. In addition we present a wide variety of miscellaneous applications where our proposed 

framework can be used. Finally we provide several examples that will be used throughout the rest 

of sections. 

5.2.1 Motivating Example  

A financial firm maintains in a relational system historical data on stock performance (opening 

and closing prices, variations, volumes, etc.) At the same time, it has access to two systems (e.g. 

Reuters and Bloomberg), lets call them A and B, that provide real-time information on stock prices 

and volumes respectively. These systems A and B could be anything, for example a SQL-based 

DSMS such as STREAM [12] or a Java-based component using sockets. Analysts would like to 

utilize in their relational queries real-time data (e.g. the running average price per stock) in a 

stream-transparent way, i.e. without knowledge either of the presence of stream systems or the 

continuous nature of the stream data. For example, to select those stocks that their previous day’s 

closing price is greater than their current running average price, one would like to write a SQL 

query similar to the following: 
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select stockID  

from Historical H, Prices P 

where  H.stockID = P.stockID AND  

 H.closingPrice > P.price AND 

H.date = date() – 1; 

 

Historical is a relation containing historical data for the stocks and Prices is a relation 

with schema (stockID, price), where price is the running average price of the stockID. 

Whenever Prices is used within a query, price column is updated with the current value. 

While the transient nature of column price does not comply with the relational model, the 

“evaluate-whenever-used” approach reminds relational views, which are evaluated whenever used 

within a query. Let us now make Prices a little bit richer in information, by adding a couple 

more of these transient columns. The new schema would be: 

 

Prices (stockID, price, price10, volume) 

 

where price is the running average price, price10 is the average price of a 10-minute sliding 

window and volume is the running total volume of the stockID. While column stockID is a 

column found in the relational schema, columns price, price10 and volume do not involve 

relational data and represent aggregate values over stream data found in systems A and B. Figure 

5.1 depicts the idea. 

 

 Figure 5.1: Prices view and abstract representation of the linkage with stream systems 
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This figure suggests that the stream structures are handled by the stream systems, while the 

relational system has access to these structures through a handler, which returns a single value to 

be placed into the column. While this concept is simple and quite common in interoperability and 

collaborative systems, there are certain subtle issues that have to be addressed – and decided. 

These issues are described below. 

 

A. Stream structure definition 

The first issue has to do with who provides the definition of these stream structures, the DBA or 

the stream programmer (stream system expert)? In the first case (DBA), this definition should be 

part of the SQL defining statement of the LinkView and all stream systems should adhere to, i.e. 

be able to map to their own native language. For example, Prices view, following syntax similar to 

to those given in Chapter 2 and 3 of the current thesis ([40][41][45]) would be: 

 

create view Prices as 

select stockID, 

       X.avg(price) as price, 

       Y.avg10(price) as price10, 

       Z.avg(volume) as volume 

from stocks  

extended by X(PriceStream), Y(PriceStream), Z(VolumeStream) 

such that X.stockID = stockID, 

          Y.stockID = stockID AND Y.size() = 10, 

          Z.stockID = stockID 

 

PriceStream and VolumeStream are stream sources that provide real-time data (stock’s 

price and volume) to stream systems A and B respectively. The idea is that for each stockID 

we define three sets of stream values X, Y and Z, according to their “such that” condition. For 

example, the “Y.stockID=stockID and Y.size()=10” condition defines that for each 

stockID the stream system must define a set Y which keeps the price values in a sliding 10-

minute window and calculate the average price, Y.avg10(price) which becomes column 

price10 in the output of the query. In this case, stream systems A and B must receive the SQL 

definitions of X, Y and Z and implement them in their native stream language. 
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The drawbacks of this approach are: (a) the case specific stream processing that applications 

frequently require (e.g. different window types, peculiar pattern matching, exception handling), (b) 

complexities involved in mapping to specific systems and languages, and (c) acceptance of the 

proposed SQL syntax from the stream systems community. For example, while mapping could be 

simple for STREAM [12], it might not be so simple for Aurora [2] or Java programs. In addition, 

the DBA should be aware of the stream schema, something that is not always possible. Moreover, 

stream sources can change dynamically and as a result the declared views may become invalid. 

This tight coupling between DBMSs and stream systems makes view composition and evaluation 

hard.  

In the latter case, stream programmers define the required stream structures through programs 

written in the native language of their system. For example, if system A is STREAM, a CQL 

(Continuous Query Language) [14] statement should be issued to compute the running and 

window-based average prices. These programs should be able to have access to a set of input keys, 

supplied by the DBMS. In Figure 5.1 we see that the stream structures of systems A and B are 

aware of the stockID keys, sent by the DBMS. Symmetrically, the DBA should be aware of the 

name of the programs that implements these stream structures, so s/he uses them in the SQL 

definition of the LinkView. A web-like paradigm, where the application logic programmer 

provides a program P to HTML form authors – who are completely unaware of how P manipulates 

form parameters – becomes very suitable. DBAs are informed by stream programmers of the name 

of the program(s) that handle stream structures. When a LinkView is initiated, these programs 

execute, receiving the distinct values of the appropriate base columns as input (the keys). Each 

program maintains a stream structure and computes an aggregate value for each input key. For 

example, Prices view in this case could be defined as: 

 

create view Prices as 

  select stockID 

  from stocks 

  using stockID 

    exec program A.P1() for price 

    exec program A.P2() for price10 

    exec program B.P3() for volume

 

P1(), P2() and P3() are programs written by stream programmers of systems A and B 

implementing stream structures. The using keyword defines the base column (stockID) whose 
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values will be used as input parameters to programs P1, P2, and P3. We assume that programs 

receive the complete list of stockIDs and return results for all stockIDs. Each program match 

the input keys with values (stream aggregates), in a key-value structure, which then becomes a 

new column in the view (price, price10, volume). These key-value structures 

correspond to the stream structures mentioned above. Note that DBAs must only know the 

program names to define the view (in the previous approach DBAs needed to know the actual 

stream schemas). Under this perspective the analogy is: one program computes stream aggregates 

for the keys supplied by the database. These stream aggregates are all of the same type i.e. the 

average price of a 10-minute sliding window (price10). However this is not an optimal design 

pattern for stream programs as we force stream programmer to write one program per stream 

aggregate. Computing multiple aggregates in one program gives better optimization possibilities: 

sharing database data (keys) and sharing stream aggregation computation [76]. In addition there is 

less overhead for stream systems as we have less number of programs. So, a better approach is to 

let stream programmers implement one or more stream aggregates in one stream program. The 

analogy is: one program implements one or more stream structures and each stream structure 

contains stream aggregates of the same type (e.g. avg). Each stream structure is tagged with a label 

that can be used in view declaration. In this way DBAs must know only the label and not the 

stream structure schema to access a stream aggregate. The label is useful for DBAs as they can 

choose which stream aggregate will use in a LinkView in case the program provides multiple 

aggregates. Also the label is useful if for example the stream programmer decides to extend the 

program to compute another stream aggregate.  The label of old stream structures remains the 

same so the view definition is still valid. In general the stream program hides the schemas of 

stream sources and the actual implementation of stream aggregates while the label hides the 

schemas of stream structures. Stream programmers implement stream programs based on what 

aggregates they want to provide to database users but they do not know the exact key data i.e. they 

know only the key semantics and not the actual values. For example the same stream program can 

be used for all or only a part of stockIDs (e.g. only belonging in a category). 

 

B. Query processing 

Once Prices view has been defined, it can be used by naive SQL users as any other view in the 

DBMS. When used in an SQL statement, the key-value structures corresponding to columns 

price, price10 and volume must be accessed to materialize Prices, which then 

participates in query processing as any other relation. Doing that efficiently presents a number of 

challenges. For example, a query may ask for the stockIDs having price > 10. Apparently, 

the key-value structures of price10 and volume are not necessary and Prices view will only 
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be partially materialized. In addition, the condition (price > 10) can be applied either directly 

in the key-value structure of price or later, during query processing of the SQL statement in the 

DBMS. 

 

C. Stream programs execution: The third issue has to do with the implementation model at the 

stream system i.e. how stream programs actually work. There are two evaluation approaches for a 

stream structure:  

1. A stream program executes for each key 

2. A stream program executes for the entire keys’ set 

 

In 1st case we have as many stream programs as the number of keys. Each stream program 

contributes to the stream structure supplying the computed stream aggregate for the specific key. 

In 2nd case we have one stream program that computes a stream aggregate for each key and assign 

the results to the stream structure. As most stream systems enable optimizations (e.g. sharing keys 

and aggregation computation) for the 2nd case we choose this approach. Additionally having less 

stream programs is more appropriate for performance reasons. There is an advantage of the 1st 

approach: we can compute different stream aggregate functions per key if we pass a parameter to 

stream program to differentiate stream program’s executions. Our theoretic framework (Subsection 

5.4) is valid for both cases. 

 

All these issues must be carried out though a well-designed API between the DBMS and stream 

systems.  

 

5.2.2 Example Queries 

We provide some examples containing LinkViews. The first part of them is describing LinkView 

definition and the second one SQL queries that contain LinkViews. 

 

Example 5.1 - Using LinkViews in SQL queries: The motivating example (Subsection 5.2.1) 

uses the Prices view as shown in Figure 5.1. We repeat Prices here. 

 

LV1. Prices(stockID, price, price10, volume) 
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price and price10 are computed from stream system A, while volume from stream system B. 

An example SQL query using LV1 is: 

 

Q1. Find those stocks that their previous day’s closing price is greater than their current running 

average 

 

Example 5.2 - Stream programs with parameters: A stream program may have parameters. For 

example, instead of having two programs for columns price and price10, one can write a 

program that gets as parameter the size of the sliding window (in minutes), with size=0 meaning a 

running average. In this case, there will be two execution instances of the same program. In both 

cases Prices schema is the same, but the LinkView definition is different. 

 

LV2. Prices2(stockID, price, price10, volume) 

 

Stream programs with parameters can be used for a wide range of tasks (provide filtering 

conditions, thresholds, window sizes, select which aggregate to output, and many others). 

 

Example 5.3 - Querying LinkView’s stream columns: We assume the following view: 

 

LV3. MinMaxPriceCategory(categoryID, minPrice, maxPrice) 

 

Stocks belong to several categories, identified by a categoryID. For each category, minPrice 

(maxPrice) is the current minimum (maximum) price of the category’s stocks. Both aggregates 

are computed by a single program in a stream system. Some SQL examples using LV3 are: 

 

Q2. Find the categoryIDs having minPrice greater than 10 

Q3. Show the categoryIDs and the maxPrice for categories that have minPrice above  

    10 and maxPrice below 12 
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Example 5.4 - LinkViews with multiple base columns: we assume the following view: 

 

LV4. StockCategoryPrice(stockID, categoryID, price, categoryPrice) 

 

stockID and categoryID are columns drawn from the database. price and 

categoryPrice are the running average prices of the stock and the category respectively. 

These are computed by two distinct stream programs in a stream system. 

 

Example 5.5 - Saving LinkView snapshots: sometimes it is useful to store in the database system 

an evaluated snapshot (a LinkView with all columns filled with values) of a LinkView for future 

use. For example a useful query is: 

 

Q5. Daily, at a certain time, store the closing price of stocks. 

 

The closing price is provided by a LinkView and it can be stored in a database table with a SQL 

insert-into-select query. This query can be scheduled to run automatically daily at a certain time. 

5.2.3 Miscellaneous Applications 

Stream platforms are becoming essential for many organizations due to the usefulness of 

stream applications and the always increasing volume of stream data. As a result, in the following 

years stream processing software will be used to a larger extent by organizations.  Moreover 

stream service providers [98] can provide stream processing services to organizations. The 

integration of database systems currently available in many organizations with stream platforms 

and applications will allow analysts to have on-time information and make timely and efficient 

decisions. Our proposed framework enables analysts to use their relational database systems for 

the integration of stored and stream data. Below we describe some representative applications:   

 Radio-Frequency Identification (RFID): technology enables the automation of 

several applications as inventory control, asset management and product tracking. Such 

applications are very common in supply chain environments [40][41]. A supply chain 

is a system involving people, processes, equipment and has as main goal the movement 

of products from suppliers to stores. RFID technology is used to provide real-time 

information about products allowing analysts to get better decisions. For example a 

useful query for a supplier is: “What is the current inventory of supplied products on 

stores A and B?” In this scenario each store uses RFID tags in its warehouse and a 

stream system monitors the product’s stock level. With our integration framework the 
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stream system can receive a list of products from the supplier and return the current 

inventory per product.  Suppliers’ analysts can compare real-time information with 

historic data existing in their databases like product sales predictions or average 

delivery time in order to optimize the distribution process of their products. 

 Social networks and web advertising campaigns: companies launch online 

campaigns to promote their products [30]. Such campaigns make use of web and social 

media advertisements. A useful query for campaign applications is to see how well the 

campaign performs by comparing current sales per product with the average sales of an 

older but similar campaign. Additionally analysts may want to correlate this 

information with the click through rate of ads (the number of clicks of an ad divided 

with the number of times the same ad is shown) for each product while taking into 

consideration users’ product reviews from social networks. Such a query requires 

stored and stream data from multiple systems. Product information, advertisement 

details, sales and historical data about previous or similar campaigns are stored in a 

local database while the web and social media sites run stream systems able to handle 

customers’ click streams. Such analytics queries that contain historical and real-time 

data are very useful for web campaign evaluation and can be supported easily by our 

framework: database users send the keys to the stream systems and retrieve the 

available information. 

 Financial data analysis: In many financial applications a small number of streams 

(e.g. NASDAQ stock price and volume streams) are used by a large number of 

financial analysts [76][148]. Each analyst uses the stream for his own analytic tasks 

and has different requirements from the stream system. For example, a financial analyst 

may use in his trading strategy an average price window for the last 10 minutes while 

another financial analyst may want to find the average price only for the last 1000 

prices. Analysts want to combine this real-time information with historical or other 

useful data stored in their databases. This scenario can be handled easily by our 

proposed framework: analysts create views that compute stream aggregates by using 

programs provided by stream platforms. Those programs may receive parameters that 

define the computation behavior of each program i.e. the last 10 minutes or the last 

1000 values. Then, they can execute SQL queries over these views.  
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5.3 Challenges and Contributions 

The main goal of this work is to integrate stream aggregates, possibly from different stream 

systems, within a relational framework. The challenges are: 

 Sound relational semantics. What are the appropriate constructs and semantics to 

integrate relational and transient data in a theoretically sound way? 

 Simplicity and stream-transparency. We want to impose minimal changes to the 

relational system, have simple and intuitive syntactic constructs to define linking 

between stream and the relational system, and completely hide the stream presence 

from end SQL users. 

 Efficiency and scalability. Modern applications require the collection and analysis of 

stream aggregates produced by systems very different in nature. In addition, today’s 

relational data sets can be humongous. Query processing must be done efficiently - if 

possible in a distributed and parallel fashion – and stream systems should be easily and 

quickly added to the integration framework. 

 

Our work contributes to a rather uninvestigated research area that deals with the integration of 

relational systems with heterogeneous stream systems [132]. The goal is to standardize the way a 

relational system interacts with several stream systems. Specifically, the main contributions of this 

work are: 

 LinkViews and linked columns. We propose a new kind of view, called LinkView, 

where some columns are materialized with relational data and some columns are 

populated by external systems through a well-defined and efficient API. We argue that 

the semantics of LinkViews are relationally proper and can be implemented on top of 

any relational database system. Finally, end users can use LinkViews in their SQL 

statements as any other view. 

 Key-value-based interfaces and web-like protocol. By introducing a key-value interface 

between DBMS and stream systems, we adequately handle scalability and efficiency 

issues. In addition, some query processing can be delegated to the key-value stores 

(e.g. pushing selections or even joins.) By allowing LinkViews to specify stream 

programs to execute at the stream system’s side, we offer a clean distinction between 

DBAs, naive database users, and stream programmers. An approach similar to HTTP 

request and response protocol, but with the concept of sending keys and getting values 

is provided. 
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 Address an overlooked class of queries. Discuss a class of queries that hasn’t been 

properly addressed in the past: ad hoc queries using stream data in a database-oriented 

(pull) fashion. 

 Prototyping. We have built a prototype system over PostgreSQL, integrating with 

C/C++ programs managing synthetic stream data, to serve as a proof of concept. 

 

5.4 LinkView Semantics 

In this section we formally define LinkViews and describe query processing when LinkViews 

are mentioned in users’ queries. We also provide LinkViews implementation semantics. 

 

5.4.1 Rationale 

We would like to extend view definitions with columns that contain aggregates of stream data, 

as highlighted in Section 5.2. However, to have proper relational semantics, these values should 

not change over time. To overcome this difficulty, we use the concept of pointers, as in 

programming languages. While the name of a pointer remains the same over the time of an 

execution, the contents of the object it points to may change. In addition, these objects may reside 

in different systems, which facilitates the distributed, heterogeneous nature of modern stream 

systems. When a LinkView is mentioned within a user’s query, it has to first be evaluated and then 

used in an evaluation plan. Of course, there are optimization rules than can be applied. 

 

5.4.2 LinkView Theoretical Definitions 

Definition 5.1 (Containers) Given a domain D, a container S over D  is a named object that points 

to some subset of D (using multi-set semantics). The latter is called the contents of the container. � 

 

Essentially, this definition provides for named objects for stream data. D is the domain of the 

stream data (e.g. prices, volume). The contents of a container may change, while the name remains 

the same, as in regular pointer semantics in programming languages.  

 

Definition 5.2 (Links) Given a domain D, a container S over D and an aggregate function f: 

Pow(D)  N, where Pow(D) is the power set of D and N is the set if all permissible outputs of f, 

then the pair (S, f) is called a link L over D. The value of the link, denoted as val(L), is defined as 

the return value of f when applied over the contents of container S. S  is called the container and f 

is the aggregator of the link. � 
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Note that although a link remains unchanged over time, it may evaluate to different values at 

different times, since the contents of the container may change over time. 

 

Definition 5.3 (Linked Column) Given: 

 a materialized view V  having schema V   = (A1, A2,…, An), 

 a subset A of V   , A = (Ai1,, Ai2, …, Aim),  i1, i2, … im in {1, 2, …, n},  

 a set of links L = {Lk: k ∈ πΑ(V)}, i.e. a link for each distinct value k in column(s) A, 

 

then we can extend the schema with a column A′, where the value of A′  at row r  is the link 

Lr.A, i.e. the link corresponding to the value of column(s) A at row r. A′  is called a linked column 

of V. A is called the base column(s) of A′. � 

 

Observation 5.1 A functionally determines A′.  

Observation 5.2 Although the value of links may change over time, the links per se remain fixed, 

providing for proper relational semantics.  

 

Note that this definition is more general than how it used in next sections of this chapter. It states 

that for each value in A, A′ contains a link. These links could have containers over different 

domains and different aggregators.  

 

Definition 5.4 (LinkView) Any view V, extended with one or more linked columns is called a 

LinkView. � 

 

5.4.3 Query Processing 

The question is how a traditional relational query processor can be modified to handle queries 

that involve LinkViews. The simplest approach is to define a relational operator, called LV-Eval 

that gets a LinkView and transforms it to a relation with the links of the linked columns replaced 

by their values.  
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Definition 5.5 (LV-Eval Operator) Given a LinkView V with schema (A1, A2, …, An, Α′1, A′2, …, 

A′k), where Α′1, A′2, …, A′k are linked columns, the LV-Eval(V) is defined as a relation with the

same schema of V and constructed in the following manner: for each row r of V, we have a row r′  

= (r.A1, r.A2, …, r.An, val(r.Α′1), val(r.A′2), …, val(r.A′k)) in LV-Eval(V). � 

 

If a user’s query Q mentions one or more LinkViews, these are replaced in the query plan by 

their respective LV-Eval instances. 

 

5.4.4 LinkView Implementation Structure 

We now turn to the proposed architecture. We assume a single DBMS and several stream 

management entities (SME), which can range from complete data stream management systems 

(DSMS) to simple Java programs, possibly employing different querying paradigms (e.g. CQL 

[14], operators in a workflow [2][3]). A SME also incorporates integration modules (described 

below) specified by our framework. The idea is that LinkViews reside in the DBMS, while the 

contents of link containers and aggregators reside and managed by the SMEs. The DBMS is 

interested only on the values of the links.  

The fundamental question is who defines the links of the linked columns of a LinkView, i.e. 

who defines the contents of link containers and select aggregators. One approach would be to let 

LinkView creators (e.g. DBAs) to do so, through a standardized language and set of aggregate 

functions. Then, these definitions are send to the SMEs to be implemented by the native language 

of the SME. However, this approach suffers from the drawbacks mentioned in Subsection 5.2.1 

(Stream Structure Definition) 

The web client/server model where a web server executes a script/program using the 

parameters provided by a web form (client) is simple yet flexible and efficient. Presentation layer 

developers (e.g. html designers) are only aware of the server’s program name that executes when a 

form is submitted, along with the names of the parameters that the program handles. On the server 

side, programs have to be invocable and able to read in the submitted parameters and values, 

through a well-defined interface. The output of these programs is directed back to the browser. 

This simple model seems appropriate also for our case: LinkView creators only know the stream 

program’s name at a SME, responsible for managing the links of a linked column; this program 

should be able to obtain the values of the base column(s) of the linked column (the keys), since it 

has to use them during its execution and associate the keys with values (the values of the links); 

the DBMS should be able to retrieve these values. All these are achieved through a request-

response API between the DBMS and the SMEs. Note that the program executing at the SME 

could be written in any programming formalism (CQL [14], JAVA/C++, etc.). Also, its semantics 
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is completely transparent to the database person – s/he does not really know how the task is carried 

out. 

 

Definition 5.6 (Implementation Structures) Assume a LinkView V with schema (A1, A2, …, An, 

Α′1, A′2, …, A′k), where Α′1, A′2, …, A′k are linked columns. For each linked column Α′i we define a 

quadruple Qi = (S, P(c1, c2, …, cm), A, KV), where:  

 S  is a stream management entity, 

 P is a program that executes within S and process data streams. P(c1, c2, …, cm) is a 

specific invocation of P with parameter values c1, c2, …, cm,  

 A is a named output value of P, and, 

 KV  is a Key-Value structure, where the keys are the values of the base column(s) of  Α′i.  

 Qi is called the implementation structure of linked column Α′i. S is the source of Α′i , P  is 

the execution of Α′i  and A  is the label of Α′i. � 

 

An implementation structure describes the implementation details of a linked column. The 

source S  is the SME that provides the stream data for the link containers of the linked column. P  

is a program that resides in and can be executed within S, e.g. a CQL statement. This program is 

responsible to maintain/manage the link containers and (continuously) produce their values 

according to the aggregator. To do so it has to have access to a Key-Value structure KV, where the 

keys consists of the values of the base column(s) of the linked column. P uses the keys to define 

the contents of link containers and the associated values to place the output of the aggregator. In 

practice, P does not have to maintain link containers or apply aggregators, this is at the conceptual 

level. The only requirement for P  is to access the keys of KV and set the corresponding values.  

A program P may produce several named output values per key, for efficiency and/or 

reusability reasons. For example, P may be a CQL[14] statement, computing the min, max and 

average price of a sliding window of size 10 for each stockID. It would be inefficient1 to have 

three distinct programs to separately compute min, max and average. Since a link evaluates to a

single value, the output values of P  must be named and the designated output value for the linked 

column must be specified. This is the label of the linked column. In addition, the provider of the 

stream data (e.g. Bloomberg, Reuters) may write generic programs with multiple output values to 

cover several cases of its client’s requirements.  

                                                      

1 To be precise, it is inefficient, unless the optimizer of the stream system is able to apply multi-query 

optimization techniques (in the case of SQL-oriented systems) or execution sharing (e.g. MR-Share [110] on 

MapReduce online [54])  
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Finally, an execution P may have parameters. For example, it may implement a sliding window 

of a specific size. This size could be a parameter of P, specified by the LinkView creator during 

the definition of the linked column. It may be a threshold value, if P  manages temperature sensors. 

Or it could be a string representing a filtering condition that P applies on the stream data or the 

name of an aggregate function. In other words, LinkView creators use specific call instances of P 

to define linked columns. 

5.5 LinkView SQL Extensions 

We propose the following extension of SQL syntax to facilitate LinkView definitions in 

relational systems:  

 

create linkview name as 

SQL statement 

[using BaseCol link with P(c1, …, cm) of S 

    add column L1 as (data-type) A1  

    ... 

    add column Ln as (data-type) An  

]+ 

 

A create linkview statement creates a LinkView database object. It consists of a 

standard SQL statement, which defines a materialized view, followed by one or more using 

statements. 

A using statement is used to define one or more linked columns, A1, …, An, having the same 

base column(s) BaseCol – an arbitrary subset of the schema of the materialized view – and sharing 

the same execution P(c1, …, cm) at stream management entity S. L1, …, Ln are the labels of A1, …, An 

respectively. In other words, each using statement defines n linked columns, A1, …, An, with 

implementation structures Qi = {S, P(c1, …, cm), Li, KVi} where i  in {1, 2, …, n}. Note that the 

LinkView author has to specify the datatype of the linked columns, since this information can not 

be retrieved by the SME as stream semantics are completely transparent to database users.  
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5.5.1 Example Queries 

We provide below the syntactic definition of the LinkViews presented in section 5.2.2: 

 

Example 5.1: The definition of LV1 is:  

 

create linkview Prices as 

select stockID 

from stocks 

using stockID link with pPrice() of A 

  add column priceL as (real)price 

using stockID link with pPrice10() of A 

  add column price10L as (real)price10 

using stockID link with pVol() of B 

 add column volumeL as (int)volume 

 

LinkView LV1 uses two stream management systems named A and B. The actual connection 

information (e.g. network address/port) for each system is stored on LinkViews’ metadata catalog. 

Stream system A can invoke executions of programs pPrice() and pPrice10(). 

pPrice()computes the running average price for each stock. pPrice10() computes the 

average price within a 10-minute sliding window for each stock. System B implements 

pVol()program that computes the running total volume for each stock. The DBMS can use 

programs’ output by referring to the named outputs (labels) of each program. The label for 

pPrice()program is priceL, the label for pPrice10() program is price10L and the 

label for pVol() program is volumeL. price, price10 and volume are respectively the 

names of the linked columns corresponding to these outputs. The data type of each linked column 

is mentioned right before its name, using parentheses in the add column statements. 
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Example 5.2: The definition of LV2 is:  

 

create linkview Prices2 as 

select stockID 

from stocks 

using stockID link with pPriceV(0) of A 

add column priceL as (real)price 

using stockID link with pPriceV(10) of A 

add column priceL as (real)price10 

using stockID link with pVol() of B 

add column volumeL as (int)volume 

 

In this case, stream system A has access to a parameterized program named pPriceV(int 

size), where size denotes the size of the sliding window (size=0 means a running average.) 

pPriceV(0)computes the running average price per stock and pPriceV(10) the running 

average price per stock within a 10-minute sliding window. pVol () is the same as in LV1.Note 

that parameterized executions allow for a wide range of options in terms of functionality. 

Parameters may involve filtering conditions, threshold values, selecting aggregate functions, etc.  

 

Example 5.3 The definition of LV3 is:  

create linkview MinMaxPriceCategory as 

select categoryID 

from categories 

using categoryID link with pMinMax() of A 

add column min_priceL as (real)minPrice 

add column max_priceL as (real)maxPrice 

 

MinMaxPriceCategory LinkView uses pMinMax() program  of stream system A. 

pMinMax() computes two stream aggregates – the minimum and maximum price per category – 

and provides its results through two labeled outputs, min_priceL and max_priceL. 
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Example 4.4 The definition of LV4 is:  

 

create linkview StockCategoryPrice as 

select stockID, categoryID 

from stocks S 

using stockID link with pPrice() of A 

add column priceL as (real)price 

using categoryID link with pCat() of A 

add column cat_priceL as (real)categoryPrice 

 

This examples simply demonstrates the usage of multiple base columns in the same create 

linkview statement. 

 

5.6 LinkView Architecture 

The proposed architecture to support the LinkView integration framework is shown in Figure 

5.2. The parser and the LinkView manager sit on top of any DBMS, while Stream Management 

Entities (SMEs) must implement the Key-Value layer and provide a Key-Value access interface to 

the application layer that contains the actual stream system. 
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Figure 5.2: LinkViews architecture 

 

Below we describe the system modules: 

 

The LinkView SQL (LV-SQL) Parser: This component is responsible to parse out queries 

submitted by the users. A query can be either a LinkView definition, submitted by a user with 

administration privileges (e.g. DBA), or a standard SQL query, submitted by a naïve user. In the 

first case, the parsed query is passed to the LinkView Definition Interpreter (LDI) subcomponent. 

In the latter case, if the SQL statement involves LinkViews is directed to the Optimization Engine 

(OE), otherwise is directed to the database system’s SQL component. LV-SQL also includes 

LinkViews management statements (e.g. init, cache policies) which are passed to the Commands 

Manager Module (COM) 

 



Chapter 5: An Integration Framework for Relational and Stream Systems 98 

 

The LinkView Manager (LVM): The LinkView Manager is the core component of our 

architecture. It stores metadata for LinkViews and implements the API for DBMS/SMEs 

communication.  The Execution Engine (EE) of LVM is responsible for the execution of SQL 

queries involving LinkViews issued by naïve users. The Cache Manager (CM) is responsible for 

storing/caching linked columns, implementing various data refreshing policies, specified by the 

DBA. That means that linked columns may be refreshed with stream data at regular intervals and 

query processing may utilize cached linked columns instead of requesting actual stream data. 

Commands Manager (COM) handles statements for the management of LinkViews (e.g. init 

LinkView, drop LinkView, setting caching policies, etc) 

 

Stream Management Entity (SME): A Stream Management Entity is a module that process 

stream data and contains subcomponents that enable the communication with a DBMS. It consists 

of two layers. The Key-Value layer contains the Request Manager (RM) and the Key-Value 

Engine (KVE). The Request Manager receives requests from the LVM and implements the API. 

The Key-Value Engine manages the key-value system to realize the implementation structures at 

the SME (Key-Value structures). The values of these structures are provided by the stream system 

(Application Layer). A KVE can be a Key-Value store, a custom solution, a database etc. In most 

cases Key-Value Engines support a simplistic query language to query keys and/or values, but it 

could also be a strict Key-Value store, only supporting key retrieval. The Application layer is the 

actual stream system that process data streams. Any stream system may exist in this layer. The 

only requirement is the ability of stream programs to access the keys and values of the Key-Value 

structures. This could be done either natively – i.e. the Key-Value structures reside within the 

stream system and are directly accessible by the stream programs – or externally – i.e. the Key-

Value structures are accessible through an API between the stream programs and the Key-Value 

store. Both approaches have pros and cons and our architecture does not assume the one or the 

other. In native implementations, the obvious benefits are performance and updatability – keys and 

values are always up to date, since programs directly manipulate these structures. The drawback is 

that one has to implement Key-Value structures’ functionality within the stream system.  In 

external implementations, one can use ready-to-use Key-Value stores, offering scalability and 

fault-tolerance. In fact, in many real applications this is the only possible approach – e.g. banking 

systems handling streams are application-specific and closed, offering a limited API, which could 

be used to update Key-Value structures.  

Some well-known stream systems can easily support the implementation of Key-Value 

structures. For example the STREAM system [12] supports the CQL [14] language for the 

declaration of stream queries. STREAM supports the TableSource and QueryOutput interfaces 

[129] to import keys and output results.  AURORA [3] can use connections points to static data 
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sets to get keys from a DBMS and to output results to a Key-Value structure. For MapReduce 

Online [54] a possible solution is the usage of custom Java code to import keys from a DBMS and 

the usage of online aggregation snapshots functionality to output computed aggregates. 

 

5.6.1 DBMS-SME Application Programming Interface  

Communication between the DBMS and a SME is carried out through a set of primitives 

implementing a request-response protocol. There are four different request types in order to define 

implementation structures at the SME, initiate program execution at the SME and manage the 

Key-Value Engine (send keys and retrieve values). Table 5.1 summarizes the request types, along 

with the responses of the SME. Note that all communication is DBMS driven. 

 

 

Table 5.1: Request types of DBMS-SME API 

Request type:  define 

Description Defines the implementation structure of a linked column at the SME. 

Parameters handlerID: a unique identifier assigned to each linked column by the LinkView 

Manager, 

execName: a string containing the program name and the parameters’ values for the 

call, 

label: a string containing the named output of the execution. 

Response true/false 

 

Request type:  sendKeys 

Description Sends to the SME a (subset of) the values of the base column(s) of one (or more) 

linked columns. 

Parameters H: a list of handlerIDs, 

K: a set of keys. 

Response true/false 
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Request type:  getValues 

Description Retrieves the values of the links of a linked column. 

Parameters handlerID: the handlerID of the linked column, 

θ: a logical expression, involving only the linked column and its base column(s). 

Response A list of key-value pairs. 

 

Request type:  delKeys 

Description Deletes entries of Key-Value structure according to a set of keys K and/or a logical 

expression θ. 

Parameters handlerID: the handlerID of a linked column, 

θ: a logical expression, involving only the linked column and its base column(s), 

K: a set of keys. 

Response true/false 

 

define request defines the implementation structure of a linked column at the SME. It also 

sends a unique (cross-DBMS) identifier to the SME, the handlerID. All further communication 

between the DBMS and the SMEs are carried out through this handlerID. At the SME, a Key-

Value structure is defined for each handlerID and is named using the label parameter. Stream 

programs output values to these labeled Key-Value structures. 

sendKeys request sends a set of keys K that update (append mode) the Key-Value structure of 

those handlerIDs mentioned in H. The linked columns corresponding to the handlerIDs of H must 

have the same base column(s). Allowing a sendKeys request to affect several Key-Value structures 

is something useful performance-wise (bandwidth). When the sendKeys request is issued for the 

first time for a handlerID, it also initiates the program execution of that handlerID. Recall that the 

base columns of a LinkView correspond to a materialized view. When the base part of a LinkView 

is updated (i.e. during view maintenance, for example a new stock is inserted to the Stocks 

table) the sendKeys primitive is invoked to send the new keys to the SME.  

getValues request is used during query processing for linked columns evaluation i.e. when a 

user submit a SQL query. It asks for the pairs of the Key-Value structure of handlerID. It may 

retrieve all key-value pairs corresponding to the submitted handlerID or it may retrieve key-value 

pairs according to a selection condition θ over the schema of the Key-Value structure (i.e. a 

condition mentioning keys and values.) For example, Query Q2 asks for the categoryIDs 
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having minPrice greater than 10 using LinkView LV3 and its linked column minPrice. This 

filtering could be pushed to the Key-Value Engine using the above-mentioned condition. The SME 

may or may not support the mapping of θ to the native language of the Key-Value engine. In the 

latter case, θ is ignored and all key-value pairs are returned. 

delKeys request is useful once again during view maintenance. It deletes the entries of the Key-

Value structure of handlerID that exists in set K and according to the condition θ. This is feasible 

if the SME can map θ to the native language of the Key-Value Engine, otherwise θ is ignored and 

only keys mentioned in K are deleted. 

5.7 Implementation and Optimizations 

The proposed architecture can have different implementations based on the application we want 

to support. For example the need for real-time acquisition of stream data can be better supported 

by an in-memory DBMS, an in-memory Key-Value Engine and by a high-performance cluster 

based stream system (e.g. financial applications). On the other hand, for less critical applications 

(e.g. product information in a RFID supply chain environment) the requirement for near real-time 

acquisition of stream data can be achieved with a distributed architecture where SMEs are in 

different network locations than the LVM.  

In this section we provide details on our prototype system, how it operates, API 

implementation, and we describe SME implementation details. Also we provide a design example 

on how a stream program can be implemented by a stream programmer. Finally we describe how 

LV-Eval operator is implemented over a relational DBMS. 

 

5.7.1 LinkView System 

LinkView Manager (LVM) is implemented in C/C++ and operates over any relational database 

system using ODBC. In our prototype system we used the PostgreSQL DBMS. The default mode 

of LVM (prompt mode) accepts “create linkview” definitions and SQL queries. LVM supports a 

set of commands that define its operation. These commands are handled by the Commands 

Manager (COM) module. The commands are explained below: 

 init <LinkView name>: it invokes the first sendkeys request for the LinkView.  

 drop <LinkView name>: deletes a LinkView and stop associated stream program 

executions at the SMEs, 

 view <LinkView name>: enables users to view the defined LinkViews and other 

miscellaneous statistics (e.g. linked column last update time etc) 

 readQ <filename>: reads and executes from a file a LinkView definition/command or 

a SQL query 
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API requests are XML-based messages. Requests and responses involving data (key-value 

pairs) use comma-separated format (CSV). Communication between LVM and the implemented 

SME takes place via sockets. Our SME is written in C/C++. Key-Value Engine implements C++ 

hash maps, natively accessible by C++ threads manipulating stream data (stream programs) 

In our framework stream programmers must implement stream processing queries/programs in 

their stream systems. A stream query/program is an invocation of a stream query/program 

implementation (we can have multiple invocations of the same query/program). A sample design 

pattern for those queries/programs is given below: 

 

stream_qprogram (params, …) { 

input = get($_keys); 

queryStr =  

   select I.Key, avg(S.value) as $_values 

   from stream_data[window 60sec] S, 

        input I 

   where S.key = I.key; 

qptr = query.Prepare(queryStr); 

qptr.addLabel($_values,”label”); 

queryAdapter.put(qptr); 

qptr.Exec(); 

} 

 

$_keys is a variable containing the keys received from the DBMS. It can be a pointer to a Key-

Value structure that contains keys and can be accessed from the stream system. Query is written in 

the supported language of each stream system and executed when SME receives the sendKeys 

request (init command). The program assigns labels to each possible query output and the put 

method defines how the computed values are stored in the Key-Value structure. This is a sample 

design pattern and is use a SQL-like stream language. The only requirement of a stream system is 

to be able to access the Key-Value structure to get keys and put values. Note that the 
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queryAdapter class can implement periodic or continuous update of aggregates in the Key-

Value structure. 

 

5.7.2 LV-Eval Operator Implementation 

Since we implemented LVM on top of a DBMS instead of within, LV-Eval operator is realized 

through query rewriting, prior to actual query processing. Each LinkView in an SQL statement is 

rewritten as a join between its base part and its linked columns. Specifically, assume a LinkView 

L, which consists of a materialized view V extended by n linked columns Li, i=1,2,…,n. Lets 

denote the base column of Li as Ai. For each Li we define a temporary table L′i, i=1,2,…, n, with 

schema (Ai , V), where V is a column with data type the one mentioned in the add column 

statement of Li. In essence, L′i corresponds to the materialization of the response (i.e. key-value 

pairs) of a getValues request for linked column Li. Each occurrence of L in an SQL statement is 

replaced by the following expression:  

 

V⋈A1 L′1⋈ A2 L′2⋈… ⋈An L′n 

 

Since LV-Eval is not natively implemented in the DBMS, any optimization of it must be done 

before query rewriting by the LVM. In our prototype we implemented two simple optimization 

techniques: 

 Avoiding unnecessary materializations of L′i : identify the linked columns of the 

LinkView that do not participate in the SQL statement and exclude them from the 

rewriting expression. This is equivalent to pushing down projections to the LV-Eval 

operator. For example, Query Q1 only requires the price column of LinkView LV1. 

Linked columns price10 and volume do not appear in the rewritten expression. 

 Reducing the size of L′i : identify selection conditions involving linked columns and 

apply them directly to the response of the getValues requests, prior to the materialization

of L′i s. This is equivalent to pushing down selections to the LV-Eval operator. For 

example, Query Q2 asks for the categoryIDs having minPrice greater than 10. The 

predicate ((real) value > 10) can be applied to the key-value pairs returned by the 

getValues request on minPrice linked column of LV3.  
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5.7.3 Optimizations 

Several techniques can be applied at various stages of query evaluation to improve 

performance. We briefly mention here some of the ad-hoc methods we implemented, we describe 

open issues and describe some optimizations that can be applied across LinkView architecture i.e. 

not specifically in DBMS side. 

LVM can improve performance by analyzing the definitions of linked columns and try to 

identify interrelationships (e.g. sharing keys and/or values.) For example, sendKeys request can 

send keys for multiple handlerIDs. In addition, there are several open issues that LVM should 

handle:   

 how to handle (evaluate, optimize) LinkView definitions based on previously defined 

LinkViews, similar to [53] 

 when a linked column can be inferred by another? 

 

Quality of Service (QoS) is a well-known concept in stream literature [3]. In our framework, 

linked columns can be cached at the LVM’s Cache Manager and used during query evaluation, 

instead of issuing getValues requests to the SME. This is particularly useful when a large number 

of queries access a small number of LinkViews. Caching policies could be set with specialized 

commands. In our implementation, a freshness parameter (in seconds) can be specified and is 

applicable to all linked columns of all LinkViews. Note that the CM could act proactively and 

issue getValues requests independently of SQL queries. 

In section 5.7.2 we discussed how to reduce the size of the received columns, by pushing down 

predicates to the response of a getValues request. In fact, we can even push the predicate to the 

corresponding key-value structure of the linked column – if selectivity is low and the Key-Value 

Engine supports it – to avoid communication cost. The design of the getValues request allows 

something like that. This is a specific case of a more general problem, mapping relational 

operators to Key-Value Engine’s operations. For example, if two linked columns share the same 

base column(s), the join could take place in the KVE and the response could be in the form (key, 

value1, value2). Depending on the KVE, this could be much more efficient than performing the 

join in the DBMS. In addition, it would result in communication cost savings. Several other 

optimizations can be supported across all layers of our framework. Below we describe some 

possibilities: 

 Optimization 5.1 - Keys re-using: a LinkView definition can contain multiple “using” 

declarations. The using keyword defines the keys that the DBMS must send to a SME. 

These keys are put in a Key-Value structure and a SME compute aggregates using 

them. We can avoid sending the same keys if the keys have already be sent in a 
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previous using declaration. The same can apply between multiple LinkViews 

definitions. With this optimization we can minimize the startup-time of a stream 

query/program and save bandwidth if the LinkView Manager and SMEs are on 

different machines (e.g. network, cluster) 

 Optimization 5.2 - Sharing keys in SME: in our architecture a Key-Value structure is 

used to store the keys retrieved by the DBMS. Strictly a Key-Value structure is a 

container that for each key has a value. A different implementation approach is: for 

each key there exist multiple values. In this way keys are shared between multiple 

aggregates. In any case the LinkView Manager must be able to access any value using 

the assigned label i.e. the Key-Value interface must be used independently of the Key-

Value structure implementation. This optimization leads to compact Key-Value 

structures and allow the retrieval of multiple aggregates per key.  

 Optimization 5.3 - Periodic or request based aggregate updates between Key-

Value structure and stream system: a stream system uses keys from the Key-Value 

Engine to compute stream aggregates. When a stream system computes a value it must 

put this value back to the Key-Value structure.  This can be happen 1) in a best effort 

mode i.e. continually update the Key-Value structure 2) in a periodic mode -e.g. a 

Service Level Agreement may define that the values are refreshed every 5 minutes- 3) 

put values to the Key-Value structure per user requests. These different configurations 

enable Key-Value Engine to act as a caching layer. Proper usage of these techniques 

can lead to better utilization of SMEs from multiple users.  

 Optimization 5.4 - Linked columns caching: when a naïve user executes a SQL 

query, the linked columns replaced by stream values. In a multi-user environment a 

large number of users issue SQL queries in a small number of LinkViews within a 

small time interval. This will lead to multiple LinkViews evaluations and bad 

performance. Cache Manager can cache linked columns values and we can define a 

condition if they will be reused by next SQL queries. For example we may define that 

the cached linked columns which are not over 1 minute old can be used as a result in a 

SQL query.   

 Optimization 5.5 - Links sharing: there are cases that multiple links point to the same 

value of a Key-Value structure. This is frequent in LinkViews that their base table 

contains composite keys. For example in LV4 multiple stocks belong to a category. In 

this case the average price of a category is the same for multiple rows (stocksID). A 

proper implementation can update multiple pointers at once. Moreover the using 
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keyword on LinkView definition syntax can send only the distinct values of such a 

column. 

 Optimization 5.6 - Stream program sharing: Stream systems can share program 

executions among LinkViews. If a new LinkView uses a linked column computed by 

an already invoked program, SME can avoid starting a new process. This is feasible by 

assigned the same handlerID to multiple LinkView definitions. Additionally, shared 

query execution strategies can be applied among program executions in SMEs [13]. 

[155] studies optimization techniques for similar stream aggregation queries differing 

in the grouping attributes (keys). Optimization techniques for window aggregates 

within a single query are given in [92]. Similarly, in [76] optimizations for multiple 

aggregate continuous queries are provided. Such techniques can be used in our 

framework for programs containing multiple stream aggregates. In our architecture, 

stream programs can be invoked with parameters which can define program’s 

execution behavior. Parameterized continuous queries for complex pattern detection 

have been studied in [148]. The described techniques can be used in our framework. 

 Optimization 5.7 - LV-Eval Operator optimizations: The LV-Eval is a unary 

operator that produces a table replacing the links of linked columns with stream 

aggregates when a LinkView is used in a SQL query. Standard relational optimization 

techniques [74] can be applied on queries containing LinkViews. For example heuristic 

based optimization techniques can be used to apply re-ordering in the operators in the 

query tree. The main goal is to apply first operations that reduce the size of 

intermediate results in the execution plan. This size decrement can be in number of 

rows or in number of columns or both.  For the first case the getValue request will 

return fewer results if a θ condition is supported. For the second case note that the LV-

Eval operator calls getValue request multiple times, once per linked column. If some 

columns projected out then getValue request will be called fewer times.  For example a 

relational algebra expression for Q1 can be: πH.stockID(σH.stockID=P.stockID AND H.closingPrice>P.price 

AND H.date=date()–1(Historical x Prices)). The Prices LinkView is evaluated to a table and is 

used in a cartesian product with Historical table. Selections applied in the result of the 

cartesian product and finally the stockID column is retrieved. An equilevant relational 

algebra expression is: πH.stockID((σH.date=date()–1 (Historical)⋈H.stockID=P.stockID AND 

H.closingPrice>P.price (πP.price, P.stockIDPrices)). In this case projection pushdown is applied to the 

Price Linkview. In this way the LV-Eval Operator calls getValues request only once 

for the stream structure with the price label. Predicate and projection pushdown is a 

widely used technique in relational systems and can be used with the LV-Eval 



Chapter 5: An Integration Framework for Relational and Stream Systems 107 

 

Operator. In our system we use a small number of rules for query rewriting to enable 

this kind of optimization. 

 Optimization 5.8 - Predicate migration to SME: Many queries apply predicates over 

linked columns. For example in LV3 for both Queries 2 and 3 there exist a predicate 

over linked columns. As described in Section 6.4 such a query is first evaluated in a 

table and then the selection operations are applied. An alternative implementation is to 

pass this predicate as a condition θ to SME system and in particular to the Key-Value 

Engine. Most Key-Values Engines support fast retrieval of values if we provide the 

Key but they can also support predicates over values. With this optimization the key-

value data file that is send back to the DBMS when a user issue a SQL query can 

become smaller.  

 Qptimization 5.9 - Joining base table with Key-Value structures: For each 

requested linked column an outer join operation must be applied with the base table of 

LinkView. Having multiple columns may lead to bad performance. One option is to 

generate in the Key-Value Engine a key-value data file that combines multiple values 

per key. As a result the number of joins is decreased. Other optimization techniques 

that can be used are given on [88]. These techniques are based on padding the Key-

Value tuples with nulls and apply a union to get the complete result of an outer join. 

Alternatively we can use a more efficient algorithm to implement the join on the LVM 

and not use the database system. 

5.8 Experiments and Performance 

Measuring the performance of a LinkView system has some inherent difficulties. First, there 

are different architecture configurations (e.g. SMEs can be in different network locations, KVE 

implementations can be native or external etc). Second, SMEs may represent stream systems and 

performance can considerably fluctuate.  

Our testing platform has the following characteristics: Windows 7, 2.13 GHz Intel Core i3 

Processor i3-330M and 4 GB of RAM. We conducted our experiments in a single machine i.e. 

both LVM and SME run on the same node. LVM uses data stored in PostgreSQL DBMS and 

access is via ODBC.  The financial database used in our experiments contains synthetic data sets. 

SME is a process and is composed of stream programs implementing LinkViews LV1 to LV4 and 

an embedded in-memory Key-Value engine (C++ hash table). SME is fed with tuples generated by 

a custom C/C++ stream generator running as a process in the same machine. The provided tuples 

have the following schema: <stock_id, category_id, stock_price>. Stream generator-SME 

interprocess communication is achieved via shared memory. LVM-SME communication is done 

via sockets. 
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We measured the execution time for several SQL queries applied over LinkViews. We used 

LV3 (MinMaxPriceCategory) and the following SQL queries in our experiment: 

 

QE1. select categoryID, minPrice  

    from MinMaxPriceCategory 

 

QE2. select categoryID, minPrice, maxPrice  

    from MinMaxPriceCategory 

 

QE3. select M.categoryID, M.minPrice, 

           H.yesterdayMinPrice  

from  MinMaxPriceCategory M, 

      HistoricalMinPCategory H 

where M.categoryID = H.categoryID 

 

MinMaxPriceCategory uses pMinMax()from the SME to get values for minPrice and 

maxPrice columns. HistoricalMinPCategory is a database table containing previous 

day’s minimum prices per category and has schema: <categoryID, yesterdayMinPrice>.  When an 

SQL query issued on LVM the getValues request is called for each linked column and the SME 

returns a batch of key-value pairs to the LVM. These pairs of data are stored as CSV files in LVM 

machine and loaded in the DBMS as two-column Key-Value tables. We used the COPY command 

of PostgreSQL to load the CSV files. For QE3 the minPrice column is memory-resident while 

HistoricalMinPCategory is a disk-resident table. We annotate queries that use disk Key-

Value tables with D and queries use memory Key-Value tables with M. The execution times of 

SQL queries (in seconds) are shown in Table 2. We varied key size (categoryID) from 50000 

to 300000 for MinMaxPriceCategory with a step of 50000. The 

HistoricalMinPCategory in QE3 has the same number of rows as the specified size. 
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Table 5.2: SQL queries execution time (seconds) 

   Query 
Number of keys 

50000 100000 150000 200000 250000 300000 

QE1M 0.565 1.033 1.546 2.045 2.588 3.175 

QE1D 0.698 1.257 1.868 2.594 3.096 4.049 

QE2M 1.208 2.157 3.275 4.230 5.351 6.286 

QE2D 1.468 2.708 3.797 5.098 6.763 7.656 

QE3 0.667 1.343 1.924 2.447 3.432 4.071 

 

 

Note that queries using disk Key-Value tables (QE1D, QE2D) are slower than queries with in 

memory Key-Value tables (QE1M, QE2M). QE3 requires only one linked column from SME and its 

performance is similar to QE1. Also both versions of QE2 are slower than QE1. QE1 can be 

executed without a join i.e. all columns mentioned in the select clause can be retrieved by the 

created Key-Value table with schema <categoryID, minPrice>. On the other hand for QE2 a join 

between the Key-Value table with schema <categoryID, minPrice> and the Key-Value table with 

schema <categoryID, maxPrice> must be performed. In particular, QE2 evaluation requires the 

following tasks: 1) request of key-value data from SMEs (getValues API call) and storage as CSV 

files 2) create Key-Value tables and load the corresponding CSV files, 3) join of Key-Value tables 

and execution of the issued SQL query. Details on how these tasks affect linked columns 

evaluation can give better insights about performance bottlenecks in a LinkView system. Figures 

5.3, 5.4, and 5.5 show the execution time of queries QE2D, QE2M and QE3, split by task. 

 

Figure 5.3: QE2D tasks 
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Figure 5.4: QE2M tasks  

 

 

Figure 5.5: QE3 tasks 
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We test our system in case we push a predicate to the implemented SME. getValues may 

retrieve key-value pairs according to a selection condition θ if supported by the KVE. We used a 

modified version of QE1M to study the performance of this optimization: 

 

QE1Mθ.  select categoryID, minPrice  

      from MinMaxPriceCategory 

      where categoryID<x 

 

where x ranges from 20000 to 100000 with a step of 20000. The number of keys used for the 

definition of MinMaxPriceCategory is 100000. Figure 5.6 shows execution time (in 

seconds) when (a) the predicate can be pushed to the SME, and (b) when selection takes place in 

the DBMS. 

 

Figure 5.6: QE1Mθ   

 

5.9 Summary and Conclusions  

Applications and utilization of stream data can be found today not only in “traditional” real-

time environments, such as finance and telecommunications, but also in a wide variety of domains 

and settings, such as supply chain (through RFID sensors), energy management (through smart 

meters), social networks (through status updates) and many others. While data stream management 

systems (DSMS) are technologically mature and address most of the challenges in stream 

processing, they lack standardization in terms of modeling, querying and interoperability. So far, 

stream processing was confined within an organization. However, modern applications need to 

20000 40000 60000 80000 100000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Number of records satisfy θ

 DBMS (θ)
 SME (θ)



Chapter 5: An Integration Framework for Relational and Stream Systems 112 

 

integrate and manage aggregates produced by a variety of stream engines, from complete Data 

Stream Management Systems (DSMSs) to stand-alone stream-handling components. 

We have presented an integration framework for relational database management systems and 

heterogeneous stream systems. In the proposed framework keys are managed by databases and 

stream data sets corresponding to these keys are managed by stream systems. A theoretical 

framework has been developed and a key-value based interface has been proposed. We argued for 

the advantages of such an approach. A prototype system has been implemented and can operate on 

top of any relational database management system. The goal of this research is to bring stream 

aggregates to naïve database users and analysts in a stream-transparent way. As most users are 

familiar with traditional relational systems and SQL, bringing stream support within such 

environments is of major importance.  

 



 

 

Chapter 6 

 

6 Conclusions 
6.1 Summary 

Modern applications require advanced data analysis over voluminous and continuous data sets. 

These streams of data must be processed in (near) real-time and results must be provided 

continuously. Applying analytics over stream data transforms passive organizations to active i.e. 

an organization becomes aware of what is happening in its immediate business environment and 

how internal or external events affect organization’s daily operations in (near) real-time. Moreover 

considering that relational model and relational Database Management Systems (RDBMSs) are the 

de-facto approach for storing and processing structured data, integrating RDBMSs/relational 

model with stream data is of major importance. The current thesis tries to solve the above 

problems. In particular in this thesis we provide methods and tools to combine relational and 

stream data for real-time analytics. Additionally, we provide a framework that enables RDBMSs to 

interoperate with heterogeneous stream engines.  

To support analytics over stream data SQL-like extensions are proposed in Chapter 3. The 

intuition is that for each relational value exists in a table we can attach a stream aggregate. 

Moreover we can attach multiple aggregates from multiple sources. Correlated aggregates are also 

feasible enabling complex data analysis over streams. The definition of such queries is simple and 

easily understandable by database users.  

A spreadsheet-like approach for stream analytics is developed in Chapter 4. Spreadsheet tools 

are used by millions of users for offline data analysis. A method that resembles the common usage 

of spreadsheets (column-by-column) is proposed for stream query definition. The queries that can 

be defined using this method comprise a class of useful and practical queries that can be used for 

decision making.  

In Chapter 5 we introduce a relational-based integration framework that sits atop any relational 

DBMS and mix DBMS’ data and stream aggregates managed by different stream systems. We 

propose a special view layer defined over standard relational schemas: views in that layer, called 

LinkViews, consist of base- and linked- columns. A linked column is associated to a base column 
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in the view and a program at a stream engine. The program matches the keys of the base column 

with values, which then become the content of the linked column during query evaluation. We 

propose an SQL extension to define link views and an API to carry out the required 

communication between the relational and the stream systems. We claim that this framework: (a) 

is suitable for simple database users, (b) addresses an important and useful class of queries, 

overlooked so far, (c) presents numerous optimization opportunities to minimize communication 

and processing costs, and (d) can serve as a standard for relational-stream interoperability. 

6.2 Future Work 

This section describes further work on each chapter. 

 

Chapter 3 - SQL Extensions for Real-Time Analytics: Stream variable queries modeling and 

evaluation assumes one machine i.e. the widened relation existed in one partition. We can 

horizontally partition the widened relation to several processing nodes and distribute the stream 

tuples to all of these. Having multiple machines requires a distributed evaluation algorithm for the 

computation of stream variable aggregates. This direction can be studied further. Stream variables

can have a large number of function members allowing for logical or physical windows, flushing 

the contents of a queue at any time, pausing or restarting a queue, etc. An extensibility framework 

that enables developers to define their own functions could be useful. In this way a set of useful 

functions (library) can be created that can be used from multiple users enhancing the usefulness of 

stream variables. In some applications the large volume of stream data and the requirement for

only one pass over stream data has give a birth to stream processing techniques that compute 

approximate answers. In chapter 3 stream variable queries provide exact answers assuming that 

each data stream element can be efficiently handled by our system. Further work can be done on 

how stream variables can support reporting functions that provide approximate answers (e.g. data 

synopses).  Moreover Quality of Service (QoS) specifications can be used for the same reason. 

These extensions are suitable for stream variable system as reporting functions can easily enclose 

approximate algorithms. However correlated stream aggregates that use data synopsis need further 

investigation.  

 

Chapter 4 - Spreadsheet-like Stream Processing: More theoretical work could be developed 

about the expressive power and the limitations of the proposed spreadsheet-like approach for 

stream querying. Spreadsheets can support array-style computations (e.g. compare two consecutive

cells). How we can enable array-style processing for stream data is an interesting problem.  
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Spreadsheets provide a simple and intuitive interface to express complex relationships among 

cells, columns and rows. Our approach uses a column-by-column approach for the definition of 

stream queries. Further research can consider how spreadsheet constructs (i.e. cells, rows) can 

support complex stream queries. Such a spreadsheet-like query interface can be appropriate for 

naïve users. As a result, the development time and cost of data stream applications will decrease 

and stream systems will become accessible to many more people (i.e. not necessarily experts). 

Furthermore, spreadsheet query formulation is likely to serve as the basis for identifying efficient 

implementations, since succinct, concise and compact representations at the conceptual level lead 

to efficient optimizations at the processing level. Overall a platform that can support the 

declaration of stream queries using spreadsheets (i.e. define queries similar to the operations 

supported in Excel) can bring stream data processing to masses. 

Also query-streams-by-example using the spreadsheet interface (i.e. defining a query stream 

example pattern in a spreadsheet on how a stream element processing is happen and how this is 

applied in a series of stream elements) can be studied further. Human computer interaction 

research for databases is an undistinguished research area despite its importance. Spreadsheets can 

be used to further investigate this research area. 

 

Chapter 5 - An Integration Framework for Relational and Stream Systems: Further work 

includes the investigation on how LinkView definitions could be incorporated into a relational 

optimizer. It would be interesting to investigate and develop a cloud infrastructure for the 

implementation of LinkView framework. Such an infrastructure can be used by stream providers 

to provide services (programs) to database users. A better study is need for the interface between 

the streaming applications and the Key-Value store, and the policies governing how the streaming 

results are materialized on the Key-Value store. Moreover more work can be done for the 

definition of a stream program design pattern that can be used from SMEs in LinkView 

framework. Reusable modules and code is important for the wide acceptance of LinkView 

framework. Finally LinkViews can be used to link to other non-stream systems, allowing the 

creation of a generic integration platform for different types of data and systems (e.g. MapReduce, 

Big Data platforms, etc.) 
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