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ABSTRACT

Aikaterini L. Stamelakou

Statistical Methods for analysis under the presence of missing data

July 2016

Missing data are a recurring problem which can cause bias or lead to inefficient analysis, no
matter how well a survey questionnaire is designed and no matter how effective is the data
collection. These data need a special and meticulous handling in analysis. This is why so many
statistical methods have been proposed and developed to address missingness.

Some of them are based on deletion of incomplete cases, others try to predict each missing
value and then to include the filled in value in analysis, these are called Simple Imputation
Methods. Additionally, there is another method, known as Multiple Imputation, which is based
on the creation of many imputed data sets by using Data Augmentation. In this thesis, each of
these methods will be mentioned. Specifically, the Multiple Imputation method will be the
main topic that will monopolize the interest and will be given special emphasis.

In the context of this thesis included and an application of Linear Mixed Models in repeated
measurements with data that are not complete. Applying different mixed effect models on these
data we reach in the appropriate model through the Bayesian Information Criterion. In
continue, we apply multiple imputation in our data and then fit the same models in the imputed
data this time. Our main goal is to examine the similarities or differences that may have these
two data sets.
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HEPIAHYH

Awkatepivn A. ZtapeddKov

YrotioTikéG M£EB0dOL Yo Avaroon VT TNV TAPOVGSIa EAMTOV

GTOLYELOV
IovAtog 2016

Ta dedopéva mov Aeimovv eival éva emavalappavouevo tpdPAnpa to oroio pumopel
VO, TPOKOAEGEL pLEPOANYia 1 Vo 00NYNGEL GE AVATOTEAEGUATIKY avaAvon. Agv €yxel
onuacio T66o Kald £va epOTNUATOLOYIO £xel oyedlaotel Kot dev £xel onuacio TGO
OTOTEAEGHATIKY €lval M oLAAOYY dedopévov. Ta dedopéva avtd ypertdlovrar pio
€KY Kol oyoAacTiky dtayeipion otnv avaivon. Avtdg givar o kOplog Adyog mov
gxovv mpotabel Kol avamtuyfel Yo TNV OVIIHETOTION TOV EAMTOV GTOLXEI®MV TOGEG
TOAAEG oTaTIoTIKEG péEBOdOL.

Mepikéc and avtég Pacilovtor 6e dloypaen TOV EAAEITOVIOV TEPINTOGEWMV, AAAESG
npoconafodv va mpoPfAéyovv Kabe Tiun mov Agimel Kol GTN GLVEYELR VO EXOVUE €Vl
oAoKANPp®UEVO 6VVOLO dedopEVOV, avTég ot uEBodotl ovopdlovtar Simple Imputation.
EmmAéov, vmdpyel kot pia GAAn pébodoc, yvootn wg Multiple Imputation, n onoia
Baciletar otn  Onuovpyic. TOAADV  OAOKANPOUEVOV  GLVOA®V  JESOUEVOV.
Yvykekppéva, n televtaio péBodoc Ba povortwAncel To evotapépov pag kot Ba dobel
wiaitepn épeaon.

Y10 mAoiclo avTNG NG Ol TPIPNC meptAapPaveTal Kol Qo €QOPROYT] TOV OPOPd
HOVTEAD KTV EMOPACE®V CE EMOVOAAUPAVOUEVEC LETPNGELS LE OEOOUEVA TTOV OEV
etvar wAnpn. Eeappuoloviac d1a@opeTikd HOVIEAD UIKTOV EMOPACE®V GE OVTO T
d0edoUéVa KOTAANYOLUE 6TO KATAAANAO povtélo péoa amd kdmoio kpitnpto. Ev
ovveyeia, epapuolooue Multiple Imputation ota dedopéva pog kat epapuolovus Eova
o 1010 povrého oto véo O0gdopéva avtn ™ @opd. Baocikdg pag otdyxog eivar va
€EETAGTOVV Ol OHOLOTNTEG 1 OLOPOPEG OV €VOEYETAL VA £XOVV aLTA T VO GHVOAN
dedopnévmv, ONAdN T0 OAOKANpOUEVO apyelo Kot ekelvo mTov meplAapPavel TIHEG TOV

AElTOVLV.

Vil
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Chapter 1

1.1 Introduction

Standard statistical methods have been developed to analyze rectangular data sets. Generally, the
rows of the data matrix represent units, also called cases, observations or subjects depending on
context, and the columns represent variables measured for each unit. The entries in the data matrix
are nearly always real numbers, either representing the values of essentially continuous variables
or representing categories of response which may be ordered or unordered. When some of these
entries in the matrix are not observed, we use to say that we have missing values in our data set.
According to Schafer and Graham (2002) data contain various codes to indicate lack of response
like “Don’t know”, “Refused”, “Unintelligible’” and so on.

Also with rectangular data, there are several important classes of overall missing-data patterns.
Consider Figure 1.1 (a), in which missing values occur on an item Y but a set of p other items
X1, ..., Xp is completely observed, we call this a univariate pattern. The univariate pattern is also
meant to include situations in which Y represents a group of items that is either entirely observed
or entirely missing for each unit. In Figure 1.1 (b), items or items groups Y4,..., Y may ordered
in such a way that if Yj is missing for a unit, then Yj+1,..., ¥p are missing as well. This is called
a monotone pattern. Figure 1.1 (c) shows an arbitrary pattern in which any set of variables may

be missing for any unit.

N X o XY T1¥2 Y3 g T1¥: Y3 g

N (2]

(a) (b) (c)
Figure 1.1 : Patterns of nonresponse in rectangular data sets: (a) univariate pattern, (b) monotone pattern,

and (c) arbitrary pattern.



Because missingness may be related to the data, we classify distributions according to the nature
of that relationship. Rubin (1976) developed a typology for these distributions that is widely
cited but less widely understood.
Let us denote the complete data as Ycom and partition it as Ycom = (Yobs, Ymis ), Where Yobs and Ymis
are the observed and missing parts, respectively. Rubin (1976) defined missing data to be missing
at random (MAR) if the distribution of missingness does not depend on Ymis, (we refer to R as the
missingness)

P(R|Ycom) = P(R| Yobs). (1.1)

In other words, MAR allows the probabilities of missingness to depend on observed data but not
on missing data. An important special case of MAR, called missing completely at random
(MCAR), occurs when the distribution does not depend on Yps either,

P(R'Ycom ) = P(R)

When Equation 1.1 is violated and the distribution depends on Y mis, the missing data are said

to be missing not at random (MNAR).



Chapter 2

2.1 Analyzing methods of incomplete data sets

In this chapter, we will discuss briefly about methods for analyzing incomplete data sets. The basic
methods are Deletion, Single Imputation and Multiple Imputation. Deletion method contains
Complete Case (CC) and Available Case (AC). Single Imputation encloses mean, regression, hot-
deck and cold-deck imputation respectively. We will focus on Multiple Imputation (M) in another

section.

2.1.1 Complete Case Analysis

The standard treatment of missing data in statistical packages is Complete Case Analysis (CC),
where cases with any missing values are simply discarded. This method is also known as Listwise
Deletion (LD) and is appropriate only when missing completely at random (MCAR) is a
reasonable assumption for the missing data mechanism.

Complete Case (CC) analysis is a very simple method. By using it, we can make valid inference
since all univariate statistics are calculated on a common sample base of cases. Moreover, the
rejection of incomplete cases is an unnecessary waste of information, such loss of cases reduce
statistical power. The loss in sample size can be considerable if the number of variables is large.
One recommendation, which can be offered to mitigate the loss of cases, is to drop variables that
have high levels of missing data while considering the degree of association between this variable
and the others in the analysis. The Complete Cases are effectively a random sub-sample of the

original cases, only when the data are missing completely at random (MCAR).

2.1.2 Available Case Analysis

This method, which is also well known as Pairwise Deletion (PD), includes all cases where the

variable of interest is present. It is obvious that the sample base changes from variable to variable,



which is actually a special disadvantage of this procedure. Also, an appropriate assumption is
missing completely at random (MCAR) and at this case too.

Under this rare assumption it is easy to estimate unbiased means and variances, but is more
complicated when we have to estimate measures of covariation, such as covariance or correlations.
For example, if we want to calculate covariance (or correlation) between two variables Yjand Yk,
we are based on cases i for which both yjjand yik (i=1,...,nand jk=1,...,p,j # k) are present.

So the estimate of covariance is

(1 k) —(jk))

YVik—

lek

(Jk) _ Wjk=y

= XKy (2.1)

(Jk) —(jk)

where njk is the number of cases where both Yjand Yk are observed, y.”* and y,”" are the sample

means of Yjand Yk correspondingly over those nj cases. With the some procedure, the estimate of

correlation between these two variables would be

]k)

L (2.2)

i, =
A RORCS
Sjj Skk

IS the variance of Yjover nj cases. A criticism of Equation (2.2)

~(jK)\2
k=57
where s =3 ;)

is that, unlike the population correlation being estimated, rjk, which describes Pearson’s correlation
between Yjand Y, can lie out of the range (-1,1) because rix& (-1,1). As a solution to this problem,
we use to compute pairwise correlations, where variances are estimatwd from the sample base as

the covariance.

U0

Uky_ _ Sjk
Tji RIERE) (2:3)
Sjj Skk

2.1.3 Mean Imputation

Refers to the procedure through which we substitute the missing values on a variable with the
mean of the observed values for the same variable. In case of categorical data, the mode instead
of the mean is used. So the overall respondent mean y,. for each variable, is assigned to all

missing responses Yomis ;= ¥ -



In case there are auxiliary variables (which are fully observed) is preferable to use Mean
Imputation within classes. In this procedure, firstly, we divide the total sample into H imputation
classes according to values on auxiliary variables, in order to achieve homogeneity within classes.
Within each class, the respondent mean for y-variable ( y,;, h=1,2,...,H) is assigned to all the non-
respondents in that class, SO Y5 ; = ¥, for the i-th non-respondent in class h. The classes may
be defined as the cells in the crosstabulation of the (categorized) auxiliary variables, but symmetry
IS not essential; instead some auxiliary variables may be used for the one part of the sample while
others are used for another part, or group of cells may be combined.

However, while this approach may be valid especially if the data are missing completely at random
(MCAR), it is argued that mean substitution leads to an underestimation of the true population
parameter particularly in simulations, where a segment of the population is more prone to non-

response. The variance of the observed and imputed values of Yjis

=D ()
s (n—-1) Sij (2.4)

where s is the estimated variance from available cases. Under MCAR assumption, s is a

Ji
consistent estimate of the true variance, so the sample variance from the filled-in datasets
underestimates the variance by a factor of % . This underestimation is a consistent estimate
of imputing missing values at the center of distribution. Similarly, the sample covariance of Y;

and Yk from the filled-in data is

()= Mjk=1 (k)
Sik = "=y ik (2.5)

where sj(,{k) is the estimated covariance when both Y; and Y; are observed. Since sk

ik IS a

consistent estimate of the covariance, again the estimate from filled-in data underestimates the

(-

magnitude of the covariance by a factor S) . Thus, although the covariance matrix from the

filled-in data is positive semi definite, the variances and covariances are systematically

underestimated.



However, mean substitution has also been criticized on the grounds that it distorts the empirical
distribution of the variable and that will be a problem when one wants to examine the shape (e.g.

histogram, skewness) of the variable.

2.1.4 Regression Imputation Procedure

In this case, we assume a variable Y with missing data and p auxiliary variables X1, X...., Xp.
This procedure, which is based on regression analysis, has two different versions: deterministic
and stochastic. In fact, deterministic version serves well for estimating means and totals, but it
distorts distributional properties of the variable; stochastic version, on the other hand, is less

efficient for estimating means and totals but it preserves the variability in the observed data.

e Predicted Regression Imputation

This is the deterministic version of the regression imputation method. This method uses respondent
data to regress Y on the auxiliary variables Xi, Xz,..., Xp. Missing Y — values is then imputed as

the predicted values from the regression equation

Yinis,i= Qot Xi-y X; (2.6)
If the Y variable is qualitative, log-linear or logistic models may be used. As in any regression
analysis, specific interaction terms may be included in the regression equation and also
transformations may be useful. Little (1992) notes that estimated standard errors of the regression
coefficients from Ordinary Least Squares (OLS) or Weighted Least Squares (WLS) tend be too
small, because imputation error is not taken into account.
A special case of the previous regression model (2.6) is the ratio model. In this case, the regression

model is

Vinis,i= 22 X; (2.7)

XR

with a single auxiliary variable and an intercept of zero. That is, the value, which is used as a
donor, is the ratio of Y variable mean with X variable mean multiplied by value of X in position

that Y is missing and we are willing to complete.



e Random Regression Imputation

In this case, the imputed values are the predicted values from the regression equation (2.6) plus
residual terms e,;;s;. So, the appropriate model, which describes the stochastic version of

regression imputation, is
- A p A
Ymis,i - a0+zi=1 ﬁi XL + emis,i (28)

Depending on the assumptions made, the residuals can be determined in various ways, including:
a. If the residuals are assumed to be homoscedastic and normally distributed, a residual can
be chosen at random from a normal distribution with zero mean and variance equal to

the residuals variance from the regression  {emis~N(0,6%)}.

b. If the residuals are assumed to come from the same, unspecified distribution, they can

be chosen at random from the respondents’ residual.

c. As a protection against non-linearity and non-additivity in the regression model, the

residuals may be taken from respondents with similar values on the auxiliary variable.

2.1.5 Hot-deck Imputation

Hot-deck procedures are common methods for adjusting data sets for missing values. Because hot-
deck procedures originated in survey practice with little theory to direct their development, the
statistical literature provides few definitions or results about these procedures. Widespread practice
in the absence of well-developed theory clouds the subject with ambiguities and inconsistencies.
In general, a hot-deck procedure is a duplication process, when a value is missing from a sample
a reported value from the same sample is duplicated to represent this missing value. The adjective
“hot” refers to imputing with values from the current sample.

The most common techniques within the Hot-deck imputation are Flexible Matching Imputation,

Nearest Neighbor Hot-deck and Sequential Hot-deck.



2.1.6 Cold-deck Imputation

In this procedure, when a value is missing from a sample, another value from another survey or
another sample is used to represent the missing value. In general, two basic types of this
substitution procedure are used:

1. Selection of a random substitute.

2. Selection of a specially designed substitute.

With a random substitution procedure, an additional population unit is selected on a probability
bases to replace each non-respondent. Usually the substitute for a particular non-respondent is
chosen from a restricted population of subgroups. On the other hand, a procedure that uses
specially designated substitute units identifies one or more backup units to provide substitutes,

if necessary, for each sample unit.

2.3 Multiple Imputation

Multiple Imputation (MI) appears to be one of the most attractive methods for general purpose
handling of missing data in multivariate analysis. The basic idea, first proposed by Rubin (1978),
is quite simple. This idea is based on creation m > 2 complete “imputed” datasets. We analyze
each one of them, by using standard complete data methods and finally these m complete data
inferences can be combined to form one inference that properly reflects uncertainty due to non-
response under that model.

Specifically, in this procedure, there are m > 2 possible values for each missing value, (a vector
m x 1), which are ordered in the sense that m complete data sets can be created from the vectors
of imputation. Each time, we replace each missing value by one of the components in its vector
and we create a complete data set. Standard complete data methods are used to analyze each of m
complete data sets. For example, one could perform linear or logistic regression procedures using
any standard statistical package. Any model would have to be fitted m times, one for each imputed
data set and the results across these data sets will vary as a reflection of missing data uncertainty.
So, we obtain an overall set of estimated coefficients and standard errors from these m data sets

and then we want to combine the results using certain rules that will be discussed below. In fact,



the variability among the results of the m analyses provide a measure of the ordinary sample
variation, lead to a single inferential statement about the parameters of interest.

The Multiple Imputation (M), a simulation based technique, has been developed in an attempt to
give solutions to problems because Single Imputation (SI) has two obvious disadvantages.
Specifically, single imputation is unable to express the sampling variability under one model for
non-response and the uncertainty about the correct model of non-response. Both these
disadvantages don’t exist in Multiple Imputation, which also shares the advantages of single
imputation. That is we can use all standard complete data methods of analysis and also, in many
analyses, data collector (e.g. Census Bureau) and data analysts (e.g. a university social scientist)
may be different individuals, which is very important because the data collector may have access
to more and better information about non-respondents than the data analyst. For example, in some
cases, information protected by secrecy constrains (e.g. zip codes of dwelling units) may be
available to help impute missing values (e.g. annual incomes).

As we have seen, Multiple Imputation is better than Single, because shares the advantages of
Single Imputation and also rectifies disadvantages. The only disadvantage of this procedure is that
it requires more work than Single Imputation. The cost of using Multiple Imputation is the
computational complexity, space of databases and time required due to the fact that many different
sets and samples have to be available at any time.

Finally, we ought to notice that the appropriate number of imputations mostly required is quite
small. Usually, we can obtain good results with m as small as 3-5. Why only a few imputations
are needed? Actually, this fact is very strange in comparison to the number of repetitions, which
are usually required to the EM algorithm or in Data Augmentation. On the other hand, this is
quite logic, because firstly, with this procedure, we only desire to solve the missing data aspect of
the problem, without decreasing Monte Carlo error, and secondly the rules for combining the m

complete data analyses explicitly account for Monte Carlo error.

2.3.1 Rubin’s Rules

Rubin (1987) provides a procedure from the m imputations. We use Schafer’s (1997) notation.

Consider that we want to make inference about a quantity Q in the complete data case. Let §



be an estimate of Q that we use if no data were missing and U an estimated variance of Q.
Because both these quantities are related.

With m imputations, we calculate m different versions of Q and U .

Q(t) = Q(Yobs ,Ymis)
and

U(t) = U(Yobs ,Ymis)

be the point and variances estimates using the t -th set of imputed datasets. According to Rubin,
the estimate of Q , which combines the m complete data estimates Q@ is the average of these

estimates.
Q=—3n, Q0 (2.9)
The variability associated with this estimate has two components:

a.  Within imputation variance, which is the average of variance estimates of imputed data.

U=—3n,u® (2.10)
b. Between imputation variance, which is the variance of the complete data estimates.

B =——3",(Q® - Q)? (2.11)

m—1

Then, the total variance is defined as :

T=U+ —B (2.12)
m+1

10



which Tisequalto U plus B corrected for m being finite by the term % and the inferences

are based on the following approximation

T72 (Q-Q) ~ tu 2.13)

where the t distribution the degrees of freedom ( df ) are calculated as:

df = (m + D[+ —9 (2.14)

m+1B

Equation (2.14) shows that the degrees of freedom are depended by both m and g. That is, as

. . . . U .
the number of imputations m increases the degrees of freedom increases. Also, as - increases the

df gets larger. According to Schafer and Olsen (1998), if the degrees of freedom are small, less
than 10, the estimates will be more accurate when the number of imputations m is large. On the

other hand, if the computed value of df is large, greater than 10, little will be gained from a

1 _
larger m . In fact, when df is large, we may assume that statistic 7"z (Q- Q) is asymptotically

normal. According to Equation (2.13), an 100(1-a)% interval estimate for Q is:
0+ tdf_l_%ﬁ (2.15)

and an appropriate p —value for testing the null hypothesis Q = O’ against a two sided alternative
is:

1 _
p —value = 2P(tgr > T 2|Q — Q') (2.16)
The ratio % , which indicates how much information is missing, is an estimator of fy , Where y

is the fraction of information missing for Q due to non-response. If y is zero then B goes to zero.

This quantity y is defined as:

11
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1.B . - . . . .
where r=(1+ )= indicates the relative increase in variance due to non-response, because

U represents the estimated total variance, where is no missing information about Q (B=0).

Both y and r can be used as diagnostic statistics to examine the effect of missing data on
estimates of Q.

12



Chapter 3

3.1 Introduction

In this chapter we present an overview of linear mixed-effects models. In practice, longitudinal
data are often highly unbalanced in the sense that are not equal number of measurements is
available for all subjects and/or that measurements are not taken at fixed time points. Due to their
unbalanced nature, many longitudinal data sets cannot be analyzed using multivariate regression
techniques. A natural alternative arises from observing that subject-specific longitudinal profiles
can often be well approximated by linear regression functions.

Many common statistical models can be expressed as linear models that incorporate both fixed
effects, which are parameters associated with an entire population or with certain repeatable levels
of experimental factors, and random effects, which are associated with individual experimental
units drawn at random from a population. Fixed effects factors are generally thought of as fields
whose values of interest are all represented in the dataset, and can be used for scoring. Random
effects factors are fields whose values in the data file can be considered a random sample from a
larger population of values. They are useful for explaining excess variability in the target. A model
with both fixed effects and random effects is called a mixed-effects model. Mixed-effects models
are primarily used to describe relationships between a response variable and some covariates in
data that are grouped according to one or more classification factors. By associating common
random effects to observations sharing the same level of a classification factor, mixed-effects

models flexibly represent the covariance structure induced by the grouping of the data.

3.2 The General Linear Mixed Model

According to Verbeke and Molenberghs (2000) at the first stage of the two-stage approach assume
that the random variable Yj; denote the (possible transformed) response of interest, for the ith

individual, measured at time tjj, i = 1,....N, j=1,..., nj, and let Y;i be the ni-dimensional vector of
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all repeated measurements for the ith subject, that is, Yi= (Yi1, Yiz,..., Yini)’. The first stage

assumes that Y; satisfies the linear regression model:

Y, =Zpi + ¢ (3.1)

where Z;is a (nix g) matrix of known covariates, modeling how the response evolves over time
for the ith subject. Further, Bi is a g-dimensional vector of unknown subject-specific regression
coefficients, and &; is a vector of residual components &, j=1,..., ni. It is usually assumed that all
&i are independent and normally distributed with mean vector zero, and covariance matrix o2lni,
where Ini is the ni-dimensional identity matrix. Obviously, model (3.1) includes very flexible
models for the description of subject-specific profiles.

In the second stage, a multivariate regression model of the form

Bi = Kif + b; (3.2)

is used to explain the observed variability between the subjects, with respect to their subject-
specific regression coefficients fi. Ki is a (q x p) matrix of known covariates, and £ is a p-
dimensional vector of unknown regression parameters. Finally, the b; are assumed to be
independent, following a g-dimensional normal distribution with mean vector zero and general
covariance matrix D.

In practice, the regression parameters in (3.2) are of primary interest. They can be estimated by
sequentially fitting the models (3.1) and (3.2). First, all g are estimated by fitting model (3.1) to
the observed data vector y; for each subject separately, yielding estimates j3,. Afterward, model
(3.2) is fitted to the estimates j,, providing inferences for 2.

This two-stage analysis can be interpreted as the calculation (first stage) and analysis (second
stage) of summary statistics. First, the actually observed data vector i is summarized by j,, for
each subject separately. Subsequently, regression methods are used to assess the relation between
the so-obtain summary statistics and relevant covariates. Other summary statistics frequently used
in practice are the area under each individual profile, the mean response for each individual, the

largest observation, the half time, and so forth.
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As for any analysis of summary statistics, the two-stage analysis obviously suffers from at least
two problems. First, information is lost in summarizing the vector yi of observed measurements
for the ith subject by B,. Second, random variability is introduced by replacing the i in model
(3.2) by their estimates j3,. Moreover, the covariance matrix of 8, highly depends on the number
of measurements available for the ith subject as well as on the time points at which these
measurements were taken, and this is has not been taken into account in the second stage of the
analysis.

In order to combine the models from the two-stage analysis, we replace gi in (3.1) by expression
(3.2), yielding

Yi = Xlﬁ +Zibl + & (33)

where Xi = Z; K; is the appropriate (nj X p) matrix of known covariates, and where all other
components are defined earlier. Model (3.3) is called linear mixed effects model with fixed effects
S and with subject-specific effects bi. It assumes that the vector of repeated measurements on each
subject follows a linear regression model where some of the regression parameters are population-
specific. The b;i are assumed to be random and are therefore often called random effects.

For example, a model with fixed effects 8; and random effects b; could be written as

Yij =Bj+ b + &, i=1,..9, j=1,..4,

bl""’N(0,0'l?), SijNN(O,O'Z),

or, equivalently,
Yi=Xip+Zb;+e, i=1..9

b;i~N(0,02), &~N(0,02I),

where, fori=1,...,9,

Vi1 100 0 1 Ei1

_ |2 1o 1 0 o . _ |1 _ |z
Yi=lyslr Xi=|o o0 1 o] Z=1=|1| &= |es|
Yia 0 0 0 1 1 Eig



In general, a linear mixed-effects model is any model which satisfies (Laird and Ware, 1982)

* Yi:Xl':B-I_Zibi-I_gi
x b, ~N(0, D), (3.4)
* & ~N(O, 2;),

* bq,..., by, £1,..., &y Independent,

where Y; is the n;-dimensional response vector for subject i, 1<i < N, N is the number of
subjects, X; and Z; are (n; X p) and (n; X g) dimensional matrices of known covariates, £ is an
p-dimensional vector containing the fixed effects, b; is the g-dimensional vector containing the
random effects, and ¢; is an the n;-dimensional vector of residual components. Finally, D is a
general (g X g ) covariance matrix with (i, j) elements d;; = d;; and X; is a (n; X n;) covariance
matrix which depends on i only through its dimension n;, i.e. the set of unknown parameters in
2; will not depend upon i. In some cases, one may wish to relax this last assumption.

It follows from (3.4) that, conditional on the random effect b;, Y; is normally distributed with
mean vector X;8 + Z;b; and with covariance matrix X; . Further, b; is assumed to be normally
distributed with mean vector 0 and covariance matrix D. Let f (y;/b;) and f (b;) be the

corresponding density functions. The marginal density function of ¥; is then given by:

f o =[f ilby) f(by) db;,

which can easily be shown to be the density function of a n;—dimensional normal distribution
with mean vector Xi3 and with covariance matrix Vi = ZiDZy’+Zi . Hence, the marginal model
implied by the two-stage approach makes very specific assumptions about the dependence of the
mean structure and the covariance structure on the covariates Xi and Z;, respectively.

Since, model (3.4) is defined through the distributions f (y; |b;) and f (b;), it will be called the
hierarchical formulation of the linear mixed model. The corresponding marginal normal
distribution with mean X;$ and covariance Z;DZ; + X;, is called the marginal formulation of the
model. Note that, although the marginal model naturally follows from the hierarchical one, both

models are not equivalent.
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3.3 Estimation the Marginal Model

As we discussed the general linear mixed model (3.4) implies the marginal model
Yi ~ N (Xi,B, ZlDZLI + 21) (35)

Inference is based on this marginal distribution for the response Y;. It should be emphasized that
the hierarchical structure of the original model (3.4) is then not taken into account. Indeed, the
marginal model (3.5) is not equivalent to the original hierarchical model (3.4). Inferences based
on the marginal model do not explicitly assume the presence of random effects representing the
natural heterogeneity between subjects.

Let a denote the vector of all variance and covariance parameters (usually called variance

different elements in D and

components) found in V;=Z;DZ; + X;, that is, a consists of the q(q;l)

of all parameters in Xi. Finally, let @ = (B’, @’)’ be the s-dimensional vector of all parameters in
the marginal model for Yi, and let @ = 65 X 6, denote the parameter space for @, with 65 and
0, the parameter spaces for the fixed effects and for the variance components respectively. Note
that @5=R?, and 6, equals the set of values for a such that D and all Z; are positive (semi-)definite.
The classical approach to inference is based on estimators obtained from maximizing the marginal

likelihood function:

L (0) = T {@m) 2 @) 2 x exp( =2 (¥, — Xp)V (@ - XB)}  (36)

with respect to . Let us first assume a to be known. The maximum likelihood estimator (MLE)

of f, obtained from maximizing (3.6), conditional on a, is then given by (Laird and Ware, 1982)
Bla)= X, X' W X) I, X' WYy (3.7)

where Wi equals Vi,

When a is not known, but an estimate of & is available, we can set ¥, = Vi(&) = Wl_l, and estimate

B by using the expression (3.7) in which Wi is replaced by W,. In continue, we will see two
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frequently used methods for estimating a, these are the maximum likelihood estimation (MLE)

and the restricted maximum likelihood (REML) estimation.

3.3.1 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) of a is obtained by maximizing the expression (3.6)
with respect to a, after £ is replaced by (3.7). This approach arises naturally when we consider the

estimation of g and & simultaneously by maximizing the joint likelihood (3.6).

3.4 Restricted Maximum Likelihood Estimation

In practice, linear mixed models often contain many fixed effects. In such cases, it may be
important to estimate the variance components, explicitly taking into account the loss of degrees
of freedom involved in estimating the fixed effects. In contrast to simple cases, an unbiased
estimator for the vector e of variance components cannot be obtained from appropriately
transforming the ML estimator as suggested from the analytic calculation of its bias. However, the
error contrasts approach can still be applied as follows. We first combine all N subject-specific

regression models (3.4) to one model:

Y =XB+Zb+e, (3.8)

where the vectors Y, b and &, and the matrix X are obtained from stacking the vectors Y;, b; and
€;, and the matrices X; respectively, underneath each other, and where Z is the block-diagonal
matrix with blocks Z; on the main diagonal and zeros elsewhere. The dimensional of ¥ equals
>N . n; and will be denoted by n.

The marginal distribution for ¥ is normal with mean vector X and with covariance matrix V(a)
equal to the block-diagonal matrix with blocks V; on the main diagonal and zeros elsewhere. The

REML estimator for the variance components a is now obtained from maximizing the likelihood
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function of a set of error contrasts U = A'Y where A is any (n X (n — p)) full-rank matrix with
columns orthogonal to the distribution with mean vector zero and covariance matrix A'V(a)A,
which is not dependent on $ any longer. Further, Harville (1974) has shown that the likelihood

function of the error contrasts can be written as:

—(n— / 1/2
L(a) = (2m)~ P2, XX
12 — _1/2 —
X S X v L v
1 Ay A
xexp{= 2T, (¥, - X) V7 (¥ - Xif)} (39)

where B is given by (3.7). Hence, the so-obtained REML estimator @ does not depend on the
error contrasts (i.e. the choice of A).

Note that the maximum likelihood estimator for the mean of a univariate normal population and
for the vector of regression parameters in a linear regression model are independent of the residual
variance o2. However, it follows from (3.7) that this no longer holds in the general linear mixed
model. Thus, we have that although REML estimation id only with respect to the variance
components in the model, the “REML” estimator for the vector of fixed effects is not identical to
its ML version.

Finally, mention that the likelihood function in (3.9) equals:

L(e) = C |ZV, X", W@ Xi| " L. (B(a), ) (3.10)

where C is a constant not depending on o ,where, as earlier, W;(a) equals Vi*(co) and where
Lmc(B,e) = Lmi(0) is the ML likelihood function given by (3.6). Because |, X'; W;(a)X;| in
(3.10) does not depend on g, it follows that the REML estimators for a and for $ can also be found

by maximizing the so-called REML likelihood function

-1/2

LremL = |Zliv=1X’i Wi(a)Xil Lwmi (0) (3.11)
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with respect to all parameters simultaneously (o and 5).

3.4.1 Justification of REML Estimation

The main justification of the REML approach has been given by Patterson and Tompson (1971),
who proved that, in the absence of information on , no information about a is lost when inference
is based on U rather than on Y. More precisely, U is marginally sufficient for a in the sense
described by Sprott (1975). Further, Harville (1974) has shown that, from a Bayesian point of
view, using only error contrasts to make inferences on a is equivalent to ignoring any prior

information on £ and using all the data to make those inferences.

3.4.2 Comparison between ML and REML Estimation

Maximum likelihood estimation and restricted maximum likelihood estimation both have the same
merits of being based on the likelihood principle which leads to useful properties such as
consistency, asymptotic normality and efficiency. ML estimation also provides estimators of the
fixed effects, whereas REML estimation, in itself, does not. On the other hand, for balanced mixed
ANOVA models, the REML estimates for the variance components are identical to classical
ANOVA-type estimates obtained from solving the equations which set mean squares equal to their
expectations. This implies optimal minimum variance properties, and it shows that REML
estimates in that context do not rely on any normality assumption since only moment assumptions
are involved.

Also with regard to the mean squared error for estimating a, there is no indisputable preference
for either one of the two estimation procedures, since it depends on the specifics of the underlying
model and possibly on the true value of a. For ordinary ANOVA or regression models, the ML
estimator of the residual variance o? has uniformly smaller mean squared error than the REML
estimator when p = rank(X) < 4, but the opposite is true when p > 4 and n — p is sufficiently
large (n — p > 2 suffices if p > 12). In general, one may expect results from ML and REML

estimation to differ more as the number p of fixed effects in the
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Chapter 4

4.1 The experimental design

The purpose of this Chapter is to evaluate the level of the clinical attachment loss (CAL) and
especially the factors, which affect tis level, on patients with early onset or aggressive periodontitis
(EOP). Early-onset periodontitis is a type of periodontitis, which is characterized by severe
attachment loss and bone destruction in otherwise healthy patients with a tendency to familiar
aggregation. Clinical attachment level (CAL) is the measured distance to the nearest mm from the
cemento-enamel junction to the deepest probeable pocket point.

Twenty-five patients with a diagnosis of early-onset or aggressive periodontitis (EOP) who
received treatment at a private practice limited to periodontics in Athens, Greece, participated in
the study. The patients were included in the study only if they had complied with a minimum of
10 supportive periodontal care (SPC) sessions during the 5-year maintenance phase. The group
consisted of 11 males and 14 females, from 30 to 39 years old. Also, ten patients were smokers
with an average of 22.5 cigarettes/day. For each mouth we have measured the clinical indicator
CAL for two teeth.

Group of patients

Figure 4.1 : The pie-chart of the patients’ sex.
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Initially, oral hygiene instructions (bass brushing methods, dental floss and interdental brushes)
scaling and root planning were advised to the patients (SRP). SRP was performed under local
anesthesia and required about 60—90 min. Periodontal surgery and systemic antibiotics following
microbiological testing were performed when indicated. Antibiotics were either ornidazole
(Betiral, Roche, Basel, Switzerland) or tinidazole (Fasigyn, Pfizer) for 7 days at each course. More
specifically, ten patients received SRP treatment, five patients received SRP treatment and
antibiotics, four patients received SRP treatment and periodontal surgery and finally, six patients
received SRP treatment, periodontal surgery and antibiotics. Three months later, all patients were
recalled. Additionally, they were enrolled in a maintenance care program with annually
measurements of the clinical attachment level. All clinical procedures were carried out by the same

periodontist with a time limit of ten minutes approximately per tooth.

Method of treatment

SC/PR+FL

- SC/RP+FL+AB

Figure 4.2 : The pie-chart of the therapy the patients received.

The patients were not all measured at the same sets of time points, that is the design is incomplete.
(More specifically, in the first tooth we have 25,3% missing values for the clinical index CAL and
12,6% missing values in the second tooth for the same index.) The dependent variable of interest

is the level of loss attachment, CAL. Available for other eight independent variables which were
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related to the response, namely: time taking values from 1 to 6 for each annual patient’s visit to
the periodontist, id taking values from 1 to 25 for each patient, sex a factor variable taking the
value O if the patient is male and 1 if the patient is female, age denoting the age of the patient,
cigar denoting the number of cigarettes smoked in a day the patient, treatment a factor variable
taking the value 0 if the patient received SRP, 1 if the patient received SRP and periodontal surgery
(SC/RP+FL), 2 if the patient received SRP and antibiotics (SC/RP+AB) and 3 if the patient
received SRP, periodontal surgery and antibiotics (SC/RP+FL+AB). Also, we have the variables
boneloss_beg and boneloss_fin which denoting the percentage of bone loss at the beginning and

in the end of the therapy.

4.2 A first approach of the experimental design

An initial step for a researcher when encountering a dataset is to plot the data. By constructing the
appropriate plots, one can foresee important information on how to model the data. From the plots,
empirical results and some initial tests-estimates for the representation of main effects of factors

or the interaction between factors can be obtained.

At first, in Figure 4.2.1, a line plot is been presented, in which we have measurements of clinical

index CAL of both examined teeth, seperately, over the time.

CAL for the 1st tooth CAL for the 2nd tooth

225 2254

20,04 20.0-

=
n
|

an(CAL)

Mean [CAL)

Me,

T T T T T
i T T T T T
_ baseline 12 H ¥ # &0 baseline 12 24 36 43 50
MONTHS (a) MONTHS )

Figure 4.2.1: (a) line plot of the mean (CAL) over the time for the 1st tooth.
(b) line plot of the mean (CAL) over the time for the 2nd tooth.
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The general impression from the figure above is that the CAL index is dropping over the time for
both the teeth that we are going to study. Specifically, in Figure 4.2.1(a) we can observe that up
to 12 months the CAL index is constantly dropping, at 24 months something happens which causes
the index to rise, while subsequently at 36 months there is a sharp reduction and up to 60 months
we get a relative stability of the index. In Figure 4.2.1(b) we can also observe a reduction of the
clinical index up to 12 months, a relative stability between 12 and 24 months and then a reduction

of the index up to 48 months, with a small increase at the end of the treatment.

There is particular interest in the measurements of the CAL clinical index over the time per

treatment group as follows below, separately for each tooth.

mean (CAL) for the first tooth per treatment group mean (CAL) for the second tooth per treatment group
354 TREATMENT 35 TREATMENT
—— SCRP ——SCRP
— SCIRP+AB — SCIRP+AB

SC/RP+FL SCIRP+FL

—— SC/IRP+FL+AB —— SCIRP+FL+AB

30

30

25+

257

Mean (CAL)

T T T T T T T T T T T T
baseline 12 24 36 48 60 baseline 12 24 36 48 &0
MONTHS MONTHS

(a) (b)
Figure 4.2.2 : (a) line plot of the mean (CAL) over the time, per treatment group, for the 1st tooth.
(b) line plot of the mean (CAL) over the time, per treatment group, for the 2nd tooth.

In Figure 4.2.2(a) which concerns the first tooth under study, we can observe that generally in all
four treatment groups the mean CAL drops over the time. Specifically, all 4 groups drop up to the
12" month. At the 24™ month the group SC/RP presents stability, while all other groups present a
relative increase. From the 24™ until the 36™ month (included) the treatment groups SC/RP+FL,
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SC/RP+AB, SC/RP+FL+AB present a sharp reduction while the SC/RP has a slight reduction.
Until the end of the treatment there is a stability of the CAL index in all four groups. In Figure
4.2.2(b) we can observe that the measurement of the CAL index for patients who followed the
method SC/RP shows a tendency to drop in relation to time. Patients who followed the method
SC/RP+FL are found to present a reduction in the index measurement up to the 12" month, while
at the 24" month we can observe an increase which drops until the 36" month and then we can see
a gradual increase until the end of treatment. In patients who followed the method SC/RP+AB we
find a reduction in the index measurement up to the 12" month, while at the 36" month we can
observe an increase which drops until the 48" month and subsequently we see a relative stability
up to the 60 month of the measurement. Finally, in patients following the method SC/RP+FL+AB
we see that they present a reduction in the index measurement up to the 12" month, while at the
24" month we can observe an increase which drops sharply until the 36! month and subsequently

we see an increase from the 48™ until the 60™ month.

Also worth discussing is the behavior of the CAL index in two sub-groups: men and women. This
will be done in continuation with the line plots following for each of the teeth under study which

concern us.

Mean{CAL) for the ist tooth per sex Mean{CAL) for the Ind tecth per sex
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Figure 4.2.3 : (a) line plot of the mean (CAL) over the time, per sex, for the 1st tooth.
(b) line plot of the mean (CAL) over the time, per sex, for the 2nd tooth.
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Specifically, in Figure 4.2.3(a) we can see that at the beginning of the measurement the CAL index
is higher in men in comparison to women. In continuation we can observe that the index drops at
the 12" month and increases at the 24™ for both men and women. The index then drops sharply
and we see that it actually shows almost identical values for both sexes, while subsequently it
remains relatively stable until the end of treatment, with the index for women presenting slightly
higher values than that for men. In Figure 4.2.3(b) we see that the CAL index starts at almost the
same value for both sexes and then we have a constant reduction up to the 36" month for men and
a constant reduction up to the 48" month for women. In men the index presents a relative stability
until the end of treatment, while in women we have a slight increase between the 48" and the 60"

month.

We also have at our disposal the measurements of the percentage of bone loss in the tooth at the
beginning (boneloss_beg) and in the end of the treatment (boneloss_fin) for each of the 25 patients.
The results have shown that these variables are not affected by sex, as there is no significant
statistical difference between the two sub-populations, i.e. between men and women. These
differences can easily be graphically represented with the boxplots as is shown indicatively below.

bone loss at the beginning of the therapy per sex bone loss in the end of the therapy per sex

=
Ty’

—

50
1

45

40

40

35

female male female male
(a) ()

Figure 4.2.4 : Boxplots of the variables “bone loss at the beginning of the therapy” and “bone loss in the
end of the therapy” per sex.
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The chart in Figure 4.2.4 above shows that the differences between men and women in the
variables concerning the percentage of bone loss in the tooth at the beginning and in the end of the

study are too small and therefore statistically insignificant.

4.3 The general form of the model

As we said in the Second Chapter, the linear mixed effects model is defined as
Yi = Xlﬂ'i‘ Ziui+€l', for i=1,...,m (41)

where Y; is a vector of responses of continuous responses for the i-th subject defined by

Yy

Y,:
Yij = 521 .

Ynii

Note that n; is dependent on i, hence the number of observations for each subject may differ. We

have m subject, in total n = )}/ n; observations.

The fixed effect design matrix, X;, is a n; X p matrix, which represents p covariates
corresponding to the fixed effects for each observation of the i-th subject. The fixed effect design

matrix is defined as

(€] 2 ®»
[xu Y10 ]
€Y (2) ®
X; = x2i. ?Czi . %a2i
W @ ®
xnii xnii ” xnii

The first column of the design matrix is often equal to 1 for all observations to include an intercept

term in the model.
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The fixed effects matrix, g, is a vector consisting of p unknown regression coefficients associated

with the covariates from the design matrix X;, and is defined as

B,
g= ||

By

The random effect design matrix, Z;, is a n; X g matrix, which represents g covariates
corresponding to the random effects for each observation of the i-th subject. The random effect

design matrix is defined as

€Y} (2) (@

I[Z1i Zy |

D @) (@

Z; = |22i' .ZZi Zgi |
W @ @

lZnii Z?’lii " an-i J

The random effects are effects that vary randomly across subjects. Hence, it includes the individual
differences for the subjects. Covariates with random effect are often represented both in the
X; matrix and the Z; matrix. In the simplest example of the linear mixed effects model, only the
intercepts are assumed to vary randomly from subject to subject. Hence, in this case the Z; matrix

is simply reduced to a vector of n; 1’s.

The random effect vector, u;, is a vector consisting of g random effects associated with the

covariates from the design matrix Z;, and is defined by

We assume that the random effect vector, u;, follows a multivariate normal distribution,
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u; ~ Nq (0, D),

where the positive definite symmetric covariance matrix D is defined as

var(uli) Cov(uli,uzi) Cov(uli,uqi)
cCov(Uq; Uy; var(u,; CoOV(Uy; Ugyi
D= var(u,-) — ( 1i, 21) . ( 21) . ( .21, ql) . (4_2)
lcov(uiiug)  cov(uyiug) - var(ug;) |

Finally, the residual &; vector is defined by

where each element represents the residual associated with each response for the i-th subject.
Unlike the residuals in standard linear models, the residuals associated with repeated observations
on the same subject in a linear mixed effects model can be correlated. We assume that the n;
residuals in the g; vector follow a multivariate normal distribution,

& ~ Nni(01 Ri)v

where the positive definite symmetric covariance matrix R; is defined as

[ var(e) cov(engn) cov(eu,enil-)]

COV( &4 & var( &y COV(&Epi En:i

Ri — var(e,-) — ( 1i, 21) ' ( 21) ' ( -21, nll) .
cov(€rEn;) COV(E2:8ni) - var(ey)
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We assume that the vectors of residuals, ¢, ..., &, and the random effects uy, ..., u,,, are

independent of each other.

4.4 Selecting the best Covariance Structure

There are many methods for choosing the most appropriate structure for the covariance matrix of
the data. Models with the same fixed effects, but with different covariance structures, can be
compared using again statistics based on the likelihood function. In the case of non-nested models,
covariance structures can be compared using the Bayesian Information Criterion (BIC) (Schwarz,
1978) and the Akaike Information Criterion (AIC) (Sakamoto, Ishiguro and Kitagawa, 1986).

4.4.1 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) (Schwarz, 1978), which is sometimes called Schwarz’s

Bayesian Criterion (SBC) is a statistic based on the likelihood function and it is given by:

A

0
BIC = =2logL + nyqlogN = =21 <;> + NyarlogN

where, n,,, is the number of the parameters in the model and N is the total number of the

observations used to fit the model.

If BIC is used to compare two or more models for the same data, the model with the lowest BIC

is more preferable.
4.4.2 Akaike Information Criterion

The Akaike Information Criterion (AIC) (Sakamoto, Ishiguro and Kitagawa, 1986) is computed

with:
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]
AIC = =2logL + 2nyq, = —21 <;> + 2nper

where, n,,, is the number of the parameters in the model.

Similarly, when using the AIC the model with the lowest AIC is more preferable.

4.5 Model structure

The purpose of this section is to create the structure of a suitable model and then to select the best
mixed effect model based on the existing dataset, i.e. with the missing values in the measurement
of the clinical CAL index, for each of the two teeth under study. In continuation, in the next
chapter, we will do a multiple imputation in the dataset in order to predict the missing values and
to obtain a full observed dataset. Then we will find out whether the model we detected within the
scope of the present chapter is still the best choice, always based on the BIC criterion.

Analysis will be done using the statistical package SPSS. We will have to find two suitable models,
one for each tooth under study. The Maximum Likelihood (ML) estimation method will be
followed. In both cases the models to be studied will have the same structure, so it is sufficient to

describe initially the procedure for the 1 tooth.

The variable CAL concerns the measurement of the clinical index of the two teeth over the time,
and it will be the dependent variable of our model. We will use the explanatory variables sex and
treatment as factors and the variables time, age, cigar and boneloss_beg as covariates and the
interaction between the variables treatment and time. The fixed part of the model will essentially

consist of:

Bo + PB1 Sexi + P2 treatment; + Bz timejj + Ps agei + Ps cigari + Ps boneloss_begi +

+ B7 timejj« treatment; for i=1,...,25 patients and j=1,...,6 measures.
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To begin with, we will assign a random constant b,,; to each subject. The individual characteristic
of each subject and that which distinguishes it from another lies in the different individual constant.

The model will finally have the following form:
CALLJ = flxed + bOi + eij (43)

Where boi == ﬁo + uoi ' boi"’ N(O, D)

The covariance matrix D of the model (4.3) has variance components structure. The value of the
BIC criterion for the 1% tooth is 649.433 while for the 2" tooth it is 782.936.

In continuation, we will use a model where we will assign a random constant and random slope
for each subject over the time. Therefore, in the new model we will use, the random part will
include random intercept b,; and random slope b,; in the variable of time (time) for each i-

subject, where
boi = Bo + uoi, boi~ N(0,D)
and
bi; = By + uq;, by~ N(0,D)

where D is the covariance matrix. Therefore, the final form of the model we shall subsequently

use is

CALU = fixed + Upi + ulitimeij + Sij (44)

this means that for the model (4.4) we assume that each patient has his own random intercept and

his own slope over the time, with different variables for the two parameters.
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In the first case we assume that in the model (4.4) the table D is unstructured, i.e. the model has a
random slope and random constant which changes for each patient and the unstructured D matrix

IS given as

2
Oy Ougu
Dzl 0 otha |

Guou1 0-1%1
In this case the BIC criterion has value 662.172 for the 1% tooth while for the 2" tooth is 803.126.

In continuation, with the (4.4) model, we select the covariance matrix D to have a diagonal

structure. The diagonal matrix D is given as

vl
D = 5 |-
0 oy

In this case the BIC criterion is 654.151 for the 1% tooth and 787.812 for the 2" tooth.

Finally, in the same model we try out the covariance matrix D with a scaled identity structure. That
means that the random slope and the random constant have the same changes in every patient and

the scaled identity matrix D is given as

The BIC criterion for the 1% tooth is 689.403 while for the 2™ tooth is 846.666.

In continuation, we create a new model which does not include a random part; therefore we have

error modelling. This model is as follows
CALU = fixed + gij (45)

For model (3.5) and for the positive definite symmetric covariance matrix R we used the diagonal
structure. The diagonal structure of the covariance matrix R is the simplest structure, in which the
residuals within one subject are assumed to be uncorrelated and have equal variances. Hence, the

diagonal structure of the covariance matrix R, is given as
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R = var(si]-) =

In this case the BIC criterion is 707.493 for the 1%t tooth while for the 2" is 829.670.

Then we select the structure of the covariance matrix R as compound symmetry, this assumes that
the residuals within one subject have a constant covariance ¢; and a constant variance, o2 + o;.

Hence, the compound symmetry structure of the covariance matrix R, is given as

o’+o0, oy oy

; -

o, 0°+o 1

R = Var(fij) ="t .+ o .
01 0 0%+ 0y

In this case the BIC criterion is 651.628 for the 1% tooth and 835.550 for the 2" tooth.

Finally, we select the structure of the covariance matrix R as AR (1). The covariance matrix R is

given as
2
[ 07 Oeey Te e |
2 04
R = var(g;) = | Oee, ©
la o, 2
E6€1 E6E2 o

The BIC criterion has the value 689.139 for the 1t tooth while for the 2" tooth is 812.280.

4.6 Selection of the final models

Based on the above models examined in the section 4.5 we conclude that for both teeth the best
model is (4.3) which has only random intercept as it presents the lowest BIC value in both cases.
The results obtained from the models regarding the dependent variable Clinical attachment level
(CAL), which concerns the measurements of the index, are presented in the following tables and

then the parameter values are interpreted.
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4.6.1 Explanation of parameters for the first tooth

According to the following Table 4.6.1 about the 1% tooth, the value 25.652 shows the expected

value of the CAL variable for female patients who received the therapy SC/RP+FL+AB, have the

same time measurement, the same age, the same number smoked cigarettes and the same rate of

bone loss at the begin of the therapy.

Estimates of Fixed Effects?

Parameter Estimate | Std. Error df t Sig. 95% Confidence Interval
Lower Bound | Upper Bound
Intercept 23.652685| 19.846789 22.929| 2.466 .022 5.539911 63.259054
[sex=0] -3.684874 1.658355 23.489 | 3.399 .002 2.285836 9.375984
[sex=1] Qb 0
[treatment=0] -8.522886 2.832954 30.379| -2.944 .006 -12.686823 -2.296522
[treatment=1] -4.181818 3.017255 31.376| -1.428 .163 -10.665661 1.877277
[treatment=2] -3.519086 3.736225 29.996 | -2.174 .038 -12.153626 -.379070
[treatment=3] QP 0
time -1.096786 .068223 93.375 -.672 .503 -.115036 .056860
age .525708 .526988 23.879| -.407 .687 -.877665 .588483
cigar .023587 .089584 23.050( 1.832 .080 -.011562 .190461
boneloss_beg .239858 1.499608 23.737| 4.404 .000 2.708941 7.493208
[treatment=0] * time .369875 .072036 92.898 | -1.696 .093 -.169963 .013377
[treatment=1] * time -.462842 .069258 96.561 -.302 .763 -.141679 .104207
[treatment=2] * time -.425821 .043582 93.709| -1.134 .260 -.160506 .043813
[treatment=3] * time QP 0

Table 4.6.1 : Coefficients of the final model for the 1% tooth.

The average difference of the dependent CAL variable between the two sexes is -3.68, with the

other explanatory variables held constant. The average difference of the CAL variable between

patients received the therapy SC/RP+FL+AB and the therapy SC/RP and the other explanatory

variables held constant, is -8.52. Keeping constant the explanatory variables relating to age,
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gender, number of cigarettes and the bone loss in the begin of therapy, apply the following. The
average difference between patients taking SC/RP+FL+AB and SC/RP+FL is -4.18 and the
average difference between patients taking SC/RP+FL+AB and SC/RP+AB is -3.51. The rate of
change of the CAL variable at the reference level, which is the patients taking SC/RP+FL+AB, is
-1.096. The value 0.36 indicates the difference in the rate of change between patients taking
SC/RP+FL+AB and SC/RP. Specifically, the rate of change for the patients taking SC/RP is -1.096
+ 0.36 = -0.736, i.e. the CAL variable drops faster in patients taking SC/RP+FL+AB. The
difference in the rate of change between patients taking SC/RP+FL+AB and SC/RP+FL is given
by value -0.46. Therefore, the rate of change for patients taking SC/RP+FL is -1.556, which means
that it drops at a faster rate in patients taking SC/RP+FL+AB. Also, value -0.42 indicates the
difference in the rate of change between patients taking SC/RP+FL+AB and SC/RP+AB. The rate
of change for patients taking SC/RP+AB is given by value -1.516 and in this case the CAL variable

is shown to be dropping faster in patients forming the reference level who take SC/RP+FL+AB.

Estimates of Covariance Parameters?

Parameter Estimate Std. Error | Wald Z | Sig. 95% Confidence Interval

Lower Bound | Upper Bound

Residual 6.488136 .970643 6.684 .000 4.839248 8.698854
Intercept [subject = ID]  Variance 11.870547 3.936956 3.015 .003 6.196742 22.739353

Table 4.6.2 : Estimates of variances for the 1% tooth.

The above Table 4.6.2 contains the estimates of variances. We note that the variance between
subjects is greater than that within subjects. This leads us to conclude that there is a moderate

correlation between our observations. This can be calculated using the following formula:

= 0.6465 =~ 65%

2
Ong 11.870547
Cor(Yy,Yj) = - =

2 2
0 - tong 11.870547+6.488136

As we can therefore see, the correlation between the observations is 65%. It is an average
correlation.
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4.6.2 Explanation of parameters for the second tooth

The Table 4.6.3 which follows gives us the values of the parameters from the model analysis (3.3)
for the 2" tooth under study. The value 29.813 indicates the expected value of the CAL variable
for female patients taking SC/RP+FL+AB, have the same time measurement, the same age, the
same number smoked cigarettes and the same rate of bone loss at the begin of the therapy. The
average difference of the dependent CAL variable between the two sexes is -0.249, with the other

explanatory variables held constant.

Estimates of Fixed Effects?

Parameter Estimate | Std. Error df t Sig. 95% Confidence Interval
Lower Bound | Upper Bound
Intercept 23.652685| 19.846789 23.432| 1.674 .107 -7.887156 56.614589
[sex=0] -3.684874 1.658355 23.673| -.111 913 -4.256683 5.638469
[sex=1] o 0
[treatment=0] -8.522886 2.832954 27.666 | -3.048 .005 -16.402346 -3.211830
[treatment=1] -4.181818 3.017255 28.393 | -2.685 .012 -17.118663 -2.308229
[treatment=2] -3.519086 3.736225 27.756 | -1.936 .063 -14.290509 407300
[treatment=3] o 0
time -1.096786 .068223 | 110.480| -1.355 .178 -.121072 .022722
age .525708 .526988 23.209( -.357 724 -1.113981 .785999
cigar .023587 .089584 23.643| -.446 .659 -.164204 .105841
boneloss_beg .239858 1.499608 23.963| 1.437 .164 -.939631 5.250953
[treatment=0] * time .369875 .072036| 109.338| -1.426 157 -.137410 .022427
[treatment=1] * time -.462842 .069258 | 108.339| -.490 .625 -.118710 .071660
[treatment=2] * time -.465821 .043582| 108.328| -.778 438 -.124631 .054380
[treatment=3] * time QP 0

Table 4.6.3 : Coefficients of the final model for the 2™ tooth.

The average difference of the CAL variable between patients received the therapy SC/RP+FL+AB
and the therapy SC/RP and the other explanatory variables held constant, is -9.807. Keeping

constant the explanatory variables relating to age, gender, number of cigarettes and the bone loss
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in the begin of therapy, apply the following. The average difference between patients taking
SC/RP+FL+AB and SC/RP+FL is -9.713 and the average difference between patients taking
SC/RP+FL+AB and SC/RP+AB is -6.941. The rate of change of the CAL variable in the reference
level which consists of patients taking SC/RP+FL+AB, is -0.049. Value -0.057 indicates the
difference in the rate of change between patients taking SC/RP+FL+AB and SC/RP. Specifically,
the rate of change in patients taking SC/RP is -0.049 + (-0.057) = -0.106, which means that the
CAL variable drops faster in patients taking SC/RP+FL+AB. The difference in the rate of change
between patients taking SC/RP+FL+AB and SC/RP+FL is given by value -0.023. That means
that the rate of change in patients taking SC/RP+FL is -0.072, which means that it drops faster in
patients taking SC/RP+FL+AB. Also, value -0.035 indicates the difference in the rate of change
between patients taking SC/RP+FL+AB and SC/RP+AB. The rate of change in patients taking
SC/RP+AB is given by value -0.084. In this case we also see that the CAL variable drops faster in
patients forming the reference level and taking SC/RP+FL+AB.

Finally, Table 4.6.4 below, contains the estimates of covariances for the 2" tooth. We note that
the variance between subjects is greater than the variance within subjects in this case, too.

Estimates of Covariance Parameters?

Parameter Estimate | Std. Error | Wald Z Sig. 95% Confidence Interval

Lower Bound | Upper Bound

Residual 7.804872| 1.080459 7.224 .000 5.950187 10.237667
Intercept [subject = ID] Variance | 22.982563| 7.211197 3.187 .001 12.425632 42.508758

Table 4.6.4 : Estimates of covariances for the 2™ tooth.

We calculate once more the correlation between observations using the formula:

Ong® 22.982563

- — = = 0.7464 = 75%
OnyZ+0n, 22.982563+7.804872

Cor (Y, Yyj) =

As we can therefore see, the correlation is 75%, which means that in this case we have strong

correlation between observations.
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Chapter 5

5.1 Introduction

In this chapter we will do the multiple imputation of our data in order to acquire a fully observed
dataset. As mentioned in the previous chapter we must evaluate the level of the clinical attachment
loss (CAL) of 25 patients. Two teeth in every patient’s mouth have been selected in which we have
measured the CAL index at different points in time. As the patients were not all measured at the
same sets of time points out design is incomplete. More specifically, in the measure of the CAL
index for the first tooth we have 25.3% missing values and 12.6% missing values in the second
tooth. As we can see in the following figure (Figure 5.1), missing values are presented in black,
while observed values are presented in violet color. We can also observe that only two variables
present missing values. These two variables concern the measurement of the CAL index in the

first and in the second tooth of every patient.
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Figure 5.1 : Visual representation of missing values in the variables of the dataset.
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5.2 An Approach to Multiple Imputation with the “mice”
algorithm

The multiple imputation of data will be done using the programming language R. Specifically, the
“mice” package will be used. In the following we provide a brief description of the way the
algorithm is generally used in data.

The process can be broken down into four general steps:

o Step 1. A simple imputation, such as imputing the mean, is performed for every missing
value in the dataset. These mean imputations can be thought of as “place holders.”

e Step 2: The “place holder” mean imputations for one variable (‘“var”) are set back to
missing.

e Step 3: The observed values from the variable “var” in Step 2 are regressed on the other
variables in the imputation model, which may or may not consist of all of the variables in
the dataset. In other words, “var” is the dependent variable in a regression model and all
the other variables are independent variables in the regression model. These regression
models operate under the same assumptions that one would make when performing (e.g.,)
linear, logistic, or Poison regression models outside of the context of imputing missing
data.

o Step 4: The missing values for “var” are then replaced with predictions (imputations) from
the regression model. When ““var” is subsequently used as an independent variable in the
regression models for other variables, both the observed and these imputed values will be
used.

o Step 5: Steps 2—4 are then repeated for each variable that has missing data. The cycling
through each of the variables constitutes one iteration or “cycle.” At the end of one cycle
all of the missing values have been replaced with predictions from regressions that reflect

the relationships observed in the data.
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o Step 6: Steps 2 through 4 are repeated for a number of cycles, with the imputations being
updated at each cycle. The number of cycles to be performed can be specified by the
researcher. At the end of these cycles the final imputations are retained, resulting in one
imputed dataset. Generally, ten cycles are performed (Raghunathan, 2002) however,
research is needed to identify the optimal number of cycles when imputing data under

different conditions.

5.3 Descriptive measures of the imputed variables

In this section, since the multiple imputation in the dataset has been done, we shall present some
descriptive measures. In the following Table 5.3.1 we present the mean value of the clinical CAL

index for both teeth under study and for every patient and also the treatment method followed by

each one.
Patient’s id Treatment mean (CAL) mean (CAL)
method tooth 1 tooth 2
1 SC/RP 19.666 17
2 SC/RP+FL 14 15.833
3 SC/RP+FL+AB 33.206 31.695
4 SC/RP+FL+AB 25.795 17.833
5 SC/RP+FL+AB 20.666 26.284
6 SC/RP 19.333 17.333
7 SC/RP+AB 25.937 29.246
8 SC/RP 19.333 17
9 SC/RP 19.333 18.166
10 SC/RP+FL 25.805 26.496
11 SC/RP+FL 16.738 18
12 SC/RP+AB 22.166 20.833
13 SC/RP 14 15.833
14 SC/RP+FL+AB 31.679 30.172
15 SC/RP 19.833 17.666
16 SC/RP 14 15.833
17 SC/RP+AB 19.333 18.166
18 SC/RP+FL+AB 26.057 22
19 SC/RP+AB 27.088 17.666
20 SC/RP 14 15.833
21 SC/RP 20 18.166
22 SC/RP 20 18.166
23 SC/RP+FL+AB 31.116 30.561
24 SC/RP+FL 28.051 18.833
25 SC/RP+AB 14 17.166

Table 5.3.1 : Mean (CAL) of every patient for both teeth.
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In Figure 5.3.1 below we can easily discern the profile of the measurements for every patient over
the time for both teeth per treatment group. We can observe certain differences between treatment
groups. In the group which followed the treatment SC/RP it is evident that the clinical CAL index
has dropped over time. On the other hand, in patients who followed the other treatments we see
that approximately in the middle of treatment some increases appeared in the CAL index in both
teeth, which then decreased towards the end of treatment.
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Figure 5.3.1 : Profile of the measurements of imputed values of the variable CAL over time, for the 25
patients per treatment group () for the first tooth and (b) for the second tooth.

Differences between treatment groups can be easily represented in a chart with the error bars in
following Figure 5.3.2. We can observe that, regarding the measurement of the CAL index in
both the 1% and the 2" tooth, the only difference observed between treatment groups regards the
patients taking the treatments SC/RP and SC/RP+FL+AB. These differences are in fact present in

every measurement, as is shown in the figure, as these two treatment groups do not present any
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common point in their corresponding confidence intervals. In contrast, we observe that for the
treatment groups SC/RP+AB, SC/RP+FL the respective confidence intervals are very close and

almost identical.
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Figure 5.3.2 : (a) Error bars for the confidence intervals of the clinical index CAL for the first tooth.
(b) Error bars for the confidence intervals of the clinical index CAL for the second tooth.

Subsequently, in the following Table 5.3.2 and Table 5.3.3 are given the mean and the standard
deviation of the clinical index CAL, for every treatment group, at each measurement separately
for the two teeth respectively. It is obvious that for all treatment groups, the mean value of the
index is reduced over time. Also we observe the difference between the patients receiving the
treatments SC/RP and SC/RP+FL+AB as we have seen and graphics from the above error bars.
In all measurements, the mean value of the index CAL is quite less for the treatment method SC/RP
compared with the SC/RP+FL+AB. Further observation shows that the other two treatment groups

have slight variations between their mean values for all the measurements, for both teeth.
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Baseline 12 months 24 months 36 months 48 months 60 months

SC/RP mean 24.50 17.30 17.20 16.10 16.30 16.30
sd 3.80 2.98 2.89 2.23 2.40 2.40
SC/RP+AB mean 27.60 23.60 25.0 18.45 17.86 17.71
sd 531 8.79 10.48 4.10 3.09 3.06
SC/RP+FL mean 26.50 22.59 25.03 15.56 18.81 18.38
sd 6.13 9.45 12.15 2.89 5.80 5.26
SC/RP+FL+AB mean 31.51 30.92 33.03 23.67 24.28 25.09
sd 3.34 6.93 7.26 3.87 4.12 521

Table 5.3.2 : Mean and standard deviation of clinical indicator CAL for the 1% tooth with the imputed
values.

Baseline 12 months 24 months 36 months 48 months 60 months

SC/RP mean 23.90 16.30 15.70 16.00 15.10 15.60
sd 1.44 0.94 0.48 0.81 0.99 177
SC/RP+AB mean 27.40 19.40 20.40 21.20 17.66 17.63
sd 5.12 4.92 8.26 9.47 2.35 1.55
SC/RP+FL mean 26.50 18.75 21.25 16.75 17.94 17.58
sd 6.40 6.18 6.91 1.45 3.17 2.46
SC/RP+FL+AB mean 32.33 30.16 29.25 22.29 21.43 23.06
sd 6.37 8.90 11.11 3.77 3.94 4.62

Table 5.3.3 : Mean and standard deviation of clinical indicator CAL for the 2" tooth with the imputed
values.

5.4 Model choice for the imputed dataset

In this section we will fit the models we created in the previous chapter in the new imputed dataset,
with the purpose to find out the most suitable model, always following the BIC criterion. In this
case, too, analysis will be done using the statistical package SPSS and assessment will be done

following the method ML.

44



First we will apply the model (4.3) which has only random intercept for every patient, with the
covariance matrix D presenting a variance components structure. The value that BIC criterion
gives for the first tooth is 926.665, while for the second tooth it is 957.558.

Then we will apply the model (4.4) which includes random intercept and random slope over the
time, where the covariance matrix D is unstructured. The value given by BIC for the first tooth is
904.907, while for the second tooth it is 934.916. Continuing with the same model, but changing
the structure of the D matrix to diagonal, the BIC criterion gives the value 902.774 for the first
tooth and 932.038 for the second tooth. And finally, applying the same model, with table D
presenting a scaled identity structure, the result we obtain from the BIC criterion has the value
927.253 for the 1% tooth and 958.662 for the 2" tooth.

Finally, we try out in the imputed dataset the model (4.5) which does not include random part.
Initially we suppose that the covariance matrix has diagonal structure. The BIC criterion for the
first tooth has value 917.145 and for the second tooth the value is 930.609. Then we suppose that
the covariance table has structure compound symmetry. The value of the BIC criterion for the first
tooth is 897.764 and for the second tooth 927.028. Finally, in the same model (4.5), we select the
structure of the covariance matrix R as AR(1). In this case, the BIC is 905.152 for the first tooth
and 924.569 for the second.

After applying the total of the models we created in the Chapter 3 in the imputed data, we conclude
that the suitable model for the 1% tooth is model (4.5) with a compound symmetry covariance
matrix. The most suitable model for the second tooth is again (4.5), but with a structure of AR(1).

5.4.1 Explanation of parameters of the final model for the first tooth

The appropriate model for the imputed data relating to the first tooth as mentioned above is the
model (4.5) with compound symmetry covariance matrix. Subsequently, follows the Table 5.4.1
that contains the coefficients of the final model of the first tooth.
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Estimates of Fixed Effects?

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval

Lower Bound | Upper Bound
Intercept 18.762427 13.261213 25.177 1.415 .169 -8.539811 46.064665
[sex=0] 2.862232 1.629180 25.000 1.757 .091 -.493128 6.217591
[sex=1] o 0 . . . . .
[treatment=0] -8.899911 2.570222 34.401| -3.463 .001 -14.120990 -3.678831
[treatment=1] -4.345528 2.943655 36.730| -1.476 .148 -10.311418 1.620363
[treatment=2] -3.584266 2.918427 35.187| -1.228 .228 -9.507860 2.339328
[treatment=3] o 0 ) ) . : .
time -1.582496 314962 125.000| -5.024 .000 -2.205846 -.959147
age .130352 .336466 25.000 .387 .702 -.562613 .823317
cigar .016604 .049803 25.000 .333 742 -.085967 119175
boneloss_beg .145928 .151545 25.000 .963 .345 -.166185 458040
[treatment=0] * time .293925 398399 125.000 .738 462 -.494557 1.082407
[treatment=1] * time -.354667 497999 125.000 -712 478 -1.340270 .630935
[treatment=2] * time -.385298 467165 125.000 -.825 411 -1.309875 .539279
[treatment=3] * time QP 0

Table 5.4.1 : Coefficients of the final model for the 1% tooth, of the imputed dataset.

According to the above Table 5.4.1 about the 1% tooth, the value 18.762 shows the expected value
of the CAL variable for female patients who received the therapy SC/RP+FL+AB, have the same
time measurement, the same age, the same number smoked cigarettes and the same rate of bone
loss at the begin of the therapy. The average difference of the dependent CAL variable between
the two sexes is 2.86, with the other explanatory variables held constant. The average difference
of the CAL variable between patients received the therapy SC/RP+FL+AB and the therapy SC/RP
and the other explanatory variables held constant, is -8.89. Keeping constant the explanatory
variables relating to age, gender, number of cigarettes and the bone loss in the begin of therapy,
apply the following. The average difference between patients taking SC/RP+FL+AB and
SC/RP+FL is -4.34 and the average difference between patients taking SC/RP+FL+AB and
SC/RP+AB is -3.58. The rate of change of the CAL variable at the reference level, which is the
patients taking SC/RP+FL+AB, is -1.582. The value 0.29 indicates the difference in the rate of
change between patients taking SC/RP+FL+AB and SC/RP. Specifically, the rate of change for
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the patients taking SC/RP is -0.582 + 0.29 = -0.2009, i.e. the CAL variable drops faster in patients
taking SC/RP+FL+AB. The difference in the rate of change between patients taking
SC/RP+FL+AB and SC/RP+FL is given by value -0.35. Therefore, the rate of change for patients

taking SC/RP+FL is -0.932, which means that it drops at a faster rate in patients taking

SC/RP+FL+AB. Also, value -0.38 indicates the difference in the rate of change between patients
taking SC/RP+FL+AB and SC/RP+AB. The rate of change for patients taking SC/RP+AB is given

by value -0.962 and in this case the CAL variable is shown to be dropping faster in patients forming
the reference level who take SC/RP+FL+AB.

Estimates of Covariance Parameters?

Parameter Estimate | Std. Error | Wald Z Sig. 95% Confidence Interval
Lower Bound | Upper Bound
CS diagonal offset | 10.416140 | 1.317549 7.906 .000 8.129005 13.346772
Repeated Measures
CS covariance 13.063507 | 4.191695 3.117 .002 4.847935 21.279078

Table 5.4.2 : Estimates of variances for the 1% tooth, for the imputed dataset.

The above Table 5.4.2 contains the estimates of variances. We note that the variance between

subjects is greater than that within subjects. This leads us to conclude that there is a moderate

correlation between our observations. This can be calculated using the following formula:

2
O'no

13.063507

Cor(Yy;, Yijr) =

Ong2+0n 2 13.063507+10.416140

= 0.55645 = 56%

As we can therefore see, the correlation between the observations is 56%, so we conclude that it

is a moderate correlation.
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5.4.2 Explanation of parameters of the final model for the second

tooth

The appropriate model for the imputed data relating to the second tooth is again the model (5.5)

but here the covariance matrix has AR(1) structure. Below, the Table 5.4.3 contains the

coefficients of the final model for the second tooth.

Estimates of Fixed Effects?

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval
Lower Bound | Upper Bound
Intercept 17.237793 10.253964 40.094 1.681 .101 -3.484724 37.960310
[sex=0] -.584958 1.251269 39.461 -.467 .643 -3.114944 1.945028
[sex=1] o 0
[treatment=0] -8.515510 2.479742 62.689 -3.434 .001 -13.471359 -3.559662
[treatment=1] -7.602748 2.937799 66.256 -2.588 .012 -13.467830 -1.737665
[treatment=2] -4.264278 2.849756 63.959 -1.496 139 -9.957392 1.428835
[treatment=3] o 0
time -1.959765 532684 109.891 -3.679 .000 -3.015431 -.904100
age .135645 .258418 39.461 .525 .603 -.386860 .658150
cigar -.041764 .038250 39.461 -1.092 .282 -.119104 .035576
boneloss_beg .234495 116392 39.461 2.015 .051 -.000842 469833
[treatment=0] * time 459549 673797 109.891 .682 497 -.875774 1.794871
[treatment=1] * time .245960 .842247 109.891 .292 771 -1.423194 1.915113
[treatment=2] * time .206644 .790097 109.891 .262 794 -1.359161 1.772449
[treatment=3] * time QP 0 )

Table 5.4.3 : Coefficients of the final model for the 2™ tooth,

of the imputed dataset.

The value 17.237 indicates the expected value of the CAL variable for female patients taking

SC/RP+FL+AB, have the same time measurement, the same age, the same number smoked

cigarettes and the same rate of bone loss at the begin of the therapy. The average difference of the

dependent CAL variable between the two sexes is -0.58, with the other explanatory variables held

constant. The average difference of the CAL variable between patients received the therapy
SC/RP+FL+AB and the therapy SC/RP and the other explanatory variables held constant, is -8.51.

Keeping constant the explanatory variables relating to age, gender, number of cigarettes and the

bone loss in the begin of therapy, apply the following. The average difference between patients
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taking SC/RP+FL+AB and SC/RP+FL is -7.60 and the average difference between patients taking
SC/RP+FL+AB and SC/RP+AB is -4.26. The rate of change of the CAL variable in the reference
level which consists of patients taking SC/RP+FL+AB, is -1.959. Value 0.45 indicates the
difference in the rate of change between patients taking SC/RP+FL+AB and SC/RP. Specifically,
the rate of change in patients taking SC/RP is -1.959 + 0.45 = -1.509, which means that the CAL
variable drops faster in patients taking SC/RP+FL+AB. The difference in the rate of change
between patients taking SC/RP+FL+AB and SC/RP+FL is given by value 0.24. That means that
the rate of change in patients taking SC/RP+FL is -0.719, which means that it drops faster in
patients taking SC/RP+FL+AB. Also, value 0.20 indicates the difference in the rate of change
between patients taking SC/RP+FL+AB and SC/RP+AB. The rate of change in patients taking
SC/RP+AB is given by value -1.759. In this case we also see that the CAL variable drops faster in
patients forming the reference level and taking SC/RP+FL+AB.

Finally, Table 5.4.4 contains the estimates of covariances for the 2" tooth. We note that the

variance between subjects is greater than the variance within subjects in this case, too.

Estimates of Covariance Parameters?

Parameter Estimate | Std. Error | Wald Z Sig. 95% Confidence Interval

Lower Bound | Upper Bound

AR1 diagonal 22.735926 | 3.184513 7.140 .000 17.277818 29.918266
Repeated Measures

AR1 rho .514151 .068058 7.555 .000 .368797 .634959

Table 5.4.4 : Estimates of variances for the 2" tooth, for the imputed dataset.

In this case, because the covariance matrix has AR(1) structure, the correlation between the

observations differ in a time measurement, is given by the formula:
Cor(Y;,Y;j+1) = p = 0.514151 =~ 51%

while the correlation between observations differ in two time measurements, is given by the

formula;

Cor(Yy,Y; j+2) = p? = (0.514151)? = 0.26435 ~ 26%.
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Finally, we observe that as the observations draw away annals, their correlation is reduced.

5.5 An application of Rubin’s rules

This section presents an implementation of Rubin's rules, mentioned in the Chapter 2. We choose
m = 10 imputations. This ensures 10 complete imputed datasets. We will fit the appropriate
chosen mixed models of the section 5.4, for each of the two examined teeth, for the 10 complete
imputed datasets, in order to obtain the estimates of the models. The estimates Q© are presented

in the following tables for each tooth individually.

Q(l) Q(Z) Q(3) Q(4) Q(S) Q(6) Q(7) Q(S) Q(9) Q(10)

Intercept 19.29 17.02 2249 1811 19.19 1724 16.96 16.84 198 18.76
Sex=0 2.73 2.44 2.66 2.81 2.66 2.82 2.63 2.88 2.5 2.86
Treatment=0 -9.03 -8.7 -885 -886 -909 -863 -865 -838 -884 -8.89
Treatment=1 -4.47 -4.3 -3.75  -429 -421 -3.9 -442 -364 -384 -4.34
Treatment=2 -3.68 -351 -3.66 -3.63 -3.9 -3.08 -354 -315 -3.81 -3.58
Time -1.76  -1.57 -1.7 -1.8 -1.73  -151 -159 -156 -1.88 -1.58
Age 0.12 0.17 0.06 0.14 0.1 0.15 0.17 0.13 0.17 0.13
Cigar 0.24 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.01
Boneloss_beg 0.13 0.14 0.1 0.15 0.15 0.14 0.14 0.17 0.07 0.14
Treatment=0*time 0.47 0.28 0.41 0.51 0.44 0.22 0.3 0.27 0.59 0.29
Treatment=1*time -0.12 -019 -0.26 -0.2 -0.27 -013 -023 -056 017 -0.35
Treatment=2*time -0.32 047 -0.3 -021 -023 -049 -031 -042 -008 -0.38
CS diagonal offset 11.48 1088 104 1137 1024 1038 1152 1043 109 1041
CS covariance 12.14 1243 1162 1217 1269 1361 1259 12.81 12.08 13.06

Table 5.5.1 : Estimates Q® for the 1st tooth.

Q(l) Q(Z) Q(3) Q(4) Q(S) Q(6) Q(7) Q(B) Q(9) Q(10)

Intercept 1932 168 1915 1883 1766 16.12 17.62 1659 1791 17.23
Sex=0 -0.68 -0.73 -0.64 -0.7 -0.62 -0.64 -0.7 -056 -0.82 -0.58
Treatment=0 -8.91 -8.7 -889 -899 -858 -844 -8.81 -8.5 -8.89 -8.51
Treatment=1 -765 -767 -776 -787 -755 -771 -781 -766 -7.91 -7.6

Treatment=2 -476 -461 -478 -488 -439 -427 -451 -4.23 -4.8 -0.26
Time -2.14 -2.2 -208 -215 -203 -1.88 -2.2 -1.99 -2.2 -1.95
Age 0.1 0.17 0.1 0.11 0.13 0.16 0.14 0.14 0.15 0.13
Cigar -0.03 -003 -003 -003 -004 -003 -004 -004 -003 -0.04
Boneloss_beg 0.2 0.21 0.21 0.21 0.23 0.23 0.22 0.24 0.2 0.23
Treatment=0*time 0.67 0.7 0.57 0.66 0.52 0.37 0.7 0.48 0.7 0.45
Treatment=1*time 0.48 0.54 0.38 0.4 0.28 0.39 0.41 0.23 0.72 0.24
Treatment=2*time 0.37 0.49 0.35 0.45 0.29 0.09 0.43 0.17 0.42 0.2

AR(1) diagonal 2238 2235 2208 2211 2251 23.01 2226 2236 2227 22.73
AR(1) rho 0.45 0.51 0.52 0.48 0.51 0.52 0.51 0.54 0.51 0.51

Table 5.5.2 : Estimates Q® for the 2nd tooth.
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As seen from the above tables, the model’s estimates are sufficiently close for both teeth. Then,

according to the rules of Rubin, we compute m = 10 different estimates Q’(\f) witht =1,...,14

of the quantity Q and the estimated variance ® of Q® with t = 1,...,14 . The results are shown

in the following tables and we observe that the values of the estimates are also quite close.

—_—

QD QB QB Q® @B Q® Q7 @® @® @Y QUDh QU2 QI3 Q0P
18t 18.57 2.69 -4.15 -1.67 013 004 013 038 -021 -023 1080 1252
tooth
ond | 17.72  -0.67 -7.72 -210 013 -003 -022 058 041 033 2241 051
tooth
Table 5.5.3 : Estimates Q® for both teeth.

v y® [14S2) u® y®» y® py® pyao pay paz pgas) yad
18t 3.08 0.02 0.09 0.001 0.001 0.001 0001 0.001 003 007 025 031
tooth
ond 1.20 0.005 0.01 0.01 0.06 000 0001 001 002 002 0.08 0.006

tooth

Table 5.5.4 : Estimated variances U® for both teeth.

And finally, we calculate the average Q of the estimates Q’(\f), the within imputation variance U,

the between imputation variance B, the total variance T and the quantities y and r. Both y and r

are used as diagnostic statistics to examine the effect of missing data in estimates of Q. The

calculations of these estimates were made using R and the code is available in the appendix. From

the following Table 5.5.5, we conclude that for both teeth the imputation made to our data does

not affect so much the result.

1%t tooth 2" tooth
Q 1.907571 1.352000
U 0.2876794 0.2378605
B 76.05882 105.4584
T 69.43206 96.10918
r 290.8262 487.6989
y 0.9970627 0.998246

Table 5.5.5 : Results of Rubin’s Rules.
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Chapter 6

6.1 Conclusions

Out under this Chapter we will discuss the results of the models between the 4" and 5 Chapter
as well as the similarities and differences. We recall that in the 4" Chapter we use the data with
missing values while the 5™ Chapter we use the imputed dataset.

The main difference between the initial and the imputed dataset is that we reached in different
models. In every case the appropriate model for each dataset is chosen according to the Bayesian
Information Criterion (BIC). Preferable model considered this with the smallest BIC value.

In particular in the 4" Chapter, when we use the dataset with the missing values, the most
appropriate model was the model (4.3) which has only random intercept, for both teeth. In both
cases the model (4.3) had the lowest BIC value. The correlation between observations for the first
tooth was 65%. This indicating a moderate correlation. While, for the second tooth was 75%,
which shows a strong correlation between observations.

On the other hand, in the 5" Chapter, which dealt with the imputed dataset, the most appropriate
model for the first tooth was the model (4.5) with a compound symmetry covariance matrix and
for the second tooth the appropriate model was again the model (4.5) but with a structure of AR(1).
The correlation between observations pertaining to the first tooth, in this case, is 56% and this
indicates a moderate correlation between observations. Concerning the second tooth we noticed
that the correlation between observations is also weak and even decreases as the observations fend
off annals. This leads us to the conclusion that if we had not apply the multiple imputation in the
dataset we will lose a quite important information of our data.

Finally, it is worth mentioning that as regards the inference, for both models of the 4" and 5™
Chapter, the interpretation of the parameters between the models, at the same tooth, concerned no
significant differences.
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Appendix

##Descriptives for the variables “age”, “boneloss_beg”, “boneloss_fin” and “cigar”
hist(age,main = paste("Age of patients"),xlab="years",col="coral2")

hist(Boneloss_start,main = paste("The percent of bone loss at the beggining of the
therapy"),xlab="years",col="coral2")

hist(Boneloss_fin,main = paste("The percent of bone loss in the end of the
therapy"),xlab="years",col="coral2")

hist(cigar,main = paste("Number of cigarettes per day"),xlab="cigarettes",col="coral2")

##3-D pie charts for the variables “treatment”, “sex”

library(plotrix)

slices <- ¢(73,38,33,42)

Ibls <- ¢c("SC/PR", "SC/RP+AB", "SC/RP+FL","SC/RP+FL+AB")

pie3D(slices, labels=Ibls, explode=0.1, main="Method of treatment”, col =
c("blue”,"red","yellow","green") )

slices <- ¢(11,14)

Ibls <- ¢("male", "female™)

pie3D(slices,labels=Ibls,explode=0.1,main="Patients Sex",col=c("wheat","thristle™))
##tboxplots for the variables “boneloss_beg” and “boneloss_fin”

par(mfrow=c(1,2))
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boxplot(Boneloss_start~sex,data=olokliro,col=c("wheat","thistle™), main="bone loss in the
beginning of the therapy per sex™)
boxplot(Boneloss_fin~sex,data=olokliro,col=c("wheat","thistle'), main="bone loss in the end of
the therapy per sex")

par(mfrow=c(1,1))

##for Figure 5.1 page 39

library(VIM)

aggr_plot <- aggr(imptim, col=c(‘palevioletred2’,'black’), numbers=TRUE, sortVars=TRUE,

labels=names(data), cex.axis=.7, gap=3, ylab=c(""Histogram of missing data","Pattern™))

##Rubin Rules
Qhsm3<-read.delim("C://Users//ni12__000//Desktop//SM3HAT.txt",header=T)
Qhsm4<-read.delim("C://Users//nil2__000//Desktop//SMAHAT .txt",header=T)

Qhat3<-apply(Qhsm3,1,mean)
Qhat3
Qhat4<-apply(Qhsm4,1,mean)
Qhat4

U3<-apply(Qhsm3,1,var)
U3
U4<-apply(Qhsm4,1,var)
U4

Qbar3<-mean(Qhat3)
Qbar3
Qbar4<-mean(Qhat4)
Qbar4

Ubar3<-mean(U3)
Ubar3
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Ubar4<-mean(U4)
Ubar4

m<-10

B3<-sum( ((Qhat3-Qbar3)*2) )/ (m-1)
B3

B4<-sum( ((Qhat4-Qbar4)*2) )/ (m-1)
B4

###alliws ta B3~B4
var(Qhat3);var(Qhat4)

m<-10
T3<-Ubar3+B3*m/(m+1)
T3
T4<-Ubar4+B4*m/(m+1)
T4

m<-10
df3<-(m+1)*(1+(Ubar3/B3)*1/(m+1))
dfd<-(m+1)*(1+(Ubar4/B4)*1/(m+1))
df3;df4

r3<-(1+1/m)*B3/Ubar3
r4<-(1+1/m)*B4/Ubar4
r3;r4

g3<-(r3+2/(df3+3))/(r3+1)
04<-(r4+2/(df4+3))/(r4+1)
93,04
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ci3<-c(Qbar3-gnorm(1-0.05/2)*sqrt(T3),Qbar3+gnorm(1-0.05/2)*sqrt(T3))
cid<-c(Qbar4-gnorm(1-0.05/2)*sqrt(T4),Qbard+gnorm(1-0.05/2)*sqrt(T4))
ci3; ci4
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