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ABSTRACT 

 

 

Aikaterini L. Stamelakou 

 

 

Statistical Methods for analysis under the presence of missing data 

 

    July 2016 

 

  Missing data are a recurring problem which can cause bias or lead to inefficient analysis, no 

matter how well a survey questionnaire is designed and no matter how effective is the data 

collection. These data need a special and meticulous handling in analysis. This is why so many 

statistical methods have been proposed and developed to address missingness. 

  Some of them are based on deletion of incomplete cases, others try to predict each missing 

value and then to include the filled in value in analysis, these are called Simple Imputation 

Methods. Additionally, there is another method, known as Multiple Imputation, which is based 

on the creation of many imputed data sets by using Data Augmentation. In this thesis, each of 

these methods will be mentioned. Specifically, the Multiple Imputation method will be the 

main topic that will monopolize the interest and will be given special emphasis. 

  In the context of this thesis included and an application of Linear Mixed Models in repeated 

measurements with data that are not complete. Applying different mixed effect models on these 

data we reach in the appropriate model through the Bayesian Information Criterion. In 

continue, we apply multiple imputation in our data and then fit the same models in the imputed 

data this time. Our main goal is to examine the similarities or differences that may have these  

two data sets. 
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ΠΕΡΙΛΗΨΗ 

 

Αικατερίνη Λ. Σταμελάκου 

 

Στατιστικές Μέθοδοι για Ανάλυση υπό την παρουσία ελλιπών 

στοιχείων 

Ιούλιος 2016 

 

  Τα δεδομένα που λείπουν είναι ένα επαναλαμβανόμενο πρόβλημα το οποίο μπορεί 

να προκαλέσει μεροληψία ή να οδηγήσει σε αναποτελεσματική ανάλυση. Δεν έχει 

σημασία πόσο καλά ένα ερωτηματολόγιο έχει σχεδιαστεί και δεν έχει σημασία πόσο 

αποτελεσματική είναι η συλλογή δεδομένων. Τα δεδομένα αυτά χρειάζονται μία 

ειδική και σχολαστική διαχείριση στην ανάλυση. Αυτός είναι ο  κύριος λόγος που 

έχουν προταθεί και αναπτυχθεί για την αντιμετώπιση των ελλιπών στοιχείων τόσες 

πολλές στατιστικές μέθοδοι.  

  Μερικές από αυτές βασίζονται σε διαγραφή των  ελλειπόντων περιπτώσεων, άλλες 

προσπαθούν να προβλέψουν κάθε τιμή που λείπει και  στη συνέχεια να έχουμε ένα 

ολοκληρωμένο σύνολο δεδομένων, αυτές οι μέθοδοι ονομάζονται Simple Imputation. 

Επιπλέον, υπάρχει και μια άλλη μέθοδος, γνωστή ως Multiple Imputation, η οποία 

βασίζεται στη δημιουργία πολλών ολοκληρωμένων συνόλων δεδομένων. 

Συγκεκριμένα, η τελευταία μέθοδος θα μονοπωλήσει το ενδιαφέρον μας και θα δοθεί 

ιδιαίτερη έμφαση. 

  Στο πλαίσιο αυτής της διατριβής περιλαμβάνεται και μια εφαρμογή που αφορά 

μοντέλα μικτών επιδράσεων σε επαναλαμβανόμενες μετρήσεις με δεδομένα που δεν 

είναι πλήρη. Εφαρμόζοντας διαφορετικά μοντέλα μικτών επιδράσεων σε αυτά τα 

δεδομένα καταλήγουμε στο κατάλληλο μοντέλο μέσα από κάποιο κριτήριο. Εν 

συνεχεία, εφαρμόζουμε Multiple Imputation στα δεδομένα μας και εφαρμόζουμε ξανά 

τα ίδια μοντέλα στα νέα δεδομένα αυτή τη φορά. Βασικός μας στόχος είναι να 

εξεταστούν οι ομοιότητες ή διαφορές που ενδέχεται να έχουν αυτά τα δύο σύνολα 

δεδομένων, δηλαδή το ολοκληρωμένο αρχείο και εκείνο που περιλαμβάνει τιμές που 

λείπουν. 
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Chapter 1 

 

1.1   Introduction 

Standard statistical methods have been developed to analyze rectangular data sets. Generally, the 

rows of the data matrix represent units, also called cases, observations or subjects depending on 

context, and the columns represent variables measured for each unit. The entries in the data matrix 

are nearly always real numbers, either representing the values of essentially continuous variables 

or representing categories of response which may be ordered or unordered. When some of these 

entries in the matrix are not observed, we use to say that we have missing values in our data set. 

According to Schafer and Graham (2002) data contain various codes to indicate lack of response 

like “Don’t know”, “Refused”, “Unintelligible” and so on.  

Also with rectangular data, there are several important classes of overall missing-data patterns. 

Consider Figure 1.1 (a), in which missing values occur on an item Y  but a set of  p other items  

X1,…, Xp   is completely observed, we call this a univariate pattern. The univariate pattern is also 

meant to include situations in which Y represents a group of items that is either entirely observed 

or entirely missing for each unit. In Figure 1.1 (b), items or items groups  Y1,…, Yp  may ordered 

in such a way that if  Yj   is missing for a unit, then  Yj+1,…, Yp   are missing as well. This is called 

a monotone pattern. Figure 1.1 (c) shows an arbitrary pattern in which any set of variables may 

be missing for any unit. 

 

 

Figure 1.1 : Patterns of nonresponse in rectangular data sets: (a) univariate pattern, (b) monotone pattern, 

and (c) arbitrary pattern. 
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Because missingness may be related to the data, we classify distributions according to the nature 

of that relationship. Rubin (1976) developed a typology for these distributions that is widely 

cited but less widely understood.  

Let us denote the complete data as Ycom  and partition it as Ycom = (Yobs , Ymis ), where Yobs  and Ymis  

are the observed and missing parts, respectively. Rubin (1976) defined missing data to be missing 

at random (MAR)  if the distribution of missingness does not depend on Ymis , (we refer to R as the 

missingness)  

                                                         P(R|Ycom )  =  P(R| Yobs ).                                                   (1.1) 

 

In other words, MAR allows the probabilities of missingness to depend on observed data but not 

on missing data. An important special case of MAR, called missing completely at random 

(MCAR), occurs when the distribution does not depend on Yobs  either,  

 

                                                         P(R|Ycom )  =  P(R). 

 

    When Equation 1.1 is violated and the distribution depends on Ymis, the missing data are said 

to be missing not at random (MNAR).  
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Chapter 2 

 

2.1  Analyzing methods of incomplete data sets 

In this chapter, we will discuss briefly about methods for analyzing incomplete data sets. The basic 

methods are Deletion, Single Imputation and Multiple Imputation. Deletion method contains 

Complete Case (CC) and Available Case (AC). Single Imputation encloses mean, regression, hot-

deck and cold-deck imputation respectively. We will focus on Multiple Imputation (MI) in another 

section. 

 

 

2.1.1 Complete Case Analysis 

The standard treatment of missing data in statistical packages is Complete Case Analysis (CC), 

where cases with any missing values are simply discarded. This method is also known as Listwise 

Deletion (LD) and is appropriate only when missing completely at random (MCAR) is a 

reasonable assumption for the missing data mechanism.  

Complete Case (CC) analysis is a very simple method. By using it, we can make valid inference 

since all univariate statistics are calculated on a common sample base of cases. Moreover, the 

rejection of incomplete cases is an unnecessary waste of information, such loss of cases reduce 

statistical power. The loss in sample size can be considerable if the number of variables is large. 

One recommendation, which can be offered to mitigate the loss of cases, is to drop variables that 

have high levels of missing data while considering the degree of association between this variable 

and the others in the analysis. The Complete Cases are effectively a random sub-sample of the 

original cases, only when the data are missing completely at random (MCAR). 

 

 

2.1.2 Available Case Analysis 

This method, which is also well known as Pairwise Deletion (PD), includes all cases where the 

variable of interest is present. It is obvious that the sample base changes from variable to variable, 
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which is actually a special disadvantage of this procedure. Also, an appropriate assumption is 

missing completely at random (MCAR) and at this case too. 

Under this rare assumption it is easy to estimate unbiased means and variances, but is more 

complicated when we have to estimate measures of covariation, such as covariance or correlations. 

For example, if we  want to calculate covariance (or correlation) between two variables Yj and Yk , 

we are based on cases i  for which both yij and yik  ( i =1,…,n and j,k = 1,…,p , j ≠ k ) are present. 

So the estimate of covariance is  

                                                    𝑠𝑗𝑘
(𝑗𝑘)

 = ∑
(𝑦𝑗𝑘− �̅�𝑗

(𝑗𝑘)
)(𝑦𝑖𝑘− �̅�𝑘

(𝑗𝑘)
)

𝑛𝑗𝑘
(𝑗𝑘)                                             (2.1) 

where njk  is the number of cases where both Yj and Yk  are observed, �̅�𝑗
(𝑗𝑘)

 and �̅�𝑘
(𝑗𝑘)

 are the sample 

means of  Yj and Yk correspondingly over those njk  cases. With the some procedure, the estimate of 

correlation between these two variables would be 

                                                       𝑟𝑗𝑘= 
𝑠𝑗𝑘
(𝑗𝑘)

√𝑠
𝑗𝑗
(𝑗)

𝑠𝑘𝑘
(𝑘)

                                                                         (2.2) 

where   𝑠𝑗𝑗
(𝑗)

 = ∑
(𝑦𝑗𝑘− �̅�𝑗

(𝑗𝑘)
)2

𝑛𝑗
(𝑗)     is the variance of  Yj over nj  cases. A criticism of Equation (2.2) 

is that, unlike the population correlation being estimated, rjk , which describes Pearson’s correlation 

between Yj and Yk , can lie out of the range (-1,1) because  rjk ∉ (-1,1). As a solution to this problem, 

we use to compute pairwise correlations, where variances are estimatwd from the sample base as 

the covariance. 

                                                    𝑟𝑗𝑘
(𝑗𝑘)

= 
𝑠𝑗𝑘
(𝑗𝑘)

√𝑠
𝑗𝑗
(𝑗𝑘)

𝑠
𝑘𝑘
(𝑗𝑘)

                                                                      (2.3) 

 

 

2.1.3 Mean Imputation 

Refers to the procedure through which we substitute the missing values on a variable with the 

mean of the observed values for the same variable. In case of categorical data, the mode instead 

of the mean is used. So the overall respondent mean �̅�𝑟 for each variable, is assigned to all 

missing responses 𝑦𝑚𝑖𝑠,𝑖 =  𝑦�̅� . 
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In case there are auxiliary variables (which are fully observed) is preferable to use Mean 

Imputation within classes. In this procedure, firstly, we divide the total sample into H imputation 

classes according to values on auxiliary variables, in order to achieve homogeneity within classes. 

Within each class, the respondent mean for y-variable ( �̅�𝑟ℎ, h=1,2,…,H) is assigned to all the non-

respondents in that class, so �̅�ℎ𝑚𝑖𝑠,𝑖 = �̅�𝑟ℎ for the i-th non-respondent in class h. The classes may 

be defined as the cells in the crosstabulation of the (categorized) auxiliary variables, but symmetry 

is not essential; instead some auxiliary variables may be used for the one part of the sample while 

others are used for another part, or group of cells may be combined. 

However, while this approach may be valid especially if the data are missing completely at random 

(MCAR), it is argued that mean substitution leads to an underestimation of the true population 

parameter particularly in simulations, where a segment of the population is more prone to non-

response. The variance of the observed and imputed values of  Yj is  

 

                                                            𝑠(∗)= 
(𝑛𝑗−1)

(𝑛−1)
𝑠𝑗𝑗

(𝑗)
                                                                      (2.4) 

 

where 𝑠𝑗𝑗
(𝑗)

 is the estimated variance from available cases. Under MCAR assumption, s(*) is a 

consistent estimate of the true variance, so the sample variance from the filled-in datasets 

underestimates the variance by a factor of   
(𝑛𝑗−1)

(𝑛−1)
 . This underestimation is a consistent estimate 

of imputing missing values at the center of distribution. Similarly, the sample covariance of  Yj  

and Yk  from the filled-in data is       

 

                                                      𝑠𝑗𝑘
(∗)

= 
(𝑛𝑗𝑘−1)

(𝑛−1)
𝑠𝑗𝑘

(𝑗𝑘)
                                                                  (2.5) 

 

where  𝑠𝑗𝑘
(𝑗𝑘)

 is the estimated covariance when both Yj  and  Yj  are observed. Since  𝑠𝑗𝑘
(𝑗𝑘)

  is a 

consistent estimate of the covariance, again the estimate from filled-in data underestimates the 

magnitude of the covariance by a factor  
(𝑛𝑗𝑘−1)

(𝑛−1)
 . Thus, although the covariance matrix from the 

filled-in data is positive semi definite, the variances and covariances are systematically 

underestimated. 
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    However, mean substitution has also been criticized on the grounds that it distorts the empirical 

distribution of the variable and that will be a problem when one wants to examine the shape (e.g. 

histogram, skewness) of the variable. 

 

 

2.1.4 Regression Imputation Procedure 

In this case, we assume a variable Y  with missing data and  p  auxiliary variables X1, X2,…, Xp . 

This procedure, which is based on regression analysis, has two different versions: deterministic 

and stochastic. In fact, deterministic version serves well for estimating means and totals, but it 

distorts distributional properties of the variable; stochastic version, on the other hand, is less 

efficient for estimating means and totals but it preserves the variability in the observed data. 

 Predicted Regression Imputation 

This is the deterministic version of the regression imputation method. This method uses respondent 

data to regress  Y  on the auxiliary variables  X1, X2,…, Xp . Missing  Y – values is then imputed as 

the predicted values from the regression equation   

 

                                                               𝑌𝑚𝑖𝑠,𝑖= 𝑎0+ ∑ 𝑋𝑖
𝑝
𝑖=1                                                              (2.6) 

If the  Y  variable is qualitative, log-linear or logistic models may be used. As in any regression 

analysis, specific interaction terms may be included in the regression equation and also 

transformations may be useful. Little (1992) notes that estimated standard errors of the regression 

coefficients from Ordinary Least Squares (OLS) or Weighted Least Squares (WLS) tend be too 

small, because imputation error is not taken into account. 

A special case of the previous regression model  (2.6)  is the ratio model. In this case, the regression 

model is  

 

                                                               𝑌𝑚𝑖𝑠,𝑖= 
�̅�𝑅

�̅�𝑅
 𝑋𝑖                                                                        (2.7) 

 

with a single auxiliary variable and an intercept of zero. That is, the value, which is used as a 

donor, is the ratio of  Y  variable mean with  X  variable mean multiplied by value of  X  in position 

that  Y  is missing and we are willing to complete. 
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 Random Regression Imputation 

In this case, the imputed values are the predicted values from the regression equation  (2.6)  plus 

residual terms 𝑒𝑚𝑖𝑠,𝑖. So, the appropriate model, which describes the stochastic version of 

regression imputation, is 

 

                                                             𝑌𝑚𝑖𝑠,𝑖 = �̂�0+∑ �̂�𝑖
𝑝
𝑖=1 𝛸𝜄 + 𝑒𝑚𝑖𝑠,𝑖                                              (2.8) 

 

Depending on the assumptions made, the residuals can be determined in various ways, including: 

a. If  the residuals  are assumed to be homoscedastic and normally distributed,  a residual can 

be chosen at  random from a  normal distribution with zero mean  and   variance  equal  to  

the  residuals  variance  from  the  regression {𝑒𝑚𝑖𝑠~N(0,σ2)}.  

 

b. If  the  residuals  are  assumed  to come from the same, unspecified  distribution, they can 

be chosen at random from the respondents’ residual. 

 

c. As a protection against non-linearity and non-additivity in the regression model, the 

residuals may be taken from respondents with similar values on the auxiliary variable. 

 

 

2.1.5 Hot-deck Imputation 

Hot-deck procedures are common methods for adjusting data sets for missing values. Because hot-

deck procedures originated in survey practice with little theory to direct their development, the 

statistical literature provides few definitions or results about these procedures. Widespread practice 

in the absence of well-developed theory clouds the subject with ambiguities and inconsistencies. 

In general, a hot-deck  procedure is a duplication process, when a value is missing from a sample 

a reported value from the same sample is duplicated to represent this missing value. The adjective 

“hot” refers to imputing with values from the current sample. 

The most common techniques within the Hot-deck imputation are Flexible Matching Imputation, 

Nearest Neighbor Hot-deck and Sequential Hot-deck. 
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2.1.6 Cold-deck Imputation 

In this procedure, when a value is missing from a sample, another value from another survey or 

another sample is used to represent the missing value. In general, two basic types of this 

substitution procedure are used: 

1. Selection of a random substitute. 

2. Selection of a specially designed substitute. 

With a random substitution procedure, an additional population unit is selected on a probability 

bases to replace each non-respondent. Usually the substitute for a particular non-respondent is 

chosen from a restricted population of subgroups. On the other hand, a procedure that uses 

specially designated substitute units identifies one or more backup units to provide substitutes, 

if necessary, for each sample unit. 

 

 

2.3 Multiple Imputation 

Multiple Imputation (MI) appears to be one of the most attractive methods for general purpose 

handling of missing data in multivariate analysis. The basic idea, first proposed by Rubin (1978), 

is quite simple. This idea is based on creation m ≥ 2 complete “imputed” datasets. We analyze 

each one of them, by using standard complete data methods and finally these  m  complete data 

inferences can be combined to form one inference that properly reflects uncertainty due to non-

response under that model. 

Specifically, in this procedure, there are  m ≥ 2  possible values for each missing value, (a vector  

m × 1), which are ordered in the sense that  m  complete data sets can be created from the vectors 

of imputation. Each time, we replace each missing value by one of the components in its vector 

and we create a complete data set. Standard complete data methods are used to analyze each of  m  

complete data sets. For example, one could perform linear or logistic regression procedures using 

any standard statistical package. Any model would have to be fitted  m  times, one for each imputed 

data set and the results across these data sets will vary as a reflection of missing data uncertainty. 

So, we obtain an overall set of estimated coefficients and standard errors from these  m  data sets 

and then we want to combine the results using certain rules that will be discussed below. In fact, 
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the variability among the results of the m analyses provide a measure of the ordinary sample 

variation, lead to a single inferential statement about the parameters of interest. 

The Multiple Imputation (MI), a simulation based technique, has been developed in an attempt to 

give solutions to problems because Single Imputation (SI) has two obvious disadvantages. 

Specifically, single imputation is unable to express the sampling variability under one model for 

non-response and the uncertainty about the correct model of non-response. Both these 

disadvantages don’t exist in Multiple Imputation, which also shares the advantages of single 

imputation. That is we can use all standard complete data methods of analysis and also, in many 

analyses, data collector (e.g. Census Bureau) and data analysts (e.g. a university social scientist) 

may be different individuals, which is very important because the data collector may have access 

to more and better information about non-respondents than the data analyst. For example, in some 

cases, information protected by secrecy constrains (e.g. zip codes of dwelling units) may be 

available to help impute missing values (e.g. annual incomes).  

As we have seen, Multiple Imputation is better than Single, because shares the advantages of 

Single Imputation and also rectifies disadvantages. The only disadvantage of this procedure is that 

it requires more work than Single Imputation. The cost of using Multiple Imputation is the 

computational complexity, space of databases and time required due to the fact that many different 

sets and samples have to be available at any time. 

Finally, we ought to notice that the appropriate number of imputations mostly required is quite 

small. Usually, we can obtain good results with  m  as small as 3-5. Why only a few imputations 

are needed? Actually, this fact is very strange in comparison  to  the  number  of  repetitions, which  

are  usually  required  to  the  EM algorithm or in Data Augmentation. On the other hand, this is 

quite logic, because firstly, with this procedure, we only desire to solve the missing data aspect of 

the problem, without decreasing Monte Carlo error, and secondly the rules for combining the  m  

complete data analyses explicitly account for Monte Carlo error. 

 

 

2.3.1 Rubin’s Rules 

Rubin (1987) provides a procedure from the  m  imputations. We use Schafer’s (1997) notation. 

Consider that  we  want  to  make  inference about  a quantity Q in  the complete data  case. Let �̂� 



10 
 

be an estimate of  Q  that we use if no data were missing and  U  an estimated variance of  Q. 

Because both these quantities are related. 

With  m  imputations, we calculate  m  different versions of  �̂� and U . 

 

�̂�(t) = �̂�(Yobs ,Ymis) 

and 

U(t) = U(Yobs ,Ymis) 

 

be the point and variances estimates using the t -th set of imputed datasets. According to Rubin, 

the estimate of Q , which combines the  m  complete data estimates  �̂�(t) , is the average of these 

estimates. 

 

                                                                 �̅� =
1

𝑚
∑ �̂�(𝑡)𝑚

𝑡=1                                                         (2.9) 

 

The variability associated with this estimate has two components: 

 

a. Within imputation variance, which is the average of variance estimates of imputed data. 

                                                            �̅� =
1

𝑚
∑ 𝑈(𝑡)𝑚

𝑡=1                                                      (2.10) 

 

b. Between imputation variance, which is the variance of the complete data estimates. 

 

                                                    𝐵 =
1

𝑚−1
∑ (�̂�(𝑡) − �̅�)𝑚

𝑡=1
2                                         (2.11)  

 

 

 

Then, the total variance is defined as :  

                                                                 T = �̅� + 
𝑚

𝑚+1
𝐵                                                        (2.12) 
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which  T is equal to �̅�  plus B corrected for  m  being finite by the term 
𝑚

𝑚+1
 and the inferences 

are based on the following approximation  

 

                                                                    𝑇−
1

2   (Q- �̅�) ~ tdf                                                                       (2.13) 

 

where the  t  distribution the degrees of freedom ( df ) are calculated as: 

 

                                                           df = (𝑚 + 1)[1+ 
1

𝑚+1

�̅�

𝐵
]                                                 (2.14) 

 

Equation (2.14) shows that the degrees of freedom are depended  by  both  m  and   
�̅�

𝐵
 . That is, as 

the number of imputations  m  increases the degrees of freedom  increases. Also, as 
�̅�

𝐵
 increases the  

df  gets larger. According to Schafer and Olsen (1998), if the degrees of freedom are small, less 

than 10, the estimates will be more accurate when the number of imputations  m  is large. On the 

other hand, if the computed value of  df  is large, greater than 10, little will be  gained from  a 

larger  m . In fact, when  df  is large, we may assume that statistic  𝑇−
1

2   (Q- �̅�) is asymptotically 

normal. According to Equation (2.13), an 100(1-α)% interval estimate for  Q  is:   

 

                                                              �̅� ± 𝑡𝑑𝑓,1−
𝑎

2
√𝑇                                                            (2.15) 

  

and an appropriate  p – value  for testing the null hypothesis Q = Q’ against a two sided alternative 

is: 

                                                   p – value = 2𝑃(𝑡𝑑𝑓 > 𝑇−
1

2|�̅� − 𝑄′|)                                     (2.16) 

 

The ratio  
𝐵

�̅�
 , which indicates how much information is missing, is an estimator of  

𝛾

1−𝛾
 , where  γ  

is the fraction of information missing for  Q  due to non-response. If  γ  is zero then B  goes to zero. 

This quantity  γ  is defined as:  
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                                                                       𝛾 =  
𝑟+

2

𝑑𝑓+3

𝑟+1
                                                         (2.17) 

 

where  r = (1 +
1

𝑚
)

𝐵

�̅�
   indicates  the  relative  increase in variance due to non-response, because  

�̅�  represents   the   estimated  total  variance, where  is  no missing  information about  Q  (B=0). 

Both  γ  and  r  can be used  as  diagnostic statistics  to  examine  the  effect  of  missing  data  on  

estimates  of   �̅�.  
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Chapter 3 

 
 

3.1  Introduction 

 
In this chapter we present an overview of linear mixed-effects models. In practice, longitudinal 

data are often highly unbalanced in the sense that are not equal number of measurements is 

available for all subjects and/or that measurements are not taken at fixed time points. Due to their 

unbalanced nature, many longitudinal data sets cannot be analyzed using multivariate regression 

techniques. A natural alternative arises from observing that subject-specific longitudinal profiles 

can often be well approximated by linear regression functions.  

Many common statistical models can be expressed as linear models that incorporate both fixed 

effects, which are parameters associated with an entire population or with certain repeatable levels 

of experimental factors, and random effects, which are associated with individual experimental 

units drawn at random from a population. Fixed effects factors are generally thought of as fields 

whose values of interest are all represented in the dataset, and can be used for scoring. Random 

effects factors are fields whose values in the data file can be considered a random sample from a 

larger population of values. They are useful for explaining excess variability in the target. A model 

with both fixed effects and random effects is called a mixed-effects model. Mixed-effects models 

are primarily used to describe relationships between a response variable and some covariates in 

data that are grouped according to one or more classification factors. By associating common 

random effects to observations sharing the same level of a classification factor, mixed-effects 

models flexibly represent the covariance structure induced by the grouping of the data. 

 

 

3.2  The General Linear Mixed Model 
 

According to Verbeke and Molenberghs (2000) at the first stage of the two-stage approach assume 

that  the random variable Yij  denote the (possible transformed) response of interest, for the  ith  

individual, measured at time tij , i = 1,…,N,  j=1,…, ni, and let  Yi   be the ni-dimensional vector of 
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all repeated measurements for the ith subject, that is,  Yi = (Yi1, Yi2,…, Yi ni)’. The first stage 

assumes that  Yi  satisfies the linear regression model:  

 

                                                          𝒀𝒊 = 𝑍𝑖𝛽𝑖 + 𝜀𝑖                                                                 (3.1) 

 

where  Zi is a (ni x q) matrix of known covariates, modeling how the response evolves over time 

for the ith subject. Further, βi  is a q-dimensional vector of unknown subject-specific regression 

coefficients, and εi  is a vector of residual components εij , j=1,…, ni. It is usually assumed that all 

εi  are independent and normally distributed with mean vector zero, and covariance matrix σ2Ini , 

where  Ini  is the ni-dimensional identity matrix. Obviously, model (3.1) includes very flexible 

models for the description of subject-specific profiles. 

In the second stage, a multivariate regression model of the form 

 

                                                                 𝛽𝑖 = 𝛫𝑖𝛽 + 𝑏𝑖                                                                   (3.2) 

 

is  used  to explain  the observed variability  between  the  subjects, with  respect  to  their subject-

specific  regression  coefficients  βi. Κi   is  a (q x p) matrix  of  known  covariates, and  β  is  a  p-

dimensional vector of unknown regression parameters. Finally, the bi are assumed to be 

independent, following a  q-dimensional normal distribution with mean vector zero and general 

covariance matrix  D. 

In practice, the regression parameters in (3.2) are of primary interest. They can be estimated by 

sequentially fitting the models (3.1) and (3.2). First, all  βi  are estimated by fitting model (3.1) to 

the observed data vector  yi  for each subject separately, yielding estimates 𝛽�̂�. Afterward, model 

(3.2) is fitted to the estimates  𝛽�̂�, providing inferences for  β.  

This two-stage analysis can be interpreted as the calculation (first stage) and analysis (second 

stage) of summary statistics. First, the actually observed data vector  yi  is summarized by  𝛽�̂�, for 

each subject separately.  Subsequently, regression methods are used to assess the relation between 

the so-obtain summary statistics and relevant covariates. Other summary statistics frequently used 

in practice are the area under each individual profile, the mean response for each individual, the 

largest observation, the half time, and so forth.  
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As for any analysis of summary statistics, the two-stage analysis obviously suffers from at least 

two problems. First, information is lost in summarizing the vector  yi  of observed measurements 

for the  ith subject by  𝛽�̂�. Second, random variability is introduced by replacing the  βi  in model 

(3.2) by their estimates  𝛽�̂�. Moreover, the covariance matrix of  𝛽�̂�  highly depends on the number 

of measurements available for the ith subject as well as on the time points at which these 

measurements were taken, and this is has not been taken into account in the second stage of the 

analysis.  

In order to combine the models from the two-stage analysis, we replace βi  in (3.1) by expression 

(3.2), yielding  

 

                                                                  𝑌𝑖 = 𝑋𝑖𝛽 + 𝛧𝑖𝑏𝜄 + 𝜀𝑖                                                       (3.3) 

 

where  Xi  =  Ζi Ki   is the appropriate (ni x p) matrix of known covariates, and where all other 

components are defined earlier. Model (3.3) is called linear mixed effects model with fixed effects  

β  and with subject-specific effects bi. It assumes that the vector of repeated measurements on each 

subject follows a linear regression model where some of the regression parameters are population-

specific. The bi  are assumed to be random and are therefore often called random effects. 

For example, a model with fixed effects 𝛽𝑗 and random effects 𝑏𝑖 could be written as  

𝑌𝑖𝑗 = 𝛽𝑗 + 𝑏𝑖 + 𝜀𝑖𝑗,             𝑖 = 1,… ,9,          𝑗 = 1, … ,4, 

 

𝑏𝑖~𝑁(0, 𝜎𝑏
2),         𝜀𝑖𝑗~𝑁(0, 𝜎2), 

or, equivalently,  

 

𝒀𝒊 = 𝑿𝒊𝛽 + 𝜡𝒊𝑏𝑖 + 𝜺𝒊 ,        𝑖 = 1,… ,9 

 

  𝑏𝑖~𝑁(0, 𝜎𝑏
2),      𝜺𝒊~𝑁(0, 𝜎2𝑰), 

where, for i =1,...,9, 

 

𝒀𝒊 = [

𝑦𝑖1
𝑦𝑖2

𝑦𝑖3

𝑦𝑖4

] ,       𝑿𝒊 = [

1 0 0 0
0 1 0 0
0
0

0
0

1
0

0
1

] ,      𝜡𝒊 = 𝟏 = [

1
1
1
1

] ,      𝜺𝒊 =  [

𝜀𝑖1
𝜀𝑖2

𝜀𝑖3

𝜀𝑖4

] . 
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In general, a linear mixed-effects model is any model which satisfies (Laird and Ware, 1982) 

 

  𝑌𝑖 = 𝑋𝑖𝛽 + 𝛧𝑖𝑏𝑖 + 𝜀𝑖  

 𝑏𝑖  ~ N(0, 𝐷),                                                                                                                                       (3.4) 

 𝜀𝑖  ~ N(0, 𝛴𝑖 ), 

 𝑏1,…, 𝑏𝑁, 𝜀1,…, 𝜀𝑁   independent, 

 

where  𝑌𝑖 is the 𝑛𝑖-dimensional response vector for subject i, 1≤ 𝑖 ≤ 𝑁, N is the number of 

subjects, 𝑋𝑖 and    𝑍𝑖   are (𝑛𝑖 × 𝑝) and (𝑛𝑖 × 𝑞) dimensional matrices of known covariates, β is an 

𝑝-dimensional vector containing the fixed effects, 𝑏𝑖   is the 𝑞-dimensional vector containing the 

random effects, and 𝜀𝑖   is an the 𝑛𝑖-dimensional vector of residual components. Finally, D is a 

general (𝑞 × 𝑞 ) covariance matrix with (𝑖, 𝑗) elements 𝑑𝑖𝑗 = 𝑑𝑗𝑖  and 𝛴𝑖  is a (𝑛𝑖 × 𝑛𝑖) covariance 

matrix which depends on  i  only through its dimension  𝑛𝑖  , i.e. the set of unknown parameters in 

𝛴𝑖   will not depend upon  i. In some cases, one may wish to relax this last assumption. 

It follows from (3.4) that, conditional on the random effect  𝒃𝒊, 𝒀𝒊  is normally distributed with 

mean vector  𝑋𝑖𝛽 + 𝛧𝑖𝒃𝒊  and with covariance matrix 𝛴𝑖 . Further, 𝒃𝒊  is assumed to be normally 

distributed with mean vector 0 and covariance matrix 𝐷. Let  f (𝒚𝒊|𝒃𝒊)  and  f (𝒃𝒊)  be the 

corresponding density functions. The marginal density function of  𝒀𝒊   is then given by: 

 

𝑓 (𝒚𝒊) = ∫𝑓 (𝒚𝒊|𝒃𝒊) 𝑓(𝒃𝒊) d𝒃𝒊 , 

 

which can easily be shown to be the density function of a  𝑛𝑖–dimensional  normal distribution 

with mean vector  Xiβ  and with covariance matrix  Vi = ZiDZi’+Σi . Hence, the marginal model 

implied by the two-stage approach makes very specific assumptions about the dependence of the 

mean structure and the covariance structure on the covariates Xi and Zi, respectively. 

Since, model (3.4) is defined through the distributions  f (𝒚𝒊 |𝒃𝒊)  and  f (𝒃𝒊), it will be called the 

hierarchical formulation of the linear mixed model. The corresponding marginal normal 

distribution with mean  𝑋𝑖𝛽 and covariance 𝑍𝑖𝐷𝑍𝑖
′ + 𝛴𝑖, is called the marginal formulation of the 

model. Note that, although the marginal model naturally follows from the hierarchical one, both 

models are not equivalent. 
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3.3   Estimation the Marginal Model 

As we discussed the general linear mixed model (3.4) implies the marginal model  

 

                                                  Yi  ~  N (𝑋𝑖𝛽, 𝑍𝑖𝐷𝑍𝑖
′ + 𝛴𝑖).                                                      (3.5)           

 

Inference is based on this marginal distribution for the response Yi . It should be emphasized that 

the hierarchical structure of the original model (3.4) is then not taken into account. Indeed, the 

marginal model (3.5) is not equivalent to the original hierarchical model (3.4). Inferences based 

on the marginal model do not explicitly assume the presence of random effects representing the 

natural heterogeneity between subjects.  

Let α denote the vector of all variance and covariance parameters (usually called variance 

components) found in 𝑉𝑖=𝑍𝑖𝐷𝑍𝑖
′ + 𝛴𝑖, that is, α consists of the  

𝑞(𝑞+1)

2
  different elements in D and 

of all parameters in Σi. Finally, let  θ = (𝛽′, 𝛼′)’ be the 𝑠-dimensional vector of all parameters in 

the marginal model for Yi , and let  𝛩 = 𝛩𝛽 × 𝛩𝛼 denote the parameter space for θ, with 𝛩𝛽  and 

𝛩𝛼   the parameter spaces for the fixed effects and for the variance components respectively. Note 

that 𝛩𝛽= ℝp, and 𝛩𝛼   equals the set of values for α such that 𝐷 and all 𝛴𝑖 are positive (semi-)definite. 

The classical approach to inference is based on estimators obtained from maximizing the marginal 

likelihood function: 

 

            LML (θ) = ∏ {(2𝜋)−
𝑛𝑖
2 |𝑉𝑖(𝒂)|−

1

2  × exp( −
1

2
(𝒀𝒊 − 𝑋𝑖𝛽)′𝑉𝑖

−1(𝒂)(𝒀𝒊 − 𝑋𝑖𝛽))}𝑁
𝑖=1           (3.6) 

 

with respect to θ. Let us first assume α  to be known. The maximum likelihood estimator (MLE) 

of  β, obtained from maximizing (3.6), conditional on α, is then given by (Laird and Ware, 1982) 

 

                                      �̂�(α) = (∑ 𝑋′𝑖𝑊𝑖
𝛮
𝑖=1 𝑋𝑖)

−1 ∑ 𝑋′𝑖
𝑁
𝑖=1 𝑊𝑖𝑌𝑖 ,                                             (3.7) 

 

where Wi equals Vi
-1. 

When α is not known, but an estimate of 𝛂 ̂ is available, we can set 𝑉�̂� = Vi (𝛂 ̂) = 𝑊�̂�
−1

, and estimate 

β  by using the expression (3.7) in which Wi is replaced by 𝑊�̂�. In continue, we will see two 
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frequently used methods for estimating α, these are the maximum likelihood estimation (MLE) 

and the restricted maximum likelihood (REML) estimation. 

 

 

3.3.1   Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) of α  is obtained by maximizing the expression (3.6) 

with respect to α, after β is replaced by (3.7). This approach arises naturally when we consider the 

estimation of  β  and  α  simultaneously by maximizing the joint likelihood (3.6). 

 

 

 

 

3.4 Restricted Maximum Likelihood Estimation 

In practice, linear mixed models often contain many fixed effects. In such cases, it may be 

important to estimate the variance components, explicitly taking into account the loss of degrees 

of freedom involved in estimating the fixed effects. In contrast to simple cases, an unbiased 

estimator for the vector α of variance components cannot be obtained from appropriately 

transforming the ML estimator as suggested from the analytic calculation of its bias. However, the 

error contrasts approach can still be applied as follows. We first combine all N subject-specific 

regression models (3.4) to one model: 

 

                                                        𝒀 = 𝑋𝛽 + 𝛧𝒃 + 𝜺,                                                              (3.8) 

 

where the vectors 𝒀, 𝒃 and 𝜺, and the matrix 𝑋 are obtained from stacking the vectors  𝒀𝒊, 𝒃𝒊 and 

𝜺𝒊, and the matrices 𝑋𝑖  respectively, underneath each other, and where 𝛧 is the block-diagonal 

matrix with blocks 𝑍𝑖 on the main diagonal and zeros elsewhere. The dimensional of 𝒀 equals 

 ∑ 𝑛𝑖
𝑁
𝑖=1   and will be denoted by n. 

The marginal distribution for 𝒀 is normal with mean vector 𝑋𝛽 and with covariance matrix V(α) 

equal to the block-diagonal matrix with blocks 𝑉𝑖  on the main diagonal and zeros elsewhere. The 

REML estimator for the variance components α  is now obtained from maximizing the likelihood 
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function of a set of error contrasts U = 𝑨′𝒀 where A is any (𝑛 × (𝑛 − 𝑝)) full-rank matrix with 

columns orthogonal to the distribution with mean vector zero and covariance matrix 𝐴′V(α)A, 

which is not dependent on β any longer.  Further, Harville (1974) has shown that the likelihood 

function of the error contrasts can be written as: 

 

             L(α) = (2𝜋)−(𝑛−𝑝)/2|∑ 𝑋′𝑖𝑋𝑖
𝑁
𝑖=1 |

1/2
                   

  

                                × |∑ 𝑋′𝑖
𝑁
𝑖=1 𝑉𝑖

−1𝑋𝑖|
−1/2

∏ |𝑉𝑖|
−1/2𝑁

𝑖=1  

 

                                            × exp {−
1

2
∑ (𝒀𝒊 − 𝑋𝑖�̂�

𝑁
𝑖=1 )′ 𝑉𝑖

−1(𝒀𝒊 − 𝑋𝑖�̂�)} ,                                        (3.9) 

 

where  β̂  is given by (3.7). Hence, the so-obtained REML estimator �̂�  does not depend on the 

error contrasts (i.e. the choice of A). 

Note that the maximum likelihood estimator for the mean of a univariate normal population and 

for the vector of regression parameters in a linear regression model are independent of the residual 

variance 𝜎2. However, it follows from (3.7) that this no longer holds in the general linear mixed 

model. Thus, we have that although REML estimation id only with respect to the variance 

components in the model, the “REML” estimator for the vector of fixed effects is not identical to 

its ML version. 

Finally, mention that the likelihood function in (3.9) equals:  

                          L(α) = C |∑ 𝑋′
𝑖

𝑁
𝑖=1 𝑊𝑖(𝒂)𝑋𝑖|

−1/2
 LML (�̂�(𝜶), 𝜶)                                           (3.10) 

 

where C is a constant not depending on α ,where, as earlier, 𝑊𝑖(𝒂) equals Vi
-1(α) and where 

LML(β,α) =  LML(θ) is the ML likelihood function given by (3.6). Because  |∑ 𝑋′
𝑖

𝑁
𝑖=1 𝑊𝑖(𝒂)𝑋𝑖|  in 

(3.10) does not depend on β, it follows that the REML estimators for α and for β can also be found 

by maximizing the so-called REML likelihood function 

 

                            LREML = |∑ 𝑋′
𝑖

𝑁
𝑖=1 𝑊𝑖(𝒂)𝑋𝑖|

−1/2
 LML (θ)                                                     (3.11) 
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with respect to all parameters simultaneously (α  and β). 

 

3.4.1   Justification of REML Estimation 

The main justification of the REML approach has been given by Patterson and Tompson (1971), 

who proved that, in the absence of information on β, no information about α is lost when inference 

is based on U rather than on Y. More precisely, U is marginally sufficient for α in the sense 

described by Sprott (1975). Further, Harville (1974) has shown that, from a Bayesian point of 

view, using only error contrasts to make inferences on α is equivalent to ignoring any prior 

information on β and using all the data to make those inferences. 

 

3.4.2  Comparison between ML and REML Estimation 

Maximum likelihood estimation and restricted maximum likelihood estimation both have the same 

merits of being based on the likelihood principle which leads to useful properties such as 

consistency, asymptotic normality and efficiency. ML estimation also provides estimators of the 

fixed effects, whereas REML estimation, in itself, does not. On the other hand, for balanced mixed 

ANOVA models, the REML estimates for the variance components are identical to classical 

ANOVA-type estimates obtained from solving the equations which set mean squares equal to their 

expectations. This implies optimal minimum variance properties, and it shows that REML 

estimates in that context do not rely on any normality assumption since only moment assumptions 

are involved. 

Also with regard to the mean squared error for estimating α, there is no indisputable preference 

for either one of the two estimation procedures, since it depends on the specifics of the underlying 

model and possibly on the true value of α. For ordinary ANOVA or regression models, the ML 

estimator of the residual variance σ2 has uniformly smaller mean squared error than the REML 

estimator when  𝑝 = 𝑟𝑎𝑛𝑘(𝑋) ≤ 4, but the opposite is true when 𝑝 > 4 and  𝑛 − 𝑝 is sufficiently 

large (𝑛 − 𝑝 > 2 suffices if 𝑝 > 12). In general, one may expect results from ML and REML 

estimation to differ more as the number 𝑝 of fixed effects in the  
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Chapter 4 

4.1 The experimental design 

The purpose of this Chapter is to evaluate the level of the clinical  attachment loss (CAL) and 

especially the factors, which affect tis level, on patients with early onset or aggressive periodontitis 

(EOP). Early-onset periodontitis is a type of periodontitis, which is characterized by severe 

attachment loss and bone destruction in otherwise healthy patients with a tendency to familiar 

aggregation. Clinical attachment level (CAL) is the measured distance to the nearest mm from the 

cemento-enamel junction to the deepest probeable pocket point. 

Twenty-five patients with a diagnosis of early-onset or aggressive periodontitis (EOP) who 

received treatment at a private practice limited to periodontics in Athens, Greece, participated in 

the study. The patients were included in the study only if they had complied with a minimum of 

10 supportive periodontal care (SPC) sessions during the 5-year maintenance phase. The group 

consisted of 11 males and 14 females, from 30 to 39 years old. Also, ten patients were smokers 

with an average of  22.5 cigarettes/day. For each mouth we have measured the clinical indicator 

CAL for two teeth. 

 
 

Figure 4.1 : The pie-chart of the patients’ sex. 



22 
 

Initially, oral hygiene instructions (bass brushing methods, dental floss and interdental brushes) 

scaling and root planning were advised to the patients (SRP). SRP was performed under local 

anesthesia and required about 60–90 min. Periodontal surgery and systemic antibiotics following 

microbiological testing were performed when indicated. Antibiotics were either ornidazole 

(Betiral, Roche, Basel, Switzerland) or tinidazole (Fasigyn, Pfizer) for 7 days at each course. More 

specifically, ten patients received SRP treatment, five patients received SRP treatment and 

antibiotics, four patients received SRP treatment and periodontal surgery and finally, six patients 

received SRP treatment, periodontal surgery and antibiotics. Three months later, all patients were 

recalled. Additionally, they were enrolled in a maintenance care program with annually 

measurements of the clinical attachment level. All clinical procedures were carried out by the same 

periodontist with a time limit of ten minutes approximately per tooth. 

 

 
Figure 4.2 : The pie-chart of the therapy the patients received. 

 

The patients were not all measured at the same sets of  time points, that is the design is incomplete. 

(More specifically, in the first tooth we have 25,3% missing values for the clinical index CAL and 

12,6% missing values in the second tooth for the same index.) The dependent variable of interest 

is the level of loss attachment, CAL. Available for other eight independent variables which were 
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related to the response, namely: time  taking values from 1 to 6 for each annual patient’s visit to 

the periodontist, id  taking values from 1 to 25 for each patient, sex  a factor variable taking the 

value 0 if the patient is male and 1 if the patient is female, age  denoting the age of the patient, 

cigar  denoting the number of cigarettes smoked in a day the patient, treatment  a factor variable 

taking the value 0 if the patient received SRP, 1 if the patient received SRP and periodontal surgery 

(SC/RP+FL), 2 if the patient received SRP and antibiotics (SC/RP+AB) and 3 if the patient 

received SRP, periodontal surgery and antibiotics (SC/RP+FL+AB). Also, we have the variables 

boneloss_beg  and boneloss_fin which  denoting the percentage of bone loss at the beginning and 

in the end of  the therapy. 

4.2  A first approach of the experimental design 

An initial step for a researcher when encountering a dataset is to plot the data. By constructing the 

appropriate plots, one can foresee important information on how to model the data. From the plots, 

empirical results and some initial tests-estimates for the representation of main effects of factors 

or the interaction between factors can be obtained. 

At first, in Figure 4.2.1, a line plot is been presented, in which we have measurements of clinical 

index CAL of both examined teeth, seperately, over the time. 

 

Figure 4.2.1 : (a) line plot of the mean (CAL) over the time for the 1st tooth. 

                       (b) line plot of the mean (CAL) over the time for the 2nd tooth. 
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The general impression from the figure above is that the CAL index is dropping over the time for 

both the teeth that we are going to study. Specifically, in Figure 4.2.1(a) we can observe that up 

to 12 months the CAL index is constantly dropping, at 24 months something happens which causes 

the index to rise, while subsequently at 36 months there is a sharp reduction and up to 60 months 

we get a relative stability of the index. In Figure 4.2.1(b) we can also observe a reduction of the 

clinical index up to 12 months, a relative stability between 12 and 24 months and then a reduction 

of the index up to 48 months, with a small increase at the end of the treatment. 

There is particular interest in the measurements of the CAL clinical index over the time per 

treatment group as follows below, separately for each tooth. 

 

 
 

Figure 4.2.2 : (a) line plot of the mean (CAL) over the time, per treatment group, for the 1st tooth. 

                       (b) line plot of the mean (CAL) over the time, per treatment group, for the 2nd tooth. 

 

In Figure 4.2.2(a) which concerns the first tooth under study, we can observe that generally in all 

four treatment groups the mean CAL drops over the time. Specifically, all 4 groups drop up to the 

12th month. At the 24th month the group SC/RP presents stability, while all other groups present a 

relative increase. From the 24th until the 36th month (included) the treatment groups SC/RP+FL, 
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SC/RP+AB, SC/RP+FL+AB present a sharp reduction while the SC/RP has a slight reduction. 

Until the end of the treatment there is a stability of the CAL index in all four groups. In Figure 

4.2.2(b) we can observe that the measurement of the CAL index for patients who followed the 

method SC/RP shows a tendency to drop in relation to time. Patients who followed the method 

SC/RP+FL are found to present a reduction in the index measurement up to the 12th month, while 

at the 24th month we can observe an increase which drops until the 36th month and then we can see 

a gradual increase until the end of treatment. In patients who followed the method SC/RP+AB we 

find a reduction in the index measurement up to the 12th month, while at the 36th month we can 

observe an increase which drops until the 48th month and subsequently we see a relative stability 

up to the 60th month of the measurement. Finally, in patients following the method SC/RP+FL+ΑΒ 

we see that they present a reduction in the index measurement up to the 12th month, while at the 

24th month we can observe an increase which drops sharply until the 36th month and subsequently 

we see an increase from the 48th until the 60th month. 

Also worth discussing is the behavior of the CAL index in two sub-groups: men and women. This 

will be done in continuation with the line plots following for each of the teeth under study which 

concern us. 

 

Figure 4.2.3 : (a) line plot of the mean (CAL) over the time, per sex, for the 1st tooth. 

                       (b) line plot of the mean (CAL) over the time, per sex, for the 2nd tooth. 
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Specifically, in Figure 4.2.3(a) we can see that at the beginning of the measurement the CAL index 

is higher in men in comparison to women. In continuation we can observe that the index drops at 

the 12th month and increases at the 24th for both men and women. The index then drops sharply 

and we see that it actually shows almost identical values for both sexes, while subsequently it 

remains relatively stable until the end of treatment, with the index for women presenting slightly 

higher values than that for men. In Figure 4.2.3(b) we see that the CAL index starts at almost the 

same value for both sexes and then we have a constant reduction up to the 36th month for men and 

a constant reduction up to the 48th month for women. In men the index presents a relative stability 

until the end of treatment, while in women we have a slight increase between the 48th and the 60th 

month. 

We also have at our disposal the measurements of the percentage of bone loss in the tooth at the 

beginning (boneloss_beg) and in the end of the treatment (boneloss_fin) for each of the 25 patients. 

The results have shown that these variables are not affected by sex, as there is no significant 

statistical difference between the two sub-populations, i.e. between men and women. These 

differences can easily be graphically represented with the boxplots as is shown indicatively below. 

 

Figure 4.2.4 : Boxplots of the variables “bone loss at the beginning of the therapy” and “bone loss in the 

end of the therapy” per sex. 
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The chart in Figure 4.2.4 above shows that the differences between men and women in the 

variables concerning the percentage of bone loss in the tooth at the beginning and in the end of the 

study are too small and therefore statistically insignificant. 

 

4.3 The general form of the model 
As we said in the Second Chapter, the linear mixed effects model is defined as 

                                          𝒀𝒊 = 𝑿𝒊𝜷 + 𝜡𝒊𝒖𝒊 + 𝜀𝑖,                     for  i =1,…,m                      (4.1) 

where  𝒀𝒊  is a vector of responses of continuous responses for the  i-th  subject defined by 

𝒀𝒊𝒋 = [

𝑌1𝑖

𝑌2𝑖

⋮
𝑌𝑛𝑖𝑖

]. 

Note that ni  is dependent on i, hence the number of observations for each subject may differ. We 

have m subject, in total  𝑛 = ∑ 𝑛𝑖
𝑚
𝑖   observations. 

The fixed effect design matrix, 𝑿𝒊, is a  𝑛𝑖 × 𝑝 matrix, which represents  p  covariates 

corresponding to the fixed effects for each observation of the i-th subject. The fixed effect design 

matrix is defined as  

𝑿𝒊 = 

[
 
 
 
 𝑥1𝑖

(1)
𝑥1𝑖

(2)

𝑥2𝑖
(1)

𝑥2𝑖
(2)

⋯
𝑥1𝑖

(𝑝)

𝑥2𝑖
(𝑝)

⋮ ⋮ ⋱ ⋮

𝑥𝑛𝑖𝑖
(1)

𝑥𝑛𝑖𝑖
(2)

⋯ 𝑥𝑛𝑖𝑖
(𝑝)

]
 
 
 
 

. 

The first column of the design matrix is often equal to 1 for all observations to include an intercept 

term in the model. 
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The fixed effects matrix, β, is a vector consisting of  p unknown regression coefficients associated 

with the covariates from the design matrix 𝑿𝒊, and is defined as 

𝜷 = [

𝛽1

𝛽2

⋮
𝛽𝑝

]. 

 

The random effect design matrix, 𝒁𝒊, is a 𝑛𝑖 × 𝑞 matrix, which represents q covariates 

corresponding to the random effects for each observation of the i-th subject. The random effect 

design matrix is defined as 

𝒁𝒊 = 

[
 
 
 
 𝑧1𝑖

(1)
𝑧1𝑖

(2)

𝑧2𝑖
(1)

𝑧2𝑖
(2)

⋯
𝑧1𝑖

(𝑞)

𝑧2𝑖
(𝑞)

⋮ ⋮ ⋱ ⋮

𝑧𝑛𝑖𝑖
(1)

𝑧𝑛𝑖𝑖
(2)

⋯ 𝑧𝑛𝑖𝑖
(𝑞)

]
 
 
 
 

. 

 

The random effects are effects that vary randomly across subjects. Hence, it includes the individual 

differences for the subjects. Covariates with random effect are often represented both in the  

𝑿𝒊 matrix and the 𝒁𝒊 matrix. In the simplest example of the linear mixed effects model, only the 

intercepts are assumed to vary randomly from subject to subject. Hence, in this case the 𝒁𝒊 matrix 

is simply reduced to a vector of ni 1’s. 

The random effect vector, 𝒖𝒊, is a vector consisting of q random effects associated with the 

covariates from the design matrix 𝒁𝒊, and is defined by 

𝒖𝒊 = [

𝑢1𝑖

⋮
𝑢𝑞𝑖

]. 

 

 We assume that the random effect vector, 𝒖𝒊 , follows a multivariate normal distribution,  

 



29 
 

𝒖𝒊 ∼ Nq (0, D), 

 

where the positive definite symmetric covariance matrix D is defined as 

 

                  𝑫 = 𝑣𝑎𝑟(𝒖𝒊) =  

[
 
 
 

𝑣𝑎𝑟(𝑢1𝑖) 𝑐𝑜𝑣(𝑢1𝑖,𝑢2𝑖)

𝑐𝑜𝑣(𝑢1𝑖,𝑢2𝑖) 𝑣𝑎𝑟(𝑢2𝑖)
⋯

𝑐𝑜𝑣(𝑢1𝑖,𝑢𝑞𝑖)

𝑐𝑜𝑣(𝑢2𝑖,𝑢𝑞𝑖)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑢1𝑖,𝑢𝑞𝑖) 𝑐𝑜𝑣(𝑢2𝑖,𝑢𝑞𝑖) ⋯ 𝑣𝑎𝑟(𝑢𝑞𝑖) ]

 
 
 

  .                   (4.2) 

 

  Finally, the residual  𝜺𝒊  vector is defined by 

𝜺𝒊 = [

𝜀1𝑖
𝜀2𝑖

⋮
𝜀𝑛𝑖𝑖

] 

where each element represents the residual associated with each response for the i-th subject. 

Unlike the residuals in standard linear models, the residuals associated with repeated observations 

on the same subject in a linear mixed effects model can be correlated. We assume that the ni 

residuals in the 𝜺𝒊 vector follow a multivariate normal distribution, 

𝜺𝒊 ∼ 𝑁𝑛𝑖
(0, 𝑹𝒊), 

where the positive definite symmetric covariance matrix 𝑹𝒊 is defined as  

 

                   𝑹𝒊 = 𝑣𝑎𝑟(𝜺𝒊) =  

[
 
 
 

𝑣𝑎𝑟(𝜀1𝑖) 𝑐𝑜𝑣(𝜀1𝑖,𝜀2𝑖)

𝑐𝑜𝑣(𝜀1𝑖,𝜀2𝑖) 𝑣𝑎𝑟(𝜀2𝑖)
⋯

𝑐𝑜𝑣(𝜀1𝑖,𝜀𝑛𝑖𝑖
)

𝑐𝑜𝑣(𝜀2𝑖,𝜀𝑛𝑖𝑖
)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝜀1𝑖,𝜀𝑛𝑖𝑖

) 𝑐𝑜𝑣(𝜀2𝑖,𝜀𝑛𝑖𝑖
) ⋯ 𝑣𝑎𝑟(𝜀𝑛𝑖𝑖

) ]
 
 
 

  .    

              



30 
 

We assume that the vectors of residuals, 𝜀1, … , 𝜀𝑚 and the random effects 𝑢1, … , 𝑢𝑚, are 

independent of each other.  

 

 

4.4  Selecting the best Covariance Structure 

There are many methods for choosing the most appropriate structure for the covariance matrix of 

the data.  Models with the same fixed effects, but with different covariance structures, can be 

compared using again statistics based on the likelihood function. In the case of non-nested models, 

covariance structures can be compared using the Bayesian Information Criterion (BIC) (Schwarz, 

1978) and the Akaike Information Criterion (AIC) (Sakamoto, Ishiguro and Kitagawa, 1986). 

 

 

4.4.1 Bayesian Information Criterion  

The Bayesian Information Criterion (BIC) (Schwarz, 1978), which is sometimes called Schwarz’s 

Bayesian Criterion (SBC) is a statistic based on the likelihood function and it is given by: 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝑛𝑝𝑎𝑟𝑙𝑜𝑔𝑁 = −2𝑙 (
𝜃

𝑦
) + 𝑛𝑝𝑎𝑟𝑙𝑜𝑔𝑁 

where, 𝑛𝑝𝑎𝑟 is the number of the parameters in the model and  𝑁  is the total number of the 

observations used to fit the model. 

If  BIC is used to compare two or more models for the same data, the model with the lowest BIC 

is more preferable. 

4.4.2 Akaike Information Criterion  

The Akaike Information Criterion (AIC) (Sakamoto, Ishiguro and Kitagawa, 1986) is computed 

with:  
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𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 2𝑛𝑝𝑎𝑟 = −2𝑙 (
𝜃

𝑦
) + 2𝑛𝑝𝑎𝑟 

where, 𝑛𝑝𝑎𝑟 is the number of the parameters in the model. 

Similarly, when using the AIC the model with the lowest AIC is more preferable. 

 

 

 

4.5 Model structure 

The purpose of this section is to create the structure of a suitable model and then to select the best 

mixed effect model based on the existing dataset, i.e. with the missing values in the measurement 

of the clinical CAL index, for each of the two teeth under study. In continuation, in the next 

chapter, we will do a multiple imputation in the dataset in order to predict the missing values and 

to obtain a full observed dataset. Then we will find out whether the model we detected within the 

scope of the present chapter is still the best choice, always based on the BIC criterion. 

Analysis will be done using the statistical package SPSS. We will have to find two suitable models, 

one for each tooth under study. The Maximum Likelihood (ML) estimation method will be 

followed. In both cases the models to be studied will have the same structure, so it is sufficient to 

describe initially the procedure for the 1 tooth. 

The variable CAL concerns the measurement of the clinical index of the two teeth over the time, 

and it will be the dependent variable of our model. We will use the explanatory variables sex and 

treatment as factors and the variables time, age, cigar and boneloss_beg as covariates and the 

interaction between the variables treatment and time. The fixed part of the model will essentially 

consist of: 

β0 + β1 sexi + β2 treatmenti + β3 timeij + β4 agei  + β5 cigari + β6 boneloss_begi +   

    + β7 timeij* treatmenti ,                                                   for   i = 1,…,25 patients  and   j = 1,…,6 measures. 
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To begin with, we will assign a random constant 𝑏𝑜𝑖 to each subject. The individual characteristic 

of each subject and that which distinguishes it from another lies in the different individual constant. 

The model will finally have the following form:  

                                                         𝐶𝐴𝐿𝑖𝑗 = 𝑓𝑖𝑥𝑒𝑑 + 𝑏0𝑖 + 𝜀𝑖𝑗                                                                                (4.3) 

where  𝑏0𝑖 = 𝛽0 + 𝑢𝑜𝑖 , 𝑏0𝑖~ 𝑁(0, 𝐷) 

 

The covariance matrix 𝐷 of the model (4.3) has variance components structure. The value of the 

BIC criterion for the 1st tooth is 649.433 while for the 2nd tooth it is 782.936. 

In continuation, we will use a model where we will assign a random constant and random slope 

for each subject over the time. Therefore, in the new model we will use, the random part  will 

include random intercept 𝑏0𝑖  and  random slope  𝑏1𝑖 in the variable of time (time) for each i-

subject, where 

𝑏0𝑖 = 𝛽0 + 𝑢𝑜𝑖 , 𝑏0𝑖~ 𝑁(0, 𝐷) 

and 

𝑏1𝑖 = 𝛽1 + 𝑢1𝑖 , 𝑏1𝑖~ 𝑁(0, 𝐷) 

where D is the covariance matrix. Therefore, the final form of the model we shall subsequently 

use is   

                                      𝐶𝐴𝐿𝑖𝑗 = 𝑓𝑖𝑥𝑒𝑑 + 𝑢0𝑖 + 𝑢1𝑖𝑡𝑖𝑚𝑒𝑖𝑗 + 𝜀𝑖𝑗                                                                            (4.4) 

 

this means that for the model (4.4) we assume that each patient has his own random intercept and 

his own slope over the time, with different variables for the two parameters.  
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In the first case we assume that in the model (4.4) the table D is unstructured, i.e. the model has a 

random slope and random constant which changes for each patient and the unstructured D matrix 

is given as  

𝐷 =  [
𝜎𝑢0

2 𝜎𝑢0𝑢1

𝜎𝑢0𝑢1
𝜎𝑢1

2 ]. 

In this case the BIC criterion has value 662.172 for the 1st  tooth while for the 2nd  tooth is 803.126. 

In continuation, with the (4.4) model, we select the covariance matrix D to have a diagonal 

structure. The diagonal matrix D is given as 

𝐷 =  [
𝜎𝑢0

2 0

0 𝜎𝑢1
2 ]. 

In this case the BIC criterion is 654.151 for the 1st  tooth and 787.812 for the 2nd  tooth. 

Finally, in the same model we try out the covariance matrix D with a scaled identity structure. That 

means that the random slope and the random constant have the same changes in every patient and 

the scaled identity matrix D is given as 

𝐷 =  [𝜎
2 0

0 𝜎2]. 

The BIC criterion for the 1st tooth is 689.403 while for the 2nd tooth is 846.666.  

In continuation, we create a new model which does not include a random part; therefore we have 

error modelling. This model is as follows  

                                                                           𝐶𝐴𝐿𝑖𝑗 = 𝑓𝑖𝑥𝑒𝑑 + 𝜀𝑖𝑗                                                                        (4.5) 

For model (3.5) and for the positive definite symmetric covariance matrix R we used the diagonal 

structure. The diagonal structure of the covariance matrix R is the simplest structure, in which the 

residuals within one subject are assumed to be uncorrelated and have equal variances. Hence, the 

diagonal structure of the covariance matrix R, is given as 
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𝑅 = 𝑣𝑎𝑟(𝜺𝒊𝒋) =  [

𝜎2 0
0 𝜎2 ⋯

0
0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

]  . 

In this case the BIC criterion is 707.493 for the 1st  tooth while for the 2nd is 829.670. 

Then we select the structure of the covariance matrix R as compound symmetry, this assumes that 

the residuals within one subject have a constant covariance 𝜎1 and a constant variance, 𝜎2 + 𝜎1. 

Hence, the compound symmetry structure of the covariance matrix R, is given as 

𝑅 = 𝑣𝑎𝑟(𝜺𝒊𝒋) =  [

𝜎2 + 𝜎1 𝜎1

𝜎1 𝜎2 + 𝜎1

⋯
𝜎1

𝜎1

⋮ ⋮ ⋱ ⋮
𝜎1 𝜎1 ⋯ 𝜎2 + 𝜎1

]. 

In this case the BIC criterion is 651.628 for the 1st  tooth and 835.550 for the 2nd  tooth. 

Finally, we select the structure of the covariance matrix R as AR (1). The covariance matrix R is 

given as 

𝑅 = 𝑣𝑎𝑟(𝜺𝒊𝒋) =  

[
 
 
 

𝜎2 𝜎𝜀1𝜀2

𝜎𝜀2𝜀1
𝜎2 ⋯

𝜎𝜀1𝜀6

𝜎1

⋮ ⋮ ⋱ ⋮
𝜎𝜀6𝜀1

𝜎𝜀6𝜀2 ⋯ 𝜎2 ]
 
 
 

. 

The BIC criterion has the value 689.139 for the 1st  tooth while for the 2nd tooth is 812.280. 

 

4.6  Selection of the final models  

Based on the above models examined in the section 4.5 we conclude that for both teeth the best 

model is (4.3) which has only random intercept as it presents the lowest BIC value in both cases. 

The results obtained from the models regarding the dependent variable Clinical attachment level 

(CAL), which concerns the measurements of the index, are presented in the following tables and 

then the parameter values are interpreted. 
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4.6.1 Explanation of parameters for the first tooth 

According to the following Τable 4.6.1 about the 1st tooth, the value 25.652 shows the expected 

value of the CAL variable for female patients who received the therapy SC/RP+FL+AB, have the 

same time measurement, the same age, the same number smoked cigarettes and the same rate of 

bone loss at the begin of the therapy. 

 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 23.652685 19.846789 22.929 2.466 .022 5.539911 63.259054 

[sex=0] -3.684874 1.658355 23.489 3.399 .002 2.285836 9.375984 

[sex=1] 0b 0 . . . . . 

[treatment=0] -8.522886 2.832954 30.379 -2.944 .006 -12.686823 -2.296522 

[treatment=1] -4.181818 3.017255 31.376 -1.428 .163 -10.665661 1.877277 

[treatment=2] -3.519086 3.736225 29.996 -2.174 .038 -12.153626 -.379070 

[treatment=3] 0b 0 . . . . . 

time -1.096786 .068223 93.375 -.672 .503 -.115036 .056860 

age .525708 .526988 23.879 -.407 .687 -.877665 .588483 

cigar .023587 .089584 23.050 1.832 .080 -.011562 .190461 

boneloss_beg .239858 1.499608 23.737 4.404 .000 2.708941 7.493208 

[treatment=0] * time .369875 .072036 92.898 -1.696 .093 -.169963 .013377 

[treatment=1] * time -.462842 .069258 96.561 -.302 .763 -.141679 .104207 

[treatment=2] * time -.425821 .043582 93.709 -1.134 .260 -.160506 .043813 

[treatment=3] * time 0b 0 . . . . . 

Table 4.6.1 : Coefficients of the final model for the 1st tooth. 

 

The average difference of the dependent CAL variable between the two sexes is -3.68, with the 

other explanatory variables held constant. The average difference of the CAL variable between 

patients received  the therapy SC/RP+FL+AB and the therapy SC/RP and the other explanatory 

variables held constant, is -8.52. Κeeping constant the explanatory variables relating to age, 
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gender, number of cigarettes and the bone loss in the begin of therapy, apply the following. The 

average difference between patients taking SC/RP+FL+AB and SC/RP+FL is -4.18 and the 

average difference between patients taking SC/RP+FL+AB and SC/RP+AB is -3.51. The rate of 

change of the CAL variable at the reference level, which is the patients taking SC/RP+FL+AΒ, is 

-1.096. The value 0.36 indicates the difference in the rate of change between patients taking 

SC/RP+FL+AΒ and SC/RP. Specifically, the rate of change for the patients taking SC/RP is -1.096 

+ 0.36 = -0.736, i.e. the CAL variable drops faster in patients taking SC/RP+FL+AΒ. The 

difference in the rate of change between patients taking SC/RP+FL+AΒ and SC/RP+FL is given 

by value -0.46. Therefore, the rate of change for patients taking SC/RP+FL is -1.556, which means 

that it drops at a faster rate in patients taking SC/RP+FL+AΒ. Also, value -0.42 indicates the 

difference in the rate of change between patients taking SC/RP+FL+AΒ and SC/RP+ΑΒ. The rate 

of change for patients taking SC/RP+ΑΒ is given by value -1.516 and in this case the CAL variable 

is shown to be dropping faster in patients forming the reference level who take SC/RP+FL+ΑΒ.  

 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Residual 6.488136 .970643 6.684 .000 4.839248 8.698854 

Intercept [subject = ID] Variance 11.870547 3.936956 3.015 .003 6.196742 22.739353 

Table 4.6.2 : Estimates of variances for the 1st tooth. 

 

The above Table 4.6.2 contains the estimates of variances. We note that the variance between 

subjects is greater than that within subjects.  This leads us to conclude that there is a moderate 

correlation between our observations. This can be calculated using the following formula:  

 

𝐶𝑜𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑗′) =
𝜎𝑛0

2

𝜎𝑛0
2+𝜎𝑛𝜀

2 =  
11.870547

11.870547+6.488136
 = 0.6465 ≈ 65% 

 

As we can therefore see, the correlation between the observations is 65%. It is an average 

correlation. 
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4.6.2 Explanation of parameters for the second tooth 

The Table 4.6.3 which follows gives us the values of the parameters from the model analysis (3.3) 

for the 2nd tooth under study. The value 29.813 indicates the expected value of the CAL variable 

for female patients taking SC/RP+FL+AB, have the same time measurement, the same age, the 

same number smoked cigarettes and the same rate of bone loss at the begin of the therapy.  The 

average difference of the dependent CAL variable between the two sexes is -0.249, with the other 

explanatory variables held constant.  

 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 23.652685 19.846789 23.432 1.674 .107 -7.887156 56.614589 

[sex=0] -3.684874 1.658355 23.673 -.111 .913 -4.256683 5.638469 

[sex=1] 0b 0 . . . . . 

[treatment=0] -8.522886 2.832954 27.666 -3.048 .005 -16.402346 -3.211830 

[treatment=1] -4.181818 3.017255 28.393 -2.685 .012 -17.118663 -2.308229 

[treatment=2] -3.519086 3.736225 27.756 -1.936 .063 -14.290509 .407300 

[treatment=3] 0b 0 . . . . . 

time -1.096786 .068223 110.480 -1.355 .178 -.121072 .022722 

age .525708 .526988 23.209 -.357 .724 -1.113981 .785999 

cigar .023587 .089584 23.643 -.446 .659 -.164204 .105841 

boneloss_beg .239858 1.499608 23.963 1.437 .164 -.939631 5.250953 

[treatment=0] * time .369875 .072036 109.338 -1.426 .157 -.137410 .022427 

[treatment=1] * time -.462842 .069258 108.339 -.490 .625 -.118710 .071660 

[treatment=2] * time -.465821 .043582 108.328 -.778 .438 -.124631 .054380 

[treatment=3] * time 0b 0 . . . . . 

Table 4.6.3 : Coefficients of the final model for the 2nd tooth. 

 

The average difference of the CAL variable between patients received the therapy SC/RP+FL+AB 

and the therapy SC/RP and the other explanatory variables held constant,  is -9.807. Κeeping 

constant the explanatory variables relating to age, gender, number of cigarettes and the bone loss 



38 
 

in the begin of therapy, apply the following. The average difference between patients taking 

SC/RP+FL+AB and SC/RP+FL is -9.713 and the average difference between patients taking 

SC/RP+FL+AB and SC/RP+AB is -6.941. The rate of change of the CAL variable in the reference 

level which consists of patients taking SC/RP+FL+AΒ, is -0.049. Value -0.057 indicates the 

difference in the rate of change between patients taking SC/RP+FL+AΒ and SC/RP. Specifically, 

the rate of change in patients taking SC/RP is -0.049 + (-0.057) = -0.106, which means that the 

CAL variable drops faster in patients taking SC/RP+FL+AΒ. The difference in the rate of change 

between patients taking  SC/RP+FL+AΒ  and  SC/RP+FL is given by value  -0.023. That means 

that the rate of change in patients taking SC/RP+FL is -0.072, which means that it drops faster in 

patients taking SC/RP+FL+AΒ. Also, value -0.035 indicates the difference in the rate of change 

between patients taking SC/RP+FL+AΒ and SC/RP+ΑΒ. The rate of change in patients taking 

SC/RP+ΑΒ is given by value -0.084. In this case we also see that the CAL variable drops faster in 

patients forming the reference level and taking SC/RP+FL+ΑΒ. 

Finally, Table 4.6.4 below, contains the estimates of covariances for the 2nd tooth. We note that 

the variance between subjects is greater than the variance within subjects in this case, too. 

 

 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Residual 7.804872 1.080459 7.224 .000 5.950187 10.237667 

Intercept [subject = ID] Variance 22.982563 7.211197 3.187 .001 12.425632 42.508758 

Table 4.6.4 : Estimates of covariances for the 2nd tooth. 

 

We calculate once more the correlation between observations using the formula:  

 

𝐶𝑜𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑗′) =
𝜎𝑛0

2

𝜎𝑛0
2+𝜎𝑛𝜀

2 =  
22.982563

22.982563+7.804872
 = 0.7464 ≈ 75% 

 

As we can therefore see, the correlation is 75%, which means that in this case we have strong 

correlation between observations. 
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Chapter 5 

5.1  Introduction 

In this chapter we will do the multiple imputation of our data in order to acquire a fully observed 

dataset. As mentioned in the previous chapter we must evaluate the level of the clinical attachment 

loss (CAL) of 25 patients. Two teeth in every patient’s mouth have been selected in which we have 

measured the CAL index at different points in time. As the patients were not all measured at the 

same sets of time points out design is incomplete. More specifically, in the measure of the CAL 

index for the first tooth we have 25.3% missing values and 12.6% missing values in the second 

tooth. As we can see in the following figure (Figure 5.1), missing values are presented in black, 

while observed values are presented in violet color. We can also observe that only two variables 

present missing values. These two variables concern the measurement of the CAL index in the 

first and in the second tooth of every patient. 

 

 
 

Figure 5.1 : Visual representation of missing values in the variables of the dataset. 

 



40 
 

 

5.2  An Approach to Multiple Imputation with the “mice” 

algorithm 

 
 

The multiple imputation of data will be done using the programming language R. Specifically, the 

“mice” package will be used. In the following we provide a brief description of the way the 

algorithm is generally used in data. 

The process can be broken down into four general steps: 

 Step 1: A simple imputation, such as imputing the mean, is performed for every missing 

value in the dataset. These mean imputations can be thought of as “place holders.” 

 Step 2: The “place holder” mean imputations for one variable (“var”) are set back to 

missing. 

 Step 3: The observed values from the variable “var” in Step 2 are regressed on the other 

variables in the imputation model, which may or may not consist of all of the variables in 

the dataset. In other words, “var” is the dependent variable in a regression model and all 

the other variables are independent variables in the regression model. These regression 

models operate under the same assumptions that one would make when performing (e.g.,) 

linear, logistic, or Poison regression models outside of the context of imputing missing 

data. 

 Step 4: The missing values for “var” are then replaced with predictions (imputations) from 

the regression model. When “var” is subsequently used as an independent variable in the 

regression models for other variables, both the observed and these imputed values will be 

used. 

 Step 5: Steps 2–4 are then repeated for each variable that has missing data. The cycling 

through each of the variables constitutes one iteration or “cycle.” At the end of one cycle 

all of the missing values have been replaced with predictions from regressions that reflect 

the relationships observed in the data.        
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 Step 6: Steps 2 through 4 are repeated for a number of cycles, with the imputations being 

updated at each cycle. The number of cycles to be performed can be specified by the 

researcher. At the end of these cycles the final imputations are retained, resulting in one 

imputed dataset. Generally, ten cycles are performed (Raghunathan, 2002) however, 

research is needed to identify the optimal number of cycles when imputing data under 

different conditions.  

5.3  Descriptive measures of the imputed variables  

In this section, since the multiple imputation in the dataset has been done, we shall present some 

descriptive measures. In the following Table 5.3.1 we present the mean value of the clinical CAL 

index for both teeth under study and for every patient and also the treatment method followed by 

each one. 

Patient’s id Treatment 

method 

mean (CAL) 

tooth 1 

mean (CAL)  

tooth 2 

1 SC/RP 19.666 17 

2 SC/RP+FL 14 15.833 

3 SC/RP+FL+AB 33.206 31.695 

4 SC/RP+FL+AB 25.795 17.833 

5 SC/RP+FL+AB 20.666 26.284 

6 SC/RP 19.333 17.333 

7 SC/RP+AB 25.937 29.246 

8 SC/RP 19.333 17 

9 SC/RP 19.333 18.166 

10 SC/RP+FL 25.805 26.496 

11 SC/RP+FL 16.738 18 

12 SC/RP+AB 22.166 20.833 

13 SC/RP 14 15.833 

14 SC/RP+FL+AB 31.679 30.172 

15 SC/RP 19.833 17.666 

16 SC/RP 14 15.833 

17 SC/RP+AB 19.333 18.166 

18 SC/RP+FL+AB 26.057 22 

19 SC/RP+AB 27.088 17.666 

20 SC/RP 14 15.833 

21 SC/RP 20 18.166 

22 SC/RP 20 18.166 

23 SC/RP+FL+AB 31.116 30.561 

24 SC/RP+FL 28.051 18.833 

25 SC/RP+AB 14 17.166 

Table 5.3.1 : Mean (CAL) of every patient for both teeth. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/#R24
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In Figure 5.3.1  below we can easily discern the profile of the measurements for every patient over 

the time for both teeth per treatment group. We can observe certain differences between treatment 

groups. In the group which followed the treatment SC/RP it is evident that the clinical CAL index 

has dropped over time. On the other hand, in patients who followed the other treatments we see 

that approximately in the middle of treatment some increases appeared in the CAL index  in both 

teeth, which then decreased towards the end of treatment.  

 

Figure 5.3.1 : Profile of the measurements of imputed values of the variable CAL over time, for the 25 

patients per treatment group (a) for the first tooth and (b) for the second tooth. 

 

Differences between treatment groups can be easily represented in a chart with the error bars in 

following  Figure 5.3.2. We can observe that, regarding the measurement of the CAL index in 

both the 1st and the 2nd tooth, the only difference observed between treatment groups regards the 

patients taking the treatments SC/RP and SC/RP+FL+AB. These differences are in fact present in 

every measurement, as is shown in the figure, as these two treatment groups do not present any 
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common point in their corresponding confidence intervals. In contrast, we observe that for the 

treatment groups SC/RP+AB, SC/RP+FL the respective confidence intervals are very close and 

almost identical. 

 

 
Figure 5.3.2 : (a) Error bars for the confidence intervals of the clinical index CAL for the first tooth. 

                       (b) Error bars for the confidence intervals of the clinical index CAL for the second tooth. 

 

  

 

Subsequently, in the following Table 5.3.2 and Table 5.3.3 are given the mean and the standard 

deviation of the clinical index CAL, for every treatment group, at each measurement separately 

for the two teeth respectively. It is obvious that for all treatment groups, the mean value of the 

index is reduced over time. Also we observe the difference between the patients receiving the 

treatments SC/RP and SC/RP+FL+AB  as we have seen and graphics from the above error bars. 

In all measurements, the mean value of the index CAL is quite less for the treatment method SC/RP 

compared with the SC/RP+FL+AB. Further observation shows that the other two treatment groups 

have slight variations between their mean values for all the measurements, for both teeth. 
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  Baseline 12 months 24 months 36 months 48 months 60 months 

SC/RP mean 24.50 17.30 17.20 16.10 16.30 16.30 

sd 3.80 2.98 2.89 2.23 2.40 2.40 

SC/RP+AB mean 27.60 23.60 25.0 18.45 17.86 17.71 

sd 5.31 8.79 10.48 4.10 3.09 3.06 

SC/RP+FL mean 26.50 22.59 25.03 15.56 18.81 18.38 

sd 6.13 9.45 12.15 2.89 5.80 5.26 

SC/RP+FL+AB mean 31.51 30.92 33.03 23.67 24.28 25.09 

sd 3.34 6.93 7.26 3.87 4.12 5.21 

Table 5.3.2 : Mean and standard deviation of clinical indicator CAL for the 1st tooth with the imputed 

values. 

 

 
 

  Baseline 12 months 24 months 36 months 48 months 60 months 

SC/RP mean 23.90 16.30 15.70 16.00 15.10 15.60 

sd 1.44 0.94 0.48 0.81 0.99 1.77 

SC/RP+AB mean 27.40 19.40 20.40 21.20 17.66 17.63 

sd 5.12 4.92 8.26 9.47 2.35 1.55 

SC/RP+FL mean 26.50 18.75 21.25 16.75 17.94 17.58 

sd 6.40 6.18 6.91 1.45 3.17 2.46 

SC/RP+FL+AB mean 32.33 30.16 29.25 22.29 21.43 23.06 

sd 6.37 8.90 11.11 3.77 3.94 4.62 

Table 5.3.3 : Mean and standard deviation of clinical indicator CAL for the  2nd tooth with the imputed 

values. 

 

 

 

 

5.4  Model choice for the imputed dataset 

In this section we will fit the models we created in the previous chapter in the new imputed dataset, 

with the purpose to find out the most suitable model, always following the BIC criterion. In this 

case, too, analysis will be done using the statistical package SPSS and assessment will be done 

following the method ML.  



45 
 

First we will apply the model (4.3) which has only random intercept for every patient, with the 

covariance matrix D presenting a variance components structure. The value that BIC criterion 

gives for the first tooth is 926.665, while for the second tooth it is 957.558. 

Then we will apply the model (4.4) which includes random intercept and random slope over the 

time, where the covariance matrix D is unstructured. The value given by BIC for the first tooth is 

904.907, while for the second tooth it is 934.916. Continuing with the same model, but changing 

the structure of the D matrix to diagonal, the BIC criterion gives the value 902.774 for the first 

tooth and 932.038 for the second tooth. And finally, applying the same model, with table D 

presenting a scaled identity structure, the result we obtain from the BIC criterion has the value 

927.253 for the 1st tooth and 958.662 for the 2nd tooth. 

Finally, we try out in the imputed dataset the model (4.5) which does not include random part. 

Initially we suppose that the covariance matrix has diagonal structure. The BIC criterion for the 

first tooth has value 917.145 and for the second tooth the value is 930.609. Then we suppose that 

the covariance table has structure compound symmetry. The value of the BIC criterion for the first 

tooth is 897.764 and for the second tooth 927.028. Finally, in the same model (4.5), we select the 

structure of the covariance matrix R as AR(1). In this case, the BIC is 905.152 for the first tooth 

and 924.569 for the second. 

After applying the total of the models we created in the Chapter 3 in the imputed data, we conclude 

that the suitable model for the 1st tooth is model (4.5) with a compound symmetry covariance 

matrix. The most suitable model for the second tooth is again (4.5), but with a structure of AR(1).  

 

5.4.1 Explanation of parameters of the final model for the first tooth 

 

The appropriate model for the imputed data relating to the first tooth as mentioned above is the 

model (4.5) with compound symmetry covariance matrix. Subsequently, follows the Table 5.4.1 

that contains the coefficients of the final model of the first tooth. 
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Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 18.762427 13.261213 25.177 1.415 .169 -8.539811 46.064665 

[sex=0] 2.862232 1.629180 25.000 1.757 .091 -.493128 6.217591 

[sex=1] 0b 0 . . . . . 

[treatment=0] -8.899911 2.570222 34.401 -3.463 .001 -14.120990 -3.678831 

[treatment=1] -4.345528 2.943655 36.730 -1.476 .148 -10.311418 1.620363 

[treatment=2] -3.584266 2.918427 35.187 -1.228 .228 -9.507860 2.339328 

[treatment=3] 0b 0 . . . . . 

time -1.582496 .314962 125.000 -5.024 .000 -2.205846 -.959147 

age .130352 .336466 25.000 .387 .702 -.562613 .823317 

cigar .016604 .049803 25.000 .333 .742 -.085967 .119175 

boneloss_beg .145928 .151545 25.000 .963 .345 -.166185 .458040 

[treatment=0] * time .293925 .398399 125.000 .738 .462 -.494557 1.082407 

[treatment=1] * time -.354667 .497999 125.000 -.712 .478 -1.340270 .630935 

[treatment=2] * time -.385298 .467165 125.000 -.825 .411 -1.309875 .539279 

[treatment=3] * time 0b 0 . . . . . 

Table 5.4.1 : Coefficients of the final model for the 1st tooth, of the imputed dataset. 

 

According to the above Τable 5.4.1 about the 1st tooth, the value 18.762 shows the expected value 

of the CAL variable for female patients who received the therapy SC/RP+FL+AB, have the same 

time measurement, the same age, the same number smoked cigarettes and the same rate of bone 

loss at the begin of the therapy. The average difference of the dependent CAL variable between 

the two sexes is 2.86, with the other explanatory variables held constant. The average difference 

of the CAL variable between patients received  the therapy SC/RP+FL+AB and the therapy SC/RP 

and the other explanatory variables held constant, is -8.89. Κeeping constant the explanatory 

variables relating to age, gender, number of cigarettes and the bone loss in the begin of therapy, 

apply the following. The average difference between patients taking SC/RP+FL+AB and 

SC/RP+FL is -4.34 and the average difference between patients taking SC/RP+FL+AB and 

SC/RP+AB is -3.58. The rate of change of the CAL variable at the reference level, which is the 

patients taking SC/RP+FL+AΒ, is -1.582. The value  0.29 indicates the difference in the rate of 

change between patients taking SC/RP+FL+AΒ and SC/RP. Specifically, the rate of change  for 
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the patients taking SC/RP is -0.582 + 0.29 = -0.209, i.e. the CAL variable drops faster in patients 

taking SC/RP+FL+AΒ. The difference in the rate of change between patients taking 

SC/RP+FL+AΒ and SC/RP+FL is given by value -0.35. Therefore, the rate of change for patients 

taking SC/RP+FL is -0.932, which means that it drops at a faster rate in patients taking 

SC/RP+FL+AΒ. Also, value -0.38 indicates the difference in the rate of change between patients 

taking SC/RP+FL+AΒ and SC/RP+ΑΒ. The rate of change for patients taking SC/RP+ΑΒ is given 

by value -0.962 and in this case the CAL variable is shown to be dropping faster in patients forming 

the reference level who take SC/RP+FL+ΑΒ. 

 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Repeated Measures 
CS diagonal offset 10.416140 1.317549 7.906 .000 8.129005 13.346772 

CS covariance 13.063507 4.191695 3.117 .002 4.847935 21.279078 

Table 5.4.2 : Estimates of variances for the 1st tooth, for the imputed dataset. 

 

 

The above Table 5.4.2 contains the estimates of variances. We note that the variance between 

subjects is greater than that within subjects.  This leads us to conclude that there is a moderate 

correlation between our observations. This can be calculated using the following formula:  

 

𝐶𝑜𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑗′) =
𝜎𝑛0

2

𝜎𝑛0
2+𝜎𝑛𝜀

2 =  
13.063507

13.063507+10.416140
= 0.55645 ≈ 56%  

 

As we can therefore see, the correlation between the observations is 56%, so we conclude that it 

is a moderate correlation. 
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5.4.2 Explanation of parameters of the final model for the second 

tooth 

 

The appropriate model for the imputed data relating to the second tooth is again the model (5.5) 

but here the covariance matrix has AR(1) structure. Below, the Table 5.4.3 contains the 

coefficients of the final model for the second tooth. 

 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 17.237793 10.253964 40.094 1.681 .101 -3.484724 37.960310 

[sex=0] -.584958 1.251269 39.461 -.467 .643 -3.114944 1.945028 

[sex=1] 0b 0 . . . . . 

[treatment=0] -8.515510 2.479742 62.689 -3.434 .001 -13.471359 -3.559662 

[treatment=1] -7.602748 2.937799 66.256 -2.588 .012 -13.467830 -1.737665 

[treatment=2] -4.264278 2.849756 63.959 -1.496 .139 -9.957392 1.428835 

[treatment=3] 0b 0 . . . . . 

time -1.959765 .532684 109.891 -3.679 .000 -3.015431 -.904100 

age .135645 .258418 39.461 .525 .603 -.386860 .658150 

cigar -.041764 .038250 39.461 -1.092 .282 -.119104 .035576 

boneloss_beg .234495 .116392 39.461 2.015 .051 -.000842 .469833 

[treatment=0] * time .459549 .673797 109.891 .682 .497 -.875774 1.794871 

[treatment=1] * time .245960 .842247 109.891 .292 .771 -1.423194 1.915113 

[treatment=2] * time .206644 .790097 109.891 .262 .794 -1.359161 1.772449 

[treatment=3] * time 0b 0 . . . . . 

Table 5.4.3 : Coefficients of the final model for the 2nd tooth, of the imputed dataset. 
 

 

The value 17.237 indicates the expected value of the CAL variable for female patients taking 

SC/RP+FL+AB, have the same time measurement, the same age, the same number smoked 

cigarettes and the same rate of bone loss at the begin of the therapy.  The average difference of the 

dependent CAL variable between the two sexes is  -0.58, with the other explanatory variables held 

constant. The average difference of the CAL variable between patients received the therapy 

SC/RP+FL+AB and the therapy SC/RP and the other explanatory variables held constant, is -8.51. 

Κeeping constant the explanatory variables relating to age, gender, number of cigarettes and the 

bone loss in the begin of therapy, apply the following. The average difference between patients 
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taking SC/RP+FL+AB and SC/RP+FL is -7.60 and the average difference between patients taking 

SC/RP+FL+AB and SC/RP+AB is -4.26. The rate of change of the CAL variable in the reference 

level which consists of patients taking SC/RP+FL+AΒ, is -1.959. Value 0.45 indicates the 

difference in the rate of change between patients taking SC/RP+FL+AΒ and SC/RP. Specifically, 

the rate of change in patients taking SC/RP is -1.959 + 0.45 = -1.509, which means that the CAL 

variable drops faster in patients taking SC/RP+FL+AΒ. The difference in the rate of change 

between patients taking  SC/RP+FL+AΒ  and  SC/RP+FL is given by value  0.24. That means that 

the rate of change in patients taking SC/RP+FL is -0.719, which means that it drops faster in 

patients taking SC/RP+FL+AΒ. Also, value 0.20 indicates the difference in the rate of change 

between patients taking SC/RP+FL+AΒ and SC/RP+ΑΒ. The rate of change in patients taking 

SC/RP+ΑΒ is given by value -1.759. In this case we also see that the CAL variable drops faster in 

patients forming the reference level and taking SC/RP+FL+ΑΒ. 

Finally, Table 5.4.4 contains the estimates of covariances for the 2nd tooth. We note that the 

variance between subjects is greater than the variance within subjects in this case, too.  

 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Repeated Measures 
AR1 diagonal 22.735926 3.184513 7.140 .000 17.277818 29.918266 

AR1 rho .514151 .068058 7.555 .000 .368797 .634959 

Table 5.4.4 : Estimates of variances for the 2nd tooth, for the imputed dataset. 
 

In this case, because the covariance matrix has AR(1) structure, the correlation between the 

observations differ in a time measurement, is given by the formula: 

 

𝐶𝑜𝑟(𝑌𝑖𝑗, 𝑌𝑖,𝑗+1) = 𝜌 = 0.514151 ≈ 51%  

 

while the correlation between observations differ in two time measurements, is given by the 

formula: 

 

𝐶𝑜𝑟(𝑌𝑖𝑗, 𝑌𝑖,𝑗+2) = 𝜌2 = (0.514151)2 = 0.26435 ≈ 26%. 
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Finally, we observe that as the observations draw away annals, their correlation is reduced. 

 

 

5.5  An application of Rubin’s rules 
 

This section presents an implementation of Rubin's rules, mentioned in the Chapter 2. We choose 

𝑚 = 10 imputations. This ensures 10 complete imputed datasets. We will fit the appropriate 

chosen mixed models of the section 5.4, for each of the two examined teeth, for the 10 complete 

imputed datasets, in order to obtain the estimates of the models. The estimates Q(t) are presented 

in the following tables for each tooth individually. 

  

 𝑸(𝟏) 𝑸(𝟐) 𝑸(𝟑) 𝑸(𝟒) 𝑸(𝟓) 𝑸(𝟔) 𝑸(𝟕) 𝑸(𝟖) 𝑸(𝟗) 𝑸(𝟏𝟎) 
Intercept 19.29 17.02 22.49 18.11 19.19 17.24 16.96 16.84 19.8 18.76 

Sex=0 2.73 2.44 2.66 2.81 2.66 2.82 2.63 2.88 2.5 2.86 

Treatment=0 -9.03 -8.7 -8.85 -8.86 -9.09 -8.63 -8.65 -8.38 -8.84 -8.89 

Treatment=1 -4.47 -4.3 -3.75 -4.29 -4.21 -3.9 -4.42 -3.64 -3.84 -4.34 

Treatment=2 -3.68 -3.51 -3.66 -3.63 -3.9 -3.08 -3.54 -3.15 -3.81 -3.58 

Time -1.76 -1.57 -1.7 -1.8 -1.73 -1.51 -1.59 -1.56 -1.88 -1.58 

Age 0.12 0.17 0.06 0.14 0.1 0.15 0.17 0.13 0.17 0.13 

Cigar 0.24 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.01 

Boneloss_beg 0.13 0.14 0.1 0.15 0.15 0.14 0.14 0.17 0.07 0.14 

Treatment=0*time 0.47 0.28 0.41 0.51 0.44 0.22 0.3 0.27 0.59 0.29 

Treatment=1*time -0.12 -0.19 -0.26 -0.2 -0.27 -0.13 -0.23 -0.56 0.17 -0.35 

Treatment=2*time -0.32 0.47 -0.3 -0.21 -0.23 -0.49 -0.31 -0.42 -0.08 -0.38 

CS diagonal offset 11.48 10.88 10.4 11.37 10.24 10.38 11.52 10.43 10.9 10.41 

CS covariance 12.14 12.43 11.62 12.17 12.69 13.61 12.59 12.81 12.08 13.06 

Table 5.5.1 : Estimates Q(t) for the 1st tooth. 
 

 

 𝑸(𝟏) 𝑸(𝟐) 𝑸(𝟑) 𝑸(𝟒) 𝑸(𝟓) 𝑸(𝟔) 𝑸(𝟕) 𝑸(𝟖) 𝑸(𝟗) 𝑸(𝟏𝟎) 
Intercept 19.32 16.8 19.15 18.83 17.66 16.12 17.62 16.59 17.91 17.23 

Sex=0 -0.68 -0.73 -0.64 -0.7 -0.62 -0.64 -0.7 -0.56 -0.82 -0.58 

Treatment=0 -8.91 -8.7 -8.89 -8.99 -8.58 -8.44 -8.81 -8.5 -8.89 -8.51 

Treatment=1 -7.65 -7.67 -7.76 -7.87 -7.55 -7.71 -7.81 -7.66 -7.91 -7.6 

Treatment=2 -4.76 -4.61 -4.78 -4.88 -4.39 -4.27 -4.51 -4.23 -4.8 -0.26 

Time -2.14 -2.2 -2.08 -2.15 -2.03 -1.88 -2.2 -1.99 -2.2 -1.95 

Age 0.1 0.17 0.1 0.11 0.13 0.16 0.14 0.14 0.15 0.13 

Cigar -0.03 -0.03 -0.03 -0.03 -0.04 -0.03 -0.04 -0.04 -0.03 -0.04 

Boneloss_beg 0.2 0.21 0.21 0.21 0.23 0.23 0.22 0.24 0.2 0.23 

Treatment=0*time 0.67 0.7 0.57 0.66 0.52 0.37 0.7 0.48 0.7 0.45 

Treatment=1*time 0.48 0.54 0.38 0.4 0.28 0.39 0.41 0.23 0.72 0.24 

Treatment=2*time 0.37 0.49 0.35 0.45 0.29 0.09 0.43 0.17 0.42 0.2 

AR(1) diagonal 22.38 22.35 22.08 22.11 22.51 23.01 22.26 22.36 22.27 22.73 

AR(1) rho 0.45 0.51 0.52 0.48 0.51 0.52 0.51 0.54 0.51 0.51 

Table 5.5.2 : Estimates Q(t) for the 2nd tooth. 
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As seen from the above tables, the model’s estimates are sufficiently close for both teeth. Then, 

according to the rules of Rubin, we compute 𝑚 = 10  different estimates 𝑄(𝑡)̂  with 𝑡 = 1,… ,14  

of the quantity Q and the estimated variance (t)  of  Q(t)  with 𝑡 = 1,… ,14 .  The results are shown 

in the following tables and we observe that the values of the estimates are also quite close. 

 

 𝑸(𝟏)̂  𝑸(𝟐)̂  𝑸(𝟑)̂  𝑸(𝟒)̂  𝑸(𝟓)̂  𝑸(𝟔)̂  𝑸(𝟕)̂  𝑸(𝟖)̂  𝑸(𝟗)̂  𝑸(𝟏𝟎)̂ 𝑸(𝟏𝟏)̂ 𝑸(𝟏𝟐)̂ 𝑸(𝟏𝟑)̂ 𝑸(𝟏𝟒)̂ 

1st 

tooth 

18.57 2.69 -8.79 -4.15 -3.55 -1.67 0.13 0.04 0.13 0.38 -0.21 -0.23 10.80 12.52 

2nd 

tooth 

17.72 -0.67 -8.72 -7.72 -4.15 -2.10 0.13 -0.03 -0.22 0.58 0.41 0.33 22.41 0.51 

Table 5.5.3 : Estimates Q(t)̂  for both teeth. 

 

 

 𝑼(𝟏) 𝑼(𝟐) 𝑼(𝟑) 𝑼(𝟒) 𝑼(𝟓) 𝑼(𝟔) 𝑼(𝟕) 𝑼(𝟖) 𝑼(𝟗) 𝑼(𝟏𝟎) 𝑼(𝟏𝟏) 𝑼(𝟏𝟐) 𝑼(𝟏𝟑) 𝑼(𝟏𝟒) 

1st 

tooth 

3.08 0.02 0.04 0.09 0.06 0.001 0.001 0.001 0.001 0.001 0.03 0.07 0.25 0.31 

2nd 

tooth 

1.20 0.005 0.04 0.01 1.91 0.01 0.006 0.00 0.001 0.01 0.02 0.02 0.08 0.006 

Table 5.5.4 : Estimated variances U(t) for both teeth. 

 

 

And finally, we calculate the average 𝑄 ̅ of the estimates 𝑄(𝑡)̂ , the within imputation variance �̅�, 

the between imputation variance 𝛣, the total variance 𝛵 and the quantities γ and 𝑟. Both γ and r 

are used as diagnostic statistics to examine the effect of missing data in estimates of �̅�. The 

calculations of these estimates were made using R and the code is available in the appendix. From 

the following Table 5.5.5, we conclude that for both teeth the imputation made to our data does 

not affect so much the result. 

 

 

 1st tooth 2nd tooth 

�̅� 1.907571 1.352000 

�̅� 0.2876794 0.2378605 

B 76.05882 105.4584 

T 69.43206 96.10918 

r 290.8262 487.6989 

γ 0.9970627 0.998246 

Table 5.5.5 : Results of  Rubin’s Rules. 
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Chapter 6 

 

6.1 Conclusions  

Out under this Chapter we will discuss the results of the models between the 4th  and 5th Chapter 

as well as the similarities and differences. We recall that in the 4th  Chapter we use the data with 

missing values while the 5th Chapter we use the imputed dataset.  

The main difference between the initial and the imputed dataset is that we reached in different 

models. In every case the appropriate model for each dataset is chosen according to the Bayesian 

Information Criterion (BIC). Preferable model considered this with the smallest BIC value. 

In particular in the 4th  Chapter, when we use the dataset with the missing values, the most 

appropriate model was the model (4.3) which has only random intercept, for both teeth. In both 

cases the model (4.3) had the lowest BIC value. The correlation between observations for the first 

tooth was 65%. This indicating a moderate correlation. While, for the second tooth was 75%, 

which shows a strong correlation between observations. 

On the other hand, in the 5th  Chapter, which dealt with the imputed dataset, the most appropriate 

model for the first tooth was the model (4.5) with a compound symmetry covariance matrix and 

for the second tooth the appropriate model was again the model (4.5) but with a structure of AR(1). 

The correlation between observations pertaining to the first tooth, in this case, is 56% and this 

indicates a moderate correlation between observations. Concerning the second tooth we noticed 

that the correlation between observations is also weak and even decreases as the observations fend 

off annals. This leads us to the conclusion that if we had not apply the multiple imputation in the 

dataset we will lose a quite important information of our data.  

Finally, it is worth mentioning that as regards the inference, for both models of the 4th  and 5th 

Chapter, the interpretation of the parameters between the models, at the same tooth, concerned no 

significant differences. 

 

 

 

 



54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 

 

Appendix 

 

 

 

##Descriptives for the variables “age”, “boneloss_beg”, “boneloss_fin” and “cigar” 

hist(age,main = paste("Age of patients"),xlab="years",col="coral2") 

hist(Boneloss_start,main = paste("The percent of bone loss at the beggining of the 

therapy"),xlab="years",col="coral2") 

hist(Boneloss_fin,main = paste("The percent of bone loss in the end of the 

therapy"),xlab="years",col="coral2") 

hist(cigar,main = paste("Number of cigarettes per day"),xlab="cigarettes",col="coral2") 

 

##3-D pie charts for the variables “treatment”, “sex” 

library(plotrix) 

slices <- c(73,38,33,42) 

lbls <- c("SC/PR", "SC/RP+AB", "SC/RP+FL","SC/RP+FL+AB") 

pie3D(slices, labels=lbls, explode=0.1, main="Method of treatment", col = 

c("blue","red","yellow","green") )   

 

slices <- c(11,14) 

lbls <- c("male", "female") 

pie3D(slices,labels=lbls,explode=0.1,main="Patients Sex",col=c("wheat","thristle")) 

 

##boxplots for the variables “boneloss_beg” and “boneloss_fin” 

par(mfrow=c(1,2)) 
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boxplot(Boneloss_start~sex,data=olokliro,col=c("wheat","thistle"), main="bone loss in the 

beginning of the therapy per sex")  

boxplot(Boneloss_fin~sex,data=olokliro,col=c("wheat","thistle"), main="bone loss in the end of 

the therapy per sex")  

par(mfrow=c(1,1)) 

##for Figure 5.1  page 39 

library(VIM) 

aggr_plot <- aggr(imptim, col=c('palevioletred2','black'), numbers=TRUE, sortVars=TRUE, 

labels=names(data), cex.axis=.7, gap=3, ylab=c("Histogram of missing data","Pattern")) 

 

##Rubin Rules 

Qhsm3<-read.delim("C://Users//ni12__000//Desktop//SM3HAT.txt",header=T) 

Qhsm4<-read.delim("C://Users//ni12__000//Desktop//SM4HAT.txt",header=T) 

 

Qhat3<-apply(Qhsm3,1,mean) 

Qhat3 

Qhat4<-apply(Qhsm4,1,mean) 

Qhat4 

 

U3<-apply(Qhsm3,1,var) 

U3 

U4<-apply(Qhsm4,1,var) 

U4 

 

Qbar3<-mean(Qhat3) 

Qbar3 

Qbar4<-mean(Qhat4) 

Qbar4 

 

Ubar3<-mean(U3) 

Ubar3 
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Ubar4<-mean(U4) 

Ubar4 

 

m<-10 

B3<-sum( ((Qhat3-Qbar3)^2) )/ (m-1) 

B3 

B4<-sum( ((Qhat4-Qbar4)^2) )/ (m-1) 

B4 

 

###alliws ta B3~B4 

var(Qhat3);var(Qhat4) 

 

m<-10 

T3<-Ubar3+B3*m/(m+1) 

T3 

T4<-Ubar4+B4*m/(m+1) 

T4 

 

m<-10 

df3<-(m+1)*(1+(Ubar3/B3)*1/(m+1)) 

df4<-(m+1)*(1+(Ubar4/B4)*1/(m+1)) 

df3;df4 

 

r3<-(1+1/m)*B3/Ubar3 

r4<-(1+1/m)*B4/Ubar4 

r3;r4 

 

g3<-(r3+2/(df3+3))/(r3+1) 

g4<-(r4+2/(df4+3))/(r4+1) 

g3;g4 
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ci3<-c(Qbar3-qnorm(1-0.05/2)*sqrt(T3),Qbar3+qnorm(1-0.05/2)*sqrt(T3)) 

ci4<-c(Qbar4-qnorm(1-0.05/2)*sqrt(T4),Qbar4+qnorm(1-0.05/2)*sqrt(T4)) 

ci3 ; ci4 
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