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Abstract

Human behavior has been getting a lot of recognition in the economics world lately; and
assumptions about economic agents are taking a different turn. The desire to accumulate
encourages mankind to put weight on the future; however, impatience, desire for instant
gratification, and bounded rationality push him to assign a higher weight to the present.
Observed behavior of economic agents have shown that the exponential discount function
adopted in standard economic models suffers from two shortcomings: it implies time con-
sistent preferences and assumes a constant discount factor. Since discounting behavior is
important in determining individual inter-temporal choice, deviating from the standard geo-
metric discounting has many implications in growth theory and welfare analysis. This paper
discusses a new approach to discounting, the hyperbolic discount function, its applications
and implications, and reveals the importance of adopting new methods of optimization that
are more consistent with human behavior.
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Chapter 1

Introduction

”There is no man perhaps, to whom a good enjoyed today,would not seem of very different
importance, from one exactly similar to be enjoyed twelve years hence,even though the ar-
rival of both were equally certain...Everywhere we see that to spend is easy, to spare,hard.”
(Rae[1834] 1905, p.54)

Since the inception of time, mankind has been put on crossroads in every aspect of his life.

At every crossroad, a decision is to be made, and every decision involves weighing trade-offs,

most of which are trade-offs between the present and future. In todays’ world, our choices

have become steered by many temptations, that we find ourselves unable to stick to diets,

follow an exercise program, or save enough for tomorrow. We make decisions today ignoring

the fact that ”the only constant in life is change”, and that tomorrow’s self will asses things

in a way inconsistent with that of yesterday’s.

Inter-temporal choices have a significant impact on multiple aspects of our lives, from

health, wealth, to overall happiness. Adam Smith pointed out that these individual decisions

are determinants of the economic prosperity of nations. John Rae studied the psychological

and sociological determinants of these inter-temporal choices. According to Rae, ”the effec-

tive desire of accumulation” is responsible for the different levels of savings and investment

among societies. Rae described inter-temporal choices as ”a joint product of conflicting psy-

chological motives” which, depending on the situation, either support or curb the effective
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desire for accumulation (Frederick, Loewenstein and O’Donoghue 2002). Both the bequest

motive and the tendency for self restraint support the desire for accumulation. However,

uncertainty of human existence is a limiting factor. Rae observed that those living in safe

places where climates are suitable for human life tend to be more cautious than those liv-

ing in unhealthy and unsafe occupations. Another factor limiting the effective desire for

accumulation is the inclination to avoid delayed gratification and the thrill from immediate

consumption.

Jevons (1888) believed individuals favor immediate utility, and delay of gratification will

only happen if it produces an ”anticipal” utility that compensates the forgone utility from

current consumption. Senior(1836) introduced the abstinence perspective which explained

variations in inter-temporal choices on the basis of differences in psychological discomfort

related to self denial:“To abstain from the enjoyment which is in our power, or to seek

distant rather than immediate results, are among the most painful exertions of the human

will”(Senior 1836:60). Eugen von Böhm-Bawerk(1889), added to the psychological factors

mentioned above. He recognized that individuals have limited ability and vision to asses

future well being and have the tendency to underestimate future wants. Nowadays, this

limitation is refered to as ”bounded rationality”.

Such time preferences have been discussed from many angles in an attempt to understand

what steers these inclinations. Fisher(1930) argued that such tendency to favor the present

reflects a lack of self control; he stressed the importance of ”fashion” in determining time

preference and believed it to be “of vast importance ... in its influence both on the rate of

interest and on the distribution of wealth itself.” This phenomena is what drives some to

save to become wealthy and the rich ”to live in an ostentatious manner. (Fisher 1930:87)
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Hence, in the early beginnings of the 20th century, “time preference” was viewed as a

combination of various intertemporal motives. The discount utility model fuses these mo-

tives into the discount rate; as we will see in the next chapters, time discounting has crucial

implications on intertemporal behavior and its effects. This paper is organized as follows; in

the Introduction, we discussed several psychological motives behind inter-temporal choices.

Chapter 2 describes exponential discounting and its limitations, introducing hyperbolic dis-

counting along with some examples. Chapter 3 focuses on three important applications to

hyperbolic discounting: 1) applications on growth; 2) on consumption and commitment;

3)and on stochastic games. The final chapter concludes.
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Chapter 2

Beyond Exponential Discounting

It is common consensus that humans are impatient, a trait reflected through intertem-

poral behavior; small current rewards are favored over later but higher ones, and immediate

costs are always avoided. Those tendencies are referred to as ”present-biased preferences”.

When two future moments are assessed, present-biased preferences assign a relatively higher

weight to the earlier moment the closer it is in time. Economists have captured this impa-

tience by assuming that individuals discount their utiliy exponentially. Evidence has shown

that those preferences are prone to change with passage of time and what seemed optimal

in the present is discarded when the future arrives.(O’Donoghue, Rabin 1999)

The process of assigning weights to future and present choices is embodied by the dis-

count factor and the rate of time preference. Frederick, Loewenstein and O’Donoghue (2002)

distinguish between the two conflicting tendencies. Time preference refers to the individ-

ual’s tendency to favor current to future utility(impatience). While time discounting reflects

caring less about any future utility or any factors that might influence this utility.

A first application of discounting was the integration of inter-temporal welfare in Ram-
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sey’s (1928) optimal growth model. Ramsey, from an ethical standpoint, argued against

discounting of the future welfare (Andrle, Bruha 2003). He prefered to use a zero rate of

time preference. In a normative context, he argues that ”we do not discount later enjoy-

ments in comparison with earlier ones, a practice which is ethically indefensible.” Barro(1999)

In 1937, Samuelson’s discounted utility model combined all psychological aspects to dis-

counting into a single parameter, the discount rate. This discount rate was modeled as a

constant, exogenous parameter that did not capture the psychological motives behind inter-

temporal utility maximization. However, it became entrenched as the dominant theoretical

framework for modeling inter-temporal choice, which was due mainly to its simplicity and

familiar resemblance to the compound interest formula, and not as a result of empirical re-

search proving its validity.

The standard discounted utility model (in discrete time) is of the following form:

U(ct) =
T−t∑
k=0

D(k)u(ct+k)

where U(.) is a time separable function and an individual’s lifetime utility discounted to time

t, u(ct+k) for k ∈ 0, 1, 2, ..., the instantaneous utility or the felicity function, and D(k), the

discount function of the following exponential form:

D(k) =

(
1

1 + ρ

)k

such that ρ is the constant discount rate.
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Nowadays, the exponential discount function is used as an arbitrary approach to the

intertemporal valuation mainly because of its analytical convenience and the fact that it ex-

presses time consistent preferences. It is adopted by a number of mainstream economists and

is widely used in macroeconomic textbooks. Time consistent intertemporal preferences im-

ply that, for any two consumption profiles (c1, c2, ..., cT ) and (c′1, c
′
2, ..., c

′
T ), U(c1, c2, ..., cT ) ≥

U(c′1, c
′
2, ..., c

′
T ) if and only if Uj(cj...cT ) ≥ Uj(c

′
j..., c

′
T ) for j = 2...T , for c1 ≥ c′1.

To demonstrate time consistency, we consider the following simple maximization problem

with a log utility function: 

max
∑T−t

k=0 δ
klogct+k

subject to

at+1 = Rat − ct+1

ct ≥ 0

at ≥ 0

a0 given

where:

1. at is a state variable (such as capital)

2. R is the growth rate of the state variable

3. δt is the discount function

4. a0 is the endowment at time 0

First order conditions imply:

ct+1 = Rδ.ct
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An optimum consumption plan has to satisfy the following condition:
∑n

t=1
ct
Rt = a0

Results from budget constraint and first order conditions:


at = Rδat−1 = (Rδ)ta0

ct = R(1− δ)at−1 ∀t ≥ 1

In each period, the individual will consume R(1 − δ) of the endowment. He will stick to

his decision taken at time t = 0 in any future time t ≥ 1. If we repeat the maximization

problem for t′ ≥ 0 the results are consistent.

No alternatives to the exponential discount function have been discussed explicitly; how-

ever, this approach is potentially problematic as evident in several researches in psychology

and behavioral economics (Strulik 2014). Irving Fisher’s economic theory of intertemporal

choice states that in perfect capital markets, firms and individuals borrow or lend until their

marginal rate of substitution between today and tomorrow’s consumption is equal to the in-

terest rate. Economists however have been skeptical about whether consumers act as theory

predicts. Böhm-Bawerk(1889) and Strotz(1956) have both speculated that people act as if

their discount rates vary with the length of time to be waited.

Research in behavioral economics suggests that time preference rates are declining over

time, possibly in a hyperbolic manner, and ”for a given delay, discount rates vary across dif-

ferent types of intertemporal choices: gains are discounted more than losses, small amounts

more than large amounts, and explicit sequences of multiple outcomes are discounted differ-

ently than outcomes considered singly”(Frederick, Loewenstein and O’Donoghue 2002).

Strotz(1956) followed by many economists, proposed alternatives to exponential discount

functions. Not one hyperbolic functional form was adopted; several functions in the family

of generalized hyperbolas were proposed. Such functions impose declining discount rates.

George Ainslie (1975) suggested the form D(t) = 1/t.
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Richard Herrnstein (1981) and James Mazur (1987) suggested D(t) = 1/(1 + αt).

George Loewenstein and Drazen Prelec (1992) suggested D(t) = 1/(1 + αt)β/α.

The hyperbolic discount function is consistent with human behavior; however, it lacks the

mathematical elegance of exponential discounting. An alternative way of discounting is the

Quasi-hyperbolic discount function(QHD) analyzed mostly by Laibson (1997) in the theory

of consumption functions and Phelps and Pollack (1968) in the intergenerational altruism

problem. QHD features qualitative properties of the hyperbolic function (i.e. a declining

discount rate in time). This form captures the most basic idea of present-biased preferences

with a simple two-parameter model (also referred to as the ”β, δ” form) that modifies expo-

nential discounting.

QHD is given by the following functional form :

D(k) =


1 if k = 0

βδk if k ≥ 1

where 0 ≤ β ≤ 1 and 0 ≤ δ ≤ 1 In this model, δ represents long-run, time consistent

discounting. β on the other hand, represents a ”bias for the present”.

Strotz(1956) discussed how the individual’s future behavior will be inconsistent with the

optimal plan of the present. If a person were free to reconsider his plan in the future, he

will deviate from the path previously perceived optimal, and this behavior will be repeated

in every consecutive period. This inconsistency stems from many roots; delayed rewards

seem abstract and therefore the individual may not be able to evaluate their full impact in

advance. To demonstrate time inconsistency, we consider the following optimization problem:
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maxc1 + β
∑T−t

k=1 δ
klogct+k

subject to

at+1 = Rat − ct

ct ≥ 0

at ≥ 0

a1 given

where:

1. at is a state variable (such as capital)

2. R is the growth rate of the state variable

3. δt is the discount function

4. a1 is the beginning endowment

5. β represents present bias

Results:


c1 = R(1−δ)

β
a0

ct = R(1− δ)at ∀t ≥ 1

The individual in this scenario consumes a fraction R(1−δ)
β

in the current period and plans

to consume a fraction of R(1− δ) in all future periods. To check if his decision is consistent

we resolve this problem at time t = 1.

We obtain c1 = R(1−δ)
β

a0 while initially at time t = 0 he has chosen c1 = R(1− δ)a0. That is

when time t = 1 arrives, he changes the previous plan and decides to consume more. From
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the point of view of time 0, this change represents a deviation from the optimal consumption

plan, an act that reduces the total expected utility computed at time 0.

When consumers present preference reversals, and cannot pre-commit their future selves

to a plan of action, literature defines two type of agents: naive and sophisticated. Naive

consumers erroneously believe that their future selves will abide by the present consumption

plan, and need to revise their plans at any instant in time. While sophisticated agents, aware

of their self control problem, know that their future selves are less patient than currently

perceived (Cabo, Martin-Herran, Martinez-Garcia 2015).

Are people sophisticated or naive? Committing to a retirement plan, getting a yearly sub-

scription at a gym, or joining Christmas clubs demonstrates a degree of sophistication. Only

sophisticated individuals are aware that tomorrow’s self is unpredictable. Despite the fact

that sophistication exists, it appears that humans underestimate ”the degree to which their

future behavior will not match their current preferences over future behavior.” (O’Donoghue,

Rabin 1999).

People often complain about their lack of will power and self control, and this awareness

demonstrates what some refer to as ”partial naivete”, or as Thaler(2015) puts it:

”I share a view...that the truth is somewhere between the two extremes: partial niavete.

Most of us realize that we have self-control problems, but we underestimate their severity.

We are naive about our level of sophistication”

This realization has led many individuals to sign up for commitment plans that ensure

they don’t deviate from their initially set plans easily. Strotz(1956) proposed two strategies

an individual, aware of his self control problem can follow, either commit to a plan of action
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or adopt a strategy of consistent planning ignoring plans he knows his future self won’t fol-

low. In the next chapter, among the applications discussed is an example on a commitment

strategy proposed by Laibson, which demonstrates how individuals can curb their need for

immediate gratification by investing a portion of their wealth in illiquid assets.
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Chapter 3

Applications to Hyperbolic

Discounting

Hyperbolic discounting is observed in everyday life, from simple choices like quitting smoking

tomorrow versus now, to complex ones like saving for retirement against enjoying consump-

tion today. Applications to hyperbolic discounting have changed the way things were done.

Previously, people were assumed rational decision makers who could foresee the future and

whose later selves consistently followed the plans previously set. This myopic behavior led

many economists to apply hyperbolic discounting to many areas that were handled differ-

ently; those of which assumed rational behavior and no preference reversal. The following

are some of many applications to hyperbolic discounting. We discuss two applications on

growth using non constant discounting. The third application is a simple version of Laibson’s

prominent Golden Eggs model which tackles the issue of commitment strategies to curb in-

consistent behavior. The fourth and last topic is Ronald Peeters’ introduction of hyperbolic

discounting to Markov games and testing for optimal payoffs.
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3.1 Neoclassical Growth Under Hyperbolic Discounting

There has been a recent growing interest in the effect on economic growth of moving from

exponential to non-constant discounting. Many of the basic frameworks in macroeconomics

including the neoclassical growth model assume that households have a constant rate of time

preference. Barro(1999) is the first to deal with the question for a neoclassical growth model.

He modified the neoclassical growth model to include a variable rate of time preference by

integrating Laibson style preferences with Ramsey’s growth model.

The model:

U(τ) =

∫ ∞
τ

u[c(t)].e−[ρ(t−τ)+φ(t−τ)]dt, (3.1.1)

where U(.) is the individual’s lifetime utility discounted to time τ , u(ct) is the instantaneous

utility, τ is the current date, and time discounting for period t depends only on the distance

in time t − τ , from the current. φ(t − τ) ≥ 0 is the function featuring time preference and

e−ρ(t−τ) is the standard exponential function with ρ > 0 the constant rate of time preference.

Assumptions:

1. u′(c) > 0 and u”(c) < 0

2. φ(0) = 0

3. φ(.) is continuous and twice differentiable

4. φ′(v) ≥ 0, φ”(0) ≤ 0, and φ′(v) approaches zero as v goes to infinity (Laibson 1997a)

5. No commitment ability; the household can’t commit to lowering c(τ) at time τ and in-

creasing c(t) at some future dates.
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The full solution for log utility, u(c) = log(c):

Consumer chooses c(t) at time τ as the constant flow c(τ) over the short discrete interval

[τ, τ + ε] where ε will eventually tend to zero and thereby results will be generated in con-

tinuous time.

The full integral can be broken down into two chunks1:

U(τ) =

∫ τ+ε

τ

u[c(t)].e−[ρ(t−τ)+φ(t−τ)]dt+

∫ ∞
τ+ε

u[c(t)].e−[ρ(t−τ)+φ(t−τ)]dt (3.1.2)

≈ ε.log[c(τ)] +

∫ ∞
τ+ε

u[c(t)].e−[ρ(t−τ)+φ(t−τ)]dt (3.1.3)

The neoclassical production function : y = f(k), where y is output and k is capital per

worker with f ′(k) > 0 and f ′(k) < 0. Also population is assumed constant and technological

progress nil. The economy is closed and the consumer picks how much to consume and save

at time τ ; this choice influences consumption at a later date t by affecting the assets at that

later date, call it τ + ε. Choosing optimal c(τ) requires addressing two problems:

1. how consumption at time τ affects assets at time τ + ε and

2. how assets affect consumption for later date t where t > τ + ε.

The household budget constraint solves the first problem:

dk

dt
= r(t).k(t) + w(t)− c(t), (3.1.4)

1the approximation comes from taking e−[ρ(t−τ)+φ(t−τ)] as equal to unity over the interval [τ, τ + ε]
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For a given starting stock of assets k(τ), the stock of assets at time τ+ε is determined by:2

k(τ + ε) ≈ k(τ).[1 + ε.r(τ)] + ε.w(τ)− ε.c(τ) (3.1.5)

this implies:

d[k(τ + ε)/d[c(τ)]] ≈ −ε (3.1.6)

More consumption today implies less assets later.

To solve the second problem that relates k(τ+ε) and c(t) for t > τ+ε, i.e. the propensity

to consume, it is known that in the standard Ramsey model with log utility, c(t) is a constant

fraction ρ of wealth (present value of wages plus k(t)). ρ is constant simply because under

log utility, income and substitution effects related to future interest rates cancel each other.

Barro assumes they still cancel eachother under log utility and variable time preference with

no commitment; however, the new constant of proportionality denoted by λ need not be

equal to ρ.

We have the following equation for consumption:

c(t) = λ.[k(t) + present value of wages] (3.1.7)

where t > τ + ε and some constant λ > 0.

2approximation comes from ignoring compounding over the interval (τ, τ + ε) and treating the variables
r(t) and w(t) as constants
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It is assumed that consumpton grows at the rate r(t)−λ for t > τ + ε. This implies that

consumption can be determined from the following :

log[c(t)] = log[c(τ + ε)] +

∫ t

τ+ε

r(v)dv − λ.(t− τ − ε) (3.1.8)

Upon substituting, the utility can be written as :

U(τ) ≈ ε.log[c(τ)] + log[c(τ + ε)].

∫ ∞
τ+ε

e−[ρ.(t−τ)+φ(t−τ)]dt (3.1.9)

+terms that are independent of c(t) path

Defining the integral

Ω ≡
∫ ∞

0

e−[ρv+φ(v)]dv, (3.1.10)

which a constant expression that corresponds to the integral in equation (3.1.9) as ε goes to

zero.

The marginal effect of c(τ) on U(τ) :

d[U(τ)]

d[c(τ)]
≈ ε

c(τ)
+

Ω

c(τ + ε)
.
d[c(τ + ε)]

d[k(τ + ε)]︸ ︷︷ ︸
λ

.
d[k(τ + ε)]

dc(τ)︸ ︷︷ ︸
−ε

(3.1.11)

setting d[U(τ)]/d[c(τ)] to zero implies:

c(τ) = [c(τ + ε)]/Ωλ (3.1.12)
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If the solution is correct, then c(τ + ε) approaches c(τ) as ε tends to zero. Otherwise, c(t)

exhibits jumps at all points in time and the expected answer will be wrong. This happens

for a unique value of λ:

λ =
1

Ω
=

1∫∞
0
e−[ρv+φ(v)]dv

(3.1.13)

Inspection revealed that λ = ρ in the standard Ramsey model in which φ(v) = 0 for all v.

Rewriting the above equation as

λ =

∫∞
0
e−[ρv+φ(v)].[ρ+ φ′(v)]dv∫∞

0
e−[ρv+φ(v)]dv

(3.1.14)

is helpful since it shows that λ is a time invariant weighted average of the instantaneous

rates of time preference, ρ+ φ′(v). Since φ′(v) ≥ 0, φ”(0) ≤ 0, and φ′(v) approaches zero as

v goes to infinity, it follows that:

ρ ≤ λ ≤ ρ+ φ′(0) (3.1.15)

λ is intermediate between long-run rate of time preference ρ and the short run instantaneous

rate ρ+ φ′(0).

The effective rate of time preference λ is constant, this implies that the model with log util-

ity and no commitment is observationally equivalent to the conventional neoclassical growth

model.
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Concluding remarks:

Allowing for variable rates of time preference doesn’t change the basic properties of the neo-

classical growth model. Results show that consumption is dependent on an effective rate of

time preference, which is a weighted average of future instantaneous rates. The modified

model is observationally equivalent to the standard one. This variable rate of time prefer-

ence has implications on savings and growth as well as welfare outcomes. Barro discusses the

possibility of commitment strategies and their implications on the propensity to save. He

observed that economies with a greater capacity to commit future consumption have lower

effective rates of time preference on the long run and therefore higher steady state levels of

saving and capital accumulation. However, the short term effects can be counter effective;

saving and capital accumulation go in opposite direction from commitment technology im-

provements.

3.2 Endogeneous Growth Under Hyperbolic Discounting

Strulik(2014) investigates time-inconsistent savings plans in the context of endogenous

growth. He has analyzed AK endogenous growth models using a controlled experiment un-

der the assumption of an identical overall impatience. The controlled experiment concluded

same growth rate under both discounting methods( strong equivalence) Strulik provides an

analytical solution to the standard model of endogenous growth when consumers are present

biased and naive.

In his paper, he shows that the rate of economic growth in the standard endogenous

growth model is invariant to the non constant discounting given a restriction: the constant

stream should provide the same present value under both hyperbolic and exponential dis-

counting. Controlling for the level of impatience helps focus on the declining time preference

and time inconsistency. Result shows that time inconsistent saving plans do not affect eco-
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nomic growth.

Deriving the results

Households.

The economy is populated by identical (present biased) households who supply one unit of

labor, and maximize their lifetime (log) utility given a budget constraint:

U(τ) =

∫ ∞
τ

log[c(t)].D(t, t0)dt, (3.2.1)

Subject to the budget constraint

k̇(t) = rk(t) + w(t)− c(t) (3.2.2)

where c(t) and k(t) denote consumption and capital and w(t) and r(t) denote wage and

interest rate, and the hyperbolic discount function:

D(t, t0) =
1

[1 + ρ0β(t− t0)]1/β
, (3.2.3)

where β controls the present bias and ρ0 controls the instantaneous discount rate of the next

instant in time.

Assumptions:

β < 1 for integral to be bounded. Strulik prefers to use this form of hyperbolic discount

function because it contains the exponential discounting as a limiting case.

23



The associated Hamiltonian:

H(t, t0) = log[c(t)].D(t, t0) + λ(t)[rk(t) + w(t)− c(t)] (3.2.4)

First order conditions:

D(t, t0)

c(t)
− λ(t) = 0 (3.2.5)

λ(t)r = −λ̇(t) (3.2.6)

The transversality condition: limt→∞λ(t)k(t) = 0

which implies:

c(t) =
D(t, t0)

λ(t0)
er(t−t0) (3.2.7)

substituting for c(t) in the budget constraint and solving the differential equation for capital

stock at time T gives:

k(T ) = k(t0)er(T−t0) +

∫ T

t0

w(τ)er(T−τ)dτ − 1

λ(t0)

∫ T

t0

D(τ, t0)er(T−t0)dτ (3.2.8)

Result3:

c(t) =
k(t0) +

∫∞
t0
w(τ)e−r(τ−t0)dτ∫∞

t0
D(τ, t0)dτ

D(t, t0)er(τ−t0) =⇒ c(t) =
k(t) +

∫∞
t
w(τ)e−r(τ−t)dτ∫∞

t
D(τ, t)dτ

(3.2.9)

3Divide equation (3.2.8) by er(T−t0), take limit as T → ∞ and insert transversality condition, solve
obtained equation for λ0 and then insert into equation (3.2.7)
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The naive consumer believes that his future selves will stick to the initial consumption plan

but in fact he only sticks to the plan only at the instant it was made. As time proceeds this

plan is constantly revised. Setting t0 = t provides equation (3.2.9).

Firms.

Following Romer(1986), firm i uses capital input k(i, t) and labor input l(i, t) to produce

output y(i, t) = Ã(t)k(i, t)αl(i, t)1−α. Under perfect competition, the factor prices are given

by r(t) = αÃ(t)k(i, t)α−1l(i, t)1−α and w(t) = (1− α)Ã(t)k(i, t)αl(i, t)−α

As in Romer(1986) there is a learning by doing such that the technology available to any firm

is a positive function y(t) = Ak(t), wages w(t) = (1− α)Ak(t) and interest rate r(t) = αA.

Economic Growth

Inserting wages and the discount factor into the above consumption equation:

c(t) = ρ0(1− β)

[
k(t) + (1− α)A

∫ ∞
t

k(τ)e−r(τ − t)dτ
]

(3.2.10)

Suppose capital grows at a constant rate gk < r, then consumption simplifies to a linear

function of the capital stock:

c(t) = a.k(t), a ≡ ρ0(1− β)

[
1 +

(1− α)A

αA− gk

]
(3.2.11)

Now the equation of motion can be written as :

k̇/k = gk = A− α (3.2.12)
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solving for a = (1− α)A+ ρ0(1− β) , we obtain

c(t) = [(1− α)A+ ρ0(1− β)]k(t) (3.2.13)

gk = αA− ρ0(1− β) (3.2.14)

The solution confirms the initial assumption of the existence of a constant growth rate.

The rate of economic growth is declining in the initial time preference rate ρ0 and increasing

in the speed of declining impatience β. The fact that growth is constant and that con-

sumption is a fraction of capital makes the model observationally equivalent to the standard

endogenous growth model with exponential discounting. This confirms for the endogenous

growth case the result found by Barro in the context of neoclassical growth and quasi hy-

perbolic discounting.

Comparing growth under hyperbolic and exponential discounting

The condition that provided the above equivalence actually equates overall impatience

under the two discounting methods, a restriction that helps pinpoint effects of inconsistent

behavior. To demonstrate that inconsistency of behavior and hyperbolic discounting are not

harmful for growth, the following comparison is held.

Under exponential discounting, we have that D(t, t0) = e−ρ̄t, and first order conditions lead

to the Ramsey rule ċ/c = r − ρ̄. In the context of endogenous growth it simplifies to

ċ/c = αA − ρ̄. If we suppose consumption grows at a constant rate of capital, c = bk, it
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implies gk = A− b, then we obtain the solution b = (1− α)A+ ρ̄, that is

c(t) = [(1− α)A+ ρ̄]k(t), (3.2.15)

gk = αA− ρ̄ (3.2.16)

Equations (3.2.14) and (3.2.16) confirm structural similarity between the two discounting

methods. Strulik proposes that long growth is higher (lower) under exponential discounting

for ρ̄ < (1 − β)ρ0 (for ρ̄ > (1 − β)ρ0 ) To check for the possibility of equal growth rates

under both discounting mehtod, Strulik imposes the condition that both methods generate

the same present value of the infinite flow of utilities, that is,

∫ ∞
0

e−ρ̄tdt ≡
∫ ∞

0

(1 + ρ0βt)
−1/βdt (3.2.17)

This restriction holds for ρ̄ = ρ0(1−β); under this equality, and along with equations (3.2.14)

and (3.2.16) it concludes that equivalent present values lead to the same rate of economic

growth for both hyperbolic and exponential discounting.

3.3 David Laibson and the Golden Eggs model

David Laibson has dedicated a significant amount of work to inter-temporal behavior,

mainly dealing with consumption decisions and self control problems. Based on several psy-

chological experiments, he considers the possibility that people may be particularly impatient

when faced with intertemporal decisions. He shows that under this assumption, consump-

tion would be more sensitive to movements in income than the permanent income hypothesis

predicts. This can be seen in many empirical observations. For example, some individuals
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borrow excessively using credit cards with high interest rates; others have difficulty saving

even when there are increases in income.

One of his prominent contributions is the ”golden eggs” model, where commitment de-

vices are introduced to control for the time-inconsistent consumer behavior. Laibson sees

precommitment as a technique followed by those who suffer from lack of self control. Those

individuals find it impossible to stick to diets, commit to exercise, follow savings plans, and

meet deadlines. Precommitment instruments such as investing in illiquid assets have the

property of the goose that laid the golden eggs. These assets promise to generate benefits

on the long run; however, those benefits are almost impossible to realize immediately and

early attempts to do so will result in capital loss.Laibson(1997)

A simple version of the model:

The individual invests in two kinds of assets: a liquid asset x, and an illiquid asset z. Any

sale of the illiquid asset z has to be made one period before receiving the actual earnings.

This model assumes the same rate of return for both assets x and z; the consumer begins

with exogeneous endowments x0, z0 ≥ 0 and the consumption/savings decision is in discrete

time t ∈ 1, 2, ..., T .

Each time t is divided into four subperiods:

Subperiod 1: Production takes place; both assets produce a gross return of Rt = 1+rt (from

both xt−1 and zt−1)

Subperiod 2: Consumer receives labor income yt, and has access to the liquid savings Rt.xt−1

Subperiod 3: Consumer chooses consumption such that ct ≤ yt +Rt.xt−1

Subperiod 4: Consumer chooses new asset allocation xt and zt subject to yt + Rt(zt−1 +

xt−1)− ct = zt + xt where xt, zt ≥ 0
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Consumers have a time-additive utility function Ut and the discount function is the same as

Phelps’ and Pollak’s(1967) in their model of intergenerational altruism:

Ut = Et

{
u(ct) + β

T−τ∑
τ=1

δτu(ct+τ )

}

This individual has time inconsistent preferences if β ≤ 1; β = 1 results in the exponential

discount rate case where the individual has consistent preferences. We consider the following

maximization problem that captures the idea of the golden eggs model with log utility. The

individual is aware of her inconsistent preferences and can only consume asset x, that is why

she turns to a commitment strategy where she divides her current endowment in liquid and

illiquid assets.

She is faced with the following optimization problem:

max c1 + β
∞∑
t=1

δtlogct

subject to 

xt+1 + zt+1 = R(xt + zt)− ct

0 ≤ ct ≤ Rxt

xt, zt ≥ 0

x0, z0 given
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First order conditions imply:


c2 = Rβδc1

ct = Rδct−1, for t ≥ 3

Using the relation
∑∞

t=1
ct
Rt = y0, where yt ≡ xt + zt is the income, the solution is:


c1 = R(1−δ)

β
y0

c1 = Rβδc0

ct = Rδct−1∀ t ≥ 2

which imply:


c1 = R(1−δ)

β
y0

ct = R(1− δ)yt, ∀ t ≥ 1

Strategy

This individual consumes a fraction of the endowment equal to R(1−δ)
β

in the current period

and plans to consume a fraction R(1− δ) in all future periods.

At time t the agent plans to consume ct+1 = R(1− δ)yt+1 but when the next period arrives,

such that t = t+ 1, she will want to consume ct+1 = R(1−δ)
β

yt+1.

In order to avoid this deviation, she will commit to the following investment strategy:

At time t she invests (1− δ)yt+1 in the liquid asset x and δyt+ 1 in the illiquid asset z. So

when period t+ 1 arrives, she can only consume a fraction Ryt+1 = R(1− δ)xt+1

At time t = t̄ he plans to consume c̄t̄+1 but he knows he will switch to ĉt̄+1 > c̄t̄+1
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At time t = t̄ she invests a quantity c̄t̄+1/R of her endowment in the liquid asset xt̄+1 and

the remaining in the illiquid asset zt̄+1.

Therefore, in period t = t̄ + 1, she wants to consume ĉt̄+1 > c̄t̄+1, but she cannot because

xt+1 = c̄t̄+1/R and ct̄+1 ≤ Rxt̄+1. The best she can do is to consume all the possible, that is

c̄t̄+1 = ct̄+1.

There’s more to the golden eggs model than the simple example discussed above. The

model helps clear some ambiguities about consumer behavior; it predicts that consumption

tracks income and explains why consumers have different propensities to consume out of la-

bor income. The model also explains why Ricardian equivalence should not hold in economies

of infinitely lived representative agents. Finally, the model suggests that financial innovation

provides an overflow of liquidity which has negative implications on welfare (Laibson 1997).

3.4 Hyperbolic Discounting in Stochastic Games

Ronald Peeters (2004) introduces a hyperbolic reward system to stochastic games

where optimal strategies in a markov decision problem differ according to degree of sophis-

tication. Result shows the existence of a delayed stationary equilibrium corresponding to

one type of individual and for general hyperbolic discounted stochastic games. Discounted

stochastic games have been introduced by Shapley (1953) who considered two-person zero-

sum finite stochastic games. Shapley proved that such games have a value and that both

players possess optimal stationary strategies with respect to the discounted payoff criterion.

Peeters introduces an example of a stochastic game showing that an individual can suffer

from the problem of self-control. Peeters distinguishes between 3 types of individuals, reso-

lute, naive , and sophisticated. A resolute individual pre-commits to play a certain strategy

31



and therefore never suffers, but pre-commitments lead to irrational behavior in later stages.

A naive individual revises his strategy at any instant in time and therefore displays dynamic

inconsistent behavior: in future stages he will not play the action as he planned to play at

forehand. An individual who is sophisticated will realize eventual future self-control prob-

lems and therefore decides to play a dynamic consistent strategy.

Results show that resolute individuals have a delayed-stationary strategy that is opti-

mal; that naive individuals have a delayed-stationary strategy that is optimal, but will after

all play stationary; and that sophisticated individuals have an optimal dynamic consistent

strategy that is stationary.

One player: Markov decision problem:

A stochastic game with only one player is a Markov decision problem and can be denoted

by:

Γ =
〈
Ω, {Sw}w∈Ω , u, δ, β

〉
in which N denotes the finite set of players, Ω the finite set of states, and {Sw} is the

finite set of actions available for the player in state ω ∈ Ω. The instantaneous payoff is given

by u(ω, sω), and δ and β are both discount factors

A Markov decision problem is displayed in figure 1 where in the first state the individual

can decide between the options T (top) and B (bottom). If T is chosen, the player receives

an immediate reward of 1 and stays in the first state. If B is chosen, the player receives an

immediate reward of 0 but moves the second state in the next period. Upon arriving to the

second state, no choice is to be made; the player is simply rewarded by 3 and returns to the
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Figure 1: Markov decision problem.

first state in the subsequent period. Without any loss of generality it is assumed that the

first state is the initial state.

The stream of expected payoffs is evaluated by:

U(ω, σ) := U0(ω, σ) + β
∞∑
k=1

δkUk(ωk, σ)

Below Peeters considers six possible strategies(believed to be sufficient for the analysis),

with the corresponding payoffs. The table below shows the expected payoffs for two values

of β, where β = 1 corresponds to the exponential discounting case.
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Results according to table:

TBB · · · and TBTB · · are optimal strategies.

Any strategy in which action T is played in the initial state and where B is played when the

first state is the active state is optimal.

It can also be shown that when the Markov decision problem is slightly perturbed such that

the transition dynamics is no longer determinate, TBB · · · will be the unique optimal strat-

egy.

In each moment in time the strategy TBB · · · is optimal and therefore the player plans to

play TBB · · · every moment in time.

Optimal strategies corresponding to types of individuals

The resolute individual. The resolute individual would commit to playing the optimal

strategy TBB · · · and will play action B in all periods except the initial one.

This implies that ”for all hyperbolic discounted Markov decision problems with a resolute

individual an optimal strategy exists in which the individual plays stationary from the first

period on.”4

The naive individual. This individual realizes in the second stage that playing T is opti-

mal at any instance in time given that B will be played in all future periods. He will end up

playing TTT.....Peeters concludes that ”for all hyperbolic discounted Markov decision prob-

lems with a naive individual an optimal strategy such that the individual plays stationary

exists.”5

The sophisticated individual. A sophisticated individuals is aware of self control prob-

lems and realizes that he would deviate in any instance and therefore would play T stationary.

Knowing that T will be played in all future events, the optimal action in the present stage

4,5,6,Proof in Peeters, R. 2004.”Stochastic Games with Hyperbolic Discounting”. mimeo, Maastricht
University.
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is to play B again.

Another way to find optimal strategies in infinite horizon models is to extend the finite

horizon model. Supposedly the game ends after stage K is reached, we go through backward

induction(using Figure 2):

(1) In stage K, if the first state is the active state, playing T is the optimal action.

(2) In stage K − 1, regardless of action chosen in stage K, playing B is the optimal action.

(3) Knowing that in the final two stages action B and subsequently action T will be chosen,

it is optimal to play T in stage K − 2, since 1 + 3
4
.3
4
(0 + 3

4
.3) = 145

64
> 135

64
= 0 + 3

4
.3
4
(3 + 3

4
.1).

(4)Knowing that in the final three stages TBT will be played, action B is optimal in stage

K − 3.

Figure 2: Otpimal Strategy by Backward Induction

The optimal dynamic consistent strategy in the finite horizon model is easily shown to

be BTB...BT if K is odd(and the number of periods even) and TBT...BT if K is even.

The reasoning above shows that both TBTB · · and BTBT · · are optimal dynamic consistent

strategies for the infinite horizon game. When the individual plans to play BTB · · from

tomorrow on, it is optimal to play action T today as 109
28
> 837

224
= 0 + 3

4
.3
4
(3 + 3

4
.34

7
) and when

individual intends to play TBT... from tomorrow on, it is optimal to play action B today as

27
7
> 209

56
= 1 + 3

4
.3
4
.34

7
.

Although both optimal strategies are not stationary, they are Markovian since they depend

on time and not on history.
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A stationary optimal dynamic consistent strategy using mixed actions

Suppose the individual plays T stationary with probability p, this implies the present value

of the stream of payoffs from the second stage and further on is:

v(1, p) = p+
3

4
.p(v(1, p) + (1− p).v(2, p)) and v(2, p) = 3 +

3

4
.v(1, p)

This implies

v(1, p) =
36− 20p

7− 3p
and v(1, p) =

48− 24p

7− 3p

The present values of payoffs when individual chosses T versus B from the first stage on:

UT = 1 +
3

4
.
3

4
.v(1, p) =

109− 57p

28− 12p
and UB = 0 +

3

4
.
3

4
.v(2, p) =

108− 54p

28− 12p

The individual here is indifferent between playing either action in the first stage, and willing

to play a mixed game; if we equate the two utilities, we obtain p = 1
3
. This implies that

the stationary strategy (1
3
, 2

3
) is an optimal dynamic consistent strategy. Therefore ”for

hyperbolic discounted Markov decision problems with a sophisticated individual there exists

a stationary optimal dynamic consistent strategy.”7

7Proof in Peeters, R. 2004.”Stochastic Games with Hyperbolic Discounting”. mimeo, Maastricht Univer-
sity.
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Chapter 4

Conclusion

This paper discusses an alternative approach to exponential discounting, stressing how

this new approach, though yielding results contradicting with those under the standard geo-

metric discounting, reflects human behavior more realistically. Behavioral observations and

empirical analyses have shown that humans are myopic and ”predictably irrational”. They

make decisions today whose future selves don’t abide by, leading to dynamic inconsistencies.

Hyperbolic discounting is introduced as the closest representation of a discount function

which embodies human behavior. Some of many applications to hyperbolic discounting (and

its simpler forms) are discussed here, elaborating the effect on growth and other areas of

interest such as consumption/savings decisions. Results have shown the effect on economic

growth of non constant discounting need to be taken into consideration. Also, commitment

strategies were shown to play a much needed role to control for future inconsistent behavior.

Stochastic games under hyperbolic discounting have the potential to predict cooperative be-

havior in teams, something highly significant in today’s team driven world.

The economic agents are our families, friends, kids, etc., whose decisions combined, are
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the center of gravity of the economic system. Whether it’s my son favoring a certain brand of

cereal or my husband adopting ”vaping” for his nicotine addiction, or my father committing

to a retirement plan, these choices combined are factors affecting economic growth as well

as society’s welfare. Many areas including finance, marketing and others clearly depend on

economic agents making decisions whose effects are ripples that create a propagating wave.

An understanding of the importance of behavior will definitely create predictive scenarios

more realistic than ever and with more satisfying results.

The need to incorporate psychology into economics is becoming apparent by the day, and

economists are working hard to create better models of economic behavior. While in the

process of putting together my thesis, the prominent economist Richard Thaler was awarded

the Nobel prize in economics for his contribution to the world of behavioral economics. In his

own words:“In order to do good economics, you have to keep in mind that people are human.”

Thaler dedicated years analysing human behavior and trying to figure out why individuals

make decisions that contradict with textbook theories. His aim is to usefully employ those

”behavioral” insights in order to improve social welfare and policy effectiveness.

More experiments need to be executed to better understand inter temporal decisions;

this might lead to adjustments in many areas of economics. Hopefully this change will

bring about strategies that better the welfare of societies now and in the future. This blend

of psychology and economics will surely put forward alternative methods to cookie cutter

solutions and propose policies that serve the growth of societies better. This endeavor might

change the way things were implemented and revolutionize the world of economics.
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