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                        Abstract 

 
The main purpose of this dissertation is to study the most important optimization 

models to mitigate financial risks. Especially, we want to construct optimal portfolios 

using the concepts of first-order stochastic dominance, second-order stochastic 

dominance and third-order stochastic dominance as well as the      approach, 

including three different investment tactics. The concept of Stochastic Dominance is 

theoretically appealing: if a return distribution   first-order, second-order, third-

order stochastically dominates another distribution  , then all investors with some 

specific preferences will prefer A to B. 

Portfolio optimization is a cornerstone of modern finance theory, as it is very 

attractive in the field of decision making under uncertainty. Financial crises, 

economic imbalances, algorithmic trading and highly volatile movements of asset 

prices in the recent times have raised high alarms on the management of financial 

risks. Inclusion of risk measures towards balancing optimal portfolios has become 

very crucial and equally critical. Formally, financial portfolio optimization adheres to 

a formal approach in making investment decisions, (1) for selection of investment 

portfolios containing the financial instruments, (2) to mitigate financial risks and 

ensure better preparedness for uncertainties, (3) to establish mathematical and 

computational methods on realistic constraints and (4) to provide stability across 

inter and intraday market fluctuations. Risk management has been recognized to 

play an increasingly important role in financial problems such as the international 

asset allocation, where widespread deregulation has entailed a substantial increase 

in asset price and currency volatility.  

We start with an introduction of the mean-variance approach, as well as with a 

description of the different kinds of financial risks that are faced by investors and 

financial institutions. Moreover, we present the major risk measures used in 

portfolio optimization such as variance, mean-absolute deviation, Value at Risk, 

Conditional Value at Risk and the associated mathematical formulations of the 

optimization models. Next we focus on the Utility Theory and on how people make 

choices when faced with uncertainty, leading up to the development of the first, 

second and third stochastic dominance rules. Furthermore we define the key 

concepts and present the appropriate mathematical formulations in order to 

construct optimal portfolios based on the      optimization model, including three 

different investment tactics, as well as the    ,     and     efficiency algorithms 

developed by Kuosmanen (2001,2004). More specifically in the empirical tests we 

consider investments in the US market. We want to construct several optimal 



portfolios based on alternative strategies. We use data on monthly closing prices of 

S&P500, including a number of stocks obtained by Datastream covering the period 

from December 1999 to July 2016. We choose assets from different sectors and thus 

a total number of 30 assets are concerned in each portfolio. We conduct both static 

test(efficient frontier), considering the      optimization model, and dynamic tests 

in order to find the optimal portfolio weights (backtesting experiments over the last 

120 months). Finally, we examine the statistical characteristics of the historical data 

set, we describe briefly the computational tests and we compare the statistical 

characteristics of the optimal portfolios. Moreover we employ four commonly used 

parametric performance measures in order to evaluate the performance of all the 

alternative competing strategies with respect to the market benchmark portfolio: 

the Sharpe ratio, the Sortino ratio, opportunity cost and portfolio turnover. 
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Chapter 1 

Introduction 

1.1     Dissertation Theme and Motivation 

Asset managers aim to select investment portfolios that yield the maximum possible 

return, while at the same time ensuring an acceptable level of risk exposure. Risk 

derives from potential losses in portfolio value due to possible reductions in the 

market value of financial assets resulting from changes in equity prices, interest 

rates, foreign exchange rates, etc. The theory of optimal portfolio selection was 

developed by Markowitz in the 1950’s. His work formalized the diversification 

principles in portfolio selection and earned him the 1990 Nobel prize in economics. 

Since then, mathematical programming techniques have become essential tools in 

financial management, and thus are being increasingly applied in practice. The need 

to adopt sophisticated analytical tools in financial management is being 

compounded by the increasing diversity of complex financial instruments and the 

realization that multiple uncertain factors have a concerted effect on the risk-

performance characteristics of securities. The essence of financial management is 

the study of allocation and deployment of economic resources, both spatially and 

across time, in an uncertain environment. To capture the influence and dynamic 

interaction of uncertain risk factors effectively, requires sophisticated analytical 

tools.  

Mathematical models such as the Stochastic Dominance criteria include elegant 

applications of optimization. Over the past decades, financial optimization had a 

direct and important influence on financial practices. Using mathematical 

programming techniques, we can reduce financial risks that affect the performance 

of portfolios, by diversifying away the nonsystematic risk of these portfolios. The 

diversification principle simply states that the investments should be distributed 

across various assets so that the exposure to the risk of any particular asset is 

limited.   
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The main purpose of this dissertation is to construct optimal portfolios using the 

concepts of first-order stochastic dominance, second-order stochastic dominance 

and third-order stochastic dominance as well as the      approach, including three 

different investment tactics. In particular, we propose to determine the optimal 

portfolios based on the         and     criteria to find the optimal portfolio 

weights. We implement all the alternative models in the General Algebraic Modeling 

System (GAMS). In constructing our FSD-based portfolio we adopt 0-1 Mixed Integer 

Linear Programming developed in Kuosmanen (2004), as well as the construction of 

our SSD-based and TSD-based portfolios are formulated in terms of standard Linear 

Programming developed once again in Kuosmanen (2001,2004). Furthermore, in 

order to compare the performance of the optimal competing portfolios, we evaluate 

all these alternative portfolios with respect to the market benchmark portfolio using 

several performance measures such as the Sharpe Ratio, the Sortino Ratio, the 

opportunity cost and portfolio turnover. 

 

 

1.2    Literature Review 

 

Stochastic Dominance is a natural setting to use for decision under uncertainty when 

partial information regarding the decision maker’s risk preferences is available. 

Stochastic Dominance offers criteria to rank two mutually exclusive investments 

when compared pairwise (Hadar and Russell, 1969, Hanoch and Levy 1969, Levy and 

Hanoch 1970). Commonly, first order and second order stochastic dominance criteria 

are being used. Hadar and Russell (1969) and Bawa (1975) show that FSD and SSD 

amount to choosing the portfolio that maximizes investor’s utility assuming that 

investors preferences are characterized by non-satiation or non-satiation and risk 

aversion, respectively. Nowadays, the Stochastic Dominance criteria have been 

established as beneficial analytical tools for studying theoretical probability 

distributions of random variables in addition to empirical cumulative frequency 

distributions in practically all areas of Economics. 

The theoretical attractiveness of Stochastic Dominance lies in its nonparametric 

nature. Stochastic Dominance criteria do not require any assumption on the 

distribution of returns of the two portfolios under consideration and they are 

consistent with a general class of preferences. Therefore, Stochastic Dominance 

criteria are a natural candidate to rank two portfolios because they do not impose 

strict assumptions on preferences and distribution of returns as the commonly used 

mean-variance portfolio construction approach. Mean-variance approach maximizes 

expected utility theory only in the case where investor preferences and return 

distributions obey highly restrictive conditions (i.e. Quadratic utility function and/or 

normally distributed returns) 
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The concept of Stochastic Dominance is theoretically appealing: if a return 

distribution   first-order, second-order, third-order stochastically dominates another 

distribution  , then all investors with some specific preferences will prefer A to B. 

Importantly, the Stochastic Dominance criteria also do not focus on a limited number 

of moments but account for the complete return distribution considering both gains 

and losses. Thus, the Stochastic Dominance criteria are consistent with the 

traditional Von Neumann-Morgenstern Expected Utility theory, as well as a wide 

class of alternative non-expected utility theories. 

The optimal investment portfolios is an interesting application field for Stochastic 

Dominance due to the fact that, first, financial theory does not give us with strong 

predictions about investor preferences and asset return distributions, and second, 

nonparametric examination can be improved from large data sets that are now 

available.  

The drawback of the         and     criteria though is that they can only 

compare pairwise any two given portfolios. Hence, they cannot be used to test 

whether a portfolio stochastically dominates every single portfolio because there is 

an infinite number of alternative portfolios. Recently, there has been significant 

progress on computational and statistical issues that have advanced the position of 

the Stochastic Dominance method, introducing the notion of Stochastic Dominance 

Efficiency. This notion is a direct extension of Stochastic Dominance to the case 

where full diversification is allowed. Stochastic Dominance efficiency       

introduced by Post (2003), Kuosmanen (2004), Kopa and Post (2011) as well as Post 

and Kopa (2013) avoid this constraint. These authors test for Stochastic Dominance 

of a specified portfolio (the market portfolio) with respect to all other portfolios that 

can be constructed in a given asset span. Additionally, the test procedures of 

Kuosmanen (2004) as well as Kopa and Post (2011) identify an efficient portfolio 

that dominates the evaluated portfolio if the latter is not efficient itself. Moreover 

they     developed linear programming tests for Stochastic Dominance efficiency that 

do account for diversification possibilities. Although these tests provide an 

important step in the evolution of the Stochastic Dominance methodology, they rely 

intrinsically on using ranked observations under i.i.d assumption on the asset 

returns. Contrary to the initial observations, ranked observations are no more i.i.d. 

The main limitation of all these works is that they only analyze in-sample 

performance. For practical portfolio allocation problems, it is important to establish 

the out-of-sample properties of the Stochastic Dominance efficient portfolios.  

Scaillet and Topaloglou (2010) developed consistent tests for Stochastic Dominance 

Efficiency at any order for time-dependent data. They rely on Kolmogorov-Smirnov 

type tests inspired by the consistent procedures developed by Barrett and Donald 

(2003), testing for Stochastic Dominance. In particular, they developed general 

Stochastic Dominance efficiency tests that compare a given portfolio with an optimal 

diversified portfolio formed from a given finite set of assets. They build on the 
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general distribution definition of Stochastic Dominance in contrast to the traditional 

expected utility framework. The Stochastic Dominance Efficiency definition of 

Scaillet and Topaloglou (2010), consider a portfolio to be Stochastic Dominant 

efficient when it stochastically dominates all other portfolios for any given Stochastic 

Dominance Efficient criterion under consideration. If a portfolio dominates all other 

portfolios then it is not dominated by any other portfolio, thus it is Stochastic 

Dominance efficient. The Scaillet and Topaloglou (2010)     methodology is more 

general than the previous     methodologies in the sense, that it does not assume 

that asset returns are independent and identically distributed. 

 

 

1.3    Dissertation Overview 

Chapter 2 introduced the theory of how risk-averse investors make choices in a 

world with uncertainty, as well as the basic concepts of risk measurement and risk 

management. To provide a framework for analysis where objects of choice are 

readily measurable, this chapter develops mean-variance objects of choice. This 

chapter begins with simple measures of risk and return for a single asset and then 

complicates the discussion by moving to risk and return for a portfolio of many risky 

assets. Decision rules are then developed to show how individuals choose optimal 

portfolios that maximize their expected utility of wealth, first in a world without 

riskless borrowing and lending, and then with such opportunities. Moreover, we lay 

the foundations for the development of financial optimization models. We include a 

classification of the risk factors that face an investor in today’s financial markets, and 

then define appropriate risk metrics. The chapter concludes with a presentation of 

the major risk measures used in portfolio optimization such as variance, mean-

absolute deviation, Value at Risk, Conditional Value at Risk, etc as well as the 

associated mathematical formulations of the optimization models.   

Chapter 3 starts with the Utility theory, where we focus on the theory of how people 

make choices when faced with uncertainty, leading up to the development of the 

first, second and third stochastic dominance rules (        and    , respectively). 

In particular, we begin with a discussion of the axioms of investor preferences, then 

used them in order to develop cardinal utility function and finally employ the utility 

functions to measure risk premium and derive measures of risk aversion. Moreover 

as the risk premium varies from one investor to another, we conclude that, in 

general, no one single objective index has the capacity to rank investments by their 

risk. Thus the whole distribution of returns rather than one measure of profitability 

and one measure of risk has to be considered. Hence, in this chapter we prove and 

discuss the stochastic dominance rules stated in terms of cumulative distributions 

for the partial ordering of uncertain projects.  
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Chapter 4 introduces notation, defines the key concepts and presents the 

appropriate mathematical formulations in order to construct optimal portfolios 

based on the      optimization model, including three different investment tactics, 

as well as the    ,     and     efficiency algorithms developed by Kuosmanen 

(2001,2004). Furthermore, in this chapter we examine the statistical characteristics 

of the historical data set, we describe briefly the computational tests and finally we 

discuss the empirical results. 

In Chapter 5 we examine and compare the statistical characteristics of the optimal 

portfolios, as well as we employ four commonly used parametric performance 

measures in order to evaluate the performance of all the alternative competing 

strategies with respect to the market benchmark portfolio: the Sharpe ratio, the 

Sortino ratio, opportunity cost and portfolio turnover. Chapter 6 concludes the 

dissertation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



6 
 

 

 

 

Chapter 2 

Modern Portfolio Theory 

2.1     Modern Portfolio Theory 

The author of the modern portfolio theory is Markowitz (1952) who introduced the 

analysis of the portfolios of investments in his article “Portfolio Selection”. The new 

approach presented in this article included portfolio formation by considering the 

expected rate of return and risk of individual stocks and, crucially, their 

interrelationship as measured by correlation. Prior to this investors would examine 

investments individually, build up portfolios of attractive stocks, and not consider 

how they related to each other. Markowitz showed how it might be possible to 

better of these simplistic portfolios by taking into account the correlation between 

the returns on these stocks. Moreover, Markowitz portfolio indicates that as we add 

assets to an investment portfolio the total risk of that portfolio-as measured by the 

variance (or standard deviation) of the total return-declines continuously, but the 

expected return of the portfolio is a weighted average of the expected returns of the 

individual assets. In other words, by investing in portfolios rather than in individual 

assets, investors could lower the total risk of investing without sacrificing return. 

Markowitz was the first to clearly and rigorously show how the variance of a 

portfolio can be reduced through the impact of diversification as he proposed that 

investors should focus on selecting portfolios based on their overall risk-reward 

characteristics instead of merely compiling portfolios from securities that each 

individually has attractive risk-reward characteristics.  

The diversification plays a very important role in the modern portfolio theory. The 

Markowitz Efficient Frontier is the set of all portfolios of which expected returns 

reach the maximum, given a specific level of risk. 

The Markowitz model is based on several presumptions concerning the behavior of 

investors and financial markets: 
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 A probability distribution of possible returns over some holding period can be 

estimated by investors. 

 Investors have single-period utility functions in which they maximize their 

utility within the framework of diminishing marginal utility of wealth. 

 Variability about the possible values of return is used by investors to measure 

risk. 

 Investors care only about the means and variance of the returns of their 

portfolios over a particular period. 

 Expected return and risk as used by investors are measured by the first two 

moments of the probability distribution of returns-expected value and 

variance. 

 Return is desirable; risk is to be avoided. Markowitz model assumes that 

investors are risk averse. This means that given two assets that offer the 

same expected return, investors will prefer the less risky one. Thus, an 

investor will take on increased risk only if compensated by higher expected 

returns. Conversely, an investor who wants higher returns must accept more 

risk. The exact trade-off will differ by investor based on individual risk 

aversion characteristics. The implication is that a rational investor will not 

invest in a portfolio if a second portfolio exists with a more favorable risk-

return profile. 

 Financial markets are frictionless. 

 

Markowitz approach is viewed as a single period approach: at the beginning of the 

period the investor must take a decision in what particular securities to invest and 

hold these securities until the end of the period. Because a portfolio is a collection of 

securities, this decision is equivalent to selecting an optimal portfolio from a set of 

possible portfolios. Essentiality of the Markowitz portfolio theory is the problem of 

optimal portfolio selection. 

The method that should be used in selecting the most desirable portfolio involves 

the use of indifference curves. Indifference curves represent an investor’s 

preferences for risk and return. These curves should be drawn, putting the 

investment return on the vertical axis and the risk on the horizontal axis. Following 

Markowitz approach, the measure for investment return is expected rate of return 

and a measure of risk is standard deviation. The map of indifference curves for the 

individual risk-averse investor is depicted in Figure 2.1. Each indifference curve (  , 

  ,   ) represents the most desirable investment or investment portfolio for an 

individual investor. That means, that any of investments (or portfolios) plotted on 

the indifference curves (          ) are equally desirable to the investor. 

Features of indifference curves: 
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 All portfolios that lie on a given indifference curve are equally desirable to 

the investor. An important implication of this feature is the fact that 

indifference curves cannot intersect. 

 An investor has an infinitive number of indifference curves. Every investor 

can represent several indifference curves (for different investment tools). 

Every investor has a map of the indifference curves representing his or her 

preferences for expected returns and risk (standard deviations) for each 

potential portfolio. 

 
 
 

 
 

Figure 2.1:   Map of Indifference Curves for a Risk-Averse Investor. 

 
 
Two crucial fundamental assumptions, examining indifference curves, can be applied 

to Markowitz portfolio theory: 

i. The investors are assumed to prefer higher levels of return to lower levels of 

return, because the higher levels of return allow the investor to spend more 

on consumption at the end of the investment period. Thus, given two 

portfolios with the same standard deviation, the investor will choose the 

portfolio with the higher expected return. This is called an assumption of 

nonsatiation. 

ii. Investors are risk averse. It means that the investor when given the choice 

will choose the investment or investment portfolio with the smaller risk. This 

is called assumption of risk aversion. 
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2.2     Measurements of Portfolio Risk and Return  

 

Modern portfolio theory is a theory on how risk-averse investors can construct 

portfolios in order to optimize or maximize expected return based on a given level of 

risk, defined as variance. Its key insight is that an asset’s risk and return should not 

be assessed by itself, but by how it contributes to a portfolio’s overall risk and 

return. According to the theory, it is possible to construct an “efficient frontier” of 

optimal portfolios offering the maximum possible expected return for a given level 

of risk.  

From this point we assume that investors measure the expected utility of choices 

among risky assets by looking at the mean and variance provided by combinations of 

those assets. Unless investors have a special type of utility function (quadratic utility 

function), it is necessary to assume that returns have a normal distribution, which 

can be completely described by mean and variance. The normal distribution is 

perfectly symmetric and 50% of the probability lies above the mean. Because of its 

symmetry the variance and semivariance are equivalent measures of risk for the 

normal distribution. Moreover, if we know the mean and standard deviation of a 

normal distribution, we know the likelihood of every point in the distribution. 

 

2.2.1      Calculating the Mean and the Variance of a Two-Asset Portfolio 

 

Consider a portfolio of two risky assets    and   that are both normally distributed. 

The portfolio mean return is seen to be simply the weighted average of the expected 

returns on individual securities, where   ,    are the weights of the wealth invested 

in those assets, respectively. 

 

                                                            

 

The variance of the portfolio return is expressed as the sum of the variances   
    

  

of the individual securities multiplied by the square of their weights plus a third 

term, which includes the covariance,         : 

 

   
    

   
    

   
                               

  

The covariance is a measure of the way in which the two securities move in relation 

to each other. If the covariance is positive, this implies that the assets move in the 

same direction. If it is negative, they move in opposite directions. 
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2.2.2    The Correlation Coefficient 

 

The correlation coefficient is a measure that determines the degree to which two 

random variables’ movements are associated. The range of values for the correlation 

coefficient is -1.0 to 1.0. The correlation    , between two random variables is 

defined as the covariance divided by the product of the standard deviations: 

  

             
        

    
                  

 

A correlation of -1.0 indicates a perfect negative correlation, while a correlation of 

1.0 indicates a perfect positive correlation. Obviously, if the returns of the two assets 

are independent, which means that the covariance between them is zero, then the 

correlation between them will be zero. While the correlation coefficient measures 

the degree to which two variables are related, it only measures the linear 

relationship between these variables. Nonlinear relationships between two variables 

cannot be captures or expressed by the correlation coefficient. 

If we rearrange the definition of the correlation coefficient, we will get another 

definition of covariance whereby it is seen to be equal to the correlation coefficient 

times the product of the standard deviations: 

 

                                   

  

Substituting the previous formulation into the definition of the variance of a 

portfolio of two assets, we obtain the following expression: 

    

       
    

   
    

   
                              

 

2.2.3     Relationship between correlation coefficients and portfolio variance 

 

Consider that the two risky assets    and   are perfectly correlated, that is      , 

then the portfolio variance becomes: 

 

   
    

   
    

   
                 

   
     

   
    

   
                

             
  

 

therefore the standard deviation will be  
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Figure 2.2 depicts the portfolio mean and standard deviation on a single graph. Point 

A and point B represent the risk and return for a portfolio consisting of 100% of our 

investment in security   and in security   respectively. The dashed line represents 

the risk and return provided for all combinations of   and   when the returns of 

these two assets are perfectly correlated.   

Suppose now that the returns on   and   are perfectly inversely correlated; in other 

words,       , then the portfolio variance becomes: 

 

   
    

   
    

   
                 

   
     

   
    

   
                

             
  

 

therefore the standard deviation will be  

 

                            

 

In this case the graph of the relationship between mean and standard deviation is 

the dotted line    , which is two line segments, one with a positive slope and the 

other with a negative slope. 

Finally, assume that the returns on the two assets are independent, which implies 

that        then the portfolio variance becomes: 

 

   
    

   
    

   
                 

   
     

   
    

   
   

 

as well as the standard deviation can be expressed as: 

 

        
   

    
   

              

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure 2.2:  Trade-off between mean and standard deviation. 
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In general, the variance of the portfolio can be expressed as  

 

   
    

   
    

   
                

 

if we take into consideration that the sum of weights must add to   and replace  

       , can be written as follows:  

 

   
    

   
        

   
                     

 

   
    

   
    

       
     

   
                 

                    

              

        

      

2.3      Computing the minimum variance portfolio 

 

The previous formula of the variance of the portfolio can be used in order to find the 

combination of random variables   and  , that provides the portfolio with minimum 

variance. This portfolio is the one where changes in variance or standard deviation 

with respect to changes in the proportion of wealth invested in security   are zero. 

We can minimize portfolio variance by setting the first derivative equal to zero: 

 

    
 

   
        

     
       

                          

 

Solving for the optimal proportion to invest in security   in order to obtain the 

minimum variance portfolio we get the following formula 

 

  
  

  
          

  
    

           
              

 

 

Line    in Figure 2.2 represents the risk-return trade-offs available to the investors if 

the two assets are perfectly correlated, and line segments    and    show the 

trade-offs if the assets are perfectly inversely correlated. The general slope of the 

mean-variance opportunity set is the solid line. In general the minimum variance 

opportunity set is the region of risk and return combinations offered by portfolios of 

risky assets that yields the minimum variance for a given rate of return. This 

minimum variance opportunity set will be convex due to the fact that the 

opportunity set is bounded by the triangle    . 
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2.4      The concept of Markowitz efficient frontier 

 

Every possible asset combination can be plotted in risk-return space, and the 

collection of all such possible portfolios defines a region in this space. The line along 

the upper edge of this region is known as the efficient frontier. Combinations along 

this line represent portfolios for which there is lowest risk for a given level of return. 

Conversely, for a given amount of risk, the portfolio lying on the efficient frontier 

represents the combination offering the best possible return. Mathematically the 

efficient frontier is the intersection of the set of portfolios with minimum variance 

and the set of portfolios with maximum return. 

Figure 2.3 represents investors entire investment opportunity set, which is the set of 

all attainable combinations of risk and return offered by portfolios formed by asset   

and asset   in different proportions. The curve passing through A and B shows the 

risk-return combinations of all the portfolios that can be formed by combining those 

two assets. Investors desire portfolios that lie to the northwest in Figure 2.3. These 

are portfolios with high expected returns and low volatility. 

 

 

Figure 2.3:  Investment Opportunity set for assets A and B. 

The area within curve BVAZ is the feasible opportunity set representing all possible 

portfolio combinations. Portfolios that lie below the minimum-variance portfolio 

point (V) on the figure can therefore be rejected out of hand as inefficient. The 

portfolios that lie on the frontier VB in Figure 2.3 do not meet the criteria of 

maximizing expected return for a given level of risk or minimizing risk for a given 

level of return. This is easily seen by comparing the portfolio represented by points B 

and B’. Since investors always prefer more expected return than less for a given level 

of risk, B’ is always better than B. Using similar reasoning, investors would always 

prefer V to B because it has both a higher return and a lower level of risk. In fact, the 

portfolio at point V is identified as the minimum-variance portfolio; since no other 

portfolio exists that has a lower standard deviation. The curve VA represents all 
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possible efficient portfolios and is the efficient frontier, which represents the set of 

portfolios that offers the highest possible expected rate of return for each level of 

portfolio standard deviation. As we can observe, the efficient frontier will be convex, 

due to the fact that the risk-return characteristics of a portfolio change in a non-

linear way as its component weightings are changed. The efficient frontier is a 

parabola when expected return is plotted against variance (standard deviation). 

 

 

 

Figure 2.4:  The efficient frontier of risky assets. 

As we can see in Figure 2.4 any portfolio on the downward sloping potion of the 

frontier curve is dominated by the portfolio that lies directly above it on the upward 

sloping portion of the frontier curve since that portfolio has higher expected return 

and equal standard deviation. The best choice among the portfolios on the upward 

sloping portion of the frontier curve is not as obvious, because in this region higher 

expected return is accompanied by higher risk. The best choice will depend on the 

investor’s willingness to exchange risk against expected return.   

 

2.5    The Efficient Frontier with Two Risky Assets and No Risk-Free Asset 

 

The hypothesis of no risk-free asset is the same as saying that we do not consider 

any borrowing or lending opportunities. An investor will select his optimal portfolio 

of risky assets in an economy where there is no opportunity for exchange. Based on 

the utility theory we know that the indifference curves for the risk-averse investors 

are convex in the mean-variance plane. In this particular analysis, we assume that 

investors have similar beliefs about the opportunity set, that the existence of a risk-

free asset is permitted, and that the investors have different indifference curves, 
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which reflect their different behavior towards risk. Figure 2.5 represents three 

different indifference curves, as well as the investment opportunity set. As we can 

observe investor Ⅲis more risk averse than investorⅡ who in sequence is more risk 

averse than investorⅠ. Therefore, they each will prefer to invest a different 

proportion of their portfolio wealth in the risky assets that create the opportunity 

set. Moreover all rational investors will never prefer a portfolio below the minimum 

variance point. They can always attain higher expected utility along the positively 

sloped portion of the opportunity set represented by the line segment      . This 

approach brings on the definition of the efficient set. The efficient set is the set of 

mean-variance choices from the investment opportunity set where for a given level 

of variance no other investment opportunity offers a higher mean return. The 

concept of an efficient set eliminates the number of portfolios from which an 

investor may choose. In Figure 2.5 the portfolios at points   and   offer the same 

standard deviation, but   is on the efficient set due to the fact that it provides a 

higher return for the same level of risk. Therefore no rational investor would ever 

select point   over point   and for that reason we can avoid point  .  

 

 

 
 

Figure 2.5:  Choices by investors with different indifference curves. 

 

In general the region of feasible mean-variance opportunities can be found by 

solving either of the following two mathematical programming models. The first 

emphasizes the minimum variance opportunity set and the second determines the 

efficient set. 

 

Mathematical Model A: 
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Mathematical Model B:  

 

                                                                               

 

            

            
    

   
        

   
                                    

 

The minimum variance opportunity set derives by finding all the combinations that 

yield the lowest risk for a given level of return. The efficient set is the region of 

highest returns for a given level of risk.  

We can observe that the first problem is a quadratic programming model since the 

objective function consists of squared terms in the variable   . Markowitz [1959] 

was the first to describe the investor’s portfolio decision problem in this way and to 

show that it is the same as to maximizing the investor’s expected utility.  

 

 

2.6      The efficient Set with One Risky and One Risk-Free Asset 

 

Consider now the case where one of the two assets,   , that is the risk-free asset, 

has zero variance, then the mean and variance of the portfolio become: 

 

                                         

 

   
      

                      

The variance and the covariance of the risk-free asset with the risky asset are zero; 

therefore the variance of the portfolio is simply the variance of the risky asset. Figure 

2.6 depicts the opportunity set with one risk-free and one risky asset. We can 

observe that this is a straight line.  
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Figure 2.6:  Opportunity set with one risky and one risk-free asset. 

 

Provided for the supposition that the borrowing rate is equivalent to the lending 

rate,     is a straight line. In order to purchase portfolios along the line segment 

    it is essential to borrow in order to invest more than 100% of the portfolio in the 

risky asset, hence along the line segment    the percentage invested in asset   is 

greater than 1; that is to say,    . Moreover, when we decide to invest more than 

100% of our portfolio in the risk-free asset, we should sell short the risky asset. 

Therefore the line segment    represents portfolio mean and variance in this case. 

As for the efficient set which is the positively sloped line segment    , is composed 

of long positions in the risky asset combined with borrowing or lending.   

 

 

 

2.7     Portfolio Mean, Variance, and Covariance with N risky assets 

 

An investor can reduce portfolio risk by holding combinations of instruments that 

are not perfectly positively correlated. In other words, investor can reduce their 

exposure to individual asset risk by holding a well-diversified portfolio of assets. 

Diversification may allow for the same portfolio expected return with reduced risk. 

These ideas have been started with Markowitz and then reinforced by other 

economists and mathematicians such as Andrew Brennan who have expressed ideas 

in the limitation of variance through portfolio theory. 

 

Consider now the case where we wish to discuss about the mean and the variance of 

a portfolio consisted of   assets instead of just two. Hence, the expected portfolio 
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return is simply the weighted average of the expected return on individual securities. 

This can be written as 

 

              

 

   

           

 

where    is the return on asset   and    is the proportion of wealth invested in each 

asset    

The portfolio variance is a weighted sum of variance and covariance terms. This can 

be expressed as 

   
           

 

   

        

 

   

 

 

where    and    are the percentages invested in each asset and     is the covariance 

of asset   with asset  .  The previous formula can also be written as 

 

   
               

 

   

 

   

           

 

where       are the standard deviations of assets   and   ,respectively , as well as     

is the correlation coefficient between these securities. 

Equations        and        can also be written in terms of matrices form, which for 

  assets looks like: 

                          

 

 

   
 =  ⨋                

 

 

The expected portfolio return is the        row vector of expected returns,   ,  

postmultiplied by the        column vector of weights held in each asset,    The 

variance is the        variance-covariance matrix,⨋ ,premultiplied and 

postmultiplied by the vector of weights ,     

 

Finally suppose that we want to express the covariance between two portfolios, A 

and B, using matrix notation. If ⨋ is the        variance-covariance matrix, then 

the covariance between these two portfolios is defined as  
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 ⨋                   

 

Where   
  is the        row vector of weights held in portfolio A and    is the 

       column vector of weights used to construct portfolio B.  

 

 

2.8      The Opportunity Set with N Risky Assets 

 

With regard to the construction of portfolios with many assets, we can find the 

opportunity set and the efficient frontier if we know the expected returns and the 

variances of individual assets as well as the covariances between each combination 

of assets. The investment opportunity set has the same shape with many risky assets 

as it did with only two assets. The main difference is that with many assets to be 

under consideration some of them will fall in the interior of the opportunity set 

(Figure 2.7). The opportunity set will be consisted of various portfolios and of some 

individual assets that are mean-variance efficient by themselves. Under these 

circumstances a risk-averse investor would maximize his expected utility by finding 

the point of tangency between the efficient set and the highest indifference curve. 

 

 

 
 

Figure 2.7:  The investment opportunity set with many risky assets. 
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2.9      The Efficient Frontier with N Risky Assets and One Risk-Free Asset 

 

We have already mentioned that the introduction of a risk-free asset may be 

thought of as creating an exchange of market economy where there are many 

individuals. Each of them may borrow or lend unlimited amounts at the risk-free 

rate. If in addition to the previous presumption of equality between the borrowing 

and lending rate, we add the assumption that all investors have similar beliefs about 

the expected distributions of returns offered by all assets, then all investors will 

perceive the same linear efficient set called the Capital Market Line. Figure 2.8 is a 

graph of the Capital Market Line. The intercept is the risk-free rate,   , and its slope 

is                 . Hence, the equation defining the Capital Market Line is the 

following. 

         
          

     
                          

 

The previous formula provides a simple linear relationship between the risk and 

return for the efficient portfolios of assets.  

 

Figure 2.8:  The Capital Market Line. 

 

Finally in Figure 2.9 feasible and efficient sets of portfolios are presented. 

Considering the assumptions of nonsatiation and risk aversion discussed earlier in 

this section, only those portfolios lying between points A and B on the boundary of 

feasibility set investor will find the optimal ones. All the other portfolios in the 

feasible set are inefficient portfolios. Furthermore, when a risk-free investment is 

introduced into the universe of assets, the efficient frontier becomes the tangential 
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line shown in Figure 2.9 and the portfolio at the point at which it is tangential (point 

M) is called the Market Portfolio. 

 

 
 

Figure 2.9:  Feasible set and Efficient set of Portfolios. 

 

 

 

Basic Ideas in Risk Management 

 

2.10      Basic Ideas in Risk Management     

Risk is the degree of uncertainty in attaining a certain level of portfolio return. It 

reflects the chance that the actual return of the portfolio may be very different than 

the expected return. Risk in international portfolios arises due to uncertainties in the 

return of the assets (market risk) and the exchange rates (currency risk). Investors 

can neither ignore nor insure themselves completely against these risks. They must 

be aware of their exposures to these risk factors and take them into consideration in 

their decision process so as to properly manage their total level of risk.  

The liberalization of markets and their consequent interdependencies, increasing 

complexity of innovative financial instruments, intensifying competition, regulatory 

environments and the realization of severity of potential losses dictate the 

development of integrated portfolio risk management models that take into account 

all the needs and control simultaneously the exposure of international portfolios to 

different risk factors. Derivative securities (forwards, stock and currency options) 

provide appropriate means to hedge the multiple risks. 
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Risk means the danger of loss. If we have an exposure to a risk, it means that there 

are some circumstances under which we can lose money, some hypothetical future 

loss. Moreover, financial risk is the possibility that an unforeseen and unpredictable 

future event will result in a financial loss. Financial risk may be characterized by the 

magnitude of the loss, its estimated likelihood today, and the causes of the event 

which are known as risk factors. A classification of financial risk factors, the potential 

causes of loss, is given in the following section. Risk is always in the future, as current 

or past losses do not present a risk as there is no uncertainty about them. Future 

events do not pose a risk unless they are unpredictable, for otherwise we could plan 

for them with perfect foresight. However the unpredictability of the future does not 

restrict our ability to foresee plausible future events and plan for them. Risk 

management is the discipline that provides tools to measure risks, and techniques to 

help us shape and make rational decisions about them. Risk management is not 

restricted to financial institutions, and furthermore the distinction between financial 

and other types of risks is becoming increasingly blurred. To manage risks, we must 

first understand what is risk, what are the different types of risk, and how to 

measure them. 

 

2.10.1      A Classification of Financial Risks 

 

As we have already mentioned financial risk is the uncertainty surrounding the value 

of our assets due to unforeseen and unforecastable future events. The causes of 

uncertainty are many, and financial risk is multidimensional. Consider that there are 

  available financial assets from which we can construct a portfolio by investing a 

proportion of our wealth in each asset. The portfolio return is uncertain and 

therefore risky. It is subjected to the unforeseen and unpredictable changes that 

may occur to the assets returns. The sources of financial risks are the forces that 

influence the returns of the assets in our portfolio. We display here a classification of 

these risk factors highlighting the fact that financial risk is multidimensional.  

 

 Market Risks: These are the risks arising from changes in financial market 

prices and rates. Moreover is the risk that the market price of the assets will 

change with time. Depending on the type of asset we distinguish between 

stock market price risk and fixed income market price risk. 

i. Stock Market Price Risk: The risk that the price of a stock will change 

with time due to adverse movements of the stock market as reflected 

in market index changes. 

ii. Fixed Income Market Price Risk: The risk that the price of a fixed-

income security will change with time due to adverse movements of 

the fixed income market as reflected in market index changes. The 

prevailing risk in fixed income markets is the risk caused by 
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movements in the overall level of interest rates on straight, default-

free securities. 

iii. Interest Rate Risk: The risk that the price of a security will change with 

time due to movements of the general level of interest rates.  

iv. Shape Risk: The risk that the price of a security will change with time 

due to changes in the shape of the term structure of interest rates.  

v. Volatility Risk: The risk that the price of an asset will change with time 

due to changes in volatility. This type of risk is predominant in 

options. If the underlying asset is worth more than the strike price of 

a call option on the expiration date then the option is exercised 

returning to its holder the difference between the price of the asset 

and the strike price. But if the price of the asset is less than the strike 

price then the option expires worthless. The higher the price volatility 

of the underlying asset the more valuable is the option. Therefore, 

volatility changes have an impact on the prices of options or securities 

with embedded options even in an environment that remains 

unchanged in all other respects. 

 Credit Risk: The risk of an unkept payment promise due to default of an 

obligor (counter-party, issuer or borrower) or due to adverse price 

movements of an asset caused by an upgrading or downgrading of the credit 

quality of an obligor that brings into question their ability to make future 

payments. Credit risk is the risk of loss from the failure of the counterparty to 

fulfill its contractual obligations, perhaps because they have defaulted. The 

magnitude of the loss can be gauged by the free market cost of replacing the 

lost cashflow or cashflows. Credit risk occurs in a lot of settings: 

 Loans, where we lend to a corporation money on a bilateral basis, 

expecting them to make payments of interest and to repay principal. 

 Contractual agreement such as IRSs or purchased options where our 

counterparty either certainly has to make payments in the future (as 

in the swap) or may have to (if we exercise an option they have 

written).   

 Receivables, where goods are delivered or services performed before 

they have been paid for. 

 Currency Risk: The risk that the price of a security will change with time due 

to changes in the exchange rates between different currencies. Investors with 

international holding are exposed to the risk of fluctuations of the exchange 

rates of their base currency vis-à-vis the currencies of countries where they 

hold assets. 

 Liquidity Risk: Liquidity is the ability to meet expected and unexpected 

demands for cash. This type of risk therefore, is the risk that we will not be 

able to do that- that we will face the requirement to pay cash and be unable 



24 
 

to do so. Liquidity risk can occur when we have more assets than liabilities, 

but when we are unable to liquidate those assets in time. This is an important 

risk class for many financial institutions precisely because they often have 

illiquid assets and more liquid liabilities. 

 Sector Risk: The risk of price movements affecting a group of securities that 

share common characteristics. Sectors of the economy are affected by 

different macroeconomic conditions and other factors.  

 Residual Risk: This is the risk of price movements due to firm-specific effects 

and in principle, unrelated to the systematic influences given in our list of 

risks. Mergers and acquisitions, or corporate strategy are sources of residual 

risk. When an industrial segment is undergoing some transformation, then 

mergers and acquisitions may result into sector risk. 

 Business Risks: These are the risks due to volatility of volumes, margins, or 

costs when engaging in the firm’s business. For firms which are in the 

business of selling insurance risks can be made more precise though the 

definition that follows. One could define similarly, the business risks for other 

enterprises- both financial institutions and other firms. However, insures 

have a long tradition in the management of risk, and for their business a 

widely accepted definition of business risk is currently available.   

 Actuarial Risk: This is the risk associated with the liability side of the balance 

sheet of insurance firms, and is due to changes in mortality, casualty or 

liability exposures. In a way actuarial risk is a non-financial risk. However, 

several innovative insurance products provide a combination of an insurance 

policy and an endowment and it may be hard to disentangle the actuarial risk 

as defined above from the relevant financial risk. 

 Operational Risk: This is the risk of direct or indirect losses resulting from 

inadequate or failed internal processes, people and systems, and from 

external events. This type of risk captures all non-financial risks, starting from 

the risks due to a breakdown in risk management operations and moving on 

to environmental risks. The breakdown of the risk management operations 

may be due to miscalculation of market prices or hedging strategies, system 

failures or faulty controls that leave the institution unable to execute its 

transactions and fulfill its obligations, human error and fraud, or 

management failures. Operational risks are characterized by low probability 

events that result into extreme financial losses.  

 Systemic Risk: The risk of a wide-spread collapse or dis-functioning of the 

financial markets through multiple defaults; widespread disappearance of 

liquidity, domino effects etc.  
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2.10.2      Risk Measures 

 

The application of effective decision support tools for risk management must employ 

risk measures that properly reflect and quantify the risk exposure of an investor. The 

risk management models must be able to flexibly incorporate different risk measures 

when this is required by regulators or management preferences. 

The systematic risk is predominantly the market risk. Hence, one way to measure the 

risk of an asset is to measure its sensitivity to the changes in the market index. This 

sensitivity is captured by the beta of the security. The beta of an asset   is defined by  

 

   
   

  
                 

 

where     is the covariance of the random variable asset rate of return     and the 

market rate of return    , and   
  is the variance of the market rate of return. The 

beta of a security measures the sensitivity of the expected return of the security to 

changes in a broad market index. 

When using optimization models for risk management, one way to measure the risk 

of an equity portfolio is either directly-using the moments of the distribution of the 

asset’s price    to estimate moments of the portfolio return-or indirectly-using the 

beta of the assets in the portfolio. If we view the portfolio as just one more asset we 

obtain the beta of the portfolio as follows; The beta of a portfolio of holdings    in 

asset   is given by:  

        

 

   

            

 

The beta of the portfolio measures the sensitivity of the portfolio return to changes 

in the market index. In this sense beta is a measure of risk. A zero-beta portfolio is 

one that remains invariant with changes in the index, while a beta-neutral portfolio 

is one with      so that portfolio returns change just like the returns of the index.  

Asset allocation is a problem faced by every investor. When making investment 

decisions, an investor has to seek a balance between risk and returns. In the single-

period Markowitz model, the investor maximizes the expected return of the 

portfolio and minimizes the risk, measured by the variance of portfolio returns. The 

variance of a portfolio of holdings    in asset   is given by:  

 

                               

 

   

 

   

 



26 
 

 

where     is the covariance between the returns of assets   and   , and we have 

      
 . Using the portfolio variance as the risk measure has its limitations. The 

variance is a symmetrical measure that does not take into consideration the 

direction of movement. The square root of variance gives us the standard deviation. 

Standard deviation, also known as volatility, has been the most widely used measure 

of risk. However, this measure relies on the assumption that the portfolio return 

distribution is symmetric and implies that the sensitivity of the investor is the same 

on the upside as on the downside. In order to take the asymmetry of the portfolio 

return distribution into consideration, the use of downside measures has been 

advocated. 

Considering the control of the overall portfolio risk, we need to employ risk 

measures that account for this asymmetry of portfolio returns. In order to address 

this issue, alternative risk measures such as Value at Risk and Conditional Value at 

Risk have been introduced to replace the variance. 

 

 

 

2.11      Scenario Generation 

 

A general approach to define risk is by using scenarios. Each scenario is a realization 

of the future value of all parameters that affect the performance of the portfolio 

under consideration. The collection of scenarios captures the range of likely 

variations in these parameters that could happen between the current time and the 

end of the planning horizon. These representations of uncertainty are fundamental 

in risk management. Scenarios can capture the disparate sources of risk and 

empower measures to be developed that record for all sources of risk. 

Scenario generation is a critical step in the modeling procedure. A set of 

representative scenarios is required that sufficiently illustrates the expected 

evolution of the underlying financial primitives and is consistent with the market 

observations and financial theory. Moreover, scenarios ought to be derived from a 

“correct`` theoretical model for the random variables, catching at the same time the 

applicable previous history. Therefore, they should precisely approximate the 

theoretical model from which they are inferred; a substantial number of scenarios 

might be important, utilizing a fine discretization method. The scenarios should 

satisfy the no-arbitrage properties. This implies that scenario-based estimates of 

future asset prices in a portfolio optimization model should not permit arbitrage 

opportunities. 

The origins of scenarios can be excessively varied. They might be acquired from a 

discrete known distribution, be obtained in the course of a discretization of some 

continuous probability distribution which is estimated from historical data, from 
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economic forecasting models, from bootstrapping historical market data, they can 

be augmented with subjective opinions of experts etc. The main crucial step is to 

outline the structure of the scenario tree, which is the number of stages and the 

branching scheme. The stages relate to points in time when it is possible to take 

additional decisions in view of recently observed data. Such data can be obtained at 

specific dates or at regular intervals. 

Various scenario generation approaches have been accounted for in literature. One 

method is to create scenarios by bootstrapping past market observations of asset 

returns. The major advantage of this approach is its absence of complication. It 

presumes that past market conditions precisely depict the plausible joint outcomes 

of the arbitrary variables in the future. It also assumes that these past observations 

of asset returns are samples from independent and identical distributions. 

Bootstrapping captures co-movements of numerous random variables, but cannot 

perform well in temporal dependencies. 

Another method that can be used as a part of the scenario generation is the 

statistical analysis of historical market data. Market data are in the form of 

correlated, multivariate time series. The dimensionality of the random variables can 

be diminished with techniques of multivariate statistics. Factor analysis is generally 

applied under the normality assumption. Principal component analysis can be 

applied for arbitrary empirical distributions. Both of these methods intend to clarify 

the correlation structure of the multivariate random variables by a small number of 

uncorrelated factors or components.  

A moment-matching approach creates scenarios so that principal moments of the 

random variables correspond to particular target values. Given the empirically 

observed statistical characteristics of the random variables, we make use of a 

scenario generation procedure that does not assume any specific distributional 

formation. This method produces a set of scenarios so that selected statistical 

properties of the random variables match specified target values. In particular, we 

match the following statistics: the first four marginal moments such as mean, 

variance, skewness and kurtosis, as well as the correlations of the monthly asset 

returns.  

Finally another scenario generation alternative is to examine from continuous 

distributions or stochastic procedures for the fundamental financial variables. The 

assumed distributions are normally adjusted utilizing empirical market data. The 

precision of the subsequent scenario sets relies on the coarseness of the 

discretization. Better discretizations reflect more precisely the continuous 

distributions, but lead to a large number of scenarios and very large-scale stochastic 

programs. In addition to all these, a balance is required between the accuracy of the 

discretization and the computational tractability of the resulting stochastic program.   
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2.12     Optimization Models 

 

Optimization models for financial risk management often take the following form: an 

appropriate risk measure is optimized subject to operating constraints and a 

parametric constraint that a desirable performance measure (such as expected 

portfolio return) meets a prespecified target level. For a given confidence level, a 

CVaR constraint is tighter than a VaR constraint if the CVaR and VaR bounds 

coincide. By optimizing CVaR we minimize the conditional expectation of portfolio 

losses in excess of a prespecified percentile of the return distribution. Our 

motivation for applying CVaR models stems from the observation that returns of 

international assets and proportional changes of exchange rates are not normally 

distributed; they exhibit asymmetric distributions with fat tails. Moreover, we 

incorporate derivative securities in the optimization models. The non-linear payoff 

characteristic of options leads to asymmetric portfolio returns distributions. CVaR is 

a coherent risk measure and is suitable for asymmetric distributions. 

Consider a set of investment opportunities indexed by             At the end of a 

certain holding period the assets generate returns                   
T. The returns 

are unknown at the beginning of the holding period and are treated as random 

variables. Denote their mean value by                          
T. At the beginning 

of the holding period the investor wishes to apportion his budget to these assets by 

deciding on a specific allocation                 
T, such that      (short sales 

are disallowed) and       
    (budget constraint). Using the conformable vector 1 

= (1,1,…,1)T of ones, we express the basic portfolio constraints in vector notation as 

       T1=1, x   . We use boldface characters to denote vectors and   to 

denote random variables. The uncertain return of the portfolio at the end of the 

holding period is                    
 
   . This is a random variable with a 

distribution function, say  , i.e                       Of course the distribution 

function   depends on the portfolio composition  . The expected return of the 

portfolio is                      = T  . Suppose the uncertain returns of the 

assets,  , are represented by a finite set of discrete scenarios                   

whereby the returns under a particular scenario     take the values    

                
T with associated probability            

     The mean return 

of the assets is         
 
     The portfolio return under a particular realization of 

asset returns    is denoted          T         
 
     The expected portfolio 

return is expressed as                
 
         T         

 
   . 

 

Suppose φ is some risk measure. Then for a certain minimal expected portfolio 
return μ, the φ -efficient portfolio is obtained from the solution of the following 
problem: 
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                 T    

      T         (2.25) 

The curve that depicts the dependence of the optimal value of this parametric 

program on the required minimal expected portfolio return   is the  -efficient 

frontier. This is a generalization of the classical concept of the mean-variance 

efficient frontier to an arbitrary risk measure  . The choice of the risk measure 

generally depends on the preferences of the decision maker or, in some cases, on 

regulatory specifications. Matters of computational tractability also affect this 

choice. 

 

2.12.1      Coherent Risk Measures 

A coherent risk measure   is a function that assigns numbers             to two 

random variables            independent or not and for each number   and positive 

number   the following relations hold: 

 

Sub -additivity.                      

Homogeneity.               

Monotonicity.                       

Risk-free condition.                   

 

Sub-additivity ensures that the risk measure is reasonable when adding two 

positions. It allows the decentralized calculation of the risk at an enterprise-wide 

level, since the sum of the risks of individual positions provides an upper bound on 

the enterprise-wide risk. Sub-additivity and homogeneity imply that the risk measure 

function is convex. This is consistent with risk aversion on the part of the user of 

these measures. 

 

 

2.12.2     Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) 

 

Value-at-risk is a percentile based metric that has become an industry standard for 

risk measurement purposes. It is usually defined as the maximal allowable loss with a 

certain confidence level         Here we define VaR equivalently, in terms of 

returns, as the minimal portfolio return for a prespecified confidence level 

        Thus,  
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         is the            percentile of the distribution of portfolio return. 

Despite its popular use in risk measurement,     is not typically used in 

mathematical models for optimal portfolio selection. While its calculation for a 

certain portfolio   reveals that the portfolio return will be below          with a 

likelihood           , it provides no information on the extent of the 

distribution’s tail which may be quite long; in such cases, the portfolio return may 

take substantially lower values than     and the result is severe losses.     lacks a 

theoretical property for coherent risk measures, namely, sub-additivity. Moreover, 

    is difficult to optimize. When the asset returns are specified in terms of 

scenarios the     function is nonsmooth and non-convex with respect to the 

portfolio positions   and exhibits multiple local extrema. Efficient algorithms for 

solving problems with such objective functions are lacking. 

Conditional value-at-risk        is a related risk measure. It is usually defined as the 

conditional expectation of losses exceeding     at a given confidence level. Here, 

we define      equivalently as the conditional expectation of portfolio returns 

below the     return. For continuous distributions,      is defined as  

                                                 

Hence, this definition of      that is applicable to continuous distributions 

measures the expected value of the             lowest returns for portfolio  . 

For discrete distributions, the formula        gives a nonconvex function in portfolio 

positions  , and is a non-subadditive risk measure. A definition of      for general 

distributions is: 

                        
                  

   
   

 

   
                                       

where           . As we consider discrete distributions, we will utilize this 

alternative definition of     . Note that      as defined for discrete distributions 

in        may not be equal to the conditional expectation of portfolio returns below 

        . This definition of      for discrete distributions measures only 

approximately the conditional portfolio returns below the respective          

value.      quantifies the expected portfolio return in a low percentile of the 

distribution. Hence it can be used to exercise some control on the lower tail of the 

return distribution and thus, it is a suitable risk measure for skewed distributions. 

When the uncertain asset returns are represented by a discrete distribution      

can be optimized by linear programming (LP). We follow for every scenario     an 

auxiliary variable  

  
                  ], 
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which is equal to zero when the portfolio return for the particular scenario exceeds 

         and is equal to the return shortfall in relation to     when the portfolio 

return is below        ). Using these auxiliary variables we have: 

     
 

   

      
 

               

       
 

               

 

               

               

  

      
               

      
               

        

                 
               

      
               

         

Dividing both sides of the equation by       and rearranging terms we get 

equation (2.28) 

  
     

 
   

   
    

                  

   
   

 

   
   

               

        

From equations        to        we observe that the right hand side term of        

is          . Therefore, the conditional value-at-risk of portfolio return can be 

optimized using a linear program with the left hand side expression of        as the 

objective function. The resulting LP that trades off the optimal     -measure of 

portfolio return at a prespecified confidence level        against the expected 

portfolio return   is written as  

                 
 

   
     

 
 

   
 

                                        

                                                    T                                

  
      T                    

  
                                  

 

 

 

 



32 
 

Solving the parametric program        for different values of the expected portfolio 

return   yields the     -efficient frontier. For each expected return target   , the 

optimal value of program        is the corresponding            The value of the 

free variable   at the optimal solution of        is the corresponding          

value. Program        optimizes the      risk measure for portfolio return and 

simultaneously determines the corresponding                As defined in       , 

in terms of portfolio return,      is a lower bound for                    

           Hence, by maximizing      program        should be expected to 

yield larger values for     as well. Computational issues aside, there is an ongoing 

debate among academics and practitioners whether     or      is the most 

appropriate metric for risk management.     is the industry standard for risk 

measurement. On the other hand,      has achieved popularity as a suitable risk 

measure in the insurance industry and is gradually gaining acceptance in the financial 

community. Its appeal lies not only in its theoretical properties of coherence, but 

also in its ease of implementation in portfolio optimization models and its ability to 

reduce the tail of the distribution, thus exercising risk management control. 

 

 

2.12.3      Mean Absolute Deviation (MAD) 

In the mean absolute deviation framework risk is defined as the mean absolute 

deviation of portfolio return from its expected value: 

 

                             

When the uncertain asset returns are represented in terms of a discrete scenario set 

the     metric becomes: 

           
 
     T     T     

In this case     can be optimized by the following linear program: 

                    
 

   
 

                            

                                                                                   T     

                                                           T                                                           

                                                T(                                                   
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The auxiliary variables    are introduced to linearize the absolute value expression, 

akin to the approach followed earlier to linearize the piecewise linear function 

                 in the      case. Again, by solving the parametric program 

       for various values of expected portfolio return   we can construct the    -

efficient frontier.     models have been applied to various portfolio optimization 

problems. 
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Chapter 3 

Utility Theory 

3.1    Introduction 

 

In economics, utility is a measure of the relative fulfillment from the consumption of 

different goods and services. Given this measure, one may speak meaningfully of 

increasing or decreasing utility, and thereby explain economic behavior in terms of 

attempts to increase one’s utility. Our fundamental concern is the choice between 

timeless risky alternatives, which we call the theory of investor choice. The theory of 

investor choice is just a specific corner of what has come to be known as utility 

theory. The theory begins with the five main presumptions about the behavior of 

individuals when confronted with the undertaking of ranking risky alternatives and 

the supposition of nonsatiation. The theory ends by parameterizing the objects of 

decision as the mean and the variance of return and by mapping trade-offs between 

them that yield the same level of utility to investors. In general, decision making 

under uncertainty might be viewed as ranking alternative probability distributions of 

returns, in view of a consistent set of preferences. No specification is made about 

the return distribution and the empirical distribution is posited to represent the 

underlying distribution.  

 

3.2    Five Axioms of Choice under Uncertainty 

 

In order to develop the theory of rational decision making, it is important to make 

some exact presumptions about an individual’s behavior. These presumptions, 

known as the axioms of cardinal utility, provide the minimum set of requirements for 

consistent and rational behavior.  
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 Axiom 1 → Comparability: For the whole set,   of uncertain outcomes, an 

individual can declare either that outcome   is preferred over outcome 

        or   is preferred to          or the individual is indifferent as to 

  and   (      

 

 Axiom 2 → Transitivity: If an individual prefers   to   and   to  , then   is 

preferred to  . If     and    , then    . If an individual is indifferent 

as to   and   and is also indifferent as to   and  , then he or she is indifferent 

as to   and    If     and    , then    . 

 

 Axiom 3 → Strong Independence: Suppose we construct a gamble where an 

individual has a probability   of receiving outcome   and a probability of 

      of receiving outcome    We will write this gamble as             

Strong independence says that if the individual is indifferent as to   and  , 

then he or she will also be indifferent as to a first gamble, set up between   

and probability   and a mutually exclusive outcome  , and a second gamble, 

set up between   with probability   and the same mutually exclusive 

outcome,     If      then                    

 

 Axiom 4→ Measurability: If outcome   is preferred less than   but more than 

 , then there is a unique   such that the individual will be indifferent 

between   and a gamble between   with probability   and   with probability 

       

If               , then there exists a unique  , such that 

            

 

 Axiom 5→Ranking: If alternatives   and   both lie somewhere between   

and   and we can establish gambles such that an individual is indifferent 

between   and a gamble   (with probability   ) and  , while also indifferent 

between   and a second gamble, this time between   (with probability   )  

and  , then if     is greater than    ,   is preferred to     

 

If       and      , then if              and               it 

follows that if      , then    , or if      , then      

 

These axioms of cardinal utility illustrate the following assumptions about behavior. 

First all individuals are assumed to always make completely rational choices. Second, 

people are assumed to be able to make these rational choices among thousands of 

alternatives.  
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3.3    Existence of Utility Function 

 

The relationship between wealth and the utility of consuming this wealth is 

described by a utility function. Each investor will have a different utility function. The 

utility function will have two properties. First, it will be order preserving. In other 

words, if we measure the utility of   as greater than the utility of   then      

      which means that   is actually preferred to  .  

This mathematically means that :                               

The second property is that the expected utility can be used to rank combinations of 

risky alternatives. Because different outcomes come with an associated probability 

distribution, different investments will be indexed by their expected utility. 

Generally, we can write the expected utility of wealth as follows: 

 

                

 

           

Given the five axioms of rational investor behavior and the additional presumption 

that all investors always prefer more wealth to less, we can conclude that investors 

will always seek to maximize their expected utility of wealth. All investors will use it 

as their objective function. In other words, they will seem to calculate the expected 

utility of wealth for all possible alternative choices and then choose the outcome 

that maximizes their expected utility of wealth. An important thing to keep in mind is 

that utility functions are specific to individuals. There is no way to compare one 

individual’s utility function to another’s. Another important property of cardinal 

utility functions is that we can sensibly talk about increasing or decreasing marginal 

utility. Consider two risky alternatives with outcomes   and   respectively. The 

difference between these two outcomes is marginal utility. Mathematically this can 

be expressed as follows: 

         

         
                       

 

where      and      are the two utility functions. Changes in utility between any 

two levels of wealth have the exact same meaning on the two utility functions; that 

is, one utility function is just a “transformation” of the other. 
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3.4     Properties of Utilities Functions 

 

Many investors do not obey all the rationality postulates when faced with a series of 

choice situations, even though they may find the underlying principles perfectly 

reasonable. Investors when faced with more complicated choice decisions, 

encounter aspects of the problem that were not of concern to them in the simple 

choice situations. The first constraint placed on a utility function is that it be 

consistent with more being preferred to less. Standard utility functions are 

monotone increasing and represent non-satiated preferences. Individuals prefer 

more wealth to less, so the first derivative of the utility function, with respect to 

wealth is positive,          This attribute, aka nonsatiation, simply signifies that 

the utility of more dollars       is higher than the utility of less     dollars. 

Equivalently, more wealth is always preferred to less wealth, in other words, the 

marginal utility of wealth is positive.  

The second constraint concerns the preferences for risk. Risk aversion, risk neutrality 

and risk-seeking behaviors are all defined relative to a fair gamble. A fair gamble is a 

gamble priced at its expected value; a risk-averse investor will always reject a fair 

gamble in favor of its mean value. A person who prefers the fair gamble is a risk 

lover; one who is indifferent is risk neutral; and one who prefers the actuarial value 

with certainty is a risk averter. The actuarial value of the gamble is its average 

outcome. Individuals exhibit risk aversion, hence this attribute implies a utility 

function that is convex or concave downwards, increasing thus at a decreasing rate. 

Mathematically this can be expressed as,         . 

Because we gain more utility from the actuarial value of the gamble obtained with 

certainty than from taking the gamble itself, we are risk averse. In general, if the 

utility of expected wealth is greater than the expected utility of wealth, the 

individuals will be risk averse. The three definitions are the following: 

 

                   ,then we have risk aversion          

 

                   then we have risk neutrality          

 

                   then we have risk loving          

 

We must denote that risk neutrality implies a linear utility function; risk loving 

implies a convex utility function and finally if the utility function is strictly concave, 

then we will be risk averse. Figure 3.1 depicts the three utility functions in the wealth 

space exhibiting alternative properties with respect to risk.  
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Figure 3.1: Three utility functions with positive marginal utility: (a) risk-lover; (b) risk neutral; 

(c) risk averter. 

 

It is even possible to calculate the maximum amount of wealth an individual would 

be willing to give up in order to avoid the gamble. This is called the risk premium. We 

have the ability to compute the risk premium as the difference between an 

individual’s expected wealth, given the gamble, and the level of wealth that the 

individual would accept with certainty if the gamble were removed, that is what we 

called the certainty equivalent wealth. Moreover, there is another norm that might 

be called the cost of gamble. It is defined as the difference between an individual’s 

current level of wealth and his or her certainty equivalent wealth. For a risk averter 

the risk premium as defined above is always positive, whereas the cost of the gamble 

can be positive, negative or zero, depending on the risk of the gamble and how much 

it is expected to change one’s current level of wealth.  

The third property of utility functions that is sometimes presumed is an assumption 

about how the investor’s preferences change with a change in wealth. If the investor 

increases the amount invested in the risky assets as wealth increases, then the 

investor is said to exhibit decreasing absolute risk aversion. If the investor’s 

investment in risky assets is unchanged as wealth changes, then he or she is said to 

exhibit constant absolute risk aversion. Finally, if the individual invests fewer dollars 

in risky assets as wealth increases, then he is said to exhibit increasing absolute risk 

aversion. The index that can be used to measure an investor’s absolute risk aversion 

(ARA) is the Pratt-Arrow measure of a local risk premium. We shall define the 

measure of absolute risk aversion as: 
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It is called absolute risk aversion because it measures risk aversion for a given level 

of wealth. The Pratt-Arrow definition of risk aversion is quite important because it 

provides much more insight into people’s behavior when confronted with risk. The 

table below summarizes the relevant properties. 

 

Condition Definition Property of      

Increasing Absolute Risk 
Aversion (IARA) 

As wealth increases hold 
fewer dollars in risky assets 

        

Constant Absolute Risk 
Aversion (CARA) 

As wealth increases hold the 
same amount of dollars in 

risky assets 

        

Decreasing Absolute Risk 
Aversion (DARA) 

As wealth increases hold 
more dollars in risky assets 

       . The utility 
function is positively skewed; 

that is           
 

Table 3.1:  Properties and alternative conditions concerning ARA. 

 

The final characteristic that is used to restrict the investor’s utility function is how 

the percentage of wealth invested in risky assets changes as wealth changes. We can 

multiply the measure of absolute risk aversion by the level of wealth to obtain what 

is known as relative risk aversion (RRA):  

 

 

 

       
      

     
                   

 

 

 

Relative risk aversion is related to absolute risk aversion but RRA concerns the 

change in the percentage investment in risky assets as wealth changes, whereas ARA 

refers to dollar amounts invested in risky assets. The following table presents all the 

relevant properties for relevant risk aversion. 
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Condition Definition Property of       

Increasing Relative Risk 
Aversion (IRRA) 

Percentage invested in 
risky assets declines as 

wealth increases. 

        

Constant Relative Risk 
Aversion (CRRA) 

Percentage invested in 
risky assets is unchanged as 

wealth increases. 

        

Decreasing Relative Risk 
Aversion (DRRA) 

Percentage invested in 
risky assets increases as 

wealth increases. 

        

 

Table 3.2:  Properties and alternative conditions concerning RRA. 

 

 

3.5     Quadratic Utility Functions and their Limitations  

 

We can use the previous definitions of risk aversion to provide a more detailed 

examination of different types of utility functions to see whether or not they have 

decreasing     and constant    . The quadratic utility function has been widely 

used in academic literature. This type of utility function may be satiated and entail 

problematically increasing absolute and relative risk aversion coefficients. While 

there is a general agreement that most investors exhibit decreasing absolute risk 

aversion, there is much less agreement considering relative risk aversion. Moreover, 

people often assume constant relative risk aversion. The justification for this, 

however, is often one of convenience rather than a belief about descriptive 

accuracy. 

We can now introduce the properties of the quadratic utility function that can be 

written as follows: 

 

                                       ; 

                                 :            ; 

                                                  :             

 

For the quadratic utility function,     and     are:  
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As we can observe, unfortunately, the quadratic utility function exhibits increasing 

    and increasing    .  

 

 

3.6     Power Utility Functions and their Properties 

  

In economics, the isoelastic function for utility, also known as power utility function 

is used to express utility in terms of consumption or some other economic variable 

that a decision-maker is concerned with such as his or her level of wealth. The power 

utility function is a special case of Hyperbolic Absolute Risk Aversion and at the same 

time is the only class of utility functions with Constant Relative Risk Aversion, which 

is why it is also called the      utility function. It can be written as follows: 

 

                                            

 

For this power utility function,     and     are: 

 

      
    

   
 

 

 
                    

 

      
 

 
                                        

 

We can observe that this particular type of utility function exhibits all the reasonable 

properties: the marginal utility of wealth is positive, it decreases with increasing 

wealth, the measure of     decreases with increasing wealth and     is constant. 
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Stochastic Dominance and Decision Rules 

 

3.7      Stochastic Dominance and Decision Rules 

 

Stochastic Dominance is presently employed in various areas of economics, finance 

and statistics. The concept of Stochastic Dominance is quite old. For equal mean 

distributions, Karamata proved in 1932 a theorem which is very similar to the Second 

Degree Stochastic Dominance. Blackwell (1951,1953) used similar concepts in the 

comparison of the statistical experiments. The application of these Stochastic 

Dominance concepts in decision theory began about 40 years ago. Statisticians 

employ majorization theory of various orders, which is parallel to Stochastic 

Dominance theory. However, the application of majorization theory in statistics is 

quite remote from the analysis and applications of Stochastic Dominance theory in 

economics and finance. The theory of Stochastic Dominance and its many theoretical 

and empirical extensions in economics and finance were developed only after 1969-

1970, when four papers were independently published by Hadar and Russell (1969), 

Hanoch and Levy (1969), Rothschild and Stiglitz (1970) and Whitmore (1970). Since 

that time, hundreds of papers have been written on the topic. 

Since the publication of these original four papers, the following four main areas 

have developed: 

 Further theoretical development. These theoretical studies focus on the 

following topics: (i) the ordering of uncertain options for specific return 

distributions, (ii) Stochastic Dominance rules for restricted classes of utility 

functions, (iii) Stochastic Dominance rules when a riskless asset is allowed, 

(iv) Stochastic Dominance for the multiperiod case, (v) diversification 

between risky assets, (vi) multivariate analysis, (vii) the role of Stochastic 

Dominance rules in nonlinear utility theory, and (viii) Stochastic Dominance 

of transformed random variables.  

 Application of Stochastic Dominance rules to empirical data. Various 

algorithms have been developed in this area. Several necessary conditions 

have been proposed which increase the efficiency of calculations. 

 Applications of Stochastic Dominance rules to other economic and financial 

issues. These issues include (i) optimum financial leverage with bankruptcy, 

(ii) optimum production, (iii) measuring income inequality, (iv) the analysis 

and definition of risk, (v) measuring bankruptcy risk by using data taken from 

bond market, (vi) portfolio insurance, (vii) option valuation.  
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 Application of Stochastic Dominance rules in statistics. While majorization 

theory is widely used in statistics and in experimental design, a relatively new 

application involves choosing among various estimators of a given parameter. 

The Stochastic Dominance rules enable the selection of Stochastic 

Dominance efficient estimators.  

 

 

3.7.1     Partial Ordering: Efficient and Inefficient Sets 

 

So far we have discussed the axioms of investor preference, then used them to 

develop utility functions and finally employed the utility functions to measure risk 

premium and derive measures of risk aversion. Obviously, any decision-maker, 

whether risk averse or not, will seek to maximize the expected utility of his or her 

level of wealth. If there is full information on preferences, we simply compute the 

expected utility of all the competing investments and select the one with the highest 

expected utility. In such case, we reach at a complete ordering of the investments 

under consideration. Moreover, with a complete ordering, we can rank the 

investments from best to worst. In general, however, we have only partial 

information on preferences (e.g., risk aversion) and, therefore, we arrive only at a 

partial ordering of the available investments. Stochastic Dominance rules as well as 

other investments rules such as the mean-variance rule employ partial information 

on the investor’s preferences or the random variables and therefore, they produce 

only partial ordering.  

Suppose that all we know is that the utility function is non-decreasing with       

namely, investors always prefer more money than less money. As a consequence, we 

have partial information on the utility function and its exact shape is not known. We 

will now introduce some definitions, all of which are commonly used in the financial 

literature and which are needed for the explanation of partial and complete 

ordering. 

The feasible set is defined as the set of all available investments under consideration. 

Then, using an investment rule, we can divide the whole feasible set, into two sets: 

the efficient set and the inefficient set. These two sets are mutually exclusive and 

comprehensive; namely:                                                     

Figure 3.2 demonstrates the division of the feasible set, into two sets, the inefficient 

set and the efficient set. In this figure, the feasible set includes five investments    , 

    and  . Each investment included in the feasible set must be either in the 

efficient set or in the inefficient set. Now let’s assume that the only information we 

have is that       Thus,              where    is the set of all non-

decreasing utility functions. We demonstrate below the concept of the efficient set 

and the inefficient set and the relationship between the two sets for this particular 
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type of information (namely         Before we define the efficient set and the 

inefficient set formally, we need the following definitions. 

Dominance in   : We say that investment   dominates investment   in    if for all 

utility functions such that     ,               and for at least one utility 

function       there is a strict inequality. 

Efficient Set in   : An investment is included in the efficient set if there is no other 

investment that dominates it. The efficient set includes all the undominated 

investments. Referring to Figure 3.2 we can say that investments   and   are 

efficient. Neither   nor   dominates each other. In particular, there is a utility 

function        such that                  and there is another utility 

function,        such that                  Therefore, neither   nor   is the 

‘’best’’ for all investors included in the group     . Some investors may choose   

and some may prefer    and there is no dominance between   and  . 

 

 
 

Figure 3.2: The feasible, the Efficient and the Inefficient Sets. 

 

Inefficient Set in     The inefficient set includes all inefficient investments. The 

definition of an inefficient investment is that there is at least one investment in the 

efficient set that dominates it. Figure 3.2 shows that investments     and   are 

inefficient. For example, we might have the following relationships: 

 

              
 

              
 

              
 

             
 
 

Feasible 

Set 

Efficient Set 

Inefficient 

Set 
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Thus, the efficient investment   dominates investment   and    and the efficient 

investment   dominates investment  . There is no need for an inefficient 

investment to be dominated by all efficient investments. One dominance is enough 

to relegate an investment to the inefficient set. The partition of the feasible set to 

the efficient set and inefficient set depends on the information available. In the 

previous example, we have assumed that     . If, for example in addition to      

,we assume also that       or any other relevant restriction, we will get another 

partition of the feasible set to inefficient set and efficient set reflecting the 

additional information. In general, for any given piece of information, the smaller the 

efficient set relative to the feasible set, the better off the investors. In investment 

choice with partial information there are two decision stages; the first involving the 

investment consultant and the second the individual investor. The two stages are as 

follows: 

 
 The objective decision: In the first stage, the initial screening of investments 

is accomplished by partitioning the feasible set into the efficient set and the 

inefficient set. Due to the fact that the efficient set generally includes more 

than one investment and we cannot tell which one is the best, this stage 

provides only partial ordering. If we posses full information such as the 

specific type of the utility function, then the efficient set will include only one 

investment and we arrive at a complete ordering of the investments. 

 The subjective decision: The optimum investment choice by the investor 

from the efficient set. This optimal choice maximizes the investor’s expected 

utility. This is a subjective decision because it depends on the investor’s 

preferences. All investors will choose their optimal portfolio from the 

efficient set according to their preferences. Therefore, there will be little or 

no agreement between investors, because each one of them will select his 

optimal portfolio according to his particular preferences.    

 
 
 
3.7.2     First Degree Stochastic Dominance (FSD) 
 
In this section, we present the First Stochastic Dominance in detail. However, 

because Stochastic Dominance rules rely on distribution functions, some discussion 

of probability function, density function and cumulative probability function are 

called for before turning to the FSD rule. 
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3.7.2.1     Probability function, density function and cumulative probability function 
 
Consider the pair       where   is the outcome and      is its corresponding 

probability that is called a probability function. If the random variable   is 

continuous, then the probability function is replaced by the density function       

The cumulative probability function denoted by      is given as: 

 

                                               

   

           

and  
 

                                               

 

  

             

 
where   denotes a random variable and   a particular value. 
 

3.7.2.2     The First Stochastic Dominance Rule 

  

Suppose, now that an investor wishes to rank two investments whose cumulative 

distributions are   and  , respectively. The     rule is a criterion that tells us 

whether one investment dominates another investment where the only available 

information is that     , that is     . In fact, this is the weakest assumption on 

preference because we assume only that investors like more money rather than less 

money, which conforms to the monotonicity axiom. Moreover, we assume that   is 

a continuous non-decreasing function which implies that it is differentiable apart 

from a set of points whose measure is zero. In what follows we presume investors 

maximize the von Neumann-Morgenstern expected utility.  

           Let   and   be the cumulative distributions of two distinct uncertain 

investments. Then   dominates   by    , which we denote by      where    

denotes dominance by the first degree and the subscript 1 indicates that we assume 

only one piece of information on  , namely that   is nondecreasing, for all      if 

and only if           for all values of    and there is at least some    for which a 

strong inequality holds. As     relates to     , it can be expressed as follows: 

 
                                                                  

 
 
In Figure 3.3 we can observe five cumulative distributions representing the feasible 

set that include all the possible investments. It is easy to show that the     efficient 

set contains    and    and the     inefficient set contains       and   . Several 

conclusions can be drawn from Figure 3.3: 
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i.     dominance requires that the two distributions being compared do not 

cross but they can tangent each other. For example,    dominates    in spite 

of the fact that there is a range where                dominates    

because the following holds:             for all values and there is at least 

one value   for which              . 

ii. An inefficient investment should not be dominated by all efficient 

investments. Dominance by one investment is enough.    does not dominate 

      and    because they intersect but    dominates all these three 

investments. Therefore, in order to be relegated into the inefficient set, it is 

sufficient to have one investment that dominates the inefficient investment. 

iii. In the inefficient set, one investment may or may not dominate another 

investment in the inefficient set.        but        and       . However, 

dominance or no dominance within the inefficient set is irrelevant because all 

investments included in this set are inferior; no investor with preference 

     will select an investment from the inefficient set.  

iv. An investment within the inefficient set cannot dominate an investment 

portfolio within the efficient set because if so dominance were to exist then 

the latter would not be included in the efficient set. For instance, if    were 

to dominate     then   would not be an efficient investment. 

v. Eventually, all investments within the     efficient set must intercept. In our 

example,    and    intercept. Without such an interception, one distribution 

would dominate the other and neither would be efficient.  

 

 
 

Figure 3.3:  The FSD Efficient and Inefficient Sets. 

 

 

Cumulative Probability 

Return x 
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The interception of   and    implies that there is a        such that: 

 

                  

 

and there is another utility function       such that :  

 

                  

 

Thus, all investors in the class      will agree on the content of the     efficient 

and inefficient sets; none of them will select their optimum choice from the 

inefficient set. However, they may disagree on the selection of the optimal 

investment from the efficient set; one may choose    and another may choose   . 

 

3.7.2.3     Optimal Rule, Sufficient Rules and Necessary Rules for FSD 

An optimal decision rule is defined as a decision rule, which is necessary and 

sufficient for dominance. The     rule is the optimal rule for      because it is a 

sufficient and a necessary condition for    . Mathematically, an optimal rule for the 

set of      is defined as follows: 

                                                  

 

Especially,      implies that for every     ,   is preferred over   and the 

converse also holds; if it is known that for every     ,   is preferred over  , then 

          holds for all values of   with a strict inequality for some   . 

An optimal rule is the best available rule for a given set of information. Suppose that 

we know that      but there is no  information on the precise slope of the utility 

function. This means that there is no better rule than the     for the assumption 

asserting that      which, in turn, implies that there is no other investment rule 

that provides a smaller efficient set than the     efficient set. Hence, an optimal 

decision rule for all   such that      provides the smallest efficient set for the 

given information on preferences. 

Let’s assume that there is a sufficient rule for    which we denote by  . If 

  dominates   by this sufficient rule denoted as      then               for 

all     . Any decision rule with the previous property is defined as a sufficient 

investment rule. At this point, we will demonstrate a few sufficient rules for       

 Sufficient Rule 1:   dominates   if                  

This is a sufficient rule because whenever it holds,     , which in turn 

implies that               for all       
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 Sufficient Rule 2:   dominates   if           for all   and there is at least 

one value    such that:              , where   is some fixed positive 

number.  

Suppose now that               for all       implies that some condition 

must hold such that            . Then we call this condition a necessary rule for 

dominance. We refer below the three more necessary rules for dominance in      

 Necessary Rule 1 → The means.  

If     , then the expected value of   must be greater than the expected 

value of    Thus,             is a necessary condition for    . 

 

 Necessary Rule 2 → The Geometric Means. 

If       then the geometric mean of   must be larger than the geometric 

mean of  .  

 

 Necessary Rule 3 → The ‘’Left Tail’’ condition. 

If     , it is necessary that:                  

This means that distribution   starts to accumulate area before distribution 

   This is called the ‘’left tail’’ condition because the cumulative distributions 

imply that G has a thicker left tail.   

 

 

3.7.3     Second Degree Stochastic Dominance (SSD) 

 

So far, the only assumption that we have made is that     . There is much 

evidence that most, if not all, investors are probably risk averters. Hence, we 

develop a decision rule that is appropriate for all risk averters. In the subsequent 

analysis, we will deal only with non-decreasing utility function,     , and we have 

added the assumption of risk aversion. As we have already mentioned in previous 

sections, risk aversion can be defined in the following alternative ways: 

a) The utility function has a non-negative first derivative and a non-positive 

second derivative and there is at least one point at which:      and one 

point at which        

b) If we take any two points on the utility function and connect them by a 

chord, then the chord must be located either below, or on, the utility 

function and there must be at least one chord which is located strictly below 

the utility function.  
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c) The expected utility is smaller or equal to the utility of the expected return. 

The property of concave functions, that is      and       is called 

Jensen’s Inequality: accordingly, for any concave function, the following will 

hold:    

                , where   is the level of wealth. 

d) A risk averter will not play a fair game. A fair game is defined as a game in 

which the price of a ticket to play the game is equal to the expected price. 

e) Risk averters will be ready to pay a positive risk premium in order to insure 

their wealth.  

 

We can define the set of all concave utility functions corresponding to risk aversions 

by   . It is obvious, that      , where    corresponds to      In the next 

theorem, we provide a decision rule for all       In the first place, we assume 

continuous random variables and then we extend the results to discrete random 

variables. 

           Let   and   be two investments whose density functions are      and 

    , respectively. Then   dominates   by second degree stochastic dominance 

(    , which we denote by      for all risk averters if and only if: 

                

 

  

                                    

and there is at least one    for which a strong inequality holds. This Theorem can 

also be stated as follows: 

 

                
 

  
                               

                                                                                                                                  

 

The     integral condition for dominance implies that the area enclosed between 

the two distributions under consideration should be non-negative up to every point 

   When we examine whether   dominates  , whenever   is below    we denote 

the area enclosed between the two distributions by ‘’+’’ area, and whenever   is 

below    we denote the area enclosed between the two distributions by “-“ area. 

When we examine whether   dominates  , the opposite area signs are used. Figure 

3.4 illustrates two cumulative distributions   and  .     dominance may exist 

irrespective of the number of times that the two distributions intersect. As we can 

observe   dominates   by    . The integral                 
 

  
 for all values 

of    and there is at least one strong inequality, say at   . Therefore   dominates   if 

for any negative area, there is a positive area located to the left of    which is equal 

or larger than the negative area.  
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Figure 3.4: The area enclosed between the two distributions F and G. F dominates G by SSD. 

 

In Figure 3.4 there are only a few intersections of   and  . Let us generalize the     

condition for a larger number of intersections between   and    By the integral 

condition for any negative area there must be positive areas located earlier such that 

the sum of the positive areas is larger than the sum of all negative areas 

accumulated up to   . We denote by    and    the negative and the positive areas, 

respectively. We then employ the absolute values of the areas for all area 

comparisons. Suppose that   and   intersect   times,         We order all the 

areas enclosed between   and   from the lowest intersection points of   and   to 

the highest intersection points of   and   as follows: 

 

               

 

where    can be a positive area or a negative area. Now assume that   
  is the first 

negative area. Then by the     rule, for the first negative area   
  , we must have 

that: 

                        
     

 

   

   

                           

 

Now suppose that i is the first negative area and m is the second negative area. Then 

by the      we must have that:  

                  
      

     
 

   

   

                   

Generally, for the     negative area, we must have that:  

 

                           
 

 

    

    
                   

 

   

 

Cumulative 

Probability 

Return x 
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where there are   positive areas before the     negative area. Namely, up to any 

point corresponding to a negative area, the sum of the positive areas must be larger 

than the sum of the negative areas.  

 

3.7.3.1    Sufficient Rules and Necessary Rules for SSD 

 

As in the case of    , there exist many sufficient rules for risk aversion which imply 

   . We will consider here three of such sufficient rules. 

 Sufficient Rule 1: The     rule is a sufficient rule for      Recall that if      

then           for all x. Therefore             for all   and because 

the integral of non-negative numbers is non-negative, we have : 

 

                            
 

  
                            

 

Thus, if risk aversion is assumed, the     rule can be employed and any 

investment relegated to the inefficient set with     will also be relegated to 

the inefficient set with      However, this sufficient rule may result in a 

relatively large efficient set.  

 

 Sufficient Rule 2:                 is a sufficient rule for      Like the 

    rule, this rule implies that           for all values of   and because 

the latter implies      we can state that: 

 

                                                    

 

Indeed, any rule, which is sufficient for the      must be also be sufficient 

for     because     dominance implies     dominance. 

 

 Sufficient Rule 3: This sufficiency rule for     bears no relationship to     

dominance; namely   dominates   if: 

                                               

 

  

 

 

This          is sufficient for     because if it holds for all  , then  

                
 

  
. 
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 We now turn to the necessary rules for risk aversion that imply    . 

 

 Necessary Rule 1 → The means.             is a necessary condition for 

  over   in   . Note that unlike     here a strong inequality             

is not a necessary condition for    . 

 

 Necessary Rule 2 → The Geometric Means. 

  geo       geo    is a necessary condition for dominance of   over   by 

   .  

 

 Necessary Rule 3 → The ‘’Left Tail’’ condition. 

A necessary rule for        is that                   namely the left tail 

of G must be “thicker”.  

 

 

 

3.7.4     Third Degree Stochastic Dominance (TSD)  

 

3.7.4.1    The definition of positive skewness as a motivation for TSD 

 

So far we have assumed either that      from which we derived the 

corresponding     rule or alternatively that      and       from which we 

derived the corresponding     rule. In this section we derive a decision rule called 

Third Degree Stochastic Dominance corresponding to the set of utility functions 

     where             and           However before we turn to this 

decision rule, we must first discuss the economic rationale for the additional 

assumption asserting that       . As we have already mentioned in previous 

sections the assumptions      and       assume that the investor prefers more 

money to less money and that the investor is risk averter, respectively. The 

economic justification for        is related to the distribution skewness.  

Skewness of a distribution of rate of return or the distribution’s third central 

moment, denoted by    is defined as follows: 

 

              
 

   

                     

for discrete distributions, where   is the number of observations and         is the 

probability function, and  

                 

 

  

            

for continuous distributions. 
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The prizes of a lottery game are generally positively skewed because there is a small 

probability of winning a very large prize. Additionally, the value of an uninsured 

house is negatively skewed because of the small probability of a heavy loss due to a 

fire. Finally, for symmetrical distributions such as the normal distribution the 

negative and positive deviations cancel each other out and the skewness is zero. In 

particular, investors choose to insure their houses, in order to reduce the variance of 

the future value as well as the negative skewness of an uninsured house drops to 

zero. This behavior of purchasing home insurance can be interpreted in two ways: 

People insure their houses because they dislike variance and they also dislike 

negative skewness. Home insurance ensures a certain income; thus the insurance 

company is actually selling the negative skewness as well as the variance. Similarly, 

when people buy a lottery ticket, variance and positive skewness are created. 

Therefore, buying a lottery ticket can be explained by asserting that the investor 

likes variance or the investor likes positive skewness because with a lottery ticket 

both variance and skewness increase.  

In order to explain the relationship between      and skewness more precisely, we 

expand the utility function into a Taylor series around the point        where the 

utility function is           denotes the initial level of wealth and   is a random 

variable. 

                               
         

  
       

 
          

  
              

 

Taking the expected value from both sides and using the fact that           

yields: 

                
         

  
  
  

          

  
        

 

If other factors are held constant, then the higher the   
 , the lower the expected 

utility of a risk averter, because       and the higher the skewness, the higher the 

expected utility as long as       . Therefore, if       the investor will dislike the 

variance and if        then the investor will dislike negative skewness and like 

positively skewness. 
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3.7.4.2   The Relationship between Positive Skewness and Decreasing Absolute Risk 

Aversion (DARA). 

 

Another rationale for the assumption that        relies on the observation that the 

higher the investor’s wealth the smaller the risk premium that he or she will be 

willing to pay to insure a given loss. As we have already described Arrow and Pratt 

determined that the risk premium is given by the following formula: 

 

      
  

 

      

     
              

 

It has been observed that the larger the wealth, the smaller the average amount of 

risk premium that the investor will be willing to give up in order to get rid of the risk. 

Formally, this claim is that         . Using the above definition of     , this 

means that the following must hold: 

 

       
  

 

                      

        
              

 

 and this can hold only if              

 

To sum up participation in a lottery and buying insurance provides some evidence 

that          . The empirical studies and the observation that         provide 

much stronger evidence for the preference for positive skewness and aversion to 

negative skewness, which in turn, strongly support the hypothesis that          . 

This evidence is strong enough to make it worthwhile to establish an investment 

decision rule for      where            and         

 

 

 

3.7.4.3     The Third Stochastic Dominance Rule 

 

The optimal investment rule for      is given in the following Theorem. 

           Let  (x) and  (x) be the cumulative distributions of two investments 

whose density functions are      and     , respectively. Then   dominates   by 

third degree stochastic dominance (    , which we denote by       if and only if 

the following two conditions hold: 
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and there is at least one    for which a strong inequality holds. This Theorem can 

also be stated as follows: 

 

                 

 

  

  

 

  

                            

                                              

We call such a dominance third-degree because assumptions of the third order are 

made on   (i.e,            and          It is worth to mention that a 

preference of one investment over another by     may be due to the preferred 

investment having a higher mean, a lower variance or a higher positive skewness. 

 

 

3.7.4.4     Sufficient Rules and Necessary Rules for TSD 

 

    is a necessary and sufficient decision rule for all     . However, we can 

establish various sufficient rules and necessary rules for      dominance. We will 

consider here three of such sufficient rules. 

 Sufficient Rule 1: The     rule is a sufficient rule for      If     , then 

          for all   with at least one strong inequality. This implies that: 

            and                  
 

  
  

 

  
 because     implies 

that the superior investment has a higher mean and that           is non-

negative.   

 

 Sufficient Rule 2:     is a sufficient rule for      If      then: 

 

                

 

  

                      

     Then: 

 

                 

 

  

  

 

  

 

 

Thus,      implies that the two conditions required for     dominance 

hold; hence     .  

To add one more explanation for these sufficiency rules recall that: 
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                   for all      and because      , it is 

obvious  that               for all        A similar explanation holds 

for the sufficiency of     because        

 

Of course, many more sufficient rules are possible. However,  the most important sufficient 

rules for      are the     and     conditions. We now turn to the necessary 

rules which imply    . 

 

 Necessary Rule 1 → The means. Unlike     and    ,     explicitly requires 

that              in order to have     . This condition on the expected 

values is a necessary condition for   over   in   . Note that for     and     

we had to prove that this condition was necessary for dominance but for 

     there is nothing to prove because it is explicitly required by the 

dominance condition. 

 

 Necessary Rule 2 → The Geometric Means.  

Suppose that        

Then:                       because                 .  

Hence the geometric mean of   must be greater or equal to the geometric 

mean of   is a necessary condition for dominance in   . 

 

 Necessary Rule 3 → The ‘’Left Tail’’ condition. Like     and    , for     , 

the left tail of the cumulative distribution of   must be “thicker” than the left 

tail of  . In other words,                 is a necessary condition for 

    .   

 

 

 

 

3.7.5     Stochastic Dominance with a Riskless Asset 

 

The difficulty with Stochastic Dominance rules is that, in general, it results in a large 

efficient set of investments, i.e in many cases this framework is unable to rank the 

two risky investments under consideration. The well-known mean-variance rule 

suffers from a similar drawback. However, when riskless borrowing or lending is 

allowed, the mean variance approach provides a sharper decision which makes it 

possible to derive an equilibrium pricing relationship known as the capital assets 

prices model (CAPM). Similar ideas are also applied to Stochastic Dominance.  

When the riskless asset is allowed, the Stochastic Dominance analysis is denoted by 

   . We say that   dominates   in the     framework, if and only if, for every 
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element in {    there is at least one element in {    which dominates it in the 

Stochastic Dominance framework, where {    and {    contain all the linear 

combinations of the riskless and risky assets given by the {              and 

{             , respectively. We denote the corresponding    ,     and 

    rules with a riskless asset by           and     , respectively. 

    rules provide a sharper decision relative to Stochastic Dominance rules, hence a 

smaller efficient set of risky investments is obtained. To see the intuition of this 

results let us focus on the comparison of     and     . Suppose that two 

cumulative distributions   and   intersect, hence no     prevails. By mixing   with 

the riskless asset one creates a new distribution   .    rotates about the vertical line 

   . If one can find a mix such that    is located completely below  , we have 

    of    over     Levy and Kroll (1978) show that if such an   exists, then, for any 

selected    one can find      such that    dominates    and hence   dominates 

  by     . Thus   may dominate   with a riskless asset even of dominance does 

not exist in the absence of the riskless asset. This implies that the     efficient sets 

are no larger than the Stochastic Dominance efficient sets. Similar intuitive 

explanations hold in the comparisons of     and     , and     and     . 

 

 

To summarize this section, we must note the following two results: It is well known 

that               only if      . Such a requirement is not necessary for 

dominance by           or     , since the mean of the risky portfolio can be 

changed by altering the proportion of the riskless asset in the mixed portfolio. 

Similarly, for Stochastic Dominance, a necessary condition for   to dominate   is 

that its left tail must be located to the right of the left tail of the distribution of  . 

Such a necessary condition is not required for     since by mixing   with the 

riskless asset,   rotates about the vertical line     so that the left tail of the new 

distribution is below  .  

The Stochastic Dominance and     criteria are related as follows: 

 

             

 

 

               

 

Since all these rules are transitive, it is obvious that     implies      and      

and     implies     . Thus, the     -efficient set must be a subset of all the 

other efficient sets derived by either the           criteria. 

 

 

 



 



59 
 

 

 

 

Chapter 4 

Empirical Analysis 

4.1 Empirical Analysis 

In this study, we use the concepts of first-order stochastic dominance, second-order 

stochastic dominance and third-order stochastic dominance as well as the 

     approach, including three different investment tactics, in order to construct 

optimal portfolios. In particular, we propose to determine the optimal portfolios 

based on the         and     criteria to find the optimal portfolio weights. We 

implement all the alternative models in the General Algebraic Modeling System 

(GAMS). In constructing our FSD-based portfolio we adopt 0-1 Mixed Integer Linear 

Programming developed in Kuosmanen (2004), as well as the construction of our 

SSD-based and TSD-based portfolios are formulated in terms of standard Linear 

Programming developed once again in Kuosmanen (2001,2004). Furthermore, in 

order to compare the performance of the optimal competing portfolios, we evaluate 

all these alternative portfolios with respect to the market benchmark portfolio using 

several performance measures such as the Sharpe Ratio, the Sortino Ratio, the 

opportunity cost and portfolio turnover. 
In the empirical tests we consider investments in the US market. We want to 

construct several optimal portfolios based on alternative strategies. We use data on 

monthly closing prices of S&P500, as well as a number of stocks obtained by 

Datastream. We choose assets from different sectors as these have been categorized 

by The Global Industry Classification Standard (GICS) and thus a total number of 30 

assets are concerned in each portfolio. With respect to the sectors of the alternative 

asset classes we have chosen the following large-cap companies stocks (based on 

their market capitalization): Microsoft Corp., Oracle Corp. and Intel Corp. from the 

Information Technology sector; Amazon Inc., McDonald’s Corp., Wal-Mart stores 

derived from the Consumer Discretionary sector; Exxon Mobil, Chevron Corp., 

ConocoPhillips from the Energy sector; Medtronic plc, Pfizer Inc., Johnson&Johnson 

from the HealthCare sector; General Electric, MMM, Northrop Grumman Corp. from 
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the Industrial sector; Procter & Gamble, PepsiCo Inc., Coca Cola Company derived 

from the Consumer Staples sector; AT&T Inc., Verizon Communications, CenturyLink 

Inc. from the Telecommunications Services sector; JPMorgan Chase & Co., Bank of 

America Corp., Wells Fargo from the Financial sector; American Electric Power, 

Southern Co., Sempra Energy derived from the Utilities sector and Ecolab Inc., Air 

Products & Chemicals Inc, PPG Industries from the Materials sector. 

From the data of index prices we computed their corresponding monthly returns 
using the following formula: 
 

   
         

     
         

 
All time series have a monthly time-step and cover the period from December 1999 
to July 2016, thus we have obtained 200 scenarios.  
Table 4.1 reports summary descriptive statistics regarding the performance of the 

selected assets as well as the Benchmark over the simulation period. We can observe 

that Amazon exhibits the highest monthly average return however it also has the 

greatest standard deviation. General Electric appears to have the smallest value of 

mean return during the planning horizon. PepsiCo has the lowest standard deviation 

among all the assets. Moreover, in all cases there is a positive correlation among the 

selected assets with the Benchmark. In particular General Electric yields the highest 

correlation with the Market Index, while Southern seems to have the worst 

correlation, respectively.  
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Table 4.1: Descriptive Statistics 
Entries report the descriptive statistics for the alternative asset classes as well as the Market 

Index(S&P500) used in this study. The mean returns, the standard deviations, the skewness, the 

kurtosis and the correlation between the selected assets and the Benchmark are reported. The dataset 

spans the period from December 1999 to July 2016. 

 

 Average Return Standard Deviation Skewness Kurtosis Correlation 

Market Index 0,451 4,328 -0,519 3,944 1 

Microsoft 0,579 8,919 0,347 5,956 0,592 

Oracle 0,731 9,985 0,219 6,334 0,533 

Intel 0,657 10,241 -0,515 5,284 0,620 

Amazon 2,180 14,407 0,437 5,767 0,497 

McDonalds 0,908 5,836 -0,461 5,389 0,494 

WalMart 0,320 5,554 -0,214 4,219 0,304 

ExxonMobil 0,716 4,973 0,339 4,578 0,467 

Chevron 0,892 6,029 0,174 3,824 0,565 

ConocoPhillips 0,989 7,773 -0,103 3,899 0,559 

Medtronic 0,748 6,155 -0,130 5,484 0,472 

Pfizer 0,472 5,767 -0,100 2,959 0,483 

Johnson&Johnson 0,796 4,741 -0,235 4,567 0,388 

GeneralElectric 0,293 7,637 -0,174 4,616 0,730 

MMM 1,019 5,742 0,098 3,883 0,576 

NorthropGrumman 1,508 6,782 0,132 6,494 0,376 

Procter&Gamble 0,603 5,271 -1,778 13,405 0,213 

Pepsico 0,854 4,525 -0,358 5,830 0,424 

Cocacola 0,543 5,118 -0,379 4,043 0,383 

AT&T 0,535 6,663 0,169 4,949 0,426 

Verizon 0,570 6,849 0,934 8,106 0,455 

Centurylink 0,410 8,118 -0,039 8,036 0,445 

JPMorgan 0,805 9,097 -0,187 3,987 0,679 

BankofAmerica 0,748 12,005 0,454 11,702 0,545 

Wellsfargo 1,011 7,984 0,111 10,270 0,476 

AmerElecPwr 0,930 5,978 -0,165 4,108 0,308 

Southern 1,151 4,705 0,309 6,213 0,064 

Sempra 1,325 5,551 -0,222 3,994 0,331 

Ecolab 1,192 5,833 0,130 6,949 0,499 

AirPrds&Chems 1,184 6,670 -0,125 4,394 0,643 

PPG Industries 1,082 6,989 0,212 3,929 0,706 
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4.2     Constructing optimal portfolios using      optimization model 

  

We examine the performance of various decision strategies in static as well as in 

dynamic tests to identify the most promising tactic. In static test we constructed the 

risk-return profile (efficient frontier) generated with appropriate variants of the 

model at a certain point in time. The static test considered     -related portfolio 

selection problems. The models were repeatedly run for various levels of minimum 

expected return. 

The solutions trace the corresponding efficient frontier of expected portfolio return 
vs. the      risk metric of portfolio losses (at        ) over the planning horizon. 
The efficient frontier, depicted in Figure 4.1, is determined in-sample; that is, with 
respect to the postulated scenarios. 
In order to find the lowest point of the portfolios efficient frontier we maximized 
     without any constraint. Next we maximized expected return again without 
any constraint in order to get the upper point and finally we have to include more 
points to get a detailed view of the portfolios efficient frontier. To accomplish that 
we calculate the width from the formula                 and then we divide it 
by 10 to get different weighted values of the expected target return. The results are 
given in Table 4.2. 
 
Table 4.2: Entries report the selected values of the Expected Return and the      in order to construct 

the Efficient Frontier. 

 
 

CVaR E(R) 

-0.05713 0.01001 

-0.06030 0.01119 

-0.06472 0.01237 

-0.07005 0.01355 

-0.08066 0.01473 

-0.09768 0.01591 

-0.12170 0.01708 

-0.15823 0.01826 

-0.20136 0.01944 

-0.25224 0.02062 

-0.41200 0.02180 
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Figure 4.1: Risk-return frontier of portfolios generated with the CVaR model. 

 
Our next goal was to conduct dynamic tests (backtesting experiments over the last 
120 months) for three different investment strategies. The rolling horizon 
simulations cover the 120-month period from 08/2006 to 07/2016. At each month, 
we use the historical data from the previous 6 years ( 80 monthly observations).We 
then solve the resulting optimization model and record the optimal portfolio. The 
clock is advanced one month and the realized return of the portfolio is determined 
from the actual market values of the assets. The same procedure is then repeated 
for the next time period and the ex post realized returns are computed. We ran such 
backtesting experiments for the      model using various values of target return. 
First we maximize the      without any constraint for the defensive investor, due 
to the fact that this strategy corresponds to the minimum risk case. The next model 
we examined was the aggressive investor in which we maximized the expected 
return again without any constraint; in this strategy we want to gain the maximum 
benefit without any consideration on risk value. The last strategy examined in this 
study was the average investor model; to succeed this we maximized      subject 
to the expected target return. In every dynamic test we have proceed so far, we 
have found a different target return constraint, since it is calculated through the 
formula: 
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The values of                     are different in every optimization problem. In 
this model our purpose was to have a good ratio between expected return and risk 
value. The results of all the     -related strategies are depicted in Figure 4.2. 
 
 
4.3     Constructing optimal portfolios using FSD, SSD and TSD criteria 

 

4.3.1    Preliminaries 

 

In general, we can think of the Stochastic Dominance concepts as properties of the 

probability distributions. Speaking of diversification, however, it contributes to our 

understanding to assume that the rate of return of an investment portfolio as our 

random variable. Consider two risky portfolios   and   with the return distributed 

according to the cumulative distribution functions                , respectively. 

            : Portfolio   dominates portfolio   by         and      denoted by 

    ,     ,      respectively, if and only if: 

 

                                                   

 

                                                                                                                                   

 

                           :                            
 

  
         

 

                                                                            
 

  
                         

 

 

                                                          
 

  

 

  
    

  

                                                                        
 

  

 

  
                   

 

The Stochastic Dominance criteria have the following well-known economic 

interpretation as we have already discussed in the previous chapter, in terms of the 

Expected Utility Theory: Consider a continuously differentiable Bernoullian utility 

function      . If the investor is non-satiated then     , implies that the 

investor prefers portfolio   over    If the investor is risk-aversive in addition to non-

satiation, then     , implies that preference of portfolio   over   and conversely. 

Furthermore if the investor exhibits decreasing absolute risk-aversion then,     , 

implies that portfolio   is preferred over    Converse relationships also hold: If the 

investor prefers portfolio   over   whenever     , then the investor is non-satiated. 

If the investor prefers portfolio   over   whenever     , then the investor is risk 
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aversive. Finally, if the investor prefers portfolio   over   whenever     , then the 

investor exhibits decreasing absolute risk aversion.  

In an empirical portfolio analysis, the underlying probability distributions must be 

estimated from the available data and to this end it is natural to consider a finite and 

therefore discrete sample of return observations of the   assets from   time periods 

indexed as              and              , respectively. This gives panel 

data represented by matrix      …….    with              
T . Portfolios can 

be modeled in terms of portfolio weights. These portfolio weights are denoted by a 

column vector    , where        |       
    represents their feasible 

domain, which is assumed to be closed and bounded. The market set spanned by   

is                    In order to derive the empirical distribution function 

for an arbitrary portfolio  , we can sort each column vector    in ascending order, 

and denote the resulting ranked return vector by                   Using 

ranked vectors x, the     for asset   is a step function characterized as       

                 . The     is a non-parametric, minimum-variance unbiased 

estimator of the underlying unobservable    . Moreover, the standard approach is 

to examine Stochastic Dominance efficiency in terms of    . In order to distinguish 

the application of the Stochastic Dominance criteria to      from the theoretical 

Stochastic Dominance conditions of Definition 1, symbol             is used for 

Stochastic Dominance relations when an     is used to estimate the unknown    . 

         : The following equivalence results hold for empirical distribution 

functions of all portfolios   and  : 

                                      

                                                                                                                            

                                        

 

   

 

   

             

                                                                                      

 

   

    

 

   

                        

                                              

 

   

 

   

 

   

 

   

           

                                                                               

 

   

             

 

   

 

   

 

   

         

Focusing on the market set    Stochastic Dominance efficiency is characterized by 

the following definition: 
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            : Portfolio     is              in market set   if and only if 

                        otherwise   is              inefficient. 

It is standard knowledge that the Stochastic Dominance efficiency criteria are 

transitive in the following sense:     efficiency implies     efficiency, which in turn 

implies     efficiency. Conversely stated,     inefficiency implies     inefficiency, 

which in turn implies     inefficiency. However,         and     criteria are 

generally not equivalent. The     efficiency criterion is generally the weakest one in 

terms of discriminatory power, involving the largest efficient subset of  . Proceeding 

towards the higher order efficiency criteria can generally improve the discriminatory 

power of the Stochastic Dominance test since the Stochastic Dominance efficient 

subsets become smaller. However, the greater power of the efficiency tests should 

be balanced against the additional restrictions concerning the risk-preferences of the 

investor, as we will discuss above.   

 

4.3.2     Methodology   

Consider a specified benchmark-portfolio (Benchmark) which is held for a finite time 

period. For the same time period, we construct alternative    -based,    -based 

and    -based portfolios using the Kuosmanen (2001, 2004) linear programming 

approach as well as the Kuosmanen 0-1 mixed integer linear programming approach. 

In Kuosmanen, the procedure is based on the necessary condition for Stochastic 

Dominance efficiency; and it measures the degree of inefficiency for the benchmark 

portfolio in terms of         and     respectively. To this end, we employ a 

“rolling-sample” approach. Assume that the dataset consists of   (in our case 

     ) monthly observations for each asset and   is the size of the employed 

rolling window used for the calculation of the portfolio weights. Standing at each 

month  , we use the previous   observations to estimate the asset allocation 

weights that maximize the expected utility. Next, the estimated weights are used to 

compute the out-of-sample realized return over the period        . We repeat this 

procedure by incorporating the return of the next period and ignoring the earliest 

one, until the end of the sample period. Then, we use the time series of realized 

portfolio returns to evaluate the out-of-sample performance of the derived 

alternative portfolios. Once again, we choose the size of the rolling window     . 

This delivers December 1999- July 2006 as the starting interval for the estimation of 

optimal portfolio weights and August 2006-July 2016 as the out-of-sample period. 

The performance of the portfolios is compared with the benchmark’s out-of sample 

return based on traditional performance measures, all of which we will discuss 

below. We impose short-sale constraints in the portfolio selection process, which 

ensures that all our constructed portfolios are feasible choices for delegated money 

management structures, where shorting is frequently not allowed. Thus, portfolio 
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weights are restricted to be nonnegative and sum to one for each of the considered 

portfolios.  

In constructing our    -based,    -based and    -based portfolios, we have 

already mentioned that we adopt the algorithms developed in Kuosmanen. This 

approach allows for testing if a benchmark portfolio return distribution is         

and     efficient respectively, relative to a given asset span. If the benchmark is not 

efficient, the solution also delivers a vector of portfolio weights corresponding to a 

well-diversified    -efficient,    -efficient and    -efficient portfolio that first-

order, second-order, as well as third-order, stochastically dominates the benchmark.  

Below we formally present the 0-1 mixed integer linear programming formulations 

of Kuosmanen, as well as the linear programming formulations, with notation 

changed to conform to our study and constraints specified to match our 

requirements of nonnegative weights. In all specifications, the asset span consists of 

  assets with   monthly return observations     each. The vector of portfolio 

weights to be optimized is denoted by λ. 

We implement the following 0-1 mixed integer linear programming procedure of 

Kuosmanen (2004) in order to construct the    -efficient portfolio: 

 

                        

 

   

            

 

   

 
 

 

 

   

 

 

                

 

   

                

 

   

                

 

                                              

 

   

                     

 

   

            

 

                

 

     

 

   

 

 

where we use          to denote the benchmark portfolio return at time    and   is a 

permutation matrix. The elements of this matrix are consisted of binary integers 

{0,1} and its rows and columns sum up to unity. Technically, permutation matrices 

allow us to sort the elements of a return vector in any arbitrary order. The vector of 

optimal portfolio weights λ from the above approach is used to construct the    -

based portfolio. 
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Test statistic    has an intuitive interpretation as the measure of inefficiency of the 

evaluated portfolio that is the Benchmark. Statistic            indicates the 

maximum increase in mean return obtainable without aggravating the risk exposure 

of the portfolio. The main difference between the   -based measure    and the 

traditional Mean-Variance measures lies in the treatment of risk. While the Mean-

Variance approach can employ variance as a measure for risk, no such quantitative 

measure exists for the Stochastic Dominance. Rather, the Stochastic Dominance 

approach must rely on its partial preference orderings, which offer a qualitative 

criterion for risk. Moreover, a positive value of the    statistic    implies that there 

exists a portfolio that dominates the evaluated portfolio (i.e. the Benchmark) by 

   . 

The     dominance implies that every non-satiated investor, irrespective of his risk 

preferences, would be better off by holding λ that yields            units higher 

mean return. In this sense,            accounts for risk without explicitly quantifying 

it. Statistic          ) can be interpreted as the maximum loss of mean return due to 

FSD inefficiency.  

We now turn to the implementation of the linear programming, concerning the 

construction of the    -efficient portfolio. We proceed to the following algorithm of 

Kuosmanen (2004): 

 

                        

 

   

            

 

   

 
 

 

 

   

 

 

                

 

   

                

 

   

                

 

                            

 

   

                     

 

   

               

 

                 

 

     

 

   

 

 

Once again, we use          to denote the benchmark portfolio return at time    and 

  is a doubly stochastic matrix. In the previous algorithm, in order to obtain a 

necessary test of     efficiency, we simply relax the binary integer constraint from 

the permutation matrix  , and hence take a liberty to form convex combinations of 

the elements of vector         . The elements of this doubly stochastic matrix must 
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be nonnegative real numbers and its rows and columns sum up to unity. The logic of 

this test is analogous to that of the     test. The test statistic            can be 

interpreted as the inefficiency measure in the mean sense, similar to the     case. 

This measure indicates the maximum increase of mean return that could be 

obtained by choosing an efficient portfolio from the subset that dominates the 

evaluated portfolio (i.e. the Benchmark) by    . The above LP algorithm, generally, 

tests only for the necessary condition of    . 

Finally, in order to construct the    -efficient portfolio, we implement the following 

LP procedure of Kuosmanen (2001). At this point, we must first introduce the 

subsequent auxiliary vectors: 

 

       
       

              

 

 

              
   

 
 

 
                  

           
         

                  

                  

 

 

     
                
 
   

         
   

     

 

          
                
   
   

                
   
            

 

 

 

These auxiliary vectors have identical elements to        , i.e. the return vector of 

the evaluated portfolio, except for the elements from   through    . For the 

elements from   to   these vectors contain a constant (risk-free) value of    , and the 

value of element     is    . Note that in the special case of         we have: 
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which turns out the smallest risk-free return that dominates the evaluated portfolio 

by    . 
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In addition, analogous to matrix  , we define the following additional     weight 

matrices      
                . 

Concerning the construction of the    -efficient portfolio, we perform the below 

linear programming procedure of Kuosmanen (2001): 

 

 

                           

 

   

            

 

   

 
 

 

 

   

 

 

                

 

   

        
         

 

   

        

 

   

                

 

 

     

 
 

 
               

                     
    

           
   

 

   

           
                  

 

    
 

 

          

 

 

                 

 

     

 

   

 

 

where we use          to denote the benchmark portfolio return at time    and    the 

auxiliary vector which contains identical elements to          with some additional 

constrains. As long as we want to construct a    -efficient portfolio, which 

stochastically dominates the benchmark, we impose a stronger limitation 

considering the two matrices. In particular, we want the elements of these two 

matrices to be nonnegative real numbers and their rows and columns must sum up 

to unity; hence to create a new doubly stochastic matrix. 
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Figure 4.2:  Ex-post realized performance of all the alternative competing portfolios. 

Backtesting simulations over the period August 2006-July 2016 

  

The results of all the alternative competing portfolios are depicted in Figure 4.2. As 

we can observe in Figure 4.2, the minimum risk portfolio (i.e. Defensive-portfolio) 

attains a stable growth path over the planning horizon without any significant levels 

of volatility. In particular, this model simply optimizes the      risk measure, 

without imposing any constraint on the expected portfolio return. This is because we 

want the risk levels to be as low as possible. In other words we play it safe. This 

optimal portfolio is affected mush less than all the alternative portfolios during 

market downturns (e.g. July 2008-July 2009, March 2011-November 2011). 

Moreover, the Average-portfolio follows the same increasing growth path as the 

Defensive, whereas differs in his gains. Considering this particular investment tactic, 

we can observe that it achieves quite stable growth paths, with slight losses in only 

few instances during the simulation period. In this case, the Average portfolio yields 

a clearly superior performance compared to the Defensive-portfolio. The main 

reason for this outcome is that we want to have a good ratio between expected 

return and risk exposure. On the other hand regarding the Aggressive portfolio 

shows a noticeable improvement in performance; although this specific investment 

strategy exhibits the highest fluctuations in returns, reflecting a riskier portfolio, 

compared to the previous two tactics, it results in higher cumulative returns. Note 

that during the period July 2008-September 2008 this strategy yields substantial 

losses relative to the previous two strategies that attain a quite stable growth path 
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over the same time period. Therefore, we obtain greater levels of volatility in 

comparison with its counterparts. The explanation for this behavior is that we want 

to maximize the expected return at any given level of risk exposure. In general, we 

can clearly state that all these alternative investment tactics concerning the      

optimization model outperform the Benchmark, during the whole planning 

simulation horizon. 

Turning to the Kuosmanen-related strategies, we can observe that the    -

Kuosmanen optimal portfolio exhibits stable portfolio returns throughout the 

simulation period, with small losses in only very few periods. This investment tactic 

results in improved performance compared to the Average-portfolio as well as the 

Defensive-portfolio, as long as it yields greater cumulative returns during the 

simulation period. Moreover, its realized return paths are discernibly more stable 

that the corresponding path of the optimal Aggressive-portfolio. Furthermore    -

Kuosmanen portfolio lagged a bit behind, particularly in periods of market 

downturns (e.g. July 2008-January 2009, February 2010-March 2010, June2015-

September2015). Finally, regarding the    -Kuosmanen optimal portfolio as well as 

the    -Kuosmanen optimal we can observe that these two strategies demonstrate 

very similar ex post performance; with the    -Kuosmanen portfolio being a very 

slight favorite. While these two competing portfolios perform similarly for the first 

year of the simulation (e.g. August 2006-August 2007), after that the    -

Kuosmanen portfolio outperform the    -Kuosmanen optimal portfolio. Both these 

two strategies outperform the    -Kuosmanen optimal portfolio, due to the fact 

that they yield higher cumulative returns throughout the planning horizon. Note that 

   -Kuosmanen and    -Kuosmanen optimal portfolios achieve quite stable 

growth paths, with slight losses in only few instances during the simulations. We can 

clearly state that these two investment tactics exhibit superior performance 

compared not only to the Average-portfolio and to the Defensive-portfolio, but also 

compared to the Benchmark. 

Figures 4.3-4.8 illustrate the composition of the alternative competing optimal 

portfolios throughout the simulation period. Observe that in the Aggressive case the 

expected return of the portfolio is maximized without any consideration on risk. 

Hence, the entire budget is allocated to the asset with the highest expected return. 

Therefore, the Aggressive-portfolio consists of assets from Sempra, ConocoPhillips 

and Amazon with a proportion of       invested in each asset during the entire 

planning horizon. For the Defensive-portfolio Figure 4.4 shows that this investment 

strategy resorts to a more diversified portfolio that consists of a substantial number 

of assets, that is 25 of the 30 available assets. In particular the top ten assets that a 

defensive investor chooses to hold into his portfolio are the following: Intel, Amazon, 

McDonalds, Wal-Mart, ExxonMobil, Medtronic, P&G, Southern, Sempra and Ecolab, 

where McDonalds as well as Wal-Mart provide the highest proportion of wealth to 

invest in.      
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       Figure 4.3: Composition of the Aggressive-portfolio during the backtesting period. 

 

Figure 4.4: Composition of the Defensive-portfolio during the backtesting period. 
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Considering the Average-portfolio Figure 4.5 shows that again this particular 

investment tactic propose a well-diversified portfolio that consists of an important 

number of assets; 25 of the 30 available assets. In particular the top ten assets that 

an average investor chooses to hold into his portfolio are the following: Amazon, 

McDonalds, Wal-Mart, ExxonMobil, ConocoPhillips, Northrop-Grumman, Verizon, 

Southern, Sempra and PPG Industries, where Amazon and McDonalds provide the 

highest proportion of wealth to invest in.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Composition of the Average-portfolio during the backtesting period. 

 

 

 

Turning to the Kuosmanen-related strategies, we can observe from Figure 4.6 that 

the    -Kuosmanen optimal portfolio yields a well-diversified portfolio, which is 

comprised of the entire set of the 30 assets. Particularly, the top ten assets that an 

investor with this portofolio holds are the subsequent: Amazon, McDonalds, 

Chevron, ConocoPhillips, Northrop-Grumman, American-Electric-Power, Southern, 

Sempra, Ecolab and PPG Industries, where Amazon and McDonalds exhibit the 

highest proportion of wealth to invest in. 
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Figure 4.6: Composition of the FSD-Kuosmanen portfolio during the backtesting period. 

 

 

  

Figure 4.7 depicts the composition of the    -Kuosmanen optimal portfolio. An 
investor choosing this portfolio will be able to invest in 20 of the total 30 available 
assets. Specifically the top ten assets are the following: Amazon, McDonalds, 
ExxonMobil, ConocoPhillips, Northrop-Grumman, American-Electric-Power, 
Southern, Sempra, Ecolab and PPG Industries, where Amazon and McDonalds 
provide the highest proportion of wealth to invest in. Finally Figure 4.8 shows the 
composition of the    -Kuosmanen optimal portfolio. This portfolio consists of a 
total number of 19 assets among the available 30 assets. Specifically the top ten 
assets that an investor with this portofolio chooses to hold are the following: 
Amazon, McDonalds, Wal-Mart, ExxonMobil, ConocoPhillips, Northrop-Grumman, 
American-Electric-Power, Southern, Sempra and PPG Industries, where Amazon and 
McDonalds provide the highest proportion of wealth to invest in, as in the previous 
   -Kuosmanen portfolio. 
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Figure 4.7: Composition of the SSD-Kuosmanen portfolio during the backtesting period. 

 

 

 

Figure 4.8: Composition of the TSD-Kuosmanen portfolio during the backtesting period. 
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Chapter 5 

Performance Measures 

 

5.1     Introduction 

In order to evaluate the performance of the competing portfolios, we compute 

several standard descriptive statistics of portfolio performance. In particular, we 

compute mean returns, standard deviation, skewness and kurtosis, as well as 

minimum and maximum returns over the sample period. 

 Skewness is a measure of asymmetry that uses the ratio of the average cubed 

deviations from the average, called the third moment, to the cubed standard 

deviation to measure any asymmetry of a distribution. In order to estimate the 

skewness we employ the following formula: 

 

             
       

   
                 

 

Cubing deviations maintains their sign. Thus, if a distribution is “skewed to the right”, 

the extreme positive values, when cubed, will dominate the third moment, resulting 

in a positive measure of skew. On the other hand, if a distribution is “skewed to the 

left” the cubed extreme negative values will dominate, and the skew will be 

negative. When the distribution is positively skewed, the standard deviation 

overestimates risk, because extreme positive deviations increase the estimated 

volatility. Conversely, when the distribution is negatively skewed, the standard 

deviation will underestimate risk. 

Kurtosis is a measure of the degree of “fat tails”. In this case, we make use of the 

deviations from the average raised to the fourth power and standardize by dividing 

by the fourth power of the standard deviation, that is: 
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When the tails of a distribution are “fat”, there is more probability mass in the tails 

of the distribution than predicted by the normal distribution, at the expense of 

“slender shoulders”, that is less probability mass near the center of the distribution. 

The kurtosis of a normal distribution is defined as 3, and any kurtosis above 3 is a 

sign of fatter tails than would be observed in a normal distribution. Higher frequency 

of extreme negative returns may result from negative skew or kurtosis below 3.  

 

We report the Sharpe ratio and the upside potential and downside risk ratio         

proposed by Sortino and van der Meer(1991) for each of the portfolios using the 

one-month US T-bill rate as the risk-free rate. We also include several additional 

performance measures such as portfolio turnover and opportunity cost. 

The Sharpe ratio is the average return earned in excess of the risk-free rate per unit 

of volatility or total risk. The upside potential and downside risk ratio contrasts the 

upside potential against a specific benchmark with the shortfall risk against the same 

benchmark, as suggested by Sortino et al. (1999). Let rt be the return of a portfolio in 

month t=1,2,….,k of the simulation; k=120 is the number of months in the simulation 

period 08/2006-07/2016. Let ρt be the risk-free rate at the same period. In order to 

compute these two ratios, we use the following formulas. 

 

 

             
 
 
        
 
   

  
   

          
   

                 

 

        
 
 
              
 
   

  
 
                
 
   

                

       

         

where     is the average mean return. The numerator of         is the average excess 

return compared to the benchmark, reflecting the upside potential.The denominator 

is a measure of downside risk and can be thought of as the risk of failing to meet the 

Benchmark. 

 

 



79 
 

The portfolio turnover      is calculated as a measure of exposure to transaction 

costs related with portfolio rebalancing. It is computed as the average absolute 

change summed across all   portfolio weights: 

             
 

 
                                  

 

   

   

   

 

where       ,      are the derived optimal weights of the asset   at time     and   

respectively. The    quantity can be interpreted as the average fraction of the 

portfolio value that has to be reallocated over the entire planning horizon. 

Finally, we use the idea of opportunity cost (Simaan, 1993) to determine the 

economic importance of the difference in performance of the optimal portfolios 

compared to the Benchmark. Let    be the optimal portfolio realized returns 

obtained by the different strategies and         be the returns of the Benchmark. The 

opportunity cost   is defined to be the return that should be added to the return 

       so that the investor becomes indifferent between the alternative strategies. 

 

                                         

For the previous reason a positive opportunity cost indicates that the investor is in a 

more advantageous position in the case of pursuing a particular investment strategy. 

In order to compute the opportunity cost, we use an exponential utility function, 

with different degrees of absolute risk aversion             and a power utility 

function, with different degrees of relative risk aversion             alternatively. 

The exponential utility function is defined as: 

 

       
   

 
                           

 
where   is the coefficient of absolute risk aversion. 

 

The power utility function is defined as:  

     
      

   
                      

 where   is the coefficient of relative risk aversion. 
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5.2    Out-of-sample portfolios: Descriptive statistics of the returns 

Table 5.1 reports descriptive statistics for the returns delivered by the alternative 

portfolio strategies as well as the Benchmark. The three     -related strategies 

have higher mean returns than the Benchmark (0.86% to 3.27% versus 0.70%). 

Aggressive delivers the highest mean return 3.27%, but the associated costs are the 

highest standard deviation among all the alternative investment tactics as well as the 

worst minimum return of -25.40% compared to -16.80% for Bench,-11.17% for 

Average,-9.28% for Defensive,-11.92% compared to the    -Kuosmanen,-12.05% 

for    -Kuosmanen and -15.30% compared to the    -Kuosmanen. Moreover it 

has positive skewness (0.7884) which indicates a return distribution with an 

asymmetric tail extending toward more positive values and achieves the best 

maximum monthly return of 54.10%. Kurtosis measures the degree to which a 

distribution is more or less peaked than a normal distribution. Aggressive is 

characterized by high kurtosis (6.9326), will have “fat tails” (higher frequencies of 

outcomes) at the extreme negative and positive ends of its return distribution curve.  

Average reduces somewhat the standard deviation as compared to Benchmark 

(4.25% versus 4.41%), while also allowing relatively large gains (maximum return of 

14.31%). Furthermore it has negative skewness (-0.1777), so the return distribution 

is approximately symmetric. 

Defensive managed to reduce standard deviation even further (2.96%), however this 

also lowers its mean return. It achieves the best minimum returns (-9.28% versus -

16.80%) and it has negative skewness (-0.0139) which indicates a return distribution 

with an asymmetric tail extending toward more negative values. 

Turning to the Kuosmanen-related strategies, the    -Kuosmanen optimal portfolio 

performs well along multiple dimensions. In particular this portfolio exhibits higher 

mean return than the Benchmark (2% versus 0.70%), but on the other hand it also 

yields higher standard deviation (4.70% versus 4.41%). Additionally it reduces the 

maximum loss (minimum monthly return of -11.92%), while also allowing large gains 

(maximum return of 17.38%). The    -Kuosmanen is characterized by the highest 

positive value of skewness among all the alternative competing portfolios (0.1359), 

whereas also generates leptokurtic distribution (3.9274). The    -Kuosmanen 

optimal portfolio improves the mean return (2.03% versus 0.70%), but also has 

higher standard deviation than the Benchmark (4.69% versus 4.41%). Moreover this 

portfolio appears to have compatible minimum monthly return and maximum 

monthly return with the    -Kuosmanen optimal portfolio; that is of -12.05% and 

17.38%, respectively. This may occur due to the fact that this approach tends to 

construct a portfolio that will avoid large negative returns and it is characterized by 

positive skewness (0.1265), meaning frequent small losses and a few extreme gains.  

   -Kuosmanen exhibits leptokurtic distribution (3.9398) which means that its 
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return distribution also has ”fatter” tails and that there are more chances of extreme 

outcomes compared to a normal distribution. 

   -Kuosmanen portfolio performs better than the Benchmark with higher mean 

return (1.79% versus 0.70%) and slightly lower standard deviation (4.35% versus 

4.41%). Additionally, it reduces the maximum loss somewhat compared to the Bench 

(minimum monthly returns of -15.30% versus -16.80%), as well as its maximum 

return is comparable with the one of the Average portfolio. Finally it has negative 

skewness (-0.4216), its return distribution is approximately symmetric compared 

with the return distribution of the Benchmark which is moderately skewed (-0.7300). 

 

 
 
 
 

 

Table 5.1:  Descriptive statistics of portfolio performance: This table reports descriptive 

statistics for the portfolios chosen by competing strategies based on monthly percentage 

returns. The statistics are computed using 120 monthly returns from 2006 to 2016. 

 

 

 

 

 

 

 Mean Standard 
Deviation 

Min Max Kurtosis Skewness 

Benchmark 0.70 4.41 -16.80 10.93 4.5205 -0.7300 
 

Aggressive 3.27 10.45 -25.40 54.10 6.9326 0.7884 

Defensive 0.86 2.96 -9.28 10.18 3.7805 -0.0139 

Average 1.58 4.25 -11.17 14.31 3.8098 -0.1777 

TSD-
Kuosmanen 

2 4.70 -11.92 17.38 3.9274 0.1359 

SSD-
Kuosmanen 

2.03 4.69 -12.05 17.38 3.9398 0.1265 

FSD-
Kuosmanen 

1.79 4.35 -15.30 14.67 4.5746 -0.4216 
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5.3    Out-of-sample portfolios: Portfolio Performance and Risk Measures 

In this section we discuss the results on the out-of-sample performance of the 

alternative optimal portfolios and the benchmark, using the four standard measures 

of the performance: the Sharpe ratio, the Sortino ratio, portfolio turnover and the 

opportunity cost. In the case of opportunity cost, we assume various levels of risk 

aversion                 for the investor. Table 5.2 reports results for each one 

of the four performance measures. 

We can observe that compared to the Benchmark all the optimal portfolios formed 

based on different strategies yield greater Sharpe ratio as well as Sortino ratio. 

Regarding the opportunity cost we can see that it is positive in all cases, which 

implies that the investor is better off when any of the alternative investment tactics 

is considered. 

The three     -related strategies outperform the Benchmark on all the traditional 

performance measures we examine except turnover, where Bench by definition has 

none. However, these approaches do not perform as well as Kuosmanen-related 

strategies in terms of Sharpe and Sortino ratios. Aggressive delivers higher Sharpe 

ratio and Sortino ratio than the Benchmark. Its turnover value of 5% is the smallest 

among all the strategies tested, which is not surprising, if we take into account the 

fact that this investor chooses only one asset during the whole planning horizon. 

Regarding the opportunity cost, we can observe that this has a positive sign, 

indicating that the investor is demanding a premium in order to replace that optimal 

strategy with the Benchmark. Interestingly, in this approach the opportunity cost 

decreases as the risk aversion increases. This implies that the investor has a 

tendency to becoming indifferent in utility terms between the two strategies as he 

becomes more risk averse. 

Average has the best Sharpe ratio within the     -related group of portfolios and it 

has quite similar Sortino ratio to Aggressive. Moreover, it also has the largest 

turnover measure among the     -related strategies, indicating that the portfolio 

weights are not quite stable. Regarding the opportunity cost, we can see that this is 

positive and it yields higher values as the risk aversion increases. 

Due to its basic characteristic of risk avoidance, Defensive appears to have weak 

performances with the Sharpe and Sortino ratios being 0.2677 and 0.9441, 

respectively. This generally weaker performance among the     -related strategies 

appears as long as this approach corresponds to the minimum risk case. Only for 

turnover does Defensive achieve to outperform Average. 

Turning to the Kuosmanen-related strategies, we can observe that     -Kuosmanen, 

   -Kuosmanen as well as    -Kuosmanen outperform the     -related 

strategies (and Benchmark) on all the traditional out-of-sample performance 

measures we examined except turnover. 
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Compared to the Benchmark,    -Kuosmanen optimal portfolio provides higher 

realized values for the Sharpe ratio and Sortino ratio. In particular, this portfolio 

delivers the best value for the Sortino ratio among not only the Kuosmanen-related 

strategies but also among all the alternative competing portfolios. Furthermore its 

portofolio turnover value is comparable with the    -Kuosmanen optimal portfolio. 

Regarding the opportunity cost, we again see that this has a positive sign and it 

decreases as the risk aversion increases. This signifies that the investor tends to 

become indifferent in utility terms between choosing to invest in the Benchmark or 

in the    -Kuosmanen portfolio as he becomes more risk averse. 

   -Kuosmanen portfolio exhibits the highest realized value for the Sharpe ratio, 

while at the same time outperforms the     -related strategies in terms of Sortino 

ratio. Moreover its turnover value is considerably lower than Average, which 

indicates a quite stable portfolio. Considering the opportunity cost, we can observe 

that this has a positive sign and it provides lower values as the risk aversion 

increases, as in the case of the    -Kuosmanen. 

   -Kuosmanen portfolio performs better on measures such as the Sharpe and 

Sortino ratios that give more weight to mean returns, compared to the Benchmark. 

Furthermore, it achieves to outperform the     -related strategies on the 

traditional performance measures nevertheless it has the worst turnover measure 

among all the alternative optimal portfolios, indicating that the portfolio weights are 

not quite stable. Finally, we can see that the opportunity cost is again positive which 

implies that the investor is better off when this particular investment strategy is 

considered. In contrast to the previous two portfolios, opportunity cost increases as 

the risk aversion increases. In our tests, the    -Kuosmanen, the    -Kuosmanen 

strategies as well as Average look promising for creating portfolios that perform well 

out-of-sample. 
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Chapter 6 

Conclusions 

In this dissertation,we use the concepts of first-order stochastic dominance, second-

order stochastic dominance and third-order stochastic dominance as well as the 

     approach, including three different investment tactics, in order to construct 

optimal portfolios. In particular, we propose to determine the optimal portfolios 

based on the         and     criteria to find the optimal portfolio weights. We 

implement all the alternative models in the General Algebraic Modeling System 

(GAMS). In constructing our FSD-based portfolio we adopt 0-1 Mixed Integer Linear 

Programming developed in Kuosmanen (2004), as well as the construction of our 

SSD-based and TSD-based portfolios are formulated in terms of standard Linear 

Programming developed once again in Kuosmanen (2001,2004). Furthermore, in 

order to compare the performance of the optimal competing portfolios, we evaluate 

all these alternative portfolios with respect to the market benchmark portfolio using 

several performance measures such as the Sharpe Ratio, the Sortino Ratio, the 

opportunity cost and portfolio turnover. 

In the empirical tests we consider investments in the US market. We want to 

construct several optimal portfolios based on alternative strategies. We use data on 

monthly closing prices of S&P500, as well as a number of stocks obtained by 

Datastream. Considering the      approach, we first maximize the      without 

any constraint for the defensive investor, due to the fact that this strategy 

corresponds to the minimum risk case. The next model we examined was the 

aggressive investor in which we maximized the expected return again without any 

constraint; in this strategy we want to gain the maximum benefit without any 

consideration on risk value. The last strategy examined in this particular optimization 

model was the average investor model; to succeed this we maximized      subject 

to the expected target return. 
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Turning to the Kuosmanen-related strategies, we can think of the Stochastic 

Dominance concepts as properties of the probability distributions. In constructing 

our    -based,    -based and    -based portfolios, we have already mentioned 

that we adopt the algorithms developed in Kuosmanen. This approach allows for 

testing if a benchmark portfolio return distribution is         and     efficient 

respectively, relative to a given asset span. If the benchmark is not efficient, the 

solution also delivers a vector of portfolio weights corresponding to a well-diversified 

   -efficient,    -efficient and    -efficient portfolio that first-order, second-

order, as well as third-order, stochastically dominates the benchmark. In 

Kuosmanen, the procedure is developed on the necessary condition for Stochastic 

Dominance efficiency; and it measures the degree of inefficiency for the benchmark 

portfolio in terms of         and     respectively. 

Considering the ex-post realized performance of all the alternative competing 

portfolios, over the backtesting simulation period, the minimum risk portfolio (i.e. 

Defensive-portfolio) provides a stable growth path over the planning horizon 

without any significant levels of volatility. Moreover, the Average-portfolio achieves 

quite stable growth paths, with slight losses in only few instances during the 

simulation period. Hence,the Average portfolio yields a clearly superior performance 

compared to the Defensive-portfolio. Regarding the Aggressive portfolio, this 

particular investment strategy shows a noticeable improvement in performance; 

although this approach exhibits the highest fluctuations in returns, reflecting a riskier 

portfolio, compared to the previous two tactics, it results in higher cumulative 

returns. The    -Kuosmanen optimal portfolio exhibits stable portfolio returns 

throughout the planning horizon period, with small losses in only very few periods, 

as well as its realized return paths are discernibly more stable that the corresponding 

path of the optimal Aggressive-portfolio. As for the    -Kuosmanen optimal 

portfolio and the    -Kuosmanen optimal portfolio, both these two strategies 

demonstrate very similar ex post performance; with the    -Kuosmanen portfolio 

being a very slight favorite. We can clearly state that these two tactics exhibit 

superior performance compared not only to the Average-portfolio and to the 

Defensive-portfolio, but also compared to the Benchmark. 

Regarding the statistical characteristics of the competing portfolios, the three     -

related strategies have higher mean returns than the Benchmark. Moreover, 

Aggressive delivers the highest mean return, but the associated cost is the highest 

standard deviation among all the alternative investment tactics.    -Kuosmanen 

portfolio performs better than the Benchmark with higher mean return and slightly 

lower standard deviation. The    -Kuosmanen optimal portfolio, as well as the SSD-

Kuosmanen portfolio provide quite similar mean returns and standard deviations, 

while at the same time they exhibit higher mean return than the Benchmark but on 

the other hand they also yield higher standard deviation. 
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Finally with regard to the performance measures, the three     -related strategies 

outperform the Benchmark on all the traditional performance measures we examine 

except turnover, where Bench by definition has none. However, these approaches 

do not perform as well as Kuosmanen-related strategies in terms of Sharpe and 

Sortino ratios. Considering the opportunity cost we can see that it is positive in all 

cases, which implies that the investor is better off when any of the alternative 

investment tactics is considered. 

   -Kuosmanen portfolio exhibits the highest realized value for the Sharpe ratio, 

while at the same time outperforms the     -related strategies in terms of Sortino 

ratio. Moreover its turnover value is considerably lower than Average, which 

indicates a quite stable portfolio. Compared to the Benchmark,    -Kuosmanen 

optimal portfolio provides higher realized values for the Sharpe ratio and Sortino 

ratio. In particular, this portfolio delivers the best value for the Sortino ratio among 

not only the Kuosmanen-related strategies but also among all the alternative 

competing portfolios. Furthermore its portofolio turnover value is comparable with 

the    -Kuosmanen optimal portfolio.    -Kuosmanen portfolio performs better 

on measures such as the Sharpe and Sortino ratios that give more weight to mean 

returns, compared to the Benchmark, but it also has the worst turnover measure 

among all the alternative optimal portfolios, indicating that the portfolio weights are 

not quite stable. 

In our tests, we can conclude that in the backtesting simulations the    -

Kuosmanen as well as the    -Kuosmanen strategies look promising for creating 

portfolios that perform well out-of-sample, as they provide diversified and stable 

portfolios with higher resilience during market downturns, and lower turnover 

compared to the    -Kuosmanen portfolio. Finally, with regard to the     -related 

strategies, we can state that the Average portfolio produces more effective ex post 

realized return paths, compared to the Benchmark, both in terms of higher growth 

rates and best values concerning the performance measures. 
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