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ABSTRACT 
 

 

Stavroula Gerontogianni 

 

“Computer Intensive Methods for Statistical Models with Latent 

Structures” 
 September 2017 

Several methods have been proposed and applied to different data problems in order to make 

Bayesian inference for the unknown density of the parameters in interest. The most widely 

used so far are the Markov Chain Monte Carlo methods, including Gibbs Sampling which will 

be one of the algorithms in focus on this project. Moreover, contemporary methods such as 

Variational Inference and Hamiltonian Monte Carlo promise respectable results as regards 

accuracy and time speed. On account of this, they are considered to be quite useful alternatives 

in cases where their advantages tend to play a greater role than their disadvantages. In this 

project the three methods mentioned above, giving greater emphasis on the theory behind 

Variational Inference, are implemented in mixture models of Gaussians aiming at their 

comparison, in terms of accuracy, statistical efficiency and computational cost. At this point, 

it is of crucial importance to highlight the different softwares used to implement the algorithms; 

Gibbs sampling run through OpenBugs and Variational Inference as well as Hamiltonian 

Monte Carlo through the new probabilistic language Stan. Consequently, any differences 

occurring in the results may also be derivatives of the different softwares usage. At this stage, 

it is important to mention that Stan is on experimental level, especially for the Variational 

Inference algorithm; hence some inaccuracies in the results may occur. Nevertheless, it is 

interesting to test its capabilities and the way it works, since it could be a quite useful tool soon. 

The interface for both softwares is chosen to be R; hence the R code is provided in the 

Appendix. It must be also noted that Stan provides a black box procedure for the 

aforementioned algorithms, which is discussed in detail for each method.   
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“Computer Intensive Methods for Statistical Models with Latent 

Structures” 
Σεπτέµβριος 2017 

Πολλές µέθοδοι έχουν προταθεί και εφαρµοστεί σε πολλές διαφορετικές περιπτώσεις 

δεδοµένων, µε σκοπό την Μπεϋζιανή συµπερασµατολογία για την άγνωστη κατανοµή των 

παραµέτρων υπό εξέταση. Οι πιο κοινώς διαδοµένες µέθοδοι είναι οι Markov Chain Monte 

Carlo, συµπεριλαµβανοµένου του Gibbs Sampling, που αποτελεί έναν από τους αλγορίθµους 

που θα εστιάσουµε σε αυτήν την εργασία. Επιπλέον, σύγχρονες µέθοδοι, όπως το Variational 

Inference και το Hamiltonian Monte Carlo υπόσχονται αξιόλογα αποτελέσµατα, όσον αφορά 

την ακρίβεια των εκτιµήσεων και την ταχύτητα εκπλήρωσης του αλγορίθµου. Γι’ αυτό το λόγο, 

θεωρούνται ενδεχοµένως ως χρήσιµες εναλλακτικές σε περιπτώσεις όπου τα πλεονεκτήµατα 

τους παίζουν σηµαντικότερο ρόλο από τα µειονεκτήµατα τους. Σε αυτή την εργασία, οι τρεις 

µέθοδοι που αναφέρονται παραπάνω, δίνοντας µεγαλύτερη έµφαση στη θεωρία του 

Variational Inference, εφαρµόζονται σε µοντέλα µίξης κανονικών κατανοµών µε σκοπό την 

σύγκρισή τους σε όρους ακρίβειας, στατιστικής σηµαντικότητας και υπολογιστικού κόστους. 

Σε αυτό το σηµείο, είναι πολύ σηµαντικό να τονισθούν τα διαφορετικά softwares που 

χρησιµοποιήθηκαν για την εφαρµογή των αλγορίθµων. O αλγόριθµος Gibbs sampling έτρεξε 

µέσω OpenBugs, ενώ οι Variational Inference και Hamiltonian Monte Carlo µέσω της 

probabilistic γλώσσας Stan. Συνεπώς, τυχόυσες διαφορές στα αποτελέσµατα της εφαρµογής 

των τριών µεθόδων ενδεχοµένως να οφείλονται σε κάποιο βαθµό στα διαφορετικά softwares 

που χρησιµοποιήθηκαν. Σε αυτό το σηµείο, είναι σηµαντικό να αναφέρουµε ότι η γλώσσα Stan 

είναι υπό επεξεργασία, κυρίως για τον αλγόριθµο Variational Inference, εποµένως ανακρίβειες 

στα αποτελέσµατα µπορεί να υπάρξουν. Παρόλα αυτά, παρουσιάζει ενδιαφέρον να 

εξετασθούν οι ικανότητες αυτής της γλώσσας, καθώς θα αποτελέσει σύντοµα ένα πολύ 

χρήσιµο εργαλείο. Επιπλέον το interface και για τα δύο softwares επιλέχθηκε να είναι η R 

συνεπώς, παρέχεται ο κώδικας R στο Appendix. Πρέπει επίσης να σηµειωθεί, ότι η γλώσσα 

Stan παρέχει µια αυτοµατοποιηµένη διαδικασία εφαρµογής των αλγορίθµων, η οποία 

αναλύεται µε λεπτοµέρεια στην παρούσα εργασία. 

 



 VI 

 

TABLE OF CONTENTS 

 
 

1 Introduction 

 

1 

2 Theory behind the methods 3 

2.1 Gibbs Sampling  3 

2.2 Hamiltonian Monte Carlo 4 

2.3 Variational Inference 7 

 

3 

 

Implementation in Mixture of Gaussians 

 

12 

3.1 Examples in Mixture of Gaussians  13 

3.2 Testing the performance of the algorithms 14 

3.3 Some point estimates along with relevant values 22 

 

4 

 

Conclusions 

 

 26 

4.1 Future Research 

 

28 

Bibliography 29  

 

Appendix R Code 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VII 

 
LIST OF TABLES 
 
 
 
Table 3.2.1:  

 
MSE, Bias and CPU time of each algorithm when the two 

components are well-separated and the size of each of the 100 

datasets is 10 

15 

Table 3.2.2:  

 
MSE, Bias and CPU time of each algorithm when the two 

components are well-separated and the size of each of the 100 

datasets is 100 

16 

Table 3.2.3:  

 
MSE, Bias and CPU time of each algorithm when the two 

components are well-separated and the size of each of the 100 

datasets is 1,000 

17 

Table 3.2.4:  

 
MSE, Bias and CPU time of each algorithm when the two 

components are well-separated and the size of each of the 100 

datasets is 10,000 

18 

Table 3.2.5:  

 

MSE, Bias and CPU time of Variational Bayes when the two 

components are well-separated and the size of each of the 100 

datasets is 100,000 

19 

Table 3.2.6:  

 

MSE, Bias and CPU time of each algorithm when the two 

components are not so well-separated and the size of each of the 

100 datasets is 10 

20 

Table 3.2.7:  

 

MSE, Bias and CPU time of each algorithm when the two 

components are not so well-separated and the size of each of the 

100 datasets is 1,000 

21 

Table 3.3.1: Point estimates along with their standard deviation and the 

effective sample size for each algorithm when the dataset of 

size 1,000 is derived from a mixture of two univariate Gaussians 

with well separated components 

23 

Table 3.3.2: Point estimates along with their standard deviation and the 

effective sample size for each algorithm when the dataset of 

size 100,000 is derived from a mixture of two univariate 

Gaussians with well separated components 

24 

 
 

 



Department of Statistics - Athens University of Economics and Business 
 

 1 

 
 
 

Chapter 1 
 
 
 

 
Introduction 

 
In most of the times the density of the parameters in interest, called posterior density, 

may be difficult to be estimated due to the unknown denominator on the Bayes 

Theorem, which represents the marginal likelihood and plays the role of the 

normalizing constant. 

𝑃 𝜃 𝑦 =
𝑃(𝑦|𝜃)𝑃(𝜃)

𝑃(𝑦)  

 

Due to this problem, several methods have been developed to make Bayesian inference 

without having to calculate the intractable integral or summation on the denominator. 

The most common methods are the Markov Chain Monte Carlo, such as Gibbs 

Sampling, whose role is to sample from the true posterior by constructing a Markov 

Chain. This Markov Chain represents a sample from the true unknown density. 

Another method with the same purpose of existence is the Hamiltonian Monte Carlo, 

which remains a Markov Chain Monte Carlo method; however a significant difference 

exists. On the other hand, Variational Inference follows a different approach by 

approximating the unknown density and not sampling from it. Particularly, turns the 

sampling problem to an optimization problem. According to the case, the suitable 

method is the one which meets the most of the requirements such as low computational 

cost and statistical efficiency, 

 

The aforementioned requirements, especially the low computational cost, seems to be 

essential in cases where the dimensions of the dataset are high, as well as the size. For 

instance, think of a virus survey where multiple relevant virus indexes are tracked for 

each individual and according to the result of an appropriate test, each one is assigned 

into one health status group; positive or negative to the certain virus. Consequently, 
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it is of great importance, especially in the multidimensional case, to take advantage 

of the whole information being stored into a dataset, efficiently and fast. 

 

The model being described previously, indicates a mixture of two distributions. A 

common assumption for those distributions i.e. for the Ebola virus, is to be univariate 

or multivariate Gaussians (Mbala P, Baguelin M, Demiris N et al., 2017), depending 

upon the number of observations for each individual. Therefore, the need of making 

Bayesian Inference in mixture models is considered to be indispensable.  
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Chapter 2 
 
 
 

 
Theory behind the methods 

 
2.1 Gibbs Sampling 

 
The underlying logic of Markov Chain Monte Carlo (MCMC) sampling is that we can 

estimate any desired expectation by ergodic averages. That is, we can compute any 

statistic of a posterior distribution as long as we have N samples from that distribution: 

 

𝐸(𝑓(𝑠)) ≈ ,
-

𝑓((𝑠).-
./,  

 
where 𝑃 is the posterior distribution of interest, 𝑓(𝑠) is the desired expectation and 

𝑓(𝑠(.)) is the 𝑖12 simulated sample from 𝑃.  

 

Gibbs Sampling is one MCMC technique suitable for the task. Particularly, it generates 

posterior samples by sweeping through each variable to sample from its conditional 

distribution keeping fixed the remaining variables to their current values. The procedure 

continues until the samples are derived from the true posterior density. This situation is 

called “convergence”. The iterative scheme is illustrated below as Algorithm 1. 
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Algorithm 1 Gibbs Sampler 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝜃,(:), 𝜃<(:), 𝜃=(:), … , 𝜃?(:) 

𝒇𝒐𝒓	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑖 = 1, 2, …𝒅𝒐 

𝜃,(.)~	𝑃(𝜃,|𝜃< .I, , 𝜃= .I, , 𝜃J .I, , … , 𝜃? .I, ) 

𝜃<(.)~	𝑃(𝜃<|𝜃, .I, , 𝜃= .I, , 𝜃J .I, , … , 𝜃? .I, ) 

 

𝜃?(.)~	𝑃(𝜃?|𝜃, .I, , 𝜃< .I, , 𝜃= .I, , … , 𝜃?I, .I, ) 

𝒆𝒏𝒅	𝒇𝒐𝒓 

 

According to Algorithm 1, consider the parameters 𝜃,, 𝜃<, 𝜃=, … , 𝜃?. First step is the 

initialization of the parameters : 𝜃,(:), 𝜃<(:), 𝜃=(:), … , 𝜃?(:). The algorithm begins by 

sampling the posterior conditionals; one parameter at a time. The number of iterations 

is considered to be large enough in order to hopefully reach the actual posterior 

density. The theory of MCMC guarantees the convergence to the true density under 

large number of iterations (Gilks et al., 1996). 

 

At this project, Gibbs sampler was implemented via OpenBugs; an open-source 

software package for performing Bayesian Inference using Gibbs sampling. The user 

specifies a statistical model by simply stating the relationship between the related 

variables. Then, the software includes a system that performs an MCMC scheme based 

on the Gibbs sampler for analysing the specified model.  

 

 

2.2 Hamiltonian Monte Carlo 

 
Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo method that uses 

the derivatives of the density function being sampled to generate efficient transitions 

spanning the posterior (Betancourt and Girolami, 2013; Neal, 2011). It uses an 

approximate Hamiltonian dynamics simulation based on numerical integration which 

is then corrected by performing a Metropolis acceptance step. 
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It is important to mention that this section translates the presentation of Hamiltonian 

Monte Carlo by Betancourt and Girolami (2013) into the notation of Gelman et al. 

(2013). 

 

The algorithm introduces auxiliary momentum variables 𝜌, to the parameters of the 

unknown posterior density, θ, with the joint density  

 

𝑃 𝜌, 𝜃 = 𝑃 𝜌 𝜃 𝑃(𝜃) 

 

The density of the auxiliary variables is deemed to be the multivariate normal (d 

dimensions) in most of the cases, as well as in the automatic procedure the 

probabilistic language Stan offers; 

𝜌	~	𝒩O 0, 𝛴  

 

where the covariance matrix Σ works as a Euclidian metric to rotate and scale the 

unknown-target density (Betancourt and Stein, 2011).  

 

In Stan - in which the HMC algorithm is being implemented - the covariance matrix 

is usually replaced from the identity matrix or estimated from warmups samples and 

optionally restricted to a diagonal matrix. 

 

After specifying the conditional density of the momentum variables, the joint density 

defines a Hamiltonian, 

 

𝐻 𝜌, 𝜃 = −𝑙𝑜𝑔𝑃 𝜌, 𝜃  

																																					= −𝑙𝑜𝑔𝑃 𝜌 𝜃 − 𝑙𝑜𝑔𝑃 𝜃  

																				= 𝛵 𝜌 𝜃 + 𝑉(𝜃) 

 

with the “kinetic energy”  

𝛵 𝜌 𝜃 = −𝑙𝑜𝑔𝑃 𝜌 𝜃  

and the “potential energy” 

𝑉 𝜃 = −𝑙𝑜𝑔𝑃 𝜃  
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This Hamiltonian function generates a transition by first sampling the auxiliary 

momentum variables 𝜌	~	𝑃 𝜌 𝜃 , where 𝑃 𝜌 𝜃   is a distribution independent from the 

parameters θ when a 𝒩O 0, 𝛴 	is assumed. At next, the joint system is evolving via 

Hamiltonian’s equations, 

 

𝑑𝜃
𝑑𝑡 = +

¶𝐻
¶𝜌 = +

¶𝑇
¶𝜌 

 

𝑑𝜌
𝑑𝑡 = −

¶𝐻
¶𝜌 = −

¶𝑇
¶𝜃 −

¶𝑉
¶𝜃 

 

The assumption that the momentum variables are independent from the parameters θ, 

instantly makes equal to 0 the derivative ¶𝑇/¶𝜃, leading to the following  

 

𝑑𝜃
𝑑𝑡 = +

¶𝑇
¶𝜌 

 

𝑑𝜌
𝑑𝑡 = −

¶𝑉
¶𝜃 

 

This two-state differential equation is being solved by using the leapfrog integrator, 

as Stan suggests. The leapfrog integrator is a numerical integration algorithm that is 

specifically adapted to provide stable results for Hamiltonian systems of equations. 

The leapfrog integrator takes discrete steps of some small time integral ε. It begins by 

drawing a momentum value from the 𝜌 density and then alternates half-step updates 

of the momentum and full-step updates of the position. 

 

𝜌	 ← 	𝜌	 −	
𝜀
2
𝜕𝑉
𝜕𝜃 

𝜃	 ← 	𝜃		 + 	𝜀𝛴𝜌 

𝜌	 ← 	𝜌	 −	
𝜀
2
𝜕𝑉
𝜕𝜃 

 

L leapfrog steps are applied and a total of 𝐿𝜀 time is simulated. After the L repetitions of the 

above three steps, the derived result is two vectors; one for the momentum variable 𝜌 and the 
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other for the parameters 𝜃. Leimkuhler and Reich (2004) provide a detailed analysis of 

the numerical integration of the Hamiltonian systems. 

 

After the leapfrog implementation, in order to account for numerical errors, a 

Metropolis Hastings acceptance step is applied and a decision is made whether to 

update to the new state  (𝜌`ab, 𝜃`ab) or keep the existing state. 

 

 

 

2.3 Variational Inference 

 
Primarily, it is important to mention that the explanation of Variational Inference is 

mainly based on the papers of Ormerod and Wand (2010), as well as Kucukelbir et al. 

(2016). 

 

Variational approximations are not widely known within the statistical community as 

the Monte Carlo methods, especially MCMC, for performing approximate inference, 

as well as Laplace approximation methods (Ormerod and Wand, 2010).  

 

There are several approaches to variational approximations with the density transform 

approach to be possibly the most known one. This approach involves the 

approximation of intractable densities by others for which inference is more tractable. 

The Kullback – Leibler divergence constitutes the main ingredient in these 

approximations, working as the dissimilarity function which measures the distance 

between the true density and its approximation. The explanation is shown below in 

more details. 

  

The Bayes’ theorem defines the posterior density of the parameters as following, 

 

𝑃(𝑦|𝜃)𝑃(𝜃)
𝑃(𝑦)  

 



Computer Intensive Methods for Statistical Models with Latent Structures 

 8 

where the denominator is called marginal likelihood or model evidence and it is an 

integral or a summation depending on the nature of the random variable. Throughout 

this section we discuss the continuous case; nonetheless, the discrete case has a similar 

treatment. 

 

Let’s assume a density function 𝑞 over the parameter space 𝛩, with parameters 𝜑. Note 

that 𝜃 and 𝜑 are vectors. Then the logarithm of the marginal likelihood could be treated 

as follows, 

 

Equation 1 

𝑙𝑜𝑔𝑃 𝑦 = 𝑙𝑜𝑔𝑃 𝑦 𝑞 𝜃; 𝜑 𝑑𝜃 = 𝑞 𝜃; 𝜑 𝑙𝑜𝑔𝑃 𝑦 𝑑𝜃 

																		= 𝑞 𝜃; 𝜑 𝑙𝑜𝑔
𝑃(𝑦, 𝜃)/𝑞(𝜃; 𝜑)
𝑃(𝜃|𝑦)/𝑞(𝜃; 𝜑) 𝑑𝜃 

																		= 𝑞 𝜃; 𝜑 𝑙𝑜𝑔
𝑃(𝑦, 𝜃)
𝑞(𝜃; 𝜑) 𝑑𝜃 	+	 𝒒 𝜽;𝝋 𝒍𝒐𝒈

𝒒(𝜽;𝝋)
𝑷(𝜽|𝒚) 𝒅𝜽 

 

 

The Kullback – Leibler divergence is appearing as the second term on the right side 

of the Equation 1. According to Jensen’s Inequality for concave functions, the 

Kullback – Leibler divergence is equal or greater than zero for all densities 𝑞, with 

equality if and only if 𝑞 𝜃; 𝜑 = 𝑃 𝜃 𝑦  

 

𝐾𝐿(𝑞(𝜃; 𝜑)| 𝑃 𝜃 𝑦 = 𝑞 𝜃; 𝜑 𝑙𝑜𝑔
𝑞 𝜃; 𝜑
𝑃 𝜃 𝑦 𝑑𝜃 		≥ 	0 

 

Therefore, the inequality 2 is resulted: 

 

Inequality 2 

𝑙𝑜𝑔𝑃 𝑦 ≥ 𝑞 𝜃; 𝜑 𝑙𝑜𝑔
𝑃(𝑦, 𝜃)
𝑞(𝜃; 𝜑) 𝑑𝜃	 

𝑃(𝑦) ≥ 𝒆𝒙𝒑 𝒒 𝜽;𝝋 𝒍𝒐𝒈
𝑷 𝒚, 𝜽
𝒒 𝜽;𝝋 𝒅𝜽 ≡ 𝑃(𝑦; 𝑞) 

 

where the exponential integral on the right is called ELBO (Evidence Lower Bound). 
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To sum up, the variational approximations suggest instead of making inference for 

𝑃 𝜃 𝑦  for which the 𝑃(𝑦) is intractable, to make inference for the density 𝑞 𝜃; 𝜑  

which has a more tractable 𝑃 𝑦; 𝑞 .  

 

The next step concerns the density 𝑞 and the family of distributions that it belongs. In 

particular, it is useful to restrict the family of densities to one that contains tractable 

densities and then find the one that minimizes the 𝐾𝐿(𝑞(𝜃; 𝜑)| 𝑃 𝜃 𝑦  or equivalently 

maximizes the ELBO1. 

 

The choice of the aforementioned family is based on the paper of Kucukelbir et al. 

(2016) which proposes the Automatic Differentiation Variational Inference in the 

probabilistic language Stan. 

 

First step is the transformation of the support space of the parameters 𝜃 in order to 

ensure that they live to the real coordinate space ℝt.  

 

𝑍: 𝑠𝑢𝑝𝑝(𝑃(𝜃)) → ℝt 

 

Then the transformed parameters are identified as 𝜔 = 𝛧(𝜃) for which the support 

space is the real coordinate space ℝt. Stan provides a library of transformations along 

with their Jacobians; hence any differentiable probability model can be represented 

by one with real-valued variables. 

 

In the second step, assumptions about the family of the density 𝑞(𝜔;𝜑) are made. 

Specifically, the variational density	𝑞 is considered to be Gaussian in the real 

coordinate space. Concerning the original parameter space, the variational 

distributions 𝑞(𝜃; 𝜑) may be non-Gaussian. 

 

At this point, one option is to extend the analysis and apply the Mean – Field 

approximation by assuming that the variational density 𝑞(𝜔;𝜑) is a product of 𝑀 

Gaussians; to wit the elements of the transformed vector 𝜃, 𝜔,	 are independent. This 

approach is common in literature. 

                                                             
1	𝐸𝐿𝐵𝑂 ≡ 𝑙𝑜𝑔𝑃 𝑦; 𝑞 = −𝐾𝐿(𝑞(𝜃; 𝜑)| 𝑃 𝜃 𝑦 + 𝑡𝑒𝑟𝑚𝑠	𝑛𝑜𝑡	𝑖𝑛𝑣𝑜𝑣𝑖𝑛𝑔	𝑞 
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Equation 3 

𝑞 𝜔;𝜑 = 𝒩� 𝜔; 𝜇, 𝛴 = 𝒩 𝜔�; 𝜇�, 𝜎�<
�

�/,

 

 

where 𝛴 is the diagonal covariance matrix with the variances 𝜎,<, 𝜎<<, … , 	𝜎�<  on the 

diagonal, 𝜇 is the mean vector of the of the Gaussian with elements 𝜇,, 	𝜇<, … , 𝜇�, 	𝜔 

is the transformed vector of the parameters 𝜃	and 𝜑 = 𝜇,, 	𝜇<, … , 	𝜇�, 	𝜎,<, 	𝜎<<, … , 	𝜎�<  

are considered to be the variational parameters. Particularly, the first equality in 

Equation 3 defines a multivariate Gaussian (𝑀 dimensions) which is equivalent to the 

product of  𝑀 univariate due to the idependence assumption. 

 

In the third step, the constrain regarding the space where the variational parameters 𝜑 

live, is removed by taking the logarithm of the standard deviations. This happens 

because the variances 𝜎,<, 𝜎<<, … , 	𝜎�<  must always be positive forcing the variational 

space to be 𝛷 = ℝt, ℝt
�: . Therefore, this constrain is removed if 𝜁 = 𝑙𝑜𝑔 𝜎  and 

consequently, the variational 𝜑 are		𝜇,, 	𝜇<, … , 	𝜇�, 	𝜁,, 𝜁<, … , 	𝜁�	and their parameter 

space is unconstrained to ℝ<t. 

 

The next step concerns the optimization of the ELBO with respect to the variational 

parameters 𝜑, which they live in an appropriate real coordinate space and thus, there 

is no need to worry about the support matching constrain issue. In Stan, this 

unconstrained optimization problem is solved via a stochastic gradient ascent 

algorithm that uses automatic differentiation to compute gradients and Monte Carlo 

integration to approximate expectations. 

 

The automatic differentiation procedure cannot be used directly on the ELBO because 

it includes an unknown expectation (see Equation 4, first term on the right side)  

 

Equation 42  

𝑃 𝑦; 𝑞 = 𝚬𝒒 𝝎;𝝋 𝒍𝒐𝒈𝑷 𝒚, 𝒁I𝟏 𝝎 + 𝒍𝒐𝒈|𝒅𝒆𝒕𝑱𝒁�𝟏(𝝎)| + 𝑞 𝜔;𝜑 𝑙𝑜𝑔 𝑞 𝜔;𝜑 𝑑𝜔 

 

                                                             
2 concerns the ELBO in the real coordinate space 
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Thus, the gradient operator is inserted into the expectation in order to differentiate 

automatically the functions stored inside. To accomplish that, a last transformation is 

required; the elliptical standardization. In particular, consider a transformation 𝑇� that 

absorbs the variational parameters 𝜑. This standardization works as a convertor of the 

Gaussian approximation to a standard Gaussian. In the Mean – Field approximation 

the standardization is 𝜆 = 𝑇� 𝜔 = 𝑑𝑖𝑎𝑔 exp 𝜁 I,(𝜔 − 𝜇); hence the variational 

densities take the following form: 

 

𝑞 𝜆 = 𝒩� 𝜆; 0, 𝐼 = 𝒩 𝜆�; 0, 1
�

�/,

 

 

The elliptical standardization transforms the unknown expectation in Equation 4 to an 

expectation in terms of a standard Gaussian density. Since the ELBO in no longer 

depending on 𝜑, the gradients are directly calculated by being inserted into the known 

expectation. The optimization problem is solved with the implementation of the 

stochastic gradient ascent algorithm. 
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Chapter 3 
 
 

 
 

Implementation in Mixture of Gaussians 

 
Mixture of distributions are considered to be one of the most well-known ways to 

capture the non-systematic behaviour of some data, due to the weighted information 

provided by multiple distributions. The mixture of densities is widely used and 

studied, especially the Gaussian mixture which suggests multimodal data densities 

allowing the population to be spilt into sub-populations. 

 

On this project, the focus lies on these kind of models which include latent indicators 

responsible for allocating the data point to the sub-populations (components), in order 

to simplify the calculations by reducing the complexity of the model. On the other 

hand, the mixture model can be written in Stan language without involving any of 

those latent indicators; just leaving the model in the original form with the mixing 

proportions. The likelihood of two univariate Gaussians below is presented with no 

latent indicators: 

 

𝑃 𝑦; 𝜃 = 𝑝𝒩 𝜇,, 𝜎,< + (1 − 𝑝)𝒩 𝜇<, 𝜎<<  

 

where 𝜃 = (𝜇,, 𝜇<, 	𝜎,<, 𝜎<<, 𝑝)  denotes the set of the parameters, 𝜇.	indicates the mean 

value of the 𝑖12 component, 	𝜎.< the variance of the values in the 𝑖12 component and 𝑝 

the mixing proportion. 

 

Consequently, the computer intensive methods: Variational Inference and 

Hamiltonian Monte Carlo, are implemented in mixture models coded in Stan language 

for which the latent structure can be omitted. On the other hand, the latent structure is 

adopted in the case of Gibbs Sampling in BUGS, since it is the only way to structure 

the mixture model in that software. 
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3.1 Examples in Mixture of Gaussians 

 
Stan language constitutes a new probabilistic language for Bayesian Inference and 

especially, MCMC and Variational Bayes; Variational Bayes is the same to 

Variational Inference when the Mean – Field approach is adopted (Ormerod and Wand, 

2010). In more details, the variational density of the parameter set is assumed to be 

the product of the marginal variational densities of each element of the parameter set. 

 

At this stage, it is of great importance to mention that Stan, as a new language, is 

under development, especially in the part of Variational Inference and corrections are 

made occasionally. Nevertheless, it was deemed interesting to use Stan as one of the 

main softwares, in order to test its capabilities or even suggest 

corrections/simplifications that might be helpful in the future.  

 

In this chapter, the examples presented concern mixture of Gaussian distributions for 

the likelihood. The procedure in terms of model’s structure in Stan is similar for any 

mixture model, as well as for any number of components; therefore, the 

implementation is made on mixture of two univariate Gaussians for two reasons:          

a) the Gaussian is the most applicable distribution because most things in the nature 

tend to follow a normal behaviour and b) it is quite often the output of a test to be 

binary, indicating two groups according to the result of a suitable test; for instance, a 

group of individuals positive to a tested virus and a group that includes individuals 

negative to it. At this point is important to mention that efforts had been made to apply 

those algorithms, especially the ones suggested by Stan, in a quadrivariate mixture of 

Gaussians facing difficulties that are discussed at next. 

 

In the aforementioned two cases, the statistical efficiency in terms of Mean Squared 

Error (MSE) and Bias, as well as the speed of the algorithms (CPU time), are tested. 

The first case concerns a mixture of two univariate Gaussians with well separated 

components and the second when the components are not so well separated, in order 

to test the performance of the algorithms in non-mixed and mixed cases.   
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For both cases,  multiple datasets have been simulated with the data size varying from 

10 to 10� in order to test each algorithm’s performance in small, medium and big 

datasets. The tables containing the MSE, Bias and CPU time are shown below, but 

first the forms of the aforementioned measurements are given for each of the five 

parameters of the univariate Gaussian mixture model 𝜃 = (𝜇,, 𝜇<, 	𝜎,<, 𝜎<<, 𝑝) : 

 

𝑀𝑆𝐸� =
,
-

(𝜃�� − 𝜃�)
<-

./, ,   		𝑘 = 1,… , 5 

 

with 𝑁: number of simulated datasets, 𝜃�: the true value of the 𝑘12 parameter and       

𝜃��: the corresponding estimated value derived by the implementation of the chosen 

algorithm. 

 

𝐵𝑖𝑎𝑠� = 	Ε 𝜃� − 𝜃�,				𝑘 = 1,… , 5 

 

where Ε 𝜃� = 𝜃��
-
./,  is the mean value of the 𝑘12 parameter when the sample size 

is 𝑁. 

 

As regards CPU time, it is the amount of time measured in seconds for which CPU 

was used for processing the algorithms.  

 

Overall, lower values of those three quantities indicate statistical efficiency and low 

computational cost respectively. To be more precise, MSE and Bias values are ideally 

to be close to zero. Moreover, it must be mentioned that the number of datasets 

simulated for each case is chosen to be 100, as this number is decent in terms of size 

and may increase the possibilities of deriving significant results. 

 

 

 

3.2 Testing the performance of the algorithms 
 

As it is already mentioned, pursues the performance of Gibbs Sampling (Gibbs), 

Variational Bayes (VB) and Hamiltonian Monte Carlo (HMC) in different cases. It is 



Department of Statistics - Athens University of Economics and Business 
 

 15 

important to mention that the number of iterations in the MCMC algorithms is chosen 

to be 2000 with burn-in equivalent to 1000. 

 

First case 

• 𝟎. 𝟑𝓝 𝟏𝟎, 𝟑𝟐 + 𝟎. 𝟕𝓝 −𝟏𝟎, 𝟐𝟐  - well separated Gaussian distributions 

 
 

 

 

 

 

 

 

 

 

Data 

size: 

𝟏𝟎 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

3Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1: 

0.094 

Comp.1:

0.103 

Comp.1: 

0.097 

 

Comp.1:

0.080 

 

Comp.1:

0.086 

 

Comp.1:

0.075 

 

0.009 0.013 0.006 

Comp.2: 

0.105 

Comp.2: 

0.497 

Comp.2: 

0.398 

Comp.2: 

0.720 

Comp.2: 

0.509 

Comp.2: 

0.306 

BIAS 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1:

-0.007 

 

Comp.1:

-0.892 

 

Comp.1:

0.031 

 

Comp.1:

-0.047 

 

Comp.1:

-0.097 

 

Comp.1:

-0.036 

 

0.004 0.011 0.005 

Comp.2: 

-0.054 

Comp.2: 

0.110 

Comp.2: 

0.098 

Comp.2: 

0.107 

Comp.2: 

0.217 

Comp.2: 

0.083 

CPU TIME (in sec) 

Gibbs VB HMC 
88.75 9.35 135.46 

Table 3.2.1: MSE, Bias and CPU time of each algorithm when the two components are well-

separated and the size of each of the 100 datasets is 10 

 

 

In the Table 3.2.1, the performance of each algorithm seems to be respectable as the 

values of the tested quantities – MSE and Bias - are close to zero. Variational 

                                                             
3 𝑝 is the probability of  the first component 𝓝 𝟏𝟎, 𝟑𝟐  being realized and 1 − 𝑝 the probability of the second 
component 𝓝 −𝟏𝟎, 𝟐𝟐  
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Inference might be less significant than the others; however the difference is not 

considerably high. Nevertheless, its speed is quite higher (CPU time = 9.35 seconds). 

 

 
 

 

 

 

 

 

 

 

 

Data 

size:

𝟏𝟎𝟐 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1: 

0.064 

Comp.1:

0.063 

Comp.1: 

0.057 

 

Comp.1:

0.040 

 

Comp.1:

0.036 

 

Comp.1:

0.025 

 

0.002 0.008 0.002 

Comp.2: 

0.085 

Comp.2: 

0.297 

Comp.2: 

0.298 

Comp.2: 

0.510 

Comp.2: 

0.209 

Comp.2: 

0.207 

BIAS 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1:

-0.003 

 

Comp.1:

-0.592 

 

Comp.1:

0.021 

 

Comp.1:

-0.027 

 

Comp.1:

-0.067 

 

Comp.1:

-0.015 

 

0.002 0.008 0.005 

Comp.2: 

-0.084 

Comp.2: 

0.080 

Comp.2: 

0.078 

Comp.2: 

0.167 

Comp.2: 

0.087 

Comp.2: 

0.053 

CPU TIME (in sec) 

Gibbs VB HMC 
137.78 21.75 292.69 

 

Table 3.2.2: MSE, Bias and CPU time of each algorithm when the two components are well-

separated and the size of each of the 100 datasets is 100 

 

 

In the Table 3.2.2, it is shown that all the algorithms produced quite accurate results 

for the whole parameter set, in this specific case, since the MSE, as well as the Bias 

are close to zero everywhere. As regards the time cost, Variational Bayes (or 

Inference) seems to be considerably faster than the rest of the algorithms (CPU time 

= 21.75 seconds). 
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Data 

size:

𝟏𝟎𝟑 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1: 

0.006 

Comp.1:

0.039 

Comp.1: 

0.027 

 

Comp.1:

0.005 

 

Comp.1:

0.035 

 

Comp.1:

0.021 

 

0.001 0.008 0.001 

Comp.2: 

0.024 

Comp.2: 

0.209 

Comp.2: 

0.027 

Comp.2: 

0.016 

Comp.2: 

0.112 

Comp.2: 

0.107 

BIAS 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1:

-0.001 

 

Comp.1:

-0.027 

 

Comp.1:

0.020 

 

Comp.1:

-0.018 

 

Comp.1:

-0.056 

 

Comp.1:

-0.013 

 

-0.003 0.008 -0.001 

Comp.2: 

0.005 

Comp.2: 

0.012 

Comp.2: 

0.006 

Comp.2: 

0.057 

Comp.2: 

0.064 

Comp.2: 

0.045 

CPU TIME (in sec) 

Gibbs VB HMC 
605.70 53.78 1154.20 

 

Table 3.2.3: MSE, Bias and CPU time of each algorithm when the two components are well-

separated and the size of each of the 100 datasets is 1,000 

 

 

In the Table 3.2.3, the sample size increases to 1,000 and the MSE/Bias values 

approach faster the zero value in each case. It could be noticed that Gibbs Sampling, 

as well as Hamiltonian Monte Carlo may produce slightly more accurate results than 

Variational Bayes, since they appear to derive lower values, but the differences seem 

to be negligible. Once more, Variational Bayes is considerably faster.  
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Data 

size:

𝟏𝟎𝟒 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1: 

- 

Comp.1:

0.001 

Comp.1: 

- 

 

Comp.1:

- 

 

Comp.1:

0.002 

 

Comp.1:

- 

 

- 0.000 - 

Comp.2: 

- 

Comp.2: 

0.004 

Comp.2: 

- 

Comp.2: 

- 

Comp.2: 

0.011 

Comp.2: 

- 

BIAS 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1:

- 

 

Comp.1:

0.007 

 

Comp.1:

- 

 

Comp.1:

- 

 

Comp.1:

0.026 

 

Comp.1:

- 

 

- 0.005 - 

Comp.2: 

- 

Comp.2: 

-0.010 

Comp.2: 

- 

Comp.2: 

- 

Comp.2: 

0.058 

Comp.2: 

- 

CPU TIME (in sec) 

Gibbs VB HMC 
≫	963.30 963.30 ≫	963.30 

 

Table 3.2.4: MSE, Bias and CPU time of each algorithm when the two components are well-

separated and the size of each of the 100 datasets is 10,000 

 

 

In the Table 3.2.4, the sample size has reached 10,000 datapoints per dataset. The 

computational cost of this simulation is high, but Variational Bayes managed to 

complete the process within 963.30 seconds. On the other hand, the MCMC algorithms 

were considerably slow without deriving any results after a long hour. Hence, it was 

made the decision to stop the procedure since Variational Inference had already 

converged. 
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Data 

size:

𝟏𝟎𝟓 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  Mixing Proportion: p 

VB VB VB 

Comp.1: 0.001 Comp.1: 0.002 

 

0.000 

Comp.2: 0.004 Comp.2: 0.011 

BIAS 

Mean: µ  Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

VB VB VB 

Comp.1: 0.007 

 

Comp.1: 0.026 

 

0.005 

Comp.2: -0.010 

 

Comp.2: 0.058 

CPU TIME (in sec) 

VB 
9879.93 

 

Table 3.2.5: MSE, Bias and CPU time of Variational Bayes when the two components are 

well-separated and the size of each of the 100 datasets is 100,000 

 

 

In Table 3.2.5 are presented the results of Variational’s Bayes performance in 100 

datasets with 100,000 data points each. The algorithm is very fast in terms of CPU 

time. The MCMC algorithms weren’t able to converge within a comparable time 

framework, due to the high computational cost in the calculations. 

 

To sum up the aforementioned conclusions, all the algorithms in general seemed to be 

statistical efficient in the case of two well separated univariate Gaussians. Variational 

Inference in smaller datasets, might be less efficient in comparison to the MCMC 

algorithms, but the difference was not so noticeable. Regarding the time required for 

the algorithm to converge, Variational Inference (or Bayes) was considerably the 

fastest algorithm, rendering itself a quite useful tool in cases of massive datasets. The 
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MCMC algorithms didn’t show the same capability in the bigger problems due to their 

difficulty in scaling to large datasets. 

 

Second case 

§ 𝟎. 𝟑𝓝 𝟏. 𝟕𝟓, 𝟑𝟐 + 𝟎. 𝟕𝓝 −𝟏. 𝟕𝟓, 𝟐𝟐  – not so well separated Gaussians4 
 

 

 

 

 

 

 

 

 

 

Data 

size: 

𝟏𝟎 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1: 

0.109 

Comp.1:

0.189 

Comp.1: 

0.112 

 

Comp.1:

0.098 

 

Comp.1:

0.180 

 

Comp.1:

0.092 

 

0.013 0.025 0.011 

Comp.2: 

0.167 

Comp.2: 

0.503 

Comp.2: 

0.420 

Comp.2: 

0.567 

Comp.2: 

0.689 

Comp.2: 

0.367 

BIAS 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1:

-0.009 

 

Comp.1:

-0.986 

 

Comp.1:

0.045 

 

Comp.1:

-0.053 

 

Comp.1:

-0.178 

 

Comp.1:

-0.045 

 

0.009 0.020 0.009 

Comp.2: 

-0.064 

Comp.2: 

0.189 

Comp.2: 

0.100 

Comp.2: 

0.178 

Comp.2: 

0.294 

Comp.2: 

0.098 

CPU TIME (in sec) 

Gibbs VB HMC 
92.25 11.15 146.12 

Table 3.2.6: MSE, Bias and CPU time of each algorithm when the two components are not 

so well-separated and the size of each of the 100 datasets is 10 

 

According to Table 3.2.6, the MSE and Bias values are systematically higher for 

Variational Bayes in comparison to the MCMC algorithms, for the case of mixed 

components. This situation may denote that the aforementioned algorithm tends to 

                                                             
4 the tables for data size equal to 10 and 1,000 are provided, since the first case represents the performance of the algorithms 
in small data sets and the second, in big ones  
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produce less accurate estimates in mixed cases because it approximates the target 

density rather than sampling from the asymptotically exact posterior. At this point, it 

is important to mention that the sample size was quite small, consequently it was 

expected to have less significant estimates, especially for Variational Inference.  

Nevertheless, the values are not significantly higher than those of the MCMC 

algorithms, indicating than Variational Bayes still could be used as the main algorithm 

in the mixture of mixed Gaussians with not so well separated components, according 

to this example. Moreover, as expected, its speed outperforms the one of the others. 

As regards Hamiltonian Monte Carlo and Gibbs Sampling, their performance in that 

case cannot distinguish which one is more preferred; both are statistically efficient. 

 

 
 

 

 

 

 

 

 

 

 

Data 

size:

𝟏𝟎𝟑 

MEAN SQUARE ERROR 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1: 

0.017 

Comp.1:

0.042 

Comp.1: 

0.056 

 

Comp.1:

0.010 

 

Comp.1:

0.067 

 

Comp.1:

0.053 

 

0.004 0.012 0.005 

Comp.2: 

0.078 

Comp.2: 

0.387 

Comp.2: 

0.076 

Comp.2: 

0.023 

Comp.2: 

0.178 

Comp.2: 

0.114 

BIAS 

Mean: µ  

 

Standard deviation: 𝝈𝟐  

 

Mixing Proportion: p 

Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC 

Comp.1:

-0.005 

 

Comp.1:

-0.035 

 

Comp.1:

0.032 

 

Comp.1:

-0.026 

 

Comp.1:

-0.065 

 

Comp.1:

-0.025 

 

-0.006 0.015 -0.004 

Comp.2: 

0.009 

Comp.2: 

0.026 

Comp.2: 

0.011 

Comp.2: 

0.065 

Comp.2: 

0.077 

Comp.2: 

0.053 

CPU TIME (in sec) 

Gibbs VB HMC 
611.63 58.74 1168.54 

 

Table 3.2.7: MSE, Bias and CPU time of each algorithm when the two components are not 

so well-separated and the size of each of the 100 datasets is 1,000 
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In Table 3.2.7, the performance of the algorithms is proportional to the one discussed 

in Table 3.2.6, with the only difference lying on the bigger sample size which 

automatically increases the statistical efficiency of the algorithms.  

 

To sum up the aforementioned, Variational Inference as expected was the fastest 

algorithm in terms of CPU time in seconds. On the other hand, its accuracy decreased 

due to the mixing components, however this decrease was not considerably high 

because the framework of Gaussian distributions may favored its performance, as well 

as the fact than constrain for label switching was inserted into the Stan model. The 

MCMC algorithms seem both to perform well, with Gibbs Sampling probably being 

more accurate in terms of MSE and Bias. Furthermore, both of them were slow, with 

Hamiltonian Monte Carlo being slower. 

 

Last case 

The algorithms provided in Stan were implemented for a quadrivariate mixture of two 

Gaussians. Despite the fact that similar procedure as the univariate case was pursued 

in structuring the code, both of the algorithms made unreasonably unstable estimation 

for the parameters in comparison to Gibbs Sampling in BUGS. At this point, it would 

be quite helpful to highlight that Stan is under development, especially for the 

Variational Inference method, since a warning message is deriving after 

implementation letting us know that the algorithm is on experimental level and may 

produce unstable results or even wrong. More reasons could be that coding in Stan, 

may be complex if the user starts building the model on her/his own without consulting 

similar examples.   

 

Therefore, it is considered decent to recheck the results of Stan’s output in the future 

by applying the algorithms manually in different softwares.  

 

 

 

3.3 Some point estimates along with relevant values 
 

It is interesting to present the point estimation of the mixture parameters derived by 

the three algorithms, along with their standard deviation, as well as the effective 
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sample sizes for the MCMC algorithms.  Two data sets of different size were chosen 

and the aforementioned values are illustrated below: 

 

True values: 𝝁𝟏 = 𝟏𝟎, 𝝁𝟐 = −𝟏𝟎, 𝝈𝟏𝟐 = 𝟑, 𝝈𝟐𝟐 = 𝟐, 𝒑 = 𝟑𝟎%, 𝟏 − 𝒑 = 𝟕𝟎% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 

size:

𝟏𝟎𝟑 

Gibbs Sampling 

Mean values (point estimates) Standard deviation of the 

Mean values 

Effective Sample size 

µ  𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 

Comp.1:  

9.9 

Comp.1:

3.16 

Comp.1:

30% 

 

Comp.2: 

70% 

Comp.1:

0.2 

 

Comp.1:

0.001 

 

0.01 Comp.1:  

1000 

Comp.1:  

799 

1000 

Comp.2: 

-10 

Comp.2: 

1.82 

Comp.2: 

0.1 

Comp.2: 

0.001 

Comp.2: 

1000 

Comp.2: 

800 

Variational Inference 

Mean values (point estimates) Standard deviation of the 

Mean values 

Effective Sample size 

µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑  

 

− 
Comp.1:  

9.87 

Comp.1:

2.83 

Comp.1:

28% 

 

Comp.2: 

32% 

Comp.1:

0.17 

 

Comp.1:

0.12 

 

0.02 

Comp.2: 

-10.10 

Comp.2: 

2.05 

Comp.2: 

0.08 

Comp.2: 

0.05 

 

Hamiltonian Monte Carlo 

Mean values (point estimates) Standard deviation of the 

Mean values 

Effective Sample size 

µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 

Comp.1:  

9.86 

Comp.1:

2.95 

Comp.1:

29% 

 

Comp.2: 

71% 

Comp.1:

0.01 

 

Comp.1:

0.001 

 

0.01 Comp.1:  

1000 

Comp.1:  

1000 

1000 

Comp.2: 

-9.94 

Comp.2: 

1.98 

Comp.2: 

0.001 

Comp.2: 

0.001 

Comp.2: 

1000 

Comp.2: 

1000 

Table 3.3.1: Point estimates along with their standard deviation and the effective sample size 

for each algorithm when the dataset of size 1,000 is derived from a mixture of two univariate 

Gaussians with well separated components 



Computer Intensive Methods for Statistical Models with Latent Structures 

 24 

True values: 𝝁𝟏 = 𝟏𝟎, 𝝁𝟐 = −𝟏𝟎, 𝝈𝟏𝟐 = 𝟑, 𝝈𝟐𝟐 = 𝟐, 𝒑 = 𝟎. 𝟑 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 

size:

𝟏𝟎𝟓 

Gibbs Sampling 

Mean values (point estimates) Standard deviation of the 

Mean values 

Effective Sample size 

µ  𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 

Comp.1:  

10 

Comp.1:

3.16 

Comp.1:

30% 

 

Comp.2: 

70% 

Comp.1:

0.01 

 

Comp.1:

0.001 

 

0.01 Comp.1:  

800 

Comp.1:  

1000 

1000 

Comp.2: 

-10 

Comp.2: 

2 

Comp.2: 

0.01 

Comp.2: 

0.001 

Comp.2: 

1000 

Comp.2: 

1000 

Variational Inference 

Mean values (point estimates) Standard deviation of the 

Mean values 

Effective Sample size 

µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑  

 

− 
Comp.1:  

10.07 

Comp.1:

3.06 

Comp.1:

28% 

 

Comp.2: 

32% 

Comp.1:

0.01 

 

Comp.1:

0.02 

 

0.001 

Comp.2: 

-10.08 

Comp.2: 

1.98 

Comp.2: 

0.02 

Comp.2: 

0.02 

 

Hamiltonian Monte Carlo 

Mean values (point estimates) Standard deviation of the 

Mean values 

Effective Sample size 

µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 µ 𝝈𝟐 𝒑 

Comp.1:  

9.98 

Comp.1:

3.00 

Comp.1:

30% 

 

Comp.2: 

70% 

Comp.1:

0.001 

 

Comp.1:

0.001 

 

0.01 Comp.1:  

1000 

Comp.1:  

1000 

1000 

Comp.2: 

-9.99 

Comp.2: 

2.00 

Comp.2: 

0.001 

Comp.2: 

0.001 

Comp.2: 

1000 

Comp.2: 

1000 

Table 3.3.2: Point estimates along with their standard deviation and the effective sample size 

for each algorithm when the dataset of size 100,000 is derived from a mixture of two 

univariate Gaussians with well separated components 
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According to Table 3.3.1 and Table 3.3.2, all the algorithms derived quite accurate 

point estimates for the parameters of this mixture model, since the values seem to be 

pretty close to the true ones in each case. As regards the effective sample size of the 

MCMC algorithms, Hamiltonian Monte Carlo in this case, produced 1,000 

uncorrelated samples out of 1,000 (number of samples is 2,000 but the first 1,000 are 

discarded). On the other hand, Gibbs Sampling had high effective samples sizes as 

well, for all the parameters, except from the variances of the components in Table 

3.3.1 and the mean value of the first component in Table 3.3.2 where values lower 

than 1,000 were produced, indicating that out of the 1,000 posterior samples, at most 

800 are uncorrelated. 
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Chapter 4 
 
 
 

 
Conclusions 

 
Variational Inference is considered to be the fastest algorithm in terms of the CPU 

time required for the algorithm to produce results, rendering this method pretty useful 

in massive data problems, where the need for fast inference is indisputable. Second 

comes Gibbs Sampling with considerable lower speed in terms of CPU time and last 

Hamiltonian Monte Carlo, due to the extra time required for the auxiliary variables to 

be computed at each iteration. At this stage, it must be mentioned once more that a 

part of the differences in speed may be due to the different softwares being used to 

implement the algorithms. 

 

Hamiltonian Monte Carlo and Gibbs Sampling were also tested in their ability to 

derive uncorrelated data points by calculating the effective sample size for each 

parameter. Hamiltonian Monte Carlo performed better than Gibbs Sampling, since the 

effective sample sizes for each parameter of the mixture model were greater, 

indicating that the algorithm tends to produce uncorrelated data points. In terms of 

statistical efficiency, all the algorithms for both models- one Gaussian mixture with 

two well separated components and another with two not so well separated - derived 

quite accurate results. In the latter case, the statistical efficiency was lower, however 

the estimates were quite accurate. Gibbs Sampling and Hamiltonian Monte Carlo, as 

MCMC methods which sample asymptotically from the exact posterior, were expected 

to be efficient. Variational Inference, especially in the latter case where the two 

components mix, derived less accurate results than the MCMC algorithms, however 

the differences in terms of MSE and Bias seemed to be insignificant. It is important 

to note that Variational Inference was expected to perform even poorly in the 

estimation of the two variances, since according to the literature (Bishop, 2006) it 
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tends to underestimate them; on the other hand, the way that it is implemented in Stan, 

as well as the framework of the normality, may favoured its performance. To sum up, 

according to the aforementioned results and the literature, MCMC methods despite of 

being popular for their ability to sample from the asymptotically exact posterior, they 

cannot be scaled in large datasets. On the other hand, Variational Inference is capable 

of being implemented without hesitation in massive datasets, but in general it is 

inclined to underestimate the variance in the Gaussian problems. 

 

 In the multivariate case, the results of Variational Inference and Hamiltonian Monte 

Carlo weren’t accurate in spite of having coded correctly the multivariate mixture 

model in Stan terms. At this point, it is crucial to mention and highlight that a warning 

message appeared after each implementation of Variational’s Inference command 

revealing that the algorithm is experimental, since the procedure has not been 

thoroughly tested and may be unstable or buggy; hence the interface is about to 

change. Regarding Hamiltonian Monte Carlo, the results in the simulation procedure 

weren’t derived since the algorithm got stuck after the first iterations.  

 

Consequently, it is wise to test further the results in the multivariate case, as well as 

in the univariate by implementing manually the algorithms in another software until 

Stan is tested thoroughly. Nevertheless, it was considered important as well as 

interesting to use Stan as one of the main softwares, since it suggests a black box 

procedure for Variational Inference and Hamiltonian Monte Carlo, rendering it a quite 

useful tool after its upgrade. Moreover, it was deemed reasonable to test its 

capabilities in practice and make suggestions as regards corrections or simplifications 

in coding, such as the need for increasing the flexibility of the user to structure on 

her/his own way the mixture model. So far, it might be tricky for the user to begin 

constructing a complex model by him/herself in Stan coding, without seeking for 

advice in similar examples in the literature. 
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4.1 Future Research 
 

There are several avenues for further investigation that we were not able to pursue due 

to time constrains. As mentioned before, Variational Inference and Hamiltonian 

Monte Carlo could be implemented manually in an alternative language, such as R or 

Python, for univariate and multivariate mixture models in order to test the 

performance of the algorithms, as well as to compare the results with Stan. 

Furthermore, it would be interesting enough to work with mixture factorial 

experiments (Nobile and Green, 2000) by applying the aforementioned algorithms. 

 

In addition, a quite challenging and simultaneously promising investigation could be 

the use of Variational Inference in combination with MCMC sampling algorithms to 

enable Bayesian inference to meet the demands of the new “big data” era. 
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Appendix 

 

R Code  
  

 
 
 
 
 
 
 
 
 
The simulation code for the two well separated Gaussians is provided for all the algorithms – VI, HMC & GS. 
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