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ABSTRACT

Stavroula Gerontogianni

“Computer Intensive Methods for Statistical Models with Latent
Structures”

September 2017
Several methods have been proposed and applied to different data problems in order to make
Bayesian inference for the unknown density of the parameters in interest. The most widely
used so far are the Markov Chain Monte Carlo methods, including Gibbs Sampling which will
be one of the algorithms in focus on this project. Moreover, contemporary methods such as
Variational Inference and Hamiltonian Monte Carlo promise respectable results as regards
accuracy and time speed. On account of this, they are considered to be quite useful alternatives
in cases where their advantages tend to play a greater role than their disadvantages. In this
project the three methods mentioned above, giving greater emphasis on the theory behind
Variational Inference, are implemented in mixture models of Gaussians aiming at their
comparison, in terms of accuracy, statistical efficiency and computational cost. At this point,
it is of crucial importance to highlight the different softwares used to implement the algorithms;
Gibbs sampling run through OpenBugs and Variational Inference as well as Hamiltonian
Monte Carlo through the new probabilistic language Stan. Consequently, any differences
occurring in the results may also be derivatives of the different softwares usage. At this stage,
it is important to mention that Stan is on experimental level, especially for the Variational
Inference algorithm; hence some inaccuracies in the results may occur. Nevertheless, it is
interesting to test its capabilities and the way it works, since it could be a quite useful tool soon.
The interface for both softwares is chosen to be R; hence the R code is provided in the
Appendix. It must be also noted that Stan provides a black box procedure for the

aforementioned algorithms, which is discussed in detail for each method.

v
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“Computer Intensive Methods for Statistical Models with Latent
Structures”

YentépuPprog 2017
[ToAAéc péBodot éxovv mpotabel kol €PAPUOCTEL GE TOAAEG OLUPOPETIKES TMEPUTTMOOELS
dedopévmv, pe okomd v Mrebllovy GUUTEPAGHOTOAOYIN Yo TNV (yVOGTN KOTOVOUY] TMV
napopétpov vd e&étaon. Ot mo kowvdg dradopéves péBodot gival ot Markov Chain Monte
Carlo, cvumepirapfavouévov tov Gibbs Sampling, mov amoterel Evav amd Tovg adyopiBuovg
nov Ba eotidoovpe og avtv Vv gpyacio. Emmiéov, oOyypoveg pébodot, 6mwg to Variational
Inference kot To Hamiltonian Monte Carlo vrdcyovtal a&idAoyo amoteAEGHOTA, OGOV QPOPE
NV aKPIBELN TOV EKTIUNGEMV KO TNV TOYVTNTO EKTANP®ONS TOL akyopifuov. 't avtd to Adyo,
BepovVTaL EVOEYOUEVMG MG YPNOLUES EVOALOKTIKEG OE TEPITTMOGELS OOV TOL TAEOVEKTILLOTOL
TOVG TOU{OVV GNUAVTIKOTEPO POLO OO TO LELOVEKTALLATO TOVG. L€ QTN TNV EPYACIN, Ol TPELS
péBodol mov  avaPEPOVIOL TOPATAV®, Otvoviag peyoAvtepn Eéugacrn otn Bewpio TOL
Variational Inference, epappdlovtar o€ poviéha PiEng KOVOVIKMOV KATOVOU®VY LLE GKOTO TNV
oVLYKPLoN TOVG 6€ OPOVS OKPIPELNG, GTATIGTIKNG CNUOVTIKOTNTOG KOl VITOAOYIGTIKOD KOGTOVG,.
Ye avtd to onueio, eivor mOAD onuovtikd va tovicBovv to dlapopeTikd softwares mov
YPNOLOTOWON KAV Yo TV €Qappoyn TV adyopiBuwv. O alyopiBpoc Gibbs sampling étpee
pnéow OpenBugs, evd ov Variational Inference xon Hamiltonian Monte Carlo péom g
probabilistic yYAdooag Stan. Zvvenmg, TuYOLGEG SAPOPES GTO ATOTEAECUATO TNG EQAPLOYNG
TOV TPLOV PHeBdd®V evoeyouévas va opeihovtal e kdmowo Pabud ota drapopetikd softwares
TOV ¥PNooTomOnKav. Xe avtd to onpeio, eivor onUAvTIKO va ava@épovpe 6TL M YAdooo Stan
etvar vd emelepyacia, Kuping yio Tov adydpiBuo Variational Inference, emopévmg avokpipeteg
oto. omoteAéopoto pmopel va vmdpEovv. IMapdia ovtd, moapovoidlel evolapépov va
eetachovv o1 avotTTEG WTNG TG YAMGGHS, KaBde Bo amotedéoet chviopo €vo TOAD
yprowo epyadeio. EmmAéov 1o interface kot yia to dvo softwares emidéyOnke va elvar n R
OLVETAC, TopEyeTol 0 KMdKas R oto Appendix. [Ipénet emiong va onuewwbdet, 611 n YAdooo
Stan mapéyel o avtopotomomuévn Sladtkacio EPapRoyng TV oaAyopiBuwv, m omoia

OVOADETOL LE AETTTOUEPELD. GTNV TOPOVOH EPYOCIAL.
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Chapter 1

Introduction

In most of the times the density of the parameters in interest, called posterior density,
may be difficult to be estimated due to the unknown denominator on the Bayes
Theorem, which represents the marginal likelihood and plays the role of the

normalizing constant.

polyy = THIOPE)
P(y)

Due to this problem, several methods have been developed to make Bayesian inference
without having to calculate the intractable integral or summation on the denominator.
The most common methods are the Markov Chain Monte Carlo, such as Gibbs
Sampling, whose role is to sample from the true posterior by constructing a Markov
Chain. This Markov Chain represents a sample from the true unknown density.
Another method with the same purpose of existence is the Hamiltonian Monte Carlo,
which remains a Markov Chain Monte Carlo method; however a significant difference
exists. On the other hand, Variational Inference follows a different approach by
approximating the unknown density and not sampling from it. Particularly, turns the
sampling problem to an optimization problem. According to the case, the suitable
method is the one which meets the most of the requirements such as low computational

cost and statistical efficiency,

The aforementioned requirements, especially the low computational cost, seems to be
essential in cases where the dimensions of the dataset are high, as well as the size. For
instance, think of a virus survey where multiple relevant virus indexes are tracked for
each individual and according to the result of an appropriate test, each one is assigned

into one health status group; positive or negative to the certain virus. Consequently,
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it is of great importance, especially in the multidimensional case, to take advantage

of the whole information being stored into a dataset, efficiently and fast.

The model being described previously, indicates a mixture of two distributions. A
common assumption for those distributions i.e. for the Ebola virus, is to be univariate
or multivariate Gaussians (Mbala P, Baguelin M, Demiris N et al., 2017), depending
upon the number of observations for each individual. Therefore, the need of making

Bayesian Inference in mixture models is considered to be indispensable.
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Chapter 2

Theory behind the methods

2.1 Gibbs Sampling

The underlying logic of Markov Chain Monte Carlo (MCMC) sampling is that we can
estimate any desired expectation by ergodic averages. That is, we can compute any

statistic of a posterior distribution as long as we have N samples from that distribution:
13N i
E(f(s)) = 5 Xi=1 f((s)

where P is the posterior distribution of interest, f(s) is the desired expectation and

f(s®) is the i*" simulated sample from P.

Gibbs Sampling is one MCMC technique suitable for the task. Particularly, it generates
posterior samples by sweeping through each variable to sample from its conditional
distribution keeping fixed the remaining variables to their current values. The procedure
continues until the samples are derived from the true posterior density. This situation is

called “convergence”. The iterative scheme is illustrated below as Algorithm 1.
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Algorithm 1 Gibbs Sampler

initialize 6,,6,,0,, ..., 6,©
foriterationi =1,2,..do

6,0~ P(6,16,977, 0,97V, 6,07Y, ., 6,07V
0,0~ P(6,]0,47V, 0,4V 9,0V 9,

HD(i)~ P(QD |91(i_1)' 02(1'—1)’ 93(i_1)' e 90—1(i_1))

end for

According to Algorithm 1, consider the parameters 6, 8,, 05, ..., 0p. First step is the
initialization of the parameters : 91(0),62(0), 93(0), s HD(O). The algorithm begins by
sampling the posterior conditionals; one parameter at a time. The number of iterations
is considered to be large enough in order to hopefully reach the actual posterior
density. The theory of MCMC guarantees the convergence to the true density under
large number of iterations (Gilks et al., 1996).

At this project, Gibbs sampler was implemented via OpenBugs; an open-source
software package for performing Bayesian Inference using Gibbs sampling. The user
specifies a statistical model by simply stating the relationship between the related
variables. Then, the software includes a system that performs an MCMC scheme based

on the Gibbs sampler for analysing the specified model.

2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo method that uses
the derivatives of the density function being sampled to generate efficient transitions
spanning the posterior (Betancourt and Girolami, 2013; Neal, 2011). It uses an
approximate Hamiltonian dynamics simulation based on numerical integration which

is then corrected by performing a Metropolis acceptance step.
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It is important to mention that this section translates the presentation of Hamiltonian
Monte Carlo by Betancourt and Girolami (2013) into the notation of Gelman et al.

(2013).

The algorithm introduces auxiliary momentum variables p, to the parameters of the

unknown posterior density, 0, with the joint density

P(p,0) = P(p|0)P(H)

The density of the auxiliary variables is deemed to be the multivariate normal (d
dimensions) in most of the cases, as well as in the automatic procedure the
probabilistic language Stan offers;

p ~Nd(072)

where the covariance matrix ¥ works as a Euclidian metric to rotate and scale the

unknown-target density (Betancourt and Stein, 2011).

In Stan - in which the HMC algorithm is being implemented - the covariance matrix
is usually replaced from the identity matrix or estimated from warmups samples and

optionally restricted to a diagonal matrix.

After specifying the conditional density of the momentum variables, the joint density

defines a Hamiltonian,

H(p,0) = —logP(p,6)
= —logP(p|6) — logP(6)
=T(p|d) + V(6)

with the “kinetic energy”

T(pl6) = —logP(pl6)
and the “potential energy”

V(6) = —logP(6)
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This Hamiltonian function generates a transition by first sampling the auxiliary
momentum variables p ~ P(p|0), where P(p|0) is a distribution independent from the
parameters 0 when a N, (0,2) is assumed. At next, the joint system is evolving via

Hamiltonian’s equations,

d0_+0”H_+
at & &

dp  H T &

it & @

The assumption that the momentum variables are independent from the parameters 9,

instantly makes equal to 0 the derivative JI'/d8, leading to the following

d9_+0”1‘
at &
dp WV
dt @

This two-state differential equation is being solved by using the leapfrog integrator,
as Stan suggests. The leapfrog integrator is a numerical integration algorithm that is
specifically adapted to provide stable results for Hamiltonian systems of equations.

The leapfrog integrator takes discrete steps of some small time integral €. It begins by
drawing a momentum value from the p density and then alternates half-step updates

of the momentum and full-step updates of the position.

edV
T
0 « 60 + &Xp
edV
T

L leapfrog steps are applied and a total of Le time is simulated. After the L repetitions of the

above three steps, the derived result is two vectors; one for the momentum variable p and the
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other for the parameters 8. Leimkuhler and Reich (2004) provide a detailed analysis of

the numerical integration of the Hamiltonian systems.

After the leapfrog implementation, in order to account for numerical errors, a
Metropolis Hastings acceptance step is applied and a decision is made whether to

update to the new state (p™®",8"¢") or keep the existing state.

2.3 Variational Inference

Primarily, it is important to mention that the explanation of Variational Inference is
mainly based on the papers of Ormerod and Wand (2010), as well as Kucukelbir et al.
(2016).

Variational approximations are not widely known within the statistical community as
the Monte Carlo methods, especially MCMC, for performing approximate inference,

as well as Laplace approximation methods (Ormerod and Wand, 2010).

There are several approaches to variational approximations with the density transform
approach to be possibly the most known one. This approach involves the
approximation of intractable densities by others for which inference is more tractable.
The Kullback — Leibler divergence constitutes the main ingredient in these
approximations, working as the dissimilarity function which measures the distance
between the true density and its approximation. The explanation is shown below in

more details.

The Bayes’ theorem defines the posterior density of the parameters as following,

P(y|6)P(8)
P(y)
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where the denominator is called marginal likelihood or model evidence and it is an
integral or a summation depending on the nature of the random variable. Throughout
this section we discuss the continuous case; nonetheless, the discrete case has a similar

treatment.

Let’s assume a density function q over the parameter space @, with parameters ¢. Note
that 8 and @ are vectors. Then the logarithm of the marginal likelihood could be treated

as follows,

Equation 1
logP(y) = logP(y) f q(6; ¢)do = f q(6; p)logP(y)do

P(y,0)/q(8; ¢)
PO /a6
P(y,0)
q(6; 9)

= f q(6; <p)log{

q(6; (P)}

}d@ + fq(e; (p)log{P(ely)

= f q(6; <p)log{

The Kullback — Leibler divergence is appearing as the second term on the right side
of the Equation 1. According to Jensen’s Inequality for concave functions, the
Kullback — Leibler divergence is equal or greater than zero for all densities g, with

equality if and only if q(8; @) = P(6]y)

Q(B;fp)}dg > 0

KL(q(6; )||P(81y)) = fq(g”p)log {P(Hly)

Therefore, the inequality 2 is resulted:

Inequality 2

P(y,0)
o) ©

P(y,0) oo

10gP®) = [ (6: 9log |

P(y) = exp ( f q(6; <p)log{

where the exponential integral on the right is called ELBO (Evidence Lower Bound).
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To sum up, the variational approximations suggest instead of making inference for
P(0|y) for which the P(y) is intractable, to make inference for the density q(6; ¢)
which has a more tractable P(y; q).

The next step concerns the density q and the family of distributions that it belongs. In
particular, it is useful to restrict the family of densities to one that contains tractable
densities and then find the one that minimizes the KL(q(6; <p)||P(9|y)) or equivalently

maximizes the ELBO".

The choice of the aforementioned family is based on the paper of Kucukelbir et al.
(2016) which proposes the Automatic Differentiation Variational Inference in the

probabilistic language Stan.

First step is the transformation of the support space of the parameters 8 in order to

ensure that they live to the real coordinate space RX.
Z:supp(P(8)) —» RX

Then the transformed parameters are identified as w = Z(8) for which the support
space is the real coordinate space RX. Stan provides a library of transformations along
with their Jacobians; hence any differentiable probability model can be represented

by one with real-valued variables.

In the second step, assumptions about the family of the density q(w; @) are made.
Specifically, the variational density g is considered to be Gaussian in the real
coordinate space. Concerning the original parameter space, the variational

distributions q(8; ¢) may be non-Gaussian.

At this point, one option is to extend the analysis and apply the Mean — Field
approximation by assuming that the variational density q(w;¢) is a product of M
Gaussians; to wit the elements of the transformed vector 8, w, are independent. This

approach is common in literature.

LELBO = logP(y;q) = —KL(q(0; 9)||P(6]y)) + terms not invoving q
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Equation 3

M
q(w; @) = Ny (w; 1, 2) = 1_[ N (W Um, O7)

m=1

where X is the diagonal covariance matrix with the variances o7, 0%, .., o on the
diagonal, u is the mean vector of the of the Gaussian with elements pyy, yy, ... , Uy, @
is the transformed vector of the parameters 8 and @ = (uy, Uy, ..., Uy, OF, OF, ..., O%)
are considered to be the variational parameters. Particularly, the first equality in
Equation 3 defines a multivariate Gaussian (M dimensions) which is equivalent to the

product of M univariate due to the idependence assumption.

In the third step, the constrain regarding the space where the variational parameters ¢
live, is removed by taking the logarithm of the standard deviations. This happens
because the variances o7, d%,..., o must always be positive forcing the variational
space to be @ = {RK, RK_,}. Therefore, this constrain is removed if { = log(c) and
consequently, the variational ¢ are pq, uy, ..., Uy, ¢, ¢, -, {3y and their parameter

space is unconstrained to R%K,

The next step concerns the optimization of the ELBO with respect to the variational
parameters ¢, which they live in an appropriate real coordinate space and thus, there
is no need to worry about the support matching constrain issue. In Stan, this
unconstrained optimization problem is solved via a stochastic gradient ascent
algorithm that uses automatic differentiation to compute gradients and Monte Carlo

integration to approximate expectations.

The automatic differentiation procedure cannot be used directly on the ELBO because

it includes an unknown expectation (see Equation 4, first term on the right side)

Equation 4°

P(y; @) = Equg) |LogP (7,271 (@) + log|det] -1 (w)]| + f q(w; 9)loglg(w; p)ldw

2 . .
concerns the ELBO in the real coordinate space

10
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Thus, the gradient operator is inserted into the expectation in order to differentiate
automatically the functions stored inside. To accomplish that, a last transformation is
required; the elliptical standardization. In particular, consider a transformation T, that
absorbs the variational parameters ¢. This standardization works as a convertor of the
Gaussian approximation to a standard Gaussian. In the Mean — Field approximation
the standardization is A =T,(w) = diag(exp(¢)) *(w — u); hence the variational

densities take the following form:

q(2) = Ny (4;0,1) = HN(Am; 0,1)

The elliptical standardization transforms the unknown expectation in Equation 4 to an
expectation in terms of a standard Gaussian density. Since the ELBO in no longer
depending on ¢, the gradients are directly calculated by being inserted into the known
expectation. The optimization problem is solved with the implementation of the

stochastic gradient ascent algorithm.

11
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Chapter 3

Implementation in Mixture of Gaussians

Mixture of distributions are considered to be one of the most well-known ways to
capture the non-systematic behaviour of some data, due to the weighted information
provided by multiple distributions. The mixture of densities is widely used and
studied, especially the Gaussian mixture which suggests multimodal data densities

allowing the population to be spilt into sub-populations.

On this project, the focus lies on these kind of models which include latent indicators
responsible for allocating the data point to the sub-populations (components), in order
to simplify the calculations by reducing the complexity of the model. On the other
hand, the mixture model can be written in Stan language without involving any of
those latent indicators; just leaving the model in the original form with the mixing
proportions. The likelihood of two univariate Gaussians below is presented with no

latent indicators:

P(y;6) = PN(#1»012) +(1- P)N(Hz'azz)

where 8 = (uq, Uy, 02, 02, p) denotes the set of the parameters, y; indicates the mean
value of the i*" component, o/ the variance of the values in the i** component and p

the mixing proportion.

Consequently, the computer intensive methods: Variational Inference and
Hamiltonian Monte Carlo, are implemented in mixture models coded in Stan language
for which the latent structure can be omitted. On the other hand, the latent structure is
adopted in the case of Gibbs Sampling in BUGS, since it is the only way to structure

the mixture model in that software.

12
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3.1 Examples in Mixture of Gaussians

Stan language constitutes a new probabilistic language for Bayesian Inference and
especially, MCMC and Variational Bayes; Variational Bayes is the same to
Variational Inference when the Mean — Field approach is adopted (Ormerod and Wand,
2010). In more details, the variational density of the parameter set is assumed to be

the product of the marginal variational densities of each element of the parameter set.

At this stage, it is of great importance to mention that Stan, as a new language, is
under development, especially in the part of Variational Inference and corrections are
made occasionally. Nevertheless, it was deemed interesting to use Stan as one of the
main softwares, in order to test its capabilities or even suggest

corrections/simplifications that might be helpful in the future.

In this chapter, the examples presented concern mixture of Gaussian distributions for
the likelihood. The procedure in terms of model’s structure in Stan is similar for any
mixture model, as well as for any number of components; therefore, the
implementation is made on mixture of two univariate Gaussians for two reasons:
a) the Gaussian is the most applicable distribution because most things in the nature
tend to follow a normal behaviour and b) it is quite often the output of a test to be
binary, indicating two groups according to the result of a suitable test; for instance, a
group of individuals positive to a tested virus and a group that includes individuals
negative to it. At this point is important to mention that efforts had been made to apply
those algorithms, especially the ones suggested by Stan, in a quadrivariate mixture of

Gaussians facing difficulties that are discussed at next.

In the aforementioned two cases, the statistical efficiency in terms of Mean Squared
Error (MSE) and Bias, as well as the speed of the algorithms (CPU time), are tested.
The first case concerns a mixture of two univariate Gaussians with well separated
components and the second when the components are not so well separated, in order

to test the performance of the algorithms in non-mixed and mixed cases.

13
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For both cases, multiple datasets have been simulated with the data size varying from
10 to 10° in order to test each algorithm’s performance in small, medium and big
datasets. The tables containing the MSE, Bias and CPU time are shown below, but
first the forms of the aforementioned measurements are given for each of the five

parameters of the univariate Gaussian mixture model 8 = (u;, u,, o, 0%, p) :
MSEk :% Iivzl(é;l_ek)z, k= 1,...,5

with N: number of simulated datasets, 6: the true value of the k" parameter and
é;l: the corresponding estimated value derived by the implementation of the chosen

algorithm.
Bias, = E(6;) — 6, k=1,..,5

where E(@;) =YV, é;l is the mean value of the k" parameter when the sample size

is N.

As regards CPU time, it is the amount of time measured in seconds for which CPU

was used for processing the algorithms.

Overall, lower values of those three quantities indicate statistical efficiency and low
computational cost respectively. To be more precise, MSE and Bias values are ideally
to be close to zero. Moreover, it must be mentioned that the number of datasets
simulated for each case is chosen to be 100, as this number is decent in terms of size

and may increase the possibilities of deriving significant results.

3.2 Testing the performance of the algorithms

As it is already mentioned, pursues the performance of Gibbs Sampling (Gibbs),
Variational Bayes (VB) and Hamiltonian Monte Carlo (HMC) in different cases. It is

14
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important to mention that the number of iterations in the MCMC algorithms is chosen

to be 2000 with burn-in equivalent to 1000.

First case

e 0.3N7(10,3%) +0.7N7(—10,22) - well separated Gaussian distributions

MEAN SQUARE ERROR

Mean: u Standard deviation: ¢* ‘Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1: Comp.1: Comp.1: Comp.1: Comp.1: Comp.1: 0.009 0.013  0.006
0.094 0.103 0.097 0.080 0.086 0.075
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
0.105 0.497 0.398 0.720 0.509 0.306
Data
size: BIAS
10 Mean: u Standard deviation: o* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1: | Comp.1l: Comp.1l: Comp.1: Comp.1l: Comp.1: 0.004 0.011 | 0.005
-0.007 -0.892 0.031 -0.047 -0.097 -0.036
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
-0.054 0.110 0.098 0.107 0.217 0.083
CPU TIME (in sec)
Gibbs VB HMC
88.75 9.35 135.46

Table 3.2.1: MSE, Bias and CPU time of each algorithm when the two components are well-
separated and the size of each of the 100 datasets is 10

In the Table 3.2.1, the performance of each algorithm seems to be respectable as the

values of the tested quantities — MSE and Bias - are close to zero. Variational

? p is the probability of the first component N(IO, 32) being realized and 1 — p the probability of the second
component N (—10,22)
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Inference might be less significant than the others; however the difference is not

considerably high. Nevertheless, its speed is quite higher (CPU time = 9.35 seconds).

MEAN SQUARE ERROR

Mean: u Standard deviation: ¢* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1:  Comp.1: Comp.1: Comp.1: Comp.1: Comp.1: 0.002 0.008 @ 0.002
0.064 0.063 0.057 0.040 0.036 0.025
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
0.085 0.297 0.298 0.510 0.209 0.207
Data
size: BIAS
102 Mean: u Standard deviation: o* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1: | Comp.1: Comp.1l: Comp.1: Comp.1: Comp.1: 0.002 0.008 @ 0.005
-0.003 -0.592 0.021 -0.027 -0.067 -0.015
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
-0.084 0.080 0.078 0.167 0.087 0.053
CPU TIME (in sec)
Gibbs VB HMC
137.78 21.75 292.69

Table 3.2.2: MSE, Bias and CPU time of each algorithm when the two components are well-
separated and the size of each of the 100 datasets is 100

In the Table 3.2.2, it is shown that all the algorithms produced quite accurate results
for the whole parameter set, in this specific case, since the MSE, as well as the Bias
are close to zero everywhere. As regards the time cost, Variational Bayes (or
Inference) seems to be considerably faster than the rest of the algorithms (CPU time

= 21.75 seconds).
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Gibbs

Comp.1:

0.006

Comp.2:

0.024
Data
size:

103

Gibbs

Comp.1:

-0.001

Comp.2:

0.005

Mean: u

VB
Comp.1:
0.039

Comp.2:
0.209

Mean: u

VB
Comp.1:
-0.027

Comp.2:
0.012

Gibbs
605.70

HMC
Comp.1:
0.027

Comp.2:
0.027

HMC
Comp.1:
0.020

Comp.2:
0.006

Standard deviation: o

Gibbs
Comp.1:
0.005

Comp.2:
0.016

Standard deviation: o

Gibbs
Comp.1:
-0.018

Comp.2:
0.057

CPU TIME (in sec)

VB
Comp.1:
0.035

Comp.2:
0.112

BIAS

VB
Comp.1:
-0.056

Comp.2:
0.064

VB
53.78

MEAN SQUARE ERROR

2

HMC
Comp.1:
0.021

Comp.2:

0.107

2

HMC
Comp.1:
-0.013

Comp.2:
0.045

Mixing Proportion: p

Gibbs VB
0.001

HMC

0.008  0.001

Mixing Proportion: p

Gibbs =~ VB = HMC
20.003  0.008 -0.001
HMC
1154.20

Table 3.2.3: MSE, Bias and CPU time of each algorithm when the two components are well-

separated and the size of each of the 100 datasets is 1,000

In the Table 3.2.3, the sample size increases to 1,000 and the MSE/Bias values

approach faster the zero value in each case. It could be noticed that Gibbs Sampling,

as well as Hamiltonian Monte Carlo may produce slightly more accurate results than

Variational Bayes, since they appear to derive lower values, but the differences seem

to be negligible. Once more, Variational Bayes is considerably faster.
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Mean: u

Gibbs VB
Comp.1: Comp.1:
- 0.001
Comp.2: Comp.2:
- 0.004
Data
size:

10* Mean: u

Gibbs VB

Comp.1: Comp.1:

- 0.007

Comp.2: | Comp.2:

- -0.010

Gibbs
> 963.30

HMC

Comp.1:

Comp.2:

HMC
Comp.1:

Comp.2:

MEAN SQUARE ERROR

Standard deviation: ¢*

Gibbs VB HMC
Comp.1: Comp.1: Comp.1:
- 0.002 -
Comp.2: Comp.2: Comp.2:
- 0.011 -

BIAS

Standard deviation: ¢*

Gibbs VB HMC
Comp.1: Comp.1: Comp.1:
- 0.026 -
Comp.2:  Comp.2: | Comp.2:
- 0.058 -

CPU TIME (in sec)
VB
963.30

Mixing Proportion: p

Gibbs VB HMC
- 0.000 -

Mixing Proportion: p

Gibbs VB HMC
- 0.005 -

HMC
> 963.30

Table 3.2.4: MSE, Bias and CPU time of each algorithm when the two components are well-

separated and the size of each of the 100 datasets is 10,000

In the Table 3.2.4, the sample size has reached 10,000 datapoints per dataset. The

computational cost of this simulation is high, but Variational Bayes managed to

complete the process within 963.30 seconds. On the other hand, the MCMC algorithms

were considerably slow without deriving any results after a long hour. Hence, it was

made the decision to stop the procedure since Variational Inference had already

converged.
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MEAN SQUARE ERROR

Mean: u Standard deviation: ¢* Mixing Proportion: p
VB VB VB
Comp.1: 0.001 Comp.1: 0.002 0.000
Comp.2: 0.004 Comp.2: 0.011
Data BIAS
size: Mean: p Standard deviation: o* Mixing Proportion: p
10°
VB VB VB
Comp.1: 0.007 Comp.1: 0.026 0.005
Comp.2: -0.010 Comp.2: 0.058

CPU TIME (in sec)
VB
9879.93

Table 3.2.5: MSE, Bias and CPU time of Variational Bayes when the two components are
well-separated and the size of each of the 100 datasets is 100,000

In Table 3.2.5 are presented the results of Variational’s Bayes performance in 100
datasets with 100,000 data points each. The algorithm is very fast in terms of CPU
time. The MCMC algorithms weren’t able to converge within a comparable time

framework, due to the high computational cost in the calculations.

To sum up the aforementioned conclusions, all the algorithms in general seemed to be
statistical efficient in the case of two well separated univariate Gaussians. Variational
Inference in smaller datasets, might be less efficient in comparison to the MCMC
algorithms, but the difference was not so noticeable. Regarding the time required for
the algorithm to converge, Variational Inference (or Bayes) was considerably the

fastest algorithm, rendering itself a quite useful tool in cases of massive datasets. The
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MCMC algorithms didn’t show the same capability in the bigger problems due to their

difficulty in scaling to large datasets.

Second case

= 0.3MN(1.75,3%2) + 0. 7NV (—1.75,22) — not so well separated Gaussians’

MEAN SQUARE ERROR

Mean: u Standard deviation: ¢* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1:  Comp.1: Comp.1: Comp.1: Comp.1: Comp.1: 0.013 0.025 | 0.011
0.109 0.189 0.112 0.098 0.180 0.092
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
0.167 0.503 0.420 0.567 0.689 0.367
Data
size: BIAS
10 Mean: u Standard deviation: ¢* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1:  Comp.1: Comp.1: Comp.1: Comp.1l: Comp.1: 0.009 0.020 0.009
-0.009 -0.986 0.045 -0.053 -0.178 -0.045
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
-0.064 0.189 0.100 0.178 0.294 0.098
CPU TIME (in sec)
Gibbs VB HMC
92.25 11.15 146.12

Table 3.2.6: MSE, Bias and CPU time of each algorithm when the two components are not

so well-separated and the size of each of the 100 datasets is 10

According to Table 3.2.6, the MSE and Bias values are systematically higher for
Variational Bayes in comparison to the MCMC algorithms, for the case of mixed

components. This situation may denote that the aforementioned algorithm tends to

4 . . . .
the tables for data size equal to 10 and 1,000 are provided, since the first case represents the performance of the algorithms
in small data sets and the second, in big ones
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produce less accurate estimates in mixed cases because it approximates the target
density rather than sampling from the asymptotically exact posterior. At this point, it
is important to mention that the sample size was quite small, consequently it was
expected to have less significant estimates, especially for Variational Inference.
Nevertheless, the values are not significantly higher than those of the MCMC
algorithms, indicating than Variational Bayes still could be used as the main algorithm
in the mixture of mixed Gaussians with not so well separated components, according
to this example. Moreover, as expected, its speed outperforms the one of the others.
As regards Hamiltonian Monte Carlo and Gibbs Sampling, their performance in that

case cannot distinguish which one is more preferred; both are statistically efficient.

MEAN SQUARE ERROR

Mean: u Standard deviation: ¢* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1:  Comp.1: Comp.1: Comp.1: Comp.1: Comp.1: 0.004 0.012 | 0.005
0.017 0.042 0.056 0.010 0.067 0.053
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
0.078 0.387 0.076 0.023 0.178 0.114
Data
size: BIAS
103 Mean: u Standard deviation: o* Mixing Proportion: p
Gibbs VB HMC Gibbs VB HMC Gibbs VB HMC
Comp.1: | Comp.1: Comp.1l: Comp.1: Comp.1: Comp.1: -0.006 @ 0.015 -0.004
-0.005 -0.035 0.032 -0.026 -0.065 -0.025
Comp.2:  Comp.2: Comp.2: Comp.2: Comp.2: Comp.2:
0.009 0.026 0.011 0.065 0.077 0.053
CPU TIME (in sec)
Gibbs VB HMC
611.63 58.74 1168.54

Table 3.2.7: MSE, Bias and CPU time of each algorithm when the two components are not

so well-separated and the size of each of the 100 datasets is 1,000
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In Table 3.2.7, the performance of the algorithms is proportional to the one discussed
in Table 3.2.6, with the only difference lying on the bigger sample size which

automatically increases the statistical efficiency of the algorithms.

To sum up the aforementioned, Variational Inference as expected was the fastest
algorithm in terms of CPU time in seconds. On the other hand, its accuracy decreased
due to the mixing components, however this decrease was not considerably high
because the framework of Gaussian distributions may favored its performance, as well
as the fact than constrain for label switching was inserted into the Stan model. The
MCMC algorithms seem both to perform well, with Gibbs Sampling probably being
more accurate in terms of MSE and Bias. Furthermore, both of them were slow, with

Hamiltonian Monte Carlo being slower.

Last case

The algorithms provided in Stan were implemented for a quadrivariate mixture of two
Gaussians. Despite the fact that similar procedure as the univariate case was pursued
in structuring the code, both of the algorithms made unreasonably unstable estimation
for the parameters in comparison to Gibbs Sampling in BUGS. At this point, it would
be quite helpful to highlight that Stan is under development, especially for the
Variational Inference method, since a warning message is deriving after
implementation letting us know that the algorithm is on experimental level and may
produce unstable results or even wrong. More reasons could be that coding in Stan,
may be complex if the user starts building the model on her/his own without consulting

similar examples.

Therefore, it is considered decent to recheck the results of Stan’s output in the future

by applying the algorithms manually in different softwares.

3.3 Some point estimates along with relevant values

It is interesting to present the point estimation of the mixture parameters derived by

the three algorithms, along with their standard deviation, as well as the effective
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sample sizes for the MCMC algorithms. Two data sets of different size were chosen

and the aforementioned values are illustrated below:

True values: uy = 10, p, = —10, a% =3, a% =2, p=30% 1-p=70%

Data
size:

103

Mean values (point estimates)

2

1z o p
Comp.1: Comp.1: Comp.1:
9.9 3.16 30%
Comp.2: Comp.2: Comp.2:
-10 1.82 70%

Mean values (point estimates)

2

H o 14
Comp.1: Comp.1: Comp.1:
9.87 2.83 28%
Comp.2: Comp.2: Comp.2:
-10.10 2.05 32%

Mean values (point estimates)

H o P
Comp.1: Comp.1: Comp.1:
9.86 2.95 29%
Comp.2: = Comp.2: Comp.2:
-9.94 1.98 71%

Gibbs Sampling

Standard deviation of the

Mean values

2

H 4 p
Comp.1: Comp.1: 0.01
0.2 0.001
Comp.2: Comp.2:
0.1 0.001

Variational Inference

Standard deviation of the

Mean values

2

H 4 p
Comp.1: Comp.1: 0.02
0.17 0.12
Comp.2: Comp.2:
0.08 0.05

Hamiltonian Monte Carlo

Standard deviation of the

Mean values

2

H 4 p
Comp.1: Comp.1: 0.01
0.01 0.001
Comp.2: Comp.2:
0.001 0.001

Effective Sample size

2

H 4 p
Comp.1:  Comp.1: 1000
1000 799
Comp.2:  Comp.2:
1000 800

Effective Sample size

Effective Sample size

H 4 p
Comp.1:  Comp.1: 1000
1000 1000
Comp.2: Comp.2:
1000 1000

Table 3.3.1: Point estimates along with their standard deviation and the effective sample size

for each algorithm when the dataset of size 1,000 is derived from a mixture of two univariate

Gaussians with well separated components
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True values: uy =10, p, = —-10, a% =3, a% =2, p=0.3

Data
size:

10°

Mean values (point estimates)

2

Iz o p
Comp.1: Comp.1: Comp.1:
10 3.16 30%
Comp.2: Comp.2: Comp.2:
-10 2 70%

Mean values (point estimates)

2

H o 14
Comp.1: Comp.1: Comp.1:
10.07 3.06 28%
Comp.2: Comp.2: Comp.2:
-10.08 1.98 32%

Mean values (point estimates)

H o P
Comp.1: Comp.1: Comp.1:
9.98 3.00 30%
Comp.2: = Comp.2: Comp.2:
-9.99 2.00 70%

Gibbs Sampling

Standard deviation of the

Mean values

2

H 4 p
Comp.1: Comp.1: 0.01
0.01 0.001
Comp.2: Comp.2:
0.01 0.001

Variational Inference

Standard deviation of the

Mean values

2

H o p
Comp.1: Comp.1: 0.001
0.01 0.02
Comp.2: Comp.2:
0.02 0.02

Hamiltonian Monte Carlo

Standard deviation of the

Mean values

2

H 4 p
Comp.1: Comp.1: 0.01
0.001 0.001
Comp.2: Comp.2:
0.001 0.001

Effective Sample size

2

H 4 p
Comp.1:  Comp.1: = 1000
800 1000
Comp.2:  Comp.2:
1000 1000

Effective Sample size

Effective Sample size

H 4 p
Comp.1:  Comp.1: 1000
1000 1000
Comp.2: Comp.2:
1000 1000

Table 3.3.2: Point estimates along with their standard deviation and the effective sample size

for each algorithm when the dataset of size 100,000 is derived from a mixture of two

univariate Gaussians with well separated components

24



Department of Statistics - Athens University of Economics and Business

According to Table 3.3.1 and Table 3.3.2, all the algorithms derived quite accurate
point estimates for the parameters of this mixture model, since the values seem to be
pretty close to the true ones in each case. As regards the effective sample size of the
MCMC algorithms, Hamiltonian Monte Carlo in this case, produced 1,000
uncorrelated samples out of 1,000 (number of samples is 2,000 but the first 1,000 are
discarded). On the other hand, Gibbs Sampling had high effective samples sizes as
well, for all the parameters, except from the variances of the components in Table
3.3.1 and the mean value of the first component in Table 3.3.2 where values lower
than 1,000 were produced, indicating that out of the 1,000 posterior samples, at most

800 are uncorrelated.
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Chapter 4

Conclusions

Variational Inference is considered to be the fastest algorithm in terms of the CPU
time required for the algorithm to produce results, rendering this method pretty useful
in massive data problems, where the need for fast inference is indisputable. Second
comes Gibbs Sampling with considerable lower speed in terms of CPU time and last
Hamiltonian Monte Carlo, due to the extra time required for the auxiliary variables to
be computed at each iteration. At this stage, it must be mentioned once more that a
part of the differences in speed may be due to the different softwares being used to

implement the algorithms.

Hamiltonian Monte Carlo and Gibbs Sampling were also tested in their ability to
derive uncorrelated data points by calculating the effective sample size for each
parameter. Hamiltonian Monte Carlo performed better than Gibbs Sampling, since the
effective sample sizes for each parameter of the mixture model were greater,
indicating that the algorithm tends to produce uncorrelated data points. In terms of
statistical efficiency, all the algorithms for both models- one Gaussian mixture with
two well separated components and another with two not so well separated - derived
quite accurate results. In the latter case, the statistical efficiency was lower, however
the estimates were quite accurate. Gibbs Sampling and Hamiltonian Monte Carlo, as
MCMC methods which sample asymptotically from the exact posterior, were expected
to be efficient. Variational Inference, especially in the latter case where the two
components mix, derived less accurate results than the MCMC algorithms, however
the differences in terms of MSE and Bias seemed to be insignificant. It is important
to note that Variational Inference was expected to perform even poorly in the

estimation of the two variances, since according to the literature (Bishop, 2006) it
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tends to underestimate them; on the other hand, the way that it is implemented in Stan,
as well as the framework of the normality, may favoured its performance. To sum up,
according to the aforementioned results and the literature, MCMC methods despite of
being popular for their ability to sample from the asymptotically exact posterior, they
cannot be scaled in large datasets. On the other hand, Variational Inference is capable
of being implemented without hesitation in massive datasets, but in general it is

inclined to underestimate the variance in the Gaussian problems.

In the multivariate case, the results of Variational Inference and Hamiltonian Monte
Carlo weren’t accurate in spite of having coded correctly the multivariate mixture
model in Stan terms. At this point, it is crucial to mention and highlight that a warning
message appeared after each implementation of Variational’s Inference command
revealing that the algorithm is experimental, since the procedure has not been
thoroughly tested and may be unstable or buggy; hence the interface is about to
change. Regarding Hamiltonian Monte Carlo, the results in the simulation procedure

weren’t derived since the algorithm got stuck after the first iterations.

Consequently, it is wise to test further the results in the multivariate case, as well as
in the univariate by implementing manually the algorithms in another software until
Stan is tested thoroughly. Nevertheless, it was considered important as well as
interesting to use Stan as one of the main softwares, since it suggests a black box
procedure for Variational Inference and Hamiltonian Monte Carlo, rendering it a quite
useful tool after its upgrade. Moreover, it was deemed reasonable to test its
capabilities in practice and make suggestions as regards corrections or simplifications
in coding, such as the need for increasing the flexibility of the user to structure on
her/his own way the mixture model. So far, it might be tricky for the user to begin
constructing a complex model by him/herself in Stan coding, without seeking for

advice in similar examples in the literature.

27



Computer Intensive Methods for Statistical Models with Latent Structures

4.1 Future Research

There are several avenues for further investigation that we were not able to pursue due
to time constrains. As mentioned before, Variational Inference and Hamiltonian
Monte Carlo could be implemented manually in an alternative language, such as R or
Python, for univariate and multivariate mixture models in order to test the
performance of the algorithms, as well as to compare the results with Stan.
Furthermore, it would be interesting enough to work with mixture factorial

experiments (Nobile and Green, 2000) by applying the aforementioned algorithms.
In addition, a quite challenging and simultaneously promising investigation could be

the use of Variational Inference in combination with MCMC sampling algorithms to

enable Bayesian inference to meet the demands of the new “big data” era.
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Appendix

R Code

###H# mixture of two univariate gaussians in Stan coding

newmodel<-"

data {

int<lower=0> N; // number of data points in entire dataset

int<lower=0> K; // number of mixture components

int<lower=0> D; // dimension

vector[D] y[N]; // observations

real<lower=0> alpha@; // dirichlet prior

}

transformed data {

vector<lower=0>[K] alpha@_vec;

for (k in 1:K)

alpha@_vec[k]=alpha®;

}

parameters {

simplex[K] theta; // mixing proportions

ordered[D] mu[K]; // locations of mixture components with constrain for label switching
vector<lower=0>[D] sigma[K]; // standard deviations of mixture components

}

model {

// priors

theta ~ dirichlet(alpha@_vec);
for (k in 1:K) {

mulk] ~ normal(@.0, le3);
sigma[k] ~ inv_gamma(le-3, le-3);
}

// likelihood

for (n in 1:N) {

real ps[K];

for (k in 1:K) {

ps[k]=log(theta[k]) + normal_lpdf(Cy[n]| mu[k], sigma[k]);
}

target+=log_sum_exp(ps);

}

3

#### run the univariate mixture of gaussians in Rstan
s<-stan_model (model_code=newmodel)

The simulation code for the two well separated Gaussians is provided for all the algorithms — VI, HMC & GS:

30



Department of Statistics - Athens University of Economics and Business

#HH## simulation for VI in the mixture of two univariate gaussians

d<-100 #### number of simulated datasets
est.vbmeanl<-rep(NA,d)
est.vbmean2<-rep(NA,d)
est.vbpl<-rep(NA,d)

est.vbp2<-rep(NA,d)
est.vbsigmal<-rep(NA,d)
est.vbsigma2<-rep(NA,d)

##### algorithm for simulating and saving the VI estimates - likelihood: two well separated gaussians
loop<-system.time(for(i in 1:d){ ##### computing the speed of the algorithm in terms of CPU time
N <- 10000

components <- sample(l:2,prob=c(0.3,0.7),size=N,replace=TRUE)
mus <- c(10,-10)
sds <- ¢(3,2)

datanorm <- rnorm(n=N,mean=mus[components],sd=sds[components])
n<-length(datanorm)
data<-1ist(N=n,K=2,D=1,y=structure(datanorm,.Dim=c(n,1)),alpha@=1)

initf<-functionQQ{ ##### initial values of the parameters
list(theta=c(0.6,0.4) ,mu=structure(c(-9,9), .Dim=c(2,1)),sigma=structure(c(1.5,2.5), .Dim=c(2,1)))
}

data<-1ist(N=n,K=2,D=1,y=structure(datanorm, .Dim=c(n,1)),alpha@=1) #### the data list
fit2<-vb(s,data=data,init=initf,seed=123) ##### the automatic differentiation variational inference

est.vbmeanl[i]<-summary(fit2)$c_summary[3]
est.vbmean2[i]<-summary(fit2)$c_summary[4]
est.vbpl[i]<-summary(fit2)$c_summary[1]
est.vbp2[i]<-summary(fit2)$c_summary[2]
est.vbsigmal[i]<-summary(fit2)$c_summary[5]
est.vbsigma2[i]<-summary(fit2)$c_summary[6]
b

##### calculation of the MSE and Bias for each parameter
difmeanl<-(est.vbmeanl+10)A2

mse_meanl<-mean(difmeanl)
bias_meanl<-mean(est.vbmeanl)+10

difmean2<-(est.vbmean2-10)A2
mse_mean2<-mean(difmean2)
bias_mean2<-mean(est.vbmean2)-10

difpl<-(est.vbpl-0.7)A2
mse_pl<-mean(difpl)
bias_pl<-mean(est.vbpl)-0.7

difp2<-(est.vbp2-0.3)A2
mse_p2<-mean(difp2)
bias_p2<-mean(est.vbp2)-0.3

difsigmal<-(est.vbsigmal-2)A2
mse_sigmal<-mean(difsigmal)
bias_sigmal<-mean(est.vbsigmal)-2

difsigma2<-(est.vbsigma2-3)A2
mse_sigma2<-mean(difsigma2)
bias_sigma2<-mean(est.vbsigma2)-3

eval.vb<-matrix(c(mse_meanl,bias_meanl,mse_mean2,bias_mean2,mse_pl,bias_pl,mse_p2,
bias_p2,mse_sigmal,bias_sigmal,mse_sigma2,bias_sigma2),nrow=2,ncol=6)

row.names(eval.vb)<-c("MSE","bias")

colnames(eval .vb)<-c("Mean 1","Mean 2","p","1-p","Sd 1","Sd 2")
round(eval.vb,3)
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#### simulation for HMC

#### well separated gaussians
r<-100

est.hmmeanl<-rep(NA,r)
est.hmmean2<-rep(NA,r)
est.hmpl<-rep(NA,r)
est.hmp2<-rep(NA,r)
est.hmsigmal<-rep(NA,r)
est.hmsigma2<-rep(NA,r)

loophm<-system.time(for(i in 1:r){
N <- 10000

components <- sample(1l:2,prob=c(0.3,0.7),size=N,replace=TRUE)
mus <- c(10,-10)
sds <- c(3,2)

datanorm <- rnorm(n=N,mean=mus[components], sd=sds[components])
n<-length(datanorm)
data<-1ist(N=n,K=2,D=1,y=structure(datanorm,.Dim=c(n,1)),alpha@=1)

initf<-function({
list(theta=c(0.5,0.5),mu=structure(c(-9,9), .Dim=c(2,1)),sigma=structure(c(1,1),.Dim=c(2,1)))
}

data<-1ist(N=n,K=2,D=1,y=structure(datanorm,.Dim=c(n,1)),alpha@=1)
fit<-sampling(s,data=data,seed=123,init=initf,chain=1) ##### HMC algorithm
summary(fit)$c_summary
est.hmmean1[i]<-summary(fit)$c_summary[3]
est.hmmean2[1]<-summary(fit)$c_summary[4]
est.hmpl[i]<-summary(fit)$c_summary[1]
est.hmp2[i]<-summary(fit)$c_summary[2]
est.hmsigmal[i]<-summary(fit)$c_summary[5]
est.hmsigma2[i]<-summary(fit)$c_summary[6]

D

##### calculation of MSE and Bias for each parameter
hmdifmeanl<-(Cest.hmmeanl+10)A2
hmmse_meanl<-meanChmdifmeanl)
hmbias_meanl<-mean(est.hmmeanl)+10

hmdifmean2<-(est.hmmean2-10)A2
hmmse_mean2<-mean(Chmdifmean2)
hmbias_mean2<-mean(est.hmmean2)-10

hmdifpl<-Cest.hmpl-0.7)A2
hmmse_pl<-meanChmdifpl)
hmbias_pl<-mean(est.hmp1)-0.7

hmdifp2<-(est.hmp2-0.3)A2
hmmse_p2<-meanChmdifp2)
hmbias_p2<-mean(est.hmp2)-0.3

hmdifsigmal<-(est.hmsigmal-2)A2
hmmse_sigmal<-mean(hmdifsigmal)
hmbias_sigmal<-mean(est.hmsigmal)-2

hmdifsigma2<-(est.hmsigma2-3)A2
hmmse_sigma2<-mean(hmdifsigma2)
hmbias_sigma2<-mean(est.hmsigma2)-3

eval . hm<-round(matrix(cChmmse_meanl,hmbias_meanl,hmmse_mean2,hmbias_mean2,hmmse_pl,
hmbias_pl,hmmse_p2,hmbias_p2,hmmse_sigmal,hmbias_sigmal,hmmse_sigma2,hmbias_sigma2),nrow=2,ncol=6),3)

row.names(eval .hm)<-c("MSE", "bias™)
colnames(eval .hm)<-c("Mean 1", "Mean 2","p","1-p","Sd 1","Sd 2")
eval.hm
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###### Gaussian univariate mixture model in OpenBugs - saved as “normal.bug.txt”

model
{
for( i in 1 : N ) {
y[i]l ~ dnorm(muli], taulil)
muli]l <- lambdal[T[il]]
T[i] ~ dcat(P[])

}
P[1:2] ~ ddirch(alphall)
theta ~ dnorm(0.0, 1.0E-6)I(0.0, )
lambda[2] <- lambda[l] + theta
lambda[1] ~ dnorm(0.0, 1.0E-6)
taul[l] ~ dgamma(@.001, 0.001)
taul[2] ~ dgamma(0.001, 0.001)

sigma[l] <- 1 / sqrt(taull])

sigmal2] <- 1 / sqrt(taul2])

}

##### simulation for Gibbs Sampling
d<-100

est.gsmeanl<-rep(NA,d)
est.gsmean2<-rep(NA,d)
est.gspl<-rep(NA,d)
est.gsp2<-rep(NA,d)
est.gssigmal<-rep(NA,d)
est.gssigma2<-rep(NA,d)

###### well separated gaussians
loop<-system.time(for(i in 1:d){
N <- 100

components <- sample(1:2,prob=c(0.3,0.7),size=N,replace=TRUE)
mus <- c(10,-10)
sds <- ¢(3,2)

datanorm <- rnorm(n=N,mean=mus[components], sd=sds[components])
n<-length(datanorm)

y<-datanorm

alpha<-c(1, 1)

T<-c(1,rep(NA,N-2),2)

data<-1ist("N","y","T","alpha™)

inits2<-function(Q{
1ist(P=c(0.6,0.4),mu=c(9,-9),delta=c(0.01,0.02))
}
norm.sim <- bugs(data, inits2, model.file = ("C:/Users/LINA/Downloads/normal.bug.txt"),
parameters = c("mu", "P","delta"),
n.chains = 1, n.iter = 2000,bugs.directory = "C:/Users/LINA/Downloads/WinBUGS14")

est.gsmeanl[i]<-norm.sim$summary[1]

est.gsmean2[i]<-norm.sim$summary[2]
est.gspl[i]<-norm.sim$summary[3]
est.gsp2[i]<-norm.sim$summary[4]
est.gssigmal[i]<-norm.sim$summary[5]
est.gssigma2[i]<-norm.sim$summary[6]

B
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#### calculation of the MSE and Bias for each parameter
difmean2<-(est.gsmean2+10)A2

mse_mean2<-mean(difmean2)
bias_mean2<-mean(est.gsmean2)+10

difmeanl<-(est.gsmeanl-10)A2
mse_meanl<-mean(difmeanl)
bias_meanl<-mean(est.gsmeanl)-10

difp2<-(est.gsp2-0.7)A2
mse_p2<-mean(difp2)
bias_p2<-mean(est.gsp2)-0.7

difpl<-(est.gspl-0.3)A2
mse_pl<-mean(difpl)
bias_pl<-mean(est.gspl)-0.3

difsigma2<-(1/(sqrt(est.gssigma2))-2)A2
mse_sigma2<-mean(difsigma2)
bias_sigma2<-mean(est.gssigma2)-2

difsigmal<-(1/(sqrt(est.gssigmal))-3)A2
mse_sigmal<-mean(difsigmal)
bias_sigmal<-mean(est.gssigmal)-3

eval.gs<-round(matrix(c(mse_meanl,bias_meanl,mse_mean2,bias_mean2,mse_p1l,
bias_pl,mse_p2,bias_p2,mse_sigmal,bias_sigmal,mse_sigma2,bias_sigma2),nrow=2,ncol=6),3)

row.names(eval.gs)<-c("MSE", "bias™")
colnames(eval.gs)<-c("Mean 1", "Mean 2","p","1-p","Sd 1","Sd 2")
eval.gs
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