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Abstract

Cluster analysis (more often clustering) is a very powerful tool in a variety of fields:
Statistics, social sciences, biology, machine learning, data mining and data reduction are
significant representatives, with the latter being an example where clustering is not used
as a stand-alone procedure but as a first step towards the goal. Despite the diversity of its
applications, the core objective of clustering is to identify structures of similar objects in-
side vast datasets. The lack of knowledge of the exact result we try to identify, constitutes
the part of clustering result validation the most crucial one.

In the current thesis, we present a brief description of the most used clustering algo-
rithms along with the novelty they introduce to the procedure. We then make a strong
effort to cover all the different approaches on the matter of Clustering Validation and how
the nature of our problem defines the appropriate validity index. Following the theoretic
approach, a comparative analysis in terms of result validation is implemented by an appli-
ance of five different clustering algorithms in synthetic datasets. Finally, an approach on
how clustering quality indices can be used in real product data is presented and evaluated.

Keywords: clustering,clustering algorithms,validity, indices,retail
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1
Introduction

One could claim that clustering intuitively has its foundation on an inherent instinct
of human nature: Categorize objects into groups that not only can be described by spe-
cific characteristics, but on the same time these same ”features” stand adequate enough
to distinguish the underlying group from the remaining. In a more formal definition,
Cluster Analysis groups data objects based on the information provided solely by features
of the dataset. The principal goal, is to discover patterns among the vast volume of data
that indicate significant negative or positive correlation among specific objects/actions.

The very attempt to give a formal definition of clustering reveals the ”weak” spots of
the procedure:

• The structure hypothesis
Right at the start of the the clustering procedure we hypothesize that there is indeed
an underlying structure of the data under analysis, which we try to discover. This
hypothesis may not stand in all cases.

• The unsupervised nature of the problem
Even if a structure is existent in our dataset, previous to the analysis we only have a
subjective opinion on what a valid clustering result would be. In a manner cluster-
ing techniques attempt to classify objects by assigning them cluster (class) labels,
with the distinct specification that the labels are extracted from the dataset itself.
For that reason, in scientific literature clustering may be referred to, as unsuper-
vised classification.

4



CHAPTER 1. INTRODUCTION 5

• The parameter selection
As stated on the definition, a clustering procedure attempts to reveal similar or prox-
imate objects. Thus, it requires of us to define a measure of similarity or distance,
which in turn will be used appropriately from the variety of clustering algorithms in
order to produce the required result. The definition of the above can be quite chal-
lenging as it depends mostly on the kind of data processed. This delicate definition
of a proximity measure is supplemented by a thorough choice of a clustering crite-
rion. This criterion is expressed through a set of rules (more frequently in form of
a cost function), and it depends mostly on the expected type of clusters we attempt
to identify.

• The result evaluation
Nested in all the above ”rough edges” of clustering, lies perhaps the most cru-
cial issue: How good is our clustering result? Given the fact that we ”navigate in
uncharted areas” there are many approaches on how to assess the validity of our
results, depending on the nature of the data, the used algorithm and even the very
expectation of what we are trying to accomplish through the clustering analysis.

Throughout this thesis we will present a detailed description of the different kind of clus-
tering procedures, the algorithms that are most commonly used in modern day problems,
as well as the types of validity measures that have been applied in recent studies. Fur-
thermore, a comparative analysis of different clustering algorithms in synthetic data will
be presented in order to highlight the respective strengths and weaknesses of them when
applied in data with specific structure. Finally, we will present an approach on how a
clustering quality index can be used in real product data, in order to create an optimal
hierarchical clustering based on a different feature at each level.



2
Clustering algorithms

2.1 Cluster Analysis Applications
Clustering as a procedure, has been proven useful throughout scientific research not only
in divergent disciplines but in fundamentally different ways.

Perhaps, the most recent realization of clustering usefulness is that of data reduction.
In modern day problems the amount of available data constitutes an analysis on the whole
dataset nearly impossible. Thus, clustering arrives to perform an initial partition of the
dataset and enable analysis through cluster representatives. On the contrary, the oldest
utility of clustering (perhaps even the spark to have lit the flame of the procedure ex-
pansion) is that of data understanding.This is either expressed in terms of identifying a
taxonomy in nature and human populations, or in the detection of disease symptom pat-
terns and sensitive sub-populations.Another major field where clustering plays a pivot role
is that of business. Customer data, constitute a huge source of information from where
clustering techniques can extract sale patterns, seasonal fluctuations, and customer be-
havioural characteristics. All these in turn, can boost targeted marketing campaigns and
help identify business opportunities. Finally, we have to point out that a very popular field
of use for clustering techniques is that of fraud detection. It has been used as an initial
step to identification of fraudulent actions or users because of its ability to, relatively easy,
point out extreme cases in the dataset by assigning them in the same cluster, way far from
the remaining ones.
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CHAPTER 2. CLUSTERING ALGORITHMS 7

2.2 Clustering Algorithms Categorization
Complete versus Partial
A self-explanatory categorization of clustering algorithms, arises from whether all data
points (objects) are assigned to a cluster or not. In an era where data is collected in massive
amounts and extreme pace, it is immediate that a significant part of it does not belong to
well-defined groups. Thus, it is quite useful for an algorithm to allow a percentage of
unassigned objects, which depending to the problem may represent noise, extreme cases
or even just low informative representatives of the dataset.

Crisp versus Fuzzy
With the term Crisp Clustering we refer to clustering techniques that assign each object in
a single cluster. In the opposing side Fuzzy Clustering allows each object to belong in ev-
ery cluster discovered by the algorithm, by denoting the power of affiliation with them in
terms of a weight vector. The weight values vary from zero (certainty of non-belonging)
to one (certainty of belonging), and are not necessary to sum to one. A very similar ap-
proach to fuzzy clustering is followed on probabilistic clustering where the weights are
replaced by the respective probability to belong to each cluster.
The latter techniques are quite useful to avoid clustering in an arbitrary way, objects that
are quite ”close” in more than one clusters. Finally both these, techniques can be trans-
formed to crisp clustering simply by assigning the object under examination to the cluster
with the highest weight/probability.

Cluster formulation variations
One of the core characteristics that represent the operation of a clustering algorithm, is the
way that it defines clusters and operates to recognize them. The most common variations
sourced in that choice are the following:

• Partitional
This kind of algorithms identify a set of disjoint clusters. This is achieved by ap-
plying a partition of the data set, producing an integer number of sub-spaces each
depicting a different cluster. The procedure is iterative and works towards optimiz-
ing a set of criteria.

• Hierarchical
The fundamental difference of hierarchical clustering compared to partitional is
that each cluster is realised as a union of specific sub-clusters. The whole dataset
is depicted in a tree form with the root to be a huge cluster containing all data
objects while the leaf nodes are singleton clusters containing single data objects.
This hierarchy can be formed either ”bottom-up” (aglomerative approach) or ”top-
down” (divisive approach).
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• Density Based
In this type of algorithms the clusters are defined as regions of high density, sur-
rounded by areas of low density. They introduce a flexibility on the shape of the
cluster identified, while on the same time can identify noise or extreme cases on the
dataset.

• Model Based
In model based clustering, clusters are realized as mixture components of a finite
mixture of distributions.

2.3 Representative clustering algorithms analysis
As we have made clear so far, a variety of approaches exist for each clustering problem. In
order to highlight the differences of each approach along with the benefits that accompany
it, we will describe in detail the algorithms that were used throughout the thesis.

2.3.1 K-Means
This is perhaps the most cited and commonly used clustering algorithm. It performs
a partitional,complete,crisp clustering. The metric used to determine the distance of data
objects is Euclidean distance, while the goal is to minimize the following objective func-
tion:

E =
k

∑
i=1

∑
x∈Ci

d(x,µi),

where Ci is the i-th cluster and d(x,µi) is the Euclidean distance between each data object
and the center of it. As a representative of the divisive clustering algorithms its operation
is iterative and its main algorithmic steps are the following:

1. Select k cluster centers (either randomly or explicitly).

2. Calculate the Euclidean distance between all points and all cluster centers.

3. Assign each data point to the cluster, from whose center it has the minimum dis-
tance.

4. Recalculate the new cluster centers with the use of

1
|Ci| ∑

x∈Ci

d(x,µi),

where |Ci| is the cardinality of the i-th cluster.
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5. Repeat steps 2-4 iteratively until there is no change on the cluster centers or a min-
imum user-set threshold of center shift occurs.

The main dis-functionality of this algorithm is that we have to predetermine the number
of the clusters which is unknown in an unsupervised problem as clustering. Moreover,
the initialization of the hypothesized cluster centers can affect the resulting clustering
crucially. In practice, either we choose very distant data points or perform a multiple
random initial assignments in order to observe a dominating clustering result. On the
other hand, this is a computationally light procedure and in case the data are well separated
produces an excellent result.

2.3.2 Agglomerative Hierarchical
The two key parameters that characterize an hierarchical clustering algorithm are its dis-
tance metric and linkage criterion. The scope of our analysis was met by an implemen-
tation of an agglomerative hierarchical algorithm using as metric the Euclidean distance
and as linkage criterion the Ward’s criterion [16].

In more details, the algorithm starts with every data object as a singleton clusters and
moves its way up by merging in each step the pairs of clusters that minimize the within-
cluster variance of the newly merged-to be cluster. In a strictly mathematical expression
(and denoting the Ward2 implementation we followed in the following chapters) the clus-
ter update formula is written as following:

δ (i∪ i′) =
[

wi +w′′i
w+w′i +w′′i

δ
2(i, i′′)+

w′i +w′′i
w+w′i +w′′i

δ
2(i′, i′′)− w′′i

w+w′i +w′′i
δ

2(i, i′)
]1/2

and wi∪ı′ = wi +w′i,

where wi is the cardinality of cluster i and δ 2(i, i′) = ∑ j(xi j,xi′ j)
2, meaning that the input

dissimilarities are expressed as squared Euclidean distance. Taking the resulting hierar-
chy and visualizing it as a tree, allows the user to cut at the desired height and obtain a
complete,crisp clustering result. This creates a certain amount of bias, as selecting dif-
ferent heights can lead to different resulting number of clusters thus making an indirect
choice that seemingly fits the data in a better way.



CHAPTER 2. CLUSTERING ALGORITHMS 10

2.3.3 Model-based Clustering
Model based clustering uses the hypothesis that the d-dimensional features of a data object
are a sample of a finite mixture density

p(xi|K,θK) =
K

∑
k=1

pkφ(xi|ak),

where pk’s stand as the mixing proportions, φ(·|ak) denotes the distribution density and
θK is the parameter vector.

The most common mixtures used are Multivariate Gaussian mixtures. In that case the
distribution φ(·|ak) takes the form:

1√
2π|Σ−1

k |
exp
(
− 1

2
(x−µk)

TΣ−1
k (x−µx)

)
,

where x = (x1, · · · ,xn) is the vector of the n (d-dimensional) data objects, µk is the vector
of means (µ1, · · · ,µk) and Σk is the d×d covariance matrix of class k respectively.

The standard methodology of model-based clustering includes an implementation of the
Expectation-Maximization algorithm to estimate the finite mixture model components,
and usage of the Bayesian Information Criterion to select the number of mixture compo-
nents. This methodology has been criticized in terms of efficiency to estimate the correct
number of clusters in the dataset ([1],[11]) and a number of ways to to bypass this are
discussed in section 4.2.3.

2.3.4 DBSCAN
The acronym DBSCAN stands for Density Based Spatial Clustering for Applications with
Noise and was introduced in 1996 by Martin Ester et. al [8]. It brought a revolutionary
approach on the table of clustering algorithms, as it abandoned the formulation of cluster
in a nested or non-nested way as the hierarchical and partitioning clustering algorithms
perceive them respectively. The general goal of DBSCAN and all density-based algo-
rithms extensively, is to locate data space regions of high density surrounded by regions
of low density, without having to predetermine how many clusters you expect to find (e.g.
K-means) or how to terminate the division or merging of nested clusters (e.g. Hierarchical
clustering). In that manner density based algorithms can handle noise and discover non-
convex shaped clusters but unfortunately in order to define what constitutes a dense region
or not they introduced a couple of extra parameters that affect the resulting clustering in
a crucial way.
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In order to explain how DBSCAN works we have to introduce the reader to some basic
definitions:

Eps Neighbourhood: The eps neighbourhood of a point p is defined by:

NE ps(p) = q ∈ D|d(p,q)≤ E ps.

Direct Density Reachability: A point p is directly density-reachable from a point q
with respect to Eps,MinPts if:

1. p ∈ NE ps(q)

2. |NE ps(q)| ≥MinPts

Density Reachability: A point p is density-reachable from a point q if there is a chain
of points p1, p2, . . . , pn, where p1 = p, pn = q such that pi+1 is directly density-reachable
from pi.

Given the aforementioned definitions, all the data points (objects) can be separated in
three distinct categories:

1. Core points: A point is characterized as core point if in its neighbourhood (defined
by a distance metric and the user-defined parameter Eps), lie more than MinPts
(again a user-defined parameter) points.

2. Border points: In turn, as border point is defined every point that is not a core
point but lies in the neighbourhood of one.

3. Noise points: Noise points are defined to be all the remaining points of the dataset
that do not fall in the above categories.

Combining the above-mentioned definitions we can describe conceptually the proce-
dure of the DBSCAN clustering:

• All data points are labeled as core,border and noise points according to the input
parameters Eps,MinPts.

• By definition all core points belong to a cluster.

• All core points that are directly density -reachable from another core point belong
to the same cluster.

• All border points that are density-reachable from a core point belong to the cluster
of the core point. In case a border point is density-reachable from non-direct density
reachable core points, the cluster assignment need to be resolved automatically.

• All noise points remained unassigned.
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2.3.5 HDBSCAN
The final clustering algorithm we used throughout this thesis is a combination of hierar-
chical and density-based algorithm: Hierarchical-DBSCAN (HDBSCAN)[3].

The first crucial difference from DBSCAN, is the metric on which density of the data
space is evaluated. The notion, is that we want to enhance even more the difference
between dense and non-dense regions and this is accomplished by introducing the mutual
reachability distance metric:

dmreach(xp,xq) = max{corek(xp),corek(xq),d(xp,xq)},

where d(xp,xq) is the original metric distance between the two objects, while corek(·)
is the distance to the k-nearest neighbour. It is immediate from that metric, that points
belonging in dense regions of the data space (meaning low core distance) retain their
original distance while points in low-density areas are driven further apart.

After the computation of the mutual reachability distance between all pairs of data,
there is a need to distinguish in practice the more dense regions. This is achieved by per-
ceiving our dataset as a graph where data points are represented by vertices and the edges
connecting them have a weight equal to the mutual reachability distance between them.
Using that graph, the Minimum Spanning tree can be formed by adding each time the
lowest weight edge that connects the already formed tree to a vertex not yet in it (Prim’s
algorithm).After that the MST is extended by adding an edge for every vertex pointing to
each self with the weight of the core distance of that object. Finally if iteratively all edges
in a decreasing weight are removed we can obtain the HDBSCAN hierarchy.

Note:Up until this point the procedure can be described as equivalent to DBSCAN
but with the use of another distance metric. In fact, if we use the minPts parameter
of DBSCAN as the k in k-nearest neighbours we will have a clustering tree with all
the different partitions that we can obtain for E ps ∈ [0,+∞]. In other words Eps would
be a threshold above which all edges of the extended MST would be removed and the
remaining connected components would represent the found clusters (all singleton points
would be considered noise).

At this very point HDBSCAN comes to surpass DBSCAN and get rid of the unintuitive
,crucial to DBSCAN, Eps parameter.The notion of this part of the algorithm is to trans-
form the hierarchical density tree, into a more compact form that would help uncover the
most persistent clusters in our dataset. This is accomplished with the use of the (usually)
only parameter of the algorithm: the minimum cluster size. Using that parameter we
revisit the hierarchy tree and at every split we examine if the produced clusters meet the
minimum size. In case at least one of them does not, we consider the split undone and
retain the cluster label of the parent while we mark which points ”fell off” the parent clus-
ter and at what distance. This produces a much more simple hierarchy and reduces the
size of the three drastically.It is useful to notice that in most implementations of the HDB-
SCAN algorithm the minimum cluster size coincides with the k in k-neighbours used for
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the definition of the mutual reachability distance, but this is not necessary.
At the final stage of the algorithm, we want to extract the most dominant clusters of

the dataset in order to obtain a ”flat” clustering. In real datasets though, these clusters
may vary in density which is something that cannot be detected with the use of a global
density level like in DBSCAN. Thus, HDBSCAN defines a different measure that will
allow a variety in density of the final chosen clusters.

Cluster Stability: The stability of a cluster Ci is given by

S(Ci) = ∑
xj∈Ci

(
λmax(x j,Ci)−λmin(Ci)

)
,

where λmin(Ci), is the minimum density level where Ci starts to exist and λmax(x j,Ci) is
the maximum density level after which object x j does not belong to that cluster.

With the use of cluster stability the goal of obtaining a flat clustering of the most stable
clusters is reduced to the following optimization problem:

If {C2, . . . ,Ck} is the collection of all clusters in the condensed hierarchical tree except
the root C1, we wish to maximize the sum of stabilities of the extracted clusters

max
δ1,δ2,...,δk

J =
k

∑
i=2

δiS(Ci),

with respect to


δi ∈ {0,1}, i = 2, . . . ,k

∑
j∈Ih

δi = 1,∀h ∈ L
,

where δi indicates if cluster i is included on the flat solution (δi = 1) or not (δi = 1),Ih is
the set of indexes of leaf nodes and L is the set of indexes of all clusters in the path of the
respective leaf node to the root.

This optimization problem is solved by selecting initially all the leaf nodes as part of the
flat clustering and move upwards the hierarchy, including a parent cluster in the solution
(and simultaneously erasing all its descendants from it), only if its stability is greater than
the sum of the stabilities of its descendants. Once we reach the root node we call the set
of currently selected clusters the solution to the optimization problem and return the crisp
clustering result.



3
Clustering Validation

3.1 Necessity of clustering result validation
As it was briefly described in the introduction, clustering problems inherit some difficul-
ties from its very conceptual formulation. It is not only the ambiguity on whether exists
an underlying structure on our dataset or not, but questions about matters such as ”opti-
mal number of clusters”, ”optimal clustering algorithm”, ”business value of the resulting
clustering” rise all the time from the researchers comparing and applying clustering tech-
niques. Moreover, it is quite common to apply the same clustering algorithm with various
sets of input parameters and obtain quite different results. All the above, highlight the
importance of defining a universal way to assess the clustering result.

3.2 Different approaches of validation
Being able to determine the existence of a non-random structure of the dataset, the optimal
number of clusters and in general compare two clustering results against each other are
the hopeful outcomes of the validation stage of clustering.

The core difference between the various proposed measures, referred commonly as va-
lidity measures, lies on whether the information they use to define the clustering quality
has its source internally or externally of the dataset. Based on that discrimination, validity
criteria are classified as:

14
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• Internal criteria

Indices using quantities and features available within the dataset.

• External criteria

Quality indices that compare the resulting clustering to a ground-based truth avail-
able externally, either by previous research or by subjective knowledge from field
experts.

Finally, usage of indices (either internal or external) to perform a comparison between
clustering results obtained from the same clustering algorithm but differently parametrized,
is sometimes referred in bibliography as a separate category under the name relative cri-
teria.

3.2.1 Relative Criteria
The basis of cluster validity with the use of relative criteria lies on the comparison of
different clustering results and the selection of the best in terms of a predefined criterion.
It is usually applied when trying to evaluate results of a specific clustering algorithm with
different parametrization and can differ in the following way:

• The set of varying parameters does not involve the number of clusters.

In that case the clustering algorithm is applied with a broad spectrum of varying
parameters. From the obtained results, the largest range of parameters for which
the identified number of clusters remains steady is chosen. The set of parameters
that yields the best result is then chosen to be the middle of that range respectively.
In that manner we also, indirectly. determine the underlying number of clusters in
our dataset.

• The set of varying parameters involves the number of clusters.

This is the most common case of use and is based on a validity index, q. The
procedure is described as following:

1. Predetermine the range of acceptable values for the number of clusters param-
eter. e.g. M ∈ [Mmin,Mmax]

2. Run the clustering algorithm for each of the values in the above interval, using
different set of remaining initial parameters.

3. Determine for each set of runs, the set of parameters that return the best clus-
tering scheme in terms of the specified validity index q.

4. Plot the best value of the validity index for each number of clusters parameter
versus the number of clusters.
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(a) In case the validity index does not behave in a monotonic way as the
number of clusters parameter increases, we seek for the local optima de-
pending on the choice of index.

(b) In case the validity index do behave in a monotonic way, we search for the
number of cluster value where a significant local change of the validity
index occurs (a knee in the plot). In case it is absent, we may receive it as
an indication that there is no underlying structure on our data.

5. After establishing the optimum value for the number of clusters parameter,
we can supplement it by the set of the remaining parameters that yielded that
result and are previously stored.

3.2.2 Internal Criteria
Most of the internal criteria used for cluster validity purposes, are based on the notion that
a good clustering result should include the following characteristics:

• Compactness

The resulting clusters should be homogeneous. This means that members of the
same cluster should be as close to each other (in terms of a specified distance metric)
as possible.

• Seperation

The resulting clusters should be widely spread in the data space. The distance
between clusters can be measured with either of the following:

(a) Single Linkage
Inter-cluster distance is measured between the closest members of the cluster.

(b) Complete Linkage
Inter-cluster distance is measured between the furthest members of the cluster.

(c) Representative Comparison
Inter-cluster distance is measured between the representatives of each cluster.
e.g. its centroids

• Connectedness

Neighbouring points should belong to the same cluster
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Compactness & Separation - based criteria

A group of internal validity measures based, directly or indirectly, on these upper-described
notions are the following:

• Sum of Squares Within Clusters (SSBK)

SSWK =
K

∑
i=1

∑
x∈Ci

d(x− ci)

This is a widely used measure of cluster cohesion in case of Euclidean distance.

• Sum of Squares Between Clusters (SSBK)

SSBK =
K

∑
i=1
|Ci|d(ci− c)

This is a widely used measure of cluster separation in case of Euclidean distance.The
higher the value of the index the more separated the resulting clusters are from an-
other.

• Calinski & Harabasz (CH)

CH =

SSBK
(K−1)
SSWK
(N−K)

• Ball & Hall (BH)

This index is set to be the mean,through all K clusters, of the cluster’s mean disper-
sion. In case of clusters of equal cardinality it is given via:

BH =
SSWK

N

• Dunn’s Index (Dunn)

We define the minimal distance between data objects that do not belong to the same
cluster:

dmin =
K

min
i, j=1,i 6= j

min
x∈Ci,x′∈C j

d(x,x′).

Moreover we define the largest distance between points of the same cluster, also
known as cluster diameter:

diam(Ck) = max
x,x′∈Ck

d(x,x′).

Based on these quantities Dunn’s index is calculated as:

Dunn =
dmin

maxK
k=1 diam(Ck)
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• Davies & Bouldin (DB)

DB index is based on the similarity measure Ri j. Let us define the mean distance of
the points belonging in cluster i:

si =
1
|Ci| ∑

x∈Ci

d(x− ci),

and the distance between the cluster’s geometrical means

di j = d(ci,c j).

We then can define the similarity index as following:

Ri j =
si + s j

di j
,

while Ri = maxi, j=1,...,K Ri j, i 6= j. The Davies & Bouldin index is then evaluated as:

DB =
1
K

K

∑
i=1

Ri.

Conceptually the DB index represents the average similarity between each cluster
and its most similar one. Thus, it is desirable to have the minimum possible average
similarity of the clustering scheme.

• Scattering-Separation index (SD)

The SD index is based on the concepts of the average cluster scattering and the total
separation between clusters. Let us define these two concepts via the following
formulas:

Scatt =
1
K

K

∑
k=1

‖Vk‖
‖V‖

, Dis =
Dmax

Dmin

K

∑
i=1

1

∑
K
j=1, j 6=i di j

,

where ‖Vk‖ is the respective cluster variance, ‖V‖ is the dataset variance, di j is the
distance between the cluster centers as defined in the DB index, while Dmax & Dmin
are the respective maximum and minimum values of that distance.

The SD index is defined as

SD = c ·Scatt +Dis,

where c is a weighting factor corresponding to the total separation value of the re-
sulting partition with the greatest number of clusters (thus, it has to be calculated
first). Well defined clusters are considered to have small scattering and great sep-
aration amongst them, which leads to the fact that we search for clusterings with
small values of the SD index.
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• Silhouette index (SC)

The Silhouette value of a data object in contrast to the above defined indices, mea-
sures the degree of confidence in its clustering assignment:

Si =
bi−ai

max{ai,bi}
,

where ai denotes the average distance between point i and the points assigned to
the same cluster and bi the average distance between itself and the points assigned
to the ”nearest” neighbouring cluster

ai =
1
|Ci| ∑

j∈Ci

d(i, j), bi = min
Ck, k 6=i

∑
j∈Ck

d(i, j)
|Ck|

.

Let us set as the Silhouette index of a clustering scheme, the average Silhouette
score of its objects:

SC =
1
N

N

∑
i=1

Si.

The values of the index lie in [−1,1] with unity denoting a perfect assignment.
Thus, in practice values around 0.5 and higher are considered acceptable.

• Connectivity (Conn)

Let nni( j) denote the j-th nearest neighbour of observation i and

xi,nni( j) =

{
0, when i, j belong to the same cluster
1
j , otherwise .

Then for particular clustering partition the Connectivity index is obtained through:

Conn =
N

∑
i=1

L

∑
j=1

xi,nni( j).

Hierarchical clustering criteria

Most of the above-defined indices are meaningful to be used in partitional clustering. At
this point we will define four indices that must be used simultaneously and sequentially
at each step of an hierarchical clustering to evaluate the correct number of cluster in the
dataset. Finally we will present an index that can evaluate solely a clustering hierarchy.



CHAPTER 3. CLUSTERING VALIDATION 20

• Root Mean Squared Standard Deviation (RMSST D)

RMSST D measures the homogeneity of the formed clusters at each step by calculat-
ing the square root of the pooled sample variance of all features. Thus in each step
it should decrease, otherwise we are moving towards a less homogeneous solution.
It is defined as following: √√√√∑

K
i=1 ∑

d
j=1 ∑

ni j
m=1(xm− x j)2

∑
K
i=1 ∑

d
j=1(ni j−1)

,

where d is the dimension of the data objects (number of features),n j is the number
of data values of j-th dimension, ni j is the respective number of data values assigned
to i-th cluster, while x j is the mean of data values of j-dimension.

• R-squared (RS)

RS measures degree of difference between clusters. It is defined as:

RS =
SSBK

SSBK +SSWK
.

It is obvious from the definition that the greater the differences between the clusters,
the more homogeneous are the participant clusters. Thus, we seek for values of the
index more close to the right border of the range interval

(
[0,1]

)
.

• Cluster Distance (DC)

The CD index calculates the distance between the two clusters that are merged (or
of the resulting clusters of a division) according to the linkage function used for the
produce of the hierarchy. Obviously, the resulting clusters should be as further as
possible.

• Semi-Partial R-squared (SPR)

This index measures the loss of homogeneity after merging two clusters (or equiv-
alently dividing a single cluster to two). Its range is [0,1], with 0 standing for
the merging two completely homogeneous clusters. Thus, in an agglomerative ap-
proach we seek for index values more close to unity. The index is defined as:

SSWC1∪C2−SSWC1−SSWC2

SSWK +SSBK
.

These four indices are calculated at each step of the hierarchical algorithm and plotted
against the number of clusters. The occurrence of a knee indicates that there is an under-
lying structure on the dataset and we have isolated the optimal number of clusters.
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Correlation Criteria

This particular family of indices, differs a lot in terms of how it handles the internal
information of the data to validate the result. It is based in terms of correlation between
matrices or vectors depicting in varying ways the inherent dataset information.

• Cophenetic Correlation Coefficient (CPCC)

The core tool of this index (subsequently limiting down its use only to hierarchical
clustering results) is the Cophenetic distance e.g. The distance between two data
objects at which an aglomerative hierarchical algorithm assigns them on the same
cluster for the first time.

Let bi j the elements of the original proximity matrix P, and ci j the elements of the
produced cophenetic matrix PC. We define the CPCC index as:

CPPC =
N−1

T ∑
N−1
i=1 ∑

N
j=i+1(bi j · ci j−µp ·µc)√[

N−1
T ·∑

N−1
i=1 ∑

N
j=i+1(b

2
i j−µ2

p)

][
N−1

T ·∑
N−1
i=1 ∑

N
j=i+1(c

2
i j−µ2

c )

] ,

where NT = N·(N−1)
2 is the total number of pairs of distinct point in the dataset and

µp,µc are the mean vectors of the two matrices. e.g.

µp = N−1
T

N−1

∑
i=1

N

∑
j=i+1

P(i, j) , µc = N−1
T

N−1

∑
i=1

N

∑
j=i+1

PC(i, j).

This index, approaches the notion of clustering validation in terms of measuring the
correlation between the original proximity matrix used for the clustering procedure
and another matrix carrying internal or external information about the resulting
clustering. In that manner it can be used as a notion into external indices as we will
observe on subsection 3.2.3. Finally as a correlation measure, it indicates significant
similarity between the two matrices (meaning a well fitted clustering to the data) for
values approximate to unity.

• Gamma index

The Gamma index of Baker-Hubert [1975] is an adaptation of the rank correlation
measure of Goodman & Kruskall for clustering purposes. It was originally pro-
posed to determine the optimal number of clusters in hierarchical clustering, but
modern packages have extended its use in every clustering result.

The notion behind this index is to perform a comparison of the resulting within-
cluster dissimilarities and the respective between-cluster dissimilarities. This is
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achieved by evaluating the correlation of two vectors; one carrying internal in-
formation of the dataset and the other representing the clustering result. In more
details, the first vector contains the distances of pairs of data objects while the lat-
ter is a matrix taking binary values, with one depicting data pairs that belong to the
same cluster while zero denotes pairs of data belonging in different clusters (always
based on the clustering result). The index then is calculated as:

Γ =
s+− s−

s++ s−
,

where s+ represents the number of times where two points belonging in the same
cluster had strictly smaller distance than two points that are classified into different
clusters (concordant pairs) while s− denotes the reverse count (discordant pairs).
The usual implementations of Γ index do not take account the ties in the above
computations.

Both vectors have length NT (the number of distinct pairs in the dataset). Let us
denote the number of distinct pairs inside a cluster as:

NW =
K

∑
k=1

nk(nk−1)
2

.

It is apparent that the number of distinct pairs of objects that do not belong to the
same cluster is

NB = NT −NW .

Thus, the number of comparisons required for the calculation of the index is NW ·
NB. This constitutes the computation of the index quite expensive in case of large
datasets,compared to the rest of the internal indices.

• G+ index

This index is a simple variation of the Γ index. It is calculated as the proportion of
the discordant pairs of data objects within the dataset:

s−
NT (NT−1)

2

.

• Tau index

Another variation of the Γ index is:

τ =
s+− s−
NT (NT−1)

2

.
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This index has the advantage of being able to take a modified form that also takes
into account the ties among the comparisons performed for the numerator:

τc =
s+− s−√

(ν0−ν1)(ν0−ν2)
,

where ν0 =
NT (NT−1)

2 ,ν1 = ∑i
ti(ti−1)

2 ,ν1 = ∑ j
u j(u j−1)

2 ,
ti is the number of ties in the i-th group of comparisons for the vector of distances,
while u j is the respective sum for the binary vector of the clustering result. By
taking advantage of the binary form of the latter vector, it is easily proven that
(ν0− ν2) = NW ·NB. Finally making a last (quite plausible) hypothesis that there
are a few identical entries in the vector of distances the following modified tau
index formula is computed:

τc =
s+− s−√

ν0(NW ·NB)
.

Stability Criteria

A final sub-category of internal indices are the stability indices.Their distinctive character-
istic is that they compare results from clustering based on the whole dataset to clustering
based on the dataset after the universal removal of one feature at a time. This is extremely
useful in clustering analysis of highly correlated data or in general data with an extensive
amount of features in comparison to the number of observations (p >> n).

• Average Proportion of non-overlap (APN)

The APN index measures the average proportion of data objects that are not as-
signed to the same cluster, based to the full data versus the data with the removal of
one feature at a time. It is defined through:

APN =
1

N ·M

N

∑
i=1

M

∑
l=1

(
1− |C

i,l ∩Ci, f ull|
|Ci, f ull|

)
,

where Ci, f ull represents the cluster on which object i is assigned when clustering
is based on the whole dataset and Ci,l is the respective cluster based on the dataset
with the removal of the l-th feature. The index values vary between zero and unity,
with zero denoting highly consistent clustering results.

• Average Distance (AD)

The AD index measures the average distance between data objects assigned in the
same cluster through full and partial clusterings. It is defined as :

AD =
1

N ·M

N

∑
i=1

M

∑
l=1

1
|Ci, f ull| · |Ci,l|

[
∑

i∈Ci, f ull , j∈Ci,l

d(i, j)
]
.
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The index lies in the interval [0,∞], and we seek small values of it.

• Average Distance between means (ADM)

The ADM is defined respectively to AD but instead of measuring the average dis-
tance of all cluster participants, it calculates the average distance of the cluster
centers.It lies, also in the same interval and in general we wish to keep it minimal.

• Figure of merit (FOM)

The FOM index measures the intra-cluster variance of the data objects in the deleted-
feature when the clustering is based on the remaining ones. For the respective l-th
feature the FOM index is defined as:

FOMl =

√√√√ 1
N

K

∑
k=1

∑
i∈Ck(l)

d(xi,l,xCk(l)),

where xi,l is the value of observation i in the deleted feature and xCk(l) is the average
of cluster Ck(l).

Each column-wise FOM index is multiplied by a factor of
√

N
N−K in order to fade

out the tendency to decrease as the number of clusters K increases. Finally, the
final FOM index is calculated to be the average between all column-wise scores
and varies between zero and ∞. Smaller values indicate better clustering results.

3.2.3 External Criteria
The usage of external indices to validate the clustering results occurs only when there
is a prior knowledge of the underlying structure of the data which we wish to evaluate
or when indeed the general truth of the dataset is given and we want to obtain the best
clustering approach to accomplish it. For the extend of this sub-section we will refer to
the external information as partition of the dataset to classes while the clustering result as
the identified clusters.

”Classification” Criteria

The following two measures ”borrow” their perspective from classification measures.

• Entropy (Entrp)

This index attempts to measure the degree to which each cluster consists of data
objects of the same class. In particular the entropy of cluster Ck is defined as:

Entrp(Ck) =
−1

logq

q

∑
i=1

|Ci
k|
|Ck|

log
|Ci

k|
|Ck|

,



CHAPTER 3. CLUSTERING VALIDATION 25

Internal indices
Index Abbreviation Range Rule

Sum of Squares Within Clusters SSBK [0,+∞] min
Sum of Squares Between Clusters SSWK [0,+∞] max

Calinski-Harabasz CH [0,+∞] max
Ball-Hall BH [0,+∞] max diff

Dunn CH [0,+∞] max
Davies-Bouldin DB [0,+∞] min

Scattering-Separation SD [0,+∞] min
Silhouette SC [−1,1] max

Connectivity Conn [0,+∞] min
Cophenetic Correlation CPPC [−1,1] max

Gamma Γ [−1,1] max
Gamma plus Γ+ [0,1] min

Tau τc [−1,1] max
Average non-overlap proportion APN [0,1] min

Average Distance AD [0,∞] min
Average Distance between means ADM [0,∞] min

Figure of Merit FOM [0,∞] min

Table 3.1: Identify good clustering results via internal indices

where q is the number of distinct classes in the partition and |Ci
k| denotes the number

of data objects of class i assigned in cluster k. Finally, the entropy of the clustering
schema is defined as:

Entrp =
K

∑
k=1

|Ck|
N
·Entrp(Ck).

A perfect clustering would result to clusters containing objects from a sole class,
leading the entropy of the schema to zero. In general, small values of the index are
required.

• Purity (Pur)

Purity, measures the extend to which each cluster contains data objects from pri-
marily one class.In particular, the purity of cluster Ck is defined as:

Pur(Ck) =
1

|Ck|maxi(|Ci
k|)

,
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while the overall purity of the clustering schema is:

Pur =
K

∑
k=1

|Ck|
N
·Pur(Ck).

Respectively, a perfect clustering would result to clusters containing objects from a
sole class, leading the purity of the schema to unity. In general, big values of the
index are required.

Pair-Counting Criteria

Let us define, based on the external dataset partition P and the clustering schema C, the
following outcomes:

(a) Two data objects belong to the same group according to both P & C.

(b) Two data objects belong to the same group according to P but not according to C.

(c) Two data objects belong to the same group according to C but not according to P.

(d) Two data objects do not belong to the same group according to both P & C.

If we denote the number of pairs contained in each category as yy,yn,ny,nn, we have
that the total distinct pairs of objects of the dataset NT is equal to the sum of the above.
Based on these notions and the derived confusion matrix of the two schemas we define
the following external indices:

• Precision (Prec)

Using as reference the partition P this index measures the proportion of data objects
rightly grouped in the clustering schema:

Prec =
yy

yy+ny
.

• Recall (Rec)

This index measures the proportion of data objects grouped together at P which are
also grouped together in C:

Rec =
yy

yy+ yn
.

• Czekanowski-Dice or Ochiai (CD)

This index is the harmonic mean of the precision and recall indices, making it
identical to the F-measure as defined in classification problems:

CD =
2 · yy

2 · yy+ yn+ny
.
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• Kulczynski (KU)

This index is the arithmetic mean of the precision and recall indices:

KU =
1
2

(
yy

yy+ny
+

yy
yy+ yn

)
.

• Fowlkes-Mallows (FM)

This index is the geometric mean of the precision and recall indices:

FM =
yy√

(yy+ yn) · (yy+ny)
.

• Jaccard Coefficient (J)

J =
yy

yy+ yn+ny
.

• Rand Index (RI)

RI =
yy+nn

NT

• Adjusted Rand Index (ARI)

Rand index has been identified to suffer from some limitations, such as that while
increasing the number of clusters it approaches unity even when comparing inde-
pendent clusterings. Furthermore, it has a non-constant expected value. In order
to bypass these problems Hubert & Arabie introduced the Adjusted Rand index:
A null hypothesis is made, assuming that the index follows a generalized hyper-
geometric distribution and ARI is defined as the difference of Rand index and its
expected value under the null hypothesis

ARI =
NT · (yy+nn)− [(yy+ yn)(yy+ny)+(ny+nn)(yn+nn)]

N2
T − [(yy+ yn)(yy+ny)+(ny+nn)(yn+nn)]

.

The adjusted Rand index has an expected value of zero and a maximum value of
unity. This means that ARI values around zero indicate a clustering of similar
usefulness as that of a random clustering, while index values around unity indicate
almost identical grouping.
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Correlation Criteria

This final category of external validity indices are based on correlation measurement be-
tween the matrices derived by the external partition and the resulting clustering.Let P(i, j)
and C(i, j) the similarity matrices that we wish to compare and let pi j,ci j their respective
elements. We define the following indices:

• Huberts Γ statistic (Γ)

Γ = N−1
T

N−1

∑
i=1

N

∑
j=i+1

(pi j · ci j)

• Normalized Γ statistic (Γ)

Γ =
N−1

T ∑
N−1
i=1 ∑

N
j=i+1(pi j · ci j−µp ·µc)√[

N−1
T ·∑

N−1
i=1 ∑

N
j=i+1(p2

i j−µ2
p)

][
N−1

T ·∑
N−1
i=1 ∑

N
j=i+1(c

2
i j−µ2

c )

] ,
where µp,µc are the mean vectors of the two matrices. e.g.

µp = N−1
T

N−1

∑
i=1

N

∑
j=i+1

P(i, j) , µc = N−1
T

N−1

∑
i=1

N

∑
j=i+1

C(i, j).

This index can be expressed in terms of the previous section notations as following:

Γ =
NT · yy− (yy+ yn)(yy+ny)√

(yy+ yn)(yy+ny)(nn+ yn)(nn+ny)
.

Regarding the standard Γ index we have established that large values indicate high
similarity between the matrices whereas in the normalized version we seek values around
zero.

3.3 Statistical Validation
Throughout this chapter we discussed various approaches in order to define sufficient
indices to evaluate the clustering result - this part is often called validity of the clustering.
Another crucial part that completes cluster validation is the part of reproducibility. This
part answers the question of whether our clustering results can be reproduced in similar
independent datasets and is really important in life-science oriented analyses. In the last
paragraph of this section, we also refer to a technique used in both internal and external
indices and attempts to judge how likely is that the observed index value has been achieved
by chance.
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External indices
Index Abbreviation Range Rule

Entropy Entrp [0,+∞] min
Purity Pur (0,1] max

Precision Prec [0,1] max
Recall Rec [0,1] max

Czekanowski-Dice CD [0,1] max
Kulczynski KU [0,1] max

Fowlkes-Mallows FM [0,1] max
Jaccard J [0,1] max
Rand RI [0,1] max

Adjusted Rand ARI Upper bound: unity max
Normalized Γ (Γ) [−1,1] around zero

Table 3.2: Identify good clustering results via external indices

3.3.1 Data Resampling
A very common practice to statistically validate the clustering results is that of data re-
sampling.The notion is that we are going to simulate perturbations of the original dataset
and assess the stability of the clustering results. The more stable the higher the qual-
ity of the clustering schema. Resampling techniques vary usually between bootstrap-
ping,perturbations and jacknife, while the choice depends on the data and clustering al-
gorithm used. This approach, is also useful to seek the optimal number of clusters in
terms of the point where the stability score reveals a local optima.

3.3.2 Prediction Strength
Another approach that in specific areas (such as marketing research) is quite useful, is
that of assessment of the predictive strength of the clustering result. Here, clustering is
perceived as a classification problem and we use cross-validation techniques to assess its
quality.

In prediction based techniques, such as CLEST, the data set is split into two non-
overlapping sets (playing the role of train and test dataset) and subsequently the learn-
ing set is clustered producing labels that will be the basis of the classifier. Then the test
set is also clustered and the obtained labels are compared to the classifier obtained ones
using an external validity index. In more sophisticated approaches we use r-fold cross
validation, separating the data set in r distinct parts where each time the r-1 parts play the
training set role and the remaining is used as a test set.
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3.3.3 Monte Carlo Simulations
The notion for this technique is that a simple value of a validity index may not offer
us much in terms of measuring the goodness of fit on the dataset. Thus, we attempt to
compute an approximation of the probability density function of the index via Monte
Carlo Simulations. In particular a significant amount of synthetic datasets is produced,
and for each one of them the validity index of choice is produced. The scatterplot of these
indices gives as the approximate pdf which in turn can be used for statistical inference.



4
Comparative Analysis

The scope of this chapter, is to perform a comparative analysis of different types of clus-
tering algorithms. The algorithms’ performance will be measured in terms of validity in-
dices as they were presented in chapter 3, while the comparisons will be made in a variety
of datasets designed to highlight strengths and weaknesses of the respective algorithms.

4.1 Datasets Generation
The observations of the datasets were obtained as samples from different multivariate nor-
mal distributions (MVDs). A variety of covariance matrices were pre-determined in order
to achieve the creation of clusters with specified orientation and desirable elongation.
Moreover, the mean vectors of the distributions were user-defined in order to achieve (or
not) overlapping between the clusters. Finally, specific untypical shapes that differ from
the elliptic shape of multivariate normal distributions, such as circles and parabolas, are
simulated with the use of specific R packages such as ClusterSim.

In more details, two groups of four different combinations of the aforementioned shapes
were simulated. The first group depicted data belonging to five clusters, while the latter
depicted ten different clusters.

31
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Figure 4.1: 1st Package

The size of each generated dataset varies from 1850 to 3230 data objects, while the density
of each cluster within the respective dataset fluctuates as a percentage of the dataset size.
For the scope of the comparative analysis it was deemed appropriate to keep the data as
two-dimensional, allowing an easy optical evaluation of the results.

A final mention has to be made about the sixth dataset. It is designed not to examine how
the different clustering algorithms handle clusters within clusters or non-typical shapes,
but what percentage of overlap between different clusters constitutes impossible their
correct identification. Specifically, elliptical clusters were generated from MVDs, with
initial overlap percentage of 5%, increasing up to 25% by a step of 5%.
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Figure 4.2: 2nd Package

4.2 Parameter Optimization
A very crucial part of the analysis was the appropriate setting of the different clustering
algorithms’ parameters. Part of the results evaluation was based on whether each algo-
rithm could identify the ”correct” number of clusters within the different datasets. This
information is usually unknown in real problems and can be replaced with the analyst’s
intuition, but in our analysis is already pre-determined.

Given the fact that we are going to use the number of identified clusters as a ”quality
index” makes an absolute need that we cannot bias the initialization of each algorithm
leading it indirectly to the correct results. In order to avoid this problem we made use of
relative criteria technique as defined in chapter 3. In more details, a reasonable range
of the input parameters for each algorithm was selected, while a clustering result was
produced for every possible initialization in that range. All the results were then evaluated
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with the use of the external indice of Fowlkes-Mallows (FM) and the best was chosen.
The specific details for each algorithm are the following:

4.2.1 K-Means
This particular algorithm is perhaps the most distinct paradigm of why we had to use
relative criteria in order not to put bias in our analysis: its sole input parameter is the
number of clusters to identify in the dataset.

The range of the parameter was set to be from 3 to 10 by step of one for the first group
of datasets (where the real number of clusters is five) and from 3 to 20 with the same
step for the second group. In addition, in each run we defined that 20 different random
initializations of the cluster centers would be made and then the best would be chosen in
terms of lowest within cluster variation. Finally, the clustering result with the highest FM
index value was returned as the optimal.

4.2.2 Agglomerative Hierarchical
In hierarchical clustering methods there are no input parameters to produce the hierarchy
other than the distance metric and the linkage criterion (in our analysis both set to Eu-
clidean distance and Ward’s criterion). A choice has to be made though, on what height
the hierarchy tree is going to be cut in order to produce a crisp clustering result.

Instead of setting an exact height, the required number of resulting clusters was given
as a parameter and the appropriate height was calculated automatically. Specifically, the
range of the number of clusters parameter was once again set to be [3,10] for the 1st
package of datasets and [3,20] for the 2nd package. The result with the highest FM index
value was selected as best.

4.2.3 Gaussian Mixture Model
The model-based clustering algorithm implemented in the analysis was that of a mixture
(in our case with equal mixture probabilities) of multivariate normal distributions. Most
R packages implementing this algorithm use the Bayesian Information Criterion (BIC) in
order to identify the number of components existing in the dataset,while assuming that
there is a one-to-one correspondence between the number of the model components and
the number of clusters. Based on the work of Baudry,Raftery,Celeux,Lo and Gottardo [1],
and assuming that atypical clusters shapes could be described better by a combination of
two or more model components we followed three different meta-analysis steps in order
to identify the optimal clustering result. In more details:
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Initial Model

For the initialization of the basic model-based clustering we had to select two initial pa-
rameters: The first parameter was the range of the number of the model components that
would be compared based on the BIC criterion. Following the same formalization as on
previous algorithms for the 1st group of datasets we used the range of [1,9] while for
the second we used [5,15]. The ranges were slightly more strict than on the previously
described algorithms as BIC selects the number of the mixture components that better
approximates the density, and has been proven to slightly overestimate the number of
clusters assuming the one-to-one correspondence. The second parameter that had to be
pre-determined, was that of the models allowed to be compared during the EM part of
the algorithm. The specification had to be made regarded the geometric characteristics of
the identified-to-be components. For the purposes of our analysis we allowed model of
varying volume and shape and either equal or varying orientation (VVE or VVV following
the encoding of the mclust R package).

Optimal clustering result

The first clustering candidate was that of the previously described algorithmic procedure
without further modification of the proposed result. We have to mention thought that all
the results of the model-based algorithms are soft clustering results, assigning probabil-
ities of cluster membership which in turn we used in order to create the required crisp
clustering. For the estimation of perhaps even better clustering results we followed three
different approaches based though on the same core idea:

Starting from the mixture model proposed by BIC, a sequence of clusterings is cre-
ated by successively merging two of the components till only one big cluster remains.
The criterion based on which the two merged components are chosen is that of mini-
mizing the clustering entropy at each step. It is quite important though to mention that
this method does not yield strictly hierarchical clustering results as a data point may not
be assigned based on the maximum conditional probability on either of the merged-to-be
components but yet be assigned to the resulting merged one.
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The optimal clustering result may be chosen as following:

(a) FM index

Assuming that the original number of components is G, following the procedure
described above we end up with G different clustering results including the original.
Each one of them is evaluated in terms of the FM index and the optimal one is
returned.

(b) Piecewise linear fit with one break point (1-BP)

An alternative way of determining an optimal result, is to plot the resulting clus-
tering entropy at each step versus the total number of clusters in it and perform a
piecewise linear fit in order to identify the elbow in the plot. Taking into account
that usually the original solution slightly overestimates the number of clusters in
the dataset, after the first couple of component merging the entropy does not drop
so drastically. Thus, we identify as the optimal proposed number of clusters (hence,
the optimal clustering result that is derived by that choice), the spot where the first
knee point exists. This is identified easily if we perform a piecewise linear fit with
a single break point.

(c) Piecewise linear fit with two break points (2-BP)

In a respective way, in case we need a more strict result that perhaps underestimates
the ”real” number of cluster in our dataset we perform a piecewise linear fit on the
same plot with two break points and obtain the clustering results derived by the
number of clusters of the second knee point.

Figure 4.3: (Left): One BP fit returns an optimal number of 7 clusters. (Right): Two BPs
fit return an optimal number of 5 clusters, which is our ground truth.
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4.2.4 DBSCAN
The parameter optimization of this density-based algorithm has been the most challeng-
ing among all the compared ones. The main reason is that we had to deal with two
input parameters whose optimal values, by trial and error methods, varied vastly among
the different simulated datasets. The difficulties that had to by surpassed, constitute the
other side of the same coin that has led to the implementation of more efficient density-
cluster algorithms such as HDBSCAN. The optimization procedure implemented can be
described as a three-step procedure:

Eps optimization

We recall that the Eps parameter denotes the radius around any data point within which
a total number of MinPts or more, has to lie in order to characterize the original data
point as a core point. In a simple rephrase it is the parameter that,given a MinPts value,
separates the data space into dense or non-dense areas. It is apparent from the definition
that for different datasets and for very distant MinPts values the optimal Eps value can
variate in tremendous ways.

In order to determine the optimal Eps value for each value of the second parameter an
optical way is proposed in almost every implementation of the algorithm: For each of
the data points in the dataset the k-th nearest neighbor distance (where k is each time set
as the MinPts value) is calculated. Afterwards, a plot of the sorted distances is made, in
order to identify a knee point. The distance on which the knee point lies is the optimal
Eps value, given that specific dataset and MinPts parameter. It is obvious that following
this technique requires not only user intervention (completely non-automated procedure)
but for every different value of the second parameter a completely different optimal value
of Eps arises.

Our implementation was based on this method, although achieved a more automated ap-
proach of it. In more details, for a specific MinPts parameter the aforementioned distances
were calculated,ordered and normalized. Afterwards, their numerical first derivative was
calculated (applying the smoothing splines approximation) and the maximum value was
stored as an indicator. Continuously a vector of seven different derivative values were
set, calculated as a percentage of the maximum value (varying from ten to ninety percent
with a step of ten). These derivative values were finally used in order to obtain the original
distances, corresponding to the original vector places where the derivative value exceeded
each of the seven indicator values for the first time. In that way we had a plausible vector
of candidate Eps values for each MinPts parameter without having to interfere externally
to isolate them in each case.
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MinPts upper limit

On the previous sub-section we described the method implemented to automatically return
a vector of candidate values for the Eps parameter, given the MinPts parameter. At this
very point we could simply set a range for the second parameter and perform a narrowed
down grid search for the optimal clustering results. This approach though, as the dataset
size increases, would be computationally inefficient.

The idea to bypass this, was that we need a small range for the MinPts parameter that
would fit properly each time to the different datasets. Taking into account that our syn-
thetic datasets do not include any noise, an upper limit of the noise percentage allowed on
the clustering result of the DBSCAN could drastically limit the allowed combinations of
the algorithms parameters and on the same time adapt to the unique nature of each dataset.
Thus, we implemented the DBSCAN clustering into a representative of each dataset, by
allowing the MinPts parameter to take values into [0,100] while the Eps parameter took
the values resulting from the before mentioned technique. Afterwards, we created a plot
(e.g.Figure 4.4) of the number of points identified as noise versus the value of MinPts
while the points denoted the different Eps values used for each of the second parameters’
value. According to each plot we could set meaningful upper limit of the noise percentage
that we could allow on the solution and thus set an upper limit on the range of the MinPts
parameter.

Optimal Clustering Result selection

An upper limit of the allowed noise percentage of the solution was set for each of the
eight different datasets( Table 4.1). This in turn, leaded to an upper limit of the MinPts
parameter. For each value of minimum points inside the range set from the above all the
nine different values proposed for the Eps parameter were tested and the optimal result
was obtained by comparison of the FM index values it generated.

Dataset Noise % limit
1st Dataset 10%
2nd Dataset 10%
3rd Dataset 10%
4th Dataset 10%
5th Dataset 30%
6th Dataset 1%
7th Dataset 20%
8th Dataset 30%

Table 4.1: Allowed noise percentage on DBSCAN clustering result for each dataset



CHAPTER 4. COMPARATIVE ANALYSIS 39

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

4th Dataset − Noise Percentage 
N

um
be

r 
of

 d
at

a 
po

in
ts

10 20 30

10%

20%

30%

Figure 4.4: A limit of 30% noise in the 4th dataset is surpassed after the value of 21 of
the MinPts parameter.
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Figure 4.5: A limit of 1% noise in the 6th dataset is met at MinPts value of 21 and
afterwards.
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4.2.5 HDBSCAN
In most applications of an HDBSCAN clustering algorithm the parameter k used in order
to define the core distance of a data point to each k-th nearest neighbour,hence calculate
the mutual reachability distance, is set to be equal with the minimum cluster size param-
eter.

Across our eight different simulated datasets the actual minimum cluster size was 30
data points. In order not to exclude though solutions that would be better in terms of the
FM index by assuming that the smallest cluster is just noise, we set as a universal domain
interval of the parameter, the [2,100]. Finally, considering that not all our datasets have
relatively small clusters or that the best solution may have been achieved already in small
values of the MinPts parameter we set the following stop criterion:
After the first 20 iterations (hence after the minimum cluster size of 21) examine the
fluctuation of the index value for the last 10 parameter values. In case, the mean difference
between the consecutive index values is below 0.01, assume that the clustering results
have converged to a solution and stop. Among the already performed clusterings return
as optimal, the one with the highest FM index value.

4.3 Results
The evaluation of the clustering results occurred in two phases. On the first phase, we
used the Fowlkes-Mallows external validity index as a relative criteria in order to obtain
the optimal clustering result per algorithm and simulation of each of the eight different
type of datasets. On the second phase we assessed the validity of the results based on:

• Percentage of successful identification of the number of clusters

This is an intuitive validity criterion as it attempts to reveal the ability of each algo-
rithm to correctly identify the real number of clusters in the dataset (which in real
datasets in unknown).

• ARI

To supplement the above ”index” we evaluated the results of each clustering algo-
rithm by measuring the mean value of the Adjusted Rand Index, among the simu-
lations that identified the real number of clusters.

On the following table (Table 4.2) we observe these indices for every dataset of our
analysis. It is useful to point out that the parentheses on the GMM results indicate which
method of meta-processing yielded the optimal result (the case of original mixture corre-
sponds to init) as described and labelled in paragraph subsection 4.2.3.
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As we can recall from Figure 4.1 & Figure 4.2 datasets 1-2 and their respective 5-
6 depict mostly elliptical shapes generated by multivariate normal distributions.This is
reflected on the clustering algorithms that performed better on that datasets (the bold
results per dataset indicate the overall better clustering result) as well. The Gaussian
mixture model yielded the better results across the four datasets, while on the datasets
1 and 5, which do not include major cluster overlaps, the best results were obtained by
the original number of components without further meta-processing. Based though on
the results of the ARI index which failed to surpass the 0.8 value, we conclude that none
of the proposed algorithms can handle cluster overlap efficiently, even in the case that it
identifies the correct number of clusters. In particular, the results on dataset 6 indicate that
they percentage of overlap between clusters does not play a pivot role on the performance
of the various clustering algorithms. Finally, it is not strange that the optimal clustering
results for this dataset were achieved through the first choice of meta-analysis of the GMM
components (via the relative criteria of FM), as solutions of reduced entropy implemented
in the rest of the approaches, would obviously suggest the merging of the overlapped
clusters.

On the other hand in datasets 3-4,7-8 where more utypically shaped clusters exist, the
density based algorithms seem to have the most qualitative results. In particular we can
observe that indeed HDBSCAN outperforms DBSCAN as on these datasets we have a
variety of disproportionally sized clusters and a variety of densities which DBSCAN can-
not handle efficiently. This superiority becomes more clear by observing the results of
Table 4.3, where for each dataset and algorithm we present the identified number of clus-
ters found on the majority of the simulations, along with the respective percentage (e.g.
K-means algorithm for the second dataset identified in all simulations 3 clusters). The ab-
sent values for the DBSCAN algorithm indicate the failure of the algorithm to converge
to a single solution.

A final conclusion that can be drawn from Table 4.3 is the one that refers on the meta-
processing of the GMM clustering results. We can observe that the original solution
implemented in most packages slightly or greatly overestimates the number of clusters
in the dataset. Thus, they hypothesis made that these better depict the number of model
components and have to be further analysed in order to extract the number of clusters is
validated from our results. Moreover, it is apparent that datasets that include non-typical
cluster shapes only may not need further analysis and can be slightly improved by seeking
a solution with the external relative criteria of Fowlkes-Mallows. Finally, depending on
how strict our clustering solution is required to be, we can make a choice between the
final two approaches based on the reduction of the clustering solution’s entropy.
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5
Product Data Application

5.1 Dataset Description
The data used in the current chapter are a property of the company Information Re-
sources Hellas (IRi Greece) and have been made available for the scope of our co-
supervised project. For that reason, all of the results have been anonymized and only
the necessary information for the implemented methodology are presented.

The dataset consists of two hundred and six (206) unique product codes, along with
a set of nine (9) features for each one of them. The different features depict natural
product characteristics and manufacturing details. All of the features are handled as factor
variables, while two amongst them are treated specifically as ordinal. Finally, for each one
of the product codes we have access to a 40-dimensional representation of them (acquired
by a pre-determined procedure foreign to the topic of the thesis), which will play the role
of a measure of similarity between them. In Table 5.1 we present the number of levels of
each factor variable.

Feature Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9

Number of Levels 4 27 10 13 2 11 13 10 5

Table 5.1: Number of factor levels

44
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5.2 Procedure Description

5.2.1 Goal of application
The idea behind the application is to ”borrow” the notion of the clustering quality index
and apply it on a dataset of retail products in the following manner:

Each of the initial product features is considered to partition our data space by a usage
of its own factor levels as cluster labels. Thus, we can depict the quality of the respective
partition with a use of clustering quality index and seek the feature that achieves the opti-
mum result. The realization of this feature inevitably leads to sub-groups of the original
dataset, where we can apply the same technique with the exception of excluding the al-
ready optimum ”parent” feature. In that way, a form of a decision tree arises where each
sub-group is more and more qualitative.

The application of this technique can be made on raw product data but can also be used
in already formed clusters by a clustering algorithm. This option, in particular, can be
very useful in cases where the amount of available data is tremendous and there is need
to perform an initial clustering in order to obtain lower volumes of data that can be used
for business decisions.

5.2.2 Data objects’ distances
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Figure 5.1: Dataset 2-D plot
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Figure 5.1 illustrates our data space with the use of the first two (out of the 40 offered)
coordinates. It is apparent from the plot that the coordinates require a scaling transforma-
tion. This can be achieved by selecting as a dissimilarity measure between the data objects
the Mahalanobis distance. In particular the distance between any two data objects with
respective distance vectors x,y is calculated as:

d(x,y) =
√

(x−y)T S−1(x−y),

where S−1 is the covariance matrix of the coordinates dataset.
Despite, that the Mahalanobis distance was the selected normalization procedure during

our application, it is worth noticing that it yields equivalent results with the Euclidean
distance in case of previously applying to the coordinate vectors a min-max normalization.

5.2.3 Validity index selection
In most problems of real data clustering the general truth about the underlying structure
of the data space remains unknown. In our case study there was no intention to pre-
determine some labels of the given features that business knowledge has deemed similar
and thus could be merged. This narrows down the choices for the index only to internal
ones as defined on subsection 3.2.2.

Most internal validity indices measure the clustering quality in terms of compactness
and separation of clusters. As we have observed on Figure 5.1 there is a significant overlap
between data objects, which after examination of the initial partitions derived from the
different features cannot be surpassed even in the case of minimal number of cluster
labels (see Figure 5.2).

This major overlapping can cause significant numerical stability issues on most of the
indices presented on subsection 3.2.2. Indeed our initial selection of the Silhouette score
failed as from the very early stage of the procedure, computation of the index returned
”NaN” values. This derives from its definition as for the calculation of the bi coefficient,
distances with elements of the nearest cluster have to be calculated which in our case
would be of the same magnitude with the intra-cluster distances even at the level of the
fourth decimal point.

In order to bypass this difficulty we decided to use an internal indices of a different
category that would be much less susceptible to numerical instabilities; the tau index.
This internal index as defined and described in page 22, is more of a correlation measure
and attempts to assess how well the proposed clustering depicts the data objects dissim-
ilarities. It takes values in the interval [−1,1], while values above 0.75 are considered
indicators of excellent clustering quality.
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Figure 5.2: Dataset 2-D plot (coloured with respect to the factor labels in the 10th feature)

5.2.4 Technique implementation
Returning to the goal of our application, we want to establish for each of the features
the best partition of our dataset. In order to do that, we have to perform a grid search
that would reveal the possible label merges within each feature that increase the value
of the tau index. This can be really demanding computationally as the possible different
combinations of the factor levels are given by:

n

∑
i=2

(
n
k

)
∀n > 2,

where n is the number of levels. This number of possible combinations would yield n−1
proposed merges including the one that does not change the original labels but excluding
the one that would result in one big cluster. (e.g. a factor with 5 levels would return one
result for the best quart of labels,one result for the best triplet, one for the best couple and
one without any merges, after computing and comparing in terms of tau index 26 different
options)
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Up until this point though we evaluate only first layer merges. The optimum index value
though could be a result of successive possible label merges, as after the first one there
are still original labels left that can still be further merged. In order to avoid complexity
and not re-evaluate solutions already visited we set some new conditions after the first
suggested label merge:

• We do not allow a solution where the remaining labels remain at the initial situation
(in contrast to the first step) & we allow a solution that would merge the remaining
labels to one.

• There have to be two or more remaining labels in order to continue the path.

• The already formed merges in the path are not allowed to participate in the possible
following merging procedure.

Following that procedure we conclude that a feature with n labels can explore solutions
up to the integer division of n with 2 (n%/%2 in R notation) layer. Revisiting the above
sum of possible combinations, and by defining as cn and sn the sum of combinations and
proposed solutions respectively of the search within a feature with n levels we have:

cn = 2 · cn−1 + sn,n = 3, . . . , c2 = 1

sn = sn−1 + sn−2 +1,n = 4, . . . , s2 = 1,s3 = 2
.

Figure 5.3: Result example for feature 9 - The optimal result occurs by merging L2,L3,L4
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After we have successfully obtained all the proposed solution for a feature we keep the
best in terms of the value index and compare it with the respective ones of the remaining
features. By selecting the global maximum, we can reconstruct the path of merges that led
to it at that futures and impose them on the original dataset. In turn the new labelling of the
feature, subsets the original dataset in subsets which contain only one of the remaining
labels (original or newly formed). Each of that subsets is then used as an input to the
described procedure with the exception that the feature(s) already used for its formation
up to the root of the forming tree, are not explored again.

The building of that tree either stops after no further improvement can be achieved or
when one of our stop conditions apply. The stop conditions can vary from the number
of leaves, the depth of the tree, the minimum subset size formed to a more sophisticated
business rule.

5.3 Results

5.3.1 General settings - Stop conditions
Before the implementation of the procedure we set some limitations, considering our ini-
tial dataset its characteristics. In more details, and due to the limited number of products
in the dataset, newly formed cluster with 10 or less products were considered as final.
Moreover, as we observe on Table 5.1 Feature 2 includes 27 different levels. A grid
search for an optimal cluster result sourced by this feature would require the compari-
son of 267.089.268 combinations. Due to the enormous computational effort required for
these combinations and making a hypothesis that a feature so fragmented would be highly
unlikely to provide an optimum result, we set an upper limit on the number of levels that
a feature can have in order to be included in the search - 15 levels.

5.3.2 2-Dimensional Coordinates
The first implementation took into account only the first two dimensions of the coordi-
nate data in order to create the necessary for the calculation of the tau index distances.
Figure 5.4 illustrates the feature selected at each level in order to accomplish a better par-
tition of the dataset. As we can observe the maximum path length is seven, with Feature 1
and Feature 5 completely absent from the decisions. For the latter feature we could have
expected not to play a pivot role, as it consists only of two levels and in the case they
partitioned the data space adequately it would have resulted on each selection from the
very beginning of the process.
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The total number of discovered clusters, found after the implementation of these 16
breaks, are 27. This happens because almost in every break point clusters of size less
than 10 objects are created.

Break Point Feature
Selected

Tree
Level

Original
Tau Value

Optimum
Tau Value

1 7 1 0,0607 0,2181
2 6 2 0,1736 0,1974
3 8 3 0,0417 0,1321
4 2 4 -0,0373 0,1594
5 9 3 0,0447 0,1697
6 8 4 0,0193 0,1000
7 2 5 -0,1390 0,1827
8 4 4 -0,0538 0,2056
9 2 5 0,1391 0,2914
10 3 6 -0,0533 0,2837
11 3 4 0,0176 0,2212
12 8 5 0,2907 0,3520
13 8 5 0,0132 0,2359
14 4 6 -0,0186 0,1397
15 2 7 0,0630 0,1787
16 2 7 0,1719 0,2595

Table 5.2: Index values before and after optimization (2-D)

Table 5.2 presents the improvement of the index’s value deemed to be optimal across
available features at each point. There seems to be no direct relationship between the
tree level and the amount of improvement achieved, while the best overall index value
obtained is around 0.35 which is a quite medium level result.

5.3.3 40-Dimensional Coordinates
Moving forward to the full dimensional data we expect to have increasing performance
results as we are equipped with a better dissimilarity measure. Figure 5.5 illustrates the
respective feature selection tree, which once again has a maximum depth of 7 and inter-
estingly enough does not include Feature 1 as well.
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Figure 5.4: 2D Tree of optimal features at each break point

Figure 5.5: 40D Tree of optimal features at each break point
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Feature 2-D 40-D

1 5 7
3 7 5
4 6 6
5 8 8
6 2 4
7 1 3
8 4 2
9 3 1

Table 5.3: Rank of Features in the initial choice step

This can be explained through Table 5.3, where we can see that in the first comparison
of the best indices for every available feature (expect Feature 2 which violates the rule of
maximum 15 levels at the point), it ranks really low in both cases. This fact in combination
with the low number of levels which after a few partitions will probably be completely
separated makes it a highly unlikely candidate for any step.
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Figure 5.6: Proposed clusters at first step (3 out of 40 dimensions)
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Break Point Feature
Selected

Tree
Level

Original
Tau Value

Optimum
Tau Value

1 9 1 0,05308 0,22351
2 6 2 0,13115 0,21386
3 7 2 0,12060 0,21018
4 3 2 0,00663 0,04593
5 2 3 0,11250 0,36705
6 8 3 -0,03416 0,09031
7 4 3 0,02776 0,07635
8 4 4 0,04505 0,42656
9 8 4 0,01003 0,10660
10 4 4 -0,01098 0,09586
11 6 5 0,43785 0,52388
12 3 5 0,12437 0,21974
13 2 5 0,10242 0,21836
14 2 5 0,03806 0,13152
15 7 5 -0,17194 -0,06875
16 7 6 0,23031 0,40998
17 8 6 0,23031 0,40998
18 3 6 0,00227 0,36882
19 7 6 0,00874 0,19508
20 7 7 0,07259 0,20830
21 3 7 -0,01601 0,16327

Table 5.4: Index values before and after optimization (40-D)
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Figure 5.6 illustrates the overlaps between the three proposed clusters at the end of the
first step. As we can observe on the plots of the first three dimensions the overlap of the
labels that were originally present on the dataset in minimal, which adds the quality to
that solution.

A total number of 34 clusters have been identified after the completion of the proce-
dure. As Table 5.4 presents we have 5 more break points than the 2-D solution but we
have much more clear solutions. The values of the optimal tau index at each step are quite
better than the previous solution’s, while the maximum index values reaches the level of
0,5.

5.3.4 Conclusion - Further Improvements
The comparison between the partial and full coordinate solution indicates that we ob-
tain much better results when using the full information. It gives us though a far more
segmented dataset that perhaps escapes from the scope of the business purpose. In that
manner we could impose a far more set of strict rules on the implementation, such as the
restriction of minimum size of produced clusters which in turn could lead to the bypass
the selection of the optimal feature at one step and move to the next best one. Finally, the
part of the grid search along all the possible label combinations could be programmed for
parallel processing, as each machine could perform one of the initial steps and then move
forward the path without affecting the rest of the procedure.
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