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ABSTRACT 

 

Valentini Kyriakidou 

 

FUZZY CONTROL CHARTS 

May 2011 

 

Statistical Quality Control is the most popular application of statistical 

methods and is firmly established methodology with many practical 

applications. Statistical Process Control is the most important field of SQC 

where its main tools are control charts, first proposed by Shewhart in 1924, in 

order to monitor and examine the production process. The traditional control 

charts dealing with precise data. There are many situations where data are 

uncertain, vague or imprecise. Fuzzy set theory, first proposed by Zadeh in 

1965, is probably the most appropriate tool to handle with this uncertainty, 

providing mathematical techniques in order to deal with imprecise concepts 

and problems. Using linguistic data (intermediate levels), first proposed by 

Wang & Raz in 1990, to describe the product quality can provide more 

information than the binary classification used in traditional control charts. 

Also, fuzzy multivariate control chart is an alternative control chart for 

handling linguistic observations, when more than one quality characteristics 

monitoring, simultaneously. Many investigators proposed several procedures 

for the construction of control charts when data are vague or imprecise, and 

concluded that, using fuzzy control charts can provide a more flexible and 

informative evaluation of the considered process. The purpose of the thesis is 

to review the basic techniques used to handle the uncertain information and 

also, to present the various fuzzy control charts proposed by several 

researchers.  
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ΑΣΑΦΗ ∆ΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ 

Μάιος 2011 

 

Ο Στατιστικός Έλεγχος Ποιότητας, είναι η πιο δηµοφιλής εφαρµογή των 

στατιστικών µεθόδων µε αποδεδειγµένα πολλές πρακτικές εφαρµογές. Η 

Στατιστική ∆ιαδικασία Ελέγχου, είναι ο πιο σηµαντικός τοµέας του 

Στατιστικού Ελέγχου Ποιότητας µε κύρια εργαλεία, τα διαγράµµατα ελέγχου. 

Τα διαγράµµατα ελέγχου, προτάθηκαν για πρώτη φορά από τον Shewhart το 

1924, προκειµένου να παρακολουθούν και να εξετάζουν τη διαδικασία 

παραγωγής. Τα παραδοσιακά διαγράµµατα ελέγχου, ασχολούνται µε ακριβή 

δεδοµένα. Όµως, υπάρχουν αρκετές περιπτώσεις, όπου τα δεδοµένα είναι 

ασαφής, αβέβαια είτε αόριστα. Η ασαφής θεωρία ελέγχου, η οποία προτάθηκε 

για πρώτη φορά από τον Zadeh το 1965, είναι ίσως το καταλληλότερο 

εργαλείο για το χειρισµό αυτής της αβεβαιότητας, παρέχοντας µαθηµατικές 

τεχνικές για την αντιµετώπιση ασαφών εννοιών και προβληµάτων. Οι Wang 

& Raz το 1990, για την περιγραφή της ποιότητας των προϊόντων, 

χρησιµοποίησαν γλωσσικά δεδοµένα (ενδιάµεσα επίπεδα) τα οποία παρέχουν 

περισσότερη πληροφορία από τη δυαδική ταξινόµηση η οποία 

χρησιµοποιείται από τα παραδοσιακά διαγράµµατα ελέγχου. Επίσης, τα 

πολυµεταβλητά ασαφή διαγράµµατα ελέγχου, είναι µια εναλλακτική λύση για 

το χειρισµό των γλωσσικών παρατηρήσεων, όταν περισσότερα από ένα 

ποιοτικά χαρακτηριστικά παρακολουθούνται ταυτόχρονα. Πολλοί ερευνητές 

πρότειναν διάφορες διαδικασίες για την κατασκευή των διαγραµµάτων 

ελέγχου, όταν τα δεδοµένα είναι ασαφή ή ανακριβή και κατέληξαν στο 

συµπέρασµα ότι, χρησιµοποιώντας ασαφή διαγράµµατα ελέγχου 

επιτυγχάνεται µια πιο ευέλικτη και κατατοπιστική αξιολόγηση των υπό 

εξέταση διαδικασιών. Ο σκοπός αυτής της εργασίας είναι η αναθεώρηση των 

βασικών τεχνικών που χρησιµοποιούνται για το χειρισµό της αβεβαιότητας 
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καθώς επίσης και η παρουσίαση των διάφορων ασαφών διαγραµµάτων 

ελέγχου, τα οποία προτάθηκαν από τους διάφορους ερευνητές.   
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CHAPTER 1 

 

INTRODUCTION 

 

As the needs of society increases, so the science is involving, and new 

statistical methods come to the forefront. Those statistical methods have many 

applications, such as in biostatistics (biometrics, clinical trials, 

epidemiology), in engineering statistics (probabilistic design, process and 

quality control), in social statistics (crime statistics, econometrics, 

population), in spatial statistics (cartography, geostatistics, environmental 

statistics), etc.  

 

Statistical Quality Control (SQC), is the most popular application of 

statistical methods, and is firmly established methodology with many 

practical applications. The most important field of SQC is Statistical Process 

Control (SPC), where its main tools are control charts first proposed by 

Shewhart in the 1920s. The control charts deal with items that classifying 

either in a set or out of a set, such as “conforming” or “nonconforming”, in 

order to decide if an inspected item belongs in process control or not. 

 

On the other hand, in many practical and realistic situations, it is difficult to 

classify inspected items strictly as “conforming” or “nonconforming”, and 

should be determined the degree to which is conforming or nonconforming. 

For example, if the temperature of water at 100°� degree is expressed as 

“hot”, so for water at 95°� or 80°� the expression of “not hot” is not wrong or 

right in this meaning. 

 

So, the theory of fuzzy sets, first proposed by Zadeh in his papers in 1965, 

suggested by using values between wrong [0] and right [1] values. Also, fuzzy 

sets, provides useful tools for dealing with many problems related to the lack 

of precision in statistical data and imprecisely defined quality requirements. 
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Wang and Raz in the 1980s were fist dealt with the fuzzy data and proposed 

the construction of fuzzy control charts using linguistics data, such as 

“perfect”, “good”, “medium”, “poor”, and “bad”, (intermediate levels in order 

to express the assessments on the evaluation of the products).  

 

Since then, various procedures have been proposed for monitoring processes 

in which the data are fuzzy and many fuzzy control charts are constructed. 

Some important field of fuzzy logic and fuzzy control charts, are pointed out 

in the papers of Laviolette et al. (1995), Barrett & Woodall (1997), and 

Hryniewicz (2008), and also, in the paper of Woodall et al. (1997) presented a 

review of fuzzy control charts based on categorical data. 

 

This thesis is organized in the following order. We will first present the 

Statistical Process Control (SPC), its basic concepts, as well as the main 

control charts in Chapter 2. Later, Chapter 3 contains the fuzzy set theory, the 

definitions for fuzzy random variables and the types of some fuzzy numbers. 

Fuzzy control charts based on linguistic data are presented in Chapter 4. In 

Chapter 5 several approaches for the construction of fuzzy control charts 

using any defuzzification methods or not, are presented analytically, and also, 

fuzzy multivariate control charts are presented in Chapter 6. Finally, 

conclusions are given in Chapter 7.    
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CHAPTER 2 

 

STATISTICAL PROCESS CONTROL AND CONTROL 

CHARTS 

 

2.1. Statistical Process Control (���)  
 

The concept of Statistical Process Control (�	�) has established as the most 

efficient tool for on – line quality control in mass production system. �	� is a 

powerful collection of problem – solving tools, and also a methodology for 

monitoring a process in order to identify special causes of variation and to 

signal the requirement for corrective action when necessary. �	� is widely 

employed throughout industry and is a proven technique for improving quality 

and productivity.   

 

The major tools of �	� are histogram, check sheet, Pareto chart, cause – and 

– effect diagram, defect concentration diagram, scatter diagram and control 

chart. The most common �	� technique is the statistical control chart, first 

developed by Shewhart during the 1920s, which has become a vital tool for 

professionals who seek to improve the quality of their products.   

 

2.2. Control Charts 

 

The popularity of control charts is because control charts are a proven 

technique for improving productivity by monitoring and examining 

production process. Also, they are effective in defect prevention having the 

ability to detect process shifts and to identify abnormal conditions in a 

production process. Additionally, control charts prevent unnecessary process 

adjustment and provide diagnostic information of many production problems 

and often reduce losses and bring substantial improvements in production 

quality. This is achieved by repeating the Phase Ι and Phase ΙΙ. Furthermore, 

control charts provide information about process capability, and finally, it 
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should be noted, that control charts are constructed with data collected from 

the process.   

 

The general form of control charts consists of a centre line (�
), and two 

control lines referred to as the lower control limit (
�
) and the upper control 

limit (��
) respectively. The �
 represents an estimate of the process level, 

while the two control lines, 
�
 and ��
, denote the boundaries of normal 

variability and are specified such that the majority of the observations (and 

especially the 99.74% of them), lie within their bounded range when the 

process is under control. Points plotted on the chart represent samples drawn 

from the process.  

 

In the case, where all points falling between control limits, indicates that 

there are no abnormal conditions in the production process, so require no 

action, and the process is said to be in statistical control. On the other hand, if 

an item is displayed out of control limits, indicates that some assignable or 

chance causes were present when the sample was drawn, and suggests the 

need for corrective action. This is achieved using the Phase ΙΙ, and then 

repeating Phase Ι.    

 

Various types of control charts have been developed in industry for 

controlling different types of quality characteristics. The basic principles of 

development and design of various types of control charts as Montgomery 

(2007) noted, have presented below. 

 

2.3. Basic Principles 

 

There are two distinct phases of control charting, the Phase Ι and the Phase ΙΙ. 

 

2.3.1. Phase � and Phase ��  
 

The purpose of Phase Ι is to evaluate the stability of the process, using a 

retrospective analysis of process data in order to construct trial limits. Also, 
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the purpose of Phase Ι is to find and remove any outliers, measurement errors 

or data entry errors, with assignable causes, and estimate the in – control 

values of the process parameters. In designing a control chart, we must 

specify an appropriate sample size to use and the frequency of sampling. In 

order to establish reliable control limits, the number of samples to be taken is  = 5 each with size � = 25. It should be noted that, a larger sample size 

results in narrow control limits, as well, a smaller sample size makes the 

control limits wider. 

 

On the other hand, the Phase ΙΙ is a control phase. The main purpose of Phase 

ΙΙ is to monitor the on – line data to quickly detect any shift in the process 

parameter from the baseline estimated in Phase Ι.      

 

2.3.2. Statistical hypothesis testing  

 

The statistical hypothesis testing is a useful tool in analyzing the performance 

of a control chart, and also, is an assumption about a population parameter. 

The best way to determine whether a statistical hypothesis is true would be to 

examine the entire population. Since that is often impractical, researchers 

typically examine a random sample from the population. If sample data are 

not consistent with the statistical hypothesis, the hypothesis is rejected. There 

are two types of statistical hypothesis: 

 

Null hypothesis (��) → is usually the hypothesis that sample observations 

result purely from chance. 

Alternative hypothesis (��) → is the hypothesis that sample observations are 

influenced by some non – random cause. 

 

Using the above statistical hypothesis testing, two types of decision errors can 

result. These are the type � error and the type �� error.  
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2.3.3. Errors in Control charts 

 

The type Ι error occurs when the researcher reject the null hypothesis (��) 
when it is true. This means that the type Ι error is the result of concluding that 

a process is out – of – control when it is actually in – control. Therefore, the 

probability of type Ι error is:  	(����	Ι	�����) = � = significance level. 

 

Also, the type ΙΙ error occurs when the researcher fails to reject the null 

hypothesis (��) when it is false. This means that the type ΙI error is the result 

of concluding that a process is in – control when it is actually out – of – 

control. Therefore, the probability of type ΙΙ error is: 	(����	ΙΙ	�����) =  = 

power of the test = the probability of non – detection. 

 

In order not to have frequent false alarms, suppose that we have 3 – sigma (3") control charts. Thus we achieved a very small price of � = 0.0027. So we 

have small price of probability of type Ι error, and therefore less false alarms. 

 

2.3.4. Curves of Control Charts 

 

In order to evaluate the ability and the performance of the control charts, it is 

necessary to use one of the following curves &'
 or (�, which are measures 

of ability and performance.   

 

2.3.4.1. )*+ – Curve  

 

The Average Run Length (&'
), is the average number of points that must be 

plotted before a point indicates an out – of – control condition.  The value of &'
 depends on type Ι error. As we have seen above, the smaller the value of 	(����	Ι	�����) = �, the higher the value of &'
 ,&'
 = �-.. Furthermore, the &'
 is often used as a criterion to compare competing methods in Phase ΙΙ. 
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2.3.4.2. /� – Curve  

 

The Operating Characteristic Curve ((�), is a measure of the ability of a 

control chart to detect the changes in process parameters. This means that is a 

graph that constructed in order to show how changes in the sample size (�), 
affect the probability of making a type ΙΙ error 0	(12	3	ΙΙ	�����) =  4.     
 

2.3.5. Process Capability Index 

 

The process capability is also another important sense in SPC, which 

represents the performance of a process when it is in a statistical control. A 

process capability index 5�67, uses both the process variability and the 

process specifications to examine the variability in process characteristics as 

well as whether the process is capable of producing products which conforms 

to specifications.   

 

2.4. Types of Control Charts 

 

Depending on the number, the form and interpretation of data collected, 

control charts classified into two general types, referred to as univariate and 

multivatiate.  

 

2.4.1. Univariate Control Charts 

 

The univariate type of control charts consists of Variable and Attribute 

Control Charts, and is a graphical display of one quality characteristic. 

 

2.4.1.1. Variable Control Charts 

 

When dealing with a quality characteristic can be expressed in terms of 

numerical measurement (is measured on a numerical scale) such as 

dimension, weight, volume, length, width, temperature, etc, is called variable. 

Usually, variable quality characteristics are normally distributed and 
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monitored using Shewhart control charts for variables. The most common 

types of variable control charts are as follows: 

 8 − Control Chart 

• Control chart for means 

• Used to monitor the process average or mean quality level 

• Denoted the variability between samples  

 ' − Control Chart 

• Control chart for the range 

• Used to monitor the process variability 

• Denotes the variability within samples 

• Used for small sample size (�) 
 � − Control Chart 

• Control chart for the standard deviation 

• Used to monitor the process variability 

• Denotes the variability within samples 

• Used for big sample size (�)   
 :' − Control Chart 

• Moving Range control chart  

• The moving range is the absolute value of the difference between 

successive observations 

• Used to monitor variable data for which it is impractical to use rational 

subgroups (� = 1) 
 ����: − Control Chart  

• Cumulative Sum Control Chart 

• Used for monitoring process variability 

• Used when information from all previous samples need to be used for 

controlling the process 
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• Points plotted on tabular CUSUM chart are the sum of two consecutive 

elements 

• More effective in detecting small changes in the process mean 

compared to the other charts  

• Greater sensitivity for detecting shifts or trends for individual data 

over the traditional Shewhart charts, because history is taking account 

 :& − Control Chart 

• Moving Average Control Chart 

• On this chart, each point plotted is the average of the last < data values 

 3=:& − Control Chart 

• Exponentially Weighted Moving Average Control Chart 

• Is very effective in detecting small shifts in process mean or variance, 

especially when the sample size is unity 

• On this chart, each point plotted is a weighted average of all data 

values up until that point, where the more recent data is given more 

weight that the older data 

 

2.4.1.2. Attribute Control Charts 

 

When the quality characteristics cannot be represented in numerical form, 

such as characteristics for appearance, softness, color, etc, then control charts 

for attributes are used. In attribute control charts, product units are either 

classified as “conforming” or “non – conforming”, “good” or “bad” 

depending upon whether or not they meet specifications. The most common 

types of attribute control charts are as follows: 

 	 − Control Chart 

• Control chart for the fraction (proportion) non – conforming items 

• Used with binomial distributed data 

• Used for controlling the ratio of defective products 

• Tracks the proportion of nonconformities per sample 
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�	 − Control Chart 

• Control chart for the number of non – conforming items per sample  

• Counts the number of defectives in a sample 

 � − Control Chart 

• Control chart for the total number of non – conformities 

• Used Poisson distributed data 

• Used for controlling the number of defects per inspection unit of 

products 

 � − Control Chart 

• Control chart for the average number of non – conformities per unit 

• The non – conformities in samples of constant size is well modeled by 

Poisson distribution 

• Is designed for counting defects per sample when the sample size 

varies for each inspection, and used for controlling the mean number of 

defects of a product 

 

2.4.2. Multivariate Control Charts 

 

So far, we have seen process monitoring and control charts dealing with one 

quality characteristic. In the case we have to deal with several related 

characteristics, univariate control charts are inefficient and the use of 

multivariate control charts is required. Multivariate type of control charts is a 

graphical display of a statistic that summarizes or represents more than one 

quality characteristic. This means that the quality of the product is a function 

of many characteristics. 

 

Assuming that there are p – quality characteristics (variables), computed 

separate univariate control chart for each variable and then combined these 

separate univariate statistics into a single control statistic and plot it on a 

control chart. This process seems to work well when the number of quality 

characteristics is less than 10.  
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First who worked with multivariate quality control was Hotteling in 1947. 

The 1> distribution is used to develop the control chart, when the ? 

distribution is used for finding the upper control limit. The lower control limit 

is set to be zero. The most common types of multivariate control charts are: 

 �����@A�B	1> − Control Chart 

• Using for monitoring the mean vector of the process  

• Is insensitive to small and moderate shifts in the mean vector 

 :3=:& − Control Chart 

• Multivariate 3=:& control chart, extension of univariate 3=:& chart 

 :����: − Control Chart 

• Multivariate ����: control chart, extension of univariate ����: 

chart 

 

In order to reduce the dimensionality of the variable space, it is necessary to 

use projection methods like Principal Components Analysis or Partial Least 

Squares.  

 

Multivariate process control is one of the most rapidly developing sections of 

statistical process control, having the advantage that can both handle process 

variables and product quality variables. 

 

Montgomery (2007), Stoumbos et al. (2000), and Bersimis et al. (2007 a, b) 

presented analytically the principal notions of multivariate control charts, and 

also the main types of these charts.   

    

Control charts are among the most important and widely used tools in 

statistics. Their applications have now moved far beyond manufacturing into 

engineering, environmental science, biology, genetics, epidemiology, 

medicine, finance, and even law enforcement and athletics. 
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CHAPTER 3 

 

FUZZY SET THEORY AND FUZZY RANDOM VARIABLES 

 

3.1. Fuzzy set theory 

  

In several areas of science, there are many situations where researchers have 

to deal with data that are vague or imprecise. The most significant sources of 

uncertainty are randomness and incomplete or imprecise information. A 

worthwhile tool for expressing this uncertainty is fuzzy set theory.  

 

Fuzzy set theory proposed a mathematical technique for dealing with 

imprecise concepts and imprecise problems that have many possible solutions. 

Also, fuzzy set is a mathematical model of vague qualitative or quantitative 

data, frequently generated by mean of the natural language. The model is 

based on the generalization of the classical concepts of set and its 

membership (or characteristic) function. 

 

Zadeh (1965) first introduced the notion of fuzzy sets, as an extension of the 

classical notion of sets. 

 

In classical set theory, the membership function of elements in a set is 

assessed in binary terms according to a bivalent condition. Consider the set & 

and the indicator function �C which identifies if an element either belongs or 

does not belong to the set &. 

 

Where, 

 �C = D1,			0,			F ∈ &F ∉ &I  
 

By contrast, fuzzy set theory permits the gradual assessment of the 

membership of elements in a set; this is described with the aid of a 

membership function valued in the real unit interval 00, 14. 
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In general, a fuzzy set is characterized by a membership function which 

assigns to each object a grade of membership between zero and one. The 

major contribution of fuzzy set theory is its capability to represent vague 

data.   

 

3.1.1. Zadeh’s definition of fuzzy sets 

 

As Zadeh (1965) defined in his paper for fuzzy sets, the definition of fuzzy 

set is presented as: “Let 8 be a space of points, with a generic element of 8 

denoted by F. Thus 8 = {F}. A fuzzy set & in 8 is characterized by a 

membership function LC(F) which associates with each point in 8 a real 

number in the interval 00, 14, with the value of LC(F) at F representing the 

«grade of membership» of F in &. Thus, the nearer the value of LC(F) to unity, 

the higher the grade of membership of F in &.”    

 

So, the form of the membership function is:  

   L: & → 00, 14 
 

When LC(F) = 0, means that F is not a member of the fuzzy set &. When LC(F) = 1, means that F is fully a member of the fuzzy set &. And when 0 < LC(F) < 1, means that the fuzzy number F belongs to the fuzzy set & only 

partially. 

 

3.1.2. Definitions and Theorems of fuzzy sets 

 

The fuzzy set theory, allows mathematical operators to apply to the fuzzy 

domain. Several definitions involving fuzzy sets are following presented: 

 

I. & is empty if and only if  LC(F) = 0 identically 

 

II. &, O are equal, (& = O), if and only if LC(F) = LP(F) for all F ∈ 8 
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III. The complement of &: LC′(F) = 1 − LC(F).    

 Where, &′ is the complement of &  

 

IV. Containment: & is contained in O if and only if LC(F) ≤ LP(F) :  
  & ⊂ O ⟺ LC(F) ≤ LP(F)    
 

V. Union: The union of two fuzzy sets & and O with respective 

membership functions LC(F) and LP(F) is :  

 � = &⋃O ⟹ LV(F) = max0LC(F), LP(F)4  
 {Property:	&⋃(O⋃�) = (&⋃O)⋃�}  
 

VI. Intersection: The intersection of two fuzzy sets & and O with respective 

membership functions LC(F) and LP(F) is a fuzzy set  

 � = &⋂O ⟹ LV(F) = min0LC(F), LP(F)4     
 

Also, some algebric operations on fuzzy sets are: 

 

I. Algebric Product: LCP(F) = LC(F)LP(F) 
 

II. Algebric Sum: LCdP(F) = LC(F) + LP(F) 
 

III. Absolute Difference: L|CgP|(F) = |LC(F) − LP(F)| 
 

IV. Let &, O, h be arbitrary fuzzy sets. The convex combination of &, O and h, (&, O; 	h), in terms of membership functions is:   

  L(C,P;	j)(F) = Lj(F)LC(F) + 01 − Lj(F)4LP(F)  
 k	�������:	LCP(F) ≤ L(C,P;	j)(F) ≤ LCdP(F)l  	
V. Composition: LC∘P(F, �) = no�p min0LC(F, q), LP(q, �)4 

Where, F, �, q real numbers 
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VI. Convexity: A fuzzy set & is convex if and only if LC(rF� + (1 − r)F>) ≥min0LC(F�), LC(F>)4  
Where, 

  F�, F>	t	8 (8 is a real Euclidean space 3u)  

 r	t	00, 14  
  

Theorem 1: If & and O are convex, so is their intersection. 

 

VII. Boundedness: A fuzzy set & is bounded if and only if the sets  v- = {F|LC(F) ≥ �} are bounded for all � > 0; that is, for every � > 0 

there exists a finite '(�) such that ∥ F ∥≤ '(�) for all F in v-.     

 

Theorem 2: If & is a convex fuzzy set, then its core is a convex set 

 

Theorem 3: Let & and O ne bounded convex fuzzy sets in 3u, with maximal 

grades :C and :P respectively.  

Where, :C = no�y5LC(F)7 and :P = no�y5LP(F)7. Let : be the maximal grade 

for the intersection &⋂O. Where, : = no�y(min0LC(F), LP(F)4).  
Then z = 1 −:. Where, z is the degree of separability of & and O. 

 

3.1.3. { – Cut     

 

One particularly useful class of subsets comprises the elements of a fuzzy set 

with membership values larger than a given cutoff �. Especially, for every � ∈ 00,14, a given fuzzy set & yields a crisp set &- = {F ∈ 8|&(F) ≥ �}, which 

is called an � – cut of &. Thus, � – cut, is a non – fuzzy set which comprises 

all elements whose membership degrees are greater than or equal to �. Below 

presented the shapes of triangular fuzzy number and trapezoidal fuzzy number 

with � – cuts.  
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3.2. Fuzzy random variables 

 

Fuzzy random variable is a particular kind of fuzzy set. In addition, fuzzy 

random variables are random variables whose values are not real numbers but 

fuzzy numbers, and may be used to describe and characterize situations where 

we have to deal with statistical data that are imprecise. 

 

Many researchers have been dealt with fuzzy random variables and different 

approaches have been developed. As Gil et al. (2006), Shapiro (2009) and 

Beer (2010), reviewed in their papers, the most widely considered definitions 

for fuzzy random variables were introduced first by Kwakernaak (1978 and 

1979) and then by Puri & Ralescu (1986). 

 

3.2.1. Kwakernaak definition of fuzzy random variables 

 

Kwakernaak (1978 and 1979), considered that fuzzy random variables have 

been considered in the setting of a random experiment to model a fuzzy 

perception of a mechanism associating a real value with each experimental 

outcome. 

 

Definition: A fuzzy random variable | defined on a probability space (}, ℱ, 	) 
{where } is the sample space, ℱ is " − algebra of subsets of }, the set of all 

fuzzy numbers and 	 is a probability measure on }}, is characterized by a 

map 8:	} → � such that � �→8�, where � is a collection of all piecewise 

  

Figure 3.2. Trapezoidal Fuzzy Number with � – cut  Figure 3.1. Triangular Fuzzy Number with � – cut  
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continuous functions ℛ → 00, 14. Each element of � is a membership function 

of fuzzy number. The map 8 is required to satisfy the following properties: 

 

1. For each L ∈ (0, 14, both ��∗ and ��∗∗ defined by: 

 ��∗ = inf{F ∈ ℛ|8�(F) ≥ L}  
 ��∗∗ = sup{F ∈ ℛ|8�(F) ≥ L}    

Are finite real valued random variables on (}, ℱ, 	), and have finite 

mathematical expectations.  

 

2. For each � ∈ } and each L ∈ (0, 14,  
 8� ���∗(�)� ≥ � and 8� ���∗∗(�)� ≥ � 

Eventually, a fuzzy random variable | is defined as a fuzzy set | = 5��, 87, where �� is the set of possible originals of the fuzzy 

random variable |.   

 

3.2.2. Puri &Ralescu definition of fuzzy random variables  

 

Puri & Ralescu (1986), considered that fuzzy random variables have been 

considered in the setting of a random experiment to model an essentially 

fuzzy – valued mechanism, that is, a mechanism associating a fuzzy value 

with each experimental outcome. 

 

Definition: A fuzzy random variable | is a function |:	} → ℱ�(ℛ) (a collection 

of all normalized fuzzy numbers whose � − level sets are compact convex 

subset of ℛ – the set of fuzzy subsets), such that:  

 {(�, F)|F ∈ |-(�)} ∈ ℱ × O for every � ∈ 00, 14  
Where, |-:	} → ��(ℛ) (the class of all nonempty compact convex subsets of ℛ), is a random set defined by |-(�) = {F ∈ ℛ||�(F) ≥ �}  and O denotes the 

collection of Borel subsets of ℛ. That is, in order to make fuzzy random 

variable | mathematically meaningful, Puri & Ralescu (1986), impose the 

hypothesis of measurability on the random set |- associated with |.  
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3.3. Fuzzy numbers 

 

Fuzzy numbers are an extension of real numbers, whose values are only 

vaguely defined. A fuzzy number is a special case of a convex fuzzy set and 

may assume different real values, with each of which a degree of acceptability 

is associated. Furthermore, calculations with fuzzy numbers allow the 

incorporation of uncertainty on parameters, properties, geometry, initial 

conditions, etc. 

 

Definition: A fuzzy number is a fuzzy set with domain ℝ, the real numbers, 

that is normal, has bounded support and whose � – cuts are closed intervals 

for positive �. 

 

Depending the nature and shape of membership function the fuzzy number 

can be classified in different forms, such as triangular fuzzy numbers, 

trapezoidal fuzzy numbers, 
' – fuzzy numbers, etc. 

 

3.3.1. Fuzzy triangular number 

 

A fuzzy set & with the following membership function:  

 

LC(F) =
���
�� 0,1 − �gy- ,1,1 − yg�� ,0,

I 			
���	F ≤  − ����	 − � < F <  ���	F =  ���	 < F <  + ����	F ≥  + �

= �1 − �gy- ,1 − yg�� ,0,
I 			 − � ≤ F <  , � > 0 ≤ F ≤  + �,  > 0��ℎ���An�     

 

is called triangular fuzzy number (TFN), if there exists a triplet of real 

numbers �,  , �	t	ℝ with � <  < �, and denoted by & = (�,  , �).  
 

Its membership function, LC(F), also given by the following shape:  

 

 

 



 

 

 

 

 

 

 

 

A triangular fuzzy number 

 

Where, LC(F)	t	00,14 → The membership grade (or height)� → The left hand spread� → The right hand spread → The mean value 

 

3.3.2. Fuzzy trapezoidal number

 

Also, a fuzzy set & with the following membership function: 

 

  LC(F) = ���
��

 

is called trapezoidal fuzzy number

denoted by & = (�,  , �, �
 

Its membership function, 

 

 

 

 

 

 
Figure 3.4.
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A triangular fuzzy number & is said to be normalized if LC(F) =
The membership grade (or height) 

The left hand spread 

The right hand spread 

Fuzzy trapezoidal number 

with the following membership function:  

���
��yg-�g- ,1,yg��g� ,0,

I 			 � ≤ F ≤   ≤ F ≤ �� ≤ F ≤ ���ℎ���An�     

trapezoidal fuzzy number, if �,  , �, �	t	ℝ with � <  �).  
Its membership function, LC(F), also given by the following shape:

 

Figure 3.3. Fuzzy triangular number 

 

Figure 3.4. Fuzzy trapezoidal number 

) 1. 

 < � < �, and 

, also given by the following shape: 
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In the special case, when  = �, we have the triangular fuzzy number  & = (�,  , �).   
 

3.3.3. LR – Fuzzy number 

 

The 
' – fuzzy number is a unimodal fuzzy number on ℝ that can be 

described in terms of two shape functions. The left hand shape function 
 and 

the right shape function '.    

 

The 
' – fuzzy number can be described as o = (, @, �)�� with the form as: 

 

  o(F) = � 
 ��gy  � , ���	F ≤ ' �yg�¡ � , ���	F > 	I  
 

Where, 
:ℝd → 00,14 and ':ℝd → 00,14 are non – increasing functions with 
(0) ='(0) = 1.   → The central point of o @ > 0 → The left spread of o 

 � → The right spread of o 

 

Also, a unimodal fuzzy set has its maximum value at a unique value  of the 

domain 8. Especially, o(F) = 1 ⟺ F =  and graphically,  

 

  

 

 

 

 

  

 

 

 

 

Figure 3.5. 
' – Fuzzy number 
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3.4. Transformation methods 

 

In order to obtain the representative value of a fuzzy set, various 

defuzzification methods are proposed. Defuzzification is a process that maps 

a fuzzy set to a crisp set. Some of these transformation methods presented as 

follow: 

 

3.4.1. Fuzzy Mode (¢£¤¥¦) 
 ��§�¨ = {F|LC(F) = 1}, ∀F ∈ &  

The value of the base variable, F, where the membership function is equal to 1 

  

3.4.2. { − level Fuzzy Midrange 5¢£ª({)7 
 ��¡(�) = �> (�- + �-)  
The average of the endpoints of an � − level cut.  

 

Where, &- = {F|LC(F) ≥ �}, the � − level cut of all & �-, �-, the endpoints of &- �- = min0&-4  �- = max0&-4    
 

3.4.3. Fuzzy Median (¢£¦¥) 
 

Is the point which divides the area under the membership function into two 

equal regions, satisfying the equation: 

 « LC(F)�F = « LC(F)�¬®¯¬®¯- �F = �>« LC(F)�F�-   

 

Where, �, �: The endpoints in the base variable, F, of the fuzzy set & 
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3.4.4. Fuzzy Average 5¢{°±7 

 

�-p² = &q(F; &) = « y�³(y)�yµ́¶·« �³(y)�yµ́¶·   

 

It should be pointed out, that there is no theoretical basis supporting any one 

specifically, and the selection among the transformation methods should be 

mainly based on the ease of computation, on the user’s preference, or on the 

quality manager. 

 

3.5. Applications of fuzzy sets 

 

The fuzzy set theory and related branches are widely applied in the models of 

optimal control, decision – making under uncertainty, processing vague 

econometric or demographic data, behavioral studies and methods of artificial 

intelligence. Also, fuzzy sets can be applied in sociology, political science, 

and anthropology, as well as in any field of inquiry dealing with complex 

patterns of causation. 
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CHAPTER 4 

 

FUZZY CONTROL CHARTS BASED ON LINGUISTIC DATA 

 

4.1. Introduction 

 

The binary classification into conforming or non – conforming might not be 

appropriate in many situations where product quality does not change 

abruptly from satisfactory to worthless and there might be a number of 

intermediate levels. These intermediate levels may be expressed in the form 

of linguistic variables, whose values are words or phrases in some language, 

such as “perfect”, “good”, “medium”, “poor”, and “bad”.  

 

Using intermediate levels (linguistic data) to describe the product quality can 

provide more information than the binary classification used in control charts 

by attributes. The binary classification may result weaker detectability of 

process shifts or other abnormal conditions. 

 

In order to retain the standard format of control charts and to facilitate the 

plotting of observations on the chart, it is necessary to convert the fuzzy sets 

associated with linguistic values into scalars referred to as representative 

values. This was done using one of the following transformation methods; by 

using the fuzzy mode	(��§�¨) , the α – level fuzzy midrange 5��¡(�)7, the 

fuzzy median	(��¨�), and the fuzzy average 5�-p²7. The conversion of fuzzy 

sets into its representative values also retain the ambiguity and vagueness in 

natural languages, improves the expressive ability of assurance inspectors and 

constitute a more realistic approach to process control. It should be pointed 

out that the development of membership function it can be done with several 

methods; based on statistical data, polls, different beliefs, and other. 

 

A sample consists of several observations selected for inspection. Each 

observation in a sample of linguistic data is a linguistic variable, (
¸), 
associated with a fuzzy set, (?̧ ), defined on the base variable, (8), and 
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described by a known membership function, 5L¸(F)7. These linguistic values 

need to be combined to yield a single value for the sample. This combination 

may be done either before or after the conversion of fuzzy sets associated 

with linguistic terms into their representative values. 

 

Several researchers have dealt with the construction of fuzzy control charts 

where the data is in the form of linguistic terms. Some of these approaches 

are presented in detail below. 

 

4.2. Wang & Raz Approach 

 

Wang and Raz (1990) were the first who dealt with the construction of fuzzy 

control charts, where the data are presented in the form of linguistic terms. 

They proposed two approaches for the construction of attribute control charts, 

using the fuzzy set theory, in order to monitor quality data given in the form 

of linguistic values.  

 

In order to retain the standard format of control charts (UCL, CL, LCL), it is 

necessary to convert the fuzzy sets (associated with linguistic data) into their 

representative values, using one of the following transformation methods:  

 

1. fuzzy mode: ��§�¨ 

2. α – level fuzzy midrange: ��¡(α) 
3. fuzzy median: ��¨� 

4. fuzzy average: �-p² 

 

Firstly, in order to yield a single representative value (:¹) for a sample (of 

linguistic values), a combination of those individual linguistic values is used, 

before or after their conversion into representative values.  
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4.2.1. Before the conversion 

 

They proposed to add the corresponding fuzzy set for each linguistic value in 

a sample and then to divide by the number of them. The result (mean of the 

fuzzy sets :	:?º ) is also a fuzzy set. The membership function of :?º is: 

 

  µº(Fº) = max(y´»´d⋯dy½»½) u¾ kmin¿µ�(F�),… , µÁ(FÁ)Âl 
 

Then applying one of the above methods, they convert the :?º	 into its 

representative value. 

 

Where:  :?º → Mean of fuzzy sets  F¸ → A set of the standardized base variable  <¸ → The number of items assigned the linguistic value 
¸  � → Number of observations in a sample � 

µ¸(F¸) → The membership function of ?̧  

 

4.2.2. After the conversion 

 

They converted the individual linguistic values of a sample (using one of the 

above 4 methods), into their representative values and then they calculated 

the sample mean: 

 

  Ã = �u (��<� +⋯+ �Á<Á) 
 

After that, they calculated the center line: �
 = ��∑ :¹�¹Å�   

 

Where: :¹ → Sample mean of the ÆÁÇ sample �̧ → The representative value of fuzzy set ?̧  

Assume that there are  − n��@�n of nAÈ� − � 
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Based on the interpretation of control charts, Wang and Raz (1990) presented 

the following approaches of the control limits: 

 

4.2.3. Probabilistic Control Limits 

  

The points plotted on the chart are sample means of representative values in 

the interval 00,14 with mean of standard deviation :�z = ��∑ �z¹�¹Å� :   

 

É
�
 = max{0, (�
 − &Ê:�z)}��
 = min	{1, (�
 + &Ê:�z)}I 
 

Where: �z¹ → The standard deviation for representative values in sample Æ 
 

4.2.4. Membership Control Limits  

 

The control limits are based on the membership function and the points 

plotted on the chart are sample means of representative values in the interval 00,14 with mean deviation Ë = Ë  + Ë¡: 

 

É
�
 = max{0, (�
 − <Ë)}��
 = min	{1, (�
 + <Ë)}I 
 

Where: Ë  → The left mean deviation Ë¡ → The right mean deviation 

 

4.2.5. Similarities and differences between membership and probabilistic 

approach 

 

Also, Raz and Wang (1990), presented analytically the construction of control 

charts for quality data that is available in linguistic form and point out 

similarities and differences between the two approaches (probabilistic and 

membership). Both control charts are based on fuzzy set theory and used 
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fuzzy sets to model the linguistic terms. On the other hand the two approaches 

differ in the extent to which the fuzziness of the data is retained as well as on 

the way that control limits are defined.  

 

The Table shows the similarities and differences between probabilistic and 

membership approach:  

 Probabilistic Membership 

Construction 

of control 

charts 

1. Using one of the 

transformation methods to 

convert the fuzzy sets into its 

representative values 

2. Calculate the sample mean :¹ 
3. Calculate the st. deviation �z¹ 
4. Center line: �
 = ��∑ :¹�¹Å�  

5. Mean sample st. deviation :�z 

6. Control Limits: 

É
�
 = max{0, (�
 − &Ê:�z)}��
 = min	{1, (�
 + &Ê:�z)}I 

1. Calculate the :?¹ for each 

sample 

2. Calculate the grand mean of the 

sample means: GMF 

3. Using one of the 

transformation methods to 

convert the GMF into its 

representative value 

4. Center line: representative 

value of GMF 

5. Calculate Ë(Ì:?) 
6. Define the value of k 

7. Control Limits 

É
�
 = max{0, (�
 − <Ë)}��
 = min	{1, (�
 + <Ë)}I 
Control 

Limits 

Multiple of the standard deviation  

which measures the dispersion of 

the distribution 

Multiple of a quality that measures 

the dispersion of fuzzy sets: insert 

the notion of mean deviation Ë = Ë  + Ë¡ 

Fuzziness of 

the data 

retained 

• Representative values 

obtained directly from the 

linguistic terms using one of 

the transformation methods 

• Linguistic terms are not 

converted directly into 

representative values (one more 

step)  

• Using one of the 

transformation methods 

converts the average of the 

individual linguistic terms into 

its representative value 

 Table 4.1. Similarities and differences between membership and probabilistic approach 
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Where, Ì:? = ��∑ :?¹�¹Å� → The grand mean of the  initially available samples 

 

The purpose of control charts is to detect a shift in the process as soon as it 

possible. The detection capability of control charts can presented as the 

complement of ����	ΙΙ	error. 0����	ΙΙ	error: The probability, that reject �� 

(assume that there is not any shift in the process level), given that the process 

is out of control4. The factors whose seem to affect the performance of either 

control charts were directly connected with ����	ΙΙ	error. The number of terms 

in the term set seems to affect the value of ����	ΙΙ	error: the greater the 

number of linguistic terms used to classify the observations, the probability of  ����	ΙΙ	error diminishes, therefore there is greater detection capability and 

sensitivity of control charts.  

 

4.2.6. Comparison between � – chart and proposed control charts 

 

Furthermore, Raz and Wang (1990) compared the performance of two 

approached control charts for linguistic data with the conventional 	 – chart 

and the result is that the performance of the two approached control charts is 

superior to that of the 	 – chart. There is more sensitivity in detecting a 

process shift. This is a result of the fact that, as more information about the 

process is obtained, the ability of the control chart to detect a process shifts 

increases. 

 

4.3. Kanagawa et al. Approach 

 

Until this moment, we have seen that, Wang and Raz constructed control 

charts using linguistic data in order only to control the process average. 

Kanagawa et al. (1993), developed control charts for linguistic variables 

based on the estimation of probability distribution existing behind the 

linguistic data in order to control the process variability as well as the process 

average. 
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Firstly, they assumed that they have the following probability density 

function (���) that can be represented by the Gram – Charlier series:  

 �(F) = Í(Î)01 + ����(F) + �>�>(F) + ⋯ 4 
 

Where:  Í(Î) → Denotes the ��� of Ï(0,1)   �¡(F) → Hermite polynomial of degree �   ¡ → Moment of degree �  <¡ → Cumulant of degree � 

 

The probability of a linguistic variable 
¸ (using Zadeh’s): 

 	(
¸) = « L¸(F)�(F)�F  

 

In generally, in order to construct the control charts it is necessary to know 

the ��� of each linguistic variable. There are two cases: 

 

I. ��	�ℎ�	� ��nℎA�	�o���A��	µ¸(F)	���	�ℎ�	���	�(F)	���	<���� 

II. ��	�ℎ�	� ��nℎA�	�o���A��	µ¸(F)	An	<����	���	�ℎ�	���	�(F)	���	o�<���� ⟹ In that case, the estimation of �(F) comes from <¸ and µ¸ using an 

iterative algorithm  

 

The construction of control charts by Wang and Raz is based on the 

conversion method selected. However, Kanagawa et al. (1993) used the 

conversion method from Zadeh’s probability definition (because the data does 

not have normal distribution): 	(
¸) = « L¸(F)�(F)�F, and the representative 

values for linguistic variables are given: F¸ = '��(?̧ ) = « y�Ð(y)¬(y)�yÑ∞Ò∞« �Ð(y)¬(y)�yÑ∞Ò∞

	  
 

4.3.1. Controlling the process average 

 

The control chart for controlling the process average by 1 – α confidence 

limits: 
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���
�� ��
 = �
∗ + �√u �z∗ Éo- + ÔÕÖ∗×√u �o- >¾ > − 1� + ÕØÙ∗>Úu �o- >¾ Ê − 3o- >¾ � − ÔÕÖ∗ÛÊ×u �2o- >¾ Ê − 5o- >¾ �Ü�
∗ = ��∑ <¹��¹Å�
�
 = �
∗ + �√u �z∗ Éo�g- >¾ + ÔÕÖ∗×√u �o�g- >¾ > − 1� + ÕØÙ∗>Úu �o�g- >¾ Ê − 3o�g- >¾ � − ÔÕÖ∗ÛÊ×u �2o�g- >¾ Ê − 5o�g- >¾ �Ü

I  
 

Where: �
∗ → The average mean     �z∗> →  The average standard deviation o- → Upper α – quantile of Ï(0.1) ��=∗ → The average skewness  ��1∗ → The average kurtosis 

 

4.3.2. Controlling the process variability 

 

Also, the control chart for controlling the process variability by 1 – α 

confidence limits: 

 

  

���
�� ��
 = Ý0ÔÞ4ßà Û¾p�
 = 30�z4
�
 = Ý0ÔÞ4ß´Òà Û¾p

I  
 

Where: 

q = >0Ý0ÔÞ44	Ûá-¡0ÔÞ4    

�z → The average standard deviation �- → Upper α – quantile of B(�) B(�) → The ��� of the random variable 2 

 

The advantage of those control charts is that directly controlling the 

underlying probability distribution �(F) of linguistic data and this makes them 

more precisely.   
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4.4. Taleb &Limam Approach 

 

4.4.1. Usages and characteristics of different control charts approaches 

 

Taleb and Limam (2002) presented the following table of usages and 

characteristics of different control charts approaches (fuzzy and probability): 

 

CONTROL 

CHART TYPE 

Generalized  

p – chart  

Fuzzy control  

Chart: 

Probabilistic 

approach 

Fuzzy control  

Chart: 

Membership 

approach 

Non – normal 

fuzzy chart 

BASED ON Probability 

theory 

Fuzzy theory 

and Probability 

theory 

Fuzzy theory Fuzzy theory 

PURPOSE A 

generalization 

of 	 – chart to 

the 

multinomial 

process 

Use the fuzzy 

set theory to 

obtain a real 

value for each 

sample. The 

distribution of  

these values is 

supposedly 

normal 

Use the fuzzy 

set theory to 

combine  

all observations 

in only one 

fuzzy subset 

Using the 

probability 

density 

function  

behind 

linguistic data 

and fuzzy 

theory to 

determine the 

representative  

values of 

linguistic  

terms 

CENTRE 

LINE 

No centre line 

in this 

approach 

It corresponds 

to the 

arithmetic 

mean of 

representative  

values of the  

samples 

initially  

available 

Corresponds to 

the 

representative 

value of the 

aggregate  

fuzzy subset 

Corresponds to 

the average 

mean of the 

sample 

cumulants 
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CONTROL 

LIMITS 

The upper 

control limit 

corresponds to 

a level of the 

chi – square 

distribution  

UCL and LCL 

are determined 

from the 

formulae for  

control chart 

for  

variables 

UCL and LCL 

are determined 

by simulation 

(k) and using 

rules of fuzzy 

arithmetic 

Control limits 

are determined 

using  

Gram – 

Charlier  

series and  

probability 

limit  

method 

SAMPLE 

SIZE 

We will 

adequate to 

justify the use 

of the  

chi – square  

distribution 

Control limits  

depend on 

sample size 

Control limits 

do not depend 

on sample size 

Control limits  

depend on 

sample size 

REMARKS Cannot specify 

if the change in 

the quality is a 

result of 

quality  

improvement 

or not 

Assignable 

causes cannot 

be defined  

clearly 

The computed 

method of 

value < is not 

clear. 

Assignable 

causes cannot 

be defined  

clearly 

Unknown 

probability 

distribution 

function cannot 

be determined 

easily 

BASIC 

REFERENCES 

Marcucci Raz and Wang Raz and Wang Kanagawa et 

al. 

 

 

 

4.4.2. Marcucci Approach 

 

Firstly, Taleb and Limam (2002) described the Marcucci approach. Marcucci 

proposed two approaches using Shewhart type control charts in order to 

monitor multinomial process when products are classified into mutually 

exclusive linguistic categories. 

Table 4.2. Usages and characteristics of different control charts approaches 
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Let 8¸�, 8¸>, … , 8¸Á the number of observations in categories 1,2, … , � 
respectively for the AÁÇ monitoring period. Let A = 0 be the base period and �¸ 
be the sample size for monitoring period. The two types of Shewhart control 

charts are: 

 

4.4.2.1. Type I control chart 

 

Marcucci designed this control chart, in order to detect changes in any of the 

quality proportions. When the quality proportions â�, … , âÁ are designed to be 

specific values (a – priori), then Pearson goodness – of – fit is a statistical 

procedure used to monitor the multinomial process:  

 

2̧ > = ã5F¸¹ − �¸â¹7>�¸â¹
Á

¹Å�  

Where: â¹ → Proportion F¸¹ → The number of observations in categories Æ = 1,2, … �  �¸ → The AÁÇ − n��@� 

 

When the process is in – control the asymptotic distribution of  2̧ > is �(Ág�)>  

 

4.4.2.2. Type II control chart 

 

Marcucci designed this control chart using the multinomial distribution, 

which can be approximated by a multivariate normal distribution. When the 

process proportions â�, … , âÁ are estimated for a base period where the process 

is assumed in – control. When â�, … , âÁ are not specified, then the Pearson 

goodness – of – fit is not applicable. So, the test of homogeneity of 

proportions between the base period (A = 0) and each monitoring period A is 

an appropriate statistical procedure:    

ä¸> = �¸��ã5�¸¹ − ��¹7>F¸¹ + F�¹
Á

¹Å�  
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Where: �¸¹ = yåæuå → Sample proportions 

�¸ → Sample size < = {0, A}  
 

Then, depending on the value derived, decide whether each sample is in – 

control or out – of – control. 

 

4.4.3. Comparison between Marcucci and Wang & Raz approaches 

 

Taleb and Limam (2002) wanted to compare those control charts in order to 

investigate which approach performs better. That succeeded, comparing 

Marcucci and Raz & Wang approaches using criteria such as sensitivity 

(samples under – control) and ARL (average run length). 

 

They concluded that fuzzy control charts lead to better results than the 

generalized 	 – chart (Marcucci approach) if the membership functions and 

the transformation method are precisely selected. Also using the probabilistic 

approach, if the degree of fuzziness of the fuzzy subsets, associated with 

linguistic terms, is increased, the control chart then becomes more sensitive. 

Contrary to the conclusions of Raz and Wang (1990), Taleb and Limam 

(2002), showed that fuzzy control charts affected by the degree of fuzziness 

and the transformation method used to obtain the representative values. 

 

4.5. Gulbay et al. Approach 

 

Gulbay et al. (2004) proposed an approach differs from previous studies from 

the point of view of inspection tightness. They constructed α – cut fuzzy 

control charts for linguistic data to provide the ability of detecting the 

tightness of the inspection by selecting a suitable α – level.  

 

As in crisp case there are four types of attribute control charts, so here there 

are the following types of control charts based on: 
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� The fraction rejected as non – conforming to specifications 

� The number of non – conforming items 

� The number of non – conformities 

� The number of non – conformities per unit 

 

4.5.1. { – level fuzzy control charts for attributes 

 

Following the steps below the α – cut fuzzy control charts for attributes is 

constructed: 

 

1. Because CL is a fuzzy set, it can be represented by triangular fuzzy 

numbers whose fuzzy mode is CL 

 

2. Calculate  
¹(�)	���	'¹(�) for each sample (for each control chart) 

 

3. Determine the membership function of CL 

 

4. Because the membership function of CL is divided into two 

components,  

  ������@	
AA�n	(�) = É������@	
AA�n	(
)������@	
AA�n	(')I   
 

5. 	����nn	������@ = É1,														(A� − ������@)0, (�o� − �� − ������@)I. This applies to both 

following situations. 

 &�� → The average sample size and  ç�� → The variable sample size 

 

They concluded that the greater the tightness of the inspection needs for 

products, the greater must be the value for α – cut. Specifically, they used the 

phrase “the higher α, the tighter inspection”. Also, they concluded that their 

approach is flexible, not complex, easy in computation, similar to the crisp 
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control charts for attributes and has the ability of detecting out – of – control 

points at least as effectively as the other approaches do. 

 

4.6. Conclusion 

 

In conclusion, we have seen that using intermediate levels (linguistic terms) 

to describe the quality product, we have more information about the process, 

so the ability of the control chart to detect a process shift increases. 

 

Also, in order to retain the standard format of control charts it is necessary to 

convert the fuzzy sets associated with linguistic data into its representative 

values. Besides that, the representation of linguistic variables as fuzzy sets 

retains the ambiguity and vagueness inherent in natural languages and 

improves the expressive ability of quality assurance inspectors.  

 

In addition, Wand and Raz (1990) concluded, that the factor which affect the 

performance of control charts is the number of linguistic terms used to 

classify the observations. Contrary to the above conclusion, Taleb and Limam 

(2002), showed that fuzzy control charts affected by the degree of fuzziness 

and the transformation method used to obtain the representative values.  

 

Furthermore, Gulbay et al. (2004) said that the higher α, the tighter inspection 

(the greater the tightness of the inspection needs for products, the greater 

must be the value for α – cut). 

 

Finally, Gulbay et al. (2004) presented the following table with a comparison 

of traditional Shewhart control charts and fuzzy inference control charts: 

 

But, how the membership function of linguistic variables should be 

constructed, or which should be the appropriate degree of fuzziness, or how 

many linguistic terms should be defined, are some problems which are still 

remain unsolved and may will be subjects of future study. 
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4.6.1. Comparison between Shewhart charts and fuzzy inference charts 

 

 Traditional Shewhart 

control charts 

Fuzzy inference 

control charts 

Advantages  1. Easier for considering 

one quality 

characteristic 

2. More objective 

1. Provide more accurate 

control standards for 

the process based on 

expert’s experience 

2. More flexible for the 

definitions of the 

fuzzy inference rules 

in control charts 

Disadvantages  1. Control limits are not 

flexible 

2. Sample size influences 

the width of control 

charts 

3. Historical data need to 

be verified to obtain 

the normal control 

limits 

1. Inference outcomes 

are based on the 

subjective experience 

rules 

2. Supplemental rules of 

the traditional control 

charts cannot be used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. Comparison between Shewhart charts and fuzzy inference 

charts 
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CHAPTER 5 

 

VARIOUS APPROACHES FOR THE CONSTRUCTION OF 

FUZZY CONTROL CHARTS 

 

5.1. Introduction 

 

Precise data are not always available. So, the variability cannot be measured 

with certainty. The theory of fuzzy sets, which first introduced by Zadeh, can 

adequately model processes where observed data are vague, uncertain, come 

from human subjectivity, or is available in the form of incomplete 

information. 

 

Also, the traditional Shewhart control charts interpret information that comes 

from historical data, completely required and certain. In contrary with 

traditional Shewhart charts, fuzzy control charts interpret information that 

comes from experts’ experience rules. Fuzzy control charts are inevitable to 

use when the statistical data in consideration are uncertain or vague or 

available information about the process is incomplete or includes human 

subjectivity.   

 

Therefore, many researchers have designed several methods in order to 

construct fuzzy control charts that accommodate uncertainty due to fuzziness.  

 

In this chapter, we are going to investigate various approaches for the 

construction of fuzzy control charts that have been suggested by different 

researchers which are either using defuzzification methods or not. Some of 

these methods, followed out in detail. 
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Part I: Approaches without using defuzzification methods  

 

5.2. Cheng’s Approach – Construction of fuzzy numbers 

 

As we have seen analytically in the previous chapter, Wang and Raz adopted 

linguistic terms to express the intermediate levels of a quality characteristic, 

in order to rate the quality of an inspected item. This assumption seems to be 

inappropriate when the membership function of the linguistic term is not well 

constructed.  

 

Due to a limited perception of the values in the rating scale, different 

inspectors may assign different scores to the same product.  

 

In order to deal with the experts’ subjective judgments Cheng (2005), 

employed fuzzy numbers to aggregate the experts’ rating scores to represent 

the dispersion of the vague observations. 

 

The fuzzy process control methodology proposed by Cheng (2005), comprises 

an off – line stage and an on – line stage.  

 

5.2.1. Off – Line Stage 

 

Each expert assigns quality ratings to products based on a numerical scale (0, … , Ì). The individual numerical ratings are then aggregated to form 

collective opinions expressed in the form of fuzzy numbers. 

 

Having the scores B�, … , Bu which assigned by � − different experts when 

rating the same product, and following the steps below, Cheng (2005), made 

possible the construction of fuzzy numbers (�,,  ). 
 

1. Firstly, calculate the relative distance matrix z = ¿�¸¹Âu×u, which 

presents the distances between of each B¸, where �¸¹ = èB¸ − B¹è and �¸¸ = 0, �¸¹ = �¹¸.  
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2. Then, calculate the average of the relative distances for each B¸:  
  �¸ = ∑ �¸¹u¹Å� .  

3. After that, calculate the pair – wise comparison matrix Ρ = ¿�¸¹Âu×u, 

which determines the degree of importance of each B¸, where �¸¹ = �æ�Ð is 

the relative importance of B¸ compared to B¹, and �¸¸ = 1, �¸¹ = �6æÐ .  
4. Also, calculate the weights associated with each of the scores B¸, such 

that �¹ = �∑ 6ÐæêÐ¶´ 	 , Æ = 1, …�, and then estimate the mode of the fuzzy 

number  = ∑ �¸B¸u̧Å� .  

5. Calculate the B  and B¡, which are the weighted average of the scores 

which are less than  and greater than  respectively, and thereafter 

calculate the ratio of the left spread to the right spread: �̂ = �g²ì²íg� .  

6. Finally calculate the left and right endpoints of the fuzzy number � and   respectively.    

 

5.2.2. On – Line Stage 

 

Having the product dimensions come from the off – line stage, and using 

fuzzy regression analysis it is easy to define automatically the appropriate 

fuzzy quality ratings. 

 

5.2.2.1. Fuzzy Regression Analysis Model (FRBFN) 

 

In order to retain the aggregated collective knowledge of the experts, Cheng 

(2005), used the fuzzy regression model – FRBFN (Fuzzy Radial Basis 

Function Network), proposed by Cheng & Lee (2001), to identify the 

relationship between the dimensions of a product, 2 = (�,,  ), and its fuzzy 

quality rating, 2î = (�ï,ð,  î).  
 

Assuming that a sample of : fuzzy quality ratings 2�ñ ,… , 2òó  has been obtained 

and the estimation of the process mean when the process is thought to be in – 

control defined as: 2 = �ò∑ 2»ñò»Å� . Then, plotting the fuzzy quality ratings on 
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the control chart and in order to decide either the process is in – control or out 

– of – control, make a comparison between 2 = 5�,,  7 and 2ô = 5�õ,ö,  ô7 

using possibility and necessity measures. In general once can assume that “If 

the degree of matching between ÷ô  and 2ø is high, then the process is 

considered to be in – control”. Specifically, this is achieved using the 

following conditions:  

 

5.2.3. Out – of – control conditions 

 

5.2.3.1. Possibility measure 

 

If the possibility measure of the fuzzy sample mean ÷ô  is greater than or equal 

to a threshold parameter α then the fuzzy process is considered to be in – 

control:  

 {	A�		�n(2ø/÷ô) ≥ �, �ℎ��	02ø4ú ∩ ¿÷ôÂú ≠ ∅	,when	0 < � ≤ 1}  
Where,  02ø4ú → The � – level set ÷ô = (�õ,ö,  ô) → Mean from a sample drawn from the process 2ø = �ò∑ 2î»ò»Å� → Mean of the in – control process  2î» 	→ Quality rating score of < – product  

Possibility Measure of the variable ÷ô  satisfying the condition "÷ô	An	2ø"	 :  	�n(2ø/÷ô) = no��∈Ø0min{L�ø(È),���(È)}4 
Where,  ��� → Possibility distribution of ÷ô  � → Universe È → Elements of � 

 

5.2.3.2. Necessity measure 

 

If the necessity measure of the fuzzy sample mean ÷ô  is greater than or equal 

to a threshold parameter β then the fuzzy process is considered to be in – 

control:  
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 {	A�	Ï��(2ø/÷ô) ≥  	, �ℎ��	02ø4� ⊃ ¿÷ôÂ�g�	, when	0 <  ≤ 1}  
Where,  

Necessity Measure of the variable ÷ô  satisfying the condition "÷ô	An	2ø"	 :  Ï��(2ø/÷ô) = A���∈Ø0max{L�ø(È), 1 − ���(È)}4 
 

If for a sample mean ÷ô , either  02ø4ú ∩ ¿÷ôÂú = ∅	��	02ø4� ⊅ ¿÷ôÂ�g�	 , then the 

fuzzy process is considered to be out – of – control 

 

Cheng (2005), concluded that the possibility measure can indicate the 

compatibility of the mode of the sample mean with that of the in – control 

process mean. In the other hand, the necessity measure, not only assesses the 

necessity of the sample mean ÷ô  to conform to the in – control process mean, 

but also serves as a measure to indicate whether the fuzziness of a sample 

mean is too large compared to that of the in – control process mean. The 

thresholds of the possibility and necessity measures, α and β respectively, be 

established based on a pre – specified probability of 12	3	�	����� , and play 

important roles in determining the out – of – control conditions, which justify 

the conformance or otherwise of samples to the process.  

 

Also, the proposed fuzzy process control methodology (FBRFN), in which 

fuzzy control charts are employed to monitor a process whose outcomes are 

represented by fuzzy numbers, monitors the central tendency as well as the 

fuzziness of the process to be monitored. 

 

5.3. Wang Approach 

 

As we have seen above, Cheng (2005), generated a fuzzy number based on a 

group of experts’ scores on a quality item in a quality control process. Here, 

Wang (2006), assigned a fuzzy number for each outcome of a fuzzy 

observation on quality monitoring process, assuming that the quality data 

collected from the fuzzy observation process can be assigned LR – fuzzy 

quality numbers. The LR – fuzzy quality numbers are used because it is able, 



46 

 

easier than fuzzy numbers, to represent simultaneously not only the 

randomness but also the fuzziness of the fuzzy quality data. 

 

5.3.1. LR – fuzzy quality data 

 

The LR – fuzzy numbers have the form: 8 = (, @, �)�� 

 

Where, , @, � → Independent real numbers   → The central point of fuzzy number 8 @ > 0 → The left spread of fuzzy number 8 � > 0 → The right spread of fuzzy number 8 

 

As we have studied in detailed in Chapter 4, Wang & Raz (1990) and 

Kanagawa et al. (1993), proposed several transformation methods to represent 

the fuzzy data, by using the fuzzy mode; the α – level fuzzy midrange; the 

fuzzy median; the fuzzy average and the barycentre concerned with Zadeh’s 

probability measure, in order to retain the standard format of control charts. 

When comparing the above proposed methods, the conclusions reached are 

that the methods by using the fuzzy mode and the α – level fuzzy midrange 

are easier to calculate than the others, however they only took account of the 

randomness of the fuzzy sample. Also, the method by using the fuzzy median 

used a non – standard measure of fuzziness thus may be a biased 

representative of a fuzzy sample. And finally, the method by using the fuzzy 

average and the barycentre concerned with Zadeh’s probability measure are 

not easy to calculate the representative values. 

 

5.3.2. Optimal Representative Values 

 

It should be noted that the representative values should properly represent 

randomness and fuzziness simultaneously. Wang (2006), proposed an optimal 

representative value for LR – fuzzy quality sample (data) by means of a 
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combination of a random variable with a measure of fuzziness, presented as 

follows: '��(8) =  + z(8) 
 

Analytically,  8 = (, @, �)�� → The LR – fuzzy quality sample   → The central variable, which represents the randomness of the LR – fuzzy 

quality sample z(8) = @
� + �
> → The measure of fuzziness, which represents the fuzziness 

level of the LR – fuzzy quality sample  , @, � → Independent real valued random variables 

 

Also, the representative value for LR – fuzzy quality sample proposed by 

Wang (2006), can be written as: '��(8) =  + @
� + �
> 

 

The measure of fuzziness, z(8), for the LR – fuzzy quality sample, 8 =(, @, �)��, is an extension of Hamming’s measure of fuzziness and presented 

as:  

  z(8) = « |8(F) − 8�.�(F)|�Fd�g�     

Where, 8�.� → The 0.5 – level set of the fuzzy quality sample 8   

8�.�(F) = ��·.(F) = D1,0,I F ∈ 8�.�F ∉ 8�.� → The indicator of the non – fuzzy quality 

sample 8�.� 
 

Because each fuzzy data is characterized by the both randomness and 

fuzziness, the proposed representative value is considerably accurate, simply, 

with lower complexity in computation, with an optimal representativeness and 

very comprehensive because it fully represent the randomness as well as 

fuzziness measured by a standard fuzziness measure into account. 
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5.3.3. Construction of a CUSUM chart for LR – fuzzy quality data  

 

Afterwards, Wang (2006), applying the classical CUSUM chart for these 

representative values, an appropriate and accurate representative CUSUM 

chart for LR – fuzzy quality data is constructed, using the following steps: 

 

Step 1: Choose a suitable reference value	1, here 1 = µï   

Step 2: Use the standard scheme: ℎ = 5	���	� = 0.5 

Step 3: Calculate the CUSUM  �u with reference value �� = 1 + � ∙ σï¨ ≥ 0. 

Also calculate the CUSUM  1u with reference value �> = 1 − � ∙ σï¨ < 0 

Step 4: Action is signaled if some �u ≥ hσï¨  or 1u ≤ −hσï¨  

 

Where, 

µï → The overall mean of the past observations 

σï¨ = �∑ (��g�)��Û��¶´∑ (��g�)��¶´ �� >¾ → Estimated standard error of samples mean, where, n� 
is the group size (there are k – groups each with varying group number), and s� is the standard error of mean for the representative values in group i    
 

Finally, the fuzzy control charts derived from using the proposed 

representative method can be improved to some sense. 

 

5.4. Fazel Zarandi et al. Approach 

 

5.4.1. Vague Process Parameters 

  

When we are faced with uncertainty either in process parameters or in the 

sample data resulting from the unknown nature of the process or from 

different degree of belief corresponding to various experts, it does not able to 

assign an exact value to the data. In order to deal with the above vagueness, it 

is necessary to use fuzzy numbers. Fazel Zarandi et al. (2006) handled the 

above situation, transforming the vague amount of the process parameters into 

its equivalent � – cuts and proposing fuzzy control charts for variable and 

attribute quality characteristics. 
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5.4.1.1. Variable Control Charts 

 

In the case of variable quality characteristics, Fazel Zarandi et al. (2006), 

proposed the construction of fuzzy 8 control chart, when the process 

parameters are fuzzy (ö, "õ). Where, ö  is the fuzzy mean, and "õ is the fuzzy 

standard deviation. In order to deal with vagueness in process parameters, it is 

necessary to use fuzzy numbers, such as 
 – type fuzzy numbers or triangular 

fuzzy numbers. 

 

As we have known, in the traditional form of 8 control chart, each point 

belongs to the control interval, has the form as: F =  + <" with −& ≤ < ≤ &. 

In the case where there is vagueness in the process parameters, each point 

belongs to the fuzzy interval with more than one degree of membership, and 

especially Fazel Zarandi et al. (2006) have shown than each point pertains to 

the interval with its maximum degree of membership.  

 

Because the possibility distribution of fuzzy 8 control chart is a symmetric 

trapezoidal fuzzy distribution, they transformed the vague amount of the 

process parameters into its � – cuts of a trapezoidal fuzzy number, and 

consequently they proposed the following parametric control interval: 

 

  É��
(�) = (�� + &��)(1 − �) + �� + &��
�
(�) = (�� + &��)(1 − �) + �� − &�� I        
Where, ," → Are triangular fuzzy numbers �� → The center of fuzzy number   �� → The center of fuzzy number " �� → The width or spread around the center ��  �� → The width or spread around the center �� 
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5.4.1.2. Attribute Control Charts 

    

In the case of attribute quality characteristics, Fazel Zarandi et al. (2006), 

proposed the construction of fuzzy � – control chart, when the mean number 

of defects r is vague. 

 

Each point in fuzzy � – control chart can be represented as Fõ = r� + 3<�r� �⁄  

with −1 ≤ < ≤ 1. Where, � is the sample size, and r� is the fuzzy mean number 

of defects. For each point in the fuzzy control interval, there is a set of 

membership functions and also, as in the case of variable quality 

characteristics, each point belongs to the interval with its maximum degree of 

membership.   

 

Also, the proposed parametric form of fuzzy � – control interval is: 

 

  ��
���
(�) = �� + ��(1 − �) + 3���d��(�g-)u
�
(�) = �� − ��(1 − �) − 3���g��(�g-)u

I   
Where, r → Is a triangular fuzzy number, and represents the fuzzy mean number of 

defects �� → The center of fuzzy number r  �� → The width or spread around the center ��   � → The sample size 

 

Similarly, in the same way resulting the fuzzy � – control chart when � = 1. 

 

5.4.2. In the case of linguistic data 

 

As we have seen analytically in previous chapter, in the case where the 

process data are linguistic, Wang & Raz (1990) in order to calculate the 

values representing sample mean, they have used a measure of centrality. 

Contrary with the proposition of Wang & Raz (1990), Fazel Zarandi et al. 
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(2006) instead of using a measure of centrality they developed a defuzzifier 

index based on the metric distance between fuzzy sets.  

 

5.4.2.1. Defuzzifier Index 

 

After the introduction of a defuzzifier index, they extended the usage of the 

above proposed fuzzy control charts, in order to handle the case of linguistic 

data, following the steps below: 

 

1. Classify each observation with a linguistic value which has a known 

membership function 

2.  Obtain a fuzzy set which represents the mean of linguistic terms 

3. Use the fuzzy control limits, proposed above by Fazel Zarandi et al. 

(2006) 

4. Use the defuzzifier index which gives the representative value 

corresponding to the sample mean fuzzy set: 

  
Þ5ØV��	,y�Ð7Þ(�V��	,ØV��	) = èØV�(-)gyÐèØV�(-)g�V�(-)       

Where, z(o	, q) → The distance between the fuzzy sets o and q o(�), o(�) → The � – cuts of fuzzy number o  Fô¸ → The mean fuzzy set related to the AÁÇ − n��@�  F¸ → The representative value of Fô¸ 
 

Also, the defuzzifier index can be used in the case similar to the above, using 

instead of ���
 the 
��
 with Fô¸.   
 

The metric distance z(o	, q) using by Fazel Zarandi et al. (2006) in order to 

create the defuzzifier index, is flexible and easy to calculate. Also, as they 

noted, “the metric distance is efficiently uses the information encompassed by 

the possibility distribution of the mean fuzzy set Fô¸, whereas other approaches 

of computing the representative value of a given fuzzy set do not consider this 

information”.     
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Finally, they concluded that the proposed control intervals are more flexible 

than the similar crisp case because they are a function of degree of expert’s 

presumption.      

 

5.5. Faraz & Moghadam Approach 

 

In order to control the process average of a variable quality characteristic, 

Faraz & Moghadam (2007), introduced a new fuzzy control chart that has a =
 besides ��
. The =
 designed for detecting desired shift in the process, 

when the ��
 controls the process in all.  

 

For the construction of the proposed fuzzy control charts, Faraz & Moghadam 

(2007) follows the following steps:  

 

1. Select the amount of minimum shift (�), in the process mean that is 

important and must be detected 

 

2. Select the warning line (=
), using training data generated from 

normal distribution, in order to detect a shift in the process mean at 

least equal to �, so the sample mean is going to be � + L. This is 

achieved by following the steps below: 

i. Generate  – samples of size � from out – of – control process 

and then calculate the sample mean (using the sufficient value 

of  = 100000) 

ii. Calculate �¸ = 1 − µ²§§�∗ (F��), A = 1,2, … ,  

Where, �¸ → The statistic for AÁÇ sample mean 

µ²§§�∗ (F��) → The membership value of linguistic term good for 

the AÁÇ sample 

iii. Calculate WL = ∑ �Ð"�̧Å�    

 

3. Create a base rule for =
 alarms: The general idea of the base rule is 

as follows. If some point draw out of =
 successively, but still are 
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below the ��
, then a shift at least equal to � is detected. Especially, if 

two (or three) successive points drawn out of =
, and still are below ��
, a shift at least equal to � (≥ �) is occurred.  

 

4. Calculate the false alarm rate (�) and average run length (&'
) 
The false alarm rate �(2) (or �(3)), is the proportion of plotting two 

(or three) successive points out of =
 or one point out of ��
, when 

the process is in – control. 

The average run length is the average number of points that must be 

plotted before a point indicates an out – of – control condition. 

 

5. Choose the proper base rule that produce minimum false alarm rate and 

adequate average run length 

 

6. After that, plot �¸ = 1 − L#§§�∗ (F��) in the chart with upper control limit ��
 = 1 − L#§§�∗ 5L̂ + 3"ï�ð7 
Where, "ï�ð → The estimation of mean process variability and a =
  

 

Then, Faraz & Moghadam (2007), made a comparison between the new fuzzy 

control chart and Shewhart 8 – control chart, and they concluded that the 

fuzzy chart has better power for detecting a specified level of shifts in the 

process. Also, that new fuzzy control chart is a more practical method for 

controlling the process average.  

 

Furthermore, they concluded that classifying the observations in the rational 

groups, provides better neural view to inspectors, of the shifts in the process 

mean. The new fuzzy method offers different strategic options for company to 

chose and additionally detects the desire shifts more quickly.  

 

As Aparisi (1997) noted, the importance of a process shift depends on the 

process capability. If a process is very capable, small process shifts hardly 

influence the amount of non – conforming items. On the other hand, for a 
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process of small capability even a small shift can produce a large amount of 

non – conforming items. Therefore, the question that should be clarified is 

which shift sizes are important for control purposes. But this new fuzzy 

control chart shows the best value of &'
 for detecting the specified level. So, 

Faraz & Moghadam (2007), concluded that this fuzzy chart is more sensible 

to small shifts without any complexity augmentation to the chart.  

 

5.6. Amirzadeh et al. Approach 

 

When we have to deal with variable quality characteristics, the traditional 	 – 

chart takes time to react to shifts in the production process because of its 

weak response to small shifts variations in the process mean and variance. 

 

As we have seen above, Fazel Zarandi et al. (2006) dealt with variable quality 

characteristics using fuzzy valued data in order to construct fuzzy control 

charts. The constructed control limits by them are fuzzy. A few years later, 

Amirzadeh et al. (2009) suggested the use of real data and treating the quality 

as a fuzzy set, they constructed precise control limits which are leading to 

simple decision making.      

 

They proposed the construction of a new 	 – control chart, (	ô – control 

chart), based on the mean degree of non – conformity, instead of using items 

which can be either conforming or non – conforming.  

 

5.6.1. Fuzzy degree of non – conformity  

 

Firstly, suppose that 8 is a standard fuzzy quality characteristic of the product 

item, which is normally distributed. The fuzzy degree of conformity is 

defined as: 

  ��(8) = É1,					�ℎ��	
 ≤ 8 ≤ �0,																��ℎ���An� I  
Where,  
, � → The lower and upper specification limit respectively 
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It should be noted that the specification limits �
: 0
, �4, are not depended on 

the process and may be set by management, the manufacturing engineers, the 

customer or product developers or by designers.  

 

Consequently, the fuzzy degree of non – conformity, which is a bounded 

random variable, is defined as:  

  $�(8) = 1 − ��(8)  
 

5.6.2. New �� – chart 

 

Then presented the control limits for the mean degree of non – conformity 

using a triangular membership function, proposed by Amirzadeh et al. (2009). 

(	ô – control chart): 

 

  

���
����
 = 3 ,$�. + <�ç��0$�4�
 = 3 ,$�.

�
 = 3 ,$�. − <�ç��0$�4

I    
 

Where, $� = �u ¿$�(8�) + ⋯+$�(8u)Â → The mean of random samples from $�(8)     
3 ,$�. = L%� → The mean of $� 

ç�� ,$�. = "%� √u⁄> → The variance of $�   

 

5.6.3. Comparison between �� – chart and � – chart 

   

Additionally, Amirzadeh et al. (2009), made a comparison between the new 

control chart, 	ô – control chart, and the traditional 	 – control chart and they 

reached to the following conclusions. The 	ô – chart is sensitive to changes in 

the process mean and variance, provides much more useful information about 

the process performance than 	 – chart, allows operating personnel to take 

corrective action before any defects are actually produced and also indicates 
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trouble ahead, whereas the 	 – chart does not react unless the process has 

already changed and more non – conforming units are being produced.  

Analytically, regarding the latter conclusion, it should be noted that, the 

degree of non – conformity for a characteristic function of a 	 – chart takes 

value either one or zero. Using the specification limits one can observe that 

the shift L = L� → L = L� is not quickly perceived than of using 	ô – chart, 

where its fuzzy degree of non – conformity is a triangular membership 

function takes value in the interval 00, 14.   
 

5.6.3.1. OC and ARL curves 

 

Also Amirzadeh et al. (2009), compared the two types of control charts (new 

fuzzy and classical), with respect to the ability of detection shifts in process 

quality using the OC and ARL curves. 

 

Where,  

OC → Operating Characteristic Curve: Is a graphical display of the 

probability of incorrectly accepting the hypothesis of statistical control 

against shifts in process quality.  

ARL → Average Run Length: Is the average number of points that must be 

plotted before a point indicates an out – of – control condition. 

 

Using an illustrative application, they showed that for shifts in mean and 

variance in both cases OC and ARL curves, 	ô – chart are consistently below 

the OC and ARL for 	 – chart. This means, that the type II error of 	ô – 

charts, is much lower than the type II error of 	 – charts. Consequently, they 

concluded that the proposed 	ô – chart are more powerful and efficiently than 

the traditional 	 – charts.  

 

And finally, using an appropriate membership function, the 	ô – chart 

constructed by Amirzadeh et al. (2009), is sensitive not only to changes in the 

mean of the process but also to changes in the variance of the process, and 
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this gives it an advantages over the chart proposed by Faraz & Moghadam 

(2007), which is sensitive only to changes in the mean of the process. 

 

5.7. Faraz & Shapiro Approach 

 

The most important contribution of control charts, in the case of crisp data, is 

their ability to give a straightforward answer to the question if the process is 

in – control. On the other hand, in the case of fuzzy data, in order to retain the 

standard form of control charts many inspectors used some defuzzification 

methods transforming the fuzzy data into its representative values, thereby 

reducing the information of the original fuzzy sets. Also, different 

transformation methods may result in different conclusions about the process 

and consequently, there is not a unique answer to the crisp question. Hence, 

in the case of fuzzy data, fuzzy control charts must answer the question about 

how much does the process belong to the in – control state, and those fuzzy 

control charts must satisfy the following properties: 

 

i. Produce a single and accurate answer to the fuzzy question 

ii. Avoid any transformation methods 

iii. The chart measure and control limits should be based on both fuzzy 

and random set theory 

 

Faraz & Shapiro (2010), in order to explain existing fuzziness in data while 

considering the essential variability between observations, proposed a new 

approach for constructing fuzzy control charts �8� − �>&�, that can handle both 

kinds of uncertainty (randomness and incomplete information). That fuzzy 

control chart, avoids any defuzzification methods (in order not to reduce the 

information of the original fuzzy sets) and also it is based on a fuzzy in – 

control region (?�') as well as on a grade exclusion measure.  
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5.7.1. Fuzzy in – control region (FIR) 

 

The construction of the fuzzy in – control region (?�'), used by Faraz & 

Shapiro (2010), with the significance level (1 − �), follows the following 

steps:  

 

1. Assume that the quality characteristic of a process is a trapezoidal 
' – 

fuzzy random variable 8ô�� = {�,  , �, �}��, which is normally distributed 08ô��~Ï(ö��, ">)4, having L�ô()(F) as a membership function.  

 

Where,  ö�� = {-, � ,�, �}�� → The unknown fuzzy mean "> → The crisp variance 

 

2. Estimate the process mean 

Using < – fuzzy subgroups each of size �, the estimation of ö�� is: 

  öñ�� = {ð-, ð� ,ð�, ð�} = É�,  , �, �Ü  
 

3. Calculate the control limits with the significance level (1 − �): 
  *��
+ = öñ�� + È-/> �√u
�
& = öñ�� − È-/> �√u I  
Where, "> → The crisp variance of 8ô�� 

 

4. Estimate the variance 

 "ï> = n>  

Where, n¸> → The unbiased estimator of variance in the AÁÇ subgroup 

"ï = �ºÛV, → The unbiased estimator of " 

 

The ?�', for the fuzzy 8 control chart is the interval:  
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  É�,  + ÈàÛ �ð√u , �, �Ü��  

 

The ?�', for the fuzzy �> control chart is the interval:  

  0
�
, ��
4 = - ºÛug���gàÛ,ug�> , ºÛug��-/>,ug�> .   
 

Where, �-/>,ug�> , ��gàÛ,ug�> → The upper and lower �/2 percentage of the chi – squared 

distribution with � − 1 degrees of freedom 

 

5.7.2. Graded exclusion measure 

 

Having defined the 
' – fuzzy random variables, they constructed the fuzzy 

in – control region. To avoid problems of the form that a sample fuzzy 

number belongs to the in – control region in different degree, Faraz & Shapiro 

(2010), defined the measure of graded inclusion.  

 

The graded inclusion measure is a relationship between fuzzy sets ?� and ?>, 

which indicates the degree to which ?� is contained in ?>: 

  ���(?�, ?>) = infy∈�0L/́ (F) ¬0��ß1223 L/Û(F)4       
Where, ?�, ?> → Fuzzy sets in a universe 8 

¬0��ß1223 → The fuzzy implication operator 

L/́ (F), L/Û(F) → The membership functions of fuzzy sets ?� and ?> 

respectively 

 

Furthermore, the graded exclusion measure is a relationship between fuzzy 

sets ?� and ?>, which indicates the degree to which ?� is excluded from ?>:  

  � = 1 − ���(?�, ?>) = 1 − «�¸u��4´(y),�4Û(y)��y	«�4´(y)�y   

Where, ?�, ?> → Are convex, normal and real fuzzy sets in a universe 8 
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� → The fuzzy exclusion measure 

 

Also, Faraz & Shapiro (2010), assuming that ?� = 8��  (subgroup fuzzy means) 

and ?> = ?�', they have concluded the following conditions about the 

process:  

	����nn	������@ = * A� − ������@,�o� − �� − ������@,��ℎ���An�, I 			�ℎ��	� = 0�ℎ��	� = 10 < � < 1  

 

As we can see, the higher value of � indicates more severe warnings. 

 

The contribution of the proposed methodology of the construction of fuzzy 

control charts over a standard method is that the proposed chart monitors the 

processes considering the uncertainties due to both randomness and 

incomplete information. Furthermore, the usage of the standard format of 

control charts, which indicates whether the process is either in – control or 

out – of – control, may trigger out – of – control signals when the process is 

actually in – control and these false alarms may cause users to lose 

confidence in control charts. Having the range 0 < � < 1 using the proposed 

control chart, there is an extended alarm zone between the in – control to the 

out – of – control state, which helps to facilitate corrective actions in 

anticipation of the process subsequently going out – of – control. 

 

Also, Faraz & Shapiro (2010), concluded that the proposed approach is easy 

to use and calculate. Also, it satisfies the three mentioned properties of fuzzy 

control charts and takes precedence over the existing fuzzy control charts, 

having the following main advantages: 

 

1. The chart measure produces a single and precise answer to the fuzzy 

question (“How much does the process belong to the in – control 

state”) through the degree to which process samples are excluded from 

the ?�' [Satisfies the property i]  
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2. Both sample fuzzy sets and the in – control region are independent of 

transformation methods and they are completely compared in a fuzzy 

space [Satisfies the property ii]  

3. A decision about process states is made through fuzzy and random sets, 

and the proposed approach also has the advantage of simplicity in the 

field [Satisfies the property iii]  

 

Part II: Approaches using defuzzification methods  

 

5.8. Gulbay & Kahraman Approach 

 

When we have to deal with linguistic data, in order to retain the standard form 

of control charts and construct fuzzy control limits, it is necessary to 

transform the fuzzy sets associated with linguistic data into its representative 

values. This can be achieved with various ways using one of the following 

transformation methods, similar to the measure of central tendency, based on 

fuzzy mode; fuzzy midrange; fuzzy average; fuzzy median, etc. 

 

Using the fuzzy transformation methods with � – cut, which provides the 

ability of determining the tightness of the inspection, 
, which is a predefined 

acceptable percentage, and a trapezoidal fuzzy number (�-,  , �, �-), where �- = � + �( − �) and �- = � − �(� − �), Gulbay & Kahraman (2007), 

developed the following fuzzy control charts. The � – cut is a non – fuzzy set 

which comprises all elements whose membership degrees are greater or equal 

to �. Moreover, � – cut interpreted as the tightness of the inspection, “The 

higher the value of � the tighter inspection”. Also, in order to set the 

tightness of the inspection, it is necessary to define the values of � and 
.    

 

5.8.1. Fuzzy Control Charts 

 

5.8.1.1. Based on fuzzy mode transformation 
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Control Limits: ���
�§� = �
�§� + 3��
�§� = 0��
>, ��
Ê4�
�§� = ��§�5�
&7 = 0�
>, �
Ê4
�
�§� = �
�§� − 3��
�§� = 0
�
>, 
�
Ê4 I	  
 

The conditions of process control for each sample are presented below: 

 

	����nn	������@ =
���
�� A� − ������@,			���	
 = 1	¿ ¹ ≥ 
�
>⋀�¹ ≤ ��
ÊÂ�o� − �� − ������@,			���	
 = 0	¿ ¹ ≥ ��
Ê⋁�¹ ≤ 
�
>Â	��ℎ���An�,			 É ���ℎ��	A� − ������@,���ℎ��	�o� − �� − ������@,���	 ¹ ≥ 
���	 ¹ < 
 I

I  
 

Where,  ��§�,¹ = ¿ ¹, �¹Â → The fuzzy mode of sample Æ, in the case of trapezoidal 

fuzzy number with � – cut: (�-,  , �, �-) with �- = � + �( − �) and �- = � −�(� − �)   ��§� = {x ∈ X|L¬(F) = 1} 	→ Is the fuzzy mode of the fuzzy set �  �
& = (�
�-, �
>, �
Ê, �
Ú-) → The center line of the general form of � – level 

fuzzy control charts 

 

5.8.1.2. Based on { – level fuzzy midrange transformation 

 

Control Limits: ��
� ��
�¡- = �
�¡- + 3��
�¡-�
�¡- = ��¡- 5�
&7 = �> (�
�- + �
Ú-)
�
�¡- = �
�¡- − 3��
�¡-

I	  
 

The conditions of process control for each sample are presented below: 

 

	����nn	������@ = É A� − ������@,�o� − �� − ������@,���	
�
�¡- ≤ ��¡,¹- ≤ ��
�¡-��ℎ���An� I 
 

Where,  ��¡,¹- = �> 5�¹- + �¹-7 → The � – level fuzzy midrange of sample Æ 
��¡- = �> (�- + �-) → Is the midpoint of the end of the � – cut  
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5.8.1.3. Based on { – level fuzzy median transformation 

 

Control Limits: ��
� ��
�¨�- = �
�¨�- + 3��
�¨�-�
�¨�- = ��¨�- 5�
&7 = �Ú (�
�- + �
> + �
Ê + �
Ú-)
�
�¨�- = �
�¨�- − 3��
�¨�-

I  
 

The conditions of process control for each sample are presented below: 

 

	����nn	������@ = É A� − ������@,�o� − �� − ������@,���	
�
�¨�- ≤ ��¨�,¹- ≤ ��
�¨�-��ℎ���An� I 
 

Where,  ��¨�,¹- = �Ú 5�¹- +  ¹ + �¹ + �¹-7 → The � – level fuzzy median of sample Æ ��¡- → Is the point which partitions the membership function of a fuzzy set 

into two equal regions at � – level  

 

When the linguistic data represented by symmetric fuzzy numbers, the various 

defuzzification methods become equal to each other and therefore, give the 

same control decisions. On the other hand, when the linguistic data 

represented by asymmetric fuzzy numbers, different possible decisions can be 

faced.  

 

5.8.2. Direct Fuzzy Approach 

 

In order to prevent the loss of information included by the fuzzy samples, 

Gulbay & Kahraman (2007), proposed an alternative approach, DFA – Direct 

Fuzzy Approach, to construct fuzzy control limits where does not require the 

use of defuzzification. In their approach, the linguistic data are not 

transformed into representative values using any transformation method, but 

compared directly in fuzzy space.  

 

Firstly, they determined the a – level fuzzy control limits by fuzzy arithmetic 

which have the classical form: 
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   ���
-+ = �
-& + 3��
-& = 0��
�-, ��
>, ��
Ê, ��
Ú-4�
-& = 5�-øøø,  ø, � ̅, �-øøøø7 = 0�
�-, �
>, �
Ê, �
Ú-4
�
-+ = �
-& + 3��
-& = 0
�
�-, 
�
>, 
�
Ê, 
�
Ú-4
I   

 

Where, �-øøø → The arithmetic mean of �- (similarly and the other) 

 

DFA provides the ability of making linguistic decisions like ‘‘rather in 

control’’ or ‘‘rather out of control’’. Further intermediate levels of process 

control decisions are also possible to introduce: 

 

	����nn	������@ =
���
�� 9: − ;¤:<ª¤=, �ℎ��	�oÈÈ�	n��@�	���@���@�	A�q�@q��	 �	��
+	���	
�
&¤><− ¤¢ − ;¤:<ª¤=, �ℎ��	�oÈÈ�	n��@�	����@@�	�F�@o���	 �	��
+	���	
�
& 	��ℎ���An�, É ª{<?¦ª	9: − ;¤:<ª¤=, �ℎ��	 ¹ ≥  ª{<?¦ª	¤>< − ¤¢ − ;¤:<ª¤=, �ℎ��	 ¹ <  	I

I  
 

Where, 

 ¹- = ÔæàgC@A½,æàÔæà → The percentage sample area within the control limits 

�¹- → The sample’s area at � – level &§0Á = &§0ÁØ + &§0Á� → The total area outside the fuzzy control limits &§0ÁØ → The sample’s area above the upper control limits &§0Á� → The sample’s area falling below the lower control limits 

 

Having presented the three types of fuzzy control charts using different 

transformation methods, as well and the proposed fuzzy control chart using 

DFA (based on a fuzzy comparison method), Gulbay & Kahraman (2007), 

concluded that the proposed approach is very flexible and more accurate than 

the approaches using fuzzy transformation methods, since both the linguistic 

data and control limits are not transformed into representative values, in order 

to prevent the loss of information included in the samples. 
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5.9. Erginel Approach 

 

When the measurements in a manufacturing process are presented with vague 

or uncertain observations, fuzzy control charts is an appropriate tool in order 

to evaluate those vague data. Those uncertainties may come from operators, 

gauges or environmental conditions.  

 

Erginel (2008), proposed the construction of fuzzy control limits for 

individual (8) and moving range (:') control charts with α – cuts by using α 

– level fuzzy median transformation techniques. The purpose of using α – cuts 

is to provide the flexibility of control limits and also, the purpose of using the 

fuzzy median transformation technique instead of others, is that median 

represents the middle value of a membership function, so is more suitable for 

individual samples.  

 

Erginel (2008), follows the following steps to construct the fuzzy control 

limits:  

 

1. Collect the data from a process in the form of triangular fuzzy number (8-, 8�, 8�) 
2. Develop the formulation of fuzzy individual (8) and fuzzy moving 

range (:') center line, upper and lower limits  

3. Integrate the � – cuts to fuzzy 8 and fuzzy :' control charts  

4. Evaluate the process with � – cuts base on an � – level fuzzy median 

transformation technique.  

 

The fuzzy control charts as well as the conditions of process control proposed 

by Erginel (2008), appear below: 

 

5.9.1. Fuzzy Individual Control Chart 5B�7 with α – cuts based on α – level 

fuzzy median transformation technique 
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Firstly, because of the use of fuzzy triangular numbers, the fuzzy 8 control 

chart is (8ô – control chart): 

 

  

���
�� ��
+ = �
& + 3ò��Û�
& = (8-, 8� , 8�) = 5�
&�, �
&>, �
&Ê7
�
& = �
& − 3ò��Û

I  
 

Where, �
& = (8-, 8� , 8�) → The mean of fuzzy samples :' = 5:'-, :'� , :'�7 → The mean of fuzzy moving ranges for fuzzy 

samples 

 

Then, applying � – cuts of fuzzy sets  8-- = 8- + �(8� − 8-) and  8�- = 8� − �(8� − 8�),  :'-- = :'- + �5:'� −:'-7 and :'�- = :'� − �5:'� −:'�7    

the fuzzy 8 control chart with � – cuts is: 

 

  

���
����
+- = �
&- + Ê�Û:'-

�
&- = �8--, 8� , 8�-�
�
& - = �
&- − Ê�Û:'- I  
 

Where, �
&- = �8-- , 8� , 8�-� → The mean of fuzzy samples with � – cuts  

:'- = �:'--, :'� , :'�-� → The mean of fuzzy moving ranges for fuzzy 

samples with � – cuts 

 

And finally, the fuzzy 8 control chart with α – cuts based on α – level fuzzy 

median transformation technique is: 
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���
�� ��
�¨�g�- = �
�¨�g�- + Ê�Û ,�Ê �:'-- +:'� +:'�-�.�
�¨�g�- = ��¨�g�- 5�
&7 = �Ê ¿�
(�)�- + �
(�)> + �
(�)Ê- Â
�
�¨�g�- = �
�¨�g�- − Ê�Û ,�Ê �:'-- +:'� +:'�-�.

I  
 

The conditions of process control for each sample: 

 

	����nn	������@ = É A� − ������@,�o� − �� − ������@,I �ℎ��:	
�
�¨�g�- ≤ ��¨�g�,¹- ≤ ��
�¨�g�-��ℎ���An�   

 

Where, ��¨�g�,¹- = �Ê ¿8-¹- + 8�¹ + 8�¹- Â → The α – level fuzzy median for sample Æ (8-, 8�, 8�) → Fuzzy numbers (8-, 8� , 8�) → Means of fuzzy numbers for individual data 5:'-, :'� ,:'�7 → Means of fuzzy numbers for moving range data 

 

5.9.2. Fuzzy Moving Range Control Chart 5C*& 7 with α – cuts based on α 

– level fuzzy median transformation technique 

 

Firstly, because of the use of fuzzy triangular numbers, the fuzzy :' control 

chart is (:'&  – control chart): 

 

  � ��
+ = zÚ:'�
& = :' = 5:'-, :'� ,:'�7
�
& = zÊ:' I  
 

Where, :' = 5:'-, :'� , :'�7  
 

Then, applying � – cuts of fuzzy sets, the fuzzy :' control chart with � – 

cuts is: 
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  ���
+- = zÚ:'-
�
&- = :'-


�
& - = zÊ:'- I   
 

Where, :'- = �:'--, :'� , :'�-�  

 

And finally, the fuzzy :' control chart with α – cuts based on α – level fuzzy 

median transformation technique is: 

 

  

���
�� ��
�¨�gò�- = zÚ ,�Ê �:'-- +:'� +:'�-�.�
�¨�gò�- = ��¨�gò�- 5�
&7 = �Ê ,:'-- +:'� +:'�-.
�
�¨�gò�- = zÊ ,�Ê �:'-- +:'� +:'�-�.

I  
 

The conditions of process control for each sample: 

 

	����nn	������@ = É A� − ������@,�o� − �� − ������@,I �ℎ��:	
�
�¨�gò�- ≤ ��¨�gò�,¹- ≤ ��
�¨�gò�-��ℎ���An�   

 

Where, ��¨�gò�,¹- = �Ê ,:'-¹- +:'�¹ +:'�¹- . → α – level fuzzy median for sample Æ 
5:'-, :'� ,:'�7 → Means of fuzzy numbers for moving range data 

 

Then, Erginel (2008), making a comparison between the proposed fuzzy 

control limits and the conventional control limits, and concluded that, 

although there is ambiguity in the process observations, the constructed fuzzy 

control limits provide more flexibility compared with the conventional control 

limits. 
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5.10. Senturk & Erginel Approach 

 

As we have seen above, Erginel (2008), in order to handle the uncertainty 

which appears on the observations comes from the measurement system 

including operators and gauges, and environmental conditions, proposed the 

construction of fuzzy control charts for individual and moving range data. 

Also, to deal with such situations, Senturk & Erginel (2009), proposed the 

construction of fuzzy 8ø − ' and 8ø − � control charts for variable quality 

characteristics with � – cuts by using � – level fuzzy midrange transformation 

technique.    

 

Senturk & Erginel (2009), follow the following steps for the construction of 

fuzzy control limits: 

 

1. Using triangular fuzzy numbers, transform the traditional 8ø − ' and 8ø − � control charts to the fuzzy control charts: 8øô − 'ô	 and 8øô − �� 
2. Develop 8øô − 'ô	 and 8øô − �� control charts with � – cuts 

3. Calculate 8øô − 'ô	 and 8øô − �� control charts with � – cuts by using � – 

level fuzzy midrange transformation technique      

 

The fuzzy control charts as well as the conditions of process control proposed 

by Erginel (2008), appear below:  

 

5.10.1. Fuzzy B� control chart based on the ranges * with { – cuts by using { – level fuzzy midrange transformation technique   

 

Firstly, because of the use of fuzzy triangular numbers (8-, 8� , 8�), the fuzzy 8 control chart is (8� – control chart): 

 

  � ��
+ = �
& + &>'�
& = (8-, 8� , 8�) = 5�
&�, �
&>, �
&Ê7
�
& = �
& − &>'
I  
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Where, ' = 5'-, '� , '�7 → The average of '¸′n, where '¸ are the ranges of samples   '- → The arithmetic mean of the least possible value '� → The arithmetic mean of the most possible value '� → The arithmetic mean of the largest possible value 

�
& = �8-, 8� , 8�� → The arithmetic mean of fuzzy samples &> → Control chart coefficient 

 

Then, applying � – cuts of fuzzy sets  

8-- = 8- + � �8� − 8-� and  8�- = 8� − � �8� − 8��,  

'-- = '- + �5'� − '-7 and '�- = '� − �5'� − '�7   
the fuzzy 8 control chart with � – cuts is: 

 

  

���
����
+- = �
&- + &>'-
�
&- = �8-- , 8�, 8�-�
�
& - = �
&- − &>'-

I  
 

Where, 

�
&- = �8--, 8� , 8�-� → The mean of fuzzy samples with � – cuts  

'- = �'--, '� , '�-� → The mean of fuzzy ranges for fuzzy samples with � – cuts 

 

And finally, the fuzzy 8 control chart based on ranges with α – cuts based on 

α – level fuzzy median transformation technique is: 

 

  

���
�� ��
�¡g�- = �
�¡g�- + &> ,�> �'-- + '�-�.�
�¡g�- = ��¡g�- 5�
&7 = �> ¿�
(�)�- + �
(�)Ê- Â
�
�¡g�- = �
�¡g�- − &> ,�> �'-- + '�-�.

I  
 

The conditions of process control for each sample: 
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	����nn	������@ = EA� − ������@, ���	
�
�¡g�ø- ≤ ��¡g�ø,¹- ≤ ��
�¡g�ø- 	�o� − �� − ������@, ��ℎ���An� I  
 

Where, ��¡g�ø,¹- → The α – level fuzzy midrange of sample Æ  
��¡- = �> (�- + �-) → The midpoint of the ends of the � – level cuts �-	���	�- → The end points of the &- &- → The α – level cut 

 

5.10.2. Fuzzy * control chart with { – cuts by using { – level fuzzy 

midrange transformation technique   

 

Firstly, the fuzzy ' control chart using fuzzy triangular numbers is: 

 

  � ��
+ = zÚ'�
& = ' = 5'-, '� , '�7
�
& = zÊ' I  
 

Where, zÊ, zÚ → Are control chart coefficients 

 

Then, applying � – cuts of fuzzy sets  '-- = '- + �5'� − '-7 and '�- = '� − �5'� − '�7   
 

the fuzzy ' control chart with � – cuts is: 

 

  � ��
+- = zÚ'-�
&- = '- = �'--, '� , '�-�
�
& - = zÊ'-
I 

 

And finally, the fuzzy ' control chart with α – cuts based on α – level fuzzy 

median transformation technique is: 
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  � ��
�¡g�- = zÚ��¡g�- 5�
&7�
�¡g�- = ��¡g�- 5�
&7 = �> (
�
�¡g�- = zÊ��¡g�- 5�
&7 I '-- + '�-)	  
 

The conditions of process control for each sample: 

 

	����nn	������@ = ÉA� − ������@, ���	
�
�¡g�- ≤ ��¡g�,¹- ≤ ��
�¡g�-�o� − �� − ������@, ��ℎ���An� I  
 

Where, ��¡g�,¹- → � – level fuzzy midrange of sample Æ for fuzzy 'ô control chart zÊ	���	zÚ → Control chart coefficients 

 

5.10.3. Fuzzy B� control chart based on the standard deviation � with { – 

cuts by using { – level fuzzy midrange transformation technique 

 

Firstly, because of the use of fuzzy triangular numbers (8-, 8� , 8�), the fuzzy 8 control chart is (8� – control chart): 

 

  � ��
+ = �
& + &Ê��
& = (8-, 8� , 8�) = 5�
&�, �
&>, �
&Ê7
�
& = �
& − &Ê�
I  

 

Where, � = 5�-, �� , ��7 → The average of �¸′n, where �¸ are the standard deviation of 

samples   �- → The arithmetic mean of the least possible value �� → The arithmetic mean of the most possible value �� → The arithmetic mean of the largest possible value 

�
& = �8-, 8� , 8�� → The arithmetic mean of fuzzy samples &Ê → Control chart coefficient 
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Then, applying � – cuts of fuzzy sets  

8-- = 8- + � �8� − 8-� and  8�- = 8� − � �8� − 8��,  

�-- = �- + �5�� − �-7 and ��- = �� − �5�� − ��7   
the fuzzy 8 control chart with � – cuts is: 

 

  

���
����
+- = �
&- + &Ê�-�
&- = �8--, 8�, 8�-�
�
& - = �
&- − &Ê�-

I  
 

Where, 

�
&- = �8--, 8� , 8�-� → The mean of fuzzy samples with � – cuts  

�- = �'--, '� , '�-� → The mean of fuzzy standard deviation for fuzzy samples 

with � – cuts 

 

And finally, the fuzzy 8 control chart based on the standard deviation with α 

– cuts based on α – level fuzzy median transformation technique is: 

 

  

���
�� ��
�¡g�- = �
�¡g�- + &Ê ,�> ��-- + ��-�.�
�¡g�- = ��¡g�- 5�
&7 = �> ¿�
(�)�- + �
(�)Ê- Â
�
�¡g�- = �
�¡g�- − &Ê ,�> ��-- + ��-�.

I  
 

The conditions of process control for each sample: 

 

	����nn	������@ = EA� − ������@, ���	
�
�¡g�ø- ≤ ��¡g�ø,¹- ≤ ��
�¡g�ø-�o� − �� − ������@, ��ℎ���An� I  
 

Where, ��¡g�ø,¹- → The α – level fuzzy midrange of sample Æ  
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5.10.4. Fuzzy � control chart with { – cuts by using { – level fuzzy 

midrange transformation technique 

 

Firstly, the fuzzy � control chart using fuzzy triangular numbers is: 

 

  � ��
+ = OÚ��
& = � = 5�-, �� , ��7
�
& = OÊ� I  
 

Where, OÊ, OÚ → Are control chart coefficients 

 

Then, applying � – cuts of fuzzy sets  �-- = �- + �5�� − �-7 and ��- = �� − �5�� − ��7   
the fuzzy � control chart with � – cuts is: 

 

  � ��
+- = OÚ�-�
&- = �- = ��--, �� , ��-�
�
& - = OÊ�-
I 

 

And finally, the fuzzy � control chart with α – cuts based on α – level fuzzy 

median transformation technique is: 

 

  � ��
�¡gÔ- = OÚ��¡gÔ- 5�
&7�
�¡gÔ- = ��¡gÔ- 5�
&7 = �> (
�
�¡gÔ- = OÊ��¡gÔ- 5�
&7 I �-
- + ��-)	  

 

The conditions of process control for each sample: 

 

	����nn	������@ = ÉA� − ������@, ���	
�
�¡gÔ- ≤ ��¡gÔ,¹- ≤ ��
�¡gÔ-�o� − �� − ������@, ��ℎ���An� I  
 

Where, 
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��¡gÔ,¹- → � – level fuzzy midrange of sample Æ for fuzzy �� control chart OÊ	���	OÚ → Control chart coefficients 

 

It should be noted that, when the observations are crisp data, there is a 

possibility of a sample of the process to be too close to the traditional control 

limits and may cause false alarm. But, when fuzzy observations are used, 

Senturk & Erginel (2009), concluded that fuzzy control limits seems to 

provide more flexibility and accuracy for evaluation and controlling a 

process.  

 

5.11. Kahraman et al. Approach 

 

As Erginel (2008) and Senturk & Erginel (2009), so and Kahraman et al. 

(2010), dealt with vague or uncertain observations, and proposed the 

construction not only for fuzzy variable control charts but also for fuzzy 

attribute control charts. 

 

As we have seen above in the previous approaches, in order to retain the 

standard format of control charts, Kahraman et al. (2010) also, converted the 

fuzzy data into its representative values using defuzzification methods based 

on � – cuts.  

 

They presented the construction of the following fuzzy attribute control charts 

using � – level fuzzy median transformation with � – cut. The fuzzy 	 control 

chart based on constant (or variable) sample size, the fuzzy �	 control chart 

based on constant sample size, the fuzzy � control chart and finally the fuzzy � control chart. 

 

These control charts were constructed using the same logic followed by the 

Erginel (2008) and Senturk & Erginel (2009). Also, Kahraman et al. (2010) 

concluded that using fuzzy numbers to construct control charts provides 

flexibility for control limits.   
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5.12. Faraz et al. Approach 

 

When we have to deal with crisp observations, it is easy to monitor and 

evaluate a process as “in – control” or “out – of – control”. For example, it is 

easy to obtain the value of a sample mean and therefore the value of a crisp 

statistic È = �g�·�/√u  and also, to use the hypothesis testing because we can 

clearly distinguish between ��:  = � and ��:  ≠ �.  

 

On the other hand, in real situations there is often uncertainty in the 

observations of the process, and the classical hypothesis testing may not be 

appropriate. This means that the existence of uncertainty in the observations, 

leads to the appearance of fuzzy data. Therefore, if we take the case of 

monitoring the sample mean, that sample mean is a fuzzy number (ö�).  
 

5.12.1. Fuzzy Acceptance Region 

 

To deal with the above situation, Faraz et al. (2010), proposed to define a 

fuzzy acceptance region &� = (−<-, −<- + �, <- − �, <-), and also, to obtain the 

fuzzy type I and type II errors rate. Based on Zadeh’s (1968) fuzzy 

probability, they defined the fuzzy probability of type I error and the fuzzy 

probability of type II error too.  

  

5.12.1.1. Fuzzy probability of type I error 

 �F-�¨Ç = 	F-�¨Ç5'ô7 = 1 − 	F-�¨Ç5&�7  

 

Where, 	F-�¨Ç5&�7 = « LCô(»àg»à È)�(È)�È  (−<-, <-) → The %100(1 − �) confidence interval �(È) → The density function of the standard normal distribution 
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LCô(È) = ��d»àu1,»àg�u
�ℎ��	 − <- ≤ È ≤ −<- + �		�ℎ��	 − <- + � ≤ È ≤ <- − �	�ℎ��	<- − � ≤ È ≤ <- I → The membership function of 

the fuzzy acceptance region &� � → Gives the permissible range  

 

5.12.1.2. Fuzzy probability of type II error 

  F-�¨Ç = 	F-�¨Ç5&�Þ7  
 

Where, 	F-�¨Ç5&�Þ7 = « LCôH(»àd�g»àd� È)�(È)�È  

&�Þ = &� + �  � = �·g�´�/√u   

LCôH(È) → The membership function of the fuzzy region &�Þ  

(when � = 0, then  F-�¨Ç = 1 − �F-�¨Ç)    

 

Faraz et al. (2010), introduced a fuzzy control chart for monitoring variables 

when uncertainty and randomness are combined. Also, they showed that when 

the Shewhart control charts are used, the control limits must be adjusted to 

enhance the existing fuzziness in the process mean.  

 

5.12.2. Construction of fuzzy Shewhart control charts 

 

The proposed fuzzy control charts are based on a fuzzy acceptance region  &�. 
After specifying the value of crisp statistic È, then they compared it with the 

fuzzy acceptance region &� and after that obtained the fuzzy set Iô  as follows:

 Iô = DJCô 	 , �gJ�ô K  
 

Where,  &� → Fuzzy acceptance region 'ô → Fuzzy rejection region 
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| → The grade of belonging the value È to the fuzzy acceptance region &�, 
when the process possibility being in – control  1 − | → The grade of belonging the value È to the fuzzy acceptance region &�, 
when the process possibility being out – of – control  

(when 0 < | < 1, is not easy to judge if the process is in – control of out – of 

– control)  

 

In order to retain the standard format of Shewhart control charts, to facilitate 

the plotting of sample statistic on the chart, and to facilitating the decision – 

making, it is necessary to convert the fuzzy set Iô , into its representative value 

for in – control and out – of – control cases. At this point, Faraz et al. (2010), 

introduced the usage of defuzzification methods based on heuristic ideas. 

Some of those defuzzification methods are the maximum defuzzifier operator 

(which corresponds to the maximum membership value), and the fuzzy set 

central tendency defuzzifier operator (the fuzzy median and the fuzzy 

average).     

 

The adjusted control limits for the fuzzy Shewhart charts for monitoring the 

process mean are: 

 

  ���
 = � + (Lú − �J ∙ �) " √�¾�
 = L�
�
 = � − (Lú − �J ∙ �) " √�¾ I  
 

Where,  �J → The minimum grade of acceptance and chosen based on | that 

corresponds to the defuzzification method that it used. 

  

	����nn	������@ = EA�		| < �J 	⟹ �ℎ�	�����nn	An	�o� − �� − ������@A�		| ≥ �J ⟹ �ℎ�	�����nn	An	A� − ������@ I  
 

Finally, Faraz et al. (2010), concluded that the fuzzy control limits are tighter 

and more useful than the Shewhart control limits. Furthermore, these fuzzy 
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Shewhart control charts have the advantageous of simplicity with respect to 

the other fuzzy control charts because its control limits are adjusted and direct 

analogue of classical Shewhart control charts. 

 

5.13. Conclusion 

 

As we seen above analytically, several researchers have deal on fuzzy control 

charts pertained to uncertainty in human cognitive processes. When human 

subjectivity plays an important role in defining the quality characteristics, the 

classical crisp control charts may not be applicable since they require certain 

information. 

 

Also, we have seen that many investigators, in order not to lose information 

about the process, decided not to use any defuzzification methods to convert 

the fuzzy observations into its representative values.  

  

Using the traditional Shewhart control charts, the judgment we can get are in 

the form of binary classification as “Either the process is in – control or the 

process is out – of – control”. As we have seen above, using fuzzy control 

charts, it is able to handle several intermediate decisions about the process.  

 

Furthermore, with fuzzy control charts, a more flexible and informative 

evaluation of the considered process can be made. 

 

Finally, below are presented some advantages and disadvantages of fuzzy 

control charts. The usage of fuzzy control charts provides more accurate 

control standards for the process based on expert’s experience expressed in 

degree of membership. Also, those control charts are more flexible for the 

definitions of the fuzzy inference rules. In the other hand, the inference 

outcomes are based on the subjectivity experience rules and also supplemental 

rules for systematic changes of the traditional control charts cannot be used.     

 

In future researches, we would except to develop further rules for detecting 

the variation of process in order to increase the sensitivity of the fuzzy 
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control charts to small process shifts or to other unusual patterns such that, 

users may respond more rabidly to special causes. Also, the procedures used 

to develop the fuzzy control intervals for both variables and attributes can be 

simply extended to cover the cases of non – symmetric fuzzy numbers as 

process parameters.  
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CHAPTER 6 

 

FUZZY MULTIVARIATE CONTROL CHARTS 

 

6.1. Introduction 

 

When products are classified into mutually exclusive linguistic categories, 

fuzzy control charts are used. As we have seen analytically in Chapter 4, in 

order to monitor a single process of a variable quality characteristic, different 

procedures are proposed by various inspectors, were introduced and discussed 

the construction of these charts. 

 

Specifically, in many practical and realistic cases, the binary classification of 

a product does not change abruptly from satisfactory to worthless. Thus, 

arises the need for intermediate levels to describe the product quality and the 

QCs that cannot be expressed numerically are associated with linguistic terms 

referred to as “very good”, “good”, “medium”, “poor”, etc, as introduced by 

Wang & Raz (1990).  

 

Firstly, Wang & Raz (1990) developed fuzzy control charts for linguistic data 

which are mainly based on membership and probabilistic approaches. After 

that, Kanagawa et al. (1993) proposed an assessment of intermediate quality 

levels instead of the traditional binary judgment. Also, Taleb & Limam 

(2002) discussed the construction of fuzzy control charts based on fuzzy and 

probability theory, and contrary to the conclusion of Wang & Raz (1990), 

they concluded that the choice of degree of fuzziness affected the sensitivity 

of control charts. And finally, Gulbay et al. (2004) proposed an � − level 

fuzzy control chart for attributes in order to reflect the vagueness of data and 

tightness of inspection. Furthermore, Laviolette et al. (1995) compared fuzzy 

and probability approach for construction of control charts for linguistic data, 

and suggested the superiority of the probability approach based on a simpler 

computational implementation.    
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The above occur in the case of monitoring only one quality characteristic 

(� = 1), where a univariate control chart is required to control a multinomial 

process. In the case of monitoring more than one quality characteristics, 

simultaneously, when � = 2,3,4, …, multivariate control charts is introduced.    

 

Multivariate quality control methods overcome the disadvantage appear in 

univariate control methods, where for a single process, many variables may 

be monitored and even controlled by monitoring several variables 

simultaneously. Also, in many production processes, multivariate QCs tend to 

be correlated and therefore results could be misleading and difficult to 

interpret. 

 

In the case of categorical variables, such as sex, race, age group or 

educational level, Woodall et al. (1997) reviewed the procedures for 

monitoring multinomial process when items are classified into distinct 

categories (groups). 

 

This chapter is an extension of Chapter 4, where we are going to look at the 

monitoring of several quality characteristics, simultaneously, using fuzzy 

multivariate control charts. 

 

6.2 Fuzzy Multinomial Control Charts 

 

When the data is presented in linguistic form, in the case of monitoring � = 1 

multinomial quality characteristic, a univariate fuzzy control chart is used to 

control such process.  

 

When quality control for variables is not feasible, linguistic data provides 

more information than the binary classification. Amirzadeh et al. (2008), 

proposed the construction of fuzzy multinomial control chart (?: − chart), 

following the steps below: 

 

1. Assume that 
ô = k5��, 
(��)7,… , 5�N, 
(�N)7l is a linguistic variable 
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2. Suppose that �¸ is the probability that an item is �¸ (A = 1,… ,�) 
 

3. Assume that a random sample of � − items is selected 

 

4. Let 8¸ (A = 1,…�) be the number of items that are �¸ (A = 1,… ,�)  
 

5. (8�, 8>, … , 8N) has a multinomial distribution with parameters � and ��, �>, … , �N. Each 8¸	~ binomial distribution with mean ��¸ and 

variance ��¸(1 − �¸)   
 

6. The weighted average of 
ô(@¸) is:  

 

  
ô = �∑ �ÐOÐ¶´ ∑ 8¸ŅÅ� 
ô(�¸) = �u∑ 8¸ŅÅ� 
ô(�¸)  
 

where A = 1,… ,�  

 

7. The control limits for the ?: − chart is: 

 

  

���
����
 = P �
ô� + <�Q�� �
ô�

�
 = P �
ô�
��
 = P �
ô� − <�Q�� �
ô�

I   
 

Based on a theorem [Amirzadeh et al. (2008) p. 28], they calculated the 

mean and variance of the weighted average of 
ô(�¸)	�ℎ���		A = 1,…�, 
ô: 

 P �
ô� = ∑ �¸ŅÅ� 
ô(�¸)  
Q�� �
ô� = �u ¿∑ �¸ŅÅ� (1 − �¸)
ô>(�¸) − 2∑ ∑ �¸�¹
ô(�¸)
ô5�¹7N¹Å�,¸R¹ŅÅ� Â  
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Then, Amirzadeh et al. (2008), using an illustrative example from a 

production process, they compared ?: − control chart with the traditional 	 − chart and concluded that ?: − chart leads to better results than the 	 − 

chart, if the number of categories and their degrees of membership are well 

selected. 

 

6.3. Multivariate Control Charts 

 

On the other hand, in the case of monitoring more than one multinomial 

quality characteristics, two approaches are suggested in the papers of Taleb & 

Limam (2005), Taleb et al. (2006), and Alipour & Noorossana (2010). When 

the data is presented in linguistic form, they suggested the construction of 

control charts to monitor multivariate attribute processes. The construction of 

the proposed control charts is analyzed using fuzzy set theory and probability 

theory. 

 

6.3.1. Fuzzy Multivariate Control Charts 

 

6.3.1.1. The main idea of fuzzy multivariate control charts 

 

The main idea of fuzzy multivariate control charts follow presented 

analytically: 

 

Suppose that there are � − related quality characteristics (QCs): 

 

   ��, �>, … , �6  

  ¿�ℎ���	�¹:	���	Æ = 1,2, … , �Â  
 

which are controlled jointly. Each QC, �¹, is characterized by S¹ (categories) 

linguistic terms which are described by fuzzy term set 15�¹7: 
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���
��
�� 1(��) = k���, ��>, … , ��T´l1(�>) = k�>�, �>>, … , �>TÛl⋮15�6g�7 = D�(6g�)�, �(6g�)>, … , �(6g�)T(VÒ´)K15�67 = D�6�, �6>, … , �6TVK

I  
 

Also, each term �¹Ç in term set 15�¹7 is characterized by a membership 

function L¹Ç(F), where F is the measure of quality level and F ∈ 00,14.  
 

Let ?¹Ç be the fuzzy set associated with each linguistic variable �¹Ç. Thus L¹Ç(F) is the membership function of the fuzzy set ?¹Ç. 

 

Firstly, assume that there is a sample & from � − observations expressed as: 

 

 & = D¿(?��, ���), … 5?�T´ , ��T´7Â,… , ,5?6�, �6�7, … , �?6TV , �6TV�.K  
 

Where, �¹Ç → The number of observations classified by linguistic variable �¹Ç 

 

Then, each quality characteristic �¹ is associated with only one fuzzy subset: 

    

   ?¹ = �u∑ �¹Ç?¹ÇTæÇÅ�       

 

Thus, a sample A becomes:  

 

   & = k?�, ?>, … , ?6l  
 

In addition, each fuzzy subset ?¹ is converted into its representative value '¹ 
using one of the four transformation methods introduced by Wang & Raz 

(1990), [fuzzy median, fuzzy median, fuzzy average, � − level fuzzy 

midrange], and using a triangular fuzzy number 5��¹ , �>¹, �Ê¹7. The 

representative value of ?¹ (when fuzzy median transformation is used) is: 
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  '¹ = ��
��Ê¹ −�5-Wæg-´æ75-Wæg-Ûæ7> , ���	�>¹ < -Wæd-´æ>��¹ −�5-Wæg-´æ75-Ûæg-´æ7> , ���	�>¹ > -Wæd-´æ>

I    
 

Finally, a sample A is now expressed as: 

 

  'C = 5'C�, … , 'C67X  
 

When there are < − samples each of � − observations, then: 

 

  ' = Y'�� '�> ⋯ '�6⋮ ⋱ ⋱ ⋮'»� '»> ⋯ '»6[  

 

Where, '¸¹ → The representative value of fuzzy number ?¹ in the sample A  
 

6.3.1.2. \¢] statistic 

 

Having the Hotteling’s 1> statistic: 

 

  1> = (' −)X^g�(' − )  
 

Where,  X = ¿�, …6Â → The vector of in – control means for each QC ^ → The covariance matrix of QCs 

  

And when the process is in – control, it should estimate the parameters  and ^. The estimation value of  is:  

 

   ' = 5'�, …'67  
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Where, '¹ = �»∑ '¸¹»̧Å�   '¸¹ → The representative value of the fuzzy subset associated with the AÁÇ 

sample on the ÆÁÇ QC 

 

The estimation of ^ is: 

 

  � =
_̀
a ��> ��> ⋯ ��6�>� �>> ⋯ ⋮⋮ ⋮ ⋱ ⋮�6� �6> ⋯ �6>bc

d
  

 

Where, �¹> = �»g�∑ 5'¸¹ − '¹7>»̧Å� → The variance of representative values 

�¸¹ = �»g�∑ 5'¸¹ − '¹75'¸Ç − 'Ç7»̧Å� , ���	Æ ≠ ℎ → The covariance between the ÆÁÇ 

QC and ℎÁÇ QC  

 

If  and ^ are estimated by ' and � respectively, the representative value of 

the Hotteling’s 1> statistic is: 

 

   1¬> = 5' − '7X�g�5' − '7  

 

Contrary with Hotteling’s 1> distribution, the distribution of 1¬> statistic is 

difficult to determine directly, and have to rely on asymptotic theory to 

estimate that, using the bootstrap resampling method. This method can 

estimate the distribution and the control limits of the 1¬> statistic, following 

the steps below: 

 

1. Calculate the ' and �g� from available empirical observations 

2. Draw with replacement, from the observation data, O new samples of 

the same size 
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3. Compute the statistic 1¬Ð> = 5' − '7X�g�5' − '7 for each new sample A, (A = 1,2, …O) 

4. Set the ��
 such as the false alarm rate will be equal to a predefined 

value 

 

Then, the plotted statistic 1¬> is obtained after transforming the fuzzy 

observations into their representative values, and its distribution is derived 

using Bootstrap resampling method.  

 

This approach is based on Wang & Raz (1990) approach and its goal is to 

determine a statistic which depends on a combination of all quality 

characteristics. Similar to the Hotteling’s 1> statistic, the proposed statistic: 

 

    1¬>	~ 	(�du)(�g�)�u(�g6) ?6,�g6   

 

Where,  → The mean vector corresponding to sample A of � − observations � → The covariance matrix ?6,�g6 → The ? distribution with � and  − � degrees of freedom 

 

After that, the ��
 of the fuzzy multivariate control chart, is chosen to be a 

precise percentile of ?6,�g6 distribution and the process control is obtained as: 

 

 	����nn	������@ = E1¬> > ��
	 ⟹ �����nn	�o� − �� − ������@��ℎ���An� ⟹ �����nn	A� − ������@	 I 
 

6.3.1.3. Interpretation of out – of – control signals 

 

As Taleb et al. (2006) mentioned the interpretation of out – of – control 

signals is based on response to the question: “Which one of the � − QCs is 

responsible for the signal?”. In fact, when an out – of – control signal is 
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generated by the multivariate fuzzy chart, the values �¹ are computed for Æ = 1,2, … �: 

 

   �¹ = 1¬> −	1¬Ð>    

 

Where, 1¬Ð> → The value of the statistic 1¬> for all QCs except the ÆÁÇ one 1¬> →  The value of the statistic 1¬> for all QCs  

 

Therefore, the attribute quality characteristic with the largest value of �¹ is 

the most responsible for the signal.   

 

6.3.2. Multivariate Probability Control Chart 

 

In order to construct a multivariate control chart for monitoring multinomial 

processes, they proposed the ä¸¹>  statistic: 

 

   ä¸¹> = ∑ 5uÐæegu·æe7ÛuÐæedu·æeTæÇÅ�    

 

This statistic, test the homogeneity of proportions between the base period 0 

when the process is assumed to be in – control and each period A (A =1,2, … ,) 
 

Where, �¸¹Ç → The number of units classified by quality characteristic Æ into category ℎ in the period A ��¹Ç → The number of units classified by quality characteristic Æ into category ℎ in the period 0  

 

Also  = ∑ ¹6¹Å� , where, ¹ = ∑ ä¸¹>�̧Å�  with (S¹ − 1) degree of freedom. 

Using Satterthwaite’s (1946) approximation, the degree of freedom of  is 

given by the following type: 
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   q = �Û∑ 5�æ7Û/(Tæg�)	Væ¶´   

 

6.3.2.1. f] statistic 

 

Using a combination of chi – squared statistics, where its distribution is 

derived from Satterthwaite’s (1946) approximation, they proposed a statistic =¸> for monitoring multivariate processes for multinomial attributes based on 

the probability theory, and constructed a fuzzy multivariate control chart. 

 

The proposed statistic is: 

 

   =¸> = ∑ ä¸¹>6¹Å� 	~	�>(q)  
 

Where, the UCL of fuzzy multivariate control chart is chosen to be a 

percentile of �>(q) distribution with an approximated degrees of freedom q. 

The process control is obtained as: 

 

	����nn	������@ = É=¸>	�o�	��	������@	@AA�n	 ⟹ �����nn	�o� − �� − ������@��ℎ���An� ⟹ �����nn	A� − ������@	 I  
 

6.3.2.2. Interpretation of out – of – control signals 

 

One of the most important steps of multivariate attribute control charts is the 

interpretation of out – of – control signals. When the control chart declares an 

out – of – control signal, the following steps are needed to identify which 

attribute is more responsible: 

 

1. Compute  and q using Satterthwaite’s (1946) approximation for 

the combination of all quality characteristics but the ÆÁÇ one. Then 

for a certain quality characteristic �Á,  and q values are 

respectively:  
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  Á = � ∑ ¹6¹Å� 	���	Æ ≠ �qÁ = �½Û∑ 5�æ7Û/(Tæg�)	Væ¶´ 	���	Æ ≠ �	I   
 

2. Let =¸Á> be the computed value of =¸> without considering the ÆÁÇ 

quality characteristic. Then the statistic =¸Á> = ∑ ä¸¹>6¹Å� , for Æ ≠ � has 

a �>(qÁ) distribution 

 

3. The ��
Á for each statistic =¸Á> is taken to be a percentile of the �>(qÁ) distribution with � = 1,2, … �       

 

4. Compute the value of �Á = =¸Á> − ��
Á, for � = 1,2, … � 

 

5. Plot univariate control charts for each quality characteristic 

 

6.3.3. Disadvantages of the proposed multivariate control charts 

 

Furthermore, Taleb & Limam (2005) using an illustrative example from 

frozen food, they constructed the :?I�� (Multivariate Fuzzy Quality Control 

Chart) and :&I�� (Multivariate Attribute Quality Control Chart), and finally 

they denoted the above disadvantages: 

 

1. :?I��: As mentioned above, the :?I�� is based on fuzzy theory, 

and thus is strongly related to the choice of membership function and 

the degree of fuzziness.   

 

2. :&I��: Also, the distribution of the statistic used by :&I��, cannot 

be determined directly and it is derived from Satterthwaite’s (1964) 

approximation.  
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6.4. Fuzzy CgfC) Control Chart 

 

Considering the :3=:& control chart, Alipour & Noorossana (2010) 

proposed the construction of fuzzy :3=:& control chart. 

 

Suppose that '¸	, (A = 1,2, … , �) is the representative value corresponding to 

the fuzzy number ?̧ , such that: 

    

   '¸	~	Ï6(¸,^/)  
 

Where, ¸ → The mean vector ^/ → The known fuzzy covariance matrix 

 

Without loss of generality, when the process is in – control, they assumed that ¸ = (0,0,… 0)X. 
 

Then,   

 ä¸ = r'¸ + (1 − r)ä¸g�	, A = 1,2, …  

 

Where, 

r = hr� 0 ⋯ 00 r> ⋯ 0⋮ ⋮ ⋱ ⋮0 ⋯ 0 r6i → The diagonal matrix with 0 < r¸ ≤ 1  

ä� = 0  ä¸ → The fuzzy :3=:& vector  

 

The fuzzy :3=:& control chart is a plot of a statistic: 

 

   ?̧> = ä¸X^FÐg�ä¸  
 

Where, ^FÐ → The covariance matrix of fuzzy :3=:& vectors 
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The process control conditions for the fuzzy :3=:& control chart are: 

 

 	����nn	������@ = É�����nn	�o� − �� − ������@, A�	?̧> ≥ ℎ/�����nn	A� − ������@,			��ℎ���An� I   

 

Where, ℎ/ → The predefined threshold yielding the desired in – control &'
   

 

Also, Alipour & Noorossana (2010) referred to the special case of r¸ = r, for A = 1,2, …�. 

 

Alipour & Noorossana (2010), using an example, compared the performance 

of fuzzy :3=:& control chart and existing fuzzy Hotteling’s 1> control 

chart, using the ARL criterion which computed based on bootstrap resampling 

data. They concluded that the fuzzy :3=:& chart indicates a superior 

performance over the fuzzy Hotteling’s 1> chart. 

 

6.5. Conclusion 

 

Traditional multivariate control charts are designed to monitor vectors of 

variable or attribute quality characteristics. However, there are certain 

situations where data are expressed in linguistic terms, which can be used 

more effectively, and may be a realistic choice for monitoring the quality of a 

product or process.  

 

As we have seen, the fuzzy multivariate control chart is an alternative control 

chart for handling linguistic observations, when more than one quality 

characteristic is monitored, simultaneously.  

 

Also, fuzzy multivariate control charts indicate superior performance, 

compared to the performance of a combination of univariate control charts in 

order to monitor multivariate attribute processes, when data is in the 

linguistic form. 
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Finally, some other existing multivariate control charts such as 3=:& and ����: charts can be generated and developed to monitor multivariate 

process for multinomial categorical data and may be compared to the charts 

that suggested in the papers of Taleb & Limam (2005), Taleb et al. (2006), 

and Alipour & Noorossana (2010). 
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CHAPTER 7 

 

CONCLUSION 

 

As we have seen analytically, several researchers have deal on fuzzy control 

charts pertained to uncertainty in human cognitive processes. When human 

subjectivity plays an important role in defining the quality characteristics, the 

classical crisp control charts may not be applicable since they require certain 

information. 

 

The usage of intermediate levels (linguistic terms) in order to describe the 

quality of products provides more information about the process, so the 

ability of the control chart to detect a process shift increases.   

 

In this thesis, we have seen briefly that Bradshaw (1983) introduced the fuzzy 

control chart concepts, when Wang & Raz (1990) and Raz & Wang (1990) 

introduced linguistic variables to assess the product quality and proposed the 

membership and probabilistic approaches, in order to monitor the process 

average.  

 

After that, Kanagawa et al. (1993), proposed the construction of fuzzy control 

charts to monitor the process average, as well as the process variability too. 

Gulbay et al. (2004) using � − cuts, they proposed the construction of fuzzy 

control charts for linguistic data. In addition, fuzzy multinomial control charts 

proposed by Taleb & Limam (2005). 

 

Furthermore, Taleb & Limam (2002) proposed the construction of fuzzy and 

probabilistic control charts, when Cheng (2005) proposed the construction of 

control charts using fuzzy numbers for fuzzy process control. Additionally, 

Gulbay & Kahraman (2007) constructed fuzzy control limits using the direct 

fuzzy approach in order to prevent the loss of information included by the 

fuzzy sample.  
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Also, we have seen that, the fuzzy multivariate control chart is an alternative 

control chart for handling linguistic observations, when more than one quality 

characteristics is monitored, simultaneously. Fuzzy multivariate control charts 

indicate superior performance compared to the performance of a combination 

o univariate control charts in order to monitor multivariate processes, when 

data is in the linguistic form. 

 

We have also seen in detail that and other researchers have offered in the 

construction and interpretation of fuzzy control charts, with the urge to help 

solving problems created by the presence of fuzzy observations. They 

concluded that, using fuzzy control charts can provide a more flexible and 

informative evaluation of the considered process.  

 

Representing the linguistic variables as fuzzy sets, retains the ambiguity and 

vagueness inherent in natural languages and improves the expressive ability 

of quality assurance inspectors. But, how many linguistic terms should be 

defined or how should the degree of membership of linguistic terms be 

constructed, may will be the subjects of future research.   

 

The survey in the area of fuzzy control charting methodology is still open, 

and taking into consideration the continuous development of science and 

technology, a lot of work has to done in the future. 
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