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ABSTRACT

Spyridoula I. Tsonaka

Parameter Constraints in Latent Trait Models under the Item Response
Theory approach

September 2003

This dissertation is aimed to introducing the concept of parameter
constraints in latent trait models under the Item Response Theory approach. Such
a concept has been broadly investigated under a competing approach to Item
Response Theory (IRT), the Structural Equation Modelling (SEM) approach.
However, the difficulties of fitting latent variable models with categorical
responses, such as the latent trait models, and thus of fitting latent trait models
with parameter constraints, under SEM have contributed to investigating this
topic under the IRT approach. Among the different types of parameter
constraints that have been studied in SEM approach, this dissertation considers
only equality and fixed value parameter constraints, that is, assumptions that
some of the unknown parameters of a latent trait model are equal to each other

and to a fixed value respectively.
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NEPIAHYH

2rupwovra 1. Toovaka

IMepropropoi otig Hapapérpovg Movrébmv AavBavovomv
Xapaktyprotik@v vé v lpocéyyion g Pempiog Anavinoemy og

Egyoprotad Avrikeipeva
Yentéupprog 2003

Ykomdg g mapovoag OwrTpiPrg eivar m emPoln ZTEPLOPIOUGV OTLG
mopapéTpoug Moviéhov Aavldavovcwv Xapakinpiotikdv (Latent Trait Models)
vrd TNV Tpocéyyion ¢ Bewpiag Anavifoewv oe Egxmprotd Avtikeipeva (Item
Response Theory). H évvowa avtn €xer peretndel extevdg vwd tnv mTpocéyyion
™™g Movtelomoinong Aouikdv E&icdoewv (Structural Equation Modelling).
Qo16060, o1 dvokoliec mov avtipetoniler 1 deVTEPM MPOCEYYIONR KATA TNV
npooapproynl Moviéhov AavBavovcwv Metafintodv (Latent Variable Models) oe
katnyopikd dedopéva, Omewg eivar ko1 Tt Moviéha  AavOdavovoov
XopokTnploTiK@®V, 0AAd ko1 katd v mpooappoyn MoviéAwv Aavldvovowv
XopaKTNPloTIKOV e TEPLOPLOCUOVS OTIS TAPAUETPOVS evOGppLvVE TN UEAETN TOV
wiov Bépatoc vmd v mpociyyion 1ng Hewpiag Amaviicewv oe Eexoprotd
Avtikeipeva. AmO o daQopo €id1 TOV TEPLOPICUDV OTI TAPAUETPOVS WOV
Exouv peietnBei vd TV Wpocéyyion TG Movrelomoinong Aopikdv E&ichoewv
oe avt T SwatpPn Ba acyoinBovpe pdvo pe meploploLoVg TOL AVAPEPOVTIAL GE
160TNTEC KATOWWV TOPOPETPOV PETAED TOVG N G& LOOTNTEG TOV TAPOUETPOV UE

Kamwown otabepn Tiun.
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Chapter 1

Introduction

Latent quantities appear in many areas; for example in psychology we often
talk about intelligence and verbal ability, in sociology we find ambition and
racial prejudice and in economics, economic expectation. It is virtually im-
possible to talk about social phenomena without invoking such hypothetical
variables. In this introductory chapter, we will define the latent variables
and the methods used to measure them. In particular, in this chapter we
will firstly deal with the latent variables, the latent variable models and their
applications. Secondly, we will briefly describe the two competing approaches
to fitting latent variable models. Finally, we will give the different types of

parameter constraints that are usually used.
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1.1 Latent Variabies and Latent Variable Mod-
els

Latent variable models constitute an important tool for the analysis of mul-
tivariate data and are closely related to the standard regression models. A
regression model expresses the relationship between one or more dependent
variables and one or more independent variables, whereas in latent vari-
able models the regression relationship is between manifest variables and the
unobserved-latent variables. A distinguishing feature of the latent variable
models is that of inverting the regression relationships to tell us about the
latent variables when the manifest variables are given. Since we can never

observe the latent variables, we only learn about this relationship indirectly.

1.1.1 The necessity of Latent Variables

One reason for introducing latent variables is the presence of certain con-
structs in the social and behavioral sciences that are not well defined such
as social class, public opinion, quality of life or business confidence. Such
concepts are referred to as latent variables or factors, since they are not
directly observable even in the population and for which there exists no op-
erational method for direct measurement. Although latent variables are not
observable, certain of their effects on measurable variables are observable,
and hence subject to study. A simple example of a latent variable is the
concept of racial prejudice, which is not possible to be measured directly.
However, being a racist inevitably affects one’s opinions and behavior. That

is, a racist is bound not to count members of a particular race among his/her
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friends and acquaintances, to approve or disapprove of a particular piece of
government legislation, etc. Thus, by observing such measurable variables,
which are regarded as indicators of the racial prejudice, one can ”measure”

the unobservable racial prejudice.

The second reason for considering latent variables is to explain the struc-
ture in a set of correlated observed variables. In fact, one of the major
achievements in the behavioral sciences has been the development of methods
to assess and explain the structure in a set of correlated, observed variables,
in terms of a small number of latent variables. In practice, one chooses a
variety of indicators, which can be measured, such as answers to a set of
yes/no questions, and then attempts to extract what is common to them.
A simple and familiar example that illustrates this considers the association
between the responses to questions in Section VI of the Law School Admis-
sion Tests. Here there can be a third variable, which might account for this
spurious relationship, the test takers’ special trait that this section wishes to
measure. Besides, it is well known that the responses to these questions are
all associated with that trait. Thus, the association between the responses
in the presence of the test taker’s trait is vanished and we therefore conclude
that the latter variable is responsible for such an association (Bartholomew

and Knott, 1999; Muthén, 1978).

Another reason for considering latent variables is to reduce dimensional-
ity. That is, the information conveyed in the interrelationships among the
observed variables can be sufficiently expressed in terms of a smaller set of
variables, the latent variables. Such a procedure is very useful, especially

in social surveys that generate much information, because our ability to ex-
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plore the structure in a huge data set will be in this way much improved.
Otherwise, statistical methods that summarize the data by looking at the fre-
quency distributions of responses and by providing summary measures such
as percentages and correlation coefficients should be used. However, in the
case of many response variables it may be difficult to “see” any pattern in

their interrelationships by means of such summary statistics.

1.1.2 Different Types of Latent Variable models

The benefits of introducing latent variables in a multivariate analysis can be
obtained by means of fitting latent variable models. According to the nature
of both manifest and latent variables, there are different models available
for assessing whether the observed relationships between a set of manifest
variables may be accounted for by a small number of latent variables or not.
Among these models are the factor analysis, latent profile analysis, latent
class analysis and latent trait analysis models. Factor analysis models refer
to the models that relate normal continuous manifest variables to normal
continuous latent variables, latent profile analysis models refer to the mod-
els that relate continuous manifest variables to categorical latent variables,
and latent class analysis models refer to the models that relate categorical
manifest variables to categorical latent variables.

In this dissertation, we are mainly concerned with latent trait models,
that is, models that relate binary observed variables to continuous latent
variables. The development of these models is attributed to the educational
testing where binary variables of getting some item right or wrong are sup-

posed to be indicators of some ’traits’ that the test takers possess.
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1.2 Parameter Constraints in Latent Variable

Models

In this section we will present an extremely common concept in the area of
latent variable models, that of parameter constraints. By the term parameter
constraints we mean that the parameters in the latent variable model, that
is the intercepts and the factor loadings, are constrained to be equal to or be
greater or less than a fixed value or other parameters according to some linear
or non-linear function. However, these are not the only parameters in a latent
variable model that need to be constrained, that is correlation coefficients
may need to be constrained when correlated latent variables are considered.
This concept of parameter constraints has been broadly developed under
the SEM approach and discussed in relevant literature such as Lee (1980),
McDonald (1980), Bentler and Weeks (1980), Lee and Tsui (1982), Bentler
and Lee (1983), Rindskoph (1983 and 1984), etc. However, this issue of
parameter constraints has been studied under the IRT approach only in terms
of the latent class models (Goodman, 1974 (a), 1974 (b), Wright and Stone,
1979, Clogg and Goodman, 1985, Formann, 1985, van de Pol and Langeheine,
1990, Mooijaart and Heijden, 1992) whereas constrained latent trait models

have not been studied until this dissertation.

In this section, we will firstly present the different types of constraints
that have been developed in the literature when analyzing latent variable
models. Secondly, we will give the reasons why the imposition of parameter

constraints is necessary in fitting latent variable models.
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1.2.1 Different Types of Parameter Constraints

Parameter constraints are common in latent variable models. In the literature
two types of parameter constraints are used, the linear and the non-linear
constraints. The linear constraints imply that a parameter is a linear function
of other parameters, while the non-linear constraints imply that this function
is non-linear.

As far as the linear constraints are concerned, we distinguish: a) the
fixed value constraints, that is a parameter equals to a fixed value including
zero (e.g., @ = 0), b) the equality constraints, that is a parameter equals to
another or other parameter(s) (e.g., a; = az), ¢) the negative constraints,
that is a parameter equals to the negative of another or other parameter(s)
.(e.g., &1 = —ag), d) the proportionality constraints, that is the ratio of
two parameters equals to a fixed value (e.g., a = k) and e) the additive
constraints, that is the sum of two or more parameters equals to a fixed
value (e.g., a; + a2 = k) (for £k = 0, we have the negative constraints). A
brief discussion of the zerc:, fixed-value and equality parameter constraints
can be found, apart from this dissertation, in Mooijaart and Heijden (1992),
Rindskoph (1984), etc.

As far as the non-linear constraints are concerned, we distinguish two
main classifications the inequality and equality non-linear constraints. The
inequality non-linear constraints imply that the parameter may be greater or
less than a fixed value, including zero, (e.g., o1 >0, a1 <0, ¢y > k, o3 <k,
or greater or less than another parameter, (e.g., @1 > a9, a1 < a2) (Lee,
1980, Rindskoph, 1984). The equality non-linear constraints imply that a

parameter equals to a non-linear function of another or other parameter(s),
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(e.g., a1 = ay - a3, a1 = o). Provided all these types of parameter con-
straints, one may be curious about the cases in which such constraints are

needed.

1.2.2 The necessity of parameter constraints

Parameter constraints are mainly used in the confirmatory phase of an anal-
ysis in which the researcher based on knowledge of the theory, empirical re-
search or both, he or she postulates relations between the observed measures
and the underlying factors a priori and then tests this hypothesized structure
statistically. For example, suppose a researcher develops a new instrument
designed to measure five facets of physical self-concept (e.g., Health, Sport
Competence, Physical Appearance, Coordination,_ Body Strength). Based on
prior knowledge the researcher would allow all sport competence self-concept
items to be free to load on that factor, but restricted to have zero loadings
on the remaining factors (zero linear constraints) (Byrne, 1998). The model
would then be evaluated by statistical means to determine the adequacy
of its goodness of fit to the sample data. As another illustration of prior
knowledge of the effect of latent variables we can refer to Kenny and Cohen
(1980) where a situation in over-time analysis is described in which the effect
of measures on the pre-test versus the post-test increases by a proportional
constant (proportionality constraints).

In addition, parameter constraints are considered in identification issues.
The statistical identification issue focuses on whether or not there is a unique
set of parameters consistent with the data. When the statistical identifica-

tion does not hold, it means that the model contains insufficient information
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for the purpose of attaining a determinate solution of parameter estimation.
Such a situation is usually detected by the large standard errors and high
correlations between parameter estimates. Indeed, the imposition of con-
straints on particular parameters can sometimes be beneficial in helping the
researcher to attain an over-identified model. In general, the problem of
identification cannot be easily checked. However, an option is to use differ-
ent starting values in separate analysis and if the model is identified. then

the estimates should be identical.

Besides, the parameter constraints are regularly used in a second step
of the analysis. In the first step, an unconstrained latent variable model is
fitted and the statistical significance of some parameters is studied. In the
second, the non-significant parameters are set equal to zero and thus the
number of observations to be estimated is reduced (zero linear constraints).
The goodness-of-fit of the constrained model is estimated and if it is good we
conclude that the constrained model represents an adequate fit to the data.
The same procedure is useé when the parameter estimates are close and the

equality between them is checked (equality constraints).

Finally, parameter constraints are common in multi-group analysis in
which it is perfectly fine to specify equality constraints across groups between
parameters of the same type. To test such constraints is often the main reason
to estimate a multi-group model. In particular, we are mainly interested
in within - between items and simultaneous estimation of different sets of
constraints. For example, if one looks at the effects of mother and father on
daughters and sons, one might want to force as a constraint that a parent

has proportionally more influence on a same- than an opposite-gender child.



1.3 Two Competing Approaches in Fitting
Latent Variable Models

There are two approaches in fitting latent variable models that have been
developed the Structural Equation Modelling and Item Response Theory
approach. The main difference between them is the estimation procedure
in fitting latent variable models. In SEM the estimation procedure is based
on the minimization of the distance between the observed and the estimated
covariance matrix of the model, while in IRT the estimation procedure is

based on the maximization of the likelihood function.

Another difference between these two approaches lies in the estimation of
the latent trait model. that is the model in which the observed variables are
binary and the latent variables continuous. According to the SEM approach
the observed binary variables are generated by a set of underlying latent con-
tinuous variables. The parameters of the latent trait model are estimated by
two or three-stage estimation methods. In the first stage first-order statis-
tics, such as thresholds, means and variances, are estimated by maximum
likelihood. In the second stage, second-order statistics, such as polychoric
correlations, are estimated by conditional maximum likelihood given the es-
timates of the first stage. In the third stage, the parameters of the structural
part of the model are estimated using a generalized least-squares or weighted
least squares method based on the asymptotic covariance matrix of the poly-
choric correlations. According to the IRT approach, all the model parameters
are estimated simultaneously by means of the maximum likelihood estima-

tion method and there is no need to assume that the binary variables are a
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manifestation of other underlying variables.

The above differences between the two approaches to the estimation of
latent trait models do also exist in the estimation of constrained latent trait
models, that is, models under the imposition of equality and fixed value
parameter constraints. Under the IRT approach the estimation of the con-
strained latent trait model is done straightforwardly by maximizing the log-
likelihood function with respect to the different parameters. The software
that has been developed to estimate constrained latent trait models in IRT
approach is the function 1tm. con that will be presented in Chapter 3, while in
SEM approach the LISREL 8 program (Joreskog and Sérbom. 1989, 1993b)
is used.

Provided that the topic of our interest is studied under the IRT approach,
in the proceeding of this section we will represent some of the fundamental

principles of this approach.

1.3.1 Item Response Theory - Basic Ideas

Nowadays, Item Response Theory is used commonly by the largest testing
companies in the United States and Europe for the design of tests, test assem-
bly, test scaling and calibration, construction of test item banks, investiga-
tion of test item bias, and other common procedures in the test development
process. Item Response Theory rests on two basic postulates: (a) the per-
formance of an examinee on a test item can be predicted (or explained) by a
set of factors called traits, latent traits, or abilities; and (b) the relationship
between examinees’ item performance and the set of traits underlying item

performance can be described by a monotonically increasing function called
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an item characteristic function or item characteristic curve (ICC). This func-
tion specifies that examinees with higher scores on the traits have higher
expected probabilities for answering the item correctly than examinees with
lower scores on the traits. In fact, it provides the probability of examinees
answering an item correctly for examinees at different points on the ability

scale.

Many possible item response models exist, differing in the mathematical
form of the item characteristic function and/or the number of parameters
specified in the model. All IRT models contain one or more parameters
describing the item and one or more parameters describing the examinee.
The first step in any IRT application is to estimate these parameters. Besides,
a given item response model may or may not be appropriate for a particular
set of test data: that is, the model may not adequately predict or explain

the data. Thus, it is essential to assess the fit of the model to the data.

When a given IRT model fits the test data of interest, several desirable
features are obtained. Examinee ability estimates are not test dependent,
and item indices are not group-dependent. Ability estimates obtained from
different sets of items will be the same (except from measurement errors),
and item parameter estimates obtained in different groups of examinees will
be the same (except from measurement errors). In item response theory, item
and ability parameters are said to be invariant. The property of invariance
of an item and ability parameters is obtained by incorporating information
about the items into the ability-estimation process and by incorporating in-
formation about the examinee’s abilities into the item-parameter-estimation

process.
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IRT model Assumptions

The mathematical models employed in IRT specify that an examinee’s prob-
ability of answering a given item correctly depends on the examinee’s ability
or abilities and the characteristics of the item. IRT models include a set of
assumptions about the data to which the model is applied. Although the vi-
ability of assumptions cannot be determined directly, some indirect evidence
can be collected and assessed as well.

An assumption common to the IRT models most widely used is that
the items that make up the test measure only one ability. This is called the
assumption of unidimensionality. Other assumptions made in all IRT models
is the local independence and that the item characteristic function specified
reflects the true relationship among the unobservable variables (abilities) and

observable variables (item responses).

Unidimensionality. As stated above, a common assumption of IRT mod-
els is that only one ability is measured by a set of items in a test. This as-
sumption cannot be strictly met because several cognitive, personality, and
test-taking factors always affect test performance, at least to some extent.
These factors might include level of motivation, test anxiety, ability to work
quickly, tendency to guess when in doubt about answers, and cognitive skills
in addition to the dominant one measured by the set of test items. What
is required for the unidimensionality assumption to be met adequately by a
set of data is the presence of a dominant component or factor that influences
test performance. This dominant component or factor is referred to as the

ability measured by the test; it should be noted, however, that ability is
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not necessarily inherent or unchangeable. Ability scores may be expected to

change over time because of learning, forgetting, and other factors.

In fact, there has been a lot of concern with testing for unidimensionality.
Such a testing can be done by finding the best way of detecting the effect
of additional latent variables. This has been investigated by Holland (1981),
Rosenbaum (1984), Holland and Rosenbaum (1985) and Stout (1987, 1990).
Finally, item response models in which a single dominant ability is presumed
sufficient to explain or account for examinee performance are referred to as
unidimensional models. Models in which it is assumed that more than one
ability is necessary to account for examinee test performance are referred to

as multidimensional.

Local Independence. The assumption of local independence in an IRT
model implies that the abilities specified in the model are the on}y factors
influencing examinees’ responses to test items. In other words, when the
abilities influencing test performance are held constant, examinee’s responses

to any pair of items are statistically independent.

To state the definition of local independence more formally, let y be
the complete set of abilities assumed to influence the performance of an
examinee on the test. Let z; be the response of a randomly chosen examinee
to item ¢ (i = 1,...,p). Let P(z;|y) denote the probability of the response
of a randomly chosen examinee with abilities y; P (z; = 1|y) denotes the
probability of a correct response, and P (z; = 0 | y) denotes the probability

of an incorrect response. The property of local independence can be stated
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mathematically in the following way:
p
g(xly) = [laizily) (1.1)
=1

The property of local independence (or conditional independence) means
that for a given examinee (or all examinees at a given ability value) the
probability of a response pattern on a set of items is equal to the product
of probabilities associated with the examinee’s responses to the individual
items. In other words, if the correlations among the x’s are induced by a
set of latent variables y then when all y’s are accounted for, the z’s will
be uncorrelated if all the y’s are held fixed. If this were not so the set of
y’s would not be complete and we should have to add at least one more.
Thus ¢ must be chosen so that (1.1) holds. Such an assumption cannot be
tested empirically because there is no way in which y can be held fixed and
therefore no way in which the independence can be checked. In addition, this
assymption implies that y is sufficient to explain the dependencies among the
z’s. We do not assume that (1.1) holds; a key part of our analysis is directed

to discovering the smallest g for which such a representation is adequate.

Invariance Property. The property of invariance of item and ability pa-
rameters implies that the parameters that characterize an item do not depend
on the ability distribution of the examinees and the parameter that charac-
terizes an examinee does not depend on the set of test items. Invariance
only holds when the fit of the model to the data is exact in the population.
The goal of item response theory is to provide both invariant item statis-
tics and ability estimates. These features will be obtained when there is a

reasonable fit between the chosen model and the data set. Through the es-
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timation process, items and persons are placed on the ability scale in such
a way that there is as close a relationship as possible between the expected
examinee probability parameters and the actual probabilities of performance
for examinees positioned at each ability level. Item parameter estimates and
examinee ability estimates are revised continually until maximum agreement
possible is obtained between predictions based on the ability and item pa-

rameter estimates and the actual test data.
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Chapter 2

A Theoretical Framework

2.1 Introduction

Binary responses are extremely common, especially in the social sciences.
Individuals can be recorded as agreeing or disagreeing with some position
or as getting some item in an educational test right or wrong. Such binary
variables are often supposed to be indicators of more fundamental attitudes
or abilities and it is in these circumstances that latent variable modelling is
relevant. In this chapter we shall consider the theoretical framework within
which the latent trait models lie. That is, we will consider models in which
binary responses are related to continuous latent variables that reveal some
traits of prime interest.

Latent trait models constitute a special case of the General Linear Latent
Variable Models and for this reason we will start the representation of the
theoretical framework in this chapter by introducing this general class of

latent variable models. Then, we will introduce the basic ideas related to
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latent trait models and represent the theoretical solution to the estimation
of a latent trait model. Afterwards. the equality and fixed value constraints
of the parameters will be defined in a latent trait model and the constrained
latent trait model will be estimated in terms of the unconstrained model.
That is, it will be shown how the parameter estimates of the constrained
model are related to the parameter estimates of the unconstrained latent trait
model. Then, the scoring methods and the most commonly used measures
of goodness-of-fit of the models will be described. Finally, the sampling

properties of the maximum likelihood estimators will be given.

2.2 (General Linear Latent Variable Model

As we have already noted, there are two sorts of variables to be considered in
latent variable models, the manifest and the latent variables. The manifest
variaf)les are the variables that can be directly observed and in the following
analysis they will be denoted by z. A collection of p manifest variables will
form a column vector x, that is, x = (z1, Z2, . . . ,x,,)T. Latent variables, that
is, the variables that cannot be observed directly will be denoted by y and
g such variables will form a column vector y. In practice, ¢ will be much
smaller than p.

A latent variable model consists of two parts, the prior distribution of
the latent variables and the set of conditional distributions of the manifest
variables z; given the latent variables. As far as the prior distribution of the
latent variables is concerned, it is given by the density function h (y) (and it

has been shown that its choice does not affect the results). The conditional
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distributions of manifest variables z; given the latent variables, denoted by
gi(zi|y) (i=1,2,...,p) (the subscript ¢ on g implies that the form of the
distribution can vary with i), are supposed to belong to the exponential

family of distributions of the form:

gi{z:|ly) = exp{m—ie%(—;i)ﬂ*‘ci(xi,%)}
pi(y) = E(zily)
si(ui(y)) = m (2.1)

where 6; is the canonical parameter which is some function of y, ¢; is the
scale parameter, 7; is the linear predictor 7; = ayp + Z§=1 a;;y; and s; is
the link function. The simplest assumption about the form of this function,
under the assumption of the canonical link, is to suppose that it is a linear

function, in which case we have
9‘5 = Q4+ (s 5%/ + Q2Y2 s QiqlYq (22)

This is the general linear latent variable model. The term “linear”, refers
to its linearity in the a’s. As we have already stated in the introductory
chapter, the number of the latent variables ¢ must be chosen such that the
assumption of conditional or local independence (1.1) holds.

As only x can be observed, any inference must be based on the joint

distribution whose density may be expressed as
fx) = /h(Y)g(XIy)ay (2.3)
Ry

where h (y) is the prior distribution of y, g (x | y) is the conditional distri-

bution of x given y and R, is the range space of y. Under the assumption
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(1.1), equation (2.3) takes the form
P
1) = [ a0y (2.4

for some ¢, h and {g;}. Our main interest is in what can be known about y
after x has been observed. This information is conveyed by the conditional

density

hiylx) = h(y)gxl|y)/f(x) (2.3)

In order to find hA(y | x) we need to know both h and g, but all that we
can estimate is f. It is obvious that A and g are not uniquely determined
by equation (2.3) and thus, at this level of generality, we cannot obtain a
complete specification of A (y | x). The posterior distribution (2.5) under
the assumption of local independence (1.1) takes the form

ry 1% = h)[Tate 13/ ) (26)

)
Substituting for g; (z; | y) as given by (2.2), we find

h(y) eﬂw{é1 (2:frtil®) 4 ¢, (25, 04)) }

alpi)
hiylx) = r—— (2.7)
J ) ezpiy (2B 4 ¢ (zi, 04)) }OY
v U
The marginal distributions of the z;’s for the individual m are:
+00 +0c0 P
Fom) = [ [T 0iami | 900 0 (28)
—00 e i=1

For a random sample of size n the log-likelihood by means of (2.8) is written

as:

n

L= Y logflem)= 3 log

el =1

+00

[ 2) 96 1) 81 03,29)
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Y

+o00 +oo P
= > log / / h(y) 19 (@mi | y)Oys - . Oy, (2.10)
i e —o0 =1

m=

2.3 Latent Trait Model for Binary Responses

2.3.1 General Definition

Suppose that z; is a Bernoulli random variable arising from putting a propo-
sition to people and inviting them to agree or disagree. If the answers are
coded 1 (agree) or 0 (disagree) and the associations among the z’s are in-
duced by a set of ¢ latent variables, y, the conditional distribution of z; given

the latent variables for the individual m may be written as

9| y) = mm (1= m)imm = (s

where m; = P(z; = 1|y) is the probability of agreeing to item z;, ¢ =
1,2,...,p. Comparing (2.11) with (2.2) we see that 6; = logit (m;) = log{ =5},
b(6;) = log(1+ ezp(6)), a(p;) = 1 and ¢; (z;, ;) = 0. We assumé that
9i (Tm; | y) for all the items must be of the same type, that is, of the Bernoulli
distribution. The latent variables, y;, are taken to be standard normal and
h (y) denotes the multivariate standard normal density, with correlation ma-
trix I
The general linear latent variable model (2.3) takes the form:
logit (7)) = ap+ i a;;y; 1=1,2,...,p) (2.12)
j=1

If the dependence among the z’s is wholly explained by a vector y of latent

variables they may be regarded as mutually independent random variables

21



with
Ple;=1|y}=m(y), z:=0,1,i=1....,p

where 7; (y) is called the response function and since it is a probability,
0 < mi(y) £ 1. In test theory, where y is usually a scalar, 7; (y) is known
as the item response function or the characteristic curve. In that context y
represents an ability of some kind, in which case one would expect ; (y) to
be a monotonic function.

The parameter a;p is sometimes called the 'intercept’ because of its role

in the linear plot of logit (7;) against y. An alternative parameterization uses

1

i(0) = m=—"7"p
7 {0) S e

(2.13)

This is the probability of a positive response from an individual with y =0,
that is, for someone at the median point of the latent scale. The parameter
i go’iferns the steepness of the curve; in educational testing it is known
as the discrimination parameter because the bigger «;; the easier it will be
to discriminate between a pair of individuals a given distance apart on the
latent scale. This is because the greater the difference between the value
of m; (y) for the two individuals, the more likely it is that they will give a

different response.

2.3.2 Estimation

The parameters of the latent trait model are estimated by means of the
maximum likelihood based on the joint distribution of the manifest variables.

Under the assumption of local independence the joint distribution of the
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manifest variables is given by (2.8). For a random sample of size n the
log-likelihood is written as:

+0c0

L = i_logf(xm>=ijlog/.../h<y>g<xmly>ayl...ayq

-0

= Xn:log/ /h 9i (Tmi | ¥) Oyr ... Oyq

=1

- 400

= Z_log/ /h He:vp{zm, ;= 0;(0:)}0y1... 0y, (2.14)

1

The unknown parameters are in §;. We differentiate the log-likelihood given

in (2.14) with respect to the model parameters oy, (i = 1,2,...,p), ( =0,1,...

Finding partial derivatives, we have

oL o & n 1
= og f (Xp,) =
Gae = o Lo 08 F o) = 30 s a%f (%m)
n 1 o +00 +00
:L:H (%Xm) Ooui; _[o _[o (¥) i=ng (Tmi | ¥) Oy ... Oy
n 1 +0o0 +00 )
B h(y) 53— mi | ¥)O1...0
,r.z:l (m)_o/o _[o ¥)3 Bas Eg (@mi | ¥) Oy - - Oy,
n 1 +00 +00 5 »
= AR _9 YT o{zmibi—bi(6i)}
n§1 (Xm) _[o h ._<°/° h(y) Oa;j g € : Oy: - .. 0Yg.15)

The last equation in (2.15) is due to (2.11) and the integral can be ap-
proximated by means of a quadrature method common in statistical appli-
cations, that is, the Gauss-Hermite quadrature method. This method will
be presented in Section (2.3.3). According to the Gauss-Hermite Quadra-
ture method, the latent variables are treated as discrete, with the values y;,

Yo, - - ., Yk, that is, the abscissas, having prior probabilities & (y1), A (y2),- - -,
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h (yk). Thus, we get

oL
3a,~j

i=1

k k
3 T b o ([T (21g)
) 61 to=1 O

Then we will calculate the term a_ [H el@msbi—bi(8: )}] separately and sub-
=1

stitute it in (2.16):

8 [B (o o bioe z
[H e{@mis b,(e,)}} _ [H lEmibi=bi( o)}] a_{xm —b; (6:)}

8&1;_-,'

i=1 =1
o 801 8,ui 87),-
— e{zmz i ~bi(0; )}J —_— :L-mz — bi 5 . o L
[I:II { ( Ous O Qo
N ’ 00; Ou; On;
=g (Xm I Yt) {fL‘m, - bi (e‘l)} auz a,r’i aaij (217)

Thus, by substituting (2.17) in (2.16) we get:

oL & & 2 9(xm | ye) 9 (Xm | ¥e)y: o 1| 00 Oss Oms
O - 21{:1 tqz=1h(yt) [Z—-:lxm1 [ (xm) mz—l f (xm) (z) Ou; On; Oay;
L : ) 06; 3#: 3771
2 g :‘:‘1 [rae — N:b; (6,)] 7 5B T (2.18)
where
e = h(y) 3 w0V S by lxm) (219)
m=1 f( ) m=1
N, = hiy)- zg("""j’t’ ih(ytlxm) (2.20)
m=] m=

Bé?i _ (3;11- _1_ 1 !
EE = [691} —m,#z—b(ez)

A {'%J”zs/l s ()

5771" O (i) T
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om0 d
Ba;, B—a; (ai0+zaijyj)

=1
In addition, due to model (2.2) we have that

s

1—m

0; = log
b(0;) = log(1+ exp(6;))

E() = b (6)=eap (%) -

exp (6;)

Var(z;) = ¥ (6;)= E—HTP(OT)F =

T . (1—71’,')

Vip = p-1-p)

s (m) = (log (‘1 _lfiui)> T (11_ 117)

Thus the partial derivatives are given below:

dL k 5 9 -
= Y S =N = |+ S s
Oa;; tlz=:1 :L_;l Oatij Fz:l .
k k
= Z S6¢ Z [Tit b Ngﬂ'i] . y; (221)
t1=1 tg=1

where
e [ = 0 when we are estimating the intercept of the item <

e [ = 1 when we are estimating the coefficient of the latent variable j
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According to (2.21) the vector of the partial derivatives II for the latent trait

model is:

k k |
> X e — Ny %0
t1=1 tq=1
k k ()I
Yo re—-Nem) o ek
ti=1 to=1
k k
o X re=Nom] -y,
t1=1 tg=1
II = . (2.22)
k k
Z . Z [Tpt—Nt'ﬂ-P]
t1=1 tg=1
k k
Yo X =N
t1= tg=1
k k
Yoo X [rpe— Ne-mp) - yq
. t1=1 tg=1

The above IT vector is a [p- (¢ + 1)] x 1 vector in which each element
k k
is equal to 3 ... 3 [ra— N;-m]-yh, wherel =0,1,i=1,2,...,p, j =
1

t1=1 tg=
1,2,...,q.

The quantity h(y: | Xm) is the probability that an individual with re-

sponse vector X,, is located at y;; N, = fj h(y: | Xm) is thus the expected
m=1

number of individuals at y;. By a similar argument r;; is the expected number

of those predicted to be at y, who will respond positively.

The unknown model parameters « are estimated by solving the non-linear

equations



2.3.3 (Quadrature Methods

This subsection is concerned with a dominant method of modern quadrature
in many statistical applications, Gauss - Hermite quadrature. Quadrature,
in general, refers to the numerical integration of a function that does not
have closed form antiderivative. The goal is to attain a given level of preci-
sion with the fewest possible function evaluations. The crucial factors that
control the difficulty of this problem are the dimensionality, and the smooth-
ness of the function. Any method for numerically approximating [ f (x) 0x
relies on evaluating f on a finite set of points, called the abscissas or quadra-
ture points, and then processing these evaluations somehow to produce an
approximation to the integral. Usually the processing involves some form of

weighted average.

Gauss-Hermite Quadrature. Gaussian quadrature is ideal for integra-
tion against standard probability densities such as the normal or gamma.
This method works well for good integrands, such as low-degree polynomi-
als. In addition, it has the merit of applying quadrature rules to points
located in the main mass of the integrand, an aspect of prime importance.

The basic form of a Gaussian quadrature rule is

b n
JW ) f (x) 0% = 3 wyf ()

j=1
where both the weights w; and the abscissas z; are determined to give an
accurate approximation. Besides, Gaussian quadrature also has the virtue
of handling infinite domains of integration gracefully (Korner, 1988, Powell,
1981, Press et. al., 1992) by means of the Gauss - Hermite quadrature. As
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far as the Gauss - Hermite quadrature is concerned, the weight function is
proportional to a normal density. Thus a doubly infinite integral is put into
the form of the Gauss-Hermite integral, through

+o0 +00

/ g(z)dz = / exp (-—:z:z) f(z) 0z

“o0 “o0
where f(z) = g(z) - exp(z?). However, if g(z) is concentrated about a
point far from 0, or if the spread in g (z) is quite different from that of the
weight function exp (—z2), then applying Gauss-Hermite quadrature directly
can give a very poor approximation, because the abscissas in the quadrature
rule will not be located where most of the mass of g (z) is located and thus
a transformation is necessary.

For multi-dimensional integrals, as in the univariate case, Gauss-Hermite
quadrature is most useful when the integrand is fairly concentrated about a
single m?de. It is again important to make a change of variables to center
the quadrature rule near the mode. Near the mode this can be done by first
locating the mode of the integrand, and then calculating (or approximating)
the second derivative matrix of the log of the integrand at the mode. The
transformation is then based on the mode and the inverse of the second

derivative matrix. In general, suppose the integral is of the form

/ q(8) exp [k (8)] 66 (2.23)

where @ is p-dimensional and the region of integration is essentially all of R”.
Let 8 be the mode of h, let H = —32h (9) /0686, and let B-B' = H be the
Cholesky factorization of H. If 8 is thought of as a random quantity with

log-density given by h(8), then the first order normal approximation to this
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distribution is the NV (9, H ‘1) distribution. To use a Gauss-Hermite prod-
uct rule, a function proportional to a N (0,271I) density would be preferred,
since the Gauss-Hermite weight function is proportional to this density. Set-
ting o = 2°1/2B (9 - é) will transform € to a variable that does have an
approximate N (0,27'1) distribution. With this transformation (2.23) be-

comes
2p/2 |B|_1/exp (—a'a) f(a)oa (2.24)
where
fla)=gq- (21/23"104 + 9) - exp (h (21/2B'la + 9) + a'a)
The advantage is that to first order, ezxp (h (21/ Bla+ 9) + a'a) should
be constant. (2.24) can be approximated using the n-point Gauss-Hermite
product rule with abscissas z1,...,z, and weights wy, ..., w, giving

n n
2P/2|B|—1 Z Z wil...w,'pf(xﬂ,...,xip)

i1=1 ip=1

2.4 Equality and Fixed value Comnstraints in

Latent Trait Models

In Section 1.2 we introduced the concept of parameter constraints in terms
of the different types of constraints that have been developed in literature
and the representation of situations in which such constraints are necessary.
In this section we will present the way in which the latent trait model is
modified and estimated under the imposition of parameter constraints. The

parameter constraints that are considered in this dissertation are only the
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equality and fixed value constraints. At first we will introduce the equality
and the fixed value constraints in the latent trait models and then represent

the estimation procedure.

2.4.1 Specification of the equality and fixed value con-

straints
This subsection deals with the specification of the equality constraints in the
latent trait model. In the latent trait model (2.12) we may be interested in
setting the factor loadings within an item or between items to be equal or to

equal to a fixed value. Let us suppose the following form of the latent trait

model under study.

] 9
logit (m) = a0 + '21 a,Yj
Jj=
j = 15 AR q

) q
logit (m,) = ao + '21 Qp;Y;
Jj=

In the above model we may be interested in checking whether the model
that adopts one or more sets of equality or fixed value constraints fits ade-
quately the data. That is, we may be interested in testing simultaneously

assumptions of the form:
as1 = as2 (equality constraints within item 5)

or/and
011 = a2 = a1 (equality constraints between items 1,7, 6)
or/and
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a1z = o3 = o (equality constraints within item 1 and between items 1, 6)
or/and
a3 = ay2 = 0 (fixed value constraints)

This implies that the number of the unknown parameters is restricted
under the various constraints. The unknown parameters in a latent trait
model, where no constraints are imposed, include the p intercepts and the
p x g loadings (the coefficients of the latent variables), that is, there are
P X ¢ + p unknown parameters. If we impose ¢ sets of equality constraints
only that each of these sets contains = parameters, then the number of the
different parameters in the latent trait model that need to be estimated is
(pxq+p)— fc‘_,l (z; — 1). If we impose c sets of equality constraints that each
of these sets éc_mtains z parameters, and d sets of fixed value constraints that

each of these sets contains y parameters, then the number of the different

parameters in the latent trait model that need to be estimated is (p x ¢ + p)—

i (z: = 1) = ii: Yi-
i=1 i=1

2.4.2 Estimation Procedure

The estimation procedure that will be presented below is aimed to estimate
the different unknown parameters a;;, by means of the maximum likelihood
method. In cases where fixed value parameter constraints are imposed, the
estimation procedure accounts for such constraints by means of the opti-
mization algorithms that are presented in Chapter 3. The definitions of the
conditional distribution of the manifest variables given the latent variables,

the joint distribution of the manifest variables, the posterior distribution of
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the latent variables given the manifest variables and the log-likelihood func-
tion under the imposition of constraints are the same with those given for
the latent trait model where no parameter constraints have been imposed.
The differences lie in the specification of the partial derivatives that are nec-
essary for the estimation procedure. As we have proved earlier the partial
derivatives when there are not any constraints in the factor loadings are given

below:

When constraints are imposed in the parameters in the latent trait model,
we have to make some additional remarks in (2.21) of the partial derivatives.

Thus (2.17) under the parameter constraints takes the form:

] {H (@8 =bi(6: ))] _ [H RERACE ))J 0 {f} (2585 — bs (05))
3az] _.{ i=1 Qij s=1
dei b 693 a,us ans
= Q(anf}’t)ga_gs(xses_b’(s ou 3_173301171'
dei 80 0 .
= g(Xm|ye)d ("Cs b s )) u :2 2
s=1

The index s indicates the items in which the parameter to be estimated, o,
is located. The index s takes the discrete values d that correspond to the
items ¢ = 1,2,...,p to which the parameter o;; can be traced. For instance,
for the set of parameter constraints a;; = asy = ag;, the parameter oy, that
is the loading of the first factor in the first item is set equal to the loading of
the second factor in the fifth item and the loading of the first factor in the
sixth item. Thus, the index d in the partial derivative (2.25) with respect

to the parameter a;; takes the values 1,5,6, that is, the partial derivative
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with respect to ay; consists of three sums. The same happens in the partial
derivatives with respect to the parameters asy and as;.

Thus, by substituting (2.25) in (2.18) we get:

ai — Xk: i h }’t)i [i xsm xmlyt) Z g(xm|yt)b;(93) %% Qni

dai ti=1  tg=1 s=1 f(xm) = [ (xm) Ops Ons O
k k de 895 aus ans
= Ts (2.26
t12=:1 tq2=:1 s=1 [ o )] Ops Ons O )
where
= gy
T =h yi) Tsm—F—— — = Tt (y xm)
‘ ( t) m2=:1 f(xm) mz=:1 i l
AVt=h(Yt Z xsmg(xm Iglt Z h(Yt |xm
m=1 m=]
89 6[.143 . il Y
ETR [ae,] TV T b (6,)
Ops [6773} 1
= = — 7N = S(Us
ool e B R |
on, 0 &
da;; 5&_1-; (aso +j§a31y1)

Thus the partial derivatives of the latent trait model under the constraints

are given below:
P q
[rst — N;b, (05)] AS v (2.27)
=0

where yo = 1. The above form of the partial derivatives implies that:

o If we have imposed constraints within the item ¢ then the partial deriva-

k k , g
tive takes the form 3‘-9(;% S ...tzl [m — Nub; (9i)] . ('Zoyj)
9= J=

¥ t1=1
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o If we have imposed constraints within item ¢ and between the items,
k  dei
then the partial derivative takes the form 2% 6 DYDY [rst N;b, (8, )]

t1—1 tq—l s=1
>
Yj
=0

Thus, the vector of the partial derivatives for the “constrained” latent trait
model Ile can be expressed in terms of the vector of the partial derivatives of
the “unconstrained” model II, given by (2.22). This can be done by means
of another indicator matrix A. The matrix A is called indicator because
it indicates the location of the equality parameter constraints in the latent
trait model. In fact, the matrix A isa [p- (¢ + 1)] X [p- (¢ + 1)] matrix with
elements 0 and 1. The 1s are used to indicate the parameters o;; and which
of them appear to be equal to which parameters of the p items and ¢ latent
variables. In order to make clear how this matrix is constructed we will
introduce a simple and “meaningless” example in which we assume that the
correlatioms between three items z;, 7o, 3 with z; = 0,1 can be accounted
for by two independent metrical latent variables. Thus, the latent trait model

is of the form:
logit (m1) = a0+ auy + 2y
logit (ms) = o + Qo1y1 + gl (2.28)
logit (m3) = a3+ any + as2ye

Let us assume that in the above model we are interested in checking whether
the model that adopts two sets of equality constraints fits adequately the
data. That is, we are interested in testing simultaneously the following as-

sumptions:
Q) = Q2 =0an (2.29)
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Q2 = Q32

Firstly, we will represent the matrix A in which the Os and 1s denote the

positions of the parameters’ constraints. Thus, the matrix A of the above

model is:
Q0 Q11 012 (o Q21 Qg (gp Q3p Q32
apg 1 0 O O 0 0 0 0 0
app 0 1 1 0 1 0 0
i 0 1 1 6 1 0 0 0 0
A= ap O O O O 0 1 0 0 O
agy 0 1 1 0 1 0 0 0 0
a2 0 O O O O 1 0 0 1
ap O O O O O O 1 0 0
a3y 0 0O O O O 0 0 1 0
a2z 0 0 0 0 0 1 0 0 1 |

The matrix A is a 9 x 9 matrix, that is, it contains as many elements as are
the parameters in the latent trait model under study. In front of the first
column and the first row of the matrix we have written the parameters to
be estimated. The logic by which we complete this matrix is the following.
The first row corresponds to the parameter ajy. Each 1 element of this
row will indicate to which parameters o equals and each 0 element of this
row will indicate to which parameters a;3 does not equal. Thus, provided
that the parameter a9 does not equal to any of the other parameters of the
model we complete only the first element of the first row by 1, indicating
that the parameter a;g equals to itself. The second row corresponds to the

parameter ;. According to the constraints (2.30), the parameter a;; equals

35



to the parameters a2 and ag;. Thus, we will complete the second, the third
and the fifth element of the second row (these elements correspond to the
parameters a;;, @iz and as;) by 1. The same procedure is followed for all
the other parameters. Indeed, the elements of the main diagonal will always

be 1.

If we consider model (2.28) without the imposition of constraints the

vector of the partial derivatives (2.22) takes the form:

k k
X o2 [Tlt—Nt'ﬂ'l]
t1=1 tg=1
k k
PRINDY [Tlt‘Nt'Wl]'yl
t1=1 tg=1
k k
> -Z[Tlt—Nt"frl]'w
t1=1 tg=1
k k
PO [th—Nt'M]
ty=1 tg=1
k k
Y O=| ¥ ... % [rae=Ny-mo] -
t1=1 tg=1
k k
Y ... X [roe— Ne-ma]-y2
t1=1 te=1
k k
Z...Z['I’3t—Nt'7T3]
t1=1 tg=1
k k
D GoEDY, [Tst—Nt'Ws]'%
t1=1 tg=1
k k
YooY [rae— Ny-m3] -y
. t1=1 tq= .

However, under the imposition of equality parameter constraints the vector

of the partial derivatives IT¢ for model (2.28) is of the form:

oL T
e — aL gL aL 3L FL 9L aL oL 3L —
lc aaij [ 10 11 a1z Bazo 21 daz Baze Doz das
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We observe that, the vector of the partial derivatives can be written by means

k k
S [Tlt - N, '7T1]
ti=1  te=1
k k k k
XX [Tlt—Nt‘Wll'(yl-H/z)‘*‘ XX [7"2t—Nt'71'2]'y1
t1=1 tg=1 t1=1 tg=1
k k k k
Yoo ru=Nm) ity + L [rae— Neema] o
t1= tg=1 t1=1 tg=1
k k
Y [th —Nt'sz]
t1=1 tg=1
k k k k
= X ... X ru—-Nem]-(pi+ye)+ X .2 [reae—N-ma] -
t1=1 te=1 t1=1 tg=1
k k k k
o X [th—Nt'W2]'y2+ 2 o2 [7'3t—Nt'7T3.]'y2
t1=1  tg=1 ti=1  tg=1
k k
Z---Z[7'3t_Nt'7r3]
t1=1 tg=1
k k
...Z[Tgt—Nt'Trg]'yl
ti=1  tg=1
k k _ k k
2o [rot — Ny o] -2+ > ... X [rae— Ne-m3) - 2
t1=1 tq=1 t1=1 tg=1 ]

of the product of two previously defined matrices: A, II. That is,

The unknown model parameters a are estimated by solving the non-

oL

linear equations Do

the Fisher Scoring algorithm. Thus we will present the Fisher Information

matrix for the unknown parameters, that is, the expected value of the minus

IIe=11- A.

= 0. Since there is not closed form solution, we can use

second derivative of the likelihood function at the ML point.

We have already proved

that the partial derivatives of the latent trait

model under constraints are given below:

8L X

b =

t1=1 t

EEpnnel (£s)
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Each element of the Fisher Information matrix is given as follows:

B(-

where

0
Nt-a
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g
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)

) |

ons
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1= q s=1 =|
k k 9 dei ) q
((E et (2]
=1  tg=1 9Qvw g=1 =
k k dei a , q
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k k dei aus ( q 8773
S N, - yi |- 2.30
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) (wéo yw), if 7, = f (as)

otherwise

If we again consider model (2.28) without the imposition of constraints the

matrix of the expected minus second order derivatives I(z) for each item i is:

1(1) =

12) =

Y w

ti...tq

> wizg
t1...lq

> wizot

_t1..dg

r wp

t1...8q

> wazig
t1...tq

> wazat

| t1...lg

Y wize
t1...tq

Y. w121t
t1...tg

Z w122t21t
t1...tg
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where w; = ;- (m;— 1) and i = 1,2, 3.

However, by considering model (2.28) under the imposition of the con-

straints (2.30) its Fisher Information I¢ matrix is:

I

F F F
Icl ICz IC3
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The above Fishei Information matrix is a 9% 9 matrix in which some elements
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rows that are equal, the Fisher Information matrix turns into a 6 x 6 matrix
according to the number of the different parameters, that is 6. By carefully
observing the Fisher Information matrix of the constrained model, we con-
clude that each of its elements can be expressed in terms of the elements of

the minus Fisher Information matrix for each item i of the unconstrained

model:

Thus the above matrix can be written as:

I = | I 1, 15 I
where
I(1)1 I(1)12 + I(1)13
I(1)91 +1(1)31 2-I(1)g2 + I(1)3s +2-I(1)32
I(1)21 + I(1)a1 2-I(1)22 +I(1)33 +2-I(1)32
0 1(2)12
IE, = | I(Wa+11s 2-I(1)as +I(1)ss +2-I(1)s2
0 1(2)a2
0 0
0 0
0 1(2)32 ]
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0 0 0

0 o0 1(2)2

0 0 1(2)23

o 0 I(2)13

.= | 0 0 1(2)2s

1(3)a1 I(3)32 I(3)ss +I(2)33
I3 I3z I(3)13
I(3)21 I(3)22 I(3)23
I(3)s1 I(3)s2 I(2)33 +1(3)3s |

where I(1)1; is the element of the first row and first column of the matrix of

the expected minus second order partial derivatives for the first item.

The Fisher Information matrix of the latent trait model in which we have

imposed constraints I is:
I£ = AT.-Br-A (2.32)
where
e A is the constraints matrix
e AT is the transpose of the matrix A.

e Br is a block diagonal matrix with blocks the matrices of the expected
minus second order derivatives of the unconstrained model for each

item (2.31)
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2.5 Factor Scores

As we have already stated in the introductory chapter one of the purposes
of fitting latent variable models is the assigning of the individuals on the
latent dimensions according to their response pattern. In the literature sev-
eral scoring methods for several latent variable models have been proposed
(Bartholomew 1980. 1981, 1984 and Knott and Albanese, 1993) while in this
dissertation we will use the scoring method presented in Moustaki and Knott
(2000). Thus the assigning of the individuals on the latent dimensions can be
obtained by means of the posterior distribution of the latent variables given
the observed responses given by (2.4) for the general linear latent variable
model. According to Moustaki and Knott (2000) this posterior distribution

can also be written as follows:
q
exp _21 C; () zj9 (0 | 2) h (2)
J.—_-

v h(z|z) = = (2.33)
£ i M G5 )

where C; (z) = iép:l oy x; are the Component Scores of the jth factor and M,
is the moment generating function of the conditional distribution of the latent
variable z given a zero response on all items. This posterior distribution
conveys all the information about the latent variables which underlies the
response variables x.

From (2.33) it is evident that the posterior distribution of y depends on
x only through the g dimensional vector C' = (Ch, Cy, ..., C,). As a result,
instead of calculating the posterior distribution A (y | x) in order to locate
the individuals on the latent dimensions we can do this by calculating the

component scores C; (z) for each factor and response pattern. An important
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feature of this scoring method is that it does not depend on the distribution

of the latent variables.

2.6 Sampling Properties of the Maximum Like-
lihood Estimators

An attractive feature of the Maximum Likelihood Estimation Method is the
asymptotic behavior of the maximum likelihood estimators &. Thus, as
n — oo, the distribution of & tends to a multivariate normal distribution
with mean vector & and variance-covariance matrix I(a)™".

These sampling properties of the maximum likelihood estimators can be
very useful in providing measures of precision of the estimates, that is the
standard errors of the estimates. For the maximum likelihood estimator &,

the standard error is given by

se.(@) = [[(&7]) '

i
Thus, in order to compute the standard errors of the estimated parameters
it is necessary to compute the Fisher Information matrix. However, this is
impracticable when there are many items and thus more tractable alterna-
tives are needed. In Bartholomew and Knott (1999) an approximation to the
Fisher Information matrix is given:

1 Of (%) OF (Xm)
H&) = {2 7760, oo

In this dissertation, an approximation to the Fisher Information matrix is

obtained after the algorithm has converged. Thus, we use the forward dif-

ference approximation to the second order partial derivatives in order to
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estimate the Fisher Information matrix and then obtain the standard errors

of the estimated parameters.

2.7 Goodness-of-fit

The goodness-of-fit of the latent variable models in general can be checked in
many different ways (Bartholomew and Knott, 1999) and in this section we
will present the tests that will be used in this dissertation in order to assess
the goodness-of-fit of the fitted latent trait models.

Among the different goodness-of-fit measures the adequacy of the esti-
mated models will be checked by means of the Pearson chi-squared test and
the log-likelihood ratio test based on all the possible response patterns. In
addition, in order to check the adequacy of the fitted models and obtain com-
parisons between them we will consider the model selection criteria such as
the Akaike Information Criterion (AIC) and the Bayesian Information Crite-
rion (BIC). Besides, the comparisons between the fitted models will be based
on the log-likelihood ratio test.

As far as the Pearson chi-squared X? and the log-likelihood ratio test G?

are concerned, their statistics are given below:

ZI(O () (1-*)7(7‘))

G = 220( )mog";

where 7 represents a response pattern and O (r) and E (r) represent the ob-

served and expected frequencies of the response pattern r. Under the assump-

tion that the model holds, both statistics are distributed approximately as
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x? with degrees of freedom equal to the number of different response patterns
minus the number of independent parameters minus one. Thus, in the case
of an unconstrained latent trait model, the corresponding degrees of freedom
are 2P — p(g+ 1) — 1, whereas in the case of constrained latent trait models
these degrees are reduced according to the number of the different parame-
ters that are left. However, such an approximation of the above statistics is
valid only if the sample size n is much bigger than the total number of the
distinct response patterns, that is, 27, since the observed and the expected
frequencies will thus be reasonably large. As a result, we should expect that
the approximation of the Pearson chi-squared and the log-likelihood ratio
test statistic by the x? distribution is valid only when the expected frequen-
cies are greater than 5. In other cases where the expected frequencies are
less than 5 the grouping of the response patterns with expected frequencies
less than 5 can be a solution.
When we are interested in comparing two different fitted latent trait mod- |

els the model selection criteria AIC and BIC whose mathematical formulas

are given below will be used:

AIC = -2{log L (8)} + 2m

BIC = —2{log L (9)} +log (N) x m

where log L (9) is the value of the log-likelihood at the ML estimate 8, m
is the number of the model parameters and N (number of individuals) the
sample size. In fact, the model with the smallest values for these criteria is

regarded as being the “best”.
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Apart from these two measures, it is possible to consider the likelihood
ratio test which is approximated by the x> distribution with degrees of free-
dom equal to the difference between the number of parameters of the models
under comparison. However, this test should not be trusted in cases where
the number of the possible response patterns is not much smaller than the
sample size since the approximation by the x? distribution would not then be
valid. These three measures for comparing different models is useful for the
determination of the number of factors required and the checking of equality

or fixed parameter assumptions.
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Chapter 3

Estimation
Procedure-Optimization

Algorithms

3.1 Introduction

The unknown parameters in the latent trait models can be estimated in
terms of various estimation procedures common in applied statistics. Un-
der the SEM approach we find estimation procedures based on weighted
least squares (that are applicable in the presence of several latent variables)
such as Christofferson’s Method (1975) and Muthén’s Method (1978). These
methods are based on the assumption that most of the relevant informa-
tion in the sample data is contained in the first- and second-order margins.
However, under the IRT approach the estimation procedure that is usually

adopted is the Maximum Likelihood Estimation Method. In particular, in
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this dissertation we are considering maximum likelihood estimation by means
of iterative procedures based on Quasi Newton methods and the Estimation-
Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977). Bock
and Aitkin (1981) were the first to use the EM method in the area of la-
tent variable models and they suggested that the integral in the likelihood
could be evaluated by the Gauss Hermite quadrature method. However, the
impairments that are usually traced in the EM algorithm lead us adopt tech-
niques that overcome them, such as the Quasi Newton methods. However,
some desirable properties of the EM algorithm encourage us to adopt it in
the iterative procedure.

This chapter is organized as follows. Firstly, we introduce the EM al-
gorithm. Secondly, we present the methods of speeding up the convergence
rate of the EM algorithm, such as the EM Gradient algorithm and the Quasi
- Newton methg)ds. Finally, we present the function 1tm.con that has been
developed in the S - language in order to fit latent trait models under the

imposition of parameter constraints.

3.2 The Expectation-Maximization Algorithm

3.2.1 Introduction

There are two reasons for considering the EM algorithm in order to carry
out maximum likelihood estimation. Firstly, the EM algorithm is generally
useful to maximize certain complicated likelihood functions. Secondly, the
EM algorithm takes into account the notion of missing data, which is common

in latent variable models. That is, the latent variables are not in practice
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observable and should be regarded as missing quantities in a theoretical sense.

The EM algorithm consists of two steps. The E or Expectation step in
which the missing data are filled in and the M or Maximization step in which
the parameters are estimated after the missing data have been reconstructed.
One of the advantages of the EM algorithm is its numerical stability. The
EM algorithm leads to a steady increase in the likelihood of the observed
data. Thus, the EM algorithm avoids wildly overshooting or undershooting
the maximum of the likelihood along its current direction of search. Besides
this desirable feature, the EM handles parameter constraints (parameters are
constrained to lie in a pre specified range or to equal a fixed value) gracefully.
Constraint satisfaction is by definition built into the solution of the M step.
In contrast, competing methods of maximization must incorporate special

techniques to cope with such parameter constraints.

A negative feature of the EM algorithm is its often excruciatingly slow
convergence rate in a neighborhood of the optimal point. This rate directly
reflects the amount of missing data in a problem. Under fairly mild assump-
tions, the EM algorithm is guaranteed to converge to a stationary point of
the likelihood function. In some very contrived examples, it converges to
a saddle point, but this rarely happens in practice. Convergence to a lo-
cal maximum is more likely to occur. The global maximum can usually be
reached by starting the parameters at good but suboptimal estimates such
as method-of-moment estimates or by choosing multiple random starting
points. In general, almost all maximum likelihood algorithms have trouble

distinguishing global from local maximum points.
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3.2.2 General Definition of the EM Algorithm

The EM algorithm distinguishes between the observed, incomplete data Y
and the unobserved, complete data X of a statistical experiment. Some
function ¢(X) = Y collapses X onto Y. For instance, if we represent X
as (Y,Z), with Z as the missing data, then ¢ is simply projection onto the
Y-component of X. It should be stressed that the missing data can consist
of more than just observations missing in the ordinary sense. In fact, the
definition of X is left up to the intuition and cleverness of the statistician.
The general idea is to choose X so that maximum likelihood becomes trivial

for the complete data.

The complete data are assumed to have a probability density f (X | 8)
that is a function of a parameter vector 8 as well as of X. In the E step of
the EM algorithrin, we calculate the conditional expectation, which is called

the objective function
Q(016,) = E[lnf(X]0)|Y,6,]

Here 8,, is the current estimated value of @. In the M step, we maximize
Q (0] 8,,) with respect to 8. This yields the new parameter estimate 0,

which satisfies for all 8

Q@ (0n+1 | en) = Q (0 I on)

and we repeat this two-step process until convergence occurs. Note that &

and 6,,, play fundamentally different roles in @ (6 | 8,,).
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3.2.3 EM Gradient Algorithm

As we have already remarked one of the main reasons for using the EM
algorithm as a means to obtain maximum likelihood estimates is its appro-
priateness in maximizing complicated functions. However, there are cases
where the M step of the EM algorithm cannot always be solved exactly. In
such cases one can approximately maximize the E-step function @ (8 | 6,,)
by one step of Newton’s method. The EM gradient algorithm (Lange, 1995)

iterates according to
0n+1 = on - sz (en | On)_l \7 Q (on | en)T = On - V2Q (Gn I en)_—1 V L (en)T

where Y@ (0 | 6,,) and 72Q (0 | 9,,) indicate the first and second differentials
of @ (8] 0,) with respect to its left variable 8. The substitution of the score
7L (8,)T for vQ(8,]8,) is valid because L(8) — Q (8 |0,) attains its
minimum at @ = 6,. The EM gradient algorithm and the EM algorithm
enjoy the same rate of convergence approaching the maximum likelihood
point 8. Furthermore, in the vicinity of 8, the EM gradient algorithm also
satisfies the ascent condition L (8,4,) < L(8,) (Lange, 1995).

In practice, an alternative to the iterative step of the EM gradient algo-
rithm replaces 72Q (8, | 8,) ", that is the inverse of the Hessian matrix H,
with £ (H) = —I, where I is the Fisher Information matrix, the expected
value of the minus second derivatives. Therefore, the EM gradient algorithm

iterates according to
Onsr =0, + 17" 7 L(6)"

similarly with the Fisher Scoring algorithm.
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3.2.4 The EM Gradient Algorithm in Latent Trait Mod-

els

The maximization of the log-likelihood (or the minimization of the minus
log-likelihood), in the latent trait models, is done by the EM algorithm. The
steps of the algorithm in the case where equality and fixed value constraints

are imposed on the parameters are defined as follows:

Step 1 Choose initial estimates for the model parameters a;;.

Step 2 E - Step. Compute the values of 7 and N; from (2.19) and (2.20).

Step 3 Obtain improved estimates of the parameters o;; by solving the non-
P
linear maximum likelihood equations (2.21) for { = 0,1 and ¢ = 1,2,...,p

using Fisher Scoring, treating r;; and [V, as given numbers.

Step 4 Return to Step 2 and continue until convergence is attained.

In the case where fixed value parameter constraints are imposed we need
to intervene in the EM algorithm. In Step 3 improved estimates of all the
parameters are obtained. Some of these estimated parameters are assumed
to take a pre-defined fixed value. Thus, these parameters after Step 3 are set
equal to their pre-defined value. This procedure is followed in each iteration

until convergence.
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3.3 Quasi-Newton Methods

3.3.1 Introduction

As we have already remarked one of the main drawbacks of the EM algorithm
is its excruciatingly slow convergence. In contrast, Newton’s method enjoys
exceptionally quick convergence in a neighborhood of the maximum point.
This suggests amending the EM algorithm so that it resembles Newton’s
method. Because the EM algorithm typically performs well far from the
maximum likelihood point, hybrid algorithms that begin as pure EM and

gradually make the transition to Newton’s method are apt to perform best.

In adopting the Gradient EM algorithm in order to improve the conver-
gence rate of the pure EM algorithm requires the computation of the Hessian
matrix at each iteration and finding a solution for 2@ (6,]0,)™" 7 L (8,,)
at each iteration. Such a procedure sounds very time consuming and thus it
is necessary to avoid computing the Hessian matrix and use other matrices
instead of the inverse Hessian. Such methods that try to mimic Newton’s
method without directly calculating the Hessian matrix are called Quasi-
Newton methods. In the literature there are many suggestions concerning
the acceleration of the convergence of the EM algorithm. Among these we
find Jamshidian and Jennrich (1997), who propose two accelerated versions
of the EM algorithm based on Quasi-Newton methods for solving equations

and minimizing functions and Lange (1995).
In this section, we will represent the BFGS minimization algorithm.

59

-



3.2.2 BFGS Algorithm
General Definition. The general BFGS algorithm is described as follows:

e given the current point § and an approximate Hessian Ag, compute

the new search direction —Ay* 7 £ (6o)
s find a better point #; in this direction, and

e update Ay to a new approximation A;, repeating until convergence.

The algebraic form of the BFGS update of Ay is:

1
s’ Aps

where y = Vf(0:) — Vf(8g) and s = 6; — 8y. The difference A; — Ay

1 /
A =Ap+ Eyy - Agss Ag (3.1)

is the sum of two rank 1 matrices, and is thus generally a rank 2 matrix.
From (3.1) we have that A, is positive definite if A, is positive definite and
A

s'y > 0. Another property of the A; BFGS update of Ay is that it satisfies

Vf(01) — v f(6) = Ay (0: — 6y) (3.2)

Assuming a first order Taylor expansion of the first order derivative 7 f (6)
around the current point 8, implies that the Hessian 72f (@) also satisfies
(3.2).
An algebraically equivalent update to (3.1) is given by
1

/ 1
AT = AN+ S-ss —
ys v ATy AG + (V Ag'y) uu

(3.3)

1 1 -1
where u = — — ——1—A; .
Vs ya Ty Y

Since Newton Raphson is known for its good convergence properties once

it gets close to the solution, it would be desirable for the BFGS updates A;
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to approximate 72f (8;) as the algorithm converges. This is the case if the

true function is a positive definite quadratic.

However, accuracy of the A; matrix at convergence is not guaranteed and
thus this approximate Hessian should not be used to obtain the standard
errors of the parameter estimates. Indeed, the Hessian should be calculated

after the BEGS has converged.

In addition, caution is needed in the selection of the initial positive definite
matrix and the choice of the new point @;. In fact, in the BFGS algorithm
the choice of the initial hessian matrix is of paramount importance since it
must be scaled appropriately. If it differs by several orders of magnitude
from the correct hessian, it will tend to create difficulties in the search for a
better point at each iteration, since the initial step based on this matrix will
be scaled inappropriately. Also, it may take many iterations of the BFGS
updates to correct the poor initial scaling. Thus as an initial matrix, a
diagonal matrix is usually chosen with elements the maz(|—L (6)|, 1) in the
main diagonal, while for the choice of the new point 8,,; the backtracking

methodology, that will be presented in the next section, is used.

In the case where fixed value parameter constraints are imposed we need
to intervene in the BFGS algorithm. In Step 2 improved estimates of all the
parameters are obtained. Some of these estimated parameters are assumed
to take a pre-defined fixed value. Thus, these parameters after Step 2 are set
equal to their pre-defined value. This procedure is followed in each iteration

until convergence.
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3.3.3 Backtracking

As we have already stated the BFGS algorithm belongs to the family of
the Quasi-Newton methods that try to mimic the Newton Raphson without
directly calculating the Hessian matrix. Thus, some problems that usually
occur in the Newton-Raphson can be traced in the BFGS algorithm as well.
Thus, for the BFGS algorithm to be successful it is necessary that the direc-
tion —Ag? 7 f (8o) is descent for f, that is, it leads f to decrease. Otherwise
the algorithm diverges.

However, the divergence problem of the BFGS algorithm can be fixed
easily. Thus, instead of taking fixed steps at each iteration another method-
ology can be used, which is known as backtracking. The following step of

the Newton-Raphson algorithm in which the updates are obtained:
» -1
v Ons1 = 0.~ [V (80)] v f(60)
can be modified and take the following form:
-1
Ons1 =0, — A [V2F (80)]  © £(60) (3.4)
where the multiplier A needs to be determined. The backtracking procedure

that is adopted consists of the following steps:

Step 1. Compute the full Newton-Raphson step, corresponding to A = 1
in (3.4). If f(0,41) < f(6,) then keep the new point and repeat.

Step 2. Backtracking step. If f (0,41) > f (6,), then reject the new point
and backtrack towards 8,, by computing 8, for values A < 1, until a better

point is found.
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However, satisfaction of Step 1 does not imply that the algorithm will con-
verge. Thus, Dennis and Schnabel (1983) have recommended the following

stronger condition that A has to satisfy:

£ (Brer (V) < £(82) + 107 (8 (N)yy — (62)) 7 £(6n) (3.5)

This condition is always satisfied if 8,,, — 8,, is a descent direction. Then
in order to choose a sequence of A\ values for the backtracking step we use a
strategy that reduces the step length by a fixed fraction § each time. Thus,
we start with A = 1 and if f(6,.;(1)) does not improve on f(8,), we
try Opn41(0). If f(On41(6)) does not improve on f(8,), we try 8,.; (6%),
etc. Usually ¢ is chosen to equal 1/2 and in this case the backtracking
methodology is called step halving. In addition, smaller values of § can be

used which sometimes lead to faster convergence.

3.4 Description of the 1tm.con function

In this section we will present the function 1tm. con that has been developed
in the S-language in order to fit “constrained” latent trait models. That is,
this function is designed to fit models under the imposition either equality
and fixed value constraints or equality constraints only. The estimation pro-
cedure that we have chosen is the maximum likelihood estimation which is
implemented by means of the BFGS algorithm and the EM Gradient algo-
rithm that lead to a relatively quick convergence of the likelihood, according
to the theory described in the previous sections. In this function the maxi-

mum likelihood estimates for the log-likelihood are obtained by maximizing
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the log-likelihood during the iterations of the EM algorithm and by minimiz-

ing the minus log-likelihood during the iterations of the BFGS algorithm.

The function ltm.con consists mainly of two algorithms, the EM and
the BFGS algorithm. As we have already stated the reason for adopting the
BFGS algorithm is the speeding-up of the convergence of the likelihood in the
neighborhood of the maximum, while the EM algorithm is used in order to
lead the likelihood quickly near to the neighborhood of the maximum. Thus,
we have decided to implement firstly the EM algorithm for a pre-specified
number of iterations and then the BFGS algorithm until the convergence of
the likelihood. The number of iterations for the EM algorithm are dependent
on the number of the latent variables, the number of the constraints imposed
on the parameters and the starting values. As far as the starting values are
concerned the user is given the option either to specify the starting values of
the parameters ox let them be randomly chosen from the normal distribution
with pre-specified mean and variance, when there is no prior information
available. For randomly chosen initial values, many latent variables (two or
more) and few parameter constraints it has been proven (due to simulations)
that the EM algorithm may need 70-100 iterations in order to get near to

the neighborhood of the maximum.

After the iterative procedure based on the EM algorithm is terminated,
the values of the last iteration of the EM algorithm constitute the initial
values for the BFGS algorithm. In particular, the initial values of the BFGS
algorithm consist of the estimated parameters obtained by the last iteration
of the EM algorithm and the inverse of the Fisher Information matrix (or

the minus Hessian matrix), which is calculated according to (2.32) at the ob-
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tained estimated parameters. This initial Hessian matrix is positive definite
since such an assumption is checked during the EM iterations. In the cases
where the Hessian matrix is not positive definite it is modified by adding to
the main diagonal a large enough value to make it positive definite. Apart
from the inverse of the Fisher Information matrix of the last iteration of the
EM algorithm the user is given the chance to use as initial hessian matrix
a diagonal matrix with elements maz (|- L ()|, 1) on the diagonal. In fact,
the BFGS algorithm is a function implementing the update (3.3), together
with the backtracking algorithm.

For the search at each iteration, the BFGS algorithm simply starts by

computing
9n+1 = en + I-l \Y4 L (en)T

and if that point does not satisfy (3.5), the algorithm backtracks towards 8,
until a point satisfying (3.5) is found. This is done using the backtracking
methodology presented in Section 3.3.3. During the backtracking the con-
dition s’y > 0 is checked in order to obtain a positive definite update. The
iterative procedure of the BFGS algorithm continues until the convergence
criteria are satisfied. The primary convergence criterion stops the iteration
when the maximum of the absolute value of the first order partial derivatives
is less than a pre-specified value which is set by default equal to 107°. In
the case where fixed value parameter constraints are imposed, the first order
partial derivatives of the parameters that are assumed to equal a pre-defined
fixed value are set equal to zero. According to a second convergence criterion,
the iteration will also stop if the relative change in the parameters in the full

Newton step is less than a pre-specified value which is set by default equal
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to 1078, This is sometimes needed, because due to limitations on numeric
accuracy, it is not always possible to attain the specified criterion on the gra-
dient, especially when finite differences are used to numerically approximate
the gradient.

The virtue of this general approach is that as the algorithm approaches a
solution and the —I~! matrix approaches the inverse Hessian, the behavior
of the algorithm becomes nearly identical to the Newton-Raphson iteration.

and converges rapidly.
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Chapter 4

Applications

4.1 Introduction

In this chapter we will illustrate the fitting procedure of “constrained” latent
trait models through two examples derived from Brooke et al. (1992) and
Bock and Lieberman (1970) respectively. The last example has been ana-
lyzed in Bartholomew et. al. (2002, Chapter 7), without assuming that the
imposition of parameter constraints is needed. Such an assumption will be
investigated in this chapter. Thus, for each of the above two examples we
will firstly represent a latent trait model fitted to the data without imposing
any parameter constraints. Secondly, after observing the estimated param-
eters we will impose equality constraints between some parameters in order
to check whether the equality assumption holds or not. The estimation of
the latent trait models without the imposition of constraints will be obtained
by means of the function Itm (Rizopoulos, 2003) while the estimation of the

restricted model will be obtained by means of the function Itm.con which has
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been presented in Chapter 3.
The two examples are given for illustrative reasons, while the imposition
of equality parameter constraints should be done after prior information is

available (Section 1.2.2).

4.2 Latent Trait Mode!l for Race data

In this section we will illustrate the use of the imposition of constraints in
latent trait models through an example based on data from the British Social
Attitudes Survey in 1991 given in Brooke et. al. (1992). According to this
survey four questions relevant to the racial attitudes were addressed to 1268

individuals and their replies have been recorded. The questions were:

o Thinking of black people - that is people whose families were originally
from the West Indies or Africa - who now live in Britain. Do you think

H
there is a lot of prejudice against them in Britain nowadays, or hardly

any?

e Do you think most white people in Britain would mind or not if a

suitably qualified person of Asian origin was appointed as their boss?
e And you personally? Would you mind or not?

e Do you think that most white people in Britain would mind if one of

their close relatives was to marry a person of Asian origin?

Each variable is binary, coded so that “1” denotes the answer indicating
presence or expression of racial prejudice, and “0” denotes the absence of

such a prejudice.
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We are interested in checking whether the items selected are the indicator
variables of the trait for which they have been designed or not. In addition,
we are interested in drawing conclusions for the items in terms of the es-
timated parameters. The analysis of the latent trait model is organized as
follows. Firstly, a descriptive analysis of the Race data will be performed.
Secondly, the “unconstrained” latent trait model will be fitted to the data and
its adequacy will be estimated in terms of goodness-of-fit measures. Thirdly,
after observing the estimated parameters we will explore whether the impo-
sition of equality constraints between some parameters is necessary or not.
Finally, we will compute the factor scores for the individuals on the latent

dimension, for the model that fits adequately the data.

4.2.1 Descriptive Analysis

As far as the underlying research is concerned, four items have been con-
structed in order to measure the racial prejudice of British people and their
answering them positively or not has been recorded. At this point, we will
describe the data by calculating frequencies and percentages and by exploring
the associations between the items.

The answers of the individuals to the four items are represented by the
response pattern of each individual and all the possible response patterns are
24, that is, 16. The frequencies of these response patterns are given in Table
4.1. From Table 4.1 we observe that there are not any response patterns with
zero frequency, while 6 out of 16 response patterns have frequencies < 5.

The percentages of individuals giving positive or negative answers to the

four items are summarized in Table 4.2.
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Table 4.1: Observed frequencies of response patterns, Race data

Response 1 Response 0

Item 1 47.79 52.21
Item 2 79.73 20.27
Item 3 94.56 5.44
Item 4 61.67 38.33

X
Table 4.2: Percentages of expressing or not racial prejudice for the observed

items, Race data

We observe that items 2 and 3, that represent the prejudice of British
people and the respondents’ prejudice against bosses with Asian origin, have

the greatest percentages of expressing racial prejudice.

Before performing a latent trait analysis, we need to explore associations
between pairs of variables which might suggest the existence of one or more
common underlying factors. In the case of binary variables the only way to
explore the pairwise associations between the variables is to construct 2 x 2

contingency tables and check for the statistical significance of the displayed
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associations. In Table 4.3 the p-values of the pairwise associations of the

variables are given.

Item Item p-value
< 0.001

0.539
< 0.001
< 0.001
< 0.001
< 0.001

[
Lo S B N

Table 4.3: Pairwise associations between observed variables, Race data

From Table 4.3 we observe that there is association between the pairs of
all the variables except from the pair “Prejudice against Black People” and
“Respondent’s Prejudice against Boss with Asian Origin”. This conclusion
suggests that it would be worth asking whether these associations can be
attributed to one or more common factors. This is what a latent trait model
enables us to do. Since there are four items and in factor analysis it is common
practice to use one factor every three items, we begin our analysis by fitting
an one-factor model to the four items. Thus, if we can identify common
factors, we may then wish to go on to compute scores for individuals on the

latent dimensions.

4.2.2 One-Factor Unconstrained LTM

In this subsection we will assume that the associations between the four items
of the test can be accounted for by only one common factor. Thus we will
assume the following latent trait model:

logit () = o+ ann
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logit (7!'2) = Q9 + Q11
logit (m3) = ag0+any

Iogit (71'4) = (O + Qa1

or equivalently

1 + exp (qip + i1y)’

where a;p denotes the difficulty parameter, o;; denotes the discrimination
parameter and y; represents the latent variable that measures the racial
prejudice of the individuals of the population under study. The assumptions

of that model are listed below:

1. Conditional independence. That is, the responses to the 4 observed
items must be independent conditional on the latent variable. This
means that the latent variable accounts for all the associations among
the observed items. Since the latent variable is unobserved, the as-
sumption of conditional independence can only be tested indirectly by

checking whether the model fits the data.
2. The link function: logitm; (y) = aup + aay, where P (z; = 1|y) = m; (y)
3. The latent variable comes from the standard normal distribution. That
isy~ N(0,1).
Estimation of the unconstrained LTM

The model that we have fitted can be estimated by means of the maximum

likelihood method. The parameter estimates and their standard errors are
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given in Table 4.4:

Item  aip  se(aig) aiy se(air) st(ajp) (D)
1 -0.09  0.0582  0.38  0.0822 0.3535 0.478
2 5.63 4.8567  6.30  5.3034 0.988 0.996
3 4.87 0.5555  2.45  0.4159 0.926 0.992
4 0.64 0.0849  1.33  0.1846 0.799 0.655

Table 4.4: Parameter estimates and standard errors for the unconstrained

one-factor LTM, Race data

In the first column of Table 4.4, we give the estimated difficulty parame-
ters o and in the second column their standard errors. In the third column,
we give the estimated discrimination parameters ¢;; and in the fourth col-
umn their standard errors. Then, in the fifth column the standardized values
of the factor loadings are given and in the sixth column the probabilities that
the median individual will respond positively to items 1 — 4 are given.

In Table 4.4, the estimated discrimination parameters, ¢;;, that is the es-
timated factor loadings, are large (at least the last three). This implies that
there is an underlying factor that is common to all items. In addition, this
implies that the characteristic curves of these items are very steep. However,
it worths mentioning that the standard errors of the estimated parameters
of the second item are greater than those of the other items. Taking the
loadings in their face value, it appears that the second item is the best dis-
criminator between for and against attitude while the first item is the worst
discriminator. The estimates of the probabilities of the median individual to
respond positively to the four items show that the four items are of varying
difficulty but relatively easy. In addition, the estimated probabilities of the

median individual lead to conclusions similar to those drawn from the de-

69



scriptive analysis (Table 4.2). The standardized values of the factor loadings
can be interpreted as correlation coefficients and thus only the second and
the third items have a close link to the common factor. The standardized
values of the factor loadings are given by the following formula:

a. .
staij = 2

g 9
2 an+1
=1

After having estimated the unknown parameters of the above latent trait
model we will proceed to the exploration of the imposition of equality pa-
rameter constraints. That is, we may be interested whether the weights
of one item are exactly the same to the weights of another or other items.
Thus in Section 4.2.3 we will fit the one-factor latent trait model after the

imposition of equality constraints between the parameters of the model.

Goodness-of-fit *

In order to assess the goodness-of-fit of the model that we have fitted we will
use the log-likelihood ratio test G2, the Pearson chi-squared goodness-of-fit
test X2 and the selection criteria AIC and BIC that have been defined in

Chapter 2. In Table 4.5, the values of these measures are given.

Test value d.f. p-value
Log-Likelihood Ratio Test G? 6.731 7 0.4574
Pearson Chi-Squared X? 6.836 7 0.4462
AIC 4941.998
BIC 4994.25

Table 4.5: Goodness-of-fit measures for the unconstrained one-factor model,

Race data
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Both measures do indicate a good fit of the one-factor latent trait model
to the data. This result is easily verified by the small discrepancies between

the observed and expected frequencies in the response patterns. After having

item Observed Expected
1 2 3 4 Frequency Frequency
0 0 9 0 26 32.573
1 0 Q 0 20 14771
] i Q 0 s 3.841
1 1 0 0 3 2.678
[} 0 1 (1] 98 90.664
1 0 1 0 45 51.402
Q 1 1 o 158 153.947
1 1 o] 131 135.916
0 o0 o 1 6 6.361
1 o 0 1 5 3.313
0 1 0 1 2 3.201
1 1 4] 1 2 2.488
0 0 1 1 36 35.457
1 0 1 1 21 21.598
Q 1 1 1 331 335.946
1 1 1 1 379 373.829

Table 4.6: Observed and expected frequencies of the response patterns, Race

data

fitted the one-factor unconstrained latent trait model, it is useful to represent
graphically the relationship between examinees’ item performance and their

racial prejudice by means of the item characteristic curves (ICC).

From Figure 4.1 it is evident that as the factor’s values increase the
probability of expressing racial prejudice increases. In particular, the rate of
increase is more rapid for the third item than the others, while for the first

item this increase is the slowest.
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Figure 4.1: Item Characteristic Curves for the four items of the unconstrained

latent trait model, Race data
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4.2.3 One-Factor constrained LTM

In this section we will explore the imposition of parameter constraints in
the one-factor latent trait model presented in Section 4.2.2. In Table 4.4 we
observed that the estimated parameters of the one-factor latent trait model
for the second and third item have large values. Thus we will assume that the
discrimination parameters of the second item are equal to the discrimination
parameters of the third item and explore the validity of such an assumption.

In other words, we will fit the following latent trait model:

logit (m1) = ono+any
logit (m2) = a9+ anuy
logit (m3) = a3+ aziy

logit (m4) = s+ aay

where we will assume that aj; = a3;.
The assumptions of the one-factor latent trait model given in Section
4.2.2 need also to be satisfied in the one-factor latent trait model under the

imposition of constraints.

Estimation of the constrained LTM

The model that we have fitted can be estimated by means of the maximum
likelihood method. The parameter estimates and their standard errors are
given in Table 4.7.

In Table 4.7, we observe that the standard errors of the estimated difli-

culty and discrimination parameters of the second item have been reduced
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Item i se(ajp) ajp  se(ajy) st(ajp) FA(0)

1 -0.09 0.0034 0.38 0.0071 0.354 0.477
2 3.07 0.2460 3.21 0.4096 0.955 0.956
3 5.90 1.0796 3.21 0.5401 0.955 0.997
1 0.67 0.0079 1.49 0.0310 0.831 0.662

Table 4.7: Parameter estimates and standard errors for the constrained one-

factor LTM, Race data

and are now in similar magnitude to the standard errors of the other esti-

mates.

Goodness-of-fit

In order to assess the goodness-of-fit of the model that we have fitted we will
use the log-likelihood ratio test G2, the Pearson chi-squared goodness-of-fit
test X2 and the selection criteria AIC and BIC whose values are given in

Table 4.8.

Tesdt value d.f. p-value
Log-Likelihood Ratio Test G? 9,886 6 0.129
Pearson Chi-Squared X2 10.402 6 0.109
AlC 1943.153

BIC 5029.186

Table 4.8: Goodness-of-fit measures for the constrained one-factor model,

Race data

According to Table 4.8, both measures do indicate a good fit of the one-
factor latent trait model to the data, while the values of the AIC and BIC of
the constrained model are larger than those of the unconstrained one. This
implies that the unconstrained model is preferable. The adequacy of the

constrained model is easily verified by the small discrepancies between the
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observed and expected frequencies in response patterns in Table 4.9.

Item Observed Expected Total Component
1 2 3 4 Frequency Frequency Score Score
[} 0 Q 0 26 34.966 0 0.000
1 [} [t} 0 20 15.413 1 0.379
0 0 0 1 6 4.864 1 1.494
o 0 1 0 98 84.617 1 3.214
o} 1 g 0 5 4.983 1 3.214
1 0 0 1 5 2.479 2 1.873
1 0 1 0 45 50.255 2 3.593
1 1 [+ ] 3 2.960 2 3.593
0 0 1 1 36 37.419 2 4.708
] 1 0 1 2 2.204 2 4.708
0 1 1 0 158 158.248 2 6.428
1 0 1 1 21 25.638 3 5.087
1 1 0 1 2 1.510 3 5.087
1 1 1 0 131 134.056 3 6.807
0 1 1 1 331 334.680 3 7.922
1 1 1 1 379 373.710 4 8.301

Table 4.9: Observed, expected frequencies and scores of the response patterns

for the constrained one-factor LTM, Race data

In addition, it is interesting to check whether the latent trait model fitted
to the data after the imposition of constraints, is “better” than the one
where no constraints were imposed or not. This will be done by means of

the likelihood ratio test.

Meodel Log-Likelihood Likelihood Ratio Test d.f. p-value
Value

Constraints -2464.577

No Constraints -2462.999 3.156 1 0.0756

Table 4.10: Comparison between the constrained and the unconstrained

model, Race data

The high p-value of the likelihood ratio test in o = 5% implies that the two

models do not differ and that the most parsimonious, that is the constrained

75

¢



model, is preferable contrary to the conclusions reached due to the AIC and
BIC values. Thus, we conclude that the imposition of constraints in the above
model has improved the fit to the data. The validity of this conclusion and
the approximation of the likelihood-ratio test statistic by the x? distribution
is strengthened by the fact that in this example there are not any response

patterns with zero frequencies.

Our purpose after fitting latent variable models is to obtain information
about the latent variables through the posterior distribution A (y | x) (Poste-
rior Analysis). In Section 2.6 we showed that this distribution depends on x
only through the g-variate sufficient statistic X = Ax, where A = ¢;;. Thus,
for the constrained one-factor latent trait model that we have fitted we can
locate the individuals on the latent dimension and thus assign to each indi-
vidual a score with respect to their racial prejudice. These score are given in
the last column of Table 4.9 next to the column of “Total Score” that gives
the number of positive responses to each response pattern. Thus we observe
that the rankings givem by the total and the component score are not close.
For example, the response patterns 0100 and 0010 have a component score
which is substantially higher than the other cases where there was only one
positive response. This is because the items 2 and 3 have a much higher

weight than the others.

From Figure 4.2 it is evident that as the factor values increase the prob-
ability of expressing racial prejudice increases. In particular, the rate of
increase is more rapid for the second and third item than the others, while
for the first item this increase is the slowest. In addition, the item charac-

teristic curves for the second and the third item have parallel evolutions due
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Figure 4.2: Item Characteristic Curves for the four items of the constrained

latent trait model, Race data
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to the fact that their discrimination parameters have been set equal.

4,3 Latent Trait Model for Law School Ad-
mission Test data

In this section we will illustrate the use of the imposition of constraints in
latent trait models through an example based on part of data from Law
School Admission Test (LSAT) given in Bock and Lieberman (1970). The
LSAT is well known in educational testing for measuring ability traits. This
part of the LSAT data that we are going to analyze is designed to measure a
single latent ability scale and consists of five items taken by 1000 individuals.
We are interested in checking whether the items selected are the indicator
variables of the ability for which they have been designed to measure. In
addition, we are interested in drawing conclusions for the items in terms of
the estimated parameters.

The analysis of the latent trait model is organized as follows. Firstly,
a descriptive analysis of the LSAT data will be performed. Secondly, the
unconstrained latent trait model will be fitted to the data and its adequacy
will be estimated in terms of goodness-of-fit measures.

Thus, in this section we will firstly represent a latent trait model fitted
to the LSAT data without imposing any parameter constraints. Secondly,
after observing the estimated parameters we will impose equality constraints
between some parameters in order to check whether the equality assump-
tion holds or not. Thirdly, after observing the estimated parameters we will

explore whether the imposition of equality constraints between some param-
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eters is necessary or not. Finally, we will compute the factor scores for the
individuals on the latent dimensions for the model that fits adequately the

data.

4.3.1 Descriptive Analysis

As far as the underlying research is concerned, five items have been con-
structed in order to measure ability that the test-takers possess. At this
point, we will describe the data by calculating frequencies and percentages
and by exploring the association between the items.

The answers of the individuals to the four items are represented by the
response pattern of each individual and all the possible response patterns are
23, that is, 32. The frequencies of these response patterns are given in Table
4.11.

The percentages of individuals giving correct or wrong answers to the five
items are summarized in Table 4.12.

We observe that item 3 appears to be the most difficult. Before per-
forming a latent trait analysis, we need to explore the associations between
pairs of variables which might suggest the existence of one or more common
underlying factors. In Table 4.13 the p-values of the pairwise associations of
the variables are given.

From Table 4.13 we observe that the majority of the pairs of the variables
are highly correlated. After fitting a latent trait model we can check whether
these associations can be attributed to one common factor. Thus, if we can
identify such a common factor, we may then wish to go on to compute scores

for individuals on the latent dimension.
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Item Observed

1 2 3 4 3 Frequency
[} 0 0 0 0 3
1 [} 4] 0 0 10
0 1 4] 0 [} 1
1 1 ¢ 0 0 16
0 0 1 0 0 1
1 Q 1 ) ] 3
0 1 1 [V ] 0
1 1 1 0 0 11
0 o [} 1 0 2
1 0 0 1 a 14
a 1 0 1 [¢] ¢}
1 1 0 1 0 21
0o 0 1 1 0 3
1 0 I 1 0 15
0 1 1 1 0 2
1 1 1 1 (4] 28
4} 0 0 [} 1 6
1 0 [H] 0 1 29
1} 1 0 0 1 8
1 1 a 0 1 56
0 0 1 0 1 1
1 0 1 0 1 28
0 1 1 ] 1 3
1 1 1 Q 1 61
0 0 [s] 1 1 11
1 g 0 1 1 81
0 1 1] 1 1 16
1 1 4] 1 1 173
0 a 1 1 1 4
1 0 1 1 1 80
}3 [} 1 1 1 1 15
1 1 1 1 1 298

Table 4.11: Observed frequencies of response patterns, LSAT data

Response 1 Response 0

Item 1 92.4 7.6
Item 2 70.9 29.1
Item 3 55.3 44.7
Item 4 76.3 23.7
Item 5 87.0 13.0

Table 4.12: Percentages of answering correctly or wrongly to the observed

items, LSAT data
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4.3.2 One-Factor Unconstrained LTM

In this section we will assume that the associations between the five items
of the test can be accounted for by only one common factor. Thus we will

assume the following latent trait model:

logit (m) = o +aun
logit (m2) = a2+ any
logit (m3) = o30 +amy
logit (m4) = ou+auy
logit (m5) = as0 + sy

or equivalently

exp (aip + aay) 1=1,223475
1+ exp (o + aary)’ B

m(y) =

where a;p denotes the difficulty parameter, ;; denotes the discrimination
parameter and y; represents the latent variable that measures the ability
of the individuals of the population under study. The assumptions of that

model are common to those given in Section 4.2.2.

Estimation of the unconstrained LTM

The model that we have fitted can be estimated by means of the maximum
likelihood method. The parameter estimates and their standard errors are
given in Table 4.14.

In the first column of the above table, we give the estimated difficulty pa-
rameters & and in the second column their standard errors. In the third col-

umn, we give the estimated discrimination parameters ;; and in the fourth
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Item Item p-value
2 0.028
0.003
0.208
0.565
< 0.001
0.059
0.009
0.001
0.113
0.002

-

W

L I I N I S R R
(L I T I

Table 4.13: Pairwise associations between the observed variables. LSAT data

Item ojo se(aip) Of1 se(ajy) stlajp) H{0)

1 2.77 0.2058 0.83 0.2582 0.64 0.94
2 0.99 0.0900 0.72 0.1867 0.58 0.73
3 0.25 0.0763 0.89 0.2327 0.66 0.56
4 1.29 0.0990 0.69 0.1852 0.57 0.78
5 2.05 0.1354 0.66 0.2099 0.55 0.89

Table 4.14: Parameter estimates and standard errors for the unconstrained

one-factor LTM, LSAT data
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column their standard errors. Then, in the fifth column the standardized
values of the factor loadings are given and in the sixth column the proba-
bilities that the median individual will respond positively to items 1 — 5 are

given.

In Table 4.14, the estimated discrimination parameters, «;;, that is the es-
timated factor loadings, are all positive and of similar magnitude with similar
standard errors. This implies that all five items have similar discriminating
power and so a similar weight is applied to each response. The estimates
of the probability of the median individual to respond positively show that
the five items are of varying difficulty but relatively easy. In addition, the
estimated probabilities of the median individual lead to conclusions similar
to those drawn in the descriptive analysis (Table 4.12). The standardized
values of the factor loadings can be interpreted as correlation coefficients

and thus all the five items have a close link to the common factor.

After having estimated the unknown parameters of the above latent trait
model we will proceed to the exploration of the imposition of equality pa-
rameter constraints. In fact, the similarity observed in the above estimated
parameters may encourage us to impose equality parameter constraints. That
is, we may be interested whether the weights of some of the items are exactly
the same. Thus in Section 4.3.3 we will fit the one-factor latent trait model
after the imposition of equality constraints between the parameters of the

model.
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Goodness-of-{it

In order to assess the goodness-of-fit of the model that we have fitted we will
use the log-likelihood ratio test G2, the Pearson chi-squared goodness-of-fit
test X2 and the selection criteria AIC and BIC that have been defined in

Chapter 2. In Table 4.15. the values of these measures are given.

Test value d.f. p-value
Log-Likelihood Ratio Test G? 17.55 21 0.5527
Pearson Chi-Squared X2 18.143 21 0.6399
AIC 4953.333
BIC 5018.506

Table 4.15: Goodness-of-fit measures for the unconstrained one-factor model,

LSAT data

Both measures do indicate a good fit of the one-factor latent trait model
to the data. This result is easily verified by the small discrepancies between
the observed and expected frequencies in response patterns.

After having fitted the one-factor unconstrained latent trait model, it
is useful to represent graphically the relationship between examinees’ item
performance and th(; trait, that we wish to measure, by means of the item
characteristic curves (ICC). From Figure 4.3 it is evident that as the fac-
tor’s values increase the probability of responding correctly increases. In

particular, all the items have similar rates of increase.

4.3.3 One-Factor constrained LTM

In this section we will explore the imposition of parameter constraints in the
one-factor latent trait model presented in Section 4.3.2. In Table 4.14 we

observed that the estimated parameters of the one-factor latent trait model
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Item Observed Expected

1 2 3 4 5 Frequency Frequency
0 0 4] 0 2.274
1 0 V] 0 0 10 9.476
0 1 0 0 0 1 1.840
1 1 1} 0 [} 16 11.255
0 0 1 0 0 0.696
1 0 0 0 3 1.657
0 1 1 0 o] 0 0.852
1 1 1 0 0 11 3.446
0 0 Q 1 0 2.596
1 0 0 1 0 14 15.389
0 1 0 1 0 2.891
1 1 [} 1 0 21 25.652
0 0 1 1 ] 3 1.178
1 0 1 1 0 15 11.462
0 1 1 1 0 2 2.000
1 1 1 1 0 28 29.136
0 0 o0 o0 1 [} 5.863
1 0 ¢ 0 1 29 34.617
0 1 ¢ 0 1 3 6.434
1 1 0 4] 1 56 56.111
[} 0 1 a 1 1 2.613
1 Q 1 Q 1 28 24.983
0 1 1 0 1 3 4.369
1 1 1 0 1 L2 62.517
0 0 0 1 1 11 8.945
1 [+ 0 1 1 81 76.566
0 1 0 1 1 16 13.579
1 1 [} 1 1 173 173.311
o 0 1 1 1 4 5.953
1 1] 1 1 1 80 83.535
0 1 1 1 1 15 13.915
1 1 1 1 1 298 296.678

Table 4.16: Observed and expected frequencies of the response patterns,

LSAT data
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Figure 4.3: Item Characteristic Curves for the five items of the unconstrained

latent trait model, LSAT data
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of all the items are positive and of the same magnitude. Thus we will assume
that the discrimination parameters of all the items are equal and explore the
validity of such an assumption. In other words, we will fit the following latent

trait model:

logit (7)) = a9+ oy
logit (ma) = a@og+ ao1yn

(

(2

logit (m3) = as0 + sy

logit (mg) = ocuo +aay
(

logit (m5) = aso + asiyn

where we will assume that a;; = ag = a3; = sy = as1. Such a model is
known as the Rasch model.

The assumptions of the one-factor latent trait model given in Section
4.3.2 need also to be satisfied in the one-factor latent trait model under the

imposition of constraints.

Estimation of the constrained LTM

The model that we have fitted can be estimated by means of the maximum
likelihood method. The parameter estimates and their standard errors are
given in Table 4.17. In Table 4.17, we observe that the standard errors of
the estimated difficulty and discrimination parameters of all the items have
been reduced and are now in similar magnitude to the standard errors of the

other estimates.
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Item aje se{ajg) ajy se (aj1) st (aig) 1 (0)

1 2.73 0.0374 0.76 0.0635 0.605 9.939
2 0.99 0.0086 0.76 0.0388 0.605 0.731
3 0.24 0.0053 0.76 0.0360 0.605 0.560
4 1.31 0.0113 0.76 0.0415 0.605 0.790
5 2.10 0.0222 0.76 0.0502 0.605 0.891

Table 4.17: Parameter estimates and standard errors for the constrained

one-factor LTM, LSAT data

Goodness-of-fit

In order to assess the goodness-of-fit of the model that we have fitted we will
use the log-likelihood ratio test G2, the Pearson chi-squared goodness-of-fit
test X2 and the selection criteria AIC and BIC whose values are given in Ta-
ble 4.18. According to Table 4.18, both measures do indicate a good fit of the
one-factor latent trait model to the data and the values of the AIC and BIC
of the constrained model are smaller than those of the unconstrained one.
This implies that the constrained model is preferable to the unconstrained
model. The adequacy of this model is easily verified by the small discrepan-
cies between the obderved and expected frequencies in response patterns in
Table 4.19. Our purpose after fitting latent variable models is to obtain infor-
mation about the latent variables through the posterior distribution & (y | x)
(Posterior Analysis). In Section 2.6 we showed that this distribution depends
on x only through the g-variate sufficient statistic X = Ax, where A = [o;;]
has as element the factor loading. Thus, for the constrained one-factor latent
trait model that we have fitted we can locate the individuals on the latent di-
mension and thus assign to each individual a score with respect to their trait

that we wish to measure. These score are given in the last column of Table
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Test value d.f. p-value

Log-Likelihood Ratio Test G2 21.824 25 0.647
Pearson Chi-Squared X2 18.345 25 0.827
AlIC 4945.902
BIC 5016.795

Table 4.18: Goodness-of-fit measures for the constrained one-factor model,

LSAT data
Item Observed Expected Total Component
1 2 3 4 5 Frequency Frequency Score Score
0 0 0 [¢] 0 3 2.364 0 0.000
1 0 0 0 o 10 10.273 1 0.755
] 1 0 0 a ] 1.819 1 0.755
0 0 1 [} Q 0.852 1 0.755
0 0 0 1 0 2 2.474 1 0.755
0 0 0 0 1 6 5.468 1 0.755
1 1 0 0 0 16 11.391 2] 1.510
i 0 1 0 0 3 5.334 2 1.510
o 1 1 0 0 0 0.944 2 1.510
1 0 0 1 0 14 15.498 2 1.510
4] 1 0 1 0 0 2.744 2 1.510
0 0 1 1 0 3 1.285 2 1.310
1 9] 0 0 1 29 34.249 2 1.510
0 1 0 0 1 8 6.063 2 1.510
o 0 1 0 1 1 2.839 2 1.510
0 Q 0 1 1 11 8.249 2 1.510
1 1 1 0 o0 11 8.592 3 2.265
1 1 0 1 4] 21 24.965 3 2.265
1 0 1 1 0 15 11.690 3 2.265
0 1 1 1 0 2 2.070 3 2.265
1 1 0 [} 1 36 55.171 3 2.285
1 0 1 [¢] 1 28 25.834 3 2.265
0 1 1 0 1 3 4.574 3 2.265
1 0 o0 1 1 81 75.060 3 2.265
[ 1 0 1 1 16 13.288 3 2.265
0 0 1 1 1 4 6.222 3 2.265
1 1 1 1 0 28 27.709 EY 3.020
1 1 1 0 1 61 61.235 4 3.020
1 1 1] 1 1 173 177.918 4 3.020
1 0 1 1 1 80 83.310 1 3.020
0 1 1 1 1 15 14.749 4 3.020
1 1 1 1 1 298 295.767 5 3.776

Table 4.19: Observed, expected frequencies and scores of the response pat-

terns for the constrained one-factor LTM, LSAT data
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4.19 next to the column of “Total Score” that gives the number of positive
responses to each response pattern. Thus we observe that the rankings given
by the total and the component score are consistent but not very close.

In addition, it is interesting to check whether the latent trait model fitted
to the data after the imposition of constraints, is “better” than the one
where no constraints were imposed or not. This will be done by means of the
likelihood ratio test. The high p-value of the likelihood ratio test in a = 5%
implies that the two models do not differ and that the most parsimonious,
that is the constrained model, is preferable. Thus, we conclude that the
imposition of constraints in the above model has improved the fit to the
data.

From Figure 4.4 it is evident that as the factor values increase the proba-
bility of responding correctly increases. In particular, the rate of increase in
all the items is similar and seem to have parallel evolutions due to the fact

that their discrimination parameters have been set equal.
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Model Log-Likelihood Likelihood Ratio Test d.f. p-vaiue

Value

Constraints -2466.951
No Constraints -2466.667 0.542 & 0.969

Table 4.20: Comparison between the constrained and the unconstrained

model
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Figure 4.4: Item Characteristic Curves for the five items of the constrained

latent trait model, LSAT data
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