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ABSTRACT
Marios T. Kondakis N

SURVIVAL ANALYSIS TECNIQUES
October 2003

The human life span, has always been attraction subject for the scientists. Survival
techniques have appeared not only in the Statistics' literature but also in actuarial, medical
and social studies as well. The effect of explanatory variables, which stems mainly from
medical statistics but also from industrial life testing, plays a crucial role in understanding
and analysing the quality of our life and thus it braces our effort of improving, or
sometimes even extending it. In addition, the application ranges of the Survival Analysis
extend much more widely, from physics to econometrics.

The object of the present report is to stage popular and recent techniques for
tackling survival data queries and for making the adequate statistical inference about the
population of these data. In this vicinity, the paper actually consists of seven parts. The
first is a historical review on the survival analysis. Following the second part describes
the main aspects of the subject and introduces the notation used in the thesis. Moreover,
examples of survival random variable patterns are discussed in the third section. The
common used Cox procedure and Classical models and procedures used in survival
analysis can be found in the forth and fifth section respectively while the sixth part
includes more recent generalized techniques used for the same kind of data, applying the
failures of 23 AML leukemia patients divided into two treatment groups. The final
conclusions are congregated in the last part.






INEPIAHYH

Méprog ®. Kovddkng

TEXNIKEX MEGOAOI XTHN ANAAYZXH EIIIBIQXHX
OxtoBprog 2003

H &uwpkewr {omg amotedovoe avékabev mdlog EAENG Y TOVG EMGTILOVEC.
Méb6odor otnv avdivon emPioong eupaviotnkav oyl udévo ot otatiotikyy Pifioypaeio
alld Kor oV wIpkh] kKobdg ko ot Kowovikég emomues. H enimtoon tov
EMEENYMUATIKOV HETABANTAOV, 01 OTOlEg TPOEPYXOVTAL KL ¥PNGILOTOLOVVTIAL KVPImg TNV
TPIKY OTATIOTIKY KaBdG eniong kot 010 KAGS0 Tov ghéyyov g Prounyavikne Long,
noilel kabopiotikd poAo oTNV KaTavonon Kat avdivon g mowdtrag e {ong pag kot
€101 evduvaudver v mpoormdfewr pog yw Peitimon N akdun yw emékract e
Emmiéov, n éktaon tav epapuoydv mg avdivong empPimong exteivetat moAAn gvpitepa,
and 10 YOPO TNG PLCIKNG £MG TO YMPO NG OLKOVOUETPLaC.

O oxomdg TG mMapovoag aAvagopds Eival Vo TOPOVCUACEL SMUOPUANG Kau
TpOceaTeg Pefddove Yo TV avieT@mon tpofAnudtev dedousévaov empPinong Ko Yo
TO CYNUATIONO KOTAAANANG OTATIGTIKNG CUUTEPACUATOAOYIAG OYETIKA UE TOV TANBUGUO
avtov Tov dedopévav. EWvwdtepa, i dwtpiPry anoteieiton and enta pépn. To mpdto
glvar po woTopikyy avadpourny otnv avaivon emPioong. Xt cuvéyeww 1O OEVTEPO
TEPLYPAPEL TO. KOPWL OMUeEid TOL OAVTIKEWEVOL Kol EGAYEL TV OpoAoyid 7oL
ypnowonoieiton  otnv  gpyacia. EmmAfov, mapadelypata koatovopdv emPioong
neprypdpovtar oto tpito Tunpa. H Swdedopévm owdikacioa tov S. Cox ko QAo
KAOGOIKG povIEAa Kol JadiKaoieg TOL ¥PNOUOTovVTIAL ot oavdivon emPiwong,
Bpiokovtar ©T0 TETAPTO KOl WEUTTO MEPOG EVM TO €KTO MEPOC mepthopPdvel mo
npdogates yevikevpéveg pefodovg mov yprnoponoodviar yia Ty dia gvon dedopévav,
epappolovtag T o€ dedopéva amotvyiag 23 acBevav ofeiag poehoyevovg isvyopiag,
01 0moiol opadomooHVIAL 6€ V0 KUTNYOPIES.
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Chapter 1

On Survival Analysis

1.1 Introduction

According to Cox and Oakes (1984), the use of survival techniques have appeared not
only in the Statistics’ literature but in actuarial, medical and social studies as well. For
instance life tables have been used for demographers and actuaries for many years to de-
scribe and compare the so-called expectation of life. The product limit estimator appears
first to have been proposed by Bohmer but the actuarial estimator itself is much older.
Greenwood and Kaplan & Meier (1958) derived the product limit estimator from maxi-
mum likelihood arguments. A key reference is Efron (1967). Mann et al. (1974), Gross
and Clark (1975) and Lawless (1982) concentrate largely on fully parametric methods
for survival distributions. Elandt-Johnson and Johnson (1980) describe the applications
in actuarial science and demography. Miller (1981) describes nonparametric and semi-
parametric methods. For applications in industrial reliability see DePriest and Launer
(1983). Miké and Stanley (1982) have edited a collection of papers on medical statistics
including discussion of survival data. Also, Pett (1997) presents nonparametric statisti-
cal techniques for health care research settings. One recent paper, for the estimation of
the survival distribution with right-censored data and covariates when collection of data

is delayed, is by Van Der Laan and Hubbard (1998).
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Chapter 2

Introduction to Survival Analysis

2.1 Introduction

Survival analysis is a number of statistical procedures in which interest centers on the
time length until an event occurs at most once, called the failure. In particular, survival
time corresponds to the time from the beginning of follow-up period of an individual
until the failure. For instance we may interest in the time (in weeks) in remission for
leukemia patients, or in the years until death for elderly pecple (60+).

In all the cases time is determined by a time origin, which is apparently defined, a
scale for measuring the passage of time and the meaning of failure. The time origin should
be precisely defined for each individual. Also, all individuals should be as comparable as
possible at their time origin. In other words the time origin definition should not differ
for each individual. The selection of the first instant at which the patient’s symptoms
meet certain criteria of severity as a time origin, may be more biologically meaningful,
nevertheless such a value for the time origin is not only difficult to be determined but
also subject to certain kind of bias. Such information might be useful as an explanatory
variable, though.

In addition, the time origin need not be (as usual) at the same calendar time for

each individual. Indeed, the time origin in most clinic trials has staggered entry over a



substantial time period. Also there are cases that the subject enters the study in a time
point after the real time origin. For instance in a case of observing the failure time of
an already used machine component, the time origin does not coincide with the time the
componerit enters the study. The last kind of data are called left-truncated as there is
an unknown time length at the left of the time the subject enters the study in the real
linet which should have included in the failure time.

Referring to the scale parameter, the clock time is usually utilized. For instance
bours, days, months, years, etc. are counted until the failure. Other possibilities are
the age of a patient or the operating time of a system respectively. Also in geometrical

probability applications, the length of a line segment contained in a convex body is the

time to failure. :
Finally, a clear definition of the failure event is essential. This event is typically called

failure as the kind of event of interest usually is death, disease incidence, or some other
negative individual experience. However, failure may be defined arbitrary like in some
industrial contexts, where failure can be the first instance at which the performance,
measured in some quantitative way, falls below an acceptable level, defined perhaps by‘
a specification. In case where more than one event is considered in the same analysis, as

death from any of several causes, the statistical problem is generally characterized by as

a competing risk problem.

2.2 Censored Data

A familiar difficulty in the analysis of survival data is when we have some information
about individﬁa.l failure time, but we do not know the real time to failure. General
reasons of censoring are during to Lee (1992) :

Firstly that the subject does not experience the failure event before the end of the
study or the su‘bject is lost to follow-up during the study period, or the subject withdraws

from the study because of some reason (e.g. death if not the event of interest, adverse

et ey
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drug reaction, etc.). This kind of censorship is called Type I. Secondly, another option
is the study to end until a fixed portion of the subjects to fail. The latter is also known
as Type II censoring Thirdly, in many clinical studies the period of study is fixed and
patients enter the study at different times during that period. For subjects that are lost
to follow up or do not fail until the end of the study, Type III censoring occurs and
their survival times begin from their entrance until the censor time point. The first two
types of observations are also called singly censored data while the third type is called
progressively censored data or random censoring.

For instance, consider leukemia patients followed until they go out of remission (Here
the survival time is the time in remission). If a given patient dies from a heart disease,
then that patient’s failure time is considered censored. We then know that, for this
person, the survival time is at least as long as the period that the person has been
followed, but we cannot know in any case the full failure time.

A Type II example is in animal studies. Particularly, in this kind of cohorts there
is an initial number of animals, say 100 and the study ceases when a portion of the
original animals, say 80 dies, and the rest animals are sacrificed. In this case, if there
are no accidental losses, the censored observations equal the twenty largest uncensored
observations. ,

To consider the third Type of censoring, we assume, six patients with acute leukemia
enter a clinical study during a total study period of one year. The remission times of
the patients varies according to each organism and leukemia type. If a patient get into
remission in the beginning of the fifth month and he is still in remission at the end of
the study, then the observed survival or censor time for the particular patient is seven

months.



2.3 Notation and terminology

In the current section the basic mathematical terminology and notation that is used in
the sequel, is introduced.

Let us assume the observed failure time for the ith individual as X;, and the real one
as T;. We suppose also that there is a period of observation ¢; such that the observation on
that individual ceases after time ¢; if failure has not occurred by then. As a consequence
X; = min(T;, ¢;). To complete the notation of the observation we need also an indicator
variable V; = 1 if T; < ¢; i.e. in uncensored case, and V; = 0 if T; > ¢; i.e. in censored
case. Considering T as the nonnegative random variable of the failure times, we then
write Fr = pr (T > t) for the survivor function of 7. The failure density function f(¢)

and the failure cumulative probability F'(¢) are defined in the continuous case as:

fr(t) = ~Fp () = Jim ZUST<EED) 2.1)
and so
Fr(t)= /0 ~ fr (u) du (2.2)

While in the discrete case just, pr(T < t) = F (t) =1 - F (t).

Another function of great importance, for the survival analysis is the hazard function
h(t), or the age-specific failure rate. It is defined as the probability of the subject to fail
within time t given that it had already survived until the time point t. Specifically,

h(t)_HmPT(t<T§t+h|T>t) L pr(t<T<t+h)

= 2.
h—0 h h—0 hFT (t) ( 3)

In other words the hazard rate function can be written in the continuous case, as:

<

h(t) = £ (t) , where ¢ > 0 (2.4)

(t)

3

Whereas in the discrete case,



LS

t
=— (2.5)

The hazard rate function h(t) is anyhow, a specialized characteristic of the data.
Howevei', is very useful for the study of the survival time and thus for the failure distri-
bution, if we consider also that usually the information available is about the diachronic
evolution of h(t). In this sense, we can choose the functional expression of the hazard rate
function for the specific system. For that reason, we end up with a differential equation,
or an equation of differences, depending on the type of the random variable. From the
univocal relation between the hazard rate function and the failure cumula.five function

given below, the last can be calculated, in different forms for the continuous and the

discrete case. See Dimaki (1995).

2.3.1 Continuous case

From the equation in (2.4), we get that:

' t
o8 5 ll) - _h) > 1ogFr () -lsFr 0 == [ ) (29)
0
But from the definition of the survivor function,
Fr(0)=1-pr(T<0)=1-F(0)=1-0=1 and so log Fr (0) =0
As a sequence the failure density function is given by using the first equation of (2.1)
and is:
fr(t) = h(t)exp(-H(t)) (2.7)
or ‘
F(t) =exp(—H(t)) (2.8)

Where H(t) is the integrated hazard function (H (¢) = fot h. (p) dp).

-



2.3.2 Discrete case
Using equation (2.5) for't = r and t = r + 1 respectively, and taking the difference, we

get that:

5 o _pT=r) pr(T=r+1)
pr(T2r)—pr(T2r+l)=pr(T=r)= O A(r+1)

pr(T=r+1)—[1—h(;)(]r};(r+1)P?‘(T=r)=0 (2.9)

Using equation (2.9) recursively, the probability of the failure time to be equal to the

integer ris:

por(T=r) =pr(T=O)ﬁ[1—h(;)gi,;(i+l), r=0,1,2,... (2.10)
=0

Assuming, also that H (t) = Z:m <t (log (1 = h(j))), equation (2.8) is still valid in
. the discrete case.

Where t(;) is the j** ordered failure time.
Another useful tool, used especially in the likelihood calculation is the risk set, in-

troduced by Cox (1972). Principally, we assume n subjects, observed to failure and
k failures. In other words, ties are assumed conceming‘ the failure times, unless k is
equal to n. Also, let m(;) be the multiplicity of the failure ¢(;). Then } m = n and
m() =1, k = n in the continuous case. Assuming the order failure times as 71, 72,..., 7«
(or by b2y e t(k)), the r1sk set is defined as all those subjects whose fa.ilure or censor-

ing is at least equal to a specific time point. The definition of the time risk at time t = 7;

is:
R (i) = {j, t; >7:, Wheret; is the failure time of the random subject j}

The total number of subjects that belong to risk set ® (i) is denoted by T(3)- Moreover,
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we denote by I; the label of the subjects who fails at 7;. As a result I;is equal to the
integer 4 if and only if 7; = ¢;
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Chapter 3

Specific Distributions

3.1 Introduction

In this chapter we consider some specific distributions that are useful for survival data.
Even though any non negative random variable is a possible candidate for the distribu-
tion of T, or even further any distribution including also negative real values is a likely
alternative for log(T") distribution. For analysis purposes the most used are included in
the current thesis and presented in the Tables (3.1), (3.2), below. The Survivor function,
as well with the Hazard rate function are displayed (whenever an explicit form exists) in
both continuous and the discrete case. Especially, in the continuous case the various dis-
tributions can be classified according to whether they are over or underdispersed relative
to the exporient;ial distribution, which has a constant hazard rate. Greek letters are used
for the parameters of the distributions. Thus p will denote the reciprocal of time and
can be interpreted as a rate. Other letters like k and 7 will be treated as dimensionless

parameters.

13



3.2 Continuous Distributions

3.2.1 Exponential Distribution

Definition

A continuous random variable T" with Survivor function

4

Fr(t)=e*,t20,p>0 (3.1)

is exponentially distributed with parameter the Greek letter p. Using mathemat-

ical notation, we write that T « exp(p).

The cumulative function is given by

Frit)=1=-Fp(t)=1—-e",t2>0, p>0 (3.2)

and the known density failure function is given by the minus derivative of the survivor
function (3.1). That is

fr(t) =—Fz(t) = pe™*,t 20,p> 0 (3.3)

The Hazard ratio is given by the formula (2.34) illustrated in the previous chapter.

Otherwise

Properties
o The last formula (3.4) just illustrates that the hazard rate of an exponential failure
distribution is a constant. This ¢ondition is necessary and capable to ensure that
any non negative random variable T is exponentially distributed. Both the necessity

and capability arise from the univocal relation between the hazard rate function
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and the failure cumulative function.

J Distribution Name | Survivor Function | Density Functioin VI;Iazard
Ezponential et I pe~?t 7 P
Gamma = olup)t” e7 );(;1 Zdy p(pt)=—Lel=(ot)) %n—n_[‘):-le("‘)

e — KL=l {pt)
Weibull e~(Pe)" kp(pt) < le=(et)" kp(pt) =1
Compertz-Makeham e(%_” ot=55=%) (pre72* + pg) F' (t) Po + p et
Compound ezp/tial % 5%,% Tl -4

—

Log normal ' —_ me(‘ﬁ%—#J nonmonotonic
Log logistic (L+(pt)") " rp (L (pt)) 2 - | B
Inverse Gussian — \/%e( M S

 Scale family F(pt) Leglet) L
Proportional hazard E(t) g P (F (11‘))‘7.—I g(¢) ph(t) ]

Table 3.1:  Survivor Density and Hazard functions in the Continuous case

Distribution Name | Survivor Function | Density Function | Hazard
Geometric distribution || (1 — p)*™*! (1 - p)* p

e e 7 s ¢! p
Yule distribution %p’r (T =t) (p+1)(P+§)'"(P+t+1) prt+l

Table 3.2:  Survivor Density and Hazard functions in the Discrete case
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e In case the surviyal or else failure time follows the exponential distribution with
parameter p > 0, it can be shown that the conditional probability of the failure
time T exceeds the 7+ z, given that T > T, is equal to the unconditional probability
of T > z. The last property is called lack of memory and it defines univocal the
distribution of the failures to be the exponegtial. The property of lack of fit allows

the use of the exponential distribution for the description of the life time of a system

when there is no actual loss in the system due to the passage of time. Nevertheless, _

in the framework of survival analysis this situation is unreal as it actual accepts
that the working time does not result to damage in the survival time. There are

cases althoug_h where this situation is found, like in reliability theory when analysis

focuses in the life time control with replacement.

The exponential distribution was widely used in early work on reliability of, for exam-
ple, electronic components and to a more limited extent in medical studies. Only one
adjustable parameter is essential for the exponential distribution. Thus the methods
based on it are not robust, even in modest variations from the real failures, for instance
departure from the tail of the distribution. For that reasons the methods used are based

on less stringent assumptions about the distributional form. Various idealized models

lead to the exponential distribution.

Genesis Schemes

o Assume {X;, t > 0} be a Poisson stochastic process with rate p and Ty = 0, 71,
T», ... be the sequence of the time points in which failures occur. Then for every
integer n > 0, the sequence of the intermediate time between two events, T} — Tp,

T, — Ti,... is a sequence of fndepehdent and identical exponential that do not

depend on the specific time points T3, T, ... in which the events occur.
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e When the hazard rate function is a constant h(t) = r, r > 0 then the distri-
bution of the random variable T which describes the failure time of a subject has
survivor function equal to the (3.2) equation by replacing the parameter p with the

constant r. In other words T ~ exp(r).

e The next two parameter families of distributions can be reduced into the exponen-
tial distribution, by letting only one parameter to vary.

density(x, n = 100)$y
4

0.2

0.0

Figure 3-1: Exponential density functions. Solid line: Mean=1 and Line with circles:
Mean=2
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Figure 3-2: Exponential survival time. Bold line: Mean=1 and Normal line: Mean=2

08

06

u4

Figure 3-3: Exponential hazards. Bold line: Mean=1 and Normal line: Mean=2
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3.2.2 Gamma Distribution

Definition

The continuous random variable T follows the Gamma distribution with parameters

p and an extra one k > 0 if the survivor function is given by
o [ plsp e
Fr(t) = —_— i
) = [ BB (35)
where I'(«) is the Gamma function defined by the equation

I'(z) =/ e ¥y ldy, t>0 (3.6)
0

The density function of T is given by

_ e"p(pt)"
f@) = TRy 3.7

By putting k equal to unity, the density function of (3.7) reduces to the exponential
density. In addition when p = 1 the distribution derived from (3.7) is called the stan-
dardized Gamma. In this spot, the cumulative function of the standardized Gamma is

given by

t

I,(t) = Fr(t) =/0 f(—la—)e—yy“'ldy, t,y>0 (3.8)

Properties

The hazard rate is given by the use of the last equation (3.8) and equals to

_ _plpt)=teC
") = T~ (D)

e The function I,(t) is called the defective Gamma function and its values are usually

(3.9)

contained in tables. These values can be used along with the following first remark

to evaluate the probabilities of unstandardized Gamma distributions.

19



Remark 1 If T~ Gammal(k, p) then p(T< t)=I.(pt)

e The hazard function of the Gamma distribution either decreases for p < 1 (see the
thin curve in Figure 3-6), or increases for p > 1. In case p = 1 the exponential
distribution arises, which was explored previously (Section 3-2).

Genesis Schemes

e Assume that T is the waiting time until an event happens, in a Poisson process

with parameter p. Then T~ Gamma(x = n, p).

N
& —— Shape 0.5
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~ = §BP
Y / -
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Figure 3-4: Gamma density functions all with mean equals 1 and different shapes
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Figure 3-6: Gamma hazards for p = 0.5 (thin line) & p=5

3.2.3 Weibull Distribution
Definition

The continuous random variable T with survivor function

21



Fr(t) = exp[—(pt)~], t >0, k,p>0 (3.10)

follows the Weibull distribution with parameters p, < > 0. The density function of

the failure T is given by

Fr(t) = kp(pt)=~te”¥" (3.11)

There is a univocal relation between the Weibull and the Exponential distribution

given in the second Remark,
Remark 2 If T~ exp(p) then the random variable Y = T'= ~ Weibull(p=, k)

The last remark make Weibull a useful tool not only in Survival analysis but in the
reliability theory, as well.

Properties

The hazard rate is then equal to,

he(t) = Kp(pt)< (3.12)

e The non negative random variable T follows the Weibull(p, ) if and only if the age-
specific or else hazard rate is given by the equation (3.12), where p, x are positive

constants.

e Similar to the Gamma distribution, the hazard rate of the Weibull decreases for
k < 1 and increases for k>1. For k=1 we have the exponential case. Also, for k>2

we have that the hazard increases faster than linearity (Figure 3-9).

Genesis Schemes

e If the hazard rate evaluated in the time point t hp(t) is a power function of time
then the distribution of the random variable T', which describes the life time of a

22



subject, is Weibull, defined as in (3.11).

e The asymptotic distribution of the smallest ordered statistical function from a

predetermined r.v. is proved to be the Weibull distribution.

Figure 3-8: Weibull survival time with k =0.5 (thin line) and k=5 (dark line)
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Figure 3-9: Weibull hazards with k& =0.5 (thin line) and k=5 (dark line)

3.2.4 Gompertz-Makeham Distribution

Definition

The hazard function using Gompertz-Makeham distribution as the distribution of
the failures T is

hr(t) = po + pre” (3.13)

24



Figure 3-10: Gompertz-Makeham hazards with k= 0.5 (thin line) and k=5 (dark line)

Putting p, = 0, we have the Gompertz form of the distribution.
The survivor function F is given by using (2.8) and equals to

F(t) = exp (& — pot — ﬂe“’Qt) (3.14)
P2 P2

l 1.5 2

Figure 3-11: Gompertz-Makeham survival time with k= 0.5 (thin line) and k=5 (dark
line)
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Finally the density function of the failures is

p
f(t) = (p1e”* + po) exp <§i — pot — p—;e”zt) (3.15)

3.2.5 Compound Exponential or Pareto Distribution

Definition
The continuous random variable T with survivor function

Fr(t) = (7(% (3.16)

follows a Compound exponential distribution or Pareto with parameters p,

and « The density of the T random variable is now given by

frlt) = s .17

Properties

e The hazard rate function which arises from the (2.1) (3.17) formulas, is

K

T (3.18)

hr(t) =

Some Pareto hazards are plotted in the Fig 3-14.

e As follows directly from the way of its construction, the current distribution is
overdispersed relative to the exponential distribution, to which it tends as kK — co.

When & is small (3.17) has a very long tail (see Fig 3.12).
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Figure 3-12: Pareto density curves for py=3 and « equals to 0.5 (dark line) and 5 (thin
line)

Figure 3-13: Pareto survival time for py=3 and x equals to 0.5 (dark line) and 5 (thin
line)
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Figure 3-14: Pareto hazards for p,=3 and & equals to 0.5 (dark line) and 5 (thin line)

Genesis Schemes

e Let us assume that for each individual survival time is exponentially distributed
as in section 3.1. In addition, considering this time that the ratio varies randomly

between individuals, the conditional distribution of T given P = p is

frip(tlp) = pe™*
Then the unconditional density of failures T is

frt) = /0 ) pe" fo(p)dp (3.19)

Assuming that f,(p) is coming from the Gamma distribution with mean p, and index

k, the density in (3.19) is reduced to the density of a Pareto distribution in (3.17).
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3.2.6 Log-Normal Distribution
Definition

One of the most commonly used distribution is the Normal distribution with density
function

f(z) = (2r0®) " exp (—(—%—(},—2’9—2) (3.20)

Since the Normal distribution allows negative value (3.20), a plausible way of using it

in Survival analysis is to take logT normally distributed. This is equivalent to assuming

a lognormal distribution for the failure times. The corresponding density is defined

in the positive domain of Real numbers and given by

fr(t) = (2ra®t?) /% exp (—%”—)2> (3.21)

In both (3.20) and (3.21), p and o are the mean and variance of the Normal dis-
tribution, i.e. log(T") ~ N(u,0?). The mean and variance of the lognormal distribution
are exp(p + 0?) and exp(2p + 0?)(exp(c®) — 1) respectively. The survivor and hazard
functions of the lognormal distribution cannot be written explicitly, but only in terms
of integrals. For small values of o, the lognormal density looks very like a Normal one.
We can notice this in the Fig 3-15, where the solid thin line, which is closer to a Normal
density, has the smaller o. Also, as the standard deviation increases, the density curve

has greater tails and departure from the that of a Normal distribution.
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Figure 3-16: Log Normal survival time with mean equals 1 and 0% =1 (solid line) and
o? =5 (dashed line)
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Figure 3-17: Log Normal hazards with mean equals 1 and o?= 1 (solid line) and ¢ =5
(dashed line)

Properties

e The hazard associated with (3.21) is non monotonic. Particularly, considering the
hazard functions of some lognormal distributions, they are initially increasing, but
eventually decreasing, tending to zero. Fig 3-17 includes a couple of simulated
hazard curves, where the solid one has variance 1, whereas the dashed one has a
greater variance equals to 5. This behavior is somewhat counter to what is usually
expected of lifetimes in practice. However, the lognormal failure is sensitive when

predictions are based on small values.

e Even if, the exponential distribution is not a special case of the lognormal one, a
substantial amount of data is necessary to discriminate empirically between them,

especially in the case when we have that T’ ~ log N (exp(p + 30?),0.64).
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3.2.7 Log Logistic Distribution

Definition

As given in Cox & Oakes (1984), the continuous logistic density logit(v, T) is very similar
to a normal distribution. As before an appropriate distribution for the failure 7’ random
variable is the log logistic family, obtained as previously in the log normal case. Hence,

the survivor function, the density and the hazard function become respectively

Fr(t) = (1+ (pt)")™ (3.22)

fr(t) = mp™t* (1 + (pt)*) (3.23)
_ Kpntn—l

h(t) = D (3.24)

Where p and & are related with v and 7 respectively by the equations: exp(v) = p~! and

k=1
:

Figure 3-18: Log logistic densities for k=2 and p equals 0.5 (thin line) and 5 (thin line)
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Figure 3-19: Log logistic survival time for k=2 and p equals 0.5 (thin line) and 5 (dark

line)
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Figure 3-20: Log logistic hazards for k=2 and p equals 0.5 (thin line) and 5 (dark line)

Properties

e Comparing the last two models, the log logistic has relatively simpler forms achieved
for Fr(t), fr(t), h(t). If £ > 1 the hazard has a single minimum. On the other hand
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when k& < 1 the hazard is decreasing.

e A condition for the existence of the rth moment is the parameter « to be greater

than r.

3.2.8 Generalized F ]jiétribution
Definition

This particular distribution is obtained by taking T to be a multiple of the «,th power of
a random variable Fix, ;) having the standard (central) variance ratio distribution with

(K2, #3) degrees of freedom. In other words

T=p tF; (3.25)

K2,%3)
The three-parameter generalized gamma family actually involves when &3 — co.
Many of the above distributions can be derived from the generalized F by adjusting the

dimensionless parameters (K1, K2, K3)-
For an example we simulated times from the following expressions of the F distribution

12

T = { 78
2

Fiao

The following survival curves Fr (¢) are obtained. Both curves decrease and tend to zero

in an exponential rate.
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Figure 3-21: Generalized F survival time for ki, k3=2 k=3 and p=2 {solid line) and 1
(dashed line)

3.2.9 Inverse Gaussian Distribution
Definition

Considering the Inverse Gaussian distribution, the failure time random variable T

will have density function

(ﬂﬁ) o <_M> (3.26)

2mt3 2t
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Figure 3-22: Inverse Gaussian survival time for p=1 and x=1 (solid line) and 4 (dashed
line)

Figure 3-23: Inverse Gaussian hazards for p=1 and x=1 (solid line) and 4 (dashed line)

with mean 1/p and variance 1/,/«. The survivor function has the complicated form

1-¢ [(-%) v (-1+ pt)} - 62“§ [— (p_nt) v (1+ pt)} (3.27)
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Where &(.) is the standardized normal cumulative function.

Applying (3.27) with mean equals to unity (or else p =1) and xk={} the curves in
Fig. 3-22 are obtained. As well, the hazard curves Fig. 3-23 follow By using the relation
between the survival function and the hazard ratio in (2.8).

Genesis Schemes

e Considering the stochastic process of the Brownian motion, the first passage time

to a barrier has the inverse Gaussian distribution.

3.2.10 Scale Family
Definition
Suppose that ¥, g and E(t) denote respectively a survival function, density and hazard

over non-negative values, the corresponding functions

F (t;p) = F(pt)
§(t; p) = pg(pt) (3.28)
h(t; p) = ph(pt)

define the scale family generated by the F(t)

3.2.11 Proportional Hazard Family

Definition

Finally, another useful general family is generated from the survivor function, density

and hazard F; g and h(¢), as before. Specifically, the relations are used

F(t;p) = (ﬁ(t))»” :
.ﬁ(t;ﬂ)"-'ﬂ_(F (t))p g(t) (3.29)
Rt p) = ph(t)
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This is called the Lehmann or proportional hazards family based on F(t) The
families (3.28) and (3.29) are equivalent if and only if A(t) o« 9 for some q, so that both
represent Weibull distributions.

P

3.3 Discrete Failure Distributions

3.3.1 Geometric Distribution
Deﬁnitior}

A discrete random variable T with survivor function

Frty=0-p™ (3.30)
= ¥
2 y
N — pe07
: L T
S- LL LL"L,_
_L'“"-uv.-h
g.
0 10 zB M © M

Figure 3-24: Geometric Survival times for p=0.7 (solid line) and 0.1 (déshed line)

is said to follow the geometric distribution with parameter p. The function in
(3.30) is defined on the positive integers, while p€ (0,1). By notation T~ G(p).' The
probability function is given by

l'p' e e RPN o
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p(T=t)=p(l-p) (3.31)

given the previous restrictions for p and t.

The example step survivors Fig. 3-24 are derived by applying (3.30) with proba-

bility 0.7 and 0.1 respectively. The corresponding hazards are constant and equals the
probability values as we will see. '

Properties

o The hazard rate of a discrete failure distribution T, with non-negative values, is
constant equa.ls. to p if and only if T follows the geometric distribution. This

condition arrives from the univocal relation between the hazard rate function and

the failure cumulative function, given in (3.10).

The relation hr(t)uT (t) = 1 defines univocal the distribution of T to be geometric
with parameter p>0. The function uT (¢) is called the mean residual life at time t
and defined as the expected value E(T — tlT > t), where t=0,1,2,... . See Dimaki
(1995).

An important prope;ty of the geometric distribution is the lack of the cumulative
memory, which is analogous to the property of the exponential one. In particular,
the conditional prdba.bility pr(T > t +y[T > t) is equal to the unconditional
probability pr(T > y).

Genesis Schemes

e We assume a sequence of Bernoulli trials. Let us also denote as T the number of

failures until the first success. Then T follows a geometric distribution with the

survivor function given in (3.30).
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e When the hazard fL}nction h(t) =p, p > 0 then the distribution of the discrete

random variable which describes the lifetime of a subject has the survivor function

given in (3.30).

3.3.2 Yule Distribution

Definition

A discrete random variable T with survivor function

t+1
Fr(t) = 5 7 (T=t) (3.32)
- _LL._
2 |‘| e T

/

8
8

Figure 3-25: Yule survival times for o equals 0.2 (solid line) and 0.1 (dashed line)

is said to follow the Yule distribution with parameter p (see Xekalaki (1983a),

(1983b) and Dimaki (1995)). The function in (3.32) is defined on the positive integers,
ie. t=0,1,2,...p > 0. By notation T~ Yule(p). The probability function is given by

pt!
PC=0= G+ (+ie ] (3.55)
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given the previous restrictions t.

The hazard manipulation is as follows

From the equation (2.5) we have that A (t) =Zg;3 = W(chgf_::gT=t) and using the
pr{T=t)

survivor function (3.32 i t) = = =
(3.32), the last equation becomes A (¢) =0 e (TS s

P
h(t) = —E—
©) = v (3.34)
s.
— 2
.{-L - p=.1
a L'.j
al
g 13 -1} "L 40 ﬁ;

Figure 3-26: Yule hazards for p equals 0.2 (solid line) and 0.1 (dashed line)

Properties

e The hazard rate of a discrete failure distribution T, at time t, is inversely propor-

tional to the time t if and only if T follows the Yule distribution.

e The relation Ar(t)uT (t) = ¢ defines univocal the distribution of T to be the Yule

with parameter p>0.-
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Chapter 4

Popular and Recent Approaches

4.1 Introduction

In the current chapter, we present some survival analysis methods that are used com-
monly in the literature. Especially, we firstly copsider the Kaplan-Meier estimator for
the survival function. Secondly, the Accelerated Life Model and the Proportional Odds
Model are given along with some numerical examples. Finally, Additive risk Models are

included in the last part of the chapter, as presented by several authors.

4.2 The Kaplan-Meier or Product-limit estimate

A nomn-parametric estimate of the swrvivor function in the case of any right-censored

samplé, is the productQIimit .(PL) or Kaplan-Meier estimate (Kaplah Meier (1958)).
Assuming once again n subjects under study and & failures to occur. Also let my;)

be the number of failures at time 7;, where 7, < 72 < ... < 7% are the ordered failure

times. We recall endmost the number r; as the total number of individuals in risk at 7.

The Kaplan-Meier estimator of the survivor function, say S(t), is

so= I (1—’"—1_2’-’) (4.1)

je{s: i<t}
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In case of uncensored observations, equation (4.1) reduces to the simple expression

5\ _ 7 surviving past t

5 - (4.2)

An estimate, based on asymptotic theory for the standard error of S (7) at a fixed

value 7 is

1/2
st.er (5‘ (T)) =5(r) { Z ﬁ_@)—mm—)} (4.3)

je{s: Tj<t}

An apparent estimate of the cumulative hazard H(t) is given by

H(t)=—-log5(t) = —log [ H (1 —@)} (4.4)
: j&{s: !

VT_-,'<t}

A slightly simpler estimate of H(t) is

- mys
2ty= > % (4.5)
je{j: Ti<t} 7

The last estimate of the cumulative hazard H, can be found as the Nelson’s estimate.
The standard error of A (.) is the same as that of A (.) at a specific time 7 and is

given by the Greenwood formula (Klein (1991))

: 1/2
(£ g ()
st.er (H (7')) = ster (A (1)) = {56{1-:2:11.«} m} (4.6)
’f‘he product limit theory can also be found in Crowder et al (1995) and in Lee (1992) .
The Nelson's estimate is a step function. It starts at zero and has a step of size
-"-:‘jil at each failure. One disadvantage with this estimation is that it is susceptible

“to ties in the data. For that reason, a modified Nelson estimate is suggested by Nel-

son and Fleming and Harrington (1984), denoted by H (.). The relationship H (t) =
—log F(t), which holds for any continuous distribution, leads to the Fleming—Harrington
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(FH) (Fleming and Harrington (1984)) estimate of the survival, which is

Senlt)=ew (-H() © (7)

A step function is also derived after plotting S (t) versus ¢, for all t values. In the
special case of Weibull distributed data, a plot of the points (log 75, log {—log (1 — p;)})
for j=1,2,....k should be approximately linear if the Weibull model is suitable. Where p;
is equal to the quantity, 1 — 3 (S (a;) + S (a,~+1)) , calculated in the time points a; from
i=1...k. Similarly a plot of the points (log 7;, ®™* (p;)) should be approximately linear if

lognormal model is appropriate.

4.2.1 Example Study

Maintained || Non-Maintained
Time Status Time Status

9 1 5 1

13 1 5 1

13+ O 8 1

18 1 8 1

23 1 12 1

28+ 0 16+ 0

31 1 23 1

34 1 27ﬂ 1

45+ 0 30 Ll

48 1 33 1

161+ O 43 1 :
- - 45 1

Table 4.1:  Data set for AML maintenance study. The + indicates a censored value.
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The Data in Table (4.1) are those from Embury et al. (1977) on trial to evaluate effi-
cacy of maintenance chemotherapy for acute myelogenous leukemia. Acute myelogenous
leukemia is a fatal type of leukemia that arises within some weeks, and the remission
-period (period that the process of leukemia reduces or even stops) is smaller than that of
the cher types. The patients are assigned into two groups. In the first group, patients
received maintenance chemotherapy are included, whereas, in the second group they
did not. The ob jective of the trial was to see if maintenance chemotherapy prolonged the
time until relapse. Indeed, the columns time on Table (4.1) refer to the time of remission,
and the status columns indicates whether the observation is censored (status equals to

0) or not. The symbol of addition + is used also to indicate the censored survivor times.

group=DMaintained

time || n. risk || n.event su;vival std.err || lower 95% CI up;;; 95% CI
9 11 1 0.909 0.0867 | 0.7541 1.000
13 10 1 0.818 0.1163 || 0.6192 1.000
18 8 1 0.716 0.1397 | 0.4884 1.000

\]

[ 23 1 0.614 ] 0.1526 | 0.3769 0.999

31 |5 1 0.491 0.1642 | 0.2549 | 0.946
34 |4 1 0.368 0.1627 | 0.1549 | 0.875
48 |2 1 0.184

Table 4.2 : Kaplan-Meier estimated Survival times for Maintained groﬁp

46

T e~



group=Non-Maintained — 7
h -
time | n.risk || n.event | survival || std.err || lower 95% CI | upper 95% CI
. %‘% L = |

5 12 2 0.833 0.108 | 0.647 [ 1.000
8 10 9 0.667 | 0.136 || 0.447 Lo.995
12 8 1 | 0.583 0.142 0.362 |r1.941
23 6 1 0.486 0.148 0.268 0.883
===
27 5 1 0.389 0.147 |/ 0.185 0.816
= —
30 4 1 0.292 0.139 | 0.115 0.714
33 3 1 0.194 0.122 0.057 0.664
43 |2 1 0.097 0.092 | 0.015 0.620
45 1 1 £ 0.000 NA NA NA

Table 4.3 : Kaplan-Meier estimated Survival times for Non-Maintained group

In the above tables ((4.2),(4.3)), the estimated survival times are given along with

the standard error at each specific observation, using the equations (4.1) and (4.3). Con-

fidence intervals, at a specific time point T are approximated by the formula

S (7) £ 242 X st.er (S (T)) (4.8)

Equation (4.8) may give survival bounds that are greater than the unity or less than
zero. On the other hand confidence intervals based on the cumulative-hazard scale given

by
exp (log' S+ Zg/2 X S€ (fl)) (4.9)

have the best performance, even though they may sometlmes be greater than unity.

In equatxon (4.9) the quantity ze/ is the upper a/2 qua.ntlle of the Standard normal
distribution. In our case & equals to 0.05 and 95% confidence intervals are calculated.
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Figure 4-1: Kaplan Meier Survival curves

e Another release of the equation of the confidence intervals is on the log-Hazard or

log-log survival scale,

2

exp (—exp (log (—1logS) £ z5/2 x se (log I;[))) (4.10)

e A further refinement to the confidence interval is suggested by Dorey and Korn in
1987. When the tail of the survival curve conta.in_s much censoring and few failures,
there will be one or more long flat segments. However, intervals based on the above

equations ((4.8), (4.9) & (4.10)) are constant across these censors. Dorey and Korn

point out a correction to the lower limit which is now based on the effective number -~

at Tisk between death times.

Similar results are derived, using the Fleming-Harrington estimators for the survival

times. Particularly, the estimated values presented in tables (4.4), (4.5) a;re slightly
different. Indeed for sufficiency large sample sizes the F leming-Harrington and Kaplan-

48

i ARLE i
S sl ekl

e



Q.
-
n-
=
2 v+~ Maintainanca Groug
2 o === Non-Maintainancs Group
o
3
e a
a
.
~ R
-
o
o
,l) T T
9 50 100 150
Survival Tims in Wesks

Figure 4-2: Fleming Harrington Survival curves

Meier estimators are arbitrarily close to one another. In addition the survival curves are

plotted in Figure 4-2.
group=Maintained
time || n.risk | n.event || survival || std.err || lower 95% CI | upper 95% E;
9 11 1 0.913 0.0871 || 0.7575 1.000
13 10 1 0.826 0.1174 0.625_3 1.000 )
18 |8 1 0720 | 0.1422 | 0.4974 1.000 x
23 7 1 0.632 0.1572 | 0.3882 —1.0,00
_31 5 1 0.517 0.1731 | 0.2687 0.997
e ERE 0403 | 0.1781 | 0.1695 0958 |
48 2 i 1 0.244 0.2038 | 0.0477 1.000 AR

Table 4.4 : Fleming-Harrington estimated Survival times for Maintained group
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group=Non-Maintained

time || n.risk | n.event || survival || std.err || lower 95% CI | upper 95% CI
) 12 2 0.847 0.109 0.657 1.000
8 10 2 0.693 0.141 0.465 1.000
12 |8 1 0.612 0.149 0.379 0.987
23 6 1 0.518 0.138 0.285 0.941
27 5 1 . 0.424 0.160 0.202 0.889
30 4 1 0.330 0.157 0.130 0.838
33 3 1 0.237 0.148 0.069 0.808
43 2 1 0.144 0.136 0.023 0.914
45 1 1 0.053 INF 0.000 1.000

Table 4.5 : Fleming-Harrington estimated Survival times for Maintained group

In order to compare the two different groups with respect to their survival distri-

butions we can use the NIantel—Haenszel or else known as log-rank test, the Gehan-

Wilcoxon test which is used modified as the Peto test.

Log rank test

The log-rank test is a chi-square which uses as its test criterion a statistic that provides
an overall comparison of :he Kapla.n-Meier curves being compared. Like in oﬁher kind
of chi-squared tests, observed and ezpected cell counts over categories of outcomes are
required. The categories in our case are defined by each of the ordered failure times for
the entire set of the data being analyzed.

Imagine p separate groups of patients. Let us denote by m;; the number of failures
in the ith group and in the jth failure time t(;). Also we can extend the notation of the

subjects in risk set as r;; which represents those in risk in the ith group and in the jth
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failure time. Then the expected number of failures in the kth group is

Tkj .
E, = m,j-r—J-, c=1.p& j= 1.k ) (4.11)

-7

Where the k; is the number of observations in the kth group. The rank statistic is

given by

? = (Oi-Ei)2

i m (4.12)

log -rank statistic=

Where O; is the sum of the observed failures in the ith group. Under the null hy-
pothesis (that the KNI survival curves are statistically equ:ivalent) the log-rank statistic
is approximately chi-square with p-1 degrees of freedom. An approximation formula of
(4.12) derives by the substitution of the Var (O; — E;) with the expected values E;.

Thus with respect tc the leukemia example, Table (4.6) includes the log-rank statistic
for both groups. The p-value 0.065 suggests that there is mild evidence that the main-
tained group has better survival than the non-maintained group. Another test statistic

is the Peto modification of the Wilcoxon test.

Wilcoxon and Peto statistics

The above procedure may be generalized by the inclusion of weights w; for each failure
time. The overall weighted vector is then 3 w; (O; ~ E;) , where O; — E; are the observed
minus the expected values added in the ith group. Respectively the variance of this

quantity is > w?var (O; — E;) and the new statistic becomes now,

? 2
5O B (4.13)
. wiVar (0; - E;)

When w; equals one, quantity (4.13) reduces to the Mantel-Haenszel or long-rank
test, for w, equals ry, quantity (4.13) is the Gehan-Wilcoxon test, and for wi equals

gKM , quantity (4.13) is the Peto modification of the Wilcoxon test.
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The distribution of the statistic in form (4.13) is approximately chi-square with p-1
degrees of freedom. Table (4.6) includes the Peto statistic for both groups giving a p-
value 0.096. Thus, the previous result is verified in the absence of evidence that the two

curves differ.

e The different formulas described above, indicate that the Peto test places more em-
phasis on the information at the beginning of the survival curve where the number
at risk is large. In other words, early fadures receive larger weights while failures

in the tail of the survival curve receive smaller weights.

e On the other hand, the log-rank test, emphasizes failures in the tail of the survival

curve, where the number at nsk decreases over time,.yet equal weight is given to

each failure time.
Group __N— Observed Expe-cted long-rank | Peto
Maintained 1] 7 " |l 10689 1.273 0.859
Non-Maintained | 12|11 | | 7.311 1.862 1.081
Chi-Square test | 3.396 2.78 |
P-value 0.065 | 0.096 |

Table 4.6 :
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4.3 The Accelerated Life Models

Assuming that the subjects are divided into two groups, we apply. a different treatment
in each group. We represent those two treatments by values 0 and 1 of the explanatory
variable Z. Then the survivor function of the one group e.g. at z = 1 is a function of
the survivor of the other group e.g. at z = 0. Particularly, there is a constant, namely ¢
such that

Fy (t) = Fo (vt) (4.14)

Thus, the density function and the hazard rate are given respéctively as

fi (&) =¥ fo (y2) ' (4.15)

hy (t) = Yho (Y1) (4.16)

More formally, suppose that there is a positive function v(z), where z are the ex-
planatory variables. The accelerated life model holds when the survivor function F(t;2)

is of the form

F(t2) = Fo (t¥(2)) (417)

The density and hazard functions are

J

f(t:2) = (2) fo (t¥ (2) (4.18)

h(t;z) = (2) ho (t¥ (2)) (419)

The last equation (4.19) is derived by (2.6) and (4.17) as follows
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&

h(t;z) = —%Iogﬁ’ (t;2) = —%108 Fy (t4 (2)) = ¢ (2) ho (t9 (2))

The function Fj(.) refers to the situation when z equals to zero, that is no values
from the explanatory variables are used to evaluate the above functions. So, from (4.17)

we can conclude that under the standard conditions z = 0, ¢ (z = 0) = 1. Applying, the
above equations (4.17), (4.18) and (4.19) in terms of random variables, we can infer that

T =To/v(2) (4.20)

Where T; has survwor function Fy(.). If uy = E (log Tp) , We can rewrite (4.20) as

' log T = log (Tb) — log ¥ (2) (4.21)

Assuming log(Tp) as a random variable, we can write log(Ty) as the sum of p, + ¢,

where ¢ is a new random variahle with mean zero. After the last considerations, the

model in (4.21) becomes

logT = py —logy (z) + ¢ (4.22)

Note that ¢ is coming from the random variable lc_)g (Ts) , which do not involve the
vector z. Thus, the distribution of ¢ is independenﬁ of the explaﬁatory variables.

In problems in which the values of z are finite and disfinct, it may be unnecessary to
specify ¥ (.) further. In other cases, a parametric form % (z; B) is essential For instance,
as ¥ (z; ﬁ) should be non negative and 1 (0; 3) = 1, one possible option is to choose the
exponential function. In other words we can write ¥ (z;8) = eﬁT‘, and transform the

equation (4.22) into the linear regression model
logT =g —B z+e¢ (4.23)
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4.3.1 Time dependent explanatory variables

There are cases where the treatment variables are non constant, with respect to the
passage of time. In this spot, the hazard at any particular time t depends only on the
explanatory variable at that time, as the last varies according to time. This usually
involves the use as components of z(t) of integrals, summs, derivatives and differences of

the explanatory variables as originally recorded.
The essence of the accelerated life model is that the failure time is contracted or ex-
panded relative to that at the situation where z = 0. This suggests that for an individual

characterized by z(t), time t¢, say, evolves relative to the time t(® for that individual

as,

dt®) = dt<°> 9 [z (8%)] |  (4.24)

The last formula (4.24), actually suggests that the any change in the time of a system
with z the explanatory vector, equals to the same change in the time of a system with
no explanatory information, divided by the function 9 of the accelerated model. So

0 = /(; t(Z) Pz (u)du = T (¢)
and the new relation of the failures is now |
T =01 (Tp)
As a consequence, the survivor function, density and hazard are

(t {Z }) Fo‘If (t
FE{z()D) =¢ (=) (T ({) (4.25)
ht{z()}) =¥ (2 () ko (¥ ()

For instance, we can consider the comparison of two groups. T}len, in the place of

95



the binary values of z, we place the function

0 first group
z2=
£(t) second group

k4

Where £ (t) is a function of time. If we take ¥ (z) to be in the exponential form e?,
the survivor function for the second group will be from (4.25)

Fe;{z())=FK A(‘/ot e“’”du)

Thus a given survivor function Fj (¢) is reproduced by taking

~

& = diltF;lFl ()

A fairly rich family of models are produced by choosing &; (t) = ¢/ for j lies between
0 and a suitable integer p j = 0...p. As follows in Cox and Oakes (1984), a suitable
function of the explanatory vecter z is the exponential, i.e. ¥ (z) = eﬁrz, where 8 is a
g X 1 parameter vector, with ¢ the number of the explanatory variables.

The incohsistency of the Accelerated life model is explained by the presence of several
types of failure . Each failure follows an Accelerated model with a different modifying

function 7. As z varies, the balance between the types of failure changes. In other words
the Accelerated models that represent d.iﬂ'grent failure, are not compatible.

Relation with proportional hazards model: Cox & Oakes (1984) showed that
when the initial distribution is the Weibull distribution (3.10) , with constant explanatory
variables, the accelerated life and proportional hazards models coincide.

Fy (t) = exp [ (pt)"] (4.26)

In this spot, using Weibull failure times in first place, we obtain survival curves
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Figure 4-3: Survivor estimated curves

similar to those estimated using the proportional hazards model. In the example shown
in Figure above (Fig 4-3) the failure times are generated from a Weibull distribution
with parameter A equal to 2, and the values are divided into two groups. There is no
statistically significant difference in those curves, fact which is supported by both the
p-value (0.8748) from the chi-squa.re’t'ést, which exceeds the 0.05 limit and thel hazard

ratio which is almost unity (1.023).

4.4 Proportional Odds Model

The Proportional Odds Model is expressed by the formula

(1-F(62) /F(tiz) =%, (1- Fo () /Fo 8) (4.1)

Bernett (1983). The defining ratio (1 — F (¢;z)) /F (t; 2) is actually the ratio p,.‘v-r(—z(;gi),

which is the odds on the event T < t. So last equation illustrate that the odds under
explanatory variables z is the product of the baseline odds (1 — Fy (t)) /Fo (t) times the

)
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function of z 1,. The greater the 1,, the greater the probability of a shorter lifetime.
Similarly to the Proportional Hazards model (we refer in next chapter), the current model
_ continues to hold under transformation of the time scale. Differentiating last equation

with respect to the time t yields —(-‘t—:))- h}(:()g . Thus from (4. 31) the hazard ratio satisfies

h(t;2) wz Ft;z) (1—F(t;2)

he(®) | R (-F®)
It follows from (4.27) that the hazard ratio equals to %, at t=0, and tends to 1 as

(4.27)

t— oco. The last indicates that the effect of the explanatory variables z on the hazard
diminishes as time goes on. That is, either the system_adj‘usts to the factors imposed on

it, or the factors operate only in the earlier stages, referring to time.

4,4.1 Two-sample case

A class of consistent and asymptotically normal estimates in the two-sample case is given

by Dabrowska & Doksum (1988). In particular, the definition of the generalized odds
ratio for T is given by i

Hr (tle) = { P, e (4.28)
' —log F (t), c=0

According to (4.28), Hr (t|0) is the integrated hazard, whereas Hr (t[1) is the odds of
the response T occurring before time t. For a value of ¢ other than unity, Hr (t|c) also
has an interpretation as an odds ratio.

We cons-i/dz/a; next, two independent samples {X; i =1...mand ¥; j = 1...n} of
lifetimes with distribution functions F and G, respectively. To tackle the problem of
modeling herein, we can assume (as in the literature) that the log of the generalized odds
rate given in (4.28) is linear in the expia.natbry variable, which identifies the sample. In

other words, the relation of the integrated hazards of the two samples is
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Hy (t) = 7 1Hy (1), for all t>0, and 8 > 0 ° (4.29)

An estimator used for ¢ is

-~

a=( /Olq,(u)(l <°+1>du) / T (Ga ()L~ Fn OV dFn(t)  (4.30)

where F, and G, are the left-continuous empirical distribution functions based on
the X and Y samples, respectively. Also, ¥ is some score function. Considering the
leukemia data, given in Table 4.1, where there is no absolute evidence that the survivors
in the patients of the maintained group are longer than those of the non-maintained

group. Thus, we can use the fully efficient estimate of ¥,
U()=2(1-¢)°

and substituting in the formula (4.30) we have as in (Dabrowska & Doksum (1988))
that,

- 2—’”- o (4.31)
S (m+1- 3)?
‘where Ny =37 I[Y; 2 X(,)] is the number of ¥} s at risk at time X(;). As before
X(; is the ith order statistic among the X's and [ is the indicator function.
Referring to the leukemia data, formula (4. 31) gives G = 0. 0137828

Next, in order to test the null hypoth&sls (Hp : 8 = 1) versus the alternative one
(H; : 6 > 1), we use the statistic

(mn/ (m +n))"? (@0 - 1) 3-12
which follows the standardized normal distribution under the H,. Here, the test statistic
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equals to -0.569393 which is greater than the 1 — ath quantile of the standard normal
distribution (2;_, = 1.64). So the null hypothesis cannot be rejected, and there is no
clear evidence for the reliability of the effect of the maintenanée chemothérapy. This
result agrees with the results emerge form both the long rank and the Peto tests.

4.5 Additive risk Model

The additive risk models has been studied, in various forms by numerous authors. Aalen
(1980, 1989) introduced a regression model, with response variable the conditional hazard
function A; (t) = h; (tZ;) for subject i, where Z; are its covariétes, given by the p vector
Zi=(Za,..., Z:)" . Aalen's model stipulates that

hi (812:) = Z{ o (t) (4.32)

where a = (ay,. .. ,a,,)T is an unknown vector of hazard func_tions.

An OLS estimator is then given, by applying the regression analysis techniques. Later
on, Huffer & Mckeague (1991), based the inference of the vector a on a weighted least
squares (WLS) estimator. Also, confidence intervals and bands were calculated, in both
grouped and continuous data. As grouped data, they perceived, the time points at risk
and the number of uncensored deaths taken over successive time intervals, for various
levels of covariates.

-

Another approach is made by Buckley (1984) . The model suggested is

hi(t) =¥+ R (& ) (4.33)

where 1) is the disease effect, which reflects to the mortality of the patient. Also,
h* (t; z;) is the hazard function for the ith individual (t=1...n), for causes of failure
(here the death) other than that under study, and finally, 2z; are the covariate of the
particular patient. In the current analysis, the effect of the disease is assumed either
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constant throughout the entire follow-up period, or piecewise constant within k follow-up
intervals. Maximum likelihood estimates along with related statistics, based on moment
estimators of the disease effect, are presented. Finally, the testing of homogeneity of r
arbitrary groups is enlightened.

Similar, models have been eloquently advocated and successfully utilized by other
authors, like Breslow & Day (1980, 1987), Pocock et al (1982), Pierce & Prestonﬁ_(1.984)v,
Thomas (1986) . In Lin & Ying (1994, 1995) , an augmentation form of the previ'olzs mod-
els is used. Particularly, the hazard function 4 (t; Z) for the failure time T is associated
with a p-vector of possibly time-varying Covaria.tés Z(.),as

h(t2) = ho () + B3 Z(2) (4.34)

where 0, is the p-vector of regression parameters, and hq (t) is the baseline hazard
function, which we review in the next chapter. The difference on the approach of the
current model (4.34), is that the inference for the baseline hazard function and the un-
known parameters 3, is based on the martingale feature of the partial likelihood score
function (see Gill (1980), Anderson & Gill (1982) and Cox (1975)). So, the problem of
elimination or estimation of the nuisance function hg (.) with the direct application of

the partial likelihood, is surpassed.

4.5.1 Construction of the Estimators
Firstly, let {IV; (t); ¢t = 0} be the counting process for the ith ‘subj.ect in the set, which
records the number of observed events up to time t. Thex;, the intenSity function or
else the mean number of events occurring in time unit, for NV (t) is given by

Y; () dH (& Z:) = Yi (¢) (dHo (t) + B3 Z: (t) dt) (4.35)

where Y; (.) is a 0-1 predictable process, and Y; (¢) = 1 if the ith subject is at risk at

time t, whereas equals to zero otherwise. Also H (¢; Z;) is the cumulative or integrated
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hazard function In this spot, the baseline cumulative hazard function is given similarly
by

mw=£mww (4.36)

The counting process N, (.) is uniquely decomposed for every i and t, in the form

MO =40+ [ Vi) E ) @am)

where M; (.) is a local square integrable martingale process (Anderson & Gill, (1982)).

From the last equation (4.37), an estimate of Hy (t), is

i (W) -Yi (W5 Z .
2 (B.2) =/ot B (z):;;f;j(?if Bo) (438)

The partial likelihood score function for 3, as given in Lin & Ying (1994) is,

U@ =3 [{AO-ZOHMO-XOF GO (@)

hee Y00
20 ===y

The solution of the equation U (@) = 0 gives an estimator for 3, which can be written

in the explicit form

n .co . -1 n =)
B= (;/0 x(t){z,-(t)‘_z.(t)}“dt)‘ (;/0 {z,-(t)-Z,-(t)}“dM(:(:)> )

where u® 2 = yu7.

The random vector n? (B - ﬂo) converges weakly to a p-variate normal distribu-

tion with zero mean and covariance matrix, which can be consistently estimated by the
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quantity A~'BA~!, where

A—n-lzf Y (t) {Z:(t) = Z (¢)} dt

=1

Similarly, ni {ffo ([3 , ) - Hy( .)} converges weakly to a zero-mean p-variate normal
distribution, and covariance Cov(t, s) (¢ > s), approximated by

Cou(t,s) = / 1 2im 8N L o (1) A BATIC (5)~C () AD ()~ C (5) A= D (1)
(Zj:l‘yj (u)

(4.41)
where C(t) = f; Z (u) du, and D (t) = ; 2‘“{22“:‘__’_ :i((‘j)} W | Next, if we denote the

survival function for an individual with a given covariate vector z (.), as F(t, z,), then a

plausible estimate of F(.,.) is

Pt2) = { A ;3, / Bz du} (4.42)

The process n? {}:" (;2)=-F(, z)} converges weakly to a zero-mean p-variate normal

distribution, with covariate function at point (¢,s) (¢t = s) equal to

s n3t ) dNi(u) " (t: 2) AL -1 -z
S(t:2) 8 >(s z) [f {Tia v} TE (24T pATC 62 (4.43)
+G' (t;z) A7ID (s) + G’ (s;2) A™1D (t)]

where G (t;2) = IN {z (u) - }du

4.5.2 Two-sample "example

Applymg an additive model for the leukexma data, mentloned previously (Section 4.2),
we can utxhze the above @tmata In our case, the cova.nate Zi isa bmary one, deﬁned

as 1 for the non-maintenance group and as 0 for the maintenance group. So the model
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Figure 4-4: Kim & Ying Survivor estimates for leukemia two sample data.

(4.34) reduces to

h(t; Z) = ho (t) + BoZ (4.44)

The estimates of the baseline hazard hg (t), the unknown parameter B, and the sur-
vivals for each group are given respectively in the Tables (4.7) & (4.8).
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ho(t;8) || S(50) | S(t1)
0 1 1
0.031 | 0.864 | 0.969
0.066 | 0.779 || 0.936
0.053 | 0.771 | 0.936
0207 | 0.617 | 0.813
0.133 | 0.617 | 0813
0.320 | 0.502 | 0.726
0231 | 0502 | 0725 |
0525 | 0.349 | 0592 |
0230 | 0.349 | 0.592
o615 |0.284 | 0541
0478 | 0.284 | 0541
[0833 [o.213 [ouss
0521 | 0.213 | 0.435
0998 | 0.169 | 0.369
0761 | 0.169 | 0.369
1476 | 0.081 | 0.228
1306 | 0081 | 0.228
4281 | oos1 [oou
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8 0.020279

st.er 0.0125112

t — statistic || 1.838832
p—value | 0.078862

Table 4.8: Parameter: 3, estimate and t-statistic.

-~

The survivor estimates are also plotted in Fig 4-4. The dashed stepped line referes
to the maintenance group, whereas the solid one, describes the survival curve of the
non-maintenance, known else in the literature as placebo or control group. The failure
time is measured in weeks, since the patient get out of the remission time. The range
between the two lines, is rather sma.ll, like in Figures Fig(4-1) and Fig (4-25) in the
previous analysis and there is no intense gvidence that the chemotherapy treatmeht, had
success. This initial assumption can also be drawnr froui the small value of the 3 estima-
tor ([3‘= 0.020279) given in Table (4.8). Testing the null hypothesis (Hy : 4= 0),we
conclude that the probability value of 0.078862 is not minor enough to reject the hy-
pothesis in 95% significant level. Thus the presumption of high effects in the use of the

chemotherapy in the leukemia ‘patients cannot be supported, once again.

4.5.3 Goodness of fit

Kim & Lee (1998) suggested two goodness of fit tests for the two-sample additive risk
models (4.44) with censored observations. The first optimize test is based on the martin-
gale residuals'and has similarities with that prdposed by Wei (1984) . The second is based
on the difference betv-veen weighted étimators of the excess risk, idea origina.ted inGill &
Schumacher (1987) and Lin (1991).Both the test statistics are asymptotically normal un-
der appropriate regularity conditions and consistent under any model misspeciﬁczitions,
given by Kim & Lee (1998).

e In few words, the optimize test statistic S which tests for constant difference be-

tween two hazard functions, is given by
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S = sup é(oo)'"21

0<t<co

i (Bt))| ‘ (4.45)

where & (co) is the limit as ¢ — coof a score function that contains the cumula-
tive hazard function while, Uy (5, t) is the quantity (4'.39) modified to contain the local
square integrable martingale process M; (.). This quantities are obtained by simulation
techniques given by Kim & Lee (1998). The availability of the additive risk model is
checked graphically and numerically by the probability of the simulated statistic value §

be gréater or equal to the observed value of Sy (S‘ > so) .

e Another test statistic for the additive risk assumption is given by

Qu=n (Bw - E)TDW (ﬁ) - (/?w - Zi) (4.46)

where Dw (B) is a consistent estimator for a covariance matrix and ﬁw is a weighted
estimator given in Kim & Lee (1998) . The statistic @, has an asymptotic central chi —
square distribution with 1 degree of freedom under model (4.34).
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Chapter 5
Proportional Hazards Model

5.1 Introduction

In the current chapter, regression models are considered where the response variable is
the hazard or else age-specific failure rate. In this spot the hazard rate is a function of the
explanatory variables and unknown regression coefficients multiplied by an arbitrary and
unknown function of time called the baseline function. We then, present the proportional
hazard model, introduced by Cox (1972). The tool of the likelihood is used every time
to obtain inferences about the unknown regression coefficients. Particularly, condition
probabilities of the failure times, given the subjects still in risk, are used for the unknown

parameters’ estimation. Finally, we describe its basic properties, including considerations

for its popularity.

5.2 General Description

Assuming a set of explanatory variables denoted by the bold Z. In other words, the set Z
represents a collection of predictor variables that is being modeled to predict individual’s
hazard. That is we can correspond the proportional hazard model as a regression model

with the hazard rate in the role of the response variable which can be expressed by the
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product of a function of the explanatory vector Z times a function considered under the

standard conditions, Z £ Q. In particular, the simple form of the proportional hazards
model introduced by Cox and Oakes (1984) is:

h(t,z) =1 (z:8) ho (2) (5.1)

The last formula emerges that the hazard at time point t is the function of two
quantities in (5.1). The second of these, is called the baseline hazard function. It
is the hazard rate at time ¢ for an individual taking into account the information of no
explanatory variables. The first component in the product in the left of the (5.1) equation,
is the expression of the explanatory variables contained in the vector Z, along with the
unknown parameters 3 to be estimated. Three parameterizations are considered for the
last expression Namely, the first and most common is the log linear form ¢ (z;8) = "3,

R (t,z) = € %ho () (5.2)

The second is the linear form ¥ (z;8) = 1 + 87z
ht,z)=(1+BT2)ho(t) (5.3)
and the logistic form v (z; 8) = log (1 + e,st)

h(t,z) = log (1 +¢%) ho (2) _ (5.4)

The first two parameterizations can be found in a more augmented form like the

following:
¥ (z;8) = (1+k87z) "

Especially, ‘the linear form is deducted from the last formula by putting k equal to

unity, while the log linear expression IS obtained by assuming k— 0.
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An important feature of the above formula (5.1) is that considering the explanatory
vector Z invariable, as far as the time is concerned, the functional expression ¥ (z; 8B),
involves the Z's but does not involve ¢. In contrast, the baseline hazard hg (t), is only a
function of the time t.

A time independent variable is defined to be any variable whose values for a given
subject do not change over time. For instance, SEX and weight are such variables. Note
that even a person’s weight may actually change over time, it may be appropriate to
treat this variable, for analysis purposes, as time independent if its values do not change
much over time or if the effect of the variable (weight here), on survival risk depends

essentially on the value at only one measurement.

5.3 The Likelihood function

Leaving the baseline hazard function hq (t) arbitrary, the loss of information about the
unknown parameters 3 is usually slight. On the other hand, the analysis of the relative
efficiency of inferences about 8 under lthe various assumptions about hq (t), is 2 major
problem. Arbitrariness of hy (t) may contribute little or no information about 3 by the
intervals in which no failures occur. One example is that the component hqg (t) might be
identically zero in such intervals. For that reason, the probabilities used for the likelihood
manipulation are

conditioned on the I;set, defined in Section 2.3.

Initially we consider n failures tj,ts,.. .,t,,', a.nd their'ordér” types T1,T2,...,Ta. Lhe
{r;} and {I,} are jointly equivalent to the original data, namely the unordered failures
t:;. The conditional probability that I;=i given thg entire history |

H] = {TIQT2)"‘ )Tj)ilyiﬁy-"7zj-1}

up to the jth ordered failure time 7; can be written down explicitly. In the history

expression above, the i is the index of the subject that failed at 74 time point. The
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probability already mentioned is actually the condition probability that i fails at 7; given
that one subject from the risk set R (r;)fails at 7;, which is simply, from the definition

of probability
hi(r;) P ()
: > h(r) S (R (5:5)
kER(r;) kER(T;)

The Baseline hazard function ho(7) is cancelled out because of the form of the hazard
rate given in formula (5.1). For notational reasons, (k) in (5.5) denotes ¥(Z,3), that
is, the mﬁltiplier %y for the kth subject.

Although (5.5) was dex\'ived as the conditional probability that I;=i given the entire
history ff;, in fact it is functionally independent of the 6rdered failures 7,. Therefore, it
equals to pr;(I; =i|Iy =iy, I2 =4g,..., Ij-1 =4j-1).

The joint distribution pr;(i1,iz, - . -, ;1) can therefore be obtained by the usual chain
rule for conditional probabilities as

pr (in,d2, .oy in) = [ Prj (35li1, 2y ey i1) H > Z:p)(k) 56)

=1 7=1 kew(r;)

In the presence of censoring, a similar argument applies if it can be assumed that
censoring can only occur immediately after failures. The last assumption does not conflict
with the model in which the censoring times are fixed constants. In contrast, it can be
considered as a reasonable approximation, as the information about 3 when observed
censoring time .c‘~ is involved will generally be small. The fixed censoring model can be
handled explicitly through the partial likelihood, as we will see 1n the next section.

Supposing now that there are d observed failures from the sample of size n, and using
the same notations with the censoring absence case, we have that equation (5.5) follows
exactly as before, where the history set &; now includes the censoring in (0,7;) as well
as the failures. Thevrisk set R (7;), and hence the expression (5.6), does not depend on

7;, 25 1O censoring is assumed to occur in the time interval (r;-;,7;). Combination of

?

72




these conditional probabilities gives the overall likelihood:

lik = H 14 Z’ ‘ (5.7)

7=1 kE’R(r,) -

Terms that determine which subjects should be censored from among the survivors
of each risk set are omitted. In this sense, (5.7) can be considered as likelihood rather
than a probability. In addition, unless the censored mechanism itself depends on 3, these
terms, in the likelihood, do not ‘depend functionally on 4 and can be ignored.

5.4 Inference for the parameters

Even though a precise form of 9 (z; 8) is not essential, for the derivation of the (5.7), we
will focus on the log linear form, which is the most commonly used in the survival analysis.
Besides, the results derived considering the pre mentioned form, can be generalized and

further applied for the other forms.

5.4.1 Continuous case

In particular, using the property that the exponential function remains inalterable to any

derivation we get that

0

"a"B: (Z;ﬁ) i ¢r( ) = "11'¢ (Z) andaﬁ 8,6 ¢(Z,ﬂ) = wrs (2) = z'ifziaw (2)

where z;, denotes the value of the rth component of the explanatory vector z on the

ith subject. From (5.7) we have also that

Q.

l—loglzk—logH lel(z, Zl —Z‘ log 4 ( z,]—log( Z Y (k )J

j=1 keR(r;) Jj=1 Jj=1 €R(75)
(5.8)
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Where

;= log [t ( —log< > ik ) (5.9)

keR(r;)

By specifying the /(i) expression and substituting both the ordered failures by ré.n-

dom ones and the risk sets R (7;) = R;, the derivatives of the components of the likelihood

l; and the same for !; are now become

l;=log [1 (4)] — log ( N (k)) = 3Tz —log ( > exp (ﬁTz,,)) (5.10)

kER; kER;
) zk,.e(ﬁ %)
S (5.11)
08, 7 ) e(ﬁ z.) .
B kER;
8%l kgr; zk,.zkse(ﬁrzk) k:‘;, z""e(ﬂhk) keEER, Zk,e(ﬁrzk)
3[3,.6,3’ = — E g(BTZI‘) + Z e(ﬁrzlg) Z e(ﬂrzk) (5.12)
kER; ) keR; kER;

The expectations of these quantities when 7 is sampled, from the risk set ®;, with
probability proportional to exp (87z,) are calculated. Taking into account that the first
order derivatives (5.11) are score functions, we can conclude that E( N ) = 0. As
required the expectation is taken as the same value of G over a single risk set as is used

in evaluation of £i-. Taking expectations of the second derivatives we have that:

('Br"k) 5 "k ﬂ zh)
E( 81, ) Ic%}:t. Zkr Zks€ ) %’;‘ Zire k%;z Zgse L ( ol )
B.08,) " v ) y Py o) 35, 38,

keR; kER; keR;
(5.13)

Notice that the observed (5.12) and the expected values of f,%iﬁj above, taken over

a risk set as already mentioned, are identical. Summing over all risk sets, we get the rth
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element of the score function U,.(3)

Z zkre(ﬁTzk )

U,. (,6) = Zip — ke—&_r— ‘ 514
2 T ) (519

Moreover the (r,s) element of the Fisher information matrix is

Ly(8) =) Cu:(B) (5.15)
i€p
where x
. Z zk,.zk,e(ﬁrzk) Z zk_’_e(ﬁ zk) Z zkae(ﬁrzk)
C,'.,., (ﬁ) - keéR; — keR; kER;
3 e(8) T elFn) 5 e(5w)
kER; keER; keER;

The p set used in the last formuia. is defined as those subjects who fails. These
expectations and covariances are conditional on the composition of the risk set, in which
they are considered. Calculation of fully unconditional expectations would require a
fuller specification of the censoring mechanism. For instance, given a data set, involving
the times at which individuals, who in fact failed, would have been censored for the
calculation of the expectation of (5.15), is an irrelevant approach.

The expectations just calculated, can, though, be taken as conditional on the entire
history o»f failures and censoring up to t;, and this, in turn, allows a direct verification that
the terms ; behave closély, up to a degree, as a log likelihood function. That is asymptotic
arguments for hypothesis testing and definitions of confidence intervals procedures are
utilized. Thus, use of I (8) rather than E (1(8)) is appropriate.

The maximum-likelihood estimates of 8 can be obtained by iterative use of (5.14)
and (5.15). Significance tests about subsets of parameters can be derived by the use of
the maximum log likelihood techniques. For instance, the likelihood ratio test, the score
test and the direct use of the likelihood estimates can be applied.

In the absence of censoring or if thé censoring mechanism is independent of the
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explanatory variables, anexact test of the null hypothesis 8=0 can be obtained by using
the score statistic or else Wald statistic

W =U(0) (1(0)7U(0) (5.16)

Particularly W is an expression of U(0) which is asymptotically normal distributed
with zero mean vector and covariance matrix I(0). Therefore, the W statistic, under
the null hypothesis, has an asymptotic chi-squared distribution with degrees of freedom
equal to the number p of the explanatory variables. The score function U(0) is given by:

e

i€p

Ac.tually' (5..16) éi'cpress‘és the distribution of U,(0) generated when the ordered failure
times 7(y),...,7(4q) and the sizes of the corresponding risk sets ry,...,rs are taken as fixed
and the n values z,. . .,2, of the e?cplanatory variables are permuted randomly among the
n subjects. Also the expression —— E - is the mean of z, over R (7;) = R;.

Further, from (5.15) it is 1mphed that,

0) = _ Cirs (0)
i€p
Where Cm (0) is the covariance of z, and z, in the finite population R (;) =
For computatmnal reasons, the dlstnbutlon of U(0) is re-expressed by

n

U@ =Y ¢z

i=1

Given by Cox & Oakes (1984) ,- where ¢; = 6~ Y, Xt and & = Oor 1 ac

FTisT

cordingly as the ith individual is censored or not. Also by the definition of the sum
Sy ( > %) =Y ;11- (, 3 z.,) . Thus by setting z;=1 in the last quantity,

JTi&Ti jiri ST
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we see that ) g; = 0, so that E[U(0)] = 0.
Finally the covariance matrix of new U(0) is

10)=— (Z (2~ 2) (a—f)T) <qu> ,

i=1 i=1

Where Z is the mean covariate among the patients.

The last covariance matrix differs from I(0) and is valid, only under the assumption

that the censoring mechanism is the same in the two groups.

5.4.2 Discrete case

Even though, the presence of ties complicates the log likelihood manipulation, they are
usually recorded in survival analysis. Based on Cox & Oakes (1984), the model (5.5) can

be generalized to discrete time as

h(tz2) _ 0 o _ho(t)
1—h(t,2) —'%b(Z,ﬂ) l_ho (t) (5‘17)

Where, h(t,z) is given by the (2.5). Assuming k ordered failures 7,73,...,7¢ and
the definition of the multiplicity m;=my;) (section 2.3) , the history #T; now includes the
multiplicity of failure times up to and including 7;. The conditional probability p that
individuals i;,iy,.. .,ix fail from the risk set R (r;) given H; is, considering the log linear

type for -

p= €Xp (ﬂTZu) exp (ﬁTZiz) ...eXp (,BTZim) (5. 18)
) % )exp (BT z41) exp (65 za2) . .. exp (B zdm)
cs(jm

Where s(j; k) denotes the set of all selectiong of m, items from the risk set % (7;) of size
r;=r. The probability in (5.18) éontributé a single failure time. Due to the dependence
on multiplicity m = m,-,;the prbdﬁct of all such terms is no Ionggr a mérginal likelihood
of ranks, but the method of partial likelihood must be used to justify the asymptotic
theory. In our cése, wheré the log linear form of the ¢ expr&si’on‘is used, the likelihood
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is simplified, as previously, in

k
l=z ﬂTs,- — log ( Z exp (5T3jd)>] (5.19)

j=1 des(j;m)

Where s;=2i1+2i2+ - -+Zim 18 the sum of the vectors z; over the individuals who actu-
ally fail at t(;), each s;; is the corresponding sum over a m length vector (d;,dz,. . .,dm) of
subjects who might have failed at t(;. Like before, estimates of the unknown parameters
are obtained recursively by the equaﬁion (5.19), even when .r, the card of the risk set and
m are too large.

Furthermore, another approach to the case where ties are present is to consider ties as
arising out of the grouping of survival times that are generated from the continuous-time
model. Unfortunately, in this case, the r&sulting likelihoods are different. For that reason
the summation of all the terms of the marginal likelihood (5.7) is suggested. Those terms
are used whose ranks are coming from the continuous model and are consistent with the
observed data. Unfortunately, the log likelihood is difficult to compute if several risk sets
have values of r and d that are all large.

Instead the approximate likelihood is obtained by multiplying all the sums in the

denominator to include all terms in the corresponding risk set.

I (4 in) et (4
dly (41) ¥ (42) , ¢(:1m) (5.20)
(Seerira ¥ ®)
This approximation is widely used and is quite satisfactory except when the data

exhibit heavy ties. Also the multiple counting of failed individuals does result in a

conservative bias.

Two others simple estimators have been suggested to overcome this problem. Both

involves the replace of the denominator of the (5.19) equation by the quantities
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Where p; is the set of individuals who fail at 7;. Either type does not support the
case when ties are between reported censoring and failures. The usual convention is to
assume that all failures reported at random time 7 precede any censoring reported at 7,
so that the censored subjects contribute fully to the corresponding risk sets.

In addition, in the absence of ties all the pré-mentioned suggestions give the same
likelihood as this considei'ing the continuous model. With very heavy ties, so that the
survival times are grouped into a small number of intervals, it becomes feasible to devote
a separate nuisance parameter 7; to the conditional baseline survivor function for each
interval and to carry out a full maximization of the log likelihood in both the 7; and the
regression parameters 3. Note that, for sensible results, the total number of reported
failures d must be much larger than the number g of grouping intervals. Asymptotic

results require that the sample size n— oo under the fixed grouping intervals.

5.5 Inference for the Baseline Hazarcis Functions

The estimation of the baseline hazard function hg(¢) is essential when the survivor func-
tion is used in the model for the analysis. Moreover, Ag(t) can be used in graphical

procedures for goodness of fit checking.

5.5.1 Estimation

Firstly, we assume that hg(t) is expressed parametrically, as ho(t,¢). Them.Le. estimator
for ¢ is obtained by the joint log likelihood 1(3, 4) by either a direct joint maximization
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or the conditional likelihood maximization of 1(3,4;3 = 6)

Secondly, we can use nonparametric estimation techniques for the baseline hazard
integration Hy (t) = f(; ho (u) du.

Particularly, the estimator suggested by Cox & Oakes (1984) is

o d;
H{t)=) ———
250
i€R(r;)
Where the 9 (1) are the estimated values of 9 (!). Then the baseline survivor function
Fy (t) can be estimated by Fp(t) = exp [—ffo (t)]. Moreover, the estimators for the

hazard rate and the survivor function for subject i are respectively

=

B (t) =% 6) Bo (t) and Fi(¢) = [Fo (¢)] "%

5.5.2 Goodness of fit test

e Using the exponential behavior of the cumulative hazard function, we can compare
it with a sample from the unit exponential distribution. Especially, when the sur-
vival times T; are transformed by the true cumulative hazard functions H;(t), then
the vector of the values of H;(T;) establish a sample from the exponential distrib-
ution. The same results are derived when the corresponding estimated cumulative

hazard is involved. The last are called generalized residuals; see Cox & Oakes(1984)

e Familiar to the p-p plot used for goodness of fit testing in OLS case, is the plot
of the ordered values of H; (T:) versus the expected values of the unit exponential
distribution. More usefully, separate plots may be made for subjects of the data
defined by the explanatory variables. Such plots are rather useful in the choice of
the suitable explanatory variables for the model. On the other hand, the presence
of correlation between the residuals, introduced for instance by the estimation of

the multipliers 1 and the cumulative hazard, indicates the caution is needed in the
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interpretation of the results from them.

e For the two-sample case, Wei (1984) proposed the test statistic

Wa(t) = n-Y2U, (é;‘t)
which tests the null hypothesis
Hy: Hl( ) = 0H, (t)

that the cumulative hazards functions of the two-samples are proportional. The score

function U, (8;t) is derived from the log-likelihood and equals to

Un(6;t) = /le x d{N;(s) + Nz (s)}

/Y1 S)9+Y2 s)
= 251] <X1,<t) Z:\: (X)e(Xij)[(XijSt)

p=i == ACALESS

Also the estimator of § is the solution of the equation

61U, (6;t) =

whereas, X;; is the observed data from the ith group (i=1,2) and the jth individual.

Nt = #{J X< tanda,,_1}
N = #{i: %2t}
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y() = (1-F@®)(1-L:i (7))
L.(8) = n:}ia.an(B;Hg)

and L, (6; Hy) is a joint likelihood for the unknown parameters § and Hs.
In addition, 7 (¢) can be written explicitly in the form

R I A0 10
(i /O(Yl(smm(s))

; ) 2 9 m 6:i;11 (Xq') 41 (Xij) &
= n 1;; (Yl (Xij) §+Y2 (X’u))%[ (ij St)

e Another, standardized test statistic testing the null hypothesis

5d {N1 (s) + N2 (s)}

Hy k hy (t) = 6ha (1)
is presented by Gill and Schumacher (1987), and is denoted by
5 Tk, k, = {est var (Qrixa)} 2 Qi
As Quik, 52 symmetric quantity
Quury = KK — KnKuo

where K;; is the integral of some predictable random weight functions, as given in the

aforementioned article. _
The statistic Tk, x, follows asymptotically the standardized normal distribution.

e Moreover, Lin (1991), suggests the consistent statistic
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Qu=n(Bu-8) Dw (8)" (5.-5)

which has an asymptotic central chi-square distribution on p degrees of freedom. Bw
and 3 are the estimators of the real p x 1 parameter vector value §,. Despite the fact that
both are derived from the likelihood equations of the score functions, B, is taking place
when unequal weights‘a.re assigned to different failures according to the times of their
occurrences.. As Dy ([3) , the covariance matrix of the random variable nl/? (ﬂw - B) ,

is defined. The null hypothesis that is tested in this case, can be written as
Hy : h(t; Z) = ho (t) €%
against the alternative
Hy : h (8 Z) = ho (t) 2OZ0

‘Where 4 (¢) is an unspecified monotone function of t.

e Based on the differences between the counting processes and their respective inte-
grated intensity functions, Lin et al. (1993), proposed model checking techniques
for the Cox’s proportional model. Especially, they make use of the statistics

wollo (s
w3 {0 ()} [es (6)

to check the proportional hazards assumptidn.
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Where U (5 , t) and & (B) _are the partial likelihood score function, and the minus
: : ii
derivative of the previous, respectively, as well defined in Lin et al. (1993).

5.6 Some Properties and Consic_ierations of the pop-

ularity of the Cox Proportional Hazard Model

The Cox model (5.1), considering the log linear form of 9, has the property that when all
the explanatory variables are equal to zero, that is we have information up to the failure
times and the censoring, it reduces to the baseline hazard function. In other words, the
baseline hazard when no Z's are in the model can be regarded as a starting or "baseline”
version of the hazard function, priorb to considering any of the Z’s. Furthermoré, by the
definition of (5.1) model, the baseline function hy(t) is unspecified. This property éllowé
Cox model to be a non-parametric one. The randomness of hy(t), does not halter
the estimation of neither the unknown parameters 8, nor the hazard and the survival
functions h(t, Z), S(t, Z). Thus, with the Cox model, using & minimum of assumptions,
primary information desired from a snlrviva.l analysis can be obtained.

A key reason for the popularity of the Cox model is that, even though the baseline
hazard is not specified, reasonably good estimates of regression coefficients, hazard ratios
of interest, and adjusted survival curves can be obtained for a wide variety of data.
Indeed, the Cox model is a "robust” model, so that the results from using the Cox
model will closely approximate the results for the correct parametric model. The use of
a specific parametric ﬁodel is pfeferable when the exact statistical representation of the
data. Although there are various methods for assessing goodness of fit of a parametric
model, the final model selection can always be disputed. Hence, when in doubt, as

usually, the Cox model will give reliable enough results, so that the choice of the model

is now "safer”.
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Chapter 6

Generalization of the linear

transformation models

6.1 Introduction

In this chapter a class of (recently developed by Cheng et al (1995)) semi-parametric
transformation models, under which an unknown transformation of the survival proba-
bility equals the sum of an increasing function plus the linear predictor, are presented.
The proportional hazards and proportional odds models are included in this class. A class
of generalized survival time is linearly related to the covariates with various completely
specified exfror distribution. Nearby, estimating equations is proposed to examine the
covariate effects' with censored observations. Also, a simple modification of these meth-
ods is used, to face the asymptotically bias, caused when the support of the censoring

variable is shorter than that of the failure time. An example study is used to investigate

the properties of the proposals.

6.2 Model structure

We may rewrite the Cox proportional model of (5.2) in the form
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log (—log (Fz (t))) = k() + 278 (6.1)

where h(t) is a completely unsbeciﬁed strictly increasing function, Fz (¢) is the survival
function of failures T given the explanatory variables z and § is a px1 vector of unkﬁown
regression coefficients. Inference about 3 c;':,n be basgd on the partial likelihood function,
as shown in Chapter 5. :

An alternative is the proportional odds model, presented in equation (4.31). The

latter can be rewritten in another more convenient form, using the logit function Pettitt

(1982). Thus, the relation

—logit {Fz(t)} =h(t)+ 278 (6.2)

' is equivalent to the previous definition (4.31), regarding that the logit function is ex-
actly the logarithm of the ratio of variable divided by its complement (log it (z) = log ())-
Despite the fact (6.2) is a model commonly used, scarcely is found any theoretical jus-
tification for the large sample properties of inference procedures for parameter £ in the
literature, apa.r{: from the simple two-sample case (Dabroswka & Doksum, (1988)).

The generalization of the two last models given by Cheng et al (1995) is

g{E@®}=h(t)+278 (63)

where g(.) is a known decreasing function. Applying the random variable of the
failures T in the model (6.3), and solving in respect to the A (.) function, we get

h(T)=-2"8+g{F (D)} (6:4)

In (6.4) the g{F.(T)}expression is a random variable and can be renamed in a

random error form. In other words
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h(T)=—-ZT8+¢ (6.5)

The distribution function of the error component ¢ is F(.) = 1 — g 1(.). We can
verify that by applying the last function to the random error g {F; (T)} .

F(g{F,(M)}) =1-F(T) = Fy

which is a distribution cumulative function. If F'(t) equals to 1 — e('e(t)),then (6.5)
is the proportional hazards model, while if F' is coming from the standard logistic distri-
bution, (6.5) is the proportional odds model.

A class of simple estimating functions for 3 in the linear transformation model (6.5)
will be presented in the sequel. The hypothesis of censored data may complicate the
analysis but should be included as is mostly the case in survival data.

6.3 Estimation for the Linear Transformation Model

6.3.1 General remarks

We consider the symbols and notions introduced in Section (2.3). The censoring time c;
is assumed to be independent of T;. Again, let the p X 1 vector Z; be the corresponding
covariate vector for the ith individual. In addition the survival function of the censored
lifetime C; is assumed to be independent of the failures T;. In the case the covariate
vector Z has a finite number of possibly values, the latter assumption can be relaxed.
The function h(.) maps the positive half-time onto the whole real line, like the natural
logarithm. So the set {h(T3),i=1,...,n} has the same rank configuration of that of
{T:} . In other words, h (T;) is a one-one transformation of the failure times into a new
random variable. Thus, as the h (T;) does not involve the parameter of interest 3, it seems

natural to use the marginal likelihood (Cox & Hinkley (1996)) to make inferences about
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(. On the other hand, the maximum likelihood estimate and its variance, are difficult to

be obtained numerically.

6.3.2 Generalized Estimating Equations

Using the indicator function I (.) as in Cheng et al (1995), we consider the dichotomous

variables

1, ifTxT,
@21 ,i#Aj=1...,n} = (6.6)
0, otherwise
Then,
E(I(T, > T}) |2, Z;) = pr (b (T}) 2 b (T}) | Z:, Z;)
Using (6.5) the last expected value becomes

E(I(T: 2 T3)12:, Z;) = pr (e: — €; 2 Zi5,)

where (3, is the true value for 3 and so can replace the values of 3, and ,. Also, the
new symbol Z;; equals to the difference of the explanatory variables Z; — Zj.
Considering the probability pr (e; —&; > ZL3,) as a function of Z%Bo, ie.

pr(ei—e; > Zgﬂo) =¢ (Zgﬁo)

we can calculate this probability by using its geometric meaning. Thus, since F a well

defined and differentiable function, we find that

() = /w( jf(ez-)f(sj)dei)dej
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= /m( :]fu )f(c'j)dsj

=/ (1= F(s+¢5)) dF (&)
which means

§(s)=/ {1=-F(t+s)}dF(t)

where F' is the completely specified cumulative distribution function of €. Note, that
the dichotomous variables in (6.6) are dependent, as for instance the two sets {T} > Ty}
and {T%/ /> T} are complemental. Despite the dependence of the variables, one may make
inferences about (3, based on generalized estimating equations (Liang & Zegér (1986)) .

As a consequence, assuming that the dichotomous variables are independent, the

resulting estimating function is

7 (8) ZZW [1(T: > Ty) - € (256)] (6.7)

i=l j=1

where w(.) is a weight function. Even though the dichotomous variables are de-

pendent, E {U (6y)} = 0.the last equation, suggests that a solution to U(B) =0isa

reasonable estimator for 8;. A common way to tackle the weight component, is to assume

w(.) = 1, and to proceed with a linear regression technique. Another approach, is that
of the quasi likelihood, for independent observations. Especially, we take

pa—

w()= i_’(L (6.8)

where v () = £(.) {1 - ()}
In case of censored data, the indicators {I (T; > T5)} in (6.7) are not always observ-

able. It can be shown that
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C*(Ty)

where V; is the indicator variable, specifying whether the jth observation is censored

=E(E[I(T>T {I (min (C;, C;)) 273}11%2,-]) 69)

or not. Also, X; is the observed information of an individual. That is, X; commdes with
the failure t;mg T; in the uncensored case, whilst, X; equals to C; in the censored case.
So, equation (6.9)-is derived by the use of X; = min (T}, C;). .

Also,

E(E [I(T >T;) {I((;z(T()CHC))>T}ITJ’ZHZD E{I{h(T) 2 R(T})}|Z: Z;]

The last formula indicates that the two expectation are equal, so instead of using the
dichotomous variable I(T; > T;) in the estimating function (6.7), the expression YJ%,)—EXZ—})(J—)
may be used. A plausibie candidate of the survival function C (.) of the censoring variable

is the Kaplan-Meier estimator G. On that account, the resulting estimating function is

now denoted by

S - Vi (X 2 X; '
Z Z‘w Zij ]—GSW—JZ =3 (Z}; ) (6.10)
i=1 j=1 .

In (Cheng et al (1995)) is shown that, when the weights w(.) are positive, then the
equation U(B) = 0 has asymptotically, a unique solution 3. When w=1 and the observed
matrix ) Y Z;; Z% is positive definite, which is trivially satisfled for most practical situa-
tions, the equation U(G) = 0 has a unique solution. In the situation where the F function
has the extreme form 1 — e(~*), the weight function (6.8) becomes identical to 1.

Also Cheng et al (1995) proved that the distribution of n=3U (B,) can be approx-

imated by a normal distribution with mean 0 and variance-covariance matrix f‘, given
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=1l j=1 k=1
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n n

4 & VI (X: > X;) ®2
S =1 {ZkI(Xk > X {ZZZU (?TB) ‘JWI(XJ' 2 Xz)}

i=1 j=l

ot dg o (238) 8 8) - (238) 1 )} &0 () = 850 e g
and u®? = w7 for a vector u. From the Taylor series expansion of U ﬁ) around f,, we

can conclude that n'/2 (5 - ﬁo) is asymptotically equivalent to n~3/2AU (8,) , where

Al=n"? Z Zw (ZE;B) g (Zgﬁ) z3*
i=1 j=1
So, the distribution of n!/2 (B - ﬁo) can be approximated by a normal distribution
with mean 0 and covariance matrix & = AT'A.
Assumptions in the parameter G can be made, using the above procedures, only
when the distribution of the censoring variable C is free of the covariate vector Z. This
assumption, is often satisfied in randomized controlled clinical trials.

Now suppose that we can partition Z into k possible values. Then an analogue of the

estimating function (6.10) is

.. V}I(Xizxj) _ T ]
WRC AL oo TR

i=1 j=1

where Gz (.) is the Kaplan-Meier estimator for the survival function of the censoring
variable C based on those pairs {X;,Vi} whose Z;=Z ({ =1, ey 7).

In the same article Cheng et al (1995) showed that the distribution of n%20* (B,) can

be approximated by a normal distribution with mean zero and covariance matrix
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X {ZZ“’ (Zf; )ZijéZi ) Cas (Xj)I(Xj > Xl)}

i=1 j=1

Consequently, n/? ([3 - ﬁo) can be approximated also by a normal distribution with
mean 0 and covariance matrix £* = AI™A as before.

By ;epla.cing the @ z (.) function in .(6‘11)’ by a nonparametric functional estimate
like the K-M based on subjects whose covariates are in a small neighborhood of univariate
Z, the corresponding estimator B is still consistent Cheng et al. (1995). Changing the
size of the neighborhood, B can be showed to be asymptotiqally normal. In this way, we
can deal the difficulties in discrediting the covariates.

6.4 A Modiﬁcation in the Estimates

A modification of the previous estimator of Fis given by Fine et al (1998).The last
alteration, is shown to perform well in the case of heavy censoring, in which the Cheng

et al (1995) estimators presented previously (6.10) & (6.11) are asymptotically biased.

h(T)=2ZTB+e¢ (6.12)

Particularly, using as starting point the equation (6.12), Fine et al (1998) suggested
that a consistent estimator for the parameters vector § = (a, ﬂT)T is the solution 6,, of
the equation Uy (§) = 0.The solution is unique for large sample size (n — 00). The

score function Uy, (.) is defined now as:
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r 7 - _lde (9)

Uy (9) 54 (6.13)
= Y Y (8),6) [V” S | e m,-(e)]
i#] X

Giving justifications for the terms appeared in (6.13), we start with ¢, which is a
known constant such that the probability pr {min (T,C) > ¢t} is greater than zero. In

addition, @, (6) is the sum of squares which we want to minimize and equals.

Vil (min (X;, to) > X;)
G2 (X;)

- T ()

i#j

— N5 (9)}

As before, instead of using only the dichotomous variables, we can use the quantity

V"I(mig(;({;f‘)’)zx" ) as its expected value (conditioned on Z;and Z;) denoted by 7;; (a0, B)
J

is equal to the integral

Nij (0, Bp) = ZT ) pr(Ti 2 T; 2 to| 2, Z;) (6.14)

=/ {1-F(t— Z58)}dF (t - ZZF) .

Note here that as agis taken the true value of the function range in ty a = h(to)
whereas as hy (.) the true function values & (.), in general. Despite the same notation, in
(6.13), the symbol V;is 1 in the censor case and 0 otherwise. Also, #;; (.) is the vector of
partial derivatives, of the expected values 7,; () with respect to 8, given in (6.14) and
equals to

mj<e>=(1 )/ (L-F (- 270)} 4 (- 28)
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(_ZT)/_oof(t 276) dF (t - 275) (6.15)

K]

Finally, w;; is a weight function. The distribution of 0, is approximated by a normal

distribution with mean 6y and covariance matrix

nD D™ (6.16)

where

D= T (1)1, 1) 5 1)

i#]

, g
ngZXNWWw”%‘sz@k&%W

£ j#Ek

V;I (min (X;, to) > X;) e
{Zz%() (o) Bl tmin s I(Xm}

J#i

€;; is obtained by replacing 6 and G in
ei3 (6) = wi (6) iy (6) [V3I (min (X o) > X;) G* (X,) = m (6)]

with 6, and G, respectively.

6.5 Survivor Estimates

The non-decreasing function estimator h (t) is necessary to calculate the survival function
Sz, (t) = g1 {h (t) — 2T ﬁw} for a given covariate vector Zy. The root of the equation
V*{h(t)} =0 is a non decreasing and consistent estimator of the true function hy () for

t € [0,7], where pr (X > 7|Z) > 0 for all Z, see Cheng et. al. (1997).
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The score function V* {A (t)} ,in the case we consider the linear transformation model

in (6.12), is given by the next formula, see Fine et. al. (1998)

Vi {h(t)}= Z[ X>t ‘1{ (t)—ZiTﬁw}J (6.17)

whereas, in the case the linear transformation model in (6.5) is utilized, the adjusted

score function of the A function is now

I

V*{r(t)} = Zl (X2 —g"l{h(t)+Zfﬁw}} (6.18)

and the survival probabilities are given from the equation
Sz (®) =97 {1 (0) + 2B}

The process

o [o{8 (0} - 015 1] =t {30 - ho(9) = 2F (- 1)}

can be approximated by the new process Wz, given by

L {8 (¢) +a(e) ZO}T g { nz Z Zt#] é&; (Yi+ Y;) }

Wz (8) = 375 4t T fo° il ) Y
+ni Y A@) Yi+ni Y, ;z ((? IN 72 (u)sz.( u)Y;
where

£l = 120 {Gn) g (A6 -27h
Mz‘. (t) I(]{iS,t,Vi=0)—‘/:I(‘XiZ‘ll.)df;[zi (u)
éi(0) = é&;(Yi+Y)) ‘
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and Hy is the Nelson-Aalen estimator for the cumulative hazard H z based on obser-
vations (X;, 1 —V;) whose Z; = Z and i,j=1,...,n.
In order to construct confidence intervals for the survivals Sz, (¢), Fine et al (1998)

~ suggested the quantity

g_l [g {S'Zo (t)} + ¢é'ﬂ'_%0'z° (t)] (619)
where ¢, is the lOOE upper percentage point of the standard normal distribution and

the sample variance oz, () is equal to
i J .
0%, (t) =T Wiz (@)
k=1

The realization W2, (t) is taken over J independent samples of {V;}.

In addition, in order to construct a (1 — 2¢)simultaneous confidence interval for

{Sz, (t),a1 <t < ay}, the fixed quantiles d; are calculated such that

pr |:t Sup II/‘VZo (t)l {O-Zo (t)}—l < dE:I =1-2¢ (620)

€[a1,a2}

Then a (1 — 2¢) confidence band for {Sz, (t),a1 <t < ag} is

gt [g {5’20 (t)} + den'%azo (t)]

The above probability and d, are épproximated with those J realizations of {Wzo (t)} .
Last, when G is independent of the explanatory vector Z, t confidence intervals and

bands for Sz, (t) can be obtained by replacing

Gz () = G()
7 (w) 2 07ty I(X;>u)

J
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Gz (w) = 2000wy (B) iy (Bu) Vi {min ‘{,,to)>X}{ (X0} 1(X; 2w

i#]
~ t -
Mz, (u) = I(Xistyvi=0)—/I(inZu)dH(u)
v]

respectively, where & (u) is the Nelson estimate of the common cumulative hazard func-

tion for the censoring variable.

6.6 Choosing the correct decreasing function gf.)

When it is not clear that either the proportional odds or the proportional hazards model
fit the dataset well, a simple graphical method to select an appropriate model is suggested
by Cheng et al. (1997). In particular, the following class of transformations g(.) indexed
by A for models (6.5) & (6.12) is considered:

_ log (At (s -1)) A>0 } (6.21)
log (—log (s)) A=0
When ) = 0 then the new moc‘lelﬂis reduced to the proportional hazards one, while if
A = 1 then the new model is reduced to the proportional odds one. We assume, that an
unknown functién of the survival time T is truly linearly related to the covariates, and
the error distribution depends on the parameter A. Using a realization of A, we estimate
the parameters b0 a.nd the hazards Ho (t) . If the choice of A is appropriate, then the distri-
bution of { (X:)+ 2T ,6} or { h(X)-ZF8 } respectively to the initial model, would be
very close to the error distribution. Hence, a P-P plot based on the fitted error distribu-
tion and the Kaplan-Meier estimate constructed from {( (X:) + ZF B, i) yi=1,...,n }
r {(ﬁ (X:) — Z,T 3, V,~) 3b =1 o ,n} respectively, would be approximately a straight
line through the origin.
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6.7 Numerical Example

We now apply the leukemia data, presented in Table (4.1) to the two-sample pro-
‘portional hazards model (5.2). Even though, censoring in the placebo group is lit-
tle, in the chemotheré.py treatment group censoring is quite evident in the range of
36.36% . Particularly, only one patient from those who did not receive any treatment
(strata 2), was observed not to experience the event as shown in the Fig (6-1). His tracks
were lost in the 16 week from his entrance to the s‘cudy. Consequently, we can say that
this group is 8.33% censored, in the sense that 1 out of 11 patients, may not experience
the event until the end of the study or not at all; see also Table 6.1. Likewise, in the Fig.
(6-1), the four weeks time points répresents the weeks period (13, 28, 45 and 161 weeks
respectively), after which the traces of the four patients, that belong to the treatment
group (strata 1), were lost. Hence, the maintenance group is said to be 36.36% censored
in the sense that a AML patient received the éa.me kind "of treatment under the same
circumnstances, is subjected to censorship with this probability 0.364. In Table 6.1 there
is a summary of the number of censored and uncensored patients included in the current
study. The total percentage of censoring is somewhere in between the percentage of cen-
soring of the two groups, and refers exclusively to the total censored ratio of the patients

who were censored versus those who participate in the study.

Group || Total || Failed | Censored | %Censored
0 11 7 4 . 36.3636
1 12 | 11 1 || 8.3333
Total | 23 18 5 21.7391

Table 6.1: Summary of the Number of censored patients

Moreover, we notice on the graphs (6-2) and (6-3) that one can obtain several descrip-
tive statistics for each group. Firstly, the median is obtained by proceeding horizontally
from the 0.5 point (marked by an arrow) on the vertical axis each time until the sur-

vivor curve is reached, and then proceeding vertically downward until the horizontal axis
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Figure 6-1: The censored times for the different groups. Strata 1: Treatment Group
Strata 2: Placebo Group

is crossed at the median survival time. In other words we choose as median the week
time ¢y which gives probability to survive equals to 0.5. Since, the estimated survivors
are just point estimates and not an explicit continuous function, we choose the closest
to 0.5 probability value and keep the corresponding time point such that £ (t) < 0.5.
Secondly, the 25% and 75% quartiles, marked in the two graphs Fig (6-2) & (6-3) are
calculated in a similar way F (tg2s) < 0.25 and F (to.7s) < 0.75. Moreover, the confidence
interval for each survivor (which are denoted by stars on the step functions) are given by
F(t) £1.96se (F (t)) and are plotted in the pre-mentioned figures. The fitted standard
errors are calculated using formula (4.13), and can be found in Tables (4.2) & (4.3). The
censored patients’ survivors are also reported on the graphs

For the treatment group the median is 31 weeks; for the placebo group, the median is
23 weeks. Comparison of the two medians reinforces the survi\}or curves inspection that
the treatment has‘a{i overall effect on patients, but how significant is this effect. This
difference enlarges when the two means 31.843 for the treatment group against 22.7 for
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Figure 6-2: Confidents intervals for the K-M survivors and the quartile survival times for
the placebo group

the placebo one, are to be related.

The group indicator is the only covariate in the model; that is, Z = 0 if the observation
is from the first or placebo group and Z =1 otherwise. The maximum partial likelihood
" estimate for the parameter 8, manipulated by solving the equation U, (8) = 0is equal
to 0.904 and the corresponding standard error does not exceed the value 0.51. The score
function U, (B) is given in (5.14). Also, analyzing the p-value of 0.0775 from the Wald
statistic given in (5.16) which tests the null hypothesis 8 = 0 we can conclude that
in 95% significant level, the coefficient of the treatment variable is not significant and
the hazards of the two grbupé should not be considered "separate enough” solas', the
chemotherapy treatment to effect in point. Nevertheless, we can speak for an effect of
the treatment in 92% significant level.

In addition, the risk ratio given in Table (6.1) states that a patient who received no
treatment has an estimated 2.47 times higher risk of leaving the remission period, than

the one that did receive chemotherapy. In math terms, the Risk ratio or else hazard ratio
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Figure 6-3: Conﬁdeﬁts intervals for the K-M survivors and the quartile survival times for
the treatment group

can be expressed as

h(t, z") A
HR = 71—(;’—27 (6.22)

When the above quantity is constant over time, then the hazard for one individual or
a cluster of objects with the specification Z* of the explanatory variable (which here is the

placebo group) is proportional to the hazard for any other individual or cluster of objects

with the specification Z respectively (which here is the treatment group). This is also

known as the PH (proportional hazard) assumption (seg Kleinbaum (1997)). Whether
or not the PH assuinption is met, we can decide the suitability of the pro;)ortional
hazards model (5.2) in the data. Excluding the case where the explanatory variables
are time-dependent which is not the case here, we will make use of three general
approaches fqr assessing the PH assumption in the current data. All of them are popular
graphical techniques availablé in the survival analysis and are discussed also in the chapter

5. In particular, we compare the log (—-log)t survivor curves over the explanatory
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Figure 6-4: —log (F (t)) = H (t) : The estimated cumulative hazard function

variables being investigated.. The log (— log) survival curve is simply a transformation
of an .%tima’ced survival curve that results from applying the natural logarithm on the
survivors twice. The last ransformation appeared to map the [0,1] interval to the real
numbers line. The validity of the PH assumption can be checkedllby évaluating whether or
not log-log curves for the two group of patients are parallel. To show this we correspond

the formula for the survival curve to the hazard function for the PH model (5.2).
= . T '
ht,Z) = ko (t) P = F(t,2) = [Fo (£)]7
Recalling the mathematical link between any hazard function and its corresponding
survival function, see paragraph 2.3, we obtain the survival curve for the PH model.
The term Fjy (t) denotes the baseline function that corresponds to the baseline hazards

function hg (¢). Applying the log(— log)transformation in the last expression we have

that
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Figure 6-5: log ( —ng (F(t))) =log (I:I (t)) : The logarithm of the estimated cumulative
hazard function

log (—log (F(¢,2))) = BZT +log [-log Fy (1)]

The right hand side of the formula, consists of the sum of the expression 827 which
is actual the sum Y 7_; 3,Z; where p is the number of explanatory variables (here p = 1),
with the log of the negative log of the baseline survival function which takes va.lues on
the real number line. Now considering our example situation, where Z has two values

'Z; and Z, for the two group of patients. Then the corresponding log-log curves for these

groups are given by

log (~log (F (t,Z1))) = B2 +log [~ log Fo (2)]
log (—log (F‘ (t,22))) = BZy+log[~log Fo(8)]
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While their difference is
.log (=log (F (t,21))) — log (~log (F (t. Z2))) = B(Z1 — Zs)

The above formula says that if we use a Cox PH model and we plot the estimated
log-log survival curves for the different group of patients on the same graph, the two
plots would be approximately parallel, since 5(Z; — Zz) involves only the differences
in predictor values and does not depend on time. In Fig. (6-5) the empirical plots of
loé-log survival curves, based on the Kaplan-Meier estimates, are presented. As shown
in the graph the, two curves for the placebo group (new = 1) and the treatment group
(new = Q) can be considered to ha&e approximately a constant difference.. Even though
this assumption can be thought quite subjective for this small data set, we adapt the
conservative strategy that the PH assumption is satisfied unless there. is strong evidence
of nonparalelism of the log-log curves. The cumulative hazard curves for the two group of,
patients are also schematized in Fig. (6-4) and their difference is considered steady
as they do not cross, apart from the zero time point, in which there is no hazard for
any patient.

A second check of the PH assumption is made by comparing the observed with
expected survival curves. To obtain expected plots, we fit a Cox PH model containing
the predictor being assessed, whereas as observed survival curves the Kaplan-Meier curves
are utilized. Observed and expected curves in Figures (6-6) & (6-7) appear to be quite
.close for each group. Thus we would conclude using this graphical appbroach that the
predictor variable satisfies the PH assumption and therefore the Cox procedure for these
kind of data should be used. Similarly tg the previo'ﬁs approach, the last conclusion was
made considering the conservative strategy which suggests that the PH assumption is
not met only when observed and expected plots are strongly discrepant.

Another examination of the PH a:ssumption is made through the graph of the rescaled
Schoenfeld residuals (given below) versus the treatment variable (Fig (6-8)). The exis-

tence of a significant slope in the scatter plot would be evidence of the unsuitability of
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Figure 6-8: Schoenfeld residuals used to check the PH assumption

the PH assumption which is not the case here, strictly speaking.
s (B) = Zij (t:) — Z; (B, t:)

Where i and ¢; are the subject and the time the event occured, whereas j refers to the

variable, j = 1...p and p is the total numer of the variables which here is 1.

e Analyzing the residuals of the Cox PH method, we see a reasonably linear rela-
tionship of the group variable versus the martingale residuals (given below as a
counting process notation), see Fig. (6-9). Therefore, no special functional form of

the group or else treatment variable should be utilized in our model.

MO = Mi(0) = [ (6,9 Yi(o) a8,

Where N; () is a counting process for the i patient, which increases by 1 at the

observed event, Y;(t) is an indicator function which is 1 if person ¢ is still at risk,
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Figure 6-9: Martingale residuals for discovering the predictor form
r; (B,t)is the risk function and H, (B, s) is the baseline hazard estimation.

e Moreover, From the deviance residuals (given below) scatter plot, we notice no
widely deviant observation. Even though there one can identify some doubt of

configuration of the residuals which is excused due to the scarcity of data Fig (6-
10).

d; = sign (1\7[,-) 41;1;1';' — N;log ( N,

Where sign (Mi) is the sign of the martingale residuals, taking values —1,0,1 when

M., is negative, zero and positive respectively.

\Le

e Furthermore, the largest changes in the regression coefficient are 0.3 (Fig. 6-11),
which are' reasonable, and give 1o suspicion for influential points. In other words

there is no point that seems to influent the regression estimates. Particularly; the
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Figure 6-10: Deviance residuals for identifying pqorly predicted subjects

change that would occur in coefficient § if observation ¢ were dropped from the
model is —Il;, where I-! is the Cox model variance matrix, as defined in Chapter
5. These changes in 3 are plotted in Fig. (6-10), where there is no distinct great

change in the coefficient.

Finally the bounds of a 95% confidence interval of the risk ratio are calculated. The

formula used is

eﬁoél.gﬁ(s.error)

D.F. || Parameter Estimate || S. Error || Risk Ratio | Lower | Upper | Lik. Ratio P-value

1 | 0.904 051 | 247 09 [674 |3206 [ 0069 |

Table 6.2: Maximum Likelihood Estimates
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With the estimating function of U*(G) as defined in (6.11), the estimate for the

parameter G, is 0.93, with an estimated standard error of 0.42, as shown in Table (6.3),

below.
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Figure 6-11: Identifying influential points

D.F.

Parameter Estimate

S. Error

Risk Ratio

Lower || Upper

0.93

0.42

2.53

1.11 5.76

Also following the steps of obtaining the score functions on (6.17) and (6.18), we can
estimate the survival probabilities of each group Fig-(6-12). The individuals who take

Table 6.3: Cheng’s estimates

the treatment have greater survival probabilities from those who do not.

" D.F. || Parameter Estimate
[t foss

S. Error

Risk Ratio “ Lower || Upper

0.45

2.429

" 0.99 U 5.82

Table 6.4: Modified estimates
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Applying, thereupon, the corrected estimators, found in the paragraph 6.4, the re-
sults included in Table (6.4) are obtained. The parameter estimate 3, is again close to
the Cox’s proportional estimate, like the one derived from the score function in (6.11).
The choice of the truncation point g, which is assumed to be data-independent, is not
deterministic. On the contrary, a quite stable estimator Bw is obtained when ¢; is chosen
adoptively to the current data of the study. Regarding the present leukemia data, a
suitable time ¢g is such Ithat about 15% of the observed failure times fall beyond it. The
derived survivors for the last method are in Fig (6-13). |

The two-sample proportional hazards model! fits the data well, as shown above. Thus,
inference about the new models can be based on their comparison with the Cox’s proce-
dure. Initially, we can say that following the Cheng’s et al. (1995) procedure, the null
hypothesis (Hy : 8 = 0) is rejected in 95 significant level, which differ fronﬁ the results so
far. Nevertheless, assﬁming a more strict significance level as 99%, the same hypothesis is
not rejected. Hence, the statistical inference of the Cheng’s et al. (1995) procedure can-
not said to divefge from that of Cox’s procedure. According to Fine et al. (1998), with
heavy censoring, the coverage probabilities for the interval estimation procedure based
on (6.10) may be substantially smaller than the nominal levels. Here, the censoring is
not heavy enough to observe clearly this bias.

Following Cheng et al. (1997),the graph of the fitted error distribution against the
empirical probability of the quantity {77. (T:) + ZF E} is given in Figures (6-14), (6-15),
(6-16). Although, the probabilities do not coincide on the diagonal line, there is no strong
evidence of the pfopriéfy of the proportional hazards model, due to the small number of
observations. In addition, the points in the cases of A = 0.5 and A =1 are not far &orﬁ
the diagona.l line as shown in the Figures (6-15) and (6-16) respectively. The choice of A
to be either 0, 0.5 or 1 seem all appropriate for the leukemia data analysis.
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Figure 6-14: P-P Plot for A = 0, and the proportional hazards model
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Figure 6-15: P-P Plot for A = 0.5
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Figure 6-16: P-P Plot for A = 1, and the proportional odds model
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Table 6.5: Standard logistic case

Models -2log L || Wald || P-value || Efron R?
Proportional hazard 82.500 || 3.12 0.078
Additive 420.063 || 3.38 || 0.066
Generalized haza.rd_ 328.295 || 4.97 )| 0.026 0.0902
Adjusted Generalized }:;za:d 121.605 | 3.76 | 0.052 0.0044
Generalized Odds 328.172 || 3.43 || 0.064 0.0562

Table 6.6: Model diagnostic tests

R*=1-

2.2 (i — i)’
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Moreover, in the Table 6.6 The Efron goodness of fit test (6.23) is included for the
three new models. In a,ddjtion the minus log-likelihood (-2logl) is included for each
model The Cox’s procedure seems to have a better fit to the current example (sma.llest_
-2logLikelihood), fact which states the suitability of the proportioxial_ hazard model to the
data. In contrast, the additive model has a great ,-210gL value, which does not suggest
so well convergence to the real values of the estimates. All the models’ analysis agrees
(with the small variation of the Generalized hazard model) that the null hypothesis
that the parameter of the grouping variable is not signiﬁcaﬁf, is not rejected. Fact
that supports the unreliability of the chemotherapy treatment Under the genera.liied
proportional hazards ‘model (as here we used the extreme value cumulative function
F(s) =1—¢e"* ), both the new proposed generalized procedures are not expected to
be as efficient as the Cox procedure; however, in the presence of moderate censoring they
‘perform fairly well.

In the current example, where the censoriﬁg level is only 21.74% (5 out of 23 patients
have been censored), both the plain and even more the modified géneralized procedures
by Cheng et al (1995) and Fine et al (1998), provide very close estimates to those of
the Cox procedure. Finally, the Efron R square which is defined in (6.22) is in favor of
the modified model, which seems preferable in our example. The choice of the standard
logistic distribution, which leads to the proportional odds model Table 6.5, can be a
sound alternative as its Efron statistic is less than the one of the Generalized hazard
model. However its log-likelihood value (328.'172), leads us, not to choose it for the

current dataset.
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Chapter 7

Conclusions and Suggestions for

further Research

The current report presents standard and new Survival Analysis techniqué and their
applicability to already studied data in the literaturé.

The first part-is a brief historical report of the survival a.naly51s Afterwards the
concepts of failure time, left-truncated data, competing risk problem, censor-
ship, hazard rate and survivor function are introduced.” The latter two functions”
are calculated for the most common used survival random variables in the third part.
Moreover, fourth part includes the Kaplan-Meier estimator for the survival function,
the Accelerated Life Model, the Proportional Odds Model and the Additive risk
Model, followed by a th-sa.mple application in AML medical data.

In the fifth part, statxstmal inference of the Cox’s propormonal hazard model is de-
veloped i in the continuous and the discrete case, whereas, a recent generahzed survival.
model and its correction are found in the last part of this report. The results obta.m.ed' '
by the new suggested mo_ael are quite satisfactory in the sense that they are gl_ose. to the
ones‘obt.é.ined usmg the standard survival models. ‘The fact that the Cheng’s generalized
survival model is an augmentation of the Test ‘,'known survival models by altering the

distribution of the error component, makes it a fruitful and practicable choice for the
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statistician who can trace in advance a suitable model using the same algorithmic steps.

All of the models used in this report, give adequate estimates for the pé.rameters and
fit the data. sat1sfactory Having the results of the Cox’s proportional model, which ngw
efficient results, no matter the nature of the response variable, the adjusted generahzed
‘model seems to be closer in estimates. Moreover, detecting that the model checking tests
_ (Table 6.6) are in favour of the latter model in releva.n_ce o the simple Cheng’s generalized

model, we can conclude that Fine et al (1998) "pl_'ocedure can be used equally with the
Cox’s proportional hazard procedure and provide significance statistical inference.

An area of further research will be the use of the new generalized models in cases of
categorical expla.natory factors, where the individuals can be grouped along the strata
deﬁned by the number of possible factor combinations. Also, goodness of fit tests, apphed
in generahzed bmary data like Efron statistic (6 23), can be utilized not only for checkmg
the adequacy of each explanatory factor, but for model checking between the different
choices of the distribution of the error term. Finally, these generalized proceciures seem’
also adequate for the analysis of non-medical data like in Regional and Social issues area.
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APPENDIX

A. CODE IN SAS SOFTWARE FOR THE EVALUATION OF
THE UNKNOWN PARAMETER B AND ITS VARIANCE
USING THE SCORE FUNCTION GIVEN IN (6.11). ALSO
THE SURVIVOR ARE ESTIMATED BY (6.18)

proc iml;
reset autoname;

/* Put the data into matrix R*/
use sasuser.leukem?;
read all into R;

/* Put the K-M estimates for
the censor variable into R2 */
Uuse sasuser.marios2;

read all into R2;

/*Put the probabilities used for the calculation of the fitted survivals*/

use sasuser.mar;
read all into T2;

/*Put the distinct times */
use sasuser.mar?;
read all into coll;

bmin=-3;
bmax=2;
b=(bmin+bmax)/2;
usum=1;

/* Algorythm stops when the score function is near zero*/
do while(abs(usum)>=1E-5);
usum=>0;
do i=1 to 23;

do j=1 to 23;

tie=1;

if i=j then tie=0;

Z2=R[i,3]-R[j,3];

23=72%b;

al=R[ji,1];

a2=R[},1];

11=0;

if al>=a2 then lI=1;
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end;

Z2=R[i,3]-R[j,3];

[h=Z2*Z2*(-1)*exp(Z2*b)/((exp(Z2*b)+1)**2)+1h;

end;

Th=(1/529)*1h;

gen=0;
do 1=1 to 23;

end;

one=1-R[1,2];
ppsum=0;
do k=1 to 23;
if (R[k,1]>=R[L,1] & R[k,3]=R][l,3]) then pp=1; else pp=0;
ppsum=ppsum-+pp;
end;
part2=0;
do i=1 to 23;
do j=1 to 23;
if R[i,1]>=R][j,1] then qq=1; else qq=0;
if R[j,1]>=R][L,1] then qq2=1; else qq2=0;
Z4=R[i,3]-R[j,3];
if i>12 then k=2; else k=1;
part2=(((-1)*Z4*R[},2]*qq*qq2)/(R2[j,k]*R2[j,3]))+part2;

end;
end;

gen=(one*(part2**2))*(ppsum**-2)+gen;

gen=(4/12167)*gen,;

serror=(gamsum-gen)/(1h*1h);

/*The st. error of b*/
serror=sqrt(serror/23);

/*The Wald statistic*/
W=(b/serror)**2;

/*The p-value of the statistic*/

pvalue=1-cdf("chisquared",W,1);

/*End of the SAS procedure IML*/
quit;
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e Manipulation of the Likelihood and the Efron R®
proc iml;
reset autoname;

use sasuser.leukem?;
read all into R;

use sasuser.marios2;
read all into R2;

/*The estimated value of the unknown parameter is*/
b=0.93126;

/*The mean of the y_ij*/
ymean=0.50;

/*The log-likelihood accumulator */
1ik=0;

rsq=0;

rsq2=0;

do i=1 to 23;
do j=1 to 23;
tie=1;
if i=j then tie=0;
weight=-1;
Z2=R[i,3]-R[},3];
Z3=72%Db;
al=R[i1];
a2=R[j,1];
11=0;
if al>=a2 then lI=1;
intr=1/(exp(Z3)+1);

/*The third column of R2 contains G_j(T_j), whereas the first is equal to

G_lgroup(T _j) and the second is equal to G_2group(T_j)*/
if i>12 then k=2; else k=1;
quan=((R[},2]*1)*tie/(R2[j,k]*R2[},3]));
lik=lik-+(quan*log(intr)-+(1-quan)*log(1-intr));
rsq=rsq+((quan-intr)*(quan-intr));
15q2=rsq2+((quan-ymean)*(quan-ymean));

end;
end;

/*Efron R square*/
rsq=1-rsq/rsq2;
print rsq,lik;
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quit;
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B. CODE IN SAS SOFTWARE FOR THE EVALUATION OF
THE UNKNOWN PARAMETER B AND ITS VARIANCE
USING THE SCORE FUNCTION GIVEN IN (6.13). ALSO
THE SURVIVOR ARE ESTIMATED BY (6.17)

proc iml;
reset autoname;
use sasuser.leukem?2;

/* Put the data into matrix R*/
read all into R;

/* Put the K-M estimates for
the censor variable into R2 */
use sasuser.marios2;

read all into R2;

/*Put the probabilities used for the calculation of the fitted survivals*/

use sasuser.mar;
read all into T2;

/*Put the distinct times into matrix named coll*/
use sasuser.mar?;
read all into coll;

R[,2]=ABS(1-R[,2]);

/*Choice of the unknown time parameter*/
num=17;
tsur=coll[num,2];

/*By adjusting the values of the two parameters we are lead to the root of the
derivative of the sum of squares*/

bmin=-1;

bmax=3;

b=(bmin+bmax)/2;

usum=1;

usuml=1;

do while(abs(usum)>=1E-6);

amin=-2.7;

amax=-2;

a=(amin+amax)/2;

usuml=1;

do while(abs(usum1)>=1E-7);

/*Usum is the partial derivative with respect to the parameter b*/
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usum=0;

/¥Usum? is the sum of squares*/
usum?2=0;

/*Usum is the partial derivative with respect to the parameter a*/
usum1=0;
do i=1 to 23;
do j=1 to 23;
tie=1;
if i=j then tie=0;
Z2=R[j,3]-R[i,3];
Z23=72%b;

al=R[i,1];
a2=R][j,1];
a3=min(al,tsur);
11=0;

if a3>=a2 then li=1;

/*Using unkown parameter a into the algorithm*/
intr=(1-exp((-1)*(exp(alpha))* (exp(Z3)+1)))/(exp(Z3)+1);
intr3=(exp(alpha-(exp(alpha)*(exp(Z3)+1))));
intr3=(intr-intr3)/(exp(Z3)+1);
if i>12 then k=2; else k=1;
quan=((R[j,2]*I)/(R2[j,k]*R2[j,3]));
quan=quan-intr;
ksum=intr-intr3;
ksum?2=exp(Z3)*intr3;
new=(-1)*(R[j,3]*ksum)+(R[i,3] *ksum2);
weight=ksum-ksum?2;
usum=usum-+new*weight*quan*tie;
usum1=usuml+new2*quan*tie;
usum2=usum2+quan*quan*tie;

end;

end;
if usum1<0 then amax=a; else if usum1>0 then amin=a;
a=(amin+amax)/2;
end;
if usum<O0 then bmax=b; else if usum>0 then bmin=b;
b=(bmin+bmax)/2;
end;

/*SURVIVAL ESTIMATES*/
/*Calculation of the h function estimates which here are denoted as hsim */

hsim=J(20,1);
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Ssim=J(20,1);

do j=1 to 20;

t=coll[j,2];

hmin=-30;

hmax=31;

h=(hmin+hmax)/2;

usum=1;

do while(abs(usum)>=1E-5);

usum=0;
do i=1 to 23;
if R[1,1]>=t then quan=1; else quan=0;
k=1;
if i>12 then k=2;
first=quan/T2[j k];
second=exp(-exp(h-b*R[i,3]));
usum=usum + (first-second);
end;

heta=h;

if usum>0 then hmax=h; else if usum<0 then hmin=h;

h=(hmin+hmax)/2;

end;

h=heta;

hsim[j]=h;

/*Calculation of the survival estimates*/
ssim[j]=exp(-exp(h-b*coll[j,31));
end;

num=num-1;

/*Using the parameter estimates*/
alpha=-2.130802;
b=0.88;

/*CALCULATION OF THE STANDARD ERROR OF THE b ESTIMATOR*/
/*The e bivariate function */
e=J(23,23);
do i=1 to 23;

do j=1 to 23;

if j=i then sw=0; else sw=1;

Z2=R[j,31-R[i,3];

23=72%Db;

al=R[i,1];

a2=R[j,1];

a3=min(al tsur);

if a3>=a2 then 11=1; else 11=0;
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end;

intr=(1-exp((-1)*(exp(alpha))*(exp(Z3)+1)))/(exp(Z3)+1);
intr3=(exp(alpha-(exp(alpha)*(exp(Z3)+1))));
intr3=(intr-intr3)/(exp(Z3)+1);

if i>12 then k=2; else k=1;
quan=((R[j,2]*I)/(R2[5.k]*R2[3,3]);
quan=quan-intr;

ksum=intr-intr3;

ksum?2=exp(Z3)*intr3;
new=(-1)*(R[j,3]*ksum)+(R[i,3}*ksum2);
weight=(1/(intr*(1-intr)));

alpha2=new*quan;

e[ij]=alpha2;

end;

gamsum=0;
do i=1 to 23;

end;

do j=1to 23;
Z2=R[i,3]-R[j,3];
do k=1 to 23;
if (k=j | i5j | i=k) then contr=0; else contr=1;
Z3=R[i,3]-R[k,3];
gam1=(e[i,j}+e[ji]);
gam2=(e[i,k]+e[k,i]);
gamsum=gamsum-+gam1*gam?2*contr;
end;
end;

gamsum=(23**-3)*gamsum,;

1h=0;
do i=1 to 23;

do j=1 to 23;

sw=1;

if i=j then sw=0;

Z2=R[j,3]-R[i,3];

23=72%D;

al=R[i,1];

a2=R[j,1};

a3=min(al,tsur);

if a3>=a2 then 11=1; else 11=0;
intr=(1-exp((-1)*(exp(alpha))*(exp(Z3)+1)))/(exp(Z3)+1);
intr3=(exp(alpha-(exp(alpha)*(exp(Z3)+1))));
intr3=(intr-intr3)/(exp(Z3)+1);

if i>12 then k=2; else k=1;
quan=((R[},2]*1/(R2[j.k]*R2[j,3]));
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quan=quan-intr;

ksum=intr-intr3;

ksum2=exp(Z3)*intr3;
new=(-1)*(R][j,3]*ksum)+(R[1,3]*ksum?2);
weight=(1/(intr*(1-intr)));
lh=sw*new*new-+lh;

end;
end;

Ih=(Th*(23**-2));

gen=0;
do 1=1 to 23;

one=1-R[1,2];

ppsum=0;

do k=1 to 23;
if (R[k,1]>=R[1,1] & R[k,3]=R[1,3]) then pp=1; else pp=0;
ppsum=ppsum-+pp;

end;
part2=0;

do i=1 to 23;
do j=1 to 23,

end;

if i=j then sw=0; else sw=1;
Z2=R[},3]-R[1,3];

Z3=72%*Db;

al=R[i,1];

a2=R[j,1];

a3=min(al,tsur);

if a3>=a2 then 1I=1; else 11=0;
intr=(1-exp((-1)*(exp(alpha))*(exp(Z3)+1)))/(exp(Z3)+1);
intr3=(exp(alpha-(exp(alpha)*(exp(Z3)+1))));
intr3=(intr-intr3)/(exp(Z3)+1);

if i>12 then k=2; else k=1;
quan=((R[j,2]*1)/(R2[j.k]*R2[j,3]));
ksum=intr-intr3;

ksum2=exp(Z3)*intr3;
new=(-1)*(R[j,3]*ksum)+(R[i,3]*ksum?2);
weight=(1/(intr*(1-intr)));

if R[j,1]>=R[1,1] then qq2=1; else qq2=0;
if R[i,3]=R[1,3] then qq=1; else qq=0;

if R[j,3]=R[L,3] then qq3=1; else qq3=0;
qq=qq+qq3;

q92=9q2*qq;
part2=new*weight*sw*qq2*quan+part2;
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end;

gen=(one*(part2**2))*(ppsum**-2)+gen;
end;

gen=(4/(23**3))*gen;
serror=(gamsum-gen)/(lh*1h);

/*St. Error value of the b estimator*/
serror=sqrt(serror/23);

/*The Wald statistic*/
W=(b/serror)**2;

/*The p-value of the statistic*/
pvalue=1-cdf("chisquared",W,1);

quit;
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e Manipulation of the Likelihood and the Efron R?

proc iml;

reset autoname;

use sasuser.leukem?2;
read all into R;

use sasuser.marios2;
read all into R2;

coll1=R[,1];
coll1I=UNIQUE(coll1);
colll=shape(coll1,18,1);

num=17;
tzero=coll1[num];
b=0.88749;
alpha=-2.130802;

/*The mean of the y_ij*/
ymean=0.3036616;

/*The log--ikelihood acumulator*/

lik=0;
rsq=0;
rsq2=0;

do i=1 to 23;

do j=ito 23;

Z2=R[j,3]-R[i,3];

Z3=72*Db;

if i=j then tie=0; else tie=1;
alpha=Zzero*b-+log(-log(surviv));
al=R][i,1];

a2=R[j,1];

a3=min(al,tzero);

11=0;

if a3>=a2 then 1I=1;
intr=(1-exp((-1)*(exp(alpha))* (exp(Z3)+1)))/(exp(Z3)+1);

/*The third column of R2 contains G_j(T_j), whereas the first is equal to
G_1group(T_j) and the second is equal to G_2group(T j)*/

if 1>12 then k=2; else k=1;
quan=((R[j,2]*1)*tie/(R2[j,k]*R2[j,3]));
lik=lik-+(quan*log(intr)+(1-quan)*log(1-intr))*tie;
rsq=rsq+((quan-intr)*(quan-intr));
rsq2=rsq2+((quan-ymean)*(quan-ymean));

end;
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end;

/*Efron R square*/
rsq=1-rsq/rsq2;
print rsq,lik;

quit;
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C. CODE IN SAS SOFTWARE FOR THE EVALUATION OF
THE UNKNOWN PARAMETER f and the estimating
survivals setting A=2 in (6.21)

\*\X

/*Putting the data in the same way like before*/
proc imi;

reset autoname;

use sasuser.leukem?;

read all into R;

use sasuser.marios2;
read all into R2;

use sasuser.mar;
read all into T2;

use sasuser.mar2;
read all into coll;

bmin=1;

bmax=2;

b=(bmin+bmax)/2;

usum=1;

do while(abs(usum)>=1E-5);

usum=0;
do i=1 to 23;

do j=1 to 23;
tie=1;
if i=j then tie=0;
Z2=R[i,3]-R[},3];
Z3=72%Db;
al=R[i,1];
a2=R[},1];
11=0;
if al>=a2 then 11=1;

/*Adjusting the generalized functions in the error distribution, excluding the case
where b=0 or Zi=Zj*/
intr=(-1)*(6*Z3*exp(2*Z3)-2*exp(3*Z3)-1+6*exp(Z3)-3*exp(2*Z3));
if (Z3<>0) then intr=intr/(((-1)*exp(2*Z3)+2*exp(Z3)-1)**2); else intr=1
weight=(-2)*(-
6*Z3*exp(4*Z3)+6*Z3*exp(2*Z3)texp(5*Z3)+8*exp(4*Z3)-
18*exp(3*Z3)+8*exp(2*Z3)+exp(Z3))*(-exp(2*Z3)+2*exp(Z3)-1);
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if (Z3<>0) then weight=weight/(6*Z3*exp(2*Z3)-2*exp(3*Z3)-
1+6*exp(Z3)-3*exp(2*Z3))*(exp(4*Z3)-
6*exp(3*Z3)+3*exp(2*Z3)+2*exp(Z3)+6*Z3*exp(2*Z3));
else weight=1;
IF 1>12 then k=2; else k=1;
quan=((R[j,2]*I/(R2[5,k]*R2[j,3]);
quan=quan-intr;
usum=usum-+tie*weight*7Z2*quan;
end;
end;
beta=b;
if usum>0 then bmin=b; else if usum<0 then bmax=b;
b=(bmin+bmax)/2;
end;

/*b estimate*/
b=beta;

/*SURVIVAL ESTIMATES*/

/*Calculation of the h function estimates which here are denoted as hsim */
hsim=J(20,1);

Ssim=J(20,1);

do j=1 to 20;
t=coll[},2];
hmin=-20;
hmax=20;
h=(hmin+hmax)/2;
usum=1;
do while(abs(usum)>=1E-7);
usum=0;
do i=1 to 23;
if R[1,1]>=t then quan=1; else quan=0;
k=1;
if i>12 then k=2;
first=quan/T2[j,k];
second=((2/(2+exp(h+b*R[1,3])))**2);
usum=usum-(first-second);
end;
heta=h;
if usum>0 then hmax=h; else if usum<0 then hmin=h;
h=(hmin+hmax)/2;
end;
h=heta;
hsim(j]=h;

/*Survival probabilities for this model*/
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ssim(j]=(2/(2+exp(h+b*coll[j,3]1)))**2;
end;

quit; /*Procedure ends*/
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D. CODE IN SAS SOFTWARE FOR THE EVALUATION OF
THE UNKNOWN PARAMETER B and the estimating
survivals setting A=1 (Proportional Odds model) in (6.21)

/*Putting the data in the same way like before*/
proc iml;

reset autoname;

use sasuser.leukem?;

read all into R;

use sasuser.marios2;
read all into R2;

use sasuser.mar;
read all into T2;

use sasuser.mar?;
read all into coll;

bmin=-1;

bmax=3;

b=(bmin+bmax)/2;

usum=1;

do while(abs(usum)>=1E-9);

usum=0;
do i=1 to 23;

do j=1 to 23;
tie=1;
if i=j then tie=0;
Z2=R[i,3]-R[j,3];
23=72%b,
al=R[i,1];
a2=R[j,1];
11=0;
if al>=a2 then lI=1;

/* Adjusting the generalized functions in the error distribution, excluding the case
where b=0 or Zi=Zj*/

if (Z3<>0) then int=((1+(Z3-1)*exp(Z3))* (exp(Z3)-1)**-2); else intr=0;

weight=(exp(Z3)-1)*(Z3+2+(Z3-2)*exp(Z3));

if (Z3<>0) then weight=weight/((Z3+1-exp(Z3))*(1+(Z3-1)*exp(Z3))); else
weight=0;

if i>12 then k=2; else k=1;

quan=((R[j,2]*1)/(R2[j,k]*R2[j,3]));

quan=quan-intr;

usum=usum-+tie*weight*Z2*quan;
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end;
end;
beta=b;
if usum>0 then bmin=b; else if usum<0 then bmax=b;
=(bmin+bmax)/2;
end;

/*b estimate*/
b=beta;

/*SURVIVAL ESTIMATES*/

/*Calculation of the h function estimates which here are denoted as hsim */
hsim=J(20,1);

Ssim=J(20,1);

do j=1 to 20;

t=collfj,2];

hmin=-30;

hmax=31;

h=(hmin+hmax)/2;

usum=1;

do while(abs(usum)>=1E-9);

usum=0;
do i=1 to 23;
if R[i,1]>=t then quan=1; else quan=0;
k=1;
if i>12 then k=2;
first=quan/T2[j,k];
second=(1/(1+exp(h+b*R[i,3])));
usum=usum-+(first-second);
end;

heta=h;

if usum>0 then hmax=h; else if usum<0 then hmin=h;

h=(hmin+hmax)/2;

end;

h=heta;

hsim[j]=h;

/*Survival probabilities for this model*/
ssim[j]=(1/(1+exp(h+b*coll[j,3])));
end;

e=J(23,23);

do i=1 to 23;
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do j=1 to 23;
if j=1 then sw=0; else sw=1;
Z2=R[i,3]-R][},3];
23=72*b;
if R[i,1]>=R][j,1] then quan=1; else quan=0;
if i>12 then k=2; else k=1;
quanl=(R2[j k]*R2[j,3]);
if Z3<>0 then quan3=((1+(Z3-1)*exp(Z3))*((exp(Z3)-1)**-2)); else quan3=0;
alpha=((R[},2]*quan)/quan1)-quan3;
alpha=alpha*sw;
e[i,j]=alpha;
end;

end;

gamsum=0;
do i=1 to 23;
do j=1to 23;

Z2=R[i,3]-R[},3];

Z4=72%Db;

intrd=(exp(Z4)-1)*(Z4+2+(Z4-2)*exp(Z4));

if Z4<>0 then intr4=intr4/((Z4+1-exp(Z4))*(1+(Z4-1)*exp(Z4))); else
intr4=0;

Z6=R[j,3]-R[i,3];

26=726%*b;

intr6=(exp(Z6)-1)*(26+2+(Z6-2)*exp(Z6));

if Z6<>0 then intr6=intr6/((Z6+1-exp(Z6))*(1+(Z6-1)*exp(Z6))); else
intr6=0;

do k=1 to 23;
if k=j then contr=0; else contr=1;
Z23=R[i,3]-R[k,3];
25=73%Db;
intr5=(exp(Z5)-1)*(Z5+2+(Z5-2)*exp(Z5));
if Z5<>0 then intr5=intr5/((Z5+1-exp(Z5))*(1HZ5-1)*exp(Z5))); else

intr5=0;

Z7=-R[k,3}-R[1,3];

27=2T*b;

intr7=(exp(Z7)-1)*(Z7+2H(Z7-2)*exp(Z7));

if Z7<>0 then intr7=intr7/((Z7+1-exp(Z7))*(1+H(Z7-1)*exp(Z7))); else
intr7=0;

gaml=(intr4 *e[i,j]+intr6 *e[j,i]);
gam2=(intr5*e[i,k]+intr7*e[k,i])*Z2*Z3;
gamsum=gamsum-+gam1*gam?2*contr;
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end;
end;
end;

gamsum=(1/12167)*gamsum;

1h=0;
do i=1 to 23;

do j=1 to 23;

Z2=R][1,3]-R[},3];

23=72%b;

if (Z3<>0) then intr=(-1)*exp(Z3)*((2+Z3+(Z3-2)*exp(Z3))*(exp(Z3)-1)**-3);
else intr=0;

weight=(exp(Z3)-1)*(Z3+2+(Z3-2)*exp(Z3));

if Z3<>0 then weight=weight/((Z3+1-exp(Z3))*(1+(Z3-1)*exp(Z3))); else
weight=0;

1h=72*72*intr*weight+lh;

end;
end;

1h=(1/529)*1h;
print gamsum,lh;

gen=0;
do I=1 to 23;
one=1-R[1,2];
ppsum=0;
do k=1 to 42;
if R[k,1>=R[L,1] & R[k,3]=R[1,3]) then pp=1; else pp=0;
ppsum=ppsum+pp;
end;
part2=0;
do i=1 to 23;
do j=1 to 23;
if R[i,1}>=R][j,1] then qq=1; else qq=0;
if R[j,1]>=R[1,1] then qq2=1; else qq2=0;
Z4=R[i,3]-R[j,3];
Z25=74*b;
weight=(exp(Z5)-1)*(Z5+2+(Z5-2)*exp(Z5));
if Z5<>0 then weight=weight/((Z5+1-exp(Z5))*(1+(Z5-1)*exp(Z5)));
else weight=0;
if i>12 then k=2; else k=1;

part2=((weight*Z4*R[j,2]*qq*qq2)/(R2[j,k]*R2[j,3]))+part2;
end;

137



end;

gen=(one*(part2**2))*(ppsum**-2)+gen;
end;

gen=(4/12167)*gen;
serror=(gamsum-gen)/(1h*1h);

/*S. error value*/
serror=sqrt(serror/23);

/*The Wald statistic*/
W=(b/serror)**2;

/*The p-value of the statistic*/

pvalue=1-cdf("chisquared",W,1);
quit;
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e Manipulation of the Likelihood and the Efron R?
proc iml;
reset autoname;

use sasuser.leukem?;
read all into R;

use sasuser.marios?2;
read all into R2;

/*The estimated value of the unknown parameter is*/
b=0.93126;

/*The mean of the y_ij*/
ymean=0.5072159;

/*The log-likelihood accumulator */
lik=0;

rsq=0;

rsq2=0;

do i=1 to 23;
do j=1 to 23;
tie=1;
if i=j then tie=0;
Z2=R[i,3]-R[j,3];
Z3=Z2*b;
al=R[i,1];
a2=R[j,1];
11=0;
if al>=a2 then l1=1;
if (Z3<>0) then intr=((1+(Z3-1)*exp(Z3))*(exp(Z3)-1)**-2); else intr=0.5;
/*The third column of R2 contains G_j(T_j), whereas the first is equal to
G_lgroup(T _j) and the second is equal to G_2group(T j)*/
if i>12 then k=2; else k=1;
quan=((R[j,2]*1)*tie/(R2[j k]*R2[j,3]));
lik=lik+(quan*log(intr)+(1-quan)*log(1-intr))*tie;
1sg=rsq+((quan-intr)*(quan-intr))*tie;
1sq2=rsq2+((quan-ymean)*(quan-ymean));
end;
end;

/*Efron R square*/
rsq=1-rsq/rsq2;
print rsq,lik;

quit;
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E. CODE IN SAS SOFTWARE FOR THE EVALUATION OF
THE UNKNOWN PARAMETER 8 AND ITS VARIANCE
USING THE SCORE FUNCTION GIVEN IN (5.39). ALSO
THE SURVIVOR ARE ESTIMATED USING (5.38)

proc iml;
use sasuser.leukem?2;
reset autoname;

/* Put the data into the matrix D */
read all into D;

coll=D[,1];

coll=UNIQUE(coll);

/*Create the N matrix of the counts and the Y the indicator process*/
N=J(18,23);
Y=J(18,23);

/*Create the explanatory variable matrix*/
Z=D[,3];

Z=shape(z,1,23),

Z=repeat(z,18);

do i=1 to 23;
do j=I1 to 18;
if d[i,1]>coll[j] then N[j,i]=0; else N[j,i]=1;
if d[i,1]>=coll[j] then Y[j,i]=1; else Y[j,i]=0;
end;
end;

gin=Y#Z,
zhat=gin[,+]/Y[+];

/*Evaluate the denominator in the quantity (5.49)*/

s=0;

do i=1 to 23;

dif=z[,i}-zhat;

dif=dif#dif;

pos=0;
doj=1to 17;
pos=pos+((coll[j+1]-collj#Y[j+1,i}#dif[j+1]);
end;

s=s+pos;

end;

/*Evaluate the nominator in the quantity (5.49)*/
s2=0;
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do i=1 to 23;
dif=z[,i]-zhat;
pos2=0;

do j=1to 17,

pos2=pos2+((N[j+1,i]-N[j,i]#dif[j+1]);

end;
s2=s2+pos2;
end;

bhat=s2/s;
hal=J(18,12);
doi=1to 12;
hal[,i]=n[.i};
end;
hal=hal[,+];
hal2=J(18,11);
doi=lto 11;
hal2[,i}]=n[,12+i];
end;
hal2=hal2[,+];
y1=J(18,12);
doi=1to 12;
y1Li=yLi);
end;

yl=yl[.+}
hbase=j(18,1,0);
inEL

/*Calculate the estimated hazards*/

do j=0to 16;

s1=0;

s2=0;

s3=0;
do i=1 to 17-j;
sl=sl+(hal[i+1]-hal[i])/Y[i+1,+];
s2=s2+(hal2[i+1]-hal2[i])/Y[i+1,+];
s3=s3+bhat#y1[i+1])/Y[i+1,+];
end;

hbase[18-j]=s1+s2-s3;

end;

/*and the corresponding survivors*/
surv=j(18,1,0);
do j=0 to 16;
s=0;
do i=1 to 17-j;
s=s+bhat#(coll[i+1]-coll[i]);
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end;
surv[18-j}=s;
end;
doi=1to 18;
surv{i]=exp(-hbase[i]-bhat*coll[i]);
end;
surv2=exp(-hbase);
hder=J(18,1,1);
doi=1to 17;

e Manipulation of the Likelihood and the Efron R?

hder{i]=(hbase[i+1]-hbase[i])/(coll[i+1]-coll[i]);

end;

s2=0;

do 1=1 to 23;

pos=0;

pos2=0;
doj=1to 17;
pos2=pos2+((N[j+1,i]-N[j,i])#log(hder[j+1]+bhat#Z[j+1,i]));
pos=pos+((coll[j+1]-coll[j])#Y[j+1,iJ#(hder[j+1]+bhat#Z[j+1,i]));
end;

s2=s2+(pos2-pos);

end;

print s2;

quit; /*Quit procedure IML*/
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