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ABSTRACT
Vangelis Panousis

Methods of Expanding Abridged Life Tables:
Evaluation and Comparisons

May 2001

A common problem faced by demographers is the estimation of the age-
specific mortality pattern when data are given in age groups. Data can be
provided in such a form usually because of systematic fluctuations caused by
age heaping. This is a phenomenon usual to death registrations related to age
misstatements, i.e. preferences of ages ending in multiples of zero and five. In
this study we review, evaluate and compare the several methods for
expanding an abridged life table to a complete one. In order to provide
accurate evaluations and comparisons of the various methods, we apply the
different techniques to several empirical data sets from different populations

and different time periods.
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2uvnBeg TPORANUA yia Toug dnuoypd@oug cival n eXTINNON TNG OLIpdg Twv
Kata nAikia mmBavotiitwy Bvnoiudtnrag evog TAnBuouou otav Ta dedouEva
TTOU €xouv oTn dIABeon TOUuG a@OopPOUV OpAdeC NAIKIWY. ZKOTTOC €ival n
eXTIUNON €vOG avaAuTikKou Trivaka eiBiwong Tou utrd-avdAuan TAnBucuou
Qo TOV QVTIOTOIXO OUVETTTUYHEVO Trivaka. Ta Oedopeva evog  Trivaka
eTIBiwong dnuociedovTal O CUVETTTUYHEVN pop®n, JIOTI Ta avTioToiXa KATd
nAikia Oedopéva eivar em@opTiopéva ammd  ouoTnuaTtikG o@dAuarta. Ta
OQAAUATA TA OTToIa TTAPOUCIACOVTAlI OTN PETPNON TWV EUTTEIPIKWY BeBOPEVWY,
oeidovTal cuvABweg atn cuoTnuaTtikh ONAwaon Kartd tn AngiapxIikr Karaypaen
evog Bavdrtou, NAIKIWY TTOU KATaAfyouv gg ynoeia ToAAamAdoia tou 5. Zav
QTTOTEAECUA TETOIWV ECQAAMEVWY KATAYPAPWY, I YVWOTH KAPTTUAN NG
BvnoigdéTNTag TOU TTANBUCUOU TTaPOUCHAdel CUOTNHATIKA uwnAdTEPa eTTiTeda
Bvnoipdtntag oe autég NG nAIkieg. To @aivopevo autd eival yvwaoTto oTn
BiBAloypagia cav “age heaping”. Z'autr Tnv gpyacia yivetral pia TpootrdBeia
va TrapouciacTouly, va agloAoynBouv kal va cuykpiBouv oi YéBodol TTou £xouv
Ewg Twpa Trpotabei otn BiIBAIoypagia cav AUCEIGC OTNV QVTILETWTTION TOU
Tapamdvw  TpoPAnuatoc.  O1  didpopeg  pEBodol  a&loAoyouvTal  Kal
OuyKpivovTal PE TNV €QAPUOYR TOUG Ot eUTTEIpIKA dedouéva BvnaoipgdtnTag
dIapOpwWV TTANBUCHWV.
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INTRODUCTION

Mortality and fertility form the two general causes of the physical notion of a human
population. Both causes are object of great attention and analysis by demographers. A
demographer constructs a life table in order to describe the survivorship of a population
as subjected to the risk of death. This table describes the effect of mortality. A mortality
"law” is useful for describing mortality of a population and also it provides the basis for
useful projections.

The problem of estimating the age specific mortality pattern, when the data are
provided in age intervals has been extensively discussed in demographic, biostatistical,
as well as in actuarial literature. The main reasons for providing data in an abridged
form are related to the phenomenon of “age heaping”, caused by the age misstatements
in data registration and also the unstable mortality probability estimates provided. by
insufficiently small samples. The most typical case of age-misstatements is that of the
preference of ages ending in multiples of five. Such misstatements cause the appearance
of age heaps. An example of graphically presenting such age preference (age heaps), is
the one that follows. This is the example of the observed age-specific mortality of Greece
for 1960. It is obvious (from Figure 1) that bars referring to ages ending in multiples of

five, or at even numbers, tend to be larger than it is expected to be observed.



The Mortality of the 1960 Greek Female Population
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Figure 1: Observed death distribution by age z (from ages = = 45 to 84) for the Greek
Female Population of 1960.

The observed mortality pattern surely contains great error which is enforced by the
insufficiently small samples used in practice. A typical vf/ay for adjusting this errors is
by grouping the data usually in quinquennial age groups, resulting to an ”abridged life
table”. An abridged life table does not provide information on the age specific mortality.
We may estimate the last by expanding the table.

In this study we gather and analyze the several methods that have been appeared so
far in the literature as tools of expanding an abridged life table. In Chapter 2 we refer
to useful concepts and formulae of the theory of life tables. Sources and types of errors
that appear in mortality data are referred in Chapter 3. The presentation of expanding
methods starts at Chapter 4. We first make a brief presentation of the several methods
starting by presenting an old method proposed by Reed, which was and is still used for the
construction of the Greek Official life tables by the National Statistical Service of Greece,

as it is described in detail by V.Valaoras (1984). A relatively new one which requires five-

2



year age groups, presented by J.Pollard (1989) follows. We call as a "parametric method”,
the application of parametric laws of mortality as expanding tools (see e.g., Kostaki,
1991, 1997). A non - parametric method, see Kostaki (2000), in the sense that it does not
require the use of a parametric model, is also considered, which relates the target abridged
life table with an existed complete one. The application of some interpolation formula
to the survivors function I, of the abridged life table is also presented. A conventional
interpolation technique is the application of a six-point Lagrangean interpolation. A
set of some six- point interpolation formulae is also presented, see Beers (1944). Spline
interpolation (see e.g. Wegman and Wright (1983) or Hsieh (1991), e.t.c.) is a case of an
osculatory interpolation technique which has lately received great attention. Because of
the great literature referring to spline functions, we deal with them in a separate chapter.
In Chapter 5 we start by providing some theoretical background on splines-and present
their involvement in interpolation of demographic data.

The efficiency of the several methods on empirical life tables of several countries (e.g.
Sweden, Norway, Finland, Italy, New Zealand, e.t.c.) is evaluated in Chapter 6. A

method comparison and some concluding remarks of this study are added there too.






Chapter 2

THEORY OF LIFE TABLES

A life table is a statistical model, designed essentially to measure mortality. In practise
it is employed by a variety of specialists in a variety of ways. Life Tables are used by ac-
tuaries, vital statisticians and medical researchers to determine life insurance premiums,
pension values, gains in life expectancy of a people and decreased probabilities of dying
from improved medicines and surgical techniques. In its simplest form, the entire table
is generated from age-specific mortality rates (m;) , resulting to a set of useful functions,
which in general determine mortality, survivorship and life expectation. Life tables are
in a sense, one form of combining mortality rates of a population at different ages into a

single statistical model.

2.1 Categories of Life Tables

Life Tables are distinguished in two general categories.
A. Cohort Life Tables.
B. Period Life Tables.

In general the existence of a number of [y live births is assumed . This is of a ”closed”

nature (a closed population).

A demographer will observe how this cohort of lypersons diminutes as it grows older.



The last table presents the age pattern of mortality of this birth cohort.

The other case, which is more realistic from the point of the ability to construct it,
is a Period Life Table. Since the first case may take 100 to 110 years or more to be
constructed, we do an approximation by case B.

This is a more practical solution, since it can give as a table for every year. Life
Tables are also distinguished in two categories:

A. Full (Complete) Life Tables

They present the age - specific mortality experience by single age z.

B. Abridged Life Tables

They present mortality for groups of ages. The usual representation is for age 0

separate and for the groups 1-4, 5-9, 10-14, ..., 85+.

2.2 The Construction of an Abridged and a Full Life
Table

We start from ly=100.000, or 10.000, which is the hypothetical cohort. It is referred, as

the root (radix) of the table. ,

The basic life table function is [, 0 < z < w (age where the cohort extincts), which
describes the survivors of death exposure at the exact age z. Usually from the death
registrations, we get the central death rate ,m; for any value z in [z,z 4+ n). From that
we can approximate g, the probability of dying, which is the only information we need
to know in order to construct our life table.

The Abridged life table formulae are introduced here.It is simple to derive from the
following, the expressions corresponding to a full life table. It only requires to equate n
with one (=1).

nQz: this is the probability of someone of age z to die before reaching age z + n, i.e.
to die in the age interval [z,z + n)

2Pz this is the probability of someone of age z to survive through the interval [z, z +



With,
nPz = 1 —n 4z

ly: this is the number of people surviving at exact age .

With,
Iz

S(z) = T
denoting the survival probability for the age interval (0, z].
ndz: this is the number of deaths for the age interval [z,z + n).
With,

ndz = lz - lz+n

or,

nldz = Iy nfqz

nLz: this the total number of years of life, that the [,-people of the population
experience in the age interval [z,z + n).

Each person that survives through the age interval [z, z + n), contributes n-years of
life, and each one that dies (since a uniform distribution of deaths is assumed) contributes

approximately n/2 of years of life.

Then,
1
nLlz = nlm-‘rl + §dz
and since,
nda: = lz - lz-’rl
then.

1
an: = §(lz + la:+1)



In the continuous case, we will have,

T+n n lz lz
wLa =/ l(t)dt:/ l(x+t)dt:n(—il——+—1)

0

T,: this is the total number of years, that the [,-people of the population are about
to live in the interval [z, w), where w is an age difficult to reach (w — 1, the greater age).

With,

1, = ZLz

1>z
also,

Tz+n = T:c = an

and,

an == Tx =3 Tz+n

And in the cortinuous case,
T, = / Uz +t)dt
0

0 . . ) ) : .
ez: is called expectation of life or life expectancy at age z. It is the expected remaining
life of persons of age x.

With,

Then the expected age at death of a person of age z is equal to, z+ eoz

And in the continuous case,

1 w—
€n= — / Uz + t)dt
A



2.3 Approximations of Life Table functions.

We present here some useful relations between mortality measures ,¢, and, ,m,. It is
usual in practise to be unable to obtain ,q, directly by the empirical data, but one can

approximate it by ,m..

2.3.1 Approximations of ,q;, nn,

Assume that ,a; is the expected number of years that a random person of age z will be

surviving in the age interval (0 <, a; < z). Then,

nfzznzszSnfzsl

is the expected percent of years lived by such person in the interval [z,z+n). So,

1. n, the number of years that each person which survives through the age interval
[z,z+n), contributes to ,L,. The number of /,,, people will have total contribution

of a number of nl,,, years of life.

2. na, the number of years that each person which dies in the age interval [z,z+n),
contributes to ,L;. Then their total contribution will be a number of (na; ).(ndz)

years of life.

and,

nLa: = nlz—;—n +n azndanz =
= n(ly —ndz) + npfonds =

= L= n[l,_- —n da:(l —n fx)]

From the previous, the mortality ratio ,mg, will take the following form,

nds
'n[lz —n dz(l ~n fz)]

nMMg = = = Mg =



But, since ,d; = [; ¢z,

_ lz ndz m.. = ndz
Conl[l— age(l— afs)] U7 [l = age(l —a fi)]

nma:

Assuming now uniform distribution of deaths in each age interval we will have, ,a, =

n 1
D) and, nf:c = 5 80,

m. — nQz
" n[l =, ga]
or,
nmz‘
nde = 17 n7

The age - specific ,m, and ,q, values can be derived from the above by setting n=1.
Such approximations are very useful in the application of certain expanding methods (see

Pollard, 1989, Reed (see Valaoras, 1984, King, 1914).

2.4 Force of Mortality p, (or Hazard Function).

Another very useful mortality function, which we do not take usually in a life table, is
the force of mortality u,. We refer to a theoretical measure, denoted by p,, which is the
limit of the age - specific mortality rate aozm,, when Az — 0. It describes the intensity
of dying for a random person of age z when:age is assumed to be continuous. This is
called Force of Mortality or Intensity of Mortality or Hazard Function. It will be seen
later, that it is basic to the illustration of some certain expanding methods, (s_ee Pollard,

1989). In general we have for u,,

Az—0 Az—0 AzL:c Az—0 T+AT
I(t)dt
@) -le+dn) . Uz =i+ A)
T T ) atbr—g) a0 [(z)(As)

10



from a function’s derivative definition,

T

= — /u(t)dt =Inl(z) + k = exp(— //.L(t)dt) = I(z)e"

0 0

di(z) 1 _ _dlnl(z)

He = "0 I(z) dzx

setting & = ¢,

and for z = 0,

1(0) = &.1(a) = UO) exp(~ [ u(t)dt)

0

Now, since ,p; = ’(f(:)"), we have from the previous,
z+n z+n
nPz = exp(— / p(t)dt) =1 —p Py =n ¢z = 1 — exp(- / p(t)dt)
T x

Assuming stable intense of mortality for the age interval [x,x+1), we get,

z+1
/ /J'(t)dt = Hz

and for n =1,

Ps = exp(—p,) = p, = —Inp;

This last expression is used in order to produce u -values for each age z, to be included

in a life table, see Pollard (1989).

2.5 Standard(or Model) Life Table

Usually we use as a tool to the estimation procedure applied a table of reference (see

Chaper 4, section 4.6. The Non - Parametric Method). This is also a life table which is

11



not required to satisfy some certain conditions or to have some particular characteristics.
If the last suffices then we will cal the table, a standard life table. A standard table will

demonstrate a mortality pattern similar to that of the population we analyze.
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Chapter 3

ERRORS IN CENSUSES AND
VITAL STATISTICS

Despite the care taken to ensure quality of the demographic data collected by censuses
or by vital registration systems, the final tabulation of the observed data will sometimes
give obvious indication of errors.

The different types of errors, that appear in observed demographic data can be dis-
tinguished in three categories:

A. Sampling Errors

B. Errors of Coverage

C. Errors of Content

Demographic data usually arise from a census or a vital registration system, so we
focus on cases of error B. and C.

We study then two categories of error:

A. Errors of Coverage

These are concerned with losses or double registrations when we talk about vital
statistics registrations, e.g. number of deaths. Usually in death registrations, losses of
registration dominate the existed error, e.g. young borns which die, and no registration

appears on their death or birth, so losses occur on both death and birth registrations.

13



and,
B. Errors of Content

These concern the refuse of someone to answer or a wrong answer to be given to a
registration certificate or a questionnaire(in a census).

The most typical type of error that arise, is the misstatements of age.

3.1 Misstatement of age

Misstatements of age observed in census, or in vital registrations can be classified as

follows:

1. an overstatement of ages of very young children, to which reference has already

been made.

2. a heaping at the ages of majority, that is at 21 years, particularly among males,

and at 18 years for females.
3. a heaping at the ages ending in multiples of five, and at the even ages.

4. an overstatement of ages before majority, and an understatement of ages after

majority.
5. an overstatement of ages by persons just b&low 65 years.
6. an overstatement of ages toward the extreme life.

7. ages not stated or reported as unknown.

3.1.1 Heaping at the ages ending in multiples of five, and at
the even ages

We adopt again the graphical representation of a Greek mortality experience that was

presented previously in the Introduction. It is observed that heaps appear at ages ending

14



in multiples of five and at even ages. These characteristics of the graph are undoubt-
edly the result of misstatement of age, for their regularity, they could hardly have been
produced by corresponding periodic fluctuations in births in past years, or by systematic

waves of immigration.

3.2 Measurement of the tendency to round - off age

returns

Roberto Bachi (1951,1954) suggests three measures for which he considers the ezact,
approximate and ”blended” solutions. These and various others can furnish measures of

the amount of misstatements of age at three levels,

1. at each age (e.g. preference for age 50 or dislike for age 51),
2. at all ages with the same unit digit (e.g. preference for all ages ending in 0),

3. at all ages together (showing the proportions of persons in the population with any

inaccurate digit).

Bachi (1954) proposes measurement methods for the cases 2,3.

3.2.1 Measures

Let z = 10v + u to be any value of age z, where v equals the tens digit, and u the units

digit. So, e.g. if u = 5 then z may take values of ages ending to five. Additionally 19y«

equals the number of people returning certain age z, and > 710y+4, the total number of

people returning ages with unit digit . In the same sensevtlovﬂ , and D tgy4u, define
v

the true number of people with certain age x and ages ending to w.

1. Relative excess or deficiency of number of persons returned at age z over the true

number of persons aged z.
Ty — tz

ta
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2. Relative excess or deficiency of number of persons returned at all ages with the

same unit digit, over the true number in those ages.

Z T10v+u — Z t10v4u
v v

Z t10v+u
v

3. Synthetic measure of total consequences of preferences or dislikes for certain unit

digits.

;(; T10v+u — ; t10v+u)
N

r; and t; where i = z , or 10v+u, are the returned and true person counts respectively.

Because the different scope of this study, the reader interested in details may consult

Bachi (1951,1954).

3.3 Adjustments of Errors (Abridging the data)

Spiegelman (1976), Keyfitz (1985), Benjamin and Pollard (1980) make reference to some
adjustments of the observed errors. Common to all is the suggestion of grouping the
data. Since there is no way of ascertaining the true ages of those who have contributed
towards the heaping at selected digits, the adjustment for this type of errors can hardly
be unique. The general approach to adjusting has been to form groups of the numbers
at successive individual ages. These grouped data (abridged data), rather than the
individual age data, are then used for the analysis. The usual grouping is the one of five
year age groups, so chosen that the grouped data would be free in some extent of error.
Several tests have been devised to ascertain which age grouping minimizes greater the
observed error. These do not point to any particular age grouping. It is anyhow followed,
to present first age (age at birth) alone, with the age interval 1-4, and five year age groups
(e.g. 5-9, 10-14 e.t.c.) to follow, until the extreme ages like 75 or 85, for which an open

age interval is preferred because of the greater error observed there. This is the grouping
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adopted in data collection by several services e.g., the World Health Organization, the
National Statistical Service of Greece. The demographer interested in the age-specific
data solves this problem by applying an expanding method to the abridged data. He
estimates, thus the unobserved age -specific experience by reference to an abridged one.
The various methods that so far the bibliography suggests are described in the following

chapters.
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Chapter 4

EXPANDING ABRIDGED LIFE
TABLES

4.1 Methods - A Brief Overview.

Several methods have been suggested in the literature for the estimation of the age
specific mortality pattern from grouped data. A suggested solution is the application of
some interpolation formula or a graduation procedure to the observed data. Since data
contain great ”systematic” fluctuations except of “random” ones the above solution is
not preferred. Demographers as described in the previous chapter abridge the data, in
order to eliminate systematic errors and produce the unobserved but real grouped data.
From the last they try to estimate the age - specific data.

We consider here methods that have appeared so far in the literature as tools of
expanding an abridged life table to a complete one. Valaoras (1984) presents in detail an
old method which was initially presented by Reed (any reference , of previous publication
of this method is not given in Valaoras, 1984) . A relatively new one which requires five-
year age groups is presented by J.Pollard (1989). A method in which a parametric model
of mortality is utilized (is presented by Kostaki ,1991 and Helingman&Pollard, 1980) it is

called here as the parametric method. In our applications the eight—parametér Heligman-
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Pollard formula and a nine - parameter version of it (see Kostaki, 1992) are adopted. A
short reference on a Bayesian version of the HP-8 formula (see, Dellaportas, Smith and
Stavropoulos (1997) ) it is also done. A new method presented by Kostaki (2000), which
is a non parametric one, in the sense that it does not require the use of a parametric
model, is also considered. It is a method, which relates the target abridged life table
with a standard complete one. The rest of the methods presented, are the application
of some interpolation formula to the survivors function [, of the abridged life table. A
conventional interpolation technique used is the application of a six-point Lagrangean
interpolation. A set of some other six- point interpolation formulas is also presented
by Beers (1944). King (1914) presented a method of separate interpolation on ,d, and
nEz values of the abridged life table. Spline interpolation (see e.g. Wegman and Wright
(1983) or Hsieh (1991) ) is a case of an osculatory interpolation technique which has lately
received great attention. Because of the great literature referring to spline functions, we

deal with them in a separate chapter.

4.2 The Parametric Method-Parametric Models of

Mortality as Expanding Tools.

4.2.1 Parametric Models of Mortality

Mathematical descriptions of schedules of demographic rates (e.g. mortality rates), called
parametric models (of mortality-for mortality schedules-), offer usually an efficient means
of condensing the amount of information to be specified as a set of assumptions, with
the last imposed by a set of parameters and functions. The information required for a
parametric model adopted to represent a mortality schedule is included in a ”Life Table”.

Parameterised model mortality schedules describe the remarkably persistent regular-
ities in age pattern that are exchibited by a set of empirical age - specific mortality rates.

A mortality schedule will normally exchibit a great shift of mortality following birth age,
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a sudden drop (ages 10 to 15), followed by another sudden shift, known as “accident
hump” (for ages 20 to 40). Finally after recalling to a minimum level, it will rise at an
increasing pace until the last years of life.

The search for a "mortality law” has occupied the attention of statisticians and de-
mographers for over a century. The attempt of representing mortality via a parametric
model starts by Gompertz (see, Pollard (1991)). This is the well known Gompertz law of
mortality initially proposed for modelling mortality at the elderly, but also adopted for
the earlier adult ages (see, Pollard (1989)). The earliest attempt to represent mortality
at all ages is that of Thiele (1872), (see, Kostaki (1999b)) who combined three functions
each one representing a different part of the mortality schedule.

In the same sense Heligman&Pollard (1980) set out analogously a function of mor-
tality, as represented by the odds of mortality gf at age z as an eight parameter formula
of age z. This followed to be the classical eight - parameter HP model (HP8) for repre-
senting the age pattern of mortality. The problem that demographers usually phase is
that of reproducing the age - specific pattern from incomplete or grouped data. Kostaki
(1991) solves this problem by proposing the use of an adequate parametric model.

The rationale of the method is simple. If there is a model that adequately represents
mortality of a population, then this model can also estimate in an adequate way the
”complete” mortality experience, when an abridged one is only available.

There is no particular choice of a parametric model. Its adequacy of representing
mortality is only required. Kostaki (1991) presents how such model choice can form
an efficient solution for estimating age - specific mortality schedules. She introduces
the method by adopting the application of the eight - parameter HP model (HP8), but
another adequate model is also permissible. Kostaki (1997) later developed the nine -

parameter version of the HP model (HP9) as a tool of the method.
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The Expanding Procedure

We have our model for the mortality experience

qz \
— = F(z;8
Dz ( )

where F(z;®) the right hand side of the equation with @ being the vector of the para-
meters of the model, & = (A, B, ..., H).

From the model we get for the one-year odds of dying, and as concluded for the one

year probabilities of dying,

F(z;9) -
_—_—— = '{"}
== i Fze) - OO
and the relation ne1l
nQe =1 — H(l - q:z:+‘i)
1=0

implies the following model for the death probabilities in the abridged life table

n-1

nge =1 [J(1- Gz +48)) =, G(z; 8)
1=0

where we consider ,G(z; ®) as an explicit but complicated function of &, z, n.

Then given the abridged (grouped) mortality experience one starts by estimating the
parameters contained in vector & in least squares sense by minimizing,

> -
2

Where the summation is over all relevant values of z. Get the estimates of the para-

meters as they come from this minimization procedure and insert them to the mortality

formula. The estimated model may produce now a complete life table.



4.2.2 The Eight - parameter H&P Formula as an Expanding
Tool (HP8)

A recent attempt to represent mortality over the course of the entire life span with a
single analytical expression, has been made by Heligman&Pollard (1980). They propose
a non - linear model of eight - parameters relating the odds of dying with age z. The
rationale behind the model is simple. Basicely the model is distinguished in three parts
representing, three classes of death causes. So, three causes can be seen, namely those
affecting childhood, early and middle adult life, and the old age.

The formula utilizes a model that presents the odds of mortality %:— as a parametric

function of age z according to the formula,

%ﬁi = A=P° 4 Dexp(~B(In(£))?) + GH

The idea is that we can decompose the odds that an individual of age z dies before
he or she reaches age z+1 into three parts: a child mortality curve, an accident hump in
early adult life, and an adult mortality curve.

gz , is the modelled probability of an individual of age z to die before reaching age
x+1. The modelled quantity, as referred previously, are the odds of dying than not dying
before age x+1 , when the individual of study is of age x.

The three causes of death are described by the three terms that appear into the model

respectively.

1. first a rapidly decreasing exponential, reflects the fall in mortality at the infant and
early childhood ages. This term has three parts, A, which is nearly equal to ¢,
measures the level of mortality, B, is ana age displacement to account for infant

mortality, and C, measures the rate of mortality decline in childhood

2. a function similar to the log-normal density, reflects the middle life mortality pat-

tern. It reflects the accident mortality for males and the accident plus maternal
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mortality for the females. The accident appears generally between ages 10 and

40 and has three parameters, F indicating location, E representing spread, D the

severity, and,

3. an exponential term as that of Gompertz seems adequate to model mortality at the

later ages i.e. > 40 years of age.

The parameter G represents the base level of senescent mortality while H reflects the
rate of increase of that mortality.

The right hand side of the mathematical formula H&P (1980) suggest is interpreted
as AB° + G for z = 0. H&P (1980) gave the above interpretation of the parameters which
are all of positive value and are estimated by least squares. We seek for those parameter
values minimizing a sum of squares, usually the following which has been applied to

applications of the model referred later,

D= -1
z

where qz the estimated probability and g, the empirical observed probability value.

The quantity t(') minimize has been initially proposed by H&P in 1980. Anyhow
attempting to fit many parameters simultaneously by a nonlinear algorithm, as it is
demonstrated by practise can lead to inefficient model solutions (fits). HP8 has provided
satisfactory representations of a variety of mzortality patterns. Recent experience with
fitting this model, like Congdon (1993), Forfar and Smith (1987), and Rogers (1986),
suggest that the model is in certain cases overparameterised. Such cases usually sug-
gest that the mortality pattern does not exhibit an accident hump, or a severe accident
hump. In such a case with eight parameters to estimate, very similar distributions can
be obtained with different combinations of parameter values (parameters that refer to
the second part of the model are not required).

Kostaki (1991) proposes this model as a good solution to an expanding problem,
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since it provides, what is called an adequate representation of the unknown age - specific
mortality pattern. United Nations (1988a, 1988b), independently developed this model
application, within the MORTPAK and MORTPAK - LITE software for mortality analy-
sis.

Several applications of this formula on a wide variety of mortality experiences e.g.
Australia (Heligman and Pollard, 1980), and also Sweden by the same authors, have
shown that the model provides a quite satisfactory representation of the age pattern
of mortality. Kostaki (1985) also applied this formula to Swedish and Greek national

mortality schedules concluding also to a successful model performance.

4.2.3 The Nine - parameter H&P Formula as an Expanding tool
(HP9)

In general, HPS§ is an adequate solution to the expanding of an abridged life table.
Anyway, it fails to reproduce correctly the accident hump, since it estimates its beginning
at a later age. That is more obvious in the cases of data where a severe accident hump
exists (see e.g Swedish data).

In such cases, a nine - parameter version of the H&P formula which is introduced by
Kostaki (1991) will perform better, since it improves the estimates provided by HPS8 at
that part of the curve. The HP9 model makes the model more flexible in the accident
hump by modifying the middle model term. The suggested formula is:

;% = AC+B° 4 p exp(—Ei(In(%))z) + GH®

1=12,withi=1forz< Fandi=2forz>F.
The new parameters are the F, Es terms related to the spread of the accident hump

at the left and right respectively.

Model is estimated by nonlinear least squares and the fit is again connected to the

problem of overparameterisation...
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Kostaki (1992) presents the HP9 as a tool for expanding an abridged life table and
also as a solution to incomplete data problems. It is simple to define the method since
it is an application of the originally proposed parametric also by Kostaki (1991), where

now as the model F(z;8) we use HP9 (vector & is now of length nine).

4.2.4 Bayesian HP8 formula

Dellaportas, et. al. (1997) adopt a bayesian inference approach to the eight - parameter
H&P (HP8) fit which according to the authors, it has several advantages compared to the
classical solution. Firstly, it resolves the problem of overparameterisation (see Chapter
6), very usual to a least squares fitting of a model, by the use of an informative prior
distribution. Secondly, the non normality of the likelihood surface in the parameteri-
zation usually adopted means that the least squares estimates are inadequate. Thirdly,
it is applied as an expanding tool by routinely applying a simulation - based bayesian
computation methodology. Here we carry out a small reference from a theoretical only

view point, since this thesis extends only to solutions of classical statistics.

The Expanding Procedure

From a bayesian perspective, the abridged life table problem can be seen as an incom-
plete data problem, or as adopted by the authors as a constrained parameter problem.
A general approach using an MCMC strategy is used, see Gelfang et al. (1992). As
for applying graduation procedures to statistical data (e.g., demographic data) using a
bayesian estimation strategy, see Carlin (1992).

In general, we assume that the eight - parameter H&P (HP8) model describes the
true underlying the data age - specific pattern (the one year ¢,s). We also consider
as ® = (A,B,C,D,E, F,G, H) the parameter vector, and by d, the age-specific death
counts which is binomially distributed with par’s E, and ¢,. The only known non-random
quantities are the grouped population counts (the exposed to the risk of death for each

group) E,, and the population with age 0 at last birthday and the only observed data the
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grouped death counts, ,d,. Quantities as &, d.s (,or ¢.s) are considered as unknowns.
Let ,FE., nd;, E;, d;, be the vectors of the previous. FE,, d,, do not contain the
values for age z = 0. So, the full model for the data and the unknowns given the known

quantities is of the form,

p(ndz» dz; dO: E27 EJ/nE:m EO) = p(ndx/dma E:D’ e)ﬂ. Ez: EO? dO)p(dz/Ez, Ban E.’l:? EO; dO)
p(dO/Eza H m Ez, Eo)p(E;,;, r_--':'/nE‘:z:; EO)

We note that ,d, depends only on d,, since

z+n

ndz = Z d,

1=T

so for the first conditional density we get a product of indicator functions, ranging
over z =1,5,10,...,w (where w is the age where a generation extincts, as already noted

in previous chapters).

p(ndz/dz; Ez: lr'i:'l'n'z E.'m EO, dO) = Hp(nd:z:/dzy ceey d:z:+k:)

When E,,® are known the next conditional density is derived where d, depends only

on the previous, with each components being independent binomial distributions.

n

p(da:/E:n em Ea:: EO’ dO) = p(dz/E:zv H) = Hp(dz/E:c; Qz)a

z=1

where g, the HP8 one year estimated probabilities.
Similarly,
p(dO/E:m E')y’n E:r: EO) = p(dO/E07 qO)

qgo the first year HP8 estimate.
And finally, we consider a-priori that © is independent of anything else, and that £
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given , F,; is independent of .
p(Em H/nEx; EO) = p(H)p(Ez/nEx; EO)

p(©) is the prior distribution for ¥, the HP8 model parameters.
p(Ez/nFEs, Ep) is the prior for the exposed to the risk of death population counts.

For a greater detail someone may consult Dellaportas, et. al. (1997).

4.3 An Additional Adjustment applied to the results
of the Parametric Method

A good expanding method must imply that if we abridge the estimated one - year prob-
abilities, they will be equal to the original abridged. Since the estimates that the H&P
model provides, or in general the estimates of a parametric model do not have that
property, we perform an adjustment.

Theoretically, the expanded one-year probabilities of dying constructed by our tech-
nique or any expanding technique, it is expected to have corresponding n - year prob-
abilities which have values close to the original abridged life table values. In practice,
usually this is not observed. We may change the one - year probabilities by values that
satisfy the desired property. Kostaki (1991) proposed the following, simple solution.

zj:r+i =1- (1— @)K

where K,
_ In(1-,q;)
T n-1 =
Z ln(l— qz+i)
=0

and 9,the new series of probabilities.
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We conclude to that using the following sense.

Since the n-year probabilities ,q;, which correspond to the Heligman & Pollard for-

mula one-year probabilities ;§;do not satisfy the following equation,

n—1
nzl\z =1- H(l - Zl\z+i) ~n 4z
2=0
then we produce some g,values with corresponding n-year probabilities the adjusted
Heligman & Pollard probabilities such that they satisfy the previous equation.

~
So we have for ,q,,

n—1

nZ]Jz:l—H(l_alz) “n Gz
=0

It is easy to explain the rationale behind this particular choice of adjustment. It
amounts to assuming that the force of mortality 4 (z) underlying the original abridged
life table is, in each n-year interval [z,z + n), a constant multiple, say Ku(.), of one say
u(.), of those infinitely many forces of mortality which produce the complete life table
obtained by the applied expanding process.

The additional adjustment presented by Kostaki (1991), was proposed as a tool that
can be applied to the results of her technique. However it can be applied to the results
of expanding technique (see e.g. Appendix C where we apply it on the results of Reed’s

technique).

4.4 The Pollard’s Model

The usual representation of abridged data is the one with groups of age z = 0,1 —
4.5—9,...,75+,0or 85+. Pollard (1989) proposes a method for deriving a full life table
from mortality data given for each single year until the age of 5 and then for five -

year age groups. The usual form of grouping is close to the one the method requires.
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To describe the method we also assume that deaths during a given calendar year are
reported according to age z of last birthday at time of death. Because of non-uniform
exposure of deaths over the 5-year age group, sm, as produced by the mean population
over an age interval will provide a biased estimate of the mortality rate. To overcome
this problem two assumptions are adopted :

Exponential variation of the force of mortality p,(at age x) within the age interval
and that the population remains stable within this age interval.

Pollard’s method, adopts the use of the classical Gompertz’s law of mortality (Ben-
jamin and Pollard (1980)), for degrouping mortality in the whole life span.

Gompertz’s law assumes the above described exponential variation of p, (at z) within

an age interval, i.e.

pg = Bc®
This was usually applied only to increasing mortality at adult ages, now it is revised
as a tool for describing the decreasing mortality of younger age groups too. In the last

case we assume that ¢ < 1.

4.4.1 The Procedure

Having values of deaths and central popylations for the ages 1, 2, 3 and 4, allow the
immediate estimation of 1(1.5), u(2.5), 4(3.5), u(4.5). Values of u(z) at the pivotal ages
7.5, 12,5, ..., 82.5 are provided by the ratios , 35, Jnm, - 5?7180, without adjustment at

the younger ages, and after adjustment according to formula,

o
5 Mg

[1 — %(57?% +r)Ilnc+ 2(In c)2}

p(z +2.5) =

for ages as above, say, 30. In order to have values of m(z) at intervening ages we may

apply interpolation (described later). If no smoothing or graduation is required then,
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linear interpolation on In u, is recommended. Also for ages z < 7.5 we may apply an
extrapolation. Then interpolation and extrapolation appear to be the main tools of
this method. Since u, implies of a theoretical and not an empirical valued measure, any
value given refers to this function’s approximation.

To describe the construction of the adjustment formula, we outline the following.

We start from the assumption of exponential variation in the y,.
e Exponential variation of u,

The survival probability from age = to = + ¢ can take the form,

t

tPz = €xXp { — / B4y QU
0

and after some calculations we deduce to,

t(ug — #m)]

Dz = €XP
! [ hl(u’:c—f-t/:u’z)

Which is an exact formula when p, varies exponentially.
Concentrating now on the application on the adult ages, we get by ¢! = e*¢, and Inc

approximated by 0.09, that,

. 1o
tDz = €XP § — Uy t+§t Inc

The last assumes quinguennial age groups.
Now under the stability assumption over the age range (z, z +95) with intrinsic growth

rate r, the number of persons in the age interval may be written,

2.5

Plz,z+5) =K / e; " pryasdt
-25
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and under y, exponentially varying we may write,

25 25
P(l‘, T+ 5) = 3K i:l - 2_4'11'1:—}—2.5 Inc+ ﬁ(:u'z+2.5 + 7.)2 (41)
and,
2.5
D(z,z+5) = K et_rtpa:+2.5/1'z+2.5+tdt .
25

25 25
SKpigyos [1 ~ 5qtet2s Inc+ ﬁ(#mz.a +7—Inc)? (4.2)

Writing sm, for D(z, z+5)/P(z, z+5), dividing the two above formulae and replacing

Kg425 in the correction term by sM, we conclude to the adjustment formula.

4.5 The Reed’s Model

A simple tool for expanding was also introduced by Reed (see Valaoras, 1984). This

method’s main tool is the five - year mortality rate.

where sd, represents the number of deaths in the five year age interval [z,z + 5) and
sM, the mean population at the same age interval.

This method was adopted in the construction of some Greek Life Tables by Valaoras
(1984) who presented an analytical description of this method and it’s performance on

Greek data.

4.5.1 The Procedure

We have the five - year mortality rates, sm,. Then the one - year probabilities of dying

97, Q12, 17 , ... are calculated, using the following approximate formula,
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25 My

dz4+2 = m

In order to estimate the full series of the one year probabilities the following formula

is then adopted,

q—z—a+bx+cx2+dx3, z>5

K=

Using the already estimated one year probabilities (g7,¢12.¢17,..), the complete g,-
series is estimated by least squares.

In order to estimate the complete probability series the following procedure is used.

The formula is fitted twice. First, in order to produce the complete probability series
for the age range 5 < z < 20 it is fitted to g7,q12,q17,g22 values with K = 0.989943. Then
for z > 25, the formula is fitted to using the g2 g27,g32, ... values with K = 1.0251234.

Finally, for the ages 21 to 24, a linear combination of the two fitted equations is used

in order to estimate the one-year probabilities:

gn = 0.8gy +0.2qy
g2z = 0.6y + 0.4y
g2z = 0-4q;3+0-6ql2l3

Goa = 0-2‘1;4‘*'0-8‘1,2'4

Where the first and second terms of the above equations are the fitted probability values
for K = 0.989943 and K = 1.0251234 respectively. The two of K values were proposed

by Reed.

AN
X Ay
. . i

i
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4.5.2 Properties and Problems

This technique is not applicable to the early childhood ages (z < 5). Adequate as well
as it does not produce successful results for the early adult ages (see Kostaki, 1992).

However, it is effective for the adult ages.

4.6 The Non Parametric Method

Kostaki (1998) describes a non-parametric method in the sense it does not require the
adaptation of a parametric model, adequate for describing the mortality pattern, like in
Kostaki (1997) and (1991).

It is considered as a relational technique since it relates an abridged life table with
another complete one used as a reference table. The reference table is not necessary to
be a standard one (see Chapter 2). The performance of the method will always differ
as the reference table changes in period or in the population it describes. Anyhow the
differences, as application demonstrate, will be of slight extent (see Appendix C, Tables

Cla, Clb).

4.6.1 The Procedure

We have the ,g,; probabilities, elements of our abridged life table and the qg(cR)of the
reference (e.g. a standard table) life table,z which is of complete form.

Under the assumption that the force of mortality u,, underlying the abridged life
table is, in each n-year age interval [z, z + n), a constant multiple of the one underlying

the reference (complete) life table in the same interval ,LL&R), ie.,

w(z) =n Kol (2)

where,
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K = ln(l ~n Qz)

T np-1
R
¥ In(1 - ¢;3)

Then the one year probabilities of dying ¢;4;,2 = 0,1,...,n — 1 are in each n-year

interval equal to

1-(1- gy

Therefore from the ,q, and the lqa(ER) we calculate , K, and then estimate the one -

year probabilities, ¢, underlying the target abridged life table.

4.7 Polynomial or Piecewise Polynomial Interpola-
tion

4.7.1 Interpolation Techniques

Since mortality data grouped in single years (or even narrower) intervals usually are not
available we study techniques of expanding the interval data (abridged data) to single
year values, based on the application of mathematical interpolation.

A usual method is to fit to the interval data a single polynomial. We interpolate values

of a function f(z), where z = age, which we have tabulated and produce function’s values

at intervening ages.
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Interpolation

The notion of interpolation is to estimate a non-tabulated value of a function from tab-
ulated values. This method is useful when the corresponding function, here usually a
survivors function [;, is not mathematically specified (usual case in life tables, e.g. we

have certain values on certain ages only).

4.7.2 Lagrangean interpolation of six terms (points).

The power of an interpolation formula is denoted by the number of terms that is consisted
of. Six term formulae are most famous in the literature, that means formulae that
comprise six successive data points or else six successive tabulated values of a function.

In general Lagrangean interpolation formula assumes that the fitted polynomial, the
function of interest say u(z) which is of degree k, is a linear combination of k+1 tabulated
values of this function. When only two tabulated values are interpolated by another then
k+1=2and k = 1, the fitted polynomial is of first degree and the interpolation is
called linear. With the same rationale we have cubic interpolation when the values to be

interpolated are four and the polynomial of third degree. So,

k l;[(:r - ;)
u(z) = ; W - u(x;)

Then if we have z; = 1, zo = 3, the formula takes the above expression with
coefficients, -0.5 and 0.5 respectively for u,, and u,, when the interpolated value is ug,.
These are the coefficients for the linear interpolation of u,, and u,, and the following is

the above derived linear interpolation formula :
u(l‘z)

(22 — 71)

It is interesting to observe that coefficients add up to one. That happens for every
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value that k£ + 1 and then k take. It is justified by the fact that if all tabulated values
have to be equal to a constant then the non tabulated ones have to be equal to the same
constant also.

A conventional interpolating technique that is usually applied, is the six point La-
grangean interpolation method. It is very applicable, fast, and very simple to handle,
since it does not require great computational skills by the researcher.

The six term Lagrangean interpolation formula applied on the existing values of the
survivors function [, expresses each non tabulated value as a linear combination of six

particular polynomials in z, each of degree five. As Johnson & Johnson (1990) describe,

% ]I;Iz(x — ;)
o= g -l;l.(xi — ;) =)

where z,, zo, ..., Tg are the tabular ages nearest to z.

When the z;’s are equally spaced this formula can be expressed in simpler forms.

Elandt and Norman Johnson (1990), and Abramowitz, and Stegun (1972), tabulated
the above equation’s coefficients, which we also provide in the Appendix C (see Table
C4) of this study. Lagrangean interpolation is a very famous case of interpolation,
adopted by several authors, like e.g., Namboodiri, Suchindran (1987), when conversation

comes to expanding an abridged life table.

4.7.3 Other Six-Term Formulae for (Actuarial) interpolation.

The literature on interpolation techniques contains too many formulae from which few
are used to real data applications. The most applied, is the one previously described,
Lagrangean formula. Formulae that comprise six terms of the interpolated function as
said before, are more famous.

Henry Beers (1944) gathers some of these and compares their performance. It is

reasonable that all comprise cases of piecewise polynomial interpolation. The formulae
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briefly stated are:
1. The elementary fifth difference formula.
2. The curve-of-sines osculatory formula.
3. Sprague’s fifth-difference osculatory formula.
4. Shovelton’s tangential formula.
5. The minimized-fifth-difference formula.
6. Henderson’s famous near-osculatory formula.
7. Jenkin’s formula.

As f(s) we present the function to be interpolated, where our usual choice is the
survivors function (l,4s or I(z + s)).

In general six - point interpolation formulae (most of them here) have three
common characteristics.

They are symmetric in the sense that they give the same results whether they are
applied forward or backward, i.e. f(s) or [(z+s), is the same function of f(—2), f(—1),
£0), £(1), f(2) and £(3) as f(—s) is of f(2), f(1), f(0), f(-1), f(~2) and f(-3) with
s positive and less but not equal to I , and with f(s) denoting the value u,,, (or,
l(z + s)) of the function we interpolate. The rest f(.) values take similar expressions.
They are correct up to four differences, A*f, i.e. when fifth differences are zero, they
give the same results as the classical elementary fourth difference formula applied to
the same given values. They are correct to fifth differences on the average, ASf, i.e.
the sum of the interpolated values in each age interval is equal to the sum computed
from the same given values by the classical elementary fifth difference formula (presented
later). This characteristic is usually a sufficient guaranty of the reliability of the results of
interpolation performed by one of these formulae. The reader interested to mathematical

details on those characteristics may follow the already referred work by, Beers (1944).
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Formulae Mathematical Expressions

1. The elementary fifth differences formula is considered as the best formula

when fifth differences are constant.

Formula:
Lo, By (o) = AVl 1o 2D

1. The curve of sines osculatory formula was used in the course of the construc-
tion from population statistics of some of the early English life tables. It is called
”osculatory” because first and second derivatives of consecutive curves are equal at
points of junction. The term osculatory will be considered in detail. later, when
the category of "osculatory ” interpolation techniques will be described.

Formula:

Lovs = f() = 3D D2 B - cooms)

1. Sprague’s fifth difference osculatory formula has the same first and second
derivatives at each point of junction as the fourth degree curve through that point

and the two given values on each side of it.

Formula:
1 —2)(7 - 5s)
lz s = = 3(
+ fls)=s o4

1. Shovelton’s tangential formula is characterized like that, as tangential, because
it makes the first derivatives (but not the second) of consecutive curves equal at

points of junction.

Formula:

(1 =5)(5—15)
loys = f(5) = SZT

1. The minimized fifth difference formula was derived for the special purpose of
minimizing the sum of squares of the fifth differences of the interpolated values. It

has no algebraic expression for I;,,, or f(s).
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2. Henderson’s (famous, as given by the author) near-osculatory formula (pre-

sented in TASA,Transactions of the American Society of Actuaries,Vol. IX,219-20)

is expressed as

Formula:

s(s —1)

(A2, — SA%1, )

lers = f(s) =1 +sAl; + 5

N (s — 1);(3 +1)

1
(Asuz_l - —6' As lz_z)

1. Jenkin’s formula (presented in RAIA, the Records of the American Institute of

Actuaries,Vol. XV, 89) is expressed as

Formula:

leys = f(5) =1z +sAl + “LSQ:'QAQZI—l

+(s + 1)2(5 - 1)
s3(s — 1)
12

s(s — 1)3 4
+ B A%l o

AT

A,

Measures of comparison and formulae evaluation.
)
The author compares the smoothness of formulae 1 to 5 by calculating their fifth differ-

ences, A®f. In general differences of a certain degree may be adopted as a comparison
tool of two, or more interpolation formulae ( for formulae 1 to 7). As Beers (1944)
suggested, for routine actuarial interpolation it is highly desirable, or even necessary to
have a formula that can be applied with some assurance without preliminary analysis
of the particular characteristics of the differences of the given values of the function to
be interpolated. Now, if fifth differences are negligible in size, there is no problem since

formulae with that characteristic will provide almost the same results. Problems arise
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when the fifth differences of the given values are too large to neglect but too irregular to
be plausible. Another criterion of the smoothness of an interpolation formula is required.
Beers (1944), suggested the smallness of the sum of squares of the fifth differences of the

interpolated values.
> (a%)°,

where [, the interpolated function.
Some of the formulae presented by Beers (1944) are also osculatory. That means, that

they osculate at points of junction z. This is the case we deal within the next sections.

4.8 Osculatory Interpolation

The usual case of interpolation is the one called, ordinary piecewise interpolation. As it
is described we fit polynomials to pieces of the data which we connect, one by one, at
points called joins, and produce a continuous function. The problem is that derivatives at
the joints are discontinuous. Osculatory interpolation techniques overcome this problem
by ensuring that important derivatives (usually the first two) will be continuous to the
whole range of values. In that case polynomials join smoothly or ”kiss”, hence the name
"osculatory”. Osculatory interpolation techniques introduce here, a method by King and

the one of the application of Spline Models.

4.8.1 King’s Method

This is the method of osculatory interpolation that was proposed by George King (1914),
mainly in order to reduce the effects of age misstatements in mortality data. It was
applied so to graduate mildly the data and produce some of the published English Life
Tables. The method itself is less applicable and largely for historical interest. It requires
the assumption of a small effect of age misstatement since it has a small graduating
power. The original method is applied separately to the exposed to risk population ,F;

and death counts ,d, although it can be applied directly to the mortality probabilities
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nqz, but only with the assumption of mild amount of error to suffice. If ,E;, ,d, do
not obtain a typical pattern, then they do not require just a mild graduation. In such
case King’s technique will apply better to the ,g; - values of the abridged life table. The
probability of dying usually demonstrates a typical behavior.

The Method.

Originally the method alternates in the next five steps:

1. The Exposed to risk are grouped into quinquennial age groups.

2. A pivotal exposed to risk value is calculated for the central age of each group, using

King’s pivotal value formula.

3. Graduated Exposed to risk values at the remaining ages are found by osculatory

interpolation, using King’s osculatory formula.
4. Graduated deaths are obtained by applying steps 1 to 3 to the observed deaths.
5. Graduated mortality rates are found by division.

Next the method’s two basic tools are presented via mathematical expressions.

A. King’s pivotal value formula.

We consider a third degree polynomial u, and define,
wo1 = [n]U_p;wo = [n]ug; w1 = [n]u,

ug is the value of our function for age z (e.g., nEz,ndz O nqz)-
[n] is a summation operator and it means the n-term simple moving average applied
on the series of values of u..

In general the method uses the notion of simple moving averages applied to a series

of function values (here, ,E;,ndz OF nqz )
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The usual case is n=35, which implies the use of quinquennial age groups. So,

W_] = U_7+U_g+ U_5 T U_g+U_3
Wy = U_g+U_] +Uy+ U + U
Wy = U3+ Ug+ Us + Ug + U7

A formula for ug in terms of w_1, wg, wy is then considered,

2
) -1
we = [n]ug=nuy+ Z’(_”24__2A2u_1 (4.3)
3n(9n? —1
w_y+wo+wy = [3n]up = 3nuy+ n T2L4 )A2u~1 (4.4)

Where (4.3) is an alternative expression for a simple moving average using the A® -
operator (difference operator). The last denotes the i-th differences of a series of function

values.

By substracting three times equation (4.3) from equation (4.4) we come up with the

following,

Azw-l = n3 A2’LL_1

Solve the above with respect to A2u_; and substitute the result to equation (4.5).

We finally solve with respect to ug and conclude to King’s pivotal value formula,

1 (n?—1)
= o~ g A%} “5)

B. King’s osculatory interpolation formula.

In order to describe the formulae construction, assume as Benjamin & Pollard(1980) do
in their work, that we have four successive values of a function f(s) or u, (the function
we want to interpolate, e.g., E;,d;,gz). The four points may be denoted as A,B,C,D

with that their physical order.
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The idea is to fit a quadratic through points A,B,C
Uy = (1 + A)z+lu_1 =1u_1+ (l‘ -+ 1)A2u_1

with slope at position B equal to,

1
[—d—uz] =Au_q+ =A%u_,;
=0 2

Plus a quadratic through B,C,D ,
z 1 2
uz = (1 + A)%ug = up + zAyg + E:r(m—i— 1)A%ug
with slope at point C equal to,

d 1 3 1
[d—muz} . = Aug + §A2'U,0 =Au_; + §A2’U,_1 -+ §A3u-1

And a cubic through B, C":
ax® +br? 4+ cr+d

with gradient,
3az? 4 2bz + ¢

The pivotal values or the joins of the:three polynomials are points B,C. As it is

reasonable, it is unable to estimate a function of third degree using two values. We do

that by imposing constraints on the slope values of the fitted polynomials.

By equating ordinates and gradients at the pivotal points B and C, we deduce that:

d = wug, (ordinate at B)
1

c = Au_;+ EAzu_l, (gradient at B)

uw = a+b+c+d, (ordinate at C)
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3 1
3a+2b+c = Au_;+ —2-A2u_1 -+ §A3u_1 , (gradient at C)

and by solving with respect to a,b,c,d we deduce the interpolating formula of King,

2 3

T+ 22—z

Azu_1+ Aau_l (46)

u,= ug+xAu_;+

Benjamin & Pollard(1980) describe all the above theoretical considerations via a

numerical example.

4.9 Spline Functions

Piecewise polynomials that osculate at specific values known as knots, produce a poly-
nomial function called spline. They present interesting properties when applied as a

smoothing tool but also as an interpolation tool, which is the case analyzed here.
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Chapter 5

EXPANDING AN ABRIDGED
LIFE TABLE BY A SPLINE

FUNCTION

There is some enormous literature on splines, most of it concerning their numerical
analytic properties, see DeBoor (1966), Greville (1969),Wahba (1975), Fréberg (1969),
Tyrtyshnikov (1997), rather than statistical properties, see e.g., Green, Silverman (1995),
McNeil, Trussel and, Turner (1977), or Hardle (1992). Special interest has been shown
lately to such osculatory polynomials on the course of demography. So we deal, here,
with the concept of spline interpolation. Spline functions are introduced along with their
properties and their use on interpolating demographic data, in specific mortality data, is

studied in detail.

5.1 Theoretical Background

A spline, as Wahba (1973), and McCutcheon (1981) describe, symbolized by S, is a
function derived after joining a sequence of polynomial arcs. Then it is a piecewise

polynomial function, for which as later we explain the maximum possible number of
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derivatives exists. Suppose that a = 2zg < 21 < ... < ZTp41 = b, then a spline S of degree
k defined on the interval [a, b] with internal ”knots” z1,z3, ..., Z, is a function such that,
if0<i<nand z; <z < z441, then S(z) = p;(z) where p;(x) is a polynomial in x of
degree not greater than k. The polynomial arcs meet at pivotal values called "knots”.
The number of knots chosen must be less or equal the data points used. In interpolation
problems the knot number equals the data.

Spline functions demonstrate substantial advantages against the traditional interpola-
tion formulae, such as greater smoothness, and continuity of the greatest possible number
of derivatives. The choice of the possible number of spline curves through the data points
is infinite. An arbitrary choice of a spline function may produce unsatisfactory results.

Although splines are a fairly simple mathematical concept, their mathematical theory
is relatively new. The idea behind the mathematical spline can be traced back to an
old technique used by draftsmen. For many years long thin strips of flexible material
have been used by draftsmen in the same manner as French curves to fair in a smooth
curve between some specified points. These strips, or splines are anchored in place by
attaching weights called ”ducks” at points along the spline. The mathematical spline
function is similar to the draftsman’s spline in that its graph resembles the curve drawn
by a mechanical curve.

Little work was done with splines until the 1960’s. However, the literature has since
proliferated rapidly and splines currently rezceive a great deal of attention in approxima-
tion theory (see, Barndorff-Ole and Cox, 1995). In fact these functions are considered as
adequate to represent what is called ” structural change”. The use of splines in represent-
ing structural change is clearly motivated in a much different way that are the traditional
uses of splines in approximation theory.

We called spline functions as piecewise polynomials. An example is the linear spline,
which is a continuous piecewise linear polynomial function. The idea behind that is that
there exists a linear relation, which has been subjected to possible structural change

at the knots. Then knots indicate the points where our function changes it’s typical
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behavior. We may generalize this when the underlying relation is not a linear one e.g. a

cubic deriving a cubic spline (a spline of a third degree) which is presented later.

5.2 The Roughness Penalty Approach

Splines are related to a roughness penalty approach which Green and Silverman (1995)
consider when the attempt is to fit a curve S to a set of data.

The roughness penalty approach to curve estimation is stated as follows:

Given any twice - differentiable function .S defined on [a, b], and a smoothing para-

meter a or A > 0, define the modified sum of squares,

n

L(S) = S I¥i - S(t:)2 +a / 18" (@)Pde
i=1 @

The penalized least squares estimator S is defined to be the minimizer of the functional
L(S) over the class of all twice - differentiable functions S. This minimizer L(S) is the
case of a cubic spline. This case we will discuss about later.

The addition of a roughness penalty term [a [ S"?] in the above sum of squares
ensures that the cost L(S) of a particular curve is determined not only by its goodness-
of-fit to the data as quantified by the residual sum of squares y .., [¥;—S(t;)]* but also by
its roughness [ 5”2 The term a is what we call a smoothing parameter. That quantifies
the fitted curves roughness. It represents the rate of exchange between residual error
and local variation and gives the amount in terms of summed square residual error that
corresponds to one unit of integrated squared second derivative. If a is large then the
main component in L(S) will be the roughness penalty and hence the minimizer S will
display very little curvature (a typical pattern). In the limiting case of a tending to
infinity the term [ 5”2 will be forced to zero and the fitted curve will approach a linear
regression fit. Now if a is relatively small then the residual sum of squares will dominate

the minimizing sum of squares and the curve will track the data closely even if it is at
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the expense of being rather variable. In the other limiting case of a tending to zero,
S will approach a smooth interpolating curve. Since the local variation does not exist,
when modelling two successive data points by a deterministic function. The question of
how to choose the smoothing parameter value that agrees with a certain data set, is a
very important task, which can be addressed, for example, by a cross - validation (CV)

approach, or a Generalized Cross - Validation (GCV), (see Craven and Wahba, 1979).

5.3 Cubic Splines

A widely used case of spline functions is that of cubic splines. We will describe what a
cubic spline is and then explain how it arises in interpolation.

Suppose we are given zi, s, ..., T, ...0n some interval [a, b], satisfying a < z; < ... <
z, < b. A function S on [a,b] is a cubic spline, if two conditions are satisfied.

Firstly, on each of the following intervals (a, z1), (21, Z2), ..., (Zn, b), g is a cubic poly-
nomial and secondly the polynomials fit together at the points z;,7 = 1,...n smoothly.
Then in a way that the function itself and its first and second derivative are continuous
at each z;, and then on [a,b]. It is easily stated from the previous that a cubic spline is

the minimizer L(S) , to the minimizing problem stated in the previous section.

5.3.1 Equivalent representations of a (cubic) Spline

There are many essentially equivalent ways of specifying a cubic spline, or in general a

spline.

1. Green and Silverman (1995) consider the case of giving the four polynomial coeffi-

cients for each polynomial fit.

2. McCutcheon (1981) and Hsieh (1991), consider the Hermite representation of a
cubic spline. See Froberg (1969), or Tyrtyshnikov (1997), for details on concepts

like, Hermite polynomials, Hermite interpolation, e.t.c.
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3. Another equivalent way is to represent a cubic spline as a linear combination of a set
of basis functions. This is the most famous. It is called a B-spline representation
and it is the one authors, like McCutcheon (1981), DeBoor (1966), and Greville
(1969), adopt in their works.

4. An alternative and very handling case is that of viewing a cubic spline fit as a
linear regression fitting procedure. See Benjamin and Pollard (1980), Speirs (1986),
McNeil, Trussel, and Turner (1977). It is simple to see that an interpolating spline
is similar to fitting a deterministic regression model to each data piece defined by

two successive knots.

5. Green and Silverman (1995) consider also the case of presenting a cubic spline
by giving it’s values S(z), and second derivatives S (z) at z;, i = 1,...n, where
z, the knot values. Suppose that S is the cubic spline fit with successive knots

7 < ... < Zpn. Define,

S;=8(z;), S =8 (), fori=1,..n

Additionally, Rensaw (1995), explains how a cubic spline, is related to Generalized

Linear Models. Two cases of the cubic spline are considered in this study.

5.3.2 The Natural (cubic) Spline

We introduce here the term of the natural spline.
From a problem that Shoenberg first considered, find a function S in the Sobolev

space W, of functions with (m-1) - continuous derivatives and the m - th derivative

square integrable, so to minimize,

/b (S™(z)) 2 dz
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subject to S(z;) = S;,7 = 1,2,...,n . He showed that if n > m , this minimizer is
unique (see, uniqueness theorem) and also what we call the natural polynomial spline.
That is one of the desirable properties splines have, and means that from the class of
functions defined on the interval [a,b] and for which we have values at zi, ..., z, with
a =20 <z < ..< ZTzy; = b, there is a unique function that minimizes the above
integral and is smooth. The terminology "natural” comes from the fact that if the

previous minimization problem is replaced by:

TIn

/ (S(m)(:v))2 dz,

then the solutions to the two problems will coincide in [z1,z,) , with the solution to

the latter satisfying the so called Neumann or "natural ” boundary conditions,
SO(z;) =89 (z,) =0,5=m, m+1,...2m —1.

It is easy to derive the cubic natural interpolant by setting m = 3.

5.3.3 The Complete (cubic) Spline

Hsieh (1991) in his work considers another case, that of a complete (cubic) spline. Ac-
cording to Hsieh, it appears to be a more accurate solution when applied to a Life Table
construction problem. A natural spline, or in general a spline processes optimum approx-
imation - minimum norm (maximum smoothness) and best approximation (high order
of accuracy). A complete solution adds fast convergence to the above properties.

A complete cubic is a cubic spline with two certain end conditions. It has the same
definition of the natural one but with no natural conditions applied to the ends of the

data. Consult Hsieh (1991), for further details on the end conditions.
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5.4 Interpolating Spline

Our main emphasis here is on interpolation problems. The attempt to expand an abridged
life table introduces such a problem. The subject of interpolation is perhaps more famil-
iar to numerical analysts than to statisticians. Works such as Pollard (1989), McNeil,
Trussel, and Turner (1977), Hsieh (1991), e.t.c. present the adaptation of interpolation
in general, but especially spline interpolation for demographic data.

The problem of interpolation is easily stated as follows:

Suppose we are given values, 21, 2, ..., 2, at the points, 1, 29, ..., ,. We wish to find
a smooth curve S such that interpolates the points (z;, z;), that is to say S(z;) = z, for
all ¢ = 1,...n. obviously there are many ways of constructing a sensible interpolating
function S. For example Pollard (1988) in his proposal of expanding method, uses a
linear interpolation solution on the Inp, values. That is the simplest and most widely
used solution, the one of connecting all points by straight lines. But it does not yield a
smooth curve since the fitted function has discontinuous derivatives at each data point.
A suitably chosen smooth interpolant will do a much better job on approximating the
true underlying curve than will do the piecewise linear interpolant. Such a good solution
is introduced by a spline interpolant.

From Green’s and Silverman’s (1995) definition of roughness penalty:

Let S|a, b] be the space of all functions S on [a, b] that have two continuous derivatives,
and call a function smooth if is in that space. If we wanted the ”smoothest possible”
curve that interpolated the given points, then a natural choice would be to use as our
interpolant the curve that had the minimum value of [ S”? among all smooth curves that
interpolate the data.

It turns out that among all curves S in Sla,b| interpolating the points (z;, z;), the
one minimizing [ S$"2? is a natural cubic spline with knots z;. Furthermore provided
n > 2 there is exactly one such natural spline interpolant. Thus the problem of finding
the interpolant with minimal [ S"? is precisely that of finding the unique natural cubic

spline that has knots at the points z; and values S(z;) = z, for all z. The uniqueness of
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the natural spline solution is known in the spline bibliography by the uniqueness theorem.
Works such as, Greville (1969), Wahba (1975), or Green, Silverman (1995), introduce the

following theorem. The reader interested to the proof may consult the previous.

Theorem 1 (Uniqueness Theorem). Suppose that n > 2 and that , < ... < z,,. Given
any values zy, 23, ..., zn, there is a unique natural cubic spline S with knots at the points
x, satisfying,

S(z;) =2z, fori=1,..n

5.5 Interpolating Spline in Demographic and Actu-
arial Applications.

A small review is conducted here on the applications of spline functions that arise in
demographic and actuarial literature.

The work of Wahba forms the core of much of the work on splines (especially for
smoothing purposes) in Statistics in general, (see for example Wahba, 1975a, b). McNeil,
Trussel and Turner (1977), present the first analytic application of spline interpolation
on demographic data. They carry out the effort of making known and understood the
application of spline functions in demographic data problems. A common problem poses
the need to represent a a smooth curve an age - specific fertility schedule for which
average fertility by standard five year age groups are only available to the demographer.
Equivalently important is the problem of interpolating mortality data, in which we focus
in this thesis. McNeil, et. al. (1977) present and adopt the famous cubic spline solution
on a demographic interpolation problem concerning fertility for Italian women of 1955.
Such an application has to deal with rates that begin by age z = 15, and not by ages
z=20,1,2,3,4, ..., e.t.c which is the case when we have to interpolate the [, - values of a
life table.

Benjamin and Pollard (1980) work is the first which presents in a greater detail spline

smoothing and interpolation in mortality analysis. By adopting the natural cubic spline
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they produce the graduated mortality rates for a certain life table example. McCutcheon
(1981), deals with certain aspects of splines at a greater length. Applications are con-
cerned with the construction of some U.K. National Life Tables. Details of that may
also be found in the work of McCutcheon and Eilbeck (1977). Anyhow as far concerning
those interested to study the subject of spline functions further, they may consult Greville
(1969), DeBoor (1966), Hardle (1992), or Green, and Silverman (1995). An interesting
survey article on Splines in Statistics is the one of Wegman, and Wright (1983), which
attempts to synthesize a variety of works on Splines in Statistics. That extends from
the theory of interpolating and smoothing splines to a discussion of the role of splines
on Time Series Analysis. Anyhow this is also general and does not concern a certain
application.

Later developments of the cubic spline mostly deal again with fertility data. Nanjo
(1986) describes the use of rational spline functions, which include cubic spline as a special
case in obtaining data for single years of age for births given by five year age groups of
mothers. Barkalov (1988) also describes the use of rational splines for demographic data.
Bergstrom, and Lamm (1989) apply cubic spline interpolation in order to recover event
histories. The method is used to adjust U.S. age at marriage schedules explaining a
substantial part of the discrepancy in the 1960 and 1970 censuses. The ”1980-82 New
Zealand life tables” may be considered as famous to life table bibliography. These are
derived by R. Speirs, which applied in 1986 the cubic spline by means of graduation. This
thesis includes the application of the cubic spline interpolant (natural and a complete
one) for the derivation of the same life table example.

It is of great interest to focus on the works of Hsieh (1991a,b) presenting applications
on Canadian Data. The author develops a set of new life table functions which also
includes in the formulation of the "complete” cubic spline interpolation method as applied
to the expansion of abridged life tables. According to the applications included in this
thesis there is no obvious evidence of a greater accuracy, according to Hsieh (1991 a,b),

of the complete spline as compared to the natural one. The differences are insignificant
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small, as indicated by the results (see Appendix A and B).

Applications concerning splines in demography and also life insurance continue to
appear later in the literature, but with all of them to concern the smoothing spline
case. Biller, and Farhmeir (1997) connect spline type smoothing with GLM’s from a full
Bayesian approach. Based on the roughness penalty approach of Green, and Silverman
(1995), they present among other the application of smoothing splines on a data example
of the last authors. This deals with the crude death rates of a population of retired
American white females. Renshaw (1995) also considers splines for actuarial use. As
he notes, many of the graduation methods that are based on parameterized formulae
as practised by actuaries in the construction of life tables are specific instances of the
application of the class of GLM’s. Applications with the graduation of the force of
mortality u, , and probability of dying g, are introduced here. Finally the more recent
application of spline functions in the course of demography is presented by Haberman &
Rensaw (1999). They present a simple graphical tool for the comparison of two mortality
experiences. They start by graphically displaying the difference of the log crude morality
rates plotted against age. This concludes to the difference of the forces of mortality of
the two mortality experiences involved. Fitting cubic smoothing splines to such plots is

particularly effective for targeting the underlying age specific pattern.
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Chapter 6

METHOD EVALUATION AND
COMPARISONS

6.1 Ewvaluations

In this chapter, we provide some applications of the various expanding techniques
presented in the two previous chapters.

This is done in order to evaluate and compare the performance of these methods. We
use empirical data of different countries and different time periods for both sexes. We
have the empirical g, - values which we initially abridge in wider age intervals for the
ages 0, 1-4, 5-9, e.t.c. Then we apply each one of the expansion methods considered to
these abridged data sets. At a final step, we compare the resulting sets with the
corresponding complete empirical ones.

For the purpose of the evaluation and the comparison of the performance of the
different techniques used, we provide graphical representations of the results and we
calculate the values of two different criteria. These are the sums of squares of the

respective absolute and relative deviations between the resulting and the empirical ¢, -

values.
> (4,4.) 6.1)
Z(j—-‘—l)z 62
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The sum of relative differences (6.2) is the one Heligman & Pollard (1980) propose as
the quantity to minimize when trying to estimate HP8. The same loss function is also
used by Kostaki (1991 and 1992a), Hartmann (1987), Forfar & Smith (1987) and other
authors. Tables 1 and 2 provide the values of (6.1) and (6.2) of our application. Kostaki
(1991) makes also reference to another evaluation criterion, where the residuals are

weighted by some transformation of the E_(the exposed to the risk of death population
values). This 1s,

E. .
. 2 6.3
§r a2 6.3)

where the quantities —(I—E'—) are equal to the reciprocals of the binomial distribution
q.\l—q,

variances of g_.

The last sum requires the knowledge of the E_ - values in the actual population and it is
more complicated than (6.1), and (6.2). Kostaki (1991, 1992b, 2000) uses both (6.1), and
(6.2) because they complete each other as criteria since their values are indicative for
the performance of a technique at different parts of the total age interval. The first one
takes equally into consideration the residuals for the whole range of ages and since ¢, -
values for the later adult ages are on a much higher level than those for the younger
ages, the values of this sum are more indicative for the later part of the age interval.
The second sum gives greater consideration to the residuals of the childhood and the
early adult ages, where the weights are heavier as they correspond to smaller g, -
values. The third corresponds to an alternative weighting of the residual values. It takes
into consideration mostly those residuals, which correspond to ¢, - values with the
smallest observed fluctuations.

The literature does not suggest a theoretical based criterion as a tool for evaluating the
performance of an expanding technique. The various authors only illustrate a graphical
representation of their results, see e.g., Heligman & Pollard (1980), Pollard (1989),
Forfar & Smith (1987). In the literature of the lagrangean and spline interpolation, no
reference is either done for some evaluation criterion. Some authors e.g. McCutcheon &

Eilbeck, (1977), Congdon (1993), use a sum similar to (6.3) as a loss function, which is
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approximated by a chi -square (X,°) distribution. Spline interpolation is a relatively
recently used technique in demography but there does not exist any criterion suggestion
for evaluating its performance.

In the face of the parametric technique of Kostaki (1991) we used the Heligman &
Pollard model of eight (HHP8) and nine parameters (HP9) as it was proposed by Kostaki
(1991, and 1992b respectively).

Since the Heligman&Pollard model is a non-linear model of age x a non-linear least
squares procedure was adopted in order to estimate the parameters. This is
accomplished using an iterative estimation algorithm. E04FDF routine of the NAG
library 1s an easy-to-use algorithm for finding the unconstrained minimum of the
supplied sum of squares, which is defined here by formula (6.2). The applied
Heligman&Pollard models require constraints for the parameters. Since this algorithm
searches for the unconstrained solution, it is expected to occur in some cases one or
more negative parameter values. All parameters are constrained to take non negative
values. Neither of our applied data sets demonstrated such problems. Additionally to
the use of the minimization routine we supplied the subroutine LSFUN1 in order to
evaluate the loss function at each age x.

In order to provide adequate starting values for the parameters the UNABR procedure
of the MORTPAK package is used. In some few cases (e.g. Finland’s data) MORTPAK
does not suggest adequate initial values. In such cases the algorithm fails to converge
and stops.

In order to obtain estimates for the standard errors of the parameters of HP8 and HP9,
we used E04YCF routine also supplied by the NAG library. The E04YCF routine
provides estimates of the elements of the variance-covariance matrix of the estimated
parameters. The estimates are derived from the Jacobian of the loss function's value at
the given solution. In all cases that we got estimates for the parameters, we did not
have problem to obtain an estimate for their standard errors. A floating point occurred
by the algorithm in some cases but we got adequate results for the parameters and for
their standard errors. Several applications of the HP8, like Rogers (1986), Forfar and
Smith (1987), Congdon (1993), or Karlis & Kostaki (2000) suggest that the model is
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overparameterized. An overparameterized model means that one, or several
parameters are not required, or else, that several parameters are statistically
insignificant. Experience by demographers so far, demonstrates that mortality caused
by accidents is in general less severe to females and nonexistent to old female and some
old male data sets. We comment that it becomes increasingly intense to recent data
sets, also for the females. The last denotes the importance of the HP9 model for
graduating recent mortality experiences. As Forfar and Smith (1987) comment, in cases
where the "accident hump" is not severe, the model will try to find an accident hump at
the later ages. That comes to justify the cases of females of Italy or Norway where a
great value for the parameters F and, or E were obtained. A great value especially for
the F parameter means that the model estimated a shift of the curve at a later age.
Such a great value cannot be interpreted, since F' is equivalent to the age where the
accident hump of the mortality curve is reached. Such estimated values will have also a
great standard error, suggesting that they are insignificant. In this case, the larger the
initial value of the parameter F or F, the larger the estimated. It is reasonable to avoid
fitting HP9 in such cases. On the other hand, it might be reasonable in such a case to
try to reduce the HP8 model by subtracting its middle term. Problems raised when we
tried to estimate HP9 for several data sets. There were cases where HP8 was estimated
correctly, but the algorithm was unable to proyide results for the HP9. Several runs of
the program for HP9 on the Finland female data set didn't conclude to any results. In
this case, a modest accident hump exists.

In general, HP8 is an adequate solution to the expanding of an abridged life table. In
cases with an intense accident hump, the HP9 model will exhibit a better performance
than the eight - parameter one. We outline values for the minimized loss function
(formula 6.2) by the least squares algorithm which also is used as a criterion of the
efficiency of the expanding technique. We also outline values for formula (6.1). As the
values of the criteria indicate, (see Tables 1 and 2 at the end of this section), in all the
cases where we had results for both models, the HP9 performance was superior to HPS.

The additional adjustment will improve the probability estimates provided by the two
models. The adjusted now results of HP9 will still be better from the corresponding of
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HP8. That is indicated by the superiority of the corresponding criterion values (see
again Tables 1, and 2).

Kostaki (1991) in order to improve the estimations obtained by a parametric model (e.g.,
HP8, HP9) performs this adjustment. It is interesting to observe that this is an
adjustment to be performed on the age-specific 4, 's which arise from an expanding
procedure. For the additional adjustment, a simple logistic package like EXCEL97, or a
simple statistical package like MINITAB are sufficed.

The non - parametric technique of Kostaki is a relational one since it relates the
abridged data set with an age-specific one of another hife table, which is used as a
reference. It was also obtained in EXCEL97, and in MINITAB for the same reasons as
before. Kostaki's applications (see, Kostaki, 2000b) as well as our applications showed
that it is not required for the reference table to exhibit a pattern similar to the one
which underlines the abridged life table used. In other words, we are not obligated to
search for a standard life table. It is also not required for the reference table to represent
a smooth pattern, or to refer to the same gender. Tables Cla and C1b of the Appendix
support the above comments. These presents the technique's performance on the Italian
life tables of 1990-91 for several choices of a reference table, as these were judged by the
values of the two criteria used in this applcation. Values of Tables 1 and 2 can be
adopted as tools for the comparison of the non — parametric technique and the
adjustment performed on the results of the parametric method. Judging by the previous
comments, the non-parametric technique can be considered as a fine solution to an
abridged data problem.

As an alternative to reproducing the whole age range by a single parametric model, or
in general a single polynomial function, we estimated regions of the data as defined by
two successive data values, by applying piecewise polynomials. This is the case of
performing cubic spline interpolation on the abridged mortality data. The cubic spline
was applied twice, once for the case of the natural, and once for the case of a complete
cubic spline interpolant. Interpolation in general requires values of a function, which is

not mathematically specified. The survivor’s function /, indicates such a function. The
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interpolating polynomial spline applied on the /, - values of the abridged life table was

obtained in S-plus (see Chambers and Hastie, 1992), by using the ({spline
(parameterl, parameter2,...)} interpolation tool offered by the program. This tool has
the following complete form, {spline (x, y, n =, periodic = F, boundary = 0, or 1,
xmin = min(x), xmax = max(x))}. The "boundary" parameter introduced here, sets
out the choice for a natural, or a complete spline. A boundary parameter equal to zero
(0) will conclude to the natural cubic spline interpolant, and so the boundary
equal to one (1) will conclude to a case of a complete cubic spline interpolant. The
later represents a complete cubic spline case, in the sense that it poses certain end
conditions to the interpolating function. It is not the case proposed by Hsieh (1990,
1991). Anyhow, it sets clearly out the superiority of the complete spline, when compared
to the natural, as Hsieh (1990, 1991) comments. This comes also out, from the following
tables (Tables 1, and 2) where the two splines are compared via values of the sum of
squares of the relative deviations (see formulae 6.1 and 6.2). It is obvious that the
complete spline is in almost all cases better than the natural one. The values of the
sums of squared residuals (6.1. and 6.2) are usually higher for the natural spline (see
Tables 1 and 2). It is interesting to evaluate how the two cases of spline interpolation
behave at the accident hump, especially when they are compared to the HP8, HP9
parametric models. We notice that for data that were smooth from the beginning, the
performance of splines was comparable to the one of parametric models, and though
better at the accident hump part. Graphs presented in the Appendix A (see Figures
All, 1.2, 7.1, 7.2, 8.1, and 8.2), or Appendix B, (see Figure B2.2) can assist such
comparisons. The superiority of the complete spline vs the natural is also verified there.
We should note that there were cases of data sets, e.g. Italy’s, or New Zealand’s males,
(see Table 1), where the performance of the complete spline was not superior to the
natural (according to the values of formula 6.1, see Tables 1, and 2). That might suggest
that the defined end conditions may be not the appropriate ones in order to improve the
natural end conditions. The last comes out by the fact that a great value for formula 6.1.

possibly indicates some systematic fluctuation of the ¢_'s at the later adult ages.
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A conventional technique of applying polynomial interpolation on the / - values of the
abridged life table, is the Lagrangean technique of six terms. It uses six successive
values of a function, which it interpolates, by a single value. Because of the great
number of values used for one value interpolation, the method does not achieve to
reproduce the whole life table. The extent of the estimated age interval depends on the
age-range of the observed data. In the cases where we used data for the ages, x <85 the
Lagrangean interpolation produced estimates only for x < 70 . The last becomes x < 59,
for observed data for the ages x < 75 (e.g. the data of Finland and Norway). The method
is simple to handle and it produces results very fast. It requires the use of certain
coefficient values, known as the Lagrangean coefficients, which are tabulated by
Ambramowitz, and Stegun (1972), and Elandt - Johnson, and Johnson (1980). These
are also presented in Table C4 of the Appendix C. The method can be performed easily
by a simple computer package like EXCEL97. Lagrangean interpolation is proposed to
estimate mortality only for the age interval of x < 70 . Our calculations showed that the
method underestimates mortality at the first ages (x = 1), and overestimates until age,
x = 5. A great and sudden drop of the estimated curve at about age x =101s evident to
the performance of this method in all our applications. It appears also that the method
estimates a greater in length of time accident hump. Usually, it will overestimate the
mortality curve before the observed hump but it will follow it correctly later. That
sudden shift of the estimated mortality curve is more severe and abnormal, when the
accident hump is a modest one, e.g. for the data of Norway and the females data of Italy.
This technique behaves in a satisfactory way for the old aged, but we remind that it
doesn't extent to ages above 70. An important point here is that this method provides
estimates, which we can abridge again and get the initially observed _q,'s. So the
Lagrangean interpolation estimated g, 's, have the desired property for an expanding
technique. We concluded to that, when we tried to perform the additional adjustment of
Kostaki (1991) on the Lagrangean estimated probabilities.

Getting back to the spline interpolation case, we may do a comparison with the

lagrangean technique, since both are cases of a piecewise polynomial interpolation.



Splines estimate mortality for the whole age span and provide smooth results, because
of the conditions applied at the adjacent points of the piecewise polynomials. But in
general, both methods for certain ages demonstrate a common behavior. This common
behavior is judged by the underestimation of mortality at age x=1 and the
overestimation for some ages before the accident hump that both interpolation
techniques demonstrate. A "sudden" drop at age x =10 is observed, but that is
obviously smaller for the spline case. Tables 1 and 2 can assist us on doing a comparison
of the lagrangean interpolation with the spline interpolation judging by the values of
the two criteria 6.1. and 6.2. In all cases the superiority of the spline interpolation to
the one of Lagrange is obvious. Additionally, one can consult figures presented in
Appendices A and B. Figures B1.1. and B2.1. in the Appendix B compare the
Lagrangean interpolation with the famous natural cubic spline. The problems of the
lagrangean technique at the childhood and the early adult ages can readily be observed.
Other methods are also considered in this application. Reed's technique for example is a
simple old tool. The only reference that exists 1s by Valaoras (1980) who described and
applied the method for the construction of the official life tables of Greece. The
technique was simply performed in EXCEL97. It is comprised of some regression
applications of the -[z—f— values on age x, where K takes certain values given by Reed. It

H

was easy to obtain the regression equations in EXCEL97. Judging the methods
performance, we would say that it faces problems at estimating correctly the accident
hump. In almost all the applied datasets, problems were observed at the ages x = 21, to
24. These were more evident when the accident hump was not severe, which is of a
common case for the female data. It seems that the method tries to model a hump at a
later age interval, so an overestimation of the mortality curve at the sequel is observed
(see performance at the age interval x = 25 to 42). Where the accident hump exists, the
performance of the method at the ages x = 21 to 24 is better, but an underestimation
occurs later for the ages x =25, to 42. An underestimation is again observed for the old
aged, x = 60, to 65 (see figures of Part 9 of Appendix A). Studying the values of Tables 1

and 2 at the end of this section, one can observe the great improvement that Kostaki's
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expanding technique can offer to every expanding technique’s estimates. We performed
that additional adjustment of Kostaki (1991) on Reed’s estimated probabilities and the
improvement was obvious.

In general, the method estimates mortality from the ages greater than five. It performs
badly until age x =10. The same performance is observed for senescent mortality.
Pollard’s expanding technique is not possible to be applied since it requires the existence

of the P, central population counts for each five year age group. We tried anyway to

ntx?

apply the method by using the exposed to the risk of death populations, E, instead of
P, in order to calculate the r-rate introduced by the method. Every data set we used

does not have the form required. The expanding method requires the age-specific data
until age the x = 4. We suggest that the method can perform better on data where the
accident hump does not exist if a linear interpolation on the Inu_ - values is only
applied. We used again S-plus for this experimental application, and the {approx(
parameterl, parameter2, ...)} tool offered for linear interpolation by the program (see
Chambers, and Hastie, 1992). The complete form of the S-plus command is {approx(x,
y, xout, method="linear", n=50, rule=1, £=0)}, where the parameter “method’ defines
whether we use the {linear}, or another interpolation scheme.

We conclude with a comment on those methods that do not participate in this
application. These concern old expanding tools that do not appear anymore in practice.
The several six — point interpolation techniques that were presented by Beers (1944), it
seems that they stop at that year. No reference on one or more of these is done later.
The same stands also for the osculatory interpolation technique of King, which seems

more useful as a graduation technique, than as an expanding one.
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Table' 1: Values of the sum of squares of the absolut deviations between the resulting and the empirical q, -values (see, criterion 6.1.),

multiplied by 10® and calculated for the common age interval of all tested methods, age x=/5,70].

EXPANDING METHOD
HP8 HP9 Non- Natural | Complete Reed
HP8 Adjusted | HP9 Adjusted | Lagrange | Parametric’ | Spline spline Reed Adjusted

LIFE TABLE

laly females 1990-91 13.250 1.488 - - 0.710 2.040 0.756 0.600 4.900 2.363
Italy males 1990-91 25.740 6.750 25.680 6.700 1.840 8.630 1.250 1.300 103.300 7.680
Sweden females 1991-95 11.160 0.820 - - 0.360 1.010 0.410 0.390 5.620 1.067
Sweden males 1991-95 4.090 0.890 1.740 0.800 0.810 3.340 0.700 0.690 41.340 3411
New Zealand females 1975-77 21.940 2.263 21.920 2.240 0.420 1.940 0.300 0.230 14.540 4.853
New Zealand males 1975-77 10.790 1.405 10.720 1.400 2.280 6.670 1.640 1.780 34232 23.648
New Zealand females 1980-82 6.750 0.994 6724 0.990 0.380 1.800 0.280 0.250 30.32 2.192
New Zealand males 1980-82 22.640 2.720 22.610 2.700 1.810 5.400 1.340 1.470 28.205 15.380
Norway’ females 1951-55 2.000 0.242 0200 | 0358 | 0198 | o077 [ 1.170 0.200
Norway males 1951-55 3.000 0.257 : 0.340 0.970 0.203 0.190 7.300 0330

' The dashes in each table refer to cases where HP9 was not estimated, since the accident hump of these data was dissappeared.
? The table of the opposite gender is used as the table of reference in each case for the non - parametric method

3 Criterion values refer to ages X < 75, except for the case of the lagrangean interpolation, where values refer only to ages X < 59.
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Table 2: Values of the sum of squares of the relutive deviations between the resulting and the empirical g_ -values (see, criterion 6.2.),

calculated for the common age interval of all tested methods, age x=/5,70].

EXPANDING METHOD

HP8 HPY Non- Natural Complete Reed
HPS8 Adjusted | HP9 Adjusted Lagrange | Parametric | Spline Spline Reed | Adjusted

LIFE TABLE

Italy females 1990-91 0310 0.057 - 0.573 0.295 0.149 0.095 3.856 0.339
Ttaly males 1990-9} 0.196 0.050 0.189 0.049 0.815 0.339 0.179 0.148 2.262 1.149
Sweden females 1991-95 1.006 0.907 - 1.085 1.205 0.862 0.853 4.560 1.139
Sweden males 1991-95 0.938 0.707 0.728 0.530 2.015 1.246 1.158 1.091 4.707 2.904
New Zealand females 1975-77 0.231 0.055 0.230 0.055 0.468 0.421 0.378 0.244 0.913 0315
New Zealand males 1975-77 0.171 0.066 0.136 0.065 1.582 0.584 0.743 0.681 4.157 2.297
New Zealand females 1980-82 0.240 0.102 0.240 0.101 0.705 0.300 0.479 0.306 1.841 0.762
New Zealand males 1980-82 0.254 0.063 0.175 0.060 1.691 0.328 0.737 0.633 4.653 2.408
Norway females 1951-55 0.163 0.074 - 0.410 0.334 0.126 0.081 0.139 0.074
Norway males 1951-55 0.147 0.056 - - 0.464 0.399 0.106 0.087 0.261 0.179
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6.2 Conclusions

In this study, we reviewed the methods one can adopt when is faced with the problem of

expanding an abridged life table to a complete one.

Summarizing, we distinguished these methods in three categories:

D

2)

3)

Methods which require the use of a parametric model. The application of the
Heligman & Pollard models of eight and nine parameters was reviewed here.
Anyhow as already commented the choice of the parametric model is open.

Piecewise polynomial interpolation techniques. Here we reviewed the famous case of
spline interpolation. Two cases of splines interpolants were applied. The
Lagrangean interpolation is also a piecewise interpolation technique but simpler in
comparison to spline interpolation.

Finally other methods which cannot be clustered in a certain category. Here we
reviewed methods like the non — parametric of Kostaki (2000) which is the newest,

or Reed’s technique, which it is considered as the oldest one.

Parametric methods and Splines require advanced software in order to be obtained. The

rest can be handled more easily. A set of basic properties in order to select the best

method solution should be:

D

The ability of the technique to estimate the whole mortality pattern. The several
parameterized approaches (e.g. HPS, HP9),zpolynomial interpolation techniques (e.g.
splines) and the non-parametric relational technique are proposed for reproducing
the whole mortality pattern. The famous Lagrangean interpolation technique
although still simple to use, does not provide estimates of the complete series of the
mortality probabilities. It requires the abridged life table to extend to more ages. As
for the age interval x < 85, used in almost all cases here, it will give us estimates of
the complete mortality until the age x = 70 . Pollard's technique also estimates a part
of the table when data are not provided in a certain form. It achieves to extend to
age x = 77, but because of a certain grouping for the first ages that it requires, it fail
to estimate mortality for the ages below x = 8. Reed (see Valaoras, 1984) developed

68



2)

3)

4)

a method that begins by estimating mortality at age x =5 extending to the whole
age range

The ability of a method to obtain smooth results defines our second important
property. A parametric model surely will provide smooth results. A spline
interpolant will also provide a smooth mortality curve, since that property
distinguishes a spline from other piecewise interpolation techniques. The rest of the
methods included in this study will provide a series of probabilities that are not
graduated.

An important property for an expanding technique i1s to get again the initial
abridged life table after abridging the estimates. That can be provided by the results
of the Lagrangean interpolation and the non — parametric technique of Kostaki
(2000). By applying this additional adjustment to anyone of the expanding
techniques, the resulting probabilities will obtain this property.

A method to be simple to handle or really complex. A complex method will require a
great deal of computational task in order to be applied. Usually it will require
advanced software e.g. a parametric model needs the application of a computer
algorithm. On the other hand a method can be considered as complex also if it
requires a certain form of the original data set. Pollard’s technique application for

example it is based on many assumptions, e.g., approximation of the u - values,
uniform exposure of deaths within an age interval and certain age grouping for the
first ages. It also requires the existence of the, P, central population counts in each
five year age group. Splines on the other hand will require advanced software in

order to construct the piecewise interpolants.

Summarizing we should mention the following:

Parametric model solutions offer graduation to the data by obtaining a smooth central

curve, which extends to the whole age interval. Additionally, parametric models provide

a more flexible solution since they facilitate projections of the mortality pattern. The last

can assist the analysis and the extrapolation of demographic trends and the setting of

assumptions about such trends. It can also facilitate comparisons over space (e.g.
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spatiotemporal modeling). Splines also obtain a smooth curve interpolating the grouped
data. A finding of our applications is that the performance is better than the HP8's at
the accident hump (see Figures B1.2. and B2.2. at Appendix B). These are cases where
data were already graduated. Concerning the accident hump mortality, we must note
again that it becomes greater and more intense, as recent mortality experiences
suggest, especially in female population experiences. Someone may compare the old
data of Norway 1951-55, with Sweden's 1991-95, or Italy's 1990-91 data used in this
study. The need for a model that studies that part well is pronounced. The nine-
parameter Heligman&Pollard model, or a cubic spline interpolant suggest some cases
that can deal well with this problem.

A systematic fluctuation of the spline interpolant is tracked at the ages about x =10 to
15. This is a sudden drop of the mortality curve that the interpolation technique of
Lagrange also presents in a greater extent. Lagrangean interpolation always presents
that systematic fluctuation at the ages before the accident hump. A sudden drop at the
birth ages mortality is added to the previous observation, for both interpolation
techniques.

The additional adjustment will improve the estimates of every applied expanding
technique. As it appears by the several figures at Parts 2 or 4 and 5 of the Appendix A, a
usual observation for the adjusted results:of the applied parametric models, or the
results of the non - parametric relational technique is that they overestimate mortality
at the very elderly. The improvement offered by the additional adjustment can be easily
observed by applying this to the inaccurate results of Reed’s technique. It is important
to note here that Greece still uses Reed’s expanding technique as a tool to construct its
complete life tables.

In general non - parametric techniques as Splines, or Kostaki's (1998) relational one
lack at the interpretability part that can be obtained using the set of parameter values
in order to provide spacio - temporal comparisons. It is worth again to note that splines
can produce accurate and smooth results and reproduce the whole mortality curve.
However, this technique requires advanced software in order to be applied to real data.

Nevertheless, it avoids problems that are related to an algorithm, used to estimate the
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parameters comprised in a parametric model. Therefore, it is suggested that the
actuary, or biostatistician, who needs only to provide analytical and accurate mortality

estimations can rely on estimations obtained by such non - parametric techniques.
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PART 1
HP8 MODEL
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HP8 MODEL

I ® O

¥ Sweden 1991-05

& New Zealand 1980-82

0 | 0 20 30 40 50 60 70 80 90 100

age-x

Figure Al.1: Empirical ¢, - values (points) and estimations by HP8 formula (solid lines)

for New-Zealand’s 1980-82 and Sweden’s 1991-95 females life table.
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HP8 MODEL

In{gx* 100000)

¥ Sweden 199]-95

1A & Wew Zealand 1980-82

0 10 20 30 40 350 60 70° 80 90 100

Figure A1.2: Empirical g, - values (points) and estimations by HP8 formula (solid lines)

for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life table.
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HP8 MODEL

In{gx*100000)

1 ‘ ; * Finland 1983-84

0 10 20 30 40 50 60 70 80

age X

Figure A1.3: Empirical g, - values (points) and estimations by HP8 formula (solid line)

for Finland's 1983-84 females life table.:
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Figure A1.4: Empirical g, - values (points) and estimations by HP8 formula (solid line)

for Finland's 1983-84 males life table.
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HP8 MODEL
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0O 10 20 30 40 S0 60 70 80 90 100

age x

Figure A1.5: Empirical g, - values (points) and estimations by HP8 formula (solid line)

for Italy's 1990-91 females life table.
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Figure A1.6: Empirical g, - values (points) and estimations by HP8 formula (solid line)

for Italy's 1990-91 males life table.
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PART 2
HP8 ADJUSTED MODEL






HP8 ADJUSTED MODEL
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Figure A2.1: Empirical g - values (points) and estimations by HP8 adjusted formula

(solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 females life table.
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HP8 ADJUSTED MODEL

I g * 1OOGO0Y

20 30 40 50 60 70 80 90

¥ Sweden 1991-93

& New Zealand 1980-82

Figure A2.2: Empirical g, - values (points) and estimations by HP8 adjusted formula

(solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life table.

84




HP8 ADJUSTED MODEL

In(gx*100000)
\:

1 Finland 1983-84

0 10 20 30 40 50 60 70 80

age x

Figure A2.3: Empirical g, - values (points) and estimations by HP8 adjusted formula
(solid line) for Finland's 1983-84 females life table.
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Figure A2.4: Empirical g, - values (points) and estimations by HP8 adjusted formula
(solid line) for Finland's 1983-84 males life table.
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HP8 ADJUSTED MODEL
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Figure A2.5: Empirical g _ - values (points) and estimations by HP8 adjusted formula

(solid line) for Italy's 1990-91 females life table.
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Figure A2.6: Empirical g, - values (points) and estimations by HP8 adjusted formula

(solid line) for Italy's 1990-91 males life table.
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PART 3
HP9 MODEL
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HP9 MODEL
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age x

Figure A3.1: Empirical g, - values (points) and estimations by HP9 formula (solid lines)

for New-Zealand’s 1980-82 females life table.
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HP9 MODEL

D ® OO0 Y

7 Sweden 1991-95

14 A Mew Zealand 1980-82

0 10 20 30 40 30 60 70 80 90 100

age X

Figure A3.2: Empirical g, - values (points) and estimations by HP9 formula (solid lines)

for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life table.
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HP9 MODEL

10

In(gx*100000)
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Figure A3.3: Empirical g, - values (points) and estimations by HP9 formula (solid line)
for Finland's 1983-84 males life table.
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Figure A3.4: Empirical g, - values (points) and estimations by HP9 formula (solid line)

for Italy's 1990-91 males life table.
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PART 4
HP9 ADJUSTED MODEL
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HP9 ADJUSTED MODEL
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1 1 4 New Zealand 1980-82
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Figure A4.1: Empirical g, - values (points) and estimations by HP9 adjusted formula

(solid lines) for New-Zealand’s 1980-82 females life table.
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HP9 ADJUSTED MODEL
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Figure A4.2: Empirical g_ - values (points) and estimations by HP9 adjusted formula

(solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life table.
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HP9 ADJUSTED MODEL
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Figure A4.3: Empirical q, - values (points) and estimations by HP9 adjusted formula

(solid line) for Finland's 1983-84 males life table.
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Figure A4.4: Empirical g, - values (points) and estimations by HP9 adjusted formula

(solid line) for Italy's 1990-91 males life table.
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PART 5

THE NON - PARAMETRIC
RELATIONAL TECHNIQUE
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THE NON - PARAMETRIC RELATIONAL TECHNIQUE
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Figure AS5.1: Empirical g, - values (points) and estimations by Kostaki’s non parametric

technique (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 females life

table.
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THE NON - PARAMETRIC RELATIONAL TECHNIQUE
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Figure AS5.2: Empirical g, - values (points) and estimations by Kostaki’s non parametric
technique (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life
table.
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Figure AS5.3: Empirical g, - values (points) and estimations by Kostaki’s non parametric

technique (solid line) for Finland's 1983-84 females life table.
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THE NON - PARAMETRIC RELATIONAL TECHNIQUE
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Figure AS.5: Empirical g, - values (points) and estimations by Kostaki’s non parametric

technique (solid line) for Italy's 1990-91 females life table.
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Figure A5.6: Empirical g - values (points) and estimations by Kostaki’s non parametric

technique (solid line) for Italy's 1990-91 males life table.
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PART 6

SIX - POINT LAGRANGEAN
INTERPOLATION
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SIX - POINT LAGRANGEAN INTERPOLATION
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Figure A6.1: Empirical g - values (points) and estimations by six-point lagrangean
interpolation (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 females

life table.
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SIX - POINT LAGRANGEAN INTERPOLATION
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Figure A6.2: Empirical g - values (points) and estimations by six-point lagrangean
interpolation (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life
table.
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SIX - POINT LAGRANGEAN INTERPOLATION
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Figure A6.3: Empirical g - values (points) and estimations by six-point lagrangean

interpolation (solid line) for Finland's 1983-84 females life table.
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Figure A6.4: Empirical ¢ - values (points) and estimations by six-point lagrangean

interpolation (solid line) for Finland's 1983-84 males life table.
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SIX - POINT LAGRANGEAN INTERPOLATION
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Figure A6.5: Empirical g, - values (points) and estimations by six-point lagrangean

interpolation (solid line) for Italy's 1990-91 females life table.
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Figure A6.6: Empirical g, - values (points) and estimations by six-point lagrangean

interpolation (solid line) for Italy's 1990-91 males life table.
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PART 7

NATURAL CUBIC SPLINE
INTERPOLATION
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NATURAL CUBIC SPLINE INTERPOLATION
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Figure A7.1: Empirical g, - values (points) and estimations by natural cubic spline
interpolation (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 females
life table.
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NATURAL CUBIC SPLINE INTERPOLATION
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Figure A7.2: Empirical g, - values (points) and estimations by natural cubic spline

interpolation (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life
table.
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NATURAL CUBIC SPLINE INTERPOLATION
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Figure A7.3: Empirical g, - values (points) and estimations by natural cubic spline

interpolation (solid line) for Finland's 1983-84 females life table.
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Figure A7.4: Empirical g, - values (points) and estimations by natural cubic spline

interpolation (solid line) for Finland's 1983-84 males life table.
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NATURAL CUBIC SPLINE INTERPOLATION

10
04
8 ;
5 6 i
2
< =
S
5
= -i-!
3
1 Italy 1990-91
0 10 20 30 40 S0 60 70 8 90 100
age X

Figure A7.5: Empirical g, - values (points) and estimations by natural cubic spline

interpolation (solid line) for Italy's 1990-91 females life table.
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Figure A7.6: Empirical g, - values (points) and estimations by natural cubic spline

interpolation (solid line) for Italy's 1990-91 males life table.
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COMPLETE CUBIC SPLINE INTERPOLATION
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Figure A8.1: Empirical g, - values (points) and estimations by complete cubic spline
interpolation (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 females
life table.
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COMPLETE CUBIC SPLINE INTERPOLATION
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Figure A8.2: Empirical g, - values (points) and estimations by complete cubic spline
interpolation (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life
table.
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COMPLETE CUBIC SPLINE INTERPOLATION
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Figure A8.3: Empirical g, - values (points) and estimations by complete cubic spline

interpolation (solid line) for Finland's 1983-84 females life table.
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Figure A8.4: Empirical g_ - values (points) and estimations by complete cubic spline

interpolation (solid line) for Finland's 1983-84 males life table.
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COMPLETE CUBIC SPLINE INTERPOLATION
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Figure A8.5: Empirical g, - values (points) and estimations by complete cubic spline

interpolation (solid line) for Italy's 1990-91 females life table.
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Figure A8.6: Empirical g, - values (points) and estimations by complete cubic spline

interpolation (solid line) for Italy's 1990-91 males life table.
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REED'S TECHNIQUE
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Figure A9.1: Empirical g, - values (points) and estimations by Reed's expanding
technique (solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 females life
table.
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Figure A9.2: Empirical g, - values (points) and estimations Reed's expanding technique

(solid lines) for New-Zealand’s 1980-82 and Sweden’s 1991-95 males life
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Figure A9.3: Empirical g, - values (points) and estimations by Reed's expanding

technique (solid line) for Finland's 1983-84 females life table.
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Figure A9.4: Empirical g, - values (points) and estimations by Reed's expanding

technique (solid line) for Finland's 1983-84 males life table.
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REED'S TECHNIQUE

I g ® DOOQO0Y

I [taly 19590-91

Figure A9.5: Empirical g_ - values (points) and estimations by Reed's expanding

technique (solid line) for Italy's 1990-91 females life table.
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Figure A9.6: Empirical g, - values (points) and estimations by Reed's expanding

technique (solid line) Italy's 1990-91 males life table.
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Figure B2.1: Empirical g, - values (crosses) and estimations by Lagrangean and

natural cubic spline interpolation (solid lines) for New Zealand's 1975-77 males life

table.
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Figure B2.2: Empirical g, - values (crosses) and estimations by the HP8 model, HP9

model and natural cubic spline interpolation (solid lines) for New Zealand's 1975-77

males life table.
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Figure B2.3: Empirical g, - values (crosses) and estimations by the HP8 and HP9
adjusted models and Lagrangean interpolation (solid lines) for New Zealand's 1975-

77 females life table.
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Figure B2.4: Empirical g, - values (crosses) and estimations by the HP8 and HP9
adjusted models and Kostaki's non-parametric technique (solid lines) for New

Zealand's 1975-77 females life table.
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Table C.la: Values of the sum of squares of the relative deviations between the

resulting and the empirical ¢, - values for the age interval, z < 85, of Kostaki’s

non-parametric expanding technique for several choices of a table of reference.

Expanding Method

Non-Parametric

table of reference

Life Table
Italy females 1990-91 0.392 Italy males 1990-91
0.980 Sweden females 1991-95
1.291 Sweden males 1991-95
0.395 NewZealand females 1980-82
0.691 NewZealand males 1980-82
Italy males 1990-91 0.406* Italy females 1990-91
0.335* NewZealand females 1975-77
0.282* NewZealand males 1975-77
0.687* Norway females 1951-55
0.316* Norway males 1951-55

*estimations were produced for the ages £ < 73.
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Table C.1b: Values** of the sum of squares of the absolut deviations between the
resulting and the empirical ¢, - values for the age interval, z < 85, of Kostaki’s

non-parametric expanding technique for several choices of a table of reference.

Expanding Method
Non-Parametric table of reference
Life Table
Italy females 1990-91 163 Italy males 1990-91
1.07 Sweden females 1991-95
63.99 Sweden males 1991-95
76.71 NewZealand females 1980-82
9.89 NewZealand males 1980-82
Italy males 1990-91 39.95* Italy females 1990-91
8.15* NewZealand females 1975-77
6.53* NewZealand males 1975-77
37.23* Norway females 1951-55
3.41* Norway males 1951-55

*estimations were produced for the ages T < 75.

**multiplied by 106.
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Table C2a: Estimates of parameters 4, B, C, D and their standard errors for the eight

parameter Heligman&Pollard model (HPS).

Parameter A*10° B*10’ C*10’ D*10

Parameter’s standard error |  (s.e.)*10° (s.e)*10° (s.e)*10’ (s.€.)*10"

Life table
Italy males 1990-91 5.175000 1.724500 79.879300 6.970000
0.000242 0.002508 0.092283 0.000024
[taly females 1990-91 5.291563 13.635015 108.198617 9.589142
0.000175 2.015401 5.730777 1.417471
Sweden males 1991-95 3.826000 13.212700 96.209200 5.100000
0.000033 0.147631 0.263948 0.000030
Sweden females 1991-95 2.850000 8.146800 85.361500 1.230000
0.000017 0.073080 0.228730 0.000004
New Zealand males 1975-77 14.861000 12.425600 107.181700 16.980000
0.000165 0.042959 0.095129 0.000127
New Zealand females 1975-77 13.159000 33.572400 121.665300 3.410000
0.000221 0.277155 0.155992 0.000020
New Zealand males 1980-82 13.362000 27.606400 119.323300 15.280000
0.000196 0.180967 0.133164 0.000113
New Zealand females 1980-82 11.782000 51.456200 134.944300 4.850000
0.000142 0.342130 0.119434 0.000018
Finland males 1983-84 7.115000 71.19370 137.80820 8.210000
0.001003 14.453431 4.2910840 0.000490
Finland females 1983-84 2.489000 0.0001230 0.1230000 2.680000
0.000052 0.000418 0.7598410 0.013887
Norway males 1951-55 19.251000 2.186200 53.330500 7.480000
0.000199 0.0022486 0.0013887 0.000040
Norway females 1951-55 16.896000 9.736200 106.418300 5.240000
0.0229782 0.074751 0.000800

0.000161




Table C2b: Estimates of parameters £, F, G, H and their standard errors for the eight

parameter Heligman&Pollard model (HPS).

Parameter E F G*10° H
Parameter’s standard error (s.e.) (s.e.) (s.e.)*10° (s.e.)

Life table
[taly males 1990-91 9,612824 21,057105 2,995000 1,108290
2,486814 0,148118 0,000001 0,000003
Italy females 1990-91 0,174214 516,759772 0,691841 1,120085
1,74214 139306977,9 0,000001 0,000066
Sweden males 1991-95 6,698210 23,696873 2,555000 1,106880
3,313204 0,994838 0,000002 0,000009
Sweden females 1991-95 3,535758 21,415017 1,643000 1,104530
3,556470 4,663070 0,000001 0,000008
New Zealand males 1975-77 14,962399 19,804751 5,509000 1,102400
4,208808 0,054534 0,000002 0,000002
New Zealand females 1975-77 10,137363 18,520898 4,319000 1,097020
10,882659 0,371871 0,000002 0,000003
New Zealand males 1980-82 11,555139 21.015098 4.185000 1.105560
2,642458 0.093418 0.000002 0.000004
New Zealand females 1980-82 12,678668 18.897960 3.559000 1.099120
6,044556 0.122801 0.000001 0.000002
Finland males 1983-84 10.420834 23.012591 5.494000 1.103120
64.617362 3.582706 0.000042 0.000048
Finland females 1983-84 47.997283 19.139034 2.322000 1.102370
232933.38 5.525640 0.0000034 0.000024
Norway males 1951-55 7.592427 22.790478 5.175000 1.097610
3.966309 0.359116 0.000004 0.000006
Norway females 1951-55 1.346263 43.762779 1.316000 1.115110
0.994403 399.88801 0.000004 0.000054
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Table C3a: Estimates of parameters 4, B, C, D and their standard errors for the nine

parameter Heligman&Pollard model (HP9).

Parameter A*10* B*10° Cc*10° D*1¢0°
Parameter’s standard error | (s.e.)*10° (s.e.)*10° (s.e.)*10° (s.e.)*10"
Life table
Italy males 1990-91 5.108550 1.373323 77.380726 6.928700
0.000025 0.001999 0.103737 0.000026
Sweden males 1991-95 3.510260 2.702618 72.289118 4.899540
0.000001 0.000596 0.008872 0.000001
New Zealand males 1975-77 14.43426 9.184438 101.234675 17.024360
0.000115 0.021632 0.071483 0.000103
New Zealand females 1975-77 13.14150 33.008103 121.120640 3.397950
0.000242 0.3000942 0.173210 0.000022
New Zealand males 1980-82 12.763260 19.514239 110.580101 15.216590
0.000110 0.073369 0.082470 0.000076
New Zealand females 1980-82 11.798980 51.685770 135.074475 4.826220
0.000161 0.392557 0.137814 0.000021
Finland males 1983-84 6.130000 7.390000 78.710000 7.480000
0.000080 0.024173 0.680684 0.001075
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Table C3b: Estimates of parameters E/, E2, F, G, H and their standard errors for the

nine parameter Heligman&Pollard model (HP9).

Parameter El E2 F G*10° H
Parameter’s standard error (s.e.) (s.e.) (s.e.) (s.e.)*lO5 (s.e))
Life table
Italy males 1990-91 12.262554 7.333303 20.27788 2.943580 I.IOW;
18.12840 8.465538 0.871415 0.000001 0.000003‘i
Sweden males 1991-95 21.706321 0.088856 19.22429 1.583930 1.114135
13.460977 0.049685 0.102028 0.0000001 0.000002
New Zealand males 1975-77 25.285255 9.840330 18.71712 5.320900 1.102966
69.129798 5.043978 0.288252 0.000001 0.000001
New Zealand females 1975-77 12:128468 8.123339 18.02112 4.277700 1.097177
94.222600 61.788296 4.488211 0.000002 0.000003
New Zealand males 1980-82 21.920184 6.563069 19.35785 3.967390 1.106421
51.186613 2.224358 0.343381 0.000001 0.000002
New Zealand females 1980-82 12.620102 12.754379 18.91032 3.560690 1.099114
23.524682 45981210 1.072624 0.000001 0.000002 |
Finland males 1983-84 132.082000 1.165000 16.070000 0.889000 1.128800
424.168134 2.202468 17.769900 0.000126 0.004252
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Table C4: Coeflicients for six - point Lagrangean interpolation on values of a function

Uy (€8, lz)-

Coefficients <10

z=0 =35 z=10 |z=15 z=20 z=25
uy 0.612864 0.76608 -0.680690 | 0.437760 -0.161280 0.025536
Ug 0.344448 1.14816 -0.861120 | 0.52992 -0.19136 0.029952
Uz 0.167552 1.25664 -0.71808 0.41888 -0.14784 0.022848 .
Ug 0.059136 1.18272 -0.39424 | 0.21504 -0.07392 0.011264
Ug -0.025536 0.76608 0.38304 -0.17024 0.05472 7—;)7.070787064 |
Uq -0.029952 0.524160 0.69888 -0.26208 0.08064 -0.011648
Ug -0.022848 0.30464 0.91392 -0.26112 0.07616 -0.010752

-0.011264 0.12672 1.01376 -0.168896 0.04608 -0.006336
uyisused |z =1 z=25 z=10 | z=15 z=20 =25
Ug 0.56203 0.7176 -0.4784 0.283886 -0.10072 0.0156
Uus 0.273393 1.047199 -0.53191 0.2992 -0.10375 0.015867
Ug 0.096491 1.1088 -0.32853 | 0.1728 -0.05836 0.0088
Ug -0.04167 0.798 0.354667 | -0.152 0.048 -0.007 o
Uz -0.04887 0.5616 0.6656 -0.24069 0.072758 -0.0104
us -0.03728 0.3332 0.888533 | -0.2448 0.070147 -0.0098
Ug -0.01838 0.1408 1.001244 -0.160{;1 0.043116 ] -0.00587
Coefficients z > 10

z=m-10lz=m~—-5z=5m jz=bm+S5{z=m+10|z=50m+ 15
Usm+1 0.008064 -0.07392 0.88704 0.22176 -0.04928 0.006336
Usm42 0.011648 -0.09984 0.69888 | 0.46592 -0.08736 0.010752
Usm+3 0.010752 -0.08736 0.49592 0.69888 -0.09984 0.011648
USm+4 0.006336 -0.04928 0.22176 0.88704 -0.07392 0.008064
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