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ABSTRACT

George Chronis

“ANALYZING THE DEPENDENCY OF THE SPECTRAL
MATRIX OF A VAR ON THE ROOTS OF ITS
CHARACTERISTIC POLYNOMIAL.”

September 2002

When it comes to defining an AR model for a univariate time series with a
spectrum that exhibits strong peaks at specific frequencies, one can easily do so by
setting roots of its characteristic polynomial, at that frequency, with modulus close to
one. Specifying the polynomial via its roots, in the univariate case, is a simple
straightforward process.

In this thesis we try to extend the above idea to the multivariate context by
studying the spectral behavior of a two dimensional VAR model.

The behavior of the VAR is driven by a 2x2 polynomial matrix, consisting of 4
polynomials. Our objective is to study that behavior and particularly the presence of
‘extreme’ spectra, in terms of the roots of the polynomial matrix and its determinant.

It turns out that the behavior of the spectrum of such a model and particularly the
presence of strong peaks at certain frequencies, depend crucially on the roots of the
determinant (roots that have modulus close to one). But not all of them will create a
peak in the VAR’s spectra. This also depends on whether they are also roots of the
polynomials of which the polynomial matrix of the VAR consists.

We study exhaustively the-possible outcomes for simple roots of the determinant
and discuss certain aspects regarding the relation between spectral peaks and the
coherence values at specific frequencies. As a result we obtain guidelines for the

definition of a VAR with specific ‘extreme’ spectral features.



Furthermore an algorithm is presented, with the help of which one may define a
VAR model by specifying the roots of the polynomials involved in the polynomial
matrix and its determinant. The algorithm accepts the roots for these five polynomials
as input, makes the appropriate checks, introduces some adjustments when needed,
distributes the roots according to our instructions and finally finds the polynomials
matrix’s coefficients, thus defining the VAR model.

Some characteristic cases are presented as examples at the end of the thesis. For
further experimentation, the code (created in s-plus) together with a short description,

1s presented at the appendix.
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INEPIAHYH

I'ewpyrog Xpovng

“ANAAYONTAX THN E=ZAPTHXH TOY ®AEMATIKOY
IIINAKA ENOX VAR MONTEAOY ME TIX PIZEX TOY
XAPAKTHPIXETIKOY TOY IIOAYQNYMOY.”

XentéuPproc 2002

Otav evdiopepduoaote va opifovpe éva AR poviého ywr po povopetafinty
YPOVOGEPE, HE QUOUO TOV TAPOVLCUALEL LOYVPEG KOPLPEG GE CUYKEKPIHEVEG
ovyvoTTeG, pmopovue amhd va opicovpe Tig pilec TOL YOPAKINPIGTIKOD TOV
TOAVOVOLOV, OTIV CUYKEKPLUEVT] cLYVOTNTA, £T01 BGTE TO HETPO TOVG VA Eival KOVTA
omv povada. To va mpoodiopictel 10 morvdvupo péow twv puldv ToU, OTHY
povo peTofAnTn mepintmon, ival pio amkn dwdkacia.

Ze vt Vv OTpiPn] mpoomabolpe va EMEKTEIVOVUE TNV TOPATOVE 10E0. OF
TOMAEC SL0OTOOEL, UEAETOVTAG TNV QACULOTIKY CUUTEPLPOpd dvuodidotatwv VAR
LOVTEAWV.

H cvumeprpopd evog VAR poviérov kabodnyeitor and évav 2x2 moAv@VLPIKO
nivaxka mov anotereitar and 4 molvdvopa. O otdyog pag eival vo LeEAETICOVUE TIV
CUUTEPLPOPE KOL O CUYKEKPUEVO TIV TAPOVGIC TOAD 10XLPOV QACUATWYV, OF
oyéon pe T pilec Tov molvovupkoD Tivaka kot TG opilovoas Tov.

ATOdeUVOETAL OTL T} CLUTEPLPOPE TOL QUCHATOG €VOS TETOLOL LOVIEAOL KoL
ovykekpéva 1 YapEn Todd peydAov TILOV o avTd, eEapthtar and T pileg avtig
g opilovoag (pe pétpo kovtd oty povada). [apdia avtd dev mpokaiovy GAeC o1
pilec g opifovoag 10 id10 amotédeopa. Amoderkvietar 6Tt avtd eEopTdtan ard 70 av
ot pileg avtég eivan eniong pileg v ToAv@VON®OV 7OV araPTICOVY TOV TOAVOVLULKO
mivaka Tov VAR povtéiov.

Mehetovpe S1egodikd o mBavéa evoeyxdpeva yo aniés pileg g opilovoag kai
OU{NTOONE PEPIKE CNTHHOTA OYETIKA HE TNV OYECT] TOV VYNADY TIAV TOV QECUATOS

KoL TNG GUVOYNG, OF GUYKEKPLUEVEG cLXVOTNTEG. 2C AMOTEAECUA TOV TAPATAVE®,

VII



AopfBavovpe katsvbouvtipleg ypoupés Yo tov opopd evog VAR ue cuvykekpiéva
YOPOKTNPLOTIKG TTOAD HEYEA®OV TILAOV GTO GAGHA TOV.

Emmiéov mapovcridleton évag ahydpiBuog, pe v Pondew Tov omoiov pmopel va
opotel éva VAR poviého mpoodiopifoviag 7 pilec tov molvevipwv mov
TEPLEYOVTOL GTOV TOAVOVLUIKG Trivaka kot oty opilovoa. O akydpBpog déyetar Tig
pilec tv mévie MOALOVOR®V, KAVEL TOVG avaykaioug eAEyxovg, €0dyel TG
anopaitnteg dopbdoes, katavépuel Tig pileg avaroya pe Tig odnyleg pag kot TeAMKA
Bpickel TOVG GUVTEAEGTEG TOV TOALV®VLULKOD Tivaka, dNAadT opilel TAnpwg 0 VAR
HoVTEXO.

Kanoweg 161dlovoeg nepmtwoelg nopovsidloviar 6to t€hog ¢ datpipric gow
nopadeiypata. Ta neportépm mepapoationd, o kddikag (ypappévog ge S-plus) pali

LLE CUVTOUES EMEENYNOELS, TapoLGIALovTaL 6To TEAOG TG SraTpLPns.
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Chapter 1

Introduction

Let us recall the univariate AR(p) processes and their basic concepts. If {x(z)} is a

univariate time series, we consider it an AR process of order p if:

X, ~ X~ X, 5 —.mP,x,_, =2z, where {z(1)} ~ WN(0,57%). (1.1.1)

Or equivalently:

#(B)x, =z,, t=0,£142,.... where ¢ is a p” degree polynomial:
$(2)=1-z—¢z" —..- ¢,z” which has all its roots outside the unit circle (B is the

backshift operator defined by: B'x, =x,_,).

The reason why the polynomial should have its roots outside the unit circle is to

ensure the AR(p)’s stationarity. So, it turns out that the polynomial ¢ is crucial for

the behavior of the process.

The significance of the polynomial ¢ is not only due to its involvement in the
stationarity issue. As the following will show, the roots of ¢ play a crucial role in the
spectral approach of the AR(p). This makes the study of the relation between the
spectral density and the polynomial ¢, vital.

The spectral density of {x(¢)} is the following:

0_2

fi(A)y=——"—— with —~z<A<7. (1.1.2)
27|p(e™)

It turns out that the AR(p) processes are an important subset of the stationary
processes. While any stationary model can be approximated arbitrarily well by an

AR(p) model, for sufficiently high p, the AR(p)’s are particularly good in dealing



with series with strong waves at certain frequency bands (i.e have strong peaks at

their spectrum), as will become evident below.

We know that when a polynomial has its constant term equal to one (which ¢

certainly has), it can be written as:

WD) =1-gz-pz—..=g,2" =(1-2)-(I=—) -+ (1=—) (1.1.3)
Z1 22 Zp

where z, ,i=1,2,..., p are the roots of the ¢.

So relation (1.1.3) provides an alternative form of the polynomial ¢, which lies at
the denominator of the spectral density f, (relation (1.1.2)). From the above it is
easily understood, that if a root z, = p, -¢* has p, ~1, then the denominator of the
spectral density f, will be close to zero, thus the f, will exhibit a peak at the specific
frequency 4,.

This information proves to be very useful, since now in order to define a AR(p)
model in which certain frequency components have an extremely strong presence, we

can use the roots of its characteristic polynomial and not attempt to directly define its

coefficients. So, one can do so by just giving to the AR’s polynomial

#(z)=1-¢z—¢,z—...—¢,z” , (which lies in the denominator of the spectrum), a root
z,=p,-€” with p, ~1, where 4, will be the frequency in question. It is obvious that

at A,, the spectrum will exhibit a strong peak.

Such AR processes with extreme peaks at their spectrum (nearly unit root
processes), have recently drawn attention, since they have proved to be extremely
troublesome regarding their parameter estimation, due to their roots located close to
the unit circle.

For example, Dahlhaus (1988), proves that when one considers a sequence of
models with an AR root approaching the unit circle at speed %, --where T is the
number of available observations-- the Whittle estimate --which in the AR case is

identical to the Yule Walker estimate-- as well as the conditional Maximum

Likelihood estimates may be biased, while the exact maximum likelihood estimate is



still optimal. In order to deal with the failure of the Yule-Walker estimate, tapered
data should be taken. The resulting Yule-Walker estimates are consistent for the
above model and have similar optimality properties with the exact Maximum
Likelihood estimators.

In order to understand these phenomena let us take a simple model where the data
obey:

X =pX,_ +¢,, g, are N(0,07) (1.1.4)

It is well known that if | pl < 1the process is stationary and the LS estimator for p

is asymptotically normal with rate T2, If p=1, on the contrary the process is a non-
stationary Unit-root process and the LS estimator for p is asymptotically non-gaussian
with rate T"'. The issue is how the LS estimator will behave when p is smaller but
close to one. This will yield stationary AR models with spectrum at 0 frequency
tending to infinity, the behavior of which should approximate the one of a Unit root
process.

Chan and Wei (1987), study the transition of the distribution of the LS estimate of
p under a sequence of models approaching a unit root process, at rate T™', and come
up with a theorem providing a smooth transition between the two extremes ( a T™%-
rate gaussian limit and a T™'-rate non-gaussian limit distribution.

Another statistical model describing near integration has been introduced by

Phillips, Moon and Xiao (2001). The model provides a more complete interface

between I(0) and I(1) models and between O(xff ) and O(T) asymptotics. The rate

. - ; 1 —
of convergence to the autoregressive coefficient is O(T ) forae {E,I:I and varies in

a continuous way between that of a stationary and nonstationary asymptotics.

Testing for situations where a root lies on the unit circle (unit root processes)
against stationary alternatives has drawn lots of attention during the last two decades.
Most of such unit root tests were based on a “time-domain-approach” setup ( (Dickey
and Fuller (1979)) and (Phillips and Perron (1988)) ). But there have also been some
attempts to use a “frequency-domain-approach” setup for this testing problem. These
are of interest in this context, as in this thesis we regard nearly integrated processes as
such with extreme spectral properties.

Hassler (1993) compared in a simulation study, periodogram-regression with

standard Unit root tests. It seems that this kind of test can be applied with both



fractionally integrated as well as in ARMA processes and furthermore the advantage
of no nuisance parameters is at hand. What is also encouraging is that seasonality
does not affect the test, which also has an acceptable performance in small datasets.

Another paper that examines the periodogram regression as a unit root test, is one
from Akdi and Dickey (1998), in which the test statistic involving the periodogram as
well as its distribution, are presented. Some interesting simulations and comments on
the power of the test are at hand, together with its utilization on real data.

Finally, Choi and Phillips (1993) proposed tests for a unit root (which also use
frequency domain methods), and do not involve nuisance parameters in their limiting
distributions. The simulation results in their study show that these tests have good size
characteristics in finite samples, although size distortions under negative serially
correlated errors, are observed. Their conclusion is that the frequency domain tests
have many convenient and appealing properties compared to the standard tests used.

All of the above clearly indicate that in AR processes having extreme peaks in the
spectral density (i.e. characteristic polynomial’s roots close to unity circle) is
something more that a simple annoyance, since it interferes with matters like
parameter estimation. So examining these aspects of an autoregressive process in the
frequency domain could lead to some interesting conclusions.

What is not self-evident and easy, is the multivariate extension of the presence of
extreme peaks. What kind of “extreme peaks” can be present in a VAR? Will all of
its components have them simultaneously, or may they be present at only some of
them? How will they affect the spectral characteristics reflecting the dependency of
these components? Finally, how can one specify VAR(p) models with such features?
This is a much more complicated and computationally, different goal.

First of all we will no longer deal with only a single time series but with a
collection of series (i.e: a Vector Autoregressive model). So we not only we have n
spectra to consider, but beyond those, the aspect of the dependency between these
series is at hand. That dependency can be described by the concept of the cross-

spectra.

For any pair of components {x,(¢)} and {x;(t)} ,i,j=12,....,n, t=0,21%2

greacy

the cross-covariance function y,(h) of lag h, is defined as:

7,;(B) = Covlx (¢ + k), x, (0] = E[(x, e+ ) = 1) (5, () - 1)) (1.15)



The cross-spectra at frequency A, just like the spectrum in the univariate case, are

the Fourier transforms of these cross-covariance functions:

__1_ o il
f,-,-(l)—zﬂze ¥y (h) (1.1.6)

h=—0

One step further in examining the dependency between two of the n components

{x,(1)} and {x;(r)}, is the coherence. It strongly resembles the ordinary correlation

coefficient and actually indicates the relation between two series of a VAR model at a

specific frequency.
So the coherence at a frequency A is defined by:
l 2
K;(A)=m(—)l=K;(A), i,j=12,..,n (1.1.7)
[f:(A) f;(A)]

We will utilize all of the above in order to study the more specific case of a two

dimensional VAR(p) model, consisted of two components {x(¢)} and {y(?)},

t =0,x1,+2,..... This is the multivariate analogue of the AR(p), and it is defined as:

XO=p+Ad -XE-1)+A4,-X(E~2)+........ +A4,X(t- p)+&(2) where, (1.1.8)

X(@)= , Covie(t)} =2, t=0,£1,+2,£3 .... and,
()

a, a, o
4= Clhwithi=1,2,..,p
a}’y

yx

In this case, the spectral matrix of the process turns out to be equal to:

p OO I ) ) I [
[ (A) fyy(l)}_ o (Copd olgut= Mg (1.1.9)

Fay= l: 27

where @ is a 2x2 polynomial matrix, called the characteristic polynomial

matrix, defined below:



cp(z)_—_]Z—Al-z—A,lzz— ...... -4z =

1 PP 1 s AP P
(l—a”z—.... a\z a,z—..—a,z j

1 1
ayz=...—ajz’ l—ayz—..=alz"

(1.1.10)

_(cbn(z) @W(z))
®,.(2) D,(2)

It is obvious that this is much more complicated compared to the univariate case,
since now we have in our hands four polynomials, plus the determinant of that

matrix (1) which is present at the denominator. In order to simplify the F(1) we

will assume, in this thesis, that the covariance matrixX=17.

That way the F(1) and the coherence are equal to:

FO) =07 () 187 (@) =L@ )" (.11

Similarly to the univariate case the condition det®(z)=# 0, for |z|$1 implies

stationarity for the VAR. So, all of the roots should lie outside the unit circle. The
question is what happens if we let these roots approach the boarder of non-
stationarity.

Like in the univariate case, it turns out that depending on whether these roots are

also roots of @, ,® ,® ,® some (or all) of the following may occur:

yx?
Sfu(Lp) >, f, (A;) —> o or Kiy (N\y) & 1. These are the ‘extreme spectra’ situations

we will study.

In the univariate case --which has been extensively used in this context to
motivate our study of extreme spectra of a VAR--, processes with a root close to the
Unit Circle were termed “nearly integrated processes™ and we saw that they have been
used in the literature as local alternatives to Unit root --or integrated processes. A
natural question to pose is: is there any analogue to this in the multivariate case? Are
VAR(p) models with extreme spectrum (for which a root of det(®) is close to the unit
circle) approaching some type of multivariate analog of integrated processes?

Our conjecture is that this in fact the case: if the two marginal spectra are
approaching infinity at zero frequency, while the coherency tends to Unity, the VAR

seems to be approaching a model of two co-integrated I(1) series. If, on the contrary



the coherency at zero does not tend to unity, then the VAR seems to be approaching a
model of two non-co-integrated I(1) series. There are some indications in this
direction. As we know the existence of cointegration relationship between two
variables indicates that the series move together in the long run (for details see Engle
and Granger (1987)). This, in the frequency domain, refers to a zero frequency
relation of the series. It has been proved (Levy (2002)) that if two difference

stationary series x(¢) and y(¢) are cointegrated with cointegrating vector [1, b], then
the zero frequency coherence, phase and gain of their first differences will be equal to

one, zero and |b| respectively. Furthermore in that aspect (Granger and Weiss (1983)),

the coherence at zero frequency tends to one if and only if the two series are
cointegrated.

The above allow eventually a re-interpretation of the theorems that will be
presented later on in the thesis, in terms of as to whether the VAR model considered
approaches a model of two co-integrated series or not.

An algorithm that would take the above under consideration and enable us to
create a VAR model with a pre-specified spectra and coherence could be of great
importance since, once that is achieved, we will be in the position to construct any
kind of a two-dimensional VAR model with the structure we want, something that it
is not possible by simply defining its coefficients. The perspectives of the frequency
domain analysis combined with the work presented in this thesis, give us an in-depth
understanding of a VAR’s structure.

In this thesis, starting at chapter two, we give a short outline of the univariate
stationary processes and their spectral density issues.

Later on, in chapter three, we introduce the bivariate stationary processes. These
are the simplest multivariate realizations and upon them the concepts of cross-spectra
and correlation (i.e. coherence) between the time series, are analyzed.

In chapter four we focus on the family of Vector Autoregressive Processes (VAR)
and some simple issues like stability, stationarity and estimation, are explored.

Our main results whatsoever are presented in chapter five, where we investigate
the theoretical behaviour of the spectrum of a VAR process. The analysis of the
characteristic polynomial of a VAR, is of most importance and reveals the complexity
of the investigation attempted here. Besides to the theorems, that the analysis of the

‘extreme spectra’ situations leads to, a categorization of cases where the ranks of the



roots are small, is also achieved. Many interesting results occur, for example: if the
rank of z, = p,-e" as a root of the determinant det(®) is one, it turns out that it is

not possible for two series to have strong peaks at their spectra (in a given frequency)
without being highly correlated in that frequency band and vice versa. This is not

valid when the order of z, is greater than one, where it is possible to obtain the two

series which are highly correlated at a frequency band, without their spectra
exhibiting strong power over that frequency.

Finally, in chapter six, we develop an algorithm in order to create VAR models
simply by giving the roots for each of the five polynomials. Some examples from its
utilization are presented and later on the algorithm itself is analyzed at the appendix,

together with some comments on it structure.



Chapter 2

Univariate Stationary Processes

2.1 Stationary processes

A set of random variables {x(t)}, t € Z and its associated probability distributions
is called a stochastic process. The ‘family’ of random processes includes a vast range
of processes, rendering a unified approach in their study ineffective. Consequently
more specialized subjects have been defined such as Markov processes, birth and
death processes, diffusion and dilution processes and so on.

The classical theory of spectral analysis considers only a fraction of the family of
random processes called ‘stationary’ processes. The main feature of these processes is
that their statistical properties are shift invariant.

This means that 1f x(t) is such a process, then: ...x(1), x(2), x(3), ..x(t),..... must
each have the same probability density function. But that’s not all that the above
definition implies. It implies moreover that {x(1),x(4)} , {x(2),x(5)} , (x(3),x(6)}
must have the same bivariate probability density and further more that
{x(1),x(3),x(6)} , {x(2),x(4),x(7)} must have the same trivariate probability density
function and so on. The formal definition is the following (Priestley, (1981)):

Definition 2.1.1: The process {x(t)} is said to be completely stationary if, for any

L5855t

SR and any k, the joint probability distribution of
{x(¢,),x(2,),x(t3),......x(¢,)} is identical with the joint probability of
{x(t, + k), x(t, + k), x(t, + k)}

That means that:

FX(,l) ''''' X(,")(xl,xz, ..... , X, )= Fx(t|+k) ..... X(,"+k)(xl,x2, ..... 2 X,) (2.1.1)

where F(.) denotes the distribution function of the set of random variables which

appear as suffixes.



If we relax the above definition we have the weak stationarity:

Definition 2.1.2: The process {x(t)} is said to be stationary up to order m if, for
any t,t,,t,,....t, and any k, all the joint moments up to order m of
{x(@2,),x(t,),x(t;),......x(¢,)} exist and equal to the corresponding joint moments up to
order m of {x(¢, + k), x(t, + k),......x(¢, + k)} .

This means that
E[{x(e )™ {x(t,)}™ ... {x(¢ )™ 1= E[{x(t, +k)}™ {x(t, + k)}™....... {x(t, +k)}™]

(2.1.2)

For any k, and all non-negative integer m,,m,,....,m, satisfying

motm,+my+...+m, <m.

2.2 The autocovariance function

If our observations originate from a time series they may not assumed to be
independent. So the neighboring values in a time series are most likely correlated.

Hence besides defining:
the mean value p as: u=E[x]= rxﬂ (x)dx 2.2.1)

and the variance o’ as: o? = E[(x— y)*]= E(x—;z)z f.(x)dx (2.2.2)

it is also necessary (for stationary series) to specify the autocovariance function
(ACVF) as follows, (Jenkings and Watts, (1968)):

Definition 2.2.1: Let {x(t)}be a stationary time series. The autocovariance
function (ACVF) of {x(2)} is y, (h) = Cov[x(t + h),x(t)] = E[(x(t + k) — p)(x(t) — p)]
From the above definition it is obvious that:

7.(0)=Var[x(t)] =0} and y,(h) =y, (-h). (2.2.3)

Hence the autocovariance function is an even function.

10



If a normalization of the autocovariance function is needed, possibly for

comparing time series with different scales, the autocorrelation function (ACF) is

introduced: p, (k) = 7= = Corlx(z + k), x(0)] .
7:(0)

Since p, (h)is a correlation coefficient it should be bounded:] p.(h)|<1. And

furthermore it should be symmetric attaining its maximum value at A=0.

The autocovariance and autocorrelation functions are estimated by the sample

autocovariance ¥ (h)and sample autocorrelation function p (k) respectively, where:

n—|h| n
p(h)=n" Y (x(t +|H) - X)(x()-%), —n<h<n where X =-I—Zx_, (2.2.4)
= n

t=1 t=1

and

_ 7.

: 2.2.5
7:(0) 222

p.(h)

2.3 Spectral density of univariate series

Let {x(z)} be a zero mean stationary process (without loss of generality) and y(¢)

be the autocovariance function of that series, where Zly(h)l <. Then, (Brockwell

h=-c0

and Davis, (1996)), the spectral density of {x(¢)} is defined by:

f(ﬂ-)=-21; S ey (h), o< A< @3.1)
fy—

where e = cos(A) +isin(1) and i =+/-1.

Definition 2.3.1: A function f is the spectral density of a stationary series {x(z)}
with autocovariance function y if:

1. f(1)20 forevery A€ (0,r] (2.3.2)

11



2. y(h)= [e™ f(A)dA for all integers h. (2.3.3)

Properties of spectral density:

1 fisan even function, thatis f(-4)= f(4) (23.4)
2 f(A)=0 forevery Ae(-n,x] (2.3.5)
3 yk)= ”je““ f(A)dA= ”jcos(kz) f(A)dA (2.3.6)

The above property actually expresses the autocovariance function of a stationary

process, as a function of the spectral density. So even if Y |r(h)| =0, a spectral

h=—e0

density may exist.

In order to see the interpretation of the spectrum, a theorem concerning the
spectral representation of a stationary process, should be presented. (Priestley page

247)

Theorem 2.3.1 (Priestley, (1981), page 246) Let {x(z)},t=0,£1,+2,.... be a zero
mean stationary process. There exists an orthogonal process Z(A)on the interval

(-7, ) such that for all integral ¢, {x(¢)} can be written in the form:
()= [ e*dz(2) (2.3.7)

The process Z(A) has the following properties:

a) E[dZ(A)]=0for —n<A<~m

b) ElldZ(1)|’1= f(A)dA for —z < A<mand,

c) for any two distinct frequencies A A the

CoV[dZ(A),dZ(A")] = E[dZ " (A)dZ(1)]=0.

From the above theorem we can write the process

{x(2)} as:

V2



x(t) = Le‘“dZ(A) and, (2.3.8)

where {dZ(A)} is the orthogonal processes having the properties described above.

The interpretation of the spectrum is straightforward. It is obvious that it describes
in the frequency domain, exactly what the autocovariance function describes in the
time domain. That is because the spectrum and the autocovariance function are
Fourier transform pairs and one may just as well consider one aw the other. It can be
considered as a decomposition of the time series into a set of frequency bands, which
measure the relative importance of each of the bands in terms of the contribution of
this band to the total variance of the series. That way the spectrum provides
information on the stochastic structure of the process, which is extremely useful in out
attempts in fitting a model. Furthermore it can be estimated by fairly simple numerical
techniques, which do not require any specific assumptions on the structure of the

process.

2.4 Estimation of spectral density

If y is the autocovariance function of a stationary time series {x(¢z)} that has
spectral density f. The basis for the estimation of that density is given by the
periodogram.

The definition of the Periodogram is the following:

Definition 2.4.1: The Periodogram of a process {x()} is the following function:

n -l
Zx,e"'

t=1

2

= L (0> x@)sin(an)] +13 x(t) cos(n)} 2.4.1)

n

13-

In order to understand how the periodogram acts as an estimator of the spectral

density, the Fourier frequencies must be used.

3



. . 27k :
Let F, be the set that consists of the frequencies o, =—— with
n

='[n2_ 1], ...... B] and [] the integer part. Then £, is a subset of (—7,7] and

consists of values that we call Fourier frequencies associated with sample size n.

The following theorem (Brockwell and Davies, (1996), page 122) shows that

I,(A) is the sample analogue of 27f(4). We must have in mind that ) |y(h)| <o

h=-0

thus 27 (1) = ie"“y(h) , Ae(-m, 7] (2.4.2)

Theorem 2.4.1: If {x(¢)} is a real process and A,is any of the nonzero Fourier

frequencies A, =—2—71( in (-z, 7], then:
n

L,(4) =Y e " 7(h), (2.4.3)

|hjsn

where 7(h)is the sample autocovariance function of {x(¢)}.

Theorem 2.4.2 (Brockwell and Davis, (1987), page 337) : It can be shown that:

If {x(¢)} 1s a linear process:

x(t) = iz// Z,_, with {Z(t) ~ 1ID(0,0%) (2.4.4)

JE=—

where ill,z/jl«:o

J=—
and {x(¢)} has a strictly positive spectral density, then for any fixed frequencies

AsAy Ay A such that 0< A <4, <A4;...<4, <7 the periodogram ordinates

LGy LGy LGy
22 () 22 (%) 22 (3,)

exponential random variables.

} are approximately distributed as independent

{

Thus the probability of an estimation error cannot be made arbitrary small by

choosing a sufficiently large sample. This means that the periodogram is not: a

14



consistent estimator. So it is common practice to smooth (or else window) the

periodogram.

Towards that end we consider the class of estimators having the form:

f"(ﬂ,.>=2iﬂ S 1, (Runi) Wi (6) 2.4.5)

]x‘Sm,,
where I,(4,;) is the periodogram,

W is a sequence of weight functions and,

In other words f (4,) corresponds to a “locally” weighted average of periodogram
ordinates in the neighbourhood of the frequency 4, . That smoothing is achieved with

the function W () which is called the “spectral window”. The critical characteristic of a

window is its width. It can be shown that in order to obtain a good estimate of a peak
in the spectrum, the width of a spectral window must be of the same order of the
width of the peak.

In order for this estimate of the spectral density to be consistent, (Brockwell and

Davies, (1987)) we impose the following conditions:

;

a) m, —> o and ’__’?/n —0as n—>oo (2.4.6)

b) W(t)>0 forall t. (2.4.7)

), W(ey=w(-1) (2.4.8)

d) D W) =1and, (2.4.9)
[¢|m, ]

e) YW ()—0 asn—>o. (2.4.10)

|t|sm,

IS



If the above conditions hold, then:

Theorem 2.4.3:

If {x(¢)} is a linear process:

x(t) = i(// Zo with  {Z(5)} ~ ID(0,0?) (2.4.11)
where il‘/’ j|< and  E[Z*(t)]<oo (2.4.12)
Then:
a)limEf (1) = f(X) when n — (2.4.13)
.. 27%(A) w=A=0,0rr
b) limSLARL DN 224y when 0k p=A<n (2.4.14)
> W) 0 A

]i[Sm“

Furthermore it can be shown that the variance of the spectral estimator, is
inversely proportional to the bandwidth of the spectral window. So small variance is
associated with large bandwidths and large variance is associated with small
bandwidths.

In practice the weight functions should be carefully chosen in order to sustain a

satisfactory balance between the bias and the variance.

2.5 The autoregressive processes and their spectrum

Definition 2.5.1: The process {x(¢)}, ¢ =0,£1,£2,....1s said to be a autoregressive

process of order p {AR(p)} if {x(¢)} is stationary and if for every ¢:

X, =X, — X, 5 —.m@,x,_, =2, Where {z(t)} ~WN(0,c") (2.5.1)

16



In a different notation the AR(p) process may be written as: ¢(B)x, =z,
t=0,+1,42,.... where ¢ is a p” degree polynomial: p(2)=1-¢z-¢,z~..—¢,2°
and B is the backshift operator defined by: B’x, = x,_ pE

Regarding the spectral density of such a process the following theorem applies
(Brockwell and Davis, (1987), page 121):

Theorem 2.5.1: Let {x(¢)} be an AR(p) process satisfying ¢(B)x, =z, with
{z(t)} ~WN(0,0%) where ¢(z)=1-$z—-¢,z—..— 9,z has no zeroes on the unit

circle. Then {x(¢)} has spectral density:

fx(ﬂ.)=-—L2 with —z<A<z. (2.5.2)
27lg(e™)|

It is usually assumed that the roots of the ¢(z) lie outside of the unit circle, as in
this case there is a causal solution to ¢@(B)x,=z,. If the polynomial
#(z)=1-¢z—¢,z—...—$,z° has a root z,= p,e’, then the spectral density, will
have a peak at A, , whose size will depend on the modulus of the root. The closer the

modulus is to one, the stronger the peak and that is when particularly interesting cases

are obtained.
Let as consider a AR(1) and a AR(2) processes

X, -9 X4 =2, and X, _¢1’xz—1 - ¢'_:'x1‘—2 =z

where ¢=0.8 and ¢ =0.9and ¢ =—0.81 with {z(t)} ~WN(0,0?)

The root of the first polynomial is 1.25 while the second one has a complex one
(and its conjugate) 0.5555556+0.96225041 .
The spectral density of the AR(1) and the AR(2) processes are presented below:

17



Series: Series:
AR ( 1) Spectrum AR ( 2 ) Spectrum

10

pectrum
spectium

0.0 0.1 02 0.3 04 05 00 o1 02 0.3 04 05

Figure 1.1 Figure 1.2

As expected the AR(2) process has a larger peak since the root of its polynomial is
closer to unity. Furthermore the peak is shifted towards the right by z/2, due to the

angle of the root.
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Chapter 3

Bivariate Stationary Processes

3.1 Cross-covariance and cross-correlation functions

Let us consider two stochastic processes {x(¢)} and {y(¢)} ¢=0,+1,+2,.... We say
that x(z), y(¢t) is a stationary bivariate process if:
D) {x(¢)} and {y(¢)} are univariate stationary processes and,

II) The Cov[x(t), y(s)] is a function of (¢ —s) only.

Provided the above conditions hold, we may define the covariance function for

each of the two processes, (as mentioned in section 2.2). So:
¥ e (B) = Cov[x(t + h), x()] = E[(x(t + h) ~ 11,) (x() - 11,)] and (3.1.1)
¥,y (B) = Cov{y(t +h), y(£)] = El(y(t + k)~ u1,) (¥(®) - 11,)]- (3-12)

(The symbol * represents the complex conjugate of the factor.)

The corresponding autocorrelation functions are:

p..(h) = Z&% = Cor{x(t + k), x(t)] and (3.1.3)
7, ()
p,,(h)= 0 Corly(t +h), y(2)] (3.1.4)

The above functions are used to describe the correlation structure within each
process. In the case of a bivariate, or a multivariate, process the correlation structure
between the processes has to be derived. In order to do so the cross-variance and the
cross-correlation function are defined (Priestley, (1981)).

The cross-covariance functions y;(h) ,i = {x, y} of lag h, are defined as:
V. (B) = Cov[x(t + k), y(t)] = E[(x(t + h) = p1,)" (»(1) - 11,)] or (3.1.5)

¥, (B) = Cory(t + h), x(t)] = E[(y(¢ + h) = 1,) (x(t) ~ p1,)]. (3.1.6)
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The basic property of the autocovariance function is that:

¥ (1) = Covix(t + ), y(1)] = EL(x(t + h) - p1,)" ((6) = 1, )] = EQ(x(8) = p1,) (ot = B) = p1,)] =

= E[(y(t=h) = p,)(x(8) = 12,)"1 = Covy(t = ), ()] = 7. (=) (3.1.7)

Thus the covariance structure of the two stochastic processes can be described by

means of a single cross-covariance function.

Generally it may be needed to study the covariance structure of two processes
with different scales and variances. For that purpose a normalized version of the
cross-covariance function, the cross-correlation function p; () i = {x, y}, is defined:
oy, M)

Like the correlation function mentioned in section 2.2, the cross-correlation

., () (3.1.8)

function is a correlation coefficient as well, thus I Py (h)l <1. But it is not symmetric

and can attain its maximum value anywhere.

3.2 Spectra and cross-spectra

Once again, let us consider two stochastic processes {x(t)} and {y(#)}

t=0,£1,12,.... that have purely continuous spectral density functions:

X0 =53— 3 ey, (h) and (32.1)
h=—c0

f,(A)= —2—1; > ey, (h) respectively, (3.2.2)
h=—0

where y, andy  are the autocovariance functions for each process.

The above sums are actually the Fourier transforms of the respective
autocovariance functions. It is obvious that the same transformation may be applied to

the cross covariance function Vs @S defined in section 3.1. So we have (Priestley,

(1981)):
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Definition 3.2.1: If {x(t)} and {y(z)} are two zero mean stationary processes,

then the function:
1 = —i
fy )= D ey, (h) (3.2.3)

h=—a0

1s called the cross-spectral density function of {x(¢)} and {y(¢)} and exists for

every A provided that i ’7’@ (h)‘ <o,

h=—m

From the above definition the spectral representation of the (k) are the

following:

7, (B)= j_"”e”" £, (A)dA, with i, j = {x, y} (3.2.4)

Unlike the spectral densities f, (1) and f, (1), the cross spectrum f, (1) is
typically a complex-valued function, since the cross-covariance function y,, (k) is

generally not symmetric about zero.

As we recall from theorem 2.3.1, {x(¢)} and {y(¢)} can be written as:

x(t) = [’ ¢"*dZ () and, (3.2.5)

¥ = [ e*dz, (1), (3.2.6)
where {Z,(1),-r <A<z} , i=1,2 are orthogonal increment processes.

Furthermore, from the same theorem:

S(A)da=Eldz, [ 1, (i = {xy}) (3:2.7)
It can also be proved that the processes {Z,(1)}, (i ={x,y}) have an additional

property:
E[dZ,(A),dZ;(1)]=0, for A+ p and (i = {x,y}) (3.2.8)
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Substituting relations (3.2.5) and (3.2.6) in y, (h) = CoV[x(¢ +h), y(t)] we have

that

7o (h) = [’ [ e™e ™o Bldz(A)dZ" (1)) (3.2.9)
But based on the property of the orthogonal processes, we have that:
¥, (h)= f " E[dZ (A)dZ (A)] (3.2.10)

and of course similarly for y,(1) (i={x,y}):
7:(A)= [ e Edz, () ] 32.11)

Like in the univariate case where y,(h) = ._[e"‘“ f,(A)dA (see definition 2.3.1), in

the bivariate case wan obtain a similar relationship by inverting the definition

relationship (3.2.3) which gives us:

7o) = [e™ [, (A)dA (3.2.12)

It is obvious that combining the relations (3.2.10) with (3.2.12) we end up with:
[ (AN)dA =E[dZ (A)dZ}(A)] (3.2.13)

which means that:

foD) = f.(2). (3.2.14)

Similarly we obtain:

fi(A)dA =Elldz, ()] ] (32.15)

These help us in the interpretation of the cross—spectral density, since f, (4)d1

represents the average value of the product of the coefficients of ¢”*, in the spectral

2P



representation of {x(¢)} and {y(#)}. This means that f (4)dA represents the
E[dZ, (A)dZ (A)] which is actually the covariance between dZ (1) and dZ ,(4).

As in the bivariate case, the f;(1)dA, represent the average value of the square of
the coefficient of ™ in the spectral representation of {x,(¢)}i.e. E[dZ,(A)] which is

the variance of the dZ;(1).

For bivariate series the spectral matrix can be defined as:

Se(A) f,y(ﬂ)]

f.(A) £, (A) (3.2.16)

F(A) {

3.3 Coherence and phase

As shown above, the {Z,(1),-7 <A <x},i={x,y} are the orthogonal increment
process in the spectral representation of the series {x(¢)} and {y(¢)}. The squared

absolute value of the correlation between dZ, (1) and dZ (A) is called the squared

coherence function K, (1) .
, LA

So K2 (A)=—220 g2z 3.3.1

° KW= wr,an” W (354

The resemblance with the ordinary correlation coefficient is obvious. Furthermore

the coherence plays the role of a correlation coefficient at each frequency 4. As a

correlation coefficient it is expected that Kfy (A4) would lie between zero and one.

Indeed the Cauchy-Schwarz inequality ensures that:

£, £ £, () (332)

thus making 0< K. () <1 for -7 <A<7.

A high value of the coherence at a frequency A, implies that the two processes are

highly correlated at the specific frequency. In order to check at which frequency
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bands this occurs, the coherence K fy (A) is plotted against the frequency -7 <A< 7,

producing the so called coherence diagram.

Generally it can be proved (Brockwell and Davis, (1987)), that whenever (x(¢)}

and (y(¢)} are related by a time invariant filter, that is:
YO =Y v, x(t-j), where Y|y |<w (3.3.3)
j= j

the coherence X fy (A4) equals to one, forevery ~m <A< 7.

Since the f, (1) is a complex valued function, it can be written as:

Fo (W) =C(A)—iQ (4) (3.3.4)
where

Cy(A)=Re[ [, ()]

and

0, (4) =-Im[ £, ()].

The above relations are actually the definitions of the cospectrum and the
quadrature spectrum, so:

Definitions 3.3.1:

The cospectrum of the processes {x(¢)} and {y(#)} is the function:
C,,(A)=Re[f, (1)] and (3.3.5)
The quadrature spectrum of the processes {x(¢)} and {y(¢)} is the function:
0, (1) =-Im[f,(2)]. (3.3.6)

Alternatively, f, (4) can be expressed in a polar form, utilizing the cospectrum

and the quadrature spectrum.:
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So(A)= 4, ()" (3.3.7)

where:
A, =|f, (D] ={C, )+ @ (WY (33.8)
and
L0,
Definitions 3.3.2:

The function 4,,(4) is called the cross-amplitude spectrum and the function

®@_(A) the phase spectrum.
By combining (3.3.1) with the definition relation (3.3.7) we can see that the
squared coherence function K fy (A) depends on the cross-amplitude spectrum, since:

2(A) 4, () (3.3.10)
T S, ()] -

In order to interpret the 4, (1) and @ (A1) we use the polar form of the dZ,(1):

dZ (A)=|dZ,(2)|-e"™? , with i ={x,y} . (3.3.11)

In this way the |dZ,.(/1) ,i ={x,y}, is the amplitude and ®,(4)is the phase of the

component with frequency 1, in the spectral representation of {x(¢)} or {y(?)}.
If we assume, for simplicity, that |dZ,(4)| and ®;(4) are independent random

variables, (i = {x, y}) it is then apparent that:

E[dZ,(A)-dZ,(A)) = E[|dZ,(A)-|dZ, (A)]- B[ (3.3.12)

But from the definition of the 4 (4)and @ _(4), itis clear that:

E[dZ,()-dZ,(A)] = £, (1) = 4, (2)-€"" (3.3.13)
which makes:
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A, (A)= E[Ide(ﬂ,)l-ley (1)[] and (3.3.14)

@, (4) = E[e" D (3.3.15)

This relation actually reveals that 4, (4)is the average value of the product of the
amplitudes of the components with frequency A in the spectral representation of the
processes {x(t)}and {y(t)},i.. E[|dZ,(A)|-|dZ,(1)]].

Similarly, @, (1) is the average value of the phase shift: {® (1)-® (1)}
between the components of frequency A in the spectral representation of the

processes {x(¢)}and {y(?)}, i.e. E[¢"™® ®™W,

3.4 Estimation of spectra and cross-spectra

In the estimation of the cross-spectral density function we can use the notions
mentioned in the univariate case. A natural generalization will enable us to deal with

the bivariate case. Let us examine this approach (Priestley, (1981)):

Let us suppose that N observations of a real valued stationary bivariate time series

consisting of datasets: X (¢) = {x(¢), y(t)} are available.

Let I'(h) be the covariance matrix:

h h
I(h) = Yo(h) 7,(h) (.4.1)
Yu(h) 7,,(h)
with absolutely summable components and F(h) the spectral matrix mentioned in
section 3.2:
A A
F(A)= fa(A) [ (D) (3.42)
[(2) £, (A)
The F(A) is defined as:
F(l):—zl— DY I(he ™, -r<A<rm (3.4.3)
V4

==—a0
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As mentioned in the univariate case (see section 2.4), in order to define the

multivariate periodogram we must utilize the Fourier frequencies.
So let o, = 27k , with —[(n—-1)/2]<k <[n/2] be the Fourier frequencies. The
n :

discrete Fourier transform of the X'(¢) is defined by:

J(®,) =%2X(1)-e"‘“’~ (3.4.4)

=1

The periodogram of the X (¢) is defined at each of the Fourier frequencies @, asa

2X?2 matrix:

[n(a)k):"](wk)"]‘(a)k) (3.4.5)

Expanding the univariate case, the function I (w) is called the cross-

periodogram and at the Fourier frequencies @, is has the value:

Iy (@) =G x(0-e ) = (350 (3.46)

1=1 =1
The periodogram of a bivariate series in matrix form is the following:

(A I7(A)

I( )z[l,f"(l) In”(/l)} (3.4.7)

where for i=j, I' is the periodogram of {x(#)} or {y(¢)}, while for i # j, (thus

i=x,j=yori=y,j=x ) I”is the cross-periodogram between {x(¢)} and {y(¢)}.

Asymptotic Properties of the periodogram

Theorem 3.4.1: If , is any non-zero Fourier frequency and X, :lZX A1),
n

t=]

then:
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I(@,)=> T(k)-e™ (3.4.8)

[k|<n

where:
o ifk20:1 (k) =l(g)[X(t+k)—/?n]-[X(t)—.7(—,,]’, and (3.4.9)
n o
o ifk<0: ['(k)=T(~k) (3.4.10)

The periodogram at frequency zero is:

[(0)=N-X,-X, (3.4.11)

Theorem 3.4.2: If {X(¢)} is a stationary bivariate time series with mean uand
covariance matrices I'(4) having absolutely summable components then:

1) E[1,(0)]——n-pu- ' —21- f(0) (3.4.12)

i) E[I, (0)]—>27- f(w),if ©#0 (3.4.13)

where f(-) is the spectral matrix function of {X(¢)}.

Regarding the asymptotic distribution and asymptotic covariances of the

periodogram values, the following theorems are presented.

Theorem 3.4.3: (Brockwell and Davis, (1987), page 431). Let us assume that
{x(2)} is a linear process:

x(1) = ick Z(t—k)  with {Z(t)} ~ IID(0,Z) and E[Z,(1)]<o  (3.4.14)

where ¥ is non-singular and the components of the matrices C, satisfy:

28



peh (z'.j)I-lkl”2 <o, where i,j=1{x,y} and (3.4.15)
k=—w
Let 1,(A)=[I7(A)], i,j=1{x,y}, —w <A <r denote the periodogram of {Z()}.

Then:
D) If 0<A4<A4,<A...<A4,<nm then the matrices {/,(4),/,(4,),.....I, (1)}

converge jointly in distribution as n—> o to independent random matrices, the k” of
which is distributed as W, -W, where W, ~ N(0,27- f(4,)) and f is the spectral

matrix of {x(¢)}.

1)) If o, =277/n€[0,7], and i=1,2 and @, =27k/n [0,7] then:
CollI ™ (,),1" (@,)] = (3.4.16)

(27)’ {fpr(wj)'f,q(wj)'*'fp; (wj)'fqr(wj)}+0(n_llz) D; =0, = 0,orm
- (Zﬂ)zfp,(a)j)-fsq(a)j)+0(n'”2) if O<w, =0, <z
o) o

where the terms O(n™"'?) and O(n™') can be bounded uniformly in j and k by

c,n”'? and ¢;n”' respectively for some positive constants ¢, and c,.

It would be useful to examine the above relations. The covariance between each

estimator goes to zero, when dealing with different frequencies @, ,®; ,which implies

that the spectrum estimators are independent in this case.

When dealing with the same frequencies we have::

ColI™ (@), 17 (@)] = (22 £, (@) f,,(@) = 7Y’ |1, (@)
if 0<w,=w, <7 (3.4.17)

while
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CollI™ (). 17 (@)= @) {1, (@) £,.(0) + £ (@) £ (@)} = @)Y {f,, (@) +|,, (@)}
ifw,=w,=0orm. (3.4.18)

Similarly we have that:

CoV[1? (@), 17 (@)]= (27) f1x (@) £, (@)

if 0<w,=w, <7 (3.4.19)
and

Col[ I (@), I” (@)= 27)*{f,.(@)- f,, (@) + £, (@) f,. (@)}

ifw, =@, =0orm (3.4.20)

and the covariance between a periodogram and a cross-periodogram is:
CoV[I” (@), 17 (@)] = (27)’ [ (@) f,.(w)

if O<w;=a, <7 (3.4.21)

CoI” (), 17 (0)]= 27’ {f,(0) f.(@) + £, (®) £ (@)} =2-{27) - [, () f,. ()}

fw,=w,=0o0r7m (3.4.22)
Smoothing the periodogram

In section 2.4 we introduced the smoothing of the periodogram for a univariate

series. Similarly, in the bivariate case we will estimate the smoothed spectral density

estimator F(1). So, we consider the class of estimators having the form:

FA) == S 1,00 W, () (3.4.23)

| «|<m,
where /,(4,;) is the periodogram,

W, isasequence of weight functions and,

Everything mentioned in section 2.4 about the sequence of weight functions W,

and the bandwidth b are also valid in the bivariate case. So we still consider the
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estimator F (A4;) as a weight average of the periodogram and responsible for the

weighting is the spectral window W ().

It should be noted that generally we deal with processes that have unknown mean

. The periodogram for those series, regardless of their dimension, is estimated for the
mean corrected series X(¢)—X(¢). This causes no implications since the

periodograms of the original and the zero-mean process, are identical in the Fourier
frequencies with the exception of the value zero.

So in order to estimate the periodogram for A = 0 we use the above formula:

F(0)= 51; ‘Re[W, (0)],,(4,) + 22_ W, (I, (A.)] (3.4.24)

From the above it is obvious that we have applied the same weight function for all

of the four components of 7, (A1), but is not necessary. It is possible to use different

functions when the components /(1) have different characteristics.

Like in section 2.4, the following theorem dictates the consistency of the estimator
F(A):
Theorem 3.4.4: For the estimate of the spectral density of a bivanate time series

to be consistent, (Brockwell and Davis, (1987)), we impose the following conditions

to the spectral window W():

a) m, - o and ’%—)0 as n—> oo (3.4.25)
b) W(r)=0 forall ¢. (3.4.26)
c), W(t)=W(-t) (3.4.27)
d) |;W(t) =1and, (3.4.28)
€) HZWW)—)O as n—o. (3.4.29)
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If the above conditions hold, then:

a)im Ef (1) = f(A) when n— (3.4.30)

Fe ) f A+ £ (D) () @=AE0,0r7

by lim =S (@) Fo ) F, ) when O<@=A<7
> W) 0 EY)
|i|Sm,,
(3.431)

Finally, like in the univariate processes, small variance is associated with large

bandwidths and large variance is associated with small bandwidths.

3.5 Estimation of phase and coherence

Recalling the definition of the phase spectra, relation (3.3.9), it is obvious that it
can be estimated by (Brockwell and Davis, (1987)):

&,(4) = tan™ {lc%%} G5.1)
where

C;(A)=Re[f;(A)] (3.5.2)
and

0, (1) =-Im[f,(D)]. (3.5.3)
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It is obvious that the phase spectra is a non-linear function of the real and

imaginary part of the cross-spectra. If the coherence K;. (A) >0 then it can be proved

that:
<i>,.j (A) is AN(dD,.j L), A:Afy (/1)[K;y2 (A)-11/2) (3.5.49)

where A2(A)= Y W*(5) (3.5.5)

|efm,

So it is obvious that the asymptotic variance of <i>,.j(/1) is large when the

coherence K fy (A) is small and becomes zero whén the coherence reaches one.

Thus, at frequencies where the coherence is low, the estimates of the phase
spectrum may have extremely large variance. This can be explained, since when the
coherence is small, we are actually trying to estimate the average difference between

the phase of two (effectively) independent complex valued random variables.

Furthermore, if n is large and Kfy(/l) =0 the phase spectrum Ci)l.j (A) 1s
approximately uniformly distributed on (-z,z). When K fy (4) > 0 the distribution of
the (i),.j (A) 1s no longer approximately uniform but it is the ratio of two
asymptotically normal variables (Qy (4)and (:',.]. (1)) with non-zero means. That is the

reason why the distribution of ®,(4) has a peak in (-7, 7).

Regarding the estimation of the coherence K; (1), we can use the estimators of the

real and imaginary parts of the cross-spectra as well as the estimators of the cross-

spectra itself. So:

|ew+omw|”

SO @7,00]

(3.5.6)

It can be shown that if K2,(1) >0 then:
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|1&xy(,1)| is AN(K., (), £2[1-K2 AT /2) (3.5.7)

Since K fy (4) is actually a correlation coefficient it should be expected to have a

distribution closely related to that of an ordinary correlation coefficient.
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Chapter 4

Vector Autoregressive Processes

4.1 Basic definitions and assumptions

Generally the Vector Autoregressive Processes of order p, are models with the

form (Lutkepohl, (1993)):

x(@)y=pu+A4 -xt-D)+A4, - x(t-2)+....... +A,x(t—p)+e(), (4.1.1)
with ¢ =0,£1,22,+3,.....

Where:

x(t) = (x, (), x,(t),....,x, (¢))' isa (kx1) random vector,

the A, are fixed (kxk) coefficient matrices,

M=, Hyses f1y)" 15 a fixed (k x 1) vector of intercept terms and finally,

(@) =(g,(t),&,(t),.....£,(2))" is a k-dimensional white noise process.

The later means that E[e(¢)]=0,E[e(t)-€'(z)]=2Z, and finally that

£

Ele(t)-€'(s)]=0 for ¢t # 5. The covariance matrix X, is assumed to be non-singular.

For simplicity reasons we will deal with the bivariate case of these multivariate
processes, thus the case where k=2. Every conclusion regarding the bivariate

processes is valid for any multivariate process as well.
Let us examine the relation (4.1.1) closely. Our interest lies in the investigation of

the assumptions that must be made, in order for that model to be well-defined. When

the order of the autoregressive process is one we have the following VAR(1) model:

x(t)=pu+ A -x(t=1)+e(t) (4.1.2)
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with ¢t =0,+1,¥2,+3,.....

If the generating process starts at the time point ¢ =1 then we have:

x(1) = p+ 4 - x(0) + £(1)
x(2Q)=pu+ A4, -xQ)+e@)=pu+4, [+ 4 -x0)+e(1)]+&(2) =
=p-(I,+A4)+ A -x(0)+ 4, -e(l) +&(2)

..............................

() =pu+ A xt-D+e@) =1, +A +..+ AT+ 4 -x(0)+lz_1:A," -g(t=1)

i=0

(4.1.3)

In the above relation it is clear that the 2x1 vector x(z)=(x,(#),x,(?)) , is
uniquely determined by x(0) = (x,(0),x,(0))’, e)=(,M),e,V)),
£(2)=(£,(2),6,(2)) seeeenrnnnn... , and &(t) =(&,(t),&,(2)) .

Considering that the starting point of the process usually is the infinite past, the

question is what kind of process would be consistent with the mechanism presented in

the relation:

, , Lo
x()=pu+ A -x@-D)+e@)=p-(+A +. ..+ A+ A x(1- j—1)+ZA,‘ -g(t—1)

=0

(4.1.4)

It can be proved (Lutkepohl, (1993)), that if all of the eigenvalues of the matrix
A have moduli less than one, the sequence A4 with i=0,2,... is absolutely

summable, which makes the sum :

j
ZA{ -£(t —7) exists in mean square when j — 0.
i=0

Furthermore:

p+A +. +A) >, -A4) " u,when j—>ow. (4.1.5)
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The only term of the relation (4.1.4) left unexamined is the 47" -x(t - j—1), but it

is obvious that the quantity 4/" converges to zero quite fast as j—> o, thus the
above term can be omitted.
So summarizing, we can state that if all eigenvalues of the coefficient matrix
A, have moduli less than one we can say that x(z) is a well defined VAR(1) process:
x(t)y=p' +) Ale(t—-i), t=0F1%2, . (4.1.6)
i=0

where ¢/ =(1,—A) " 1.

4.2 Stable and stationary Vector Autoregressive Processes

From the previous section it is obvious that the condition for the eigenvalues of
the VAR(1) process is crucial. That is why the existence of that condition
characterizes the process as a stable one. So a VAR(1) process 1is called a stable one

when all of the eigenvalues of the coefficient matrix 4, have moduli less than one, or

equivalently when:

det(/, — 4,z) #0 for |7|<1. (4.2.1)

It should be noted that a process may be well defined even if the stability
condition is not met, but we would not be able to consider the starting point of the
process to be —oo. So only for a stable process this is possible and that is the reason
that these processes are preferred.

In section 4.1 a VAR(1) process was studied but it can be shown that these results
can easily be extended is an order p model. This is due to the fact that any VAR(p)
model can be written in an VAR(1) form (Lutkepohl, (1993)). So the stability

condition (4.2.1) can be extended to:

det(l, — 4,-z—4,2* —...—~4,2°) 2 0 for |z]<]1 4.2.2)
This polynomial is called the reverse characteristic polynomial of the VAR(p)
process. So in other words a VAR(p) process is stable if the reverse characteristic

polynomial has no roots in and on the complex unit circle.
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The implications of the stability condition to the behavior of a VAR process
resemble the ones for a stationary process that is, steady fluctuation around a mean

value and time independent variance. This is due to the fact that:

Stationarity condition

A stable Vector Autoregressive Process x(t), t =0,+1,+2,.... is stationary

(The converse is not true, since there are stationary VAR processes that are not

stable.)

4.3 Estimation of Vector Autoregressive Processes

In this section the estimation of a VAR(p) process will be discussed. There are
two ways to achieve that, the classical Least Squares Estimation and the Maximum

Likelihood Estimation. We begin with the:

Multivariate Least Squares Estimation (Lutkepohl, (1993), page 62):

Lets assume we have a sample of size N of a two dimensional time series:

x(1), x(2),.....,x(N). We define:

X =(x(1),x(2),.....,x(N)) which is a 2x N matrix, 4.3.1)
B:=(u,A4,4,,...4,) whichis a 2x(2- p+1) matrix, (4.3.2)
Z, = (1, x(t),........ ,x(t— p+1)) whichisa 2(p+1)x1 matrix, (4.3.3)
Z2=(2,,Z,,...Z,_) whichisa 2(p+1)x N matrix, (4.3.4)
£ =(&,€,,y€y) Whichis a 2x N matrix. (4.3.5)

Using the above notation the standard VAR(p) model:
x()=pu+A4 -x(t-D+4, x(t-2)+........ + A, x(t- p)+e(t), (4.3.6)
with ¢ =0,£1,+2 43 ...

can be written as:
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X=BZ+¢& (4.3.7)

It can be found that the multivariate estimator of B, the B is:

B=XZ'(ZZ"\"'=(BZ+&)Z'(ZZ")" =B+¢'2'(ZZ") (4.3.8)

This can be achieved by multiplying with Z'(¢ —1) the following relation:
x)=B-Z(@)+e(?).

Taking expectations we have:

E[x(8)-Z'(t-1)]=B-EZ({-)Z'(t-1)]. (4.3.9)
Since:

E[x(t)-Z'(1=1)] =%gx(t)-2'(t—l) =%XZ’ and, (4.3.10)
E(Z(t-1)Z'(t-1]= %ﬁ: Z@-1)-2Z'¢-1)= -1]\722' (43.11)

t=1
the relation (4.3.9) becomes:

Lxzr-plzz=5 =X7'(zZ')* (4.3.12)
N N

Asymptotic properties
The consistency and the asymptotic normality of the Least Square Estimator
B can be easily proved if the following hold:
i) The [':=1imZZ'/N exists and is non-singular and,
" 1
11) —_—
JN

where £ is a column vector 2N x1 with all the &(1),£(2),....,6(N).

(Z®1,)-§—25N(O,I'®Z,)

If £(¢) is a normally distributed white noise, it can be proved that the consistency

and the asymptotic normality of the Least Square Estimator for a stable normally
distributed VAR(p) process, are ensured.
In most cases the mean value of the process is not known therefore is should be

estimated by the vector of the sample means:
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N

f=%§x(z‘) (4.3.13)

It can be proved that:

Theorem 4.3.1
If a VAR(p) process x(¢)is stable and £(¢) is a standard white noise, then

\/ﬁ()_c—,u)——f‘i——)N(O,Z;),where
o=, =A== A) 2L -4 - 4,)

In particular himx = .

The Yule-Walker Estimator

The Least Squares Estimators derives from the Yule-Walker equations, which

imply that:
L(0)=[4,....4,1[[ (-1),...[ . (-p)]+Z,, for n=0 and, (4.3.14)
L) =[4,...4,1 [T (h=1),..,[ (h-p)], for >0 (4.3.15)

Therefore A can be estimated by:
A= @), T (P)]-T,(0) (4.3.16)
where the f"x () ’s can be estimated using all of the available data (for details see

Lutkepohl, (1993), page 62).

The above estimator has the same asymptotic properties with the Least Square one
but has less attractive small sample properties and this is the reason why the first
estimator is preferred.

Maximum Likelihood Estimation (Brockwell and Davis, (1987), page 417)

There is an alternative procedure besides the classical Least Square Estimation

and that is the maximum likelihood one. It can be implemented when the distribution

of the process is known.
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Under the assumption that the VAR(p) process in question is a Gaussian one, with

mean value zero and covariance matrices:
K (i, j) = E[x(i)- x())] (4.3.17)
the exact likelihood of the process {x(1),x(2),....,x(N)} can be estimated. Let us

consider the 2N x1 column observation vector X =[x'(1),x'(2),,....x"(N)] and let

X =[#(1),%(2),,....8'(N)] be the one step predictors (for details see (Brockwell,
(1987), page 412) . Then it can be proved that the likelihood of {x(1),x(2),....,x(N)}

1s:
L=Q2n)™ (H det[V' (-1 ™" exp {—%Z[X(j) = XN -V G =D [x() - 2]}

(4.3.18)
where V(j) are the covariance matrices. The first partial derivatives of the
likelihood can be calculated in order to obtain the estimators for the mean value, the

coefficient matrices 4; and the covariance matrix X_. Nevertheless the estimation of

the above is a difficult task due to the potentially large number of parameters involved
in relation (4.3.18). Non linear optimization algorithms are implemented for that

causc.

Asymptotic properties

When x(¢) is a stable Gaussian VAR(p) process, the Maximum Likelihood
estimators of the mean value, the coefficient and covariance matrices, are consistent
ones.

Furthermore the estimator of the mean value is asymptotically independent of the
estimators of the coefficient and covariance matrix.

Similarly the estimator of the coefficient matrix is asymptotically independent of

the other two estimators respectivetly.
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Chapter 5
Extreme VAR spectra

5.1 Spectrum of Vector Autoregressive models

Let us consider the VAR(p) model presented in section 4.1:
xO)=p+4, -x@-1)+4, x(t-2)+...... +4,x(t-p)+e), (5.1.1)

with ¢ =0,£1,+2,13,.....

Let us write the above model in a different way, assuming (without loss of
generality) that the process has zero mean. Our model can be written as:

O(B)- x(t) = &(t) (5.12)

where B denotes the backshift operator and:

O(z)=1,-Az-..—4,z° (5.1.3)
_ x,(2)

x(t).—lixz(t)}, (5.1.4)
_1&a®

£(t) = Lz (t)] . (5.1.5)

The spectral density matrix of the above process (Brockwell and Davis, (1987),
page 418) is:

1
27

F(l)=—® " (e)-2- @ (e7?) (5.1.6)
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5.2 Analyzing the characteristic polynomial

What we are interested in, is to analyze the spectral matrix in terms of the roots of
the polynomials which are elements of ©(z). In particular we are interested in the
conditions under which we obtain a peak in the coherence and the spectrum.

As we recall from section 2.5, in the univariate case, if the root of the polynomial
was close to the unit circle, a peak was produced whose size depend on the moduli of
the root. So specifying the model by roots rather than coefficients enables us to give
to it interesting features. Similarly we can produce interesting features in a

multivariate model by determining @(z) in terms of its roots rather by its

coefficients.

The first step is to investigate the relations and possible interactions between the
spectral densities and the coherence. Conditions under which a peak in each density,
will have an impact in the between them coherence, should be discovered. That way

the expected behaviour of the coherence will be revealed.

In chapter 4 the VAR(p) model and it’s characteristic polynomial were presented.

Let us examine a VAR(p) model where:

x@)=p+A4 -x(@t-1)+4, x@t-2)+...+ 4, -x(t- p)+&(t), (5.2.1)

where Cov{e(t)} =X

and it’s characteristic polynomial:

l-a' z—....—a’z” Uy _ PP
Q) =ly—dy 2= 4y .. —Apz”:[ Gur =l dyzmmal )
a,z—..—a,z l-a,z-..—a)z
_[cbn(z) dn,(z)] 52
D,.(z) ©,(2)

where:
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ai ai
A =[ = ﬂ L i=12 (5.2.3)

Since the spectral density matrix of the VAR(p) process is the following:

fxx(/l) fxy(l) —_1_. -l Ay 5 H1T o -id
f(A) fw(/l)}‘ PN 2 0T(e™) (5.2.4)

Fd)= [ 2

We will assume in what follows, that the covariance matrix equals:
x=1 (5.2.5)

This restriction simplifies the following calculation without undermining its
applicability. Nevertheless it should always kept in mind, that any deviation from this

restriction will render all the conclusions deriving from now on, misleading.

g 5 -1 — — .
[o) L] 1 (@ (e™) @ (™) D (™) D)
F(A)= 2 1 - ® (™) ® (et - D (e D (et
[ f,(A) | 27 (®@,.(e77) D, () (€)@, (e™)
(5.2.6)
For simplicity reasons we will just use the notation:
O Pu Py 5.2.7
“lo, o, (5.27)
instead of the more complex one :
) ¢) —id @ —id
q)(e"‘)-.-( =) "’(e_u)]. (5.2.8)
D,.(™) @,6™)
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4T

™)

product, in order to investigate the relationship and the interactivity between the @

Our objective is to reach to a more detailed form of the ®'(e™)-Z- @

i,j={x,y} terms. So:

o7(e™) 2B ()= 1. B = (@ D) =
2 2 = — !
) |®jl +|E)”’ D, 0 > +cby,c12>yx o)
©,.0,+2,0, |o,|+,)

and since: det(®” - @) =lq)xx(D»' ~®_@ | we have that:

Xy o yx

‘CDY}"Z +|d)xy 2 _ 6"m'q)x,v i chyny
2 2
22 Fay= (@) = |c1>,mc1>z —qajy_@yx |d>uc1>y2y -cpxyc?yx
_9,9,+9,0, @+,
2 2
| o2, -0, |0.0,-0.0.[
(5.2.10)

The above matrix includes the spectra of the two series. The (1,1) element is
actually the spectrum of the first series while the (2,2) is the spectrum of the second
one.

So:

2

o[ +e,f
T e, 0,0,

|® |2 +ICD

”=|c1> O -0 O

x Ty xy oy

xx yx

2 2
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This means that £, has peaks at those roots of the determinant of (®7-®) which

2.
5P, ) 1if these are not

have modulus close to one, (det(®’ -(D)=|CDXXCDW -d_O

simultaneously also zeros of @, and @, .

Similarly f, has peaks at the zeros of the determinant of (®7-@), if these are not

simultaneously the zeros of ®,, and @ .

5.3 Analyzing the coherence

We are now in the position to investigate the Coherence:

17, @[

K2(A)=K:(A)=—1"—-—"—
=) [/ (D) S, (A)]

(5.3.1)

Once again we will omit the frequency A and the above relation will become:

2 2

f. Iéxxd) +O O
K: =K? =22 _ A ] 5.3.2
TP fu Syl (]d)yy|2+|cbxy|2).(|d>n|2+|CDyx2) )
But:

(|‘Dw|2 +|q)xy|2)'(|q)xx‘2 +‘q)yx 2) =

=|(Dyy|2 'lq)xxlz +ld)yy|2 'I(Dyx 2 +|q)xx|2 'lq)xylz + i -I(I)yx ‘=

D,

=(o,| |0, +lo.] |o,[)+2Re(@,B,, -0, 8,)+

Yy ¥

o,

'_JRe(d . DD D )=

xx xy »y yx

+I(Dyy|2 'Iq)xxr +|(ny’2 'I(Dyx

=|<:Dqu>xy +O D,

*_2Re(d DO D )=

ped Xy yy yx

2 +‘|(Dyylz 'I(Dxxr +Iq)xy|2 -lCI)yX

2

2+|<1> O -O O

yy o oxx Xy yx

(5.3.3)
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So we have that the coherence:

N e
TS (o] +o,P-de.f +o,[)
1 1
= = a (5.3.4)
1+|c£>yyq>n-q>xyc£>w|2 e det(de.d)Z 2
3,0,+0,3, DD, +D,D,

The last line holding true for those z for which ®,_® 5@ W(T) 20,
It is obvious that if z, = p, - is a root of det(®” -®) , and the co-spectrum is
not zero in a neighbourhood of ™ (ie. ®, @, +®, @, #0), the coherence reaches

one as g, approaches one.

5.4 Extreme spectra and the roots of the polynomial of ®

In this chapter our interest focuses on the conditions under which “extreme”
spectra may be generated in the multivariate case. “Extreme” in this context means

that as the modulus of z,approaches unity, f.(4,) (and/or) f, (4,) will tend to

infinity, while in certain situations the coherence will tend to unity.

Whether such a peak will be present depends on whether this specific root
z, = p, -€" of det(®” - ®) is also a root of |<I>Wl2 and I(nylz , because it is the relation
between them that decides whether a peak will be present in f, or not. That is why

we will study cases concerning whether z, is simultaneously a root of one (or some)

of the other polynomial, under which several types of “extreme” spectra will be

obtained.

It is on such extreme spectra that we will be focusing in this section. In order to

investigate this relation, the formula (5.2.10) should be at hand:
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’(Dyy!z +|®&Vl2 _ 6.“@»' + q)nyyX )
0, -0, 0, o, @, -0 0, [

_9,0,+0,0, i

o0, -0,0, |0.0,-0.0,

2

2.7 F(A)=(®7-0)" =

2

/

(5.4.1)

So we will be looking at a root of the determinant at z, = p, -e” (since the roots
of det(®” - @) are decisive for our study) and will be assuming that p, ~1. Then we
will examine the impact of z, being a root of the ®,’s i, j € {x,y}, on the spectra of

the two series and the between them coherence.

First, the aspect of the order of z, should be clarified. It is obvious that if:

TysTesTyysTyesT,, are the orders of z, as a root for the det(P), .., D .0

Q))’Y

yx2

respectively, taking under consideration the relations (5.3.4) and (5.4.1) we have that:

e as|z|—>1then f,(4,)—> o ifand onlyif 7, >min(r,,7,,)
e as ]z0| —1 then £, (4,) — oo if and only if 7, > min(z,,,7,,)

e as|z|—>1theK] —1 ifand onlyif r, > order, (D, -, +® -, ).

In the following we will think of a fixed root z,with IZol ~1and will refer to the

above situations as “peak in f,, 7, “peak in f, ” and “coherence reaching one”.
From the above it is obvious that if the order of z,=p,-e™ as root of the
determinant is relatively large compared to the order of z, atthe ®;’s i, j={x,y}, a

peak will be present in both f, ,f, and the coherence will approach one. So the

cases of most interest are the ones where the order of the determinant does not meet

with all of the above conditions.
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We will analyze exhaustively the cases where 7, =1 and 7,7, ,7,,7,, <1. It turns

out that under these assumptions the values of TysTastys Vst aIC sufficient in order

to describe the behaviour of the spectra at 4,. Therefore no assumptions on the
order,, ,(P . -CT)W + CTD», @ ) needs to be made.

Later on, the cases where the order of z, as root of the determinant is allowed to
take higher values, will also be mentioned. There, the behaviour of the spectra will in

general depend on the order, (d)xx-&)xy +EI—)W @ ). Nevertheless, for certain

£29)
situations a classification was made which will be presented below, giving many
interesting results about the relation of the high values of a VAR’s spectrum with its
coherence.

The conclusions will be presented after the classification, which was made

depending on whether z, is the root of the @, ’s or not. Starting with the @ and

@, , we can create four subcategories and within each one , the order of z, for

the®;’s, i,j = {x,y} can be either one or zero. So we have:

Investigating the cases where r, =1 and r, =r, =7,

, =1, =0orl

First category: @ _(z,)=D,(z,)=0

If Cny(ZO):O’¢yx(ZO)¢O and rdzrxxzr =r =1’ryx=0’ then a peak iS

Yy xy

observed in f,, only, while the coherence does not reach one. In a similar way

when® (z,)#0,® (z)=0and r,=r =r, =r,=1,r, =0 only f, has a peak
and this time also the coherence does not reach its maximum value. The case where

® (z)=0,P,(z)=0and r,=r, =r, =r, =r, =1, can not be considered, since
that could only be possible if the order of z, as a root of the determinant was two.
Finally the case where @, (z,)#0,® ,(z)#0and 7, =7, =r, =1,r,=r, =0

1s not a valid one since that way z, could not be the root of the determinant.
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Second category: ©,(z,)=0,P (z,)#0

If ©,(z)=0,®,(z)#0 and r,=r,=r, =1,7,

xx xy y

=r, =0, then both f,, and
f,, have a peak and coherence reaches its maximum value. This behaviour is not
observed when @, _(z,)#0,® ,(z)=0 and r,=r =7, =1,r, =7,=0 where
only a peak at f,, is present and the coherence does not reach one. . Exactly the same
behaviour, (a peak only in f ) is present when @, _(z,)=0,® (z)=0 and
ry=r,=r,=r,=1,r,=0.

Once again the above three are the only valid cases, since the case where

]

© (z,)#0,P,(z)#0and r, =7, =r, =1,r, =0 is not a valid one since that

w xy r}’x

way z, could not be the root of the determinant.

Third category: @, (z,)#0,® (z,)=0

This category is symmetrical to the second one, so in general we expect that both
fwand f  should have a peak and that the coherence should reach one when
@, (2)#0,,(2)=0 and 7,=r, =r, =1,r, =r =0. Similarly, in a perfect
symmetry with the second case, when @, (z)=0,®,(z)#0 and
r,=r,=r,=1,r,=r, =0 apeak should be observed in the f,, while once again
the coherence should not reach one.

It is obvious that the case where @, (zo) =0,®,(z,)=0and
r,=r,=r,=r,=1,r, =0 is again similar to the previous one, thus a peak is
observed only in f,, while the coherence does not reach unity.

Finally, the case where @, (z,)#0,®  (z,)#0and 1, =7, =71, =1,r,=r, =0

y > Txy yx

is not a valid one for the same reasons mentioned in the previous section.

Fourth category: @, (z,)#0,® (z,)#0
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This category if the simplest of all, since when: (®_,(z,)=0 and® ,(z,)=0) or
(D,,(2,)#0 and®  (z,)=0) or (®,,(z,)=0 and P ,(z,) #0) it is obvious that z,

cannot be the root of the determinant. Thus the only valid case is the one in which

®,(z,)#0 and®  (z,)#0, where z, can be the root of the determinant only if
D, (2,)P,,(z) =D, (2,)P,,(2,). In this case a peak is observed in the spectra of

both series and their coherence reaches one.

The above holds true because our assumptions imply:
D, (2)D,,(z) + D, (2,)D,,(z,) # 0 (5.4.2)

To prove this , we rewrite our restrictions:

D, (2)#0, D, (2)%0, ®_(z)#0, D, (z)#0 and (5.4.3)

(Dx.x(zo)q)yy(zo)=cny(ZO)q)yx(ZO) (5.4.4)

So we are examining whether it is possible to have:

6xx(zo)cbxy(zo)'|‘q)yy(zo)Ey,‘:(zo)’:0 (5.4.5)
from (5.4.4) we have that:

_ (ny(ZO)q)yx(ZO)
O, _(z,)= o ) (5.4.6)

so if indeed relation (5.4.4) is valid, replacing (5.4.6) in (5.4.5) leads to:

q)xy (ZO)chx (ZO)
D,,(2)

"D, (2)+ D, (2,)D,.(z,) =0

@, (2,) B, (2,) +]®,, (2)] B ,.(2,)= 0

(@, @) +©,, o)) B,(z) =0

which is not possible, since for the case considered here, all D, (z,)=0.
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These were all the possible combination given the specified restriction, regarding

r. ,r., ,r. . The results from this classification are summarized in

the orders r, , r, " 3 Ty 3 Ve

xx ?

the following theorem.

Theorem 5.4.1: If z, = p,-€™ has r,(z))<1,r, =r, =r,=r,=0o0rl, then as

P, — 1 the following cases may arise:

Case A: f.(4)>x,f, (4)>xwandK, (4,)—>1 simultaneously. This may
arise if:
* z, isnotaroot of any of the other polynomials: @ ,® ,®_, @, or,
e 7z, is a root of the polynomials driving exactly one of the series x or y (ie:
(®, and @ )or (@, and @ ,)), which consist of exactly one line of the

® matrix.

Case B: Only one of the £, (\,),f,,(N\;) will tend to oo, while the coherence will

not tend to unity. This behaviour is expected in any other case.

a

Note: Under the conditions of the above theorem, the coherence reaches one at z,
if and only if both spectra f, andf,, have a peak at z,. This means that a high

correlation between two series in a specific frequency occurs if and only if, this
frequency is strongly represented in both series. We will see in the next section that

this need not be the case when the order of the z, as root of the det(®) is equal or

greater than two.

Let us now proceed with the examination of a more relaxed condition.

The case r, 22
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Let us recall relation (5.3.4) which gives us the coherence K}, in relation with the
determinant det(®” -®) and the polynomial CT)X}DW + dbyy(T) » and relation (5.4.1)
which presents the relation of the f} 's 7, j={x, y} with the determinant.

So, relation (5.3.4) proofs that the behaviour of the coherence depends on the

order of z, as root of the polynomial d)n-a)xy+&>w @, . As mentioned before,
when r, > order_ ,(D,, -&)xy + (T)W -® ) the coherence will approach unity at 4, .

The theorem below, concerns a useful particular case. It states that (if , 22) it is

possible to have peaks at both individual spectra, while the coherence does not

approach one, something which was not possible for r, =1.

Theorem 5.4.2: If min(r,, +r,, ,7,, +r,)2r, then the coherence does not reach
one at 4,. While if 7, >min(r, 7, ) and 7, >min(r,.7, ) then the individual spectra
S »f,, will tend to infinity at 4, .

a

The above can be easily satisfied if, for example, we set:
D, (2) =D, (2)=D,,(2)=D,(z)=0. Then order, (. @, +D, - )22
while r, =2, thus we will obtain peaks at f, andf  and the coherence will not

approach unity.
The converse, as the following theorem states, is not possible. This is very
interesting, because it is possible to have a two dimensional VAR model with a strong

presence of a specific frequency A, in both its series, without the two series to be

highly ‘correlated’ at A4, .

Theorem 5.4.3: When ]zol — 1, it is impossible for the coherence to reach unity if

even one of the spectra f,, or f, does not have a peak at A, .

This is easily understood since when, for example:
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fu(Ay) o and f (4,)—> o then, (5.4.7)
r, < min(r,,,r, ), (5.4.8)

which means that we also have:

r, < min(r,, +r,,r, +r,) thus, (5.4.9)

r, < min(r,, +7r,,,7, +1,)<order(®,, -(T)xy +CT)”, D). (5.4.10)

From the above relation it is obvious that the coherence can not reach unity when
(5.4.7) stands.

0

What theorem 5.4.3 actually states, is that (when the restriction 7, > 2 is met) one
could not encounter a VAR model in which the coherence reaches one for a specific
frequency 4,, while even one of the spectra f;’s i={x, y} does not tend to infinity
(i.e has a strong peak) at the same frequency 4,. So a coherence reaching its

maximum value, indicates high powered spectrum for both series.
Another issue to be clarified is that the above theorems apply only to VAR
models. This is obvious when examining the following remark (Brockwell and Davis

1987 page 422) which states that:

When two series x(¢) and y(¢) have squared coherence XK fy (A) and if linear filters

are applied to each process giving:

X(t)= 3 a,x(t-j) and, (5.4.11)
Y@)= i b;-y(t-J) (5.4.12)

where Z|ajl < oo and Z'bjl<oo then,
J J

the X(¢) and Y(¢) have the same squared coherence K, (1) = Ky, (1).
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From the above remark it is obvious that if we consider a two dimensional (non

VAR) time series with f, and f, having strong peaks at A, and the coherence

reaching one:

foA) >, f,(4)—>x and Kfy(/lo)—ﬂ (5.4.13)

and apply an appropriately selected time invariant linear filter to one of the series, we
can obtain f,_(4,)-» without changing the between them coherence. This means

that we could have:

fo(A) P, f,(A)—> o and K7 (4) —>1 (5.4.14)
which contradict the theorems stated before for VAR models.

Given the above conclusions, we are now in the position to proceed to the

definition of a VAR model , based on its given roots.
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Chapter 6
An algorithm for VAR model

specification

6.1 Calculating the coefficients of the characteristic polynomial

The next step in our analysis 1s to create an algorithm that will accept as input the
roots of the VAR’s polynomial matrix and produce an output with the coefficients of
the VAR’s characteristic matrix. Such an algorithm will enable us to create a two
dimensional VAR model with pre-specified extreme features of the desired type. With
the proper manipulation of the roots of the VAR’s polynomial, many interesting
models may be constructed.

Let us analyze what that algorithm should be able to do. First of all let’s consider
a two dimensional VAR(p) model like the one presented in (5.2.1) with the unity

matrix /, as a covariance matrix of the innovations and zero mean values. That is

=1, and p=0.

Objective:

One should always keep in mind that our goal is to define an algorithm which
allows the definition of VARs with pre-specified structures, that is strong peaks for
the one or the other spectrum and coherence close to one, at certain frequencies.

It is easy to define a VAR by specifying ©, ,®, ,® , D via their roots, but

w2 xy 2
in such approach the user would not control directly the roots of the determinant,
which are of most importance when we wish to decide the behaviour of the spectra
and the coherence.
So, we need an algorithm where the roots of the determinant are given as input,

while, inevitably, the roots of the ®_ ,® , O

L » D, s @, will not all be free. The nature

of the restrictions imposed to them will be analyzed in the following.
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The idea is to:
a) specify the roots of the determinant (in such a way that their modulus will
be greater than one to ensure stationarity),

b) specify the roots of @, ®  except from one of the roots of the @ ,

which may be eventually added automatically by the algorithm (see step 2
below) and finally,
c) calculate the roots of @ -@  which they will be allocated accordingly, by

the user, to @, and @ S That distribution is not a random one, since we

intend to create the desired structure of the spectra, using the theorems

mentioned in the previous section.

So it is obvious that pre-specified spectra and coherence structures should

characterize our model, thus the appropriate coefficients {a,.'f sy with i, j,k=1,2

mentioned in (5.2.3), should be the output of our algorithm.

That will be the result from the utilization of the following steps. In the following

lets us consider:

Polynomial | Number of roots | Roots

det(®” - @) Mo 2
D, ng_ W,
D, ng 5y
o, no,, 2
@, N, g

Table 6.1.1: The polynomial’s roots and their representation

The following table shows the given and the retrieved information:
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Input z,,i=12,.n4, W, i=1,2,...nq,er , 8 ,i=12,..,(n, —1) a
“ 5

| Output | {a } withi, j,=1,2 and k =1,2,...p from the A, matrices

Table 6.1.2: The input and the output for the algorithm’s utilization

Step one:

The roots z; ,i=1,2,...n,, of the determinant det(®) will be given. From these
roots the coefficients of that polynomial det(®)=®,-© - -®  will be

calculated. It is obvious that for all det(®), ® O the constant term should be

xx

one.

Step two:

The roots w, , i=1,2,...n®” and s; ,i=1, 2,...n¢,yy of the @ and ®  polynomials

respectively, will be given. Similarly their coefficients will be calculated.

It is obvious from the definition of the determinantdet(®) =@, o, -0, -0,
that knowing the coefficients of the det(®), P, and @ we actually know the
coefficients of the product @, -®  since:

O, -0, =D, O —det(D) (6.1.1)

Since the polynomials @, and ®  should not have constant terms it is obvious
that a restriction about their product ®_ -®  is imperative. Since both of them have

a constant term equal to zero, their product should not have either a constant or a
linear term.

From relation (6.1.1) we realize that manipulating @, and @ , allows us to alter
the coefficients of the product @ -® . So we can define one of those polynomials
(say @, ) such that no constant and linear term would be present in the product in

question.
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The problem actually exists only for the linear term, since all

det(®) , @, and @, have constant terms equal to one, thus the term

®,, -®  —det(®) has constant term equal to zero.
Regarding the linear term, if:
Ceyo) 18 the linear term of the det(®),
Co_ is the linear term of the @, and,
Co,, is the linear term of the @,
we need to make sure that:

Co,y = Cdet(CD) - Co“ (6.1.2)

Since ®, & has constant term equal to unity it can be wrtten as:

D, =(1- 2y (L) (L) =
Sl SZ o,
11 1 s -
=l —(—+—+.+—)z+ ()" +.. ()" (6.1.3)
s, S s

2 n,
Pyy

Considering the definition of C, given above, it is obvious that:

Co =—(—1—+—1—+....+—1—) (6.1.4)
7 R % s

na’yy

Replacing (6.1.4) in (6.1.2) we have:

1 1 1
—(—+—+....+—)=Chyo, —Co_» thus
sl SZ an, -
1 1 1 1
——=Cy_ =Cyeygy ——=—= e (6.1.5)
Sha,, s, S, S ey, 1

So, from the total of ne_roots of @  we will initially give only the first (n, -1)

(as stated in 6.1.2) and then calculate the last one with the help of (6.1.5).

Furthermore in the case where @, -® =0, the user should be able to set one of

the polynomials (or both) to zero and input arbitrarily roots for the other one. A
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typical case where that may be at hand, is when our two dimensional VAR actually

consists of two uncorrelated series, meaning that ®,=d,=0.

We may now proceed to the next step where,

Step three:
Knowing the coefficients of the polynomial @, -®  we can nuniéﬁt:il—?jl*ff#& its
roots. These will be a unification of @ _’s and @ ’s roots. The user may then
arbitrarily allocate the p, ,i =1,2,...,n% roots to the ®,, polynomial and the rest

q;,i=12,..,n, to the @ one For each one of them its coefficients will be

»x

calculated.

By now the polynomial matrix (5.2.7) is well defined and its polynomials have the
desired properties. This means that we have completed the creation of a two
dimensional VAR(p) model based entirely on the roots of its polynomial matrix.

For example, let us create a VAR in which only the f, should have a peak at

7 /2 . Examining section 5.4 we see that one possible way to do so is by giving the

z, =(0.99)” €7 asa single root to the det(®) , @, , P, and O . So we:

e Give root z,to the det(®),®, ,®, and obtain from the algorithm the

roots of the product @, -® . In these roots, z,will definitely be present

as a single one. The next step is to:

e Assign z, to polynomial @, and the other roots, that are of no interest to
us, to @ . Executing the algorithm for a second time will produce the
characteristic polynomial matrix ®(z), which means that we will actually

know the coefficient matrices 4, ,k=12,....,p .

The above scheme was utilized four times, producing the examples that are

presented in the next section.
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6.2 The results from the algorithm’s utilization

Let us consider the following examples representing some of the possible
combinations that are scattered throughout the cases presented in section 5.4.

From the second category analyzed in 5.4, we consider the VAR(3) model:

x(t)=p+ 4 x(t -0+ A4, -x(t-2)+ Ax(=3)+ (1), (6.2.1)
with £ =0,+1,42,43,.....
det[(D" - D)(z,)] =0, D, (2,)=0, D, (z) %0, D, (2)=0,®D,(z) =0 and

rd :rx\' :rtry :1 4 ryy :ryx —O

We can create a two dimensional VAR model with the above characteristics,
utilizing the given algorithm. Let us produce two series such that the frequency
component at /5, will be responsible for a large percent of the models variance for
both of them, (i.e. a peak will be present in these series at 7 /5). Giving the following

TOOtS:

Polynomial ! Root |
det(0” - @) 2 = (0.99)" -¢®
e { 2, =(0.99)" ¢’
P l 2,=(0.5)" 19
P 2, =(0.99)" -¢'5
D, i z,=(0.363)"" -&"°

Table 6.2.1: The polynomial’s roots for the (6.2.1) VAR(3) model

a very large peak will be present at the f}, and f,, (plot 6.2.1).
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Serles;
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Plot 6.2.1: The spectrum for the (6.2.1) VAR(3) model

The coherence for that particular model will also approach unity at 7 /5 as shown

in the plot below:
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Plot 6.2.2: The coherence for the (6.2.1) VAR(3) model
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One aspect that should be investigated is how the size of the spectrum peaks,
predetermine the value of the coherence. It should be clarified whether the
coherence’s approach of its maximum value, varies with the power of the spectrum at
the specific frequency.

A simple way to investigate that, is by utilizing the last mentioned model (6.2.1)

but with a small variation regarding the moduli of the root z,. So let us replace

2,=(0.99)" ¢ 5 with z, =(0.85)"-¢ *. It is obvious that the size of the spectrum
peaks at 7 /5 will be greatly reduced, but one should ask what will happen to the

coherence. So once again we have the same model but with different root z,:

x(8)=p+ A -x(t-1)+A4,-x(t—2)+ Ax(t-3)+ (), (6.2.2)
with £ =0+1,42,43, ...
det[(D" - @)(z,)]=0, D, (z)=0,D, (z) %0, D (2)=0, D, (z)#0 and

rp=re=r,=1l,r =r =0.

Polynomial Root

det(d” - @ 1
(P -) z,=(0.85)" ¢
D I
z,=(0.85) "¢ *

) P

2 z, =(0.5)" e 10

(0] s

4 z,=(0.85)" ¢ °
@, z, =(0.363)7" -€"°

Table 6.2.2: The polynomial’s roots for the (6.2.2) VAR(3) model

As 1t 1s show below the strength of the spectrum peaks at 7/5 1s greatly reduced:

64



Series;
AR {3 ) Spectrum

rpeckum
B
-

n.s

Plot 6.2.3: The spectrum for the (6.2.2) VAR(3) model

Examining the coherence plot is obvious that its values are still very close to one

with a small reduction (plot 6.2.4).
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Plot 6.2.4: The coherence for the (6.2.2) VAR(3) model
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This example forces us to conclude that the existence of even a small wave in a
specific frequency in two series, will result in a high correlation between them, at that
frequency. That high valued correlation (i.e. coherence) is not easily influenced by

any change at the size of the spectrum peak.

Another characteristic case is where only one series has a peak at z/5and the
coherence does not reach one at 7 /5. For example let us consider the VAR(3) case

where:

X(6)= g+ A -x(e—1)+ A, - x(t =2) + Ax(t - 3) + £(t), (6.2.3)
with £ = 0,+1, 42,43 ...
det[(D - D)(z,)] =0, D, (2,) =0, D, (z,) =0, ®_(2)=0, D, (2,) =0 and

ry=re=r,=r,=1,r, =0.

We create a two dimensional VAR model with the above characteristics, that is

the frequency component at z /5 will be responsible for a large percent of the model’s

variance for one series. Once again by giving the root z, = (0.99)™ -ei_s , a very large

peak will be present at z/5(plot 6.2.5). The roots as they were given to the

polynomials are:

Polynomial Root
det(@ - D) e
e z, =(0.99)™ -ei%
©y 2, = (0.99)" €'
®y 2, =(0.99)" ¢ * F
i D, 7, =(0.99) " - ¢

Table 6.2.3: The polynomial’s roots for the (6.2.3) VAR(3) model
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Plot 6.2.5: The spectrum jfor the (6.2.3) VAR(3) model

The coherence for that model clearly does not reach its maximum value at 7/5:
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Plot 6.2.6: The coherence for the (6.2.3) VAR(3) model
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The three situations presented above represent all the possible cases that are

scattered throughout the exhaustive study where r, =1 and 7, =7, =1, =r, =0orl.

Ty =Ty

These cases verify the remark made in the same paragraph, stating that “a high
correlation between two series in a specific frequency occurs if and only if, this
frequency is strongly represented in these series”.

But the question in hand is whether this is valid in general. So is this true for the

cases where, for example, 7, >2? As stated in 5.4 this is not the true and a case in

which does not occur will be presented below. This example, exactly like the

previously mentioned ones, simply verifies the theoretical conclusions drawn in 5.4.
So we have the VAR(4) model:

x(t)=p+ A -x@-D)+ 4, -x(t—2)+ Ax(t-3)+ A,x(t —4) + £(t), (6.2.4)
with ¢ =0,41,4#2,43,.....
det[(P7 - D)(2,)]=0, D, (2,) =0, D, (z)=0, D, () =0, P, (2)=0 and

rd=2’rxx:r);v:rxy:ryle'

As noted above the differentiation of the (6.2.4) VAR(4) model in respect to the
previously mentioned ones, lies in the order of z, as a root of the det(®” - @) and the
o, ,0, ,0

o » P, polynomials. So the roots that were assigned at these

polynomials are:
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.—Polynomial r Root
det(®” - ® iz
MO D) 2,=(0.99)" e % ,r, =2
@n ! -1 ,-,f
2,=(0.99)" e’
@ iz
7 z,=(0.99)"-e 3
) s
Y z,=(0.99)7" e 3
| D, L,
| - z,=(0.99)" -e?

Table 6.2.4: The polynomial’s roots for the (6.2.4) VAR(4) model

As expected the spectra for the model exhibit large peaks at 7 /5:
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Plot 6.2.7: The spectrum for the (6.2.4) VAR(4) model

But the coherence’s value at the specific frequency does not even come close to

one.
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Plot 6.2.8: The coherence for the (6.2.4) VAR (4) model

These four VAR model presented in this section are representatives of all the

possible combinations that take place when we consider the cases where 7, =1 and

re=r,=r,=r,=0orl.

6.3 Topics for further investigation

All of the above, open up a wide range of issues that require further research. For
example, the VAR model in question is a two dimensional one. The next step is to
examine a more complex form of a VAR utilization and try to comprehend the
Interaction between the roots of the polynomial matrix (and its determinant), with the
cross-spectra.

Furthermore, that interaction itself could bre expanded. That is, to examine the
impact of these roots not only on the coherence and the cross-spectra but also on the
phase between the series.

One last issue, is the restriction imposed in (5.2.5) that the covariance matrix of
the VAR(p) process is the unity matrix (£ =17). As stated before, this makes our

approach easier to comprehend without damaging the applicability of the results, but
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one could focus on examining the impact of the existence of a different covariance
matrix. Some special matrix structures, could create interesting variations on the

conclusions presented in this thesis.
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Appendix A

Presentation of the algorithm

The algorithm presented below was written in S-Plus. The first part is a function
called “calculate.coefficients” that accepts as input the inverse roots of a polynomial

and returns its coefficients.

Brrkdkkkkdkkkkhxhxkdkxdkrx GPECIFYING A TWO DIMENSIONAL VAR MODEL
Brrxkkxx ke Xk kA kkkkkxx*k*x VIA POLYNOMIAL ROOTS

BrrhkxkxhhkkkXkh* k¥ ¥ POOLS CONVETSION ***xkkkkhrxkkkkdkkk

calculate.coefficients <- function(a.polynom)

{

a.polynom$order <- 0

a.polynom$coefs <- c(1l, rep(0,2*a.polynom$inv.roots.numbexr+l) )
k <- 0

while (k<a.polynom$inv.roots.number)

{
k <- k+1

if {(a.polynom$inv.roots [k,2]==0) || (a.polynom$inv.roots(k,2]==pi))

a.polynom$order <- a.polynom$order + 1
j <- a.polynom$order+1
while (j>1)
{
a.polynom$coefs[j] <- a.polynom$coefs[j]
a.polynom$coefs[j-1}*a.polynom$inv.roots[k,1]*
cos (a.polynom$inv.roots [k, 2})
J =321
}
}
else
{
a.polynom$order <- a.polynom$order + 2
j <- a.polynom$order+l
while (j>2)

print (k)
print (j)
a.polynom$coefs(j] <- a.polynom$coefs(j] -
2*a.polynom$coefs[j-1] *a.polynom$inv.roots [k, 1] *
cos (a.polynom$inv.roots(k,2] )+
a.polynom$coefs[j-2]*((a.polynom$inv.roots [k,1])*2)
o< 3-1
}
a.polynom$coefs[2] <- a.polynom$coefs(2]
2*a.polynom$inv.roots [k, 1] *cos(a.polynom$inv.roots [k, 2])
}

}

a.polynom
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The above function accepts a list containing all the necessary information
regarding the polynomial’s roots. These are the number of (inverse) roots and the

roots themselves, first their inverse moduli and secondly their argument. For example:

z, =(0.99)" e is given below as c(.99,pi/s). The returned coefficients are stored

into a matrix called “CoefMatrix™.

#************* INPUT khkkhkkkhkkkkhkhkkkrxkhkwhkhkxrhkkhhkhhkhkrhhhkhhhkkhhkhhhhikk

N <-15 fixkkxxxxkcxx MAXIMUM ORDER OF VAR*#**x**xkkxk**
library(Matrix)
CoefMatrix <- Matrix(0,7,N)

Determinant.polynom<-list ()

Determinant.polynom$inv.roots.number <- 2

Determinant .polynom$inv.roots <- matrix(c(.99,pi/5), ncol=2)}

Determinant .polynom$inv.roots <-rbind(Determinant.polynom$inv.roots, c(0.99,pi/5))
Determinant . polynom

Fxx.polynom<-list ()

Fxx.polynom$inv.roots.number <- 2

Fxx.polynom$inv.roots <- matrix(c(.99,pi/S), ncol=2)
Fxx.polynom$inv.roots<-rbind (Fxx.polynom$inv.roots, c(.5,pi/10))
Fxx.polynom

Fyy.polynom<-list ()

Fyy.polynom$inv.roots.number <- 2

Fyy.polynom$inv.roots <- matrix(c(.99,pi/S5), ncol=2)
Fyy.polynom$inv.roots<-rbind (Fyy.polynom$inv.roots, ¢(0.9,pi/5))
Fyy.polynom

Fxx.Fyy.polynom<-list ()

Fxx.Fyy.polynom$inv.roots.number <-
Fxx.polynom$inv.roots.number+Fyy.polynom$inv.roots.numbexr

Fxx.Fyy.polynom$inv.roots<-rbind (Fxx.polynom$inv.roots, Fyy.polynom$inv.roots)

Fxx.Fyy.polynom

Fxy.polynom<-1list ()

Fxy.polynom$inv.roots.number <- 2

Fxy.polynom$inv.roots <- matrix(c(0.99,pi/5), ncol=2)
Fxy.polynom$inv.roots<-rbind (Fxy.polynom$inv.roots, c(0.3632713,0))
Fxy.polynom$inv.roots<-rbind (Fxy.polynom$inv.roots, c{(0.9,pi/6))
Fxy .polynom

Fyx.polynom<-1list ()

Fyx.polynom$inv.roots.number <- 2

Fyx.polynom$inv.roots <- matrix(c(0.99,pi/S), ncol=2)
Fyx.polynom$inv.roots<-rbind(Fyx.polynom$inv.roots, c¢(0.9,pi/S))
Fyx.polynom

At first the roots of det(®” -®), ®_ and the @, are given and the algorithm
finds the roots of the product ®_-® . Let us see how the function

“calculate.coefficients” gives the coefficients which are stored into the “CoefMatrix”.
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But first a small checkpoint is introduced in order to ensure that the roots of the

determinant are not within the unit circle.

frrxkkkkkxkxkkxx CHECKPOINT Nol. Checking the Determinant****xkkkkkxkxhkkhrdhkkr
for (j in 1:(Determinant.polynom$inv.roots.number))
if (Determinant.polynom$inv.roots{j,1]1>1 )

{

stop (message="The Determiant has roots in the unit circle!!")

!
)

#*tt*****tt******End of Checkpoint NO J**hrkxkrkkhhhhrhkhrhhhhhhhhhhhhhkhkhdkrin

#rxxxxxxxxxxxx Finding coefficients of Determinant ****x*xxxxx

Determinant .polynom<- calculate.coefficients (Determinant.polynom)
Determinant . polynom

CoefMatrix (1, ] <-Determinant.polynom$coefs
for (j in (length(Determinant.polynom$coefs)+1) :N)

CoefMatrix(1,j1<-0

rrhkkkkkkhkkhkx Fax

Fxx.polynom <- calculate.coefficients (Fxx.polynom)
CoefMatrix[3,]<-Fxx.polynom$coefs

for (j in (length(Fxx.polynom$coefs)+1) :N)

{
}

CoefMatrix[3,j]<-0

#************** Fyy

Fyy.polynom <- calculate.coefficients (Fyy.polynom)

CoefMatrix[4,] <-Fyy.polynom$coefs
for (j in (length(Fyy.polynom$coefs)+1) :N)

{

CoefMatrix[4,jl<-0

fhhkokdekdek ok kohdohk Finding coefficients of FXX*Fyy ******kxkxk
Fxx.Fyy.polynom <- calculate.coefficients (Fxx.Fyy.polynom)
CoefMatrix {2, ] <-Fxx.Fyy.polynom$coefs

for (j in (length(Fxx.Fyy.polynom$coefs)+1) :N)

{
}

CoefMatrix(2,j)<-0

Prrhrkw e dahdnn pinding coefficients of ny*Fyx d e e ke de ek ok d ok ke

CoefMatrix[5,] <-CoefMatrix[2,]-CoefMatrix|[1l,]
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After the coefficients of the @ -®,  are calculated, a second checkpoint is in
order since it is imperative that ® , and @ A do not have a zero order term or

equivalently their product should not have zero and first order terms. If this is the case

the algorithm informs us for the situation and adds another root to the @ such that
the problem disappears. Of course if this happens the coefficients of the ® _-®
(and therefore of the @, - @ too) are re-calculated. (One should also note that in this

stage the possibility @, -® =0 should be examined as mentioned in section 6.1.

This checkpoint is omitted for simplicity reasons since it refers to a trivial case)

So:

frxxxxxkkxxrxxkxkxrxxxx Checkpoint No 2. Checking constant and linear term of Fxy.Fyx

if (CoefMatrix[5,1] !=0 && CoefMatrix{5,2]!=0) then

{

#stop (message="The roots for the Fyy are not acceptable!! The program will choose one
for yout!")

#********************** Defining Fyy AR ZEE R R E RS S SRS RS RER RS R EEEEEEES]
Subtracting.quantity<-0

for (j in (1:(Fyy.polynom$inv.roots.number)})

{

if (Fyy.polynom$inv.roots({j,2}==0)

Subtracting.quantity<-Subtracting.quantity+Fyy.polynom$inv.roots[j, 1]

}

if (Fyy.polynom$inv.roots(j,2] !=0)

Subtracting.quantity<-
Subtracting.quantity+2* (cos (Fyy.polynom$inv.roots (j,2]) *Fyy.polynom$inv.roots[j, 1]
)

}

suggested.Fyy.inv.root<-CoefMatrix[3, 2] -CoefMatrix (1, 2] -Subtracting.quantity
Fyy.polynom$inv.roots <-rbind(Fyy.polynom$inv.roots, c(suggested.Fyy.inv.root,0))
Fyy.polynom$inv.roots.number <- (Fyy.polynom$inv.roots.number)+1

Fyy.polynom <- calculate.coefficients (Fyy.polynom)

CoefMatrix([4,]<-Fyy.polynom$coefs
for (j in (length(Fyy.polynom$coefs)+1) :N)

{

CoefMatrix([4,jl<-0
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#rxxxxxkxxx SECOND definition of Fxx.Fyy dode gk deokodeok ok k

Fxx.Fyy.polynom<-list ()

Fxx.Fyy.polynom$inv.roots.number <-
Fxx.polynom$inv.roots.number+Fyy.polynom$inv.roots.number

Fxx.Fyy.polynom$inv.roots<-rbind (Fxx.polynom$inv.roots, Fyy.polynom$inv.roots)

Fxx.Fyy.polynom

frrxexxxkxxrxxx PFinding coefficients of Fxx*Fyy for the SECOND time**x*x*xxxxxk

Fxx.Fyy.polynom <- calculate.coefficients (Fxx.Fyy.polynom)

CoefMatrix[2,]<-Fxx.Fyy.polynom$coefs

for (j in (length(Fxx.Fyy.polynom$coefs) +1) :N)
{ CoefMatrix[2,jl<-0

}

frxxxxxxxxxkxx Finding coefficients of Fxy*Fyx for the SECOND time*kkkkksk%kxx

CoefMatrix[S, ] <-CoefMatrix[2,]-CoefMatrix(l,]

}

#************* END of Checkpoint No 2 khkkkkhkkhkkhhhddrhhkhkrkrhhrhrhrhrhrkxdhhkdk

The next step is to find the roots of the @ _ - @  :

froekkdkkkrdkk Finding roots of FXy*Fyx **xkkkkkrxk
roots <-polyroot (CoefMatrix([5,])
NumberofRoots <-length({roots)

print{'Your roots are..... )
for (j in 1:(NumberofRoots))

{

z<- roots[j]
#print [j)

print (1/Mod(z))
print (pi/Arg(z))

print('*****************')

That brings the first execution of the program to an end since the roots that were
estimated above should be manually ‘distributed’ to @, and @, at the beginning of
the program.

After the assignment of every root different that zero to each polynomial the
algorithm is executed again where now it continues further on. The zero root is

always present with order two, so the algorithm assigns one to each polynomial:
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% % kK e ke kK ok x Finding coefficients of ny dhkkkTxkdk KK
Fxy.polynom <- calculate.coefficients (Fxy.polynom)
if (Fxy.polynom$inv.roots.number==0)

Fxy .polynom$coefs[1]<-0

}

CoefMatrix (6, ] <-Fxy.polynom$coefs
for (j in (length(Fxy.polynom$coefs)+1) :N)

CoefMatrix[6,3]1<-0

Jrexhkdkxkrdkh ok Finding coefficients of FYX Jedk ok ok ok ok Kok ok ok ok
Fyx.polynom <- calculate.coefficients (Fyx.polynom)
if (Fyx.polynom$inv.roots.number==0)

Fyx.polynom$coefs [1]<-0

}

CoefMatrix (7, ) <-Fyx.polynom$coefs
for (j in (length(Fyx.polynom$coefs)+1) :N)

{
}

CoefMatrix(7,3j]<-0

#**********************Adding the zero root to ny
for (i in 1:(N-1))

CoefMatrix[6,N+1-1] <- CoefMatrix{6,N-1i]
1

CoefMatrix[6,1] <-0
CoefMatrix[6,)<- CoefMatrix(e6,]*CoefMatrixI[5,3]

#**********************Adding the zero root to Fyx
for (i in 1:(N-1))

{

CoefMatrix[7,N+1-i] <- CoefMatrix[7,N-1i]

}

CoefMatrix{7,1] <-0

Our final checkpoint is introduced here. This is imperative since there is a chance

that the roots of the det(®” - ®), ®, and the ®  are given in such way that the
polynomial ¢ & =@ -® -—det(P) is the zero one, while one of the
®,, orthe @ is not identically zero. The checkpoint below makes that check and if

indeed this is the case, it forces @, ’s coefficients to be zero.
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frexexkxkrkkkkkxxkxxek** Checkpoint No 3. Checking Fxy.Fyx **%kkkkkkhhdrddkoknkss
counter.Fxy.Fyx<-0

counter.Fxy<-0

counter.Fyx<-0

for (j in 1:N)

counter.Fxy.Fyx<-counter.Fxy.Fyx+abs (CoefMatrix(5,j])

counter .Fxy<-counter.Fxy+abs (CoefMatrix[6,7])

counter.Fyx<-counter.Fyx+abs (CoefMatrix[7,3])

if (counter.Fxy.Fyx==0)

if (counter.Fxy!=0 & counter.Fyx!=0)

itop(message:"There is a problem with the FxyFyx polynomial!f)
#***xx*x Making Fyx zero polynomial ***xkwxwsxwxssx

for (j in 1:N)

CoefMatrix([7,j]<-0

}

grexxxxsrenksx END Of Checkpoint NO 3 *wksdkskkakkhkkhkhhkokhhhhkohhkrhkns

This is the end of the polynomial’s manipulation. Now it is time to estimate the
order p of the VAR(p) model.

#**i***************************** Estimating the ORDER **kkdkdkkdkkbkhhkhhkhkdhkdrhhrhhhdd

i<-N

while (CoefMatrix({3,i]-=0 & CoefMatrix({4,i]=-=0 & CoefMatrix[6,i}==0 &
CoefMatrix[7,i]==0 )

order.of .Var<- (i-2)
i<-(i-1)

}

order.of .Var

Having the order of the VAR(p) model, it is time to proceed to the estimation of
the p coefficient matrices. These matrices together with the covariance matrix, are all

that we need in order to estimate the theoretical spectrum of the model.
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frxxxxxxxxrkxxxxx Estimation of the coefficient matrices *****wxkxkkkkkxi
CovarianceMatrix <- matrix(c(1,0,0,1),k)

Var.Matrices <-array(0,dim=c(order.of.var,2,2))

for (i in l:order.of.var)

{

j<-1i+1

Var.Matrices[i,,] <- array(c(-CoefMatrix[3,j],-CoefMatrix[7,]j],-CoefMatrix[6,j],-
CoefMatrix([4,3]),dim=c(k, k))

print (Var.Matrices[i,,])

}

Var.Matrices(1,,]

It is now easy to estimate the true spectrum of the Var(p):

fréxrrkkkkxkxkkxkxck REAT, VAR SPECTRUM *****xkdkkkhkhkk ok kkhxx

timeseries.coeff <«<-list ()
timeseries.coeff$ar <- Var.Matrices
timeseries.coeff$var.pred <-CovarianceMatrix
timeseries.coeff$order <- order.of.Var

real.var.spectrum<-spec.ar (timeseries.coeff,plot=T)

reducedphasel <- real.var.spectrum$phase%% (2*pi)

plot (real.var.spectrum$freq, real.var.spectrum$coh, type="1", xlab="frequency", ylab="cohe
rence")

plot (real.var.spectrum$freq, reducedphasel, type="1l",6xlab="frequency", ylab="phase")

With the algorithm presented above all of the examples presented in 6.2 where
easily created. It is obvious that a two dimensioned Var(p) model with a specific

structure can now be created at will.
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