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ABSTRACT

Georgia Ekaterini Papaleonida

CONTROL CHARTS FOR AUTOCORRELATED
PROCESSES

December 2001

Statistical Process Control primarily involves the implementation of
control charts. Control charts are used to monitor the quality and the stability
of processes.

Quality control methodology makes assumptions about the processes.
One of those is the assumption of independence. In real industrial
environments though, process data is often correlated or exhibits some serial
dependence. More sophisticated SPC techniques are then needed to overcome
the correlative structure of the data.

The aim of this dissertation is to present, to apply and to evaluate

control charts that are designed to account for autocorrelation
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CHAPTER 1

Introduction

In recent years, quality has become one of the most important
consumer decision factors in the selection among competing products and
services. One can define quality, as successfully meeting requirements set
by sellers or buyers.

Quality improvement processes aim to the reduction of variation in
products, and are widely used in manufacturing and service industries,
increasing their competitiveness, by improving product quality and decreasing
production cost. Quality control in manufacturing has moved from detecting
nonconforming products through inspection, to detecting quality abnormalities
in the process by the use of statistical methods.

Statistical Quality Control (§QC) includes four major areas:
acceptance sampling where inspection of a product leads to its acceptance or
rejection based on adherence to a standard, capability analysis where the
capability of a process to meet specification limits on key quality
characteristics is assessed, Statistical Process Control (SPC) where some
statistical and problem-solving techniques are employed to monitor
production processes over time, to detect changes to process performance, and
consequently to help achieve process stability and improve capability through
the reduction of variability and design of experiments where important
factors affecting process and product quality are identified along with their
specific levels that ensure optimum performance.

—p A production process, regardless of how well designed or carefully
maintained it is, will always hold a certain amount of inherent or natural

variability. A process is said to be in statistical control when these patterns
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of variation are random, or as Dr. Walter A. Shewhart stated when a process
is operating with only chance causes of variation.

Unfortunately, once a state of statistical control is attained, departures
from statistical control in key quality characteristics may occur. After
detecting these departures, explanations for them in terms of assignable or
special causes are seeked. A process which is operating in the presence of
special causes is said to be out of control.

Statistical process control, primarily involves the implementation of
control charts. Control charts are used to monitor the quality and stability of
processes in the sense of detecting the occurrence of special causes. A special
cause may produce changes in a process such as a shift of its mean and/or
variance affecting the quality of the output and leading to an out of control
state.

Traditionally, quality control methodology makes assumptions about
the process which are frequently violated in practice. New technology gives
managers the option of using more sophisticated SPC models which more
accurately reflect the process being monitored, by relaxing some of the
assumptions.

=D One of the assumptions of control charts that is often not valid in
practice is that the process whose some quality characteristic is monitored is
independent. This is evident in real industrial environments where process
data is often correlated or exhibits some serial dependence affecting the
efficiency of SPC methodologies.

_» The aim of this thesis is to present, to apply and to evaluate contro)
charts that are designed to account for autocorrelation. Methods for measuring
the performance of control charts are also presented. Specifically, Chapter 2
illustrates the basic procedures of Control Charts while Chapter 3 some
elementary topics from Time Series theory. In Chapter 4 the effects of
autocorrelation to traditional control charts along with the mechanism that
generates correlated processes is discussed. Control charts that are designed
for monitoring the mean of correlated data are illustrated in Chapter 5, while
in Chapter 6 control charts for monitoring the variance. In Chapter 7 methods
for measuring the performance of control charts are presented. In Chapter 8

and in Chapter 9 the performance of the proposed control charts is evaluated.
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Finally, in Chapter /0 issues related to autocorrelated processes are stated and
in Chapter // some general conclusions along with some topics for further

research are presented.






CHAPTER 2

Control Charts

2.1 Introduction

The basic fundamentals of control charting where proposed by Dr.
Walter Shewhart in the 1920°s and 1930’s. This framework under which
control charts are still constructed is presented in section 2.2 of this chapter.

Control charts may be classified into two categories, depending on
whether the monitored quality characteristic can be measured on some
continuous (or even quantitative) scale or not. If this is the case, the
variables control charts are used to monitor the mean or /and the variance
of the process. These are presented in section 2.3. When the quality
characteristic in question can not be measured continuously, and each unit of
the product can only be judged as either conforming or non-conforming, the
so called attributes control charts are used which are presented in section
2.4.

In section 2.5 the Exponentially Weighted Moving Average
(EWMA) and the Cumulative Sum (CUSUM) charts are briefly discussed,

while at section 2.6 some ideas in the design area of control charting.

2.2 Basic fundamentals of Control Charts

Control Charts are the basic tool of SPC techniques in the effort to

achieve and to maintain stability in industrial or other processes.



2.2 Basic Fundamentals of Control Charts

The aim of control charts is to establish practical ways of detecting
the lack of statistical control of the processes that are monitored.

Checking for a state of statistical control can be regarded (although
this 1s a disputable fact see e.g. Woodall(2000)) as an hypothesis testing
assuming that the quality characteristic under investigation, is normally
distributed with mean x and variance o’ . When the process is in-control with
target values for # and o as uy and oo’ respectively, monitoring a process in
terms of its statistical control while on target, is equivalent to testing the
hypotheses

Hy: y=pp Hy: o=0y
Hi: ptuo H;: o#09
for monitoring the mean and the variance respectively.

Beyond normality, another basic assumption in calculating the
statistical properties of control charts is that the observations from the process
are also independent. Control charts are constructed under the assumption
that the observations are independent and identically distributed normal
around a central mean

Xi=pte;
where:
x~ the observation at time ¢
p=the fixed process mean
{e;} = a sequence of normal independently distributed errors with mean zero
and variance aze.

Suppose that m random samples taken at regular intervals are
available from a process, each containing » observations XX, ..,X,. When
the process is in-control, the values for # and o° are the target values yy and
oo’ correspondingly, and the general structure of a Shewhart type control
chart is

Ho £C0g
\yhere c is some constant.

A control chart is the graphical representation of the above scheme.

The above random samples are used to obtain estimates of a “process

average” at each point, which are then plotted on the control chart.
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A control chart consists also of a Center Line representing the
expected value of the process parameter under investigation corresponding to
its in-control state and two lines the Upper Control Limit (UCL) and the
Lower Control Limit (LCL) usually set at three standard deviations from the
center line. The chart may also contain upper and lower warning limits set at
two standard deviations from the center line. A typical control chart is
represented in Figure 2.1.

Typically, when all the plotted points are between the limits the
process is considered to be in-control. On the other hand, once a point falls

outside the control limits the process is declared to be out-of-control.

Upper Control Limit

upper warning limit
r//. Center Line

lower warning limit

quality characteristic

- Lower Control Limit

i ! | | |
sample number (or time)

Figure 2.1: A Typical Structure of a Control Chart.

Sometimes though, a control chart may indicate an out-of-control
state even when all the points are plotted between limits. This is possible
when the plotted points exhibit some non random pattern of behavior. A
sequence of observations that are of the same type is called a run. Many run
rules are used in practice to increase the sensitivity of control charts
especially to small process shifts. For example a run of eight consecutive

points plotted on one side of the center line is an indication of an out-of-
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control situation. Montgomery (2001) as well as Nelson (1985) and Champ
and Woodall (1987) give a detailed discussion on this matter.

2.3 Control Charts for Variables

Many quality characteristics are continuous random variables and can
be expressed in terms of a numerical measurement When monitoring such

processes usually is necessary to check the statistical control of both the mean

and the variance. The mean is usually monitored by the X -chart and the
variance sometimes by the range or R-chart, and other times by the S-
chart.

2.3.1 The X and R charts

As stated before, the basic assumption for the observations of the
process whose statistical control is checked by the help of control charts is
that they are i.i.d. normal random variables with mean x and variance o°.

In practice, only estimates of the process mean and variance are
available.

The overall mean of the process can be estimated by

the statistic

X

M=

1

¥

|

X\ +X,+.+X,
n

where Z =

is an estimate of the mean within the ith

sample.

To estimate the variance of the process in the case where the sample

size n is relative small, the statistic % is used, where R is the average
2

range. The average range is defined by

where Ri=Xmax-Xmin 1S the range within sample i of size n.
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The X -chart or averages Shewhart chart, is used for monitoring the
mean of the process and the control limits of the control chart when the

variance is estimated by the range are

T+ B3
d, Jn
3
By defining 4, = —— the control limits become
y g 4, dzx/z
X+t AR

In the meantime, when constructing control limits to monitor the
variability, the distribution of the relative range W=R/c is used to derive an
estimate of the standard deviation of the range

. d,R
Gr =
d,

where d; is the standard deviation of the relative range which is a known
function of the sample size n. The control limits are

d,R

d,

By letting D3;=1-3d3/d; and D4=1+3d3;/d,; the upper and lower control limits

R+3

become
UCL=D,R, LCL=D;R
When the mean ¢ and the variance o° of the process are considered to
be known, they can be used for constructing the X and R charts.

The control limits for the X -chart are

n

or by letting the quantity 3J/n be represented by the constant 4 the control
limits are u + A4 o.
The control limits for the R-chart are
d,o+3dz0
where d, is the mean of the distribution of the relative range and d; is the

standard deviation of the distribution of the relative range.
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The above results are also presented at the summarizing tables

appearing in Figure 2.1 and Figure 2.2 at the end of this section.

2.3.2 The X and S charts

The X and R charts are widely used, but when the sample size »n is
relatively large, it is preferable to estimate the unknown variance of the

process o° by the sample standard deviation

If the underlying distribution is normal, then the mean of S is c,o
where ¢4 is a constant depending on the sample size n and the standard

deviation of S is oyl-c.

When the unknown standard deviation is estimated by the average

S, +8,+...+8,
m

sample deviation S= the control limits for monitoring the

mean of the process are
35
c,\n

By letting 4, = 3/(04 \/;) the control limits become X + A3§.

Y+

The control limits for monitoring the variance are

S+32f1-¢
Cy

By letting B3=1—i l1-¢;  and B4=1+i 1-¢?, the control limits
Cy Cy

become UCL=B,S,LCL=B,S.

When a standard value for o is given ( or comes from process data)
the sample standard deviation can be used to construct the 3-sigma control

limits for S. The limits are

2
c,0 £304/1-c;

10
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By noting B; =c, —34/1-c? and B, =c,+341-c the control limits for the
S-chart are UCL=Bgo, LCL=Bjs0.

The above results along with the results from paragraph 2.3./ are
summarized at the table appearing in Figure 2.2 when the parameters are
considered known and at the table in Figure 2.3 when only their estimates

are available,

Variables Control charts 4,6 known
Chart Center Line Control Limits
X (u,0 given) U utAc
R (o, given) d,o UCL=D,o, LCL=D;o
S (o, given) c40 UCL=Bgso, LCL=Bso

Table 2.1 : Formulas for control charts for Variables, Standards Given.

All the quality control factors A4, Az, A3, Bs, By, Bs, Bs, Dy, D,, D3, Dy
are tabulated in the literature i.e., Montgomery (2001) and Xza/z,n-l > le-a/z,n-l
denote the upper and lower a/2 percentage points of the chi-square

distribution with n-/ degrees of freedom.

Variables Control charts 4,6 unknown
Chart Center Line Control Limits
X (using R) Y Y+ Azﬁ
X (using Y] 7 X+ 4, S
R R UCL=D,R,LCL=D,R
S S UCL=B,S,LCL=B,S
—2 =2
2 —2 S S
S UCL = _"‘Zj/z,n-lr LCL = _le-a/z,n—l
n-1 n—1

Table 2.2 : Formulas for control charts for Variables, no Standards

Given.
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2.3 Control Charts for Variables

2.3.3 The individuals X-chart

It is quite frequent only one observation to be available at each
sample from the observations. This situation demands some special treatment
since the range, at least the way it is defined till now, can not be used to
estimate the process variability.

In such situations the individuals X-chart is used which is especially
designed for individual units is useful. The control procedure for this case
uses A=3 and the moving ranges of pairs of successive observations to
estimate the process variability. The moving range is defined as MR;=|X;-X..,|
and the control charts become as shown at the table in Figure 2.4. The quality
factor d, is a constant, which is tabulated in the literature i.e.
Montgomery(2001).

2

At section 2.5 of this chapter some charts are described, that are
sometimes more appropriate to use in the individuals case especially when the

shift in the process characteristic is expected to be small.

individuals chart
Chart Center Line Control Limits
u,6° known U ux3o
5 — _MR
4,6° unknown X X i-3d—
2

Table 2.3 : Formulas for control charts for individual observations.

2.4 Control Charts for Attributes

A defective unit is called non-conforming while a defect is called
non-conformity. Suppose that m samples of size »n are available, and let D;
denote the number of non-conforming items in the ith sample. The sample

fraction non-conforming p, is defined as the ratio of the number of non-

conforming items in a sample to the total number of items, thus

12



2.4 Control Charts for Attributes

and the average of these sample fraction non-conforming is

m

2P,

J=l
m

p ==
Besides, consider the number of times a non-conformity appears and

let c estimate the average number of non-conformities per sample, while

u estimates the average number of non-conformities per unit.
The most frequently used charts for attributes are summarized at the
table appearing in Figure 2.5. For a review of control chart methods based on

attribute data the reader can refer to Woodall(1997).

Attribute Control Charts’

Control Chart Center Line Control Limits

fraction = o~ p(-p)
non-conforming p pt3

np IR np np +34np(1-p)

non-conforming

p

c non-conformities c c+3Ve
average number of g 7
u non conformities u ut3,|—
per unit &

Table 2.4: Formulas for control charts for Attributes.

2.5 The Exponentially Weighted Moving Range and

the Cumulative Sum charts

The previous sections of this chapter were involved with the
description of control charts usually referred to as Shewhart control charts,
since they are constructed under the basic fundamentals of control charting

introduced by Dr. Walter Shewhart.
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2.5 The EWMA and the CUSUM charts

The major disadvantage of any Shewhart type chart is that it ignores
any information given by the entire sequence of points and thus becomes
relatively insensitive to small shifts in the monitored quality characteristic of
the process. The following two charts namely the Exponentially Weighted
Moving Average chart or briefly the EWMA chart, and the Cumulative Sum
chart or briefly the CUSUM chart, try to incorporate all the information in the

sequence of sample values.

2.5.1 The EWMA chart

The exponentially weighted moving average control chart EWAMA
which was originally proposed by Roberts (1959), is designed to detect
smaller shifts in the mean more quickly than the Shewhart type charts, by
giving exponentially decreasing weights to past observations, the more recent
data receiving the heavier weights. Suppose that the sequence of the
observations {X;, i=1,2,...} is independently normally distributed with mean
o and variance o’y.

The EWMA control chart uses a control statistic of the form :

Z,=AX,+(1-4)Z,,;

i=12,..,
where 4 is a smoothing constant satisfying 0< A < ] and Zy=p is the starting
value. The smoothing constant A determines the weight given to past
observations. When A is large, little weight is given to older data, but as it
becomes smaller more weight is given to older observations. The variance o7,
of Z; is given by o’z=var[Z;]=[A/(2-A)][1-(1-)*]c’y and when i is large it
can be approximated by o?z=/A/(2-)] o’ .

The control limits of this chart are

A
Hy ic\/Z—AO-X

where [A/2-A)o, is the asymptotic standard deviation of the control statistic

Z;, and c is a constant.
When the observations are independent and the A=0.2 using c¢=2.859

will give similar in-control behavior as the Shewhart chart with c=3 (see, e.g.

14



2.5 The EWMA and the CUSUM charts

Crowder(1989) or Lucas and Saccucci (1990)). When A=1 the EWMA chart
reduces to a standard Shewhart chart. For details in the use and the properties
of the EWMA charts see Monopolis(1999).

2.5.2 The CUSUM chart

Let { X;, i=0,1,2,...} be a given sequence of observations. When the
process is in—control, .X; has normal distribution with mean yg and variance o°x
which can either be assumed known or can be estimated.

Suppose that the main purpose is to detect a shift of the process mean
Ho to an out-of-control. value u,, upwards (u;>ug) or downwards (u;<pug).

As mentioned before the Shewhart charts aren’t very effective for
small shifts, therefore a control scheme for monitoring the level of {X;} was
proposed originally by Page (1954), the Cumulative Sum Control chart
(CUSUM). A way to represent cusums is the tabular CUSUM.

The tabular CUSUM works by accumulating upward deviations from
uo with the statistic C © and downwards with the statistic C ~ , which are
developed as follows:

Ci"=max[0, x; -( puo+K)+Ci;"]
Ciy=min[0, -(x; -ug)-K +C;.;’]
where the starting values are Cy"=Cy =0 and K>0 is a parameter of the chart.

The tabular cusum is constructed by running simultaneously two one
sided procedures C; " and C; . In some applications, when there is no
significant problem whether the quality characteristic in question exceeds the
target value, an one-sided upper cusum scheme can be used, while when there
is no problem whether it drops below the target value, an one-sided lower
cusum scheme is recommended.

The value of X is usually chosen close to the midway point between
up and the out-of-control value of the mean y;. The chart signals if either C;
" or C; " exceed the decision interval H=+#co,, which usually has a value five
times the process standard deviation ox. In particular the two-sided control
chart will give an in-control ARL of 370.4 using K=0.5 and c¢=4.775 times the

standard deviation of the process.
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2.6 The Design of Control Charts

2.6 The Design of Control Charts

An important factor in control chart usage is the design of the control
chart which includes besides the control limits for the chart, the specification
of the sample size to use, and the frequency of sampling.

There some general practices for designing a control chart. A simple
and thus very popular way is to follow the primary ideas of the founder of
control charting Dr. W. A. Shewhart. In his early text Shewhart (1939)
suggested 3-sigma control limits as action limits and sample sizes of four or
five. He left the interval between successive samples to be determined by the
practitioner.

This simplified and very general approach ignores the specific nature
of the process under consideration and often leads to the failure of the SPC
program.

A more effective approach is the design of control charts statistically.
The statistical design of the control charts has a stricter and more formal
structure and uses the statistical properties of the chart.

Consider the situation where independent random samples of size n
are taken at each sampling point, and where T; represents some chart statistic
obtained at the ith sample point. For any Shewhart type control chart the
probability that the chart statistic 7; falls outside the control limit when no
shift has occurred is P(7T;>UCL or T;<LCL| no shift has occurred)=a. This is
the probability of the a risk or of the so called Type I error . The Type I error
is known at the SPC environments as false alarm. The probability that the
chart statistic falls within the control limits although a shift has occurred,
namely the Type II error, is f=P(LCL<T;<UCL]|a shift has occurred), and
thus the probability that this out of control condition will be detected on any
subsequent sample is /-f which 1is the power of the chart.

The desired levels of the a risk and of the power of the test are
usually pre-specified and lead to the determination of the sample size and the
control limits. Widening the control limits decreases the a risk and thus the

false alarm rate but increases the risk of Type II error, that is the ability to
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indicate the out of control situation. On the other hand shortening the control

limits leads to the opposite results.

A way to evaluate the decisions regarding the above choices and to
determine the sampling frequency, is the average run length (4RL) of the
control chart.

The run length (RL) of a process is the number of samples taken
before an out of control signal is triggered. Knowledge of the run length
distribution, allows the computation of the average run length (ARL) of a
control scheme, and consequently the design of more effective control charts.

When no assignable cause has occurred and the process is in-control
the average run length, denoted as ARL,, is desired to be large so that the rate
of false alarms is low, but when a mean shift occurs and the process is out-
of-control the average run length, denoted as ARL,, is desired to be small so
that the detection of the shift is possible with a small number of samples.

- The number of samples for a chart to signal, if in Phase II with
assumed known parameters, has a geometric distribution with parameter p
when the process does not change, thus the in control ARL is equal to //a
where a is the probability of a false alarm. The ARL for the out of control
period that is the expected number of samples taken before a shift in the
process is detected is ARL; =]/(1-,B).“J

For the evaluation of the A}QL of a CUSUM many techniques have
been developed. For a one sided CUSUM with parameters H, K,
Siegmund(1985) approximation is

exp(—24b)+24b -1

24

ARL =

for 4#0, where A=0*-K , b=h+1.166 and 6* represents the size of the shift
that for which ARL is needed thus K =(u;-ug)/2. If 4=0, one can use ARL=b".
When 6*=0 the in-control average length ARL, is calculated. To obtain the
ARL of the two-sided cusum from the ARL’s of the one-sided charts say ARL",
ARL" one can use

1o__ 1, 1
ARL  ARL*  ARL
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2.6 The Design of Control Charts

For a good discussion of the ARL of the CUSUM chart and for useful
references, see Maravelakis (1998) or Hawkins and Olwell (1988).

A measure of detection time for process changes which occur after the
control chart has been in operation for some time, is the mean of the steady
state run length distribution, the steady-state ARL. The steady- state run
length distribution is the distribution of the number of samples from the
change to the signal, computed for the case in which there are no false alarms
before the change and the change occurs after the process has been running
long enough for the control statistic to be in steady-state at the sample
immediately before the change occurs.

Sometimes the performance of the control chart is expressed in terms
of its average time to signal (47S). When the samples are taken at fixed

intervals of time that are 4 hours apart, then

ATS=ARL h

Another way of making decisions concerning the sample size the
frequency of sampling and the critical region of the chart is by minimizing the
average cost when a single out-of-control state (assignable cause) exists. This
is the economic design of the chart. A brief discussion of the Duncan’s cost
model is stated in Chapter 10 of this thesis. For a detailed literature review
concerning the economic design and applications see Montgomery(1980). A
review of related papers from 1950 to 1999 is available from Dicopoulos
(2000).

The above traditional control charts have all been constructed based
on the assumption that serially generated data are normal and independently
distributed. However, in practice, observations are not always independent,
but are actually serially correlated. The expressions above for the ARL will
provide incorrect values in the case of correlated data, thus it is necessary to
use control limits which are adjusted for the presence of correlation. The

correlation in a process can be captured using time series models.

18



CHAPTER 3

Time Series Models

3.1 Introduction

A (discrete) time series is a (discrete) set of observations generated
sequentially in time. Discrete time series may arise by accumulating a
variable over a period of time, for example the yield from a batch process
which is accumulated over the batch time, or by sampling a continuous time
series, as for example when monitoring a quality characteristic in a chemical
process.

If future values of a time series are exactly determined by a
mathematical function the series is said to be deterministic. If the future
values can only be described in terms of a probability distribution the time
series is said to be statistical time series.

A statistical phenomenon that evolves in time according to
probabilistic laws or, strictly speaking, a family of random wvariables

{X,teT} defined on a probability space {Q, Z#} is called a stochastic

process. Time series can thus be regarded as a realization of a stochastic
process.

In section 3.2 of this chapter an important class of stochastic models
for describing time series is presented, the stationary processes, which assume
that the process remains in equilibrium about a constant mean. This type of

models can provide a framework for seeking statistical control when
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3.2 Stationary Stochastic Processes

monitoring autocorrelated processes. In section 3.3 and 3.4 the linear
stationary and non stationary models are described.

Section 3.5 deals with the problem of forecasting future values of
time series and section 3.6 with the problem of identifying a model and of
estimating its parameters. Finally in section 3.7 the steps of time series

analysis are presented.

3.2 Stationary Stochastic Processes

The stochastic processes whose properties, or some of them, stay
unaffected by a change of time origin are called stationary. Consequently the
time series {X,, te T} is said to be strictly stationary if the joint probability
distribution associated with & observations x,;,..., x4 made at any set of times
t;,...,tr , is the same as that associated with £ observations x;;+4,..., X+, made
at times f;.,...,lk+n, fOr any {he Z} (see e.g. Box and Luceno(1997) or
Brockwell and Davis(1996)).

When k=1, the stationarity assumption implies that the probability
distribution p(x, is the same for all times ¢ and may be written p(x). The

mean of the stationary process is thus constant and equals to

e F )= oo

and the variance equals to

o2 = E{(x, - |- Jle- ) prcsis

If x;,..., xy are N observed values of a time series, the mean x of the

stochastic process can be estimated by the sample mean

1 N
= e— x'
NS

>

and the variance o’, of the stochastic process by the sample variance
2

o =—A71—_—1i(x, ——X—)

t=]



3.2 Stationary Stochastic Processes

If {X,} is considered to be a stationary time series, it is useful to
define the autocovariance function (ACVF) of {X;} at lag 4 as
Ye(h) =Cov(X,+p,X,), the autocorrelation function (ACF) of {X;} as

Yy h ‘
puy= L con(x,,.x,)
7:(0)

and the partial autocorrelation function (PACF) as a function defined by

a(0)=1 and ah)=¢m, h=1,2,...,

where ¢ 1s the last element of the matrix 7, ;,'th where I’ is the covariance

matrix [y(i- )] -, and ya=(y(1),....y(H)"

Some useful tools for time series analysis are the sample ACF, which
estimates the ACF of {X,}, if the data can be considered as realized values of
a stationary time series {X,}, and the sample partial autocorrelation function
PACF. These tools are mathematically described in the literature (see e.g.
Brockwell and Davis (1996)) and their numerical values along with their
graphical representations are available in most statistical packages.

Let xj...,x, be observations of a time series. The sample

autocovariance function (sample ACVF) at lag 2 1is
n—ih| —_ -
(h)=n"Y (X = X)(X,=x), —n<h<n
t=1

while the sample autocorrelation function (sample ACF) is

7(0)

The partial sample autocorrelation function (sample PACF ) is given by

a(0)=1 and d&(h)=g,. k2],

, —n<h<n

p(h)

where ¢,, is the last component of ¢, =I7'5, and f"h is the covariance

matrix [yi- /)| /,-;and ya=(9(1)....y(h)) .
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3.3 Linear Stationary Processes

The general linear model describes a time series which is supposed to
be generated by a linear combination of random shocks. When in addition the
series have the property of stationarity, an important class of models is
described, the stationary linear models which are represented by the moving
average, the autoregressive and the mixed moving average autoregressive
models. A good description of these models is given by Box and
Luceno(1997).

3.3.1 Some operators

In this section and so forth some simple operators are going to be used
extensively. The most commonly used is the backward shift operator B,
which is defined by
Bx,=x:;,
Bfxi=x.4

and the forward shift operator =B/, given by
Fxi=x:41,
S e T

Another important operator is the backward difference operator V
which is defined by

Vx, = X, =X
while its inverse the summation operator V™' is defined by

o0
-1 d
Vi =)x,
j=0

The difference and the summation operators can be expressed in terms

of the backward and the forward operators correspondingly by

Vx, =x,-x,, =(1-B)x,

Vi, =Y x_,=x+x_ +.=(14+B+B*+.)x,=(1-B) " x,
J=0

P2



3.3 Linear Stationary Processes

3.3.2 The general linear model

A stochastic process can be represented as the output from a linear
filter. A time series can be regarded as generated from series of independent
shocks a;. These shocks are random drawings from a fixed distribution. When
this distribution is assumed to be normal with mean 0 and variance ¢°, the
sequence of random variables g, is called white noise.

The white noise process a; is transformed to the time series through

the linear filter as shown at Figure 3./.

White Noise linear filte,.g

a; Xt

Figure 3.1: The generating mechanism of a time series through a linear
filter.

The linear filtering operation takes a weighted sum of previous
observations, so that

Xy=ptag/tyaetyoast...

where {y;, i=1,2,...} are constants. By representing X, = x, — 4 the deviation

of the process from some origin or from the mean if the process is stationary,

it can be written as
o
Xi=ai +Zy/ja,_j
J=1

Using the backward shift operator the above equation may be written

as
%, =(I+ijBjJa, =w(B)a,
=t

where w(B)=1+) y B’ .
=1

The above model implies that X, is a weighted sum of the past values of

theX,’s, plus an added shock a;, that is
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3.3 Linear Stationary Processes

~

X =a +

.Ms

il
—

X,
J

where {z;, i=1,2,...} are constants. The current deviation X, of the level u can
be regarded as some regression on past deviations X,_;,X,_,,... .

Once again the above equation can be expressed in terms of the

backward shift operator by
aR= (l— ZﬂijJN, = n(B)Z,
Jj=1
where 7(B)=1-) z,B’.
J=t

There is a relationship between the = and the y weights through the
backward shift operator B:

n(B)=y”'(B)

Through the transfer function y(B) the definition of stationarity is
revised for the general linear model: a linear process is stationary if y(B)
converges on, or within the unit circle. Through z(B) a new property arise, the
invertibility: a linear process is said to be invertible if z(B) converges on, or

with in the unit circle.

3.3.3 The autoregressive moving average model

An extremely important parametric family of linear stationary models
is introduced : the autoregressive moving average model or more briefly the
ARMA (p,q) model

The process {X,,teT} is said to be an autoregressive moving

average ARMA(p,q) process if {X,} is stationary and if for every ¢,

Xe= p(1-01- -0p)+ 01X 1+ . +0pX1pta-01011-... -0404 4 ,
where {a,.;} is the random error (noise) at time ¢-i which is assumed to be i.i.d.

normal with mean zero and variance ¢°, , @, is the autoregressive coefficients,

6; is the moving average coefficients and x the mean of the process.
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3.3 Linear Stationary Processes

Sometimes, it is more convenient to use the more concise form of the

above equation

(0(B)X;=0(B)a,

where ¢(.) and 6(.) are the p™ and ¢” degree polynomials ¢(z)=1-¢z-...-p,2°
0(z)=1+6,z+...+0,z? and B is the backward shift operator.

The equation ¢(B)X,=6(B)a, defines a stationary process, provided
that all the roots of the characteristic equation ¢(B)=0 lie outside the unit
circle and an invertible process when the roots of 6(B) lie outside the unit
circle.

When the 8(z) =1 the process

Xi= 01 X1+ . +@pXiptoy,

where {a,} is i.i.d. with mean zero and variance ¢, and ¢, .. ,@p are constants,
1s called autoregressive process of order p or more briefly AR(p). The

variance of the process may be expressed by

2
a

=10 = PrPs = — PP,

g
0_2

x

When the ¢(z) =] the process

X1= a; = 910:,_1- e = U0 g,

where {a,} is i.i.d. with mean zero and variance 02,, and 6, ..., 6, are constants,

is called moving average process of order ¢ or more succinctly MA(q).

3.3.4 The ARMA(1,1), AR(1), AR(2) and MA(1) processes

The first order autoregressive moving average process ARMA(I, 1) is
described as follows :
Xe= pu(l-p)+ oXr1+ar-0a .,

or equivalently

(1-@B)X, =(1-6B)a,
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3.3 Linear Stationary Processes

where X, is the observation at time ¢, o, is the random error term at time ¢, ¢
is the autoregressive parameter, 6 is the moving average parameter, u is the
mean of the process and X, =X, - u.
The variance of the ARMA(1,1) process is
g i 1-206+6° ,
x "‘—‘—‘——1_902 a
and the process is stationary if -/<@<] and invertible if -/<6</.
When 8=0 the above model reduces to an AR(7) process, which is

stationary if ¢ satisfies the condition —/<¢</ and the variance of the process

is

2 O'Z ‘72
Ux = = 2
l-pop 1-¢

When 6=0 the ARMA(1,1) model reduces to an MA(1) process which
is invertible if 8 satisfies the condition —/<8</. The variance of the process is
’e=(1+6%)c’, .

The second order autoregressive process AR(2) is described by

Xe= p(1-01-92)+ 91X01+92X12% 04

The process is stationary if the following conditions are satisfied

Pr+@2<l

P2-p1<l

-1<g,<l1
the parameter space defined by the above equations is a triangular region (Box
and Luceno (1997) ).

The variance of the process is

O'2= o-a =(1_¢2] O-Z
Y 1-po - ey, 1+, )Y 1-0, 2 - 07}
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3.4 Linear Non Stationary Processes

All of the processes encountered in practice are not wandering around
a constant mean. There are series that exhibit explosive or evolutionary
behaviour which is far from stationary, and others that exhibit some
homogeneity and by supposing some suitable difference of the process can be
viewed as stationary. This important class of linear non stationary models is

presented in this section.

3.4.1 The Autoregressive Integrated Moving Average model

An important class of linear non stationary models are those which
aren’t stationary but for which the dth difference is a stationary autoregressive
moving average model. These processes are called autoregressive integrated
moving average processes.

As stated at the previous section the autoregressive moving average
process is stationary if the roots of the autoregressive polynomial ¢(B) =0 lie
outside the unit circle and exhibits non stationary behavior if the roots lie
inside the unit circle. Suppose that d of the roots are unity, and lie upon the
unit circle and the remainder lie outside.

If d is a nonnegative integer, a general form of the autoregressive
integrated moving average ARIMA(p,d,q) process is

¢(B)z, = p(B)V’z, = 6(B)a,
where
» o(B)=I-9,;B-p,B’...-p,B” is called the autoregressive operator and it is

assumed to be stationary, that is, the roots of ¢(B)=0 lie outside the unit

circle,
* ¢(B)=¢(B)V? is called the generalized autoregressive operator and is a

non stationary operator with d of the roots of ¢(B)=0 are unity, and
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3.4 Linear Non Stationary Processes

= 6(B)=1-0,B-6,B°...-6,B% is called the moving average operator and is
assumed to be invertible, that is, the roots of 6(B)=0 lie outside the unit
circle.
If d=0 the model represents a stationary process .
Box and Luceno (1997) gives some explicit forms for the above
model. One of them is the difference equation form, which expresses the
current value of the process X; in terms of previous values of X;’s and current

and previous values of a’s. Thus, if
#(B)=¢(B)(1~B)* =1~ $B~$,B .~ §,.,B""

the general model may be written
X, =X, +.+8,.X

s, — a, —..— 9qa,_q01 +a,

When the objective is to express the model in terms of previous X;’s
and current a,’s the inverted form of the model is needed. In the previous
section it is stated that the model

Xi=y(B)a,
can also be expressed in an inverted form as
v (B)X,=a,

or equivalently as
a, = (1— erij)Tc, = n(B)%,
J=1

where 7z(B)=1- Zﬂ'ij must converge on or within the unit circle.
Jj=1

The = weights can be derived by equating the coefficients of B in
¢ (B)X, =0(B)m(B)

and if d>/, the process may be written in the form
X, =YnX_ +a,
=1

For many purposes, and in particular for calculating the forecasts, the

difference equation is the most convenient form to employ.
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3.4 Linear Non Stationary Processes

3.4.2 The ARIMA(0,1,1) process
The ARIMA(0,1,1) process is defined as follows
Vz,=a, -6, =(1-6B)c,
corresponding to p=0, d=1, q=1, ¢(B)=1, 6(B)=1-6(B). The difference
equation form of the ARIMA(0,1,1) model is
X=Xy +oy -60 4

while the inverted form is

(B ) Xi=a,

or equivalently

X, =Z”th—j +a, =K(”)+a:
=

where X, ,(r) is a weighted moving average of previous values of the

process.
The = weights of the ARIMA(0,1,1) process are given by

m,=(1-6)87 =A(1-3)", j=21
and the process can thus be written as

X, =X, (A)+a,

where the weighted moving average of previous values of the process
X, =35 0-4"x,
=

is an exponentially weighted moving average which is the recursion formula
for the EWMA statistic. Thus,

X,(A)=2AX, +(1=2)X,4(A).

3.5 Forecasting

Supposing that a proper model is fitted the data, predicting future
values of the time series should then be carried out. The parameters of the
model are never known exactly, but estimation errors will not seriously affect

the forecasts unless the data set used for fitting the model is small. The
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3.5 Forecasting

properties of the ARIMA(p,d,q) models may be used to forecast future values

of an observed time series.

3.5.1 The Minimum Mean Square Error Forecasts

As described in section 3.4 the general form of the 4ARIMA(p,d,q)
model is ¢(B)z, =6(B)a, where ¢(B)=¢p(B)V°.

The minimum mean square error forecasts at origin ¢ for lead time 4,

may be generated from the difference equation form of the ARIMA(p,d.q)
model directly by

Xr:h = ¢1Xt+h-l +..+ ¢p+dXt+h—p—d = glauh-l T gqat+h—q +a,.,

The minimum mean square error forecast X(h) for lead time 4 is the

conditional expectation £/X;.s] of X;+p, at origin ¢.
Taking conditional expectations at time ¢ in the above equation, with
[.] denoting conditional expectation:
[Xpn] =X, (k)=
= Xesna ]+ ¥ Bpal[ Xisnpa ] =01[ Ay ] = =0 [ @y g ]+ 4 ]
To calculate the conditional expectations which occur in the

expressions above, if j is a non negative integer the following are used
[X;_j]=Et[X;_j]=Xt.j R j=0,1,...,

[Xeni =EdXeni]=Xo(5), j=0.1,...,

[ary]=Edar]=ar;=Xe;- X,y (1), j=0,1,...,

fac]=Eda =0, j=0,1,...,

Therefore, to obtain the forecast X .(h), one writes down the model

for X;+4 in the difference equation and treats the terms on the right according

to the following rules:

» The X;; (j=0,1....,), which have already happened at origin 7, are left

unchanged.

* The X+ (j=0,1,...,), which have not yet happened, are replaced by their
forecasts )?,(j) at origin .
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3.5 Forecasting

* The a.; (j=0,1,...,), which have happened, are available from
Xt—j _Xz—j-J(I)-
* The a.; (j=0,1,...,), which have not yet happened, are replaced by zeroes.

The forecast error for lead time 4 is

eh)=ar+ 1T Wi1Qren1+.. W 1Qag

while using the above equation the one step ahead forecast error is
e(l)=X,, _Xr(l) = Q.
which makes clear that the sequence of the residuals a, which generate the
process and are assumed to be independent random variables are the one step
ahead forecast errors.
Besides, it is useful to note that for a minimum mean square error

forecast, the one step ahead forecast errors are uncorrelated.

3.5.2 Forecasting an ARIMA(0,1,1) process
The ARIMA(0,1,1) model is
Vz,=a,~-6,a,_, =(1-6,B)e,

and using the difference equation approach at time r+h, it may be written

Xevn=Xt+h-1+Qrrn-0a145-1

taking conditional expectations at origin ¢,
X,(h)=X, -6n,
X(h)=X,(h-1)h22
It is obvious that for all lead times, the forecasts at origin t will
follow a straight line parallel to the time axis. Using the fact that
X, =X,_,(h)+a,
the above equations can be written in two forms.
The first of these is

X,(h)=X, (h)+Aa,
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where A=1/-6. This implies that, having seen that the previous forecast DS eyl )

falls short of the realized value by a,, it is adjusted by an amount Aa,.

The second form is
X ) =X, +(1-1X, _,(h),
and this way of writing the forecasts implies that the new forecast is a linear
interpolation at argument A between the old forecast and the new observation.

The forecasts can also be expressed as a weighted average of previous

observations
B A (el X 1 Al AP+
which makes it obvious that for the ARIMA(0,1,1) model the forecast for all

future time is an exponentially weighted moving average of current and past
Xt ish

3.6 Model Identification and Estimation

An issue involved in time series modeling is the selection of the
appropriate model to fit the residuals. The determination of the appropriate
ARMA(p,q) model includes the choice of p,q (order selection), the estimation
of the coefficients {p;, i=1,...,p}, {6;, i=1,...,q}, the variance of the white noise

and the mean of the process.

3.6.1 Order selection

Once the data has been transformed to the point where the
transformed series can be fitted by a zero mean ARMA(p,q) model, the
problem of selecting appropriate values for the orders p and g arises.

It might appear at first sight that the higher the values chosen for p
and g the better the resulting fitted model will be. However, the estimation of
a number of parameters introduces errors that affect the use of the fitted

model for prediction.
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3.6 Model Identification and Estimation

A practical suggestion for selecting the proper ARMA(p,q) time series
model is to examine the sample ACF and the PACF plots of the data, and see
how many of their values are clearly outside the bounds. The potential orders
p and g will be up to those values.

The final decision will be based on one or more of the criteria existing
in bibliography for selecting the order of the ARMA model, which include a
penalty term to discourage the fitting of too many parameters.

There are many criteria to determine the appropriate order of an
ARMA model. Some of those are the Theil’s Residual Variance criterion
(RVC), the Final Prediction Error criterion (FPE), the Akaike’s Information
criterion (4IC), the Bayesian Information criterion (BI/C), the Likelihood
Ratio Tests (LR), the Parzen’s CAT Criterion, the Hannan and Quinn’s
Criterion (@, or HC) and the Bayesian Estimation criterion (BEC). A brief
discussion of these criteria can be found in bibliography i.e., : in Box and
Luceno(1997), in Priestley(1981), in Brockwell & Davis (1996) and
elsewhere.

A major criterion for the selection of the orders p, g is the
minimization of the AICC statistic. The A/CC criterion, introduced by
Hurvich & Tsai (1989), is a bias-corrected version of the of the 4IC criterion,
namely the criterion of Akaike (1973). To apply this criterion:

Chose p, g, ¢, and 6,, to minimize

AICC=-2In L(9,,64,S(0,,04)/n)+2(p+q+1)n/(n-p-q-2)

where L(p,,6,0°x) is the likelihood of the data under the Gaussian 4RMA

model with parameters (p,,6,, o’y) and S(0p6,) 1s the residuals sum of squares
defined:

S(&,é)=§(Xj-f(j)"/j—1

3.6.2 Estimation of the parameters

Once a model has been found that minimizes the A/CC criterion, it is
necessary to check the model for goodness of fit (essentially by checking

whether the residuals come from an i.i.d sequence), to estimate the variance of
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3.6 Model Identification and Estimation

the white noise sequence of the residuals and to estimate the coefficients of
the model.

At this paragraph the parameters p and g are considered known and
the objective is to estimate the coefficients p=(9,,...,9p,) ", 0=(0,,...,0,) " of the
zero mean ARMA(p,q) model as well as the variance o.

When p and g are known, good estimators of ¢ and 8 can be found by
considering that the data as being observations of a Gaussian time series and
maximizing the likelihood with respect to the p+g+/ parameters ¢, 8, o.

The maximum likelihood algorithm which is going to be described
needs some initial parameter values. These preliminary values can be
estimated by various procedures such as the Yule-Walker and the Burg
estimators for the pure autoregressive models, and the /nnovations or the
Hannan-Rissanen algorithms for the mixed autoregressive moving average
models. A presentation of these algorithms can be found in Brockwell &
Davis (1996 ).

The Maximum Likelihood Estimators ¢? ,6 and & are the solution

of the following procedure:
6’ =n"'S($,6)

where
S(4.6) =§(Xj _Xj)z/rj—z
and ¢ ,0 are the values of ¢, 6 that minimize
1(6,6)=In(n"S($,0) +n” Y Inr,,
=1

The initial values for ¢ and 6 can be found from one of the
preliminary algorithms and the mean squared errors »; from the innovations

algorithm
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3.7 Basic Steps in Time Series Analysis

3.7 Basic Steps in Time Series Analysis

The first step in the analysis of any time series, is to plot the data
and examine the main features of the graph checking in particular if there is

» atrend component,

» a seasonal component,

* any apparent sharp changes in behavior,

= any outlying observation

If there are any sharp changes in the series, it may be advisable to
analyze the series by first breaking it into homogenous segments. If there are
outlying observations, they should be checked carefully and if possible
explained. Then the trend and seasonal components should be removed to get
stationary residuals which will be used for further analysis. To achieve this
goal, it may sometimes be necessary to apply a preliminary transformation to
the data, after which the elimination of trend and seasonal components could
be pursuit :

(a) by using the classical decomposition model X,=m,+s,+Y, where m;is a
function known as a trend component, s, is a function with known period
referred to as a seasonal component, and Y, is the random noise component
(residuals), which may turn out to be stationary.

(b) by repeatedly differencing the series {X,} until the differences of the
observations resemble a realization of some stationary time series.

The sample autocorrelation function can be calculated for any time
series data set {x,...,x,} and can be useful as an indicator of non-stationarity.
For data still containing a trend | p(h)| will exhibit slow decay as the lag 2
decreases and for data with a substantial periodic component | p(h)| will
exhibit similar behavior with the same periodicity.

After having produced a time series with no apparent deviations
from stationarity, the next step is to model the estimated noise sequence
{Y,, t=12,....}.

If there is no dependence between the estimated noise sequence, it

could be regarded as coming from an independent and identically distributed
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3.7 Basic Steps in Time Series Analysis

sequence, and there is no further modeling to be done, except from estimating
its variance and mean. There are some simple tests to check this hypotheses.
The most important of those are the following:

(a) The Sample Autocorrelation Function : For the residuals y,,...,y, to be a

realization of an i.i.d. sequence, 95% of the sample autocorrelations should

fall between the bounds +1,96+/n . Thus if sample autocorrelations up to lag

40 are computed, no more than two or three values should fall outside the
bounds.

(b) The Portmanteau test : Consider the single statistic
h
Q=ny p’(j)
j=1
where p is the sample autocorrelation function, and reject the i.i.d.
hypotheses for the residuals y; ..., y, at significance level a if Q>X°;,

(h), where X?;_4(h) is the I-a quantile of the chi-squared distribution with 4
degrees of freedom.

However, if there is a significant dependence between the residuals
further analysis is needed to fit the data with a more complex stationary time

series model that accounts for the dependence.
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CHAPTER 4

Autocorrelated Processes

4.1 Introduction

A basic assumption in traditional application of SPC techniques is that the
observations from the processes under investigation are normally and independently
distributed. When these assumptions are satisfied, conventional control charts may be
applied. However, the independence assumption is often violated in practice. In
discrete as well as in continuous production process data often shows some
autocorrelation, or serial dependence.

Section 4.2 of this chapter describes how correlated data can be generated
and section 4.3 how autocorrelation can effect the performance of traditional control
charts. In section 4.4 the objectives of monitoring an autocorrelated process are

stated along with the basic ideas for dealing with non independent data.

4.2 The Genesis of Autocorrelated Processes

Autocorrelation is present in the data generated by most continuous and batch
process operations since the value of the particular parameter under monitoring is
dependent on the previous value of that parameter. Continuous product manufacturing
operations such as the manufacture of food, chemicals, paper and other wood products
often exhibits serial correlation. This phenomenon can also be present in monthly

series of survey quality data.
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4.2 The Genesis of Autocorrelated Processes

Autocorrelation is more apparent for data collected with frequent sampling
but can also be due to the dynamics of the process. For instance, observations from
automated test and inspection procedures where every quality characteristic is
measured on every unit in time order of production, or measurements of process
variables from tanks, reactors and recycle streams in chemical processes are often
highly correlated.

The following example from Montgomery (1997) demonstrates the above
mechanism. A simple process system, as shown at Figure 4.1 bellow, consisting of a
tank -or reactor, column and so forth- with a single input stream and a single output
stream is used.

Assume that the tank has volume V and flow rate f. Let z, represent the
concentration of a certain material in the input stream at time ¢ and x; the
corresponding concentration in the output stream at time ¢. Assuming homogeneity
within the tank and defining 7=V/f the time constant of the system, the relationship
between the input and output is dx

=LA 7;
Suppose that at time =0 a step change of z, occurs at the input stream then

at time ¢ the concentration at the output stream is

xi=zo(1-¢"7)

In practice x, is not observed continuously, but only at small, equally spaced
intervals 4¢. Thus,

X=X+ ( 2% ) (1-€27) =62,+ (1-)x..;

where §=1-¢4".
The input stream concentration z,, and the sampling interval 4¢ influence
the properties of the output concentration x, Assuming that z, are uncorrelated

random variables, the autocorrelation between x, and x,, is given by

p=1-6=""

It is obvious from the above equation, that the correlation between successive

values of x, depends on the sampling interval. If 47 is much greater than 7, p almost
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4.3 The Effects of Autocorrelation to Control Charts

equals 0. Which means that if the sampling interval in the output is much longer than
the time constant 7, the observations on output concentration will be uncorrelated.
However if Ar<T there will be significant autocorrelation present in the
observations. For exampie, sampling one time per time constant (4,/7=1) results in
autocorrelation between x; and x.; of p=0,37, while sampling ten times per constant

(4/7=0,1) results in autocorrelation between x; and x,.; of p=0,9

FlowInz, |

.Flow Out ;x,_:);l

Figure 4.1 : An example of the mechanism that generates correlated processes.

4.3 The Effects of Autocorrelation to Control Charts

Traditional control charts have statistical properties that are developed under
the assumption of independence and do not work very well if the quality characteristic
exhibits even low levels of autocorrelation. Autocorrelation between successive
observations as small as 0,25 can have big effects on the statistical properties of
conventional control charts.

Many authors have considered the effect of autocorrelation on the
performance of SPC charts. Johnson & Bagshaw (1974) and Bagshaw & Johnson
(1975) derived approximate run length distribution for the CUSUM chart when the
process follows an AR(1) or a MA(1) model. They stated that incorrect conclusions
can be drawn by using conventional CUSUM schemes in the presence of data

correlation. Harris & Ross (1991) discussed the impact of autocorrelation on the
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4.3 The Effects of Autocorrelation to Control Charts

performance of CUSUM and EWMA charts, and showed that the average and median
run lengths of these charts were sensitive to the presence of autocorrelation.
Alwan(1992) discussed the masking effect of special causes by the autocorrelation of
the data, and demonstrated that in the presence of even moderate levels of
autocorrelation, an out of control point of the chart did not necessarily indicate a
process change. Padgett et al. (1992) investigated Shewhart charts when the
correlation structure of the process can be described by an AR(1) model plus a random
error and found that this type of autocorrelation effects the false alarm rate.
Yashchin(1993)  evaluated the performance of CUSUM charts applied to
autocorrelated data. He considered charting the raw data directly when the
autocorrelation is low. When the autocorrelation is high he considered the use of
transformed observations. Schmid and Schone (1997) proved theoretically that the run
length of the autocorrelated process is larger than in the case of independent variables
provided that all the autocovariances are greater than or equal to zero. Prybutok
(1997) found that not diagnosing and considering the correlation in the data leads to a
decrease in the average time to signal as the amount of correlation increases.

Many others have also discussed the properties of standard control charts
applied to correlated data as for example Goldsmith and Whitfield(1961), MacGregor
and Harris(1990), Alwan and Radson(1992), Maragah and Woodall(1992).

The main effect of autocorrelation in the process data to SPC schemes is that
it produces control limits that much tighter than desired. This causes a substantial
increase in the average false alarm rate and a decrease in the ability of detecting
changes on the process. Consequently, the ARL performance of the control charts is
degraded. Early detection of the occurrence of assignable causes ensures that
necessary corrective action can be taken before a large quantity of non-
conforming product is manufactured. Thus, when there is autocorrelation in the
process data standard control charts should not be applied. The following application

shows the disastrous effect of correlation to traditional control charts.

4.3.1 An application

A data set of /00 observations was generated from an ARMA(1,1) time series
model by simulating the sequence of the random errors a,'s. The process parameters

used for this simulation were ¢=0,7, 6= 0,15 and g, =0,9.
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4.3 The Effects of Autocorrelation to Control Charts

Using the MINITAB statistical software an 4RMA(],1) time series model is
fitted to the observations resulting ¢=0,6675, 8=0,1152 and 0,=0,8756. According to
the plots of Figure B.1 (Appendix B) the 4ARMA(l,1) model is as expected
appropriate for the data. The mean of the process was y=-0,099 and was subtracted
from the data to set its target value to zero.
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Figure 4.2: X-chart of the observations from a simulated In-Control ARMA(1,1)

process.
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Figure 4.3: EWMA chart of the observations from a simulated In-Control
ARMA(1,1) process with 1=0,2.
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A X-chart of the observations is presented at Figure 4.2. The variance of
the process is calculated without taking into consideration the autocorrelation, using
moving ranges. The estimate of o, is MR/d,=0,674 and the 3-sigma control limits are
+£2,023. Although the process is in-control the observations 35,70,76,77 fall outside
the control limits. These false alarms are the result of the autocorrelation of the data.

At Figure 4.3 an EWMA chart of the observations is presented with the
EWMA parameter being A=0,2. This chart seem to be more affected by the
autocorrelation of the process than the X-chart. The 6* value is very close to the
Upper Control Limit while values 34,35,36 fall definitely outside the limits. The
process shows complete lack of statistical control , since many other observations fall

outside the limits.

4.4 Control Charts for Autocorrelated Processes

In dealing with correlated processes, the definitions of the in-control and the
special cause situations as well as the objectives of monitoring the process need to be
clearly stated.

In statistical process control the usual assumption is that the observations are
independent with a constant mean and the objective of monitoring the mean is to
detect special causes which produce changes in the mean from the target value. If
there is variability in the mean produced by a special cause that can be eliminated,
then it is desirable to detect this special cause and eliminate it so that the process
variance can be reduced.

When the wandering of the mean is an inherent part of the process and it is
not feasible to remove this source of variability, the process will be said to be in-
control as long as observations follow the model used to describe the correlation
structure of the process, with all the parameters at their target values. The special
causes to be considered here are those that produce a shift in the overall mean away
from the target, and the objective of process monitoring considered here is the
detection of those shifts.

Since there is a real possibility that the autocorrelations are small and the

apparent drifts in the process average quite large, causing the systematic variation, it is
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useful to check whether the autocorrelation of the process remains and is an inherent
part of the process after having made every effort to remove the systematic variation.
A possible indication of serial correlation might be the observation of more out-of-
control points in a process then warranted and expected. This suspicion can be
verified by computing the sample autocorrelation function and testing for the
presence of significant autocorrelation at lags 7=1,2,....

Another way to recognize positive correlation in the process is by using
Shewhart control charts in conjunction with several sensitizing rules. Balkin and
Lin(2001) stated that the sensitizing rules work well when there are strong
autocorrelative relationships, but are not as effective in recognizing small to moderate
levels of correlation.

When it is verified that autocorrelation is present in the data, action should be
taken to avoid its effect on the performance of the SPC techniques. A simple idea that
can break up autocorrelation is sampling from the process data stream less frequently.
The inefficient use of available data though, can lead to a decrease of the
performance of control charting since with limited data it may take much longer to
detect a real process shift than with all the data. Beyond the simple approach of using
less frequent samples two general approaches for constructing control charts in the
case of correlated processes are developed.

The first approach uses standard control charts, but adjusts the control limits
to account for the autocorrelation and adjusts the method of estimating the process
variance so that the true process variance is being estimated (see e.g. Vassilopoulos
and Stamboulis (1978), VanBrackle and Reynolds(1997) , Schmid(1995) ).

The second approach fits time series model to the process data so that
forecasts of each observation can be made using the previous observations and then
applies to the residuals traditional control charts or some slightly modified versions of
those (see e.g. Alwan and Roberts(1988), Harris and Ross(1991), Montgomery and
Mastrangelo(1991,1995), Lu and Reynolds(1999a) ).

In real applications the true model of the process is never known and the
errors from model identification as well as from parameter estimation are hardly
avoidable. Kramer and Schmid(1997) studied via simulation the effects of estimating
the parameters of the process and found that charts perform much better when the

parameters are precisely estimated. They suggested the use of the recommendations in
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4.4 Control Charts for Autocorrelated Processes

Kramer and Schmid(1996) of how to estimate the parameters in the context of control
designs. Similarly, when a set of historical data is used for fitting the model, Zhang
(1997) and Lu and Reynolds (1999a) recommended a size at least equal to /00 if it is
possible. If a control chart must be constructed using a small data set, then signals
from this chart should be interpreted with caution.

The rational of using residuals charts is that assuming that the correct time
series model is fitted to the data, the residuals will be independently and identically
distributed random variables. All the assumptions of traditional quality control will
then be met, and thus any of the traditional SPC charts can be applied. Once a change
of the mean and/or variance in the residuals process is detected, it is concluded that
the mean and/or variance of the process itself has been changed. Thus, plotting the
residuals on a control chart provides a mechanism for detecting a process change.
However, many people seem to agree that the residuals charts do not have the same
properties as the traditional charts i.e., the charts for the original observations and that
the ability of a chart to detect a mean shift depends on the model that is assumed to
describe appropriately the data.

This was first demonstrated in print, as mentioned in Ryan(2000), by
Longnecker and Ryan (1991) and Ryan(1991) where an AR(1) model is used.
Additional models were considered in Longnecker and Ryan (1992) where the
performance of a X-chart of the residuals from an AR(1), AR(2) and ARMA(I, 1)
model is investigated. They pointed out that the X-chart of the residuals may have
poor capability to detect the process mean shift and showed that a residuals chart has
high probability of detecting a mean shift as soon as it occurs, but if it fails to detect
the shift immediately, there is low probability that the shift will be detected later
especially for an AR(1) process with positive autocorrelations. To the same conclusion
came Wardell et al(1994) after deriving the run length distribution of residuals chart
and more recently Zhang(1997) , Lu and Reynolds (1999a) and others.

Harris & Ross(1991) also studied the response of residuals of ARIMA(0,1,1)
and AR(1) processes to step shift in process mean and concluded that the residual
analysis is insensitive to the mean when the process is positively autocorrelated and
recommended traditional charting methods for residuals monitoring.

Another important issue in applying traditional control charting techniques to

residuals 1s that the mean of the residuals is not constant once a step in the mean
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4.4 Control Charts for Autocorrelated Processes

occurs. This is mentioned in Lu and Reynolds (1999a,2001) where the expectations of
the residuals before and after a shift in the mean are studied. Besides, Yang and
Makis(2000) developed a procedure for studying residual response and found that
residuals are always independent, with zero means when the process is in-control but
when a disturbance occurs the residuals means are determined by the disturbance

sequence and the autocorrelation structure of the process.

45



PP

L ¥ LTE 35 SR

whiieds i Bt
el YRR S B
' s T A TREE R
AN ARRE skl ol a0 SomRdlinmb &
S o . B .- -
of el o ot onpaivneoatie W bt
e Mn, e et sttt aah L0
:ﬁ’ M %; b
e 2% sy
: WO it L e e mppdil. Thuoe A
Wi ey ot e P |0 pontinie! i

W"" &“‘ w""" S¥veaoak aFE g S - ] L ¢ sl s

i

Al RO P PRosnat | Y TRMYTEY &

N ey (i
I-* O R PR S SIS ¥ .
o

- % - “ ]
R pmazond) crars i v gie Mo um i : cnty
ARt R W VMG e T et 3
N - -

J .w '- ‘A .
= PR - I me= oy demonitred o u

Y : A v 5

B sagn cFY ) ang i i
£y » - B

. ln.a.u WOTL UONEINe ' : )

L v .

. r W - . m o
. L bl Thoy ppascc oul il
o AN o @ﬁ"ﬁ'i Al ARSI 2E0 ste T AL Do i rks R

S pehvinlity of demciiay o o b s e s 8 e 0
i sty
e

- ﬂ,‘ :E“‘?hﬂ.-x"! .'»’?';‘_ 1 ¥ s '

P AL, 2 e .t e R s B ' B
R Y. Bty - e DYTROLGLY R U Haatl owhgy BE 1ol

B g pes s o A emn .
ML ORI BRI ORALIODy . o T S e s

by

v ige® ATGEnbGtion of eyl 5

STt Rt | 0 P arsd otians

¥
7

.
4 k- o — — L .
il i g cwe LG ST |

e wman whier i s o0, TPk ¢ el .

methage 5.0 0 i manTine

- X : o P S o FN R 14 i feoe, - b
SIS ey :
Wil &

w1

e tosidualy oo e




CHAPTER S

Control Charts for Monitoring the Mean

5.1 Introduction

In this chapter, some of the control charts for monitoring the mean
which attempt to deal with the problem of autocorrelation are presented and
applied to simulated correlated data. In section 5.2 traditional control charts
are implemented to the original observations with modified control limits to
account for the autocorrelation. In section 5.3 the charting of the residuals
from the fit of a time series model to the data is discussed along with some
modifications of this procedure. Finally, in section 5.4 modified control limits
and other techniques for use with processes that can be described by an AR(1)

plus a random error model are presented.

5.2 Control Charts based on the observations

A simple but sometimes effective way to deal with autocorrelated data
1s to implement traditional control charts to the observations using the correct
variance of the process when calculating the control limits. First the
appropriate time series model must be fitted to the data. The variance must

then be estimated using the equations presented at Box and Luceno (1997).
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5.2 Control Charts based on the observations

5.2.1 A first Approach

A first approach to adapting traditional control charts to account for
autocorrelation was made by Vassilopoulos and Stamboulis (1978) who had
modified the control limits of traditional charts. They considered the case of
several samples of size n.

They described the process whose control is under consideration by

Xi=pu+é&

where y is a constant, and the error term is coming from a zero mean second

order autoregressive process, AR(2)

Xe= u(l-91-02)+ @1 Xr.1+ 02X 2+ 04

which is stationary when the following conditions are satisfied
@1t+pa<l
P2-0:1<1
-1<p;<l
The variance of the process, aZX, as described by Box and Luceno
(1997) is given by
O.;:] oa ____(1‘¢2j o
—pibi—paby \1+6,){1-4,)" 47}

and the variance of the sample mean in terms of the autocovariance function

n~1
o =—1-[a§ +22(1—5H
n

h =1

yx 1s given by

which after substituting the corresponding expression for the autocovariance

of the AR(2) process becomes
2 yo[ G(1-G3)

G,(1-G?)
AG, L 1 1
(G, -G, )(1+G,G,) (Gt (G, -G,)(1+G,G,)

y
¥ W i(Gz,n)} = —n"—/l(mcoz,n)

1+G _2G(1-G")

where A(G,n) =
( )I—G n(l1-G)*

and G;, G, are the real and distinct roots

of the characteristic polynomial of the AR(2) process, ¢(z)=1-¢;(z)-05°(z).
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5.2 Control Charts based on the observations

If X denotes the grand mean over several subgroups of size n, the
control limits for monitoring the mean when the standard deviation is known

are

7i\/4(¢1»¢z:"):/i—n‘o'x

Vassilopoulos and Stamboulis (1978) have extended their results for
G;, G, being complex conjugates where more complicated calculations are
needed. They have also modified the control limits for monitoring the mean
when the standard deviation has to be estimated, and for monitoring the

variance.

5.2.2 The modified Shewhart X-chart
To monitor the stability of a process {X,reT} at time ¢, the

individuals Shewhart chart compares observation X; with the in-control mean
equal to the target value y,. If the absolute value of the difference at time ¢ is
considered large then the process is said to be out-of-control i.e., E(X)#uy.
Otherwise the process is said to be in-control and the next observation is
taken and examined. Statistically speaking, large is always defined in terms of

the standard deviation and thus the process is said to be out-of-control if

|Xt —/‘0|>CO-X

where oy is the standard deviation of the process.

The main idea behind the modified X-chart is that the deviation of the
observation from the target value of the mean is compared with the standard
deviation of the time series model that describes the process. This standard
deviation for a particular ARMA(p,q) model can be calculated following the
suggestions of Box and Luceno (1997) using some previous observations
from the time the process was supposed to be in-control.

The other issue concerning the implementation of the Shewhart chart
to the observations of a correlated process is the selection of the appropriate
value of c. This can be done in terms of the desired average run length ARL of

the chart. According to Kramer and Schmid (1997) for autocorrelated
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5.2 Control Charts based on the observations

processes setting the in-control ARL equal to a specified value, the quantity ¢
does not only depend on this value but on the parameters of the process as
well. For the case of modeling the process by an AR(1) time series model
Schmid(1995) gives tables of ¢ for an in-control ARL of 500. Kramer and
Schmid (1997) suggest the use of this table when the level of correlation is
large. When the correlation is low or moderate they recommend the choice of
c as in the i.i.d. case.

Wardell et al. (1992) have considered an individuals chart for a
sequence of autocorrelated observations {X;} when the correlation structure is
modeled by an ARMA(1,1) time series model. Since the process is
autocorrelated, its standard deviation oy depends on the parameters of the time
series model, and as stated at Box and Luceno (1997) equals to

1-2¢0 +6°
TXENT g e

where o, is the standard deviation of the random error terms a, and ¢, 6 are

the model parameters. The control limits for the X-chart are

Ho = COx

where ¢ is a constant. When the process is uncorrelated ¢, 6 equal to zero,
thus ox=0, and the above limits are the traditional Shewhart individuals
chart.

Wardell et al. (1992) recommended choosing ¢ equal to 3 as in the
i.i.d. case. For achieving the desired in-control ARL value of 370,4 Wardell et
al. (1994) used simulation to set the limits and found that ¢ should range from
+2,45 to +3,03 standard deviations of the observations to adjust for

autocorrelation.

5.2.3 The modified EWMA and CUSUM charts

The same approach can be used to construct the control limits for a
traditional EWAMA chart of the observations.
The EWMA control chart based on the original observations is defined

by Zi=AX+(1-A)Z,.;, t=1,2,..., and the control limits are
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5.2 Control Charts based on the observations

Etc —/1—0'
2-2

where oy is the standard deviation of the observations, calculated taking into
consideration the correlative structure of the process.

In the same way a CUSUM chart can be constructed using the correct
standard deviation of the process for setting the decision interval H=coy.

The analytical treatment of modified control charts is more
complicated than just correcting the variance. The determination of the
control limits includes the choice of ¢ which is more extensive since it should
depend on the parameters of the underling times series model.

Wardell et al. (1992) implemented the EWMA chart to an ARMA(1,1)
process adjusting the variance to the calculation of the control limits. They
determined the width of the control limits through simulation using as
criterion that ARL, should be around 380 and found that the control limits
should range from +0,97 to +7,38 standard deviations of the observations.
They also noted that these wide control limits may affect the ARL
performance of the EWMA chart especially for detecting large shifts.

Schmid(1997a,b) also gave several tables for the critical values of the
modified EWMA and CUSUM schemes for the AR(1) model.

5.2.4 An EWMA chart for Stationary Processes
Zhang (1998) proposed an extension of the traditional £WA{A control

chart for monitoring step shifts in the mean applied to any stationary process
data, the so called EWMAST chart (generalization given by Jiang, Tsui and
Woodall(2000)). He assumed that only one observation of the process
{X,,teT} 1s available at each sample, and showed that an EWMA of a

stationary process is asymptotically a stationary process and determined the
limits of the EWMAST by the process variance and autocorrelation.

He also assumed that {X,} is a discrete stationary process with
constant mean and autocovariance function. It can be showed that the EWMA
of X, defined as Z,=AX,-(1-4)Z,.; is asymptotically stationary, and that the

variance 022 of Z,is

51



5.2 Control Charts based on the observations

P=[A/(2-4)]o%
x{”Z%p(k)(l—/U" x/f-(f"“)w_k)]}
k=1

and that for large ¢ its approximation is

ol =var[Z,]=[A/(2-A)]o%
=1

X{I—(I—A)Zt +2Y p(k)(1- 1) X[I—(I—/l)z("k)]}
il

where M is an integer and p(k) is the autocorrelation of X, at lag k.
The EWMAST chart is constructed by charting Z,. The limits are

4=+ co,

where o, is the standard deviation of Z, Assuming no change of the
autocorrelation of {X,}, the EWMAST will signal changes of the process
mean.

In practice, x and ¢°, are estimated based on some historical data of X,
when the process is in control, and by replacing x by the sample mean and o’y
and p(k) by their sample estimates. Zhang (1998) suggests that the size of the
historical data set should contain at least /00 observations and that for 1 >0,2
M should be 25.

The EWMA could be considered as a special case of the EWMAST,
chart. When {X; } is an i.i.d. sequence, p(k) equals to 0 and the variance of Z,
as well as 1ts approximation calculated from the equations above, are the same
as the variance calculated for an EWAMA chart for independent observations.

Zhang(1998) also considered the effect of the EWAMA parameter 4 to
the performance of the EWMAST control chart. He concluded that a

reasonable choice of A is 0,2 or 0, /.

5.2.5 An application

The data used for this application is the same with the simulated data
used in application 4.3.1.

The process is supposed to be in statistical control for the first 80

observations but after the 80" observation a shift in the mean will be
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5.2 Control Charts based on the observations

introduced. To avoid the effect of the shift in the mean after the 80"
observation, the first 80 observations are used to fit the appropriate time
series model. Using the MINITAB statistical software an ARMA(1,1) time
series model is fitted to the observations resulting to ¢=0,7081, 6=0,1613
and 0,=0,8812. By examining the plots of Figure B.2 (Appendix) it seems that
this model fits well the data. Using the equations of Box and Luceno (1997)
which are presented in paragraph 3.3.4 of chapter 3, the true variance of the
process is estimated to be o’y=1,242 and the standard deviation oy=1,1145.
Suppose now that due to a special cause a shift in the mean of
magnitude d=1Ioy occurs after the 80 observation. This is accomplished by

adding a constant of /,7745 to the last 20 observations.

& —a

1 1
r" UCL=2,054

HHMJT - MT\ \

JHIE
_Téo—;t Kl r* 8 Mean=0
R L H
=
2 — J | LCL=-2,054
. 1 I

T

i I | ! | T |

T o 1
0O 10 20 30 40 50 60 70 80 90 100
Observation Number

Figure 5.1: X-chart of the observations from a simulated ARMA(1,1)
process.

To show the effect of the autocorrelation a traditional X-chart of the
observations is applied to the data as shown at Figure 5.1. The variance of
the process is calculated without taking into consideration the autocorrelation,
using moving ranges. The estimate of oy is MR/d;=0,685 which is
considerably below the actual ox=1,1/45. Using three-sigma limits with this
estimate of oy results to control limits of +2,054. This chart detects the shift
in the mean soon after it occurs, at observation 84, but the problem is that it

also signals four times at the first 80 in-control observations (Nos.
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5.2 Control Charts based on the observations

35,70,76,77). The cause of these false alarms is of course the failure of this
chart to account for the autocorrelation of the process.

A X-chart of the observations (Figure 5.2) is applied to the data that
uses for the calculation of the control limits the true standard deviation of the
process ox=1,1145 and results to 3-sigma control limits of +3,344. These
limits seem to be a little too wide. There aren’t any signals before
observation 80, but neither are there any afterwards, when the shift occurs.
Of course after observation 80 a trend is apparent which applying run-rules

indicates the lack of statistical control.
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0 10 20 40 . 50. . 60. 70 80 90 100

Observation Number
Figure 5.2: A X-chart of the observations from a simulated ARMA(1,1)

process using the true variance.

Taking now into consideration that the observations are correlated and
using the correct standard deviation the 3-sigma limits of the EWMA chart
using A=0,2 are +1,115. This chart (Figure 5.3) performs much better. The
shift is captured again at observation 87 but the false alarms are considerably
less.

Using the methods of Zhang (1998) the EWMAST chart (Figure 5.4)
is applied to the data . The standard deviation used is 0.353 and the 3-sigma
control limits are +/,059. The performance of this chart is similar to the
performance of the EWMA chart of the observations with control limits

calculated using the true variance of the autocorrelated process. This is
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5.2 Control Charts based on the observations

expected because Zhang(1998) actually estimates correctly the variance of the

process.

EWMA
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Figure 5.3:

Figure 5.4:
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An EWMA of the observations from a simulated ARMA(1,1)

process using the true variance with 1=0,2.
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The EWMAST of the observations for an ARMA(1,1) process
with 4=0,2.
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5.3 Control Charts based on the residuals

5.3 Control charts based on the residuals

Alwan and Roberts (1988) first tried to remove the autocorrelation
from the data. If this were not possible, they suggested to directly model the
correlative structure of the process with an appropriate time series model and
to apply afterwards control charts to the independent identically distributed
stream of the residuals. Many other authors have also proposed control charts

based on the residuals.

5.3.1 The Alwan and Roberts’ method

For statistical process monitoring, a stationary process which has
constant mean and constant variance, is a natural extension of the case of an
i.i.d. sequence, thus the appropriate model should be a stationary time series
model. Alwan and Roberts (1988) suggested the implementation of two basic
charts rather than one:

1. Common Cause Chart, which is a chart of forecasted values that are
determined by fitting the correlated process with an AR/MA model,
according to the procedures developed by Box and Luceno (1997).

IL. Special Cause Chart, which is a traditional control chart of the
residuals or one step ahead prediction errors.

The Common Cause chart assumes that no special causes have
occurred, and it is not really a control chart since it has no control limits. It
serves as a guidance in viewing the current level of the process and its
evolution through time. This chart essentially accounts for the systematic
variation of the process.

The Special Cause chart is essentially a Shewhart individuals, EWMA
or CUSUM chart for the residuals (i.e., the difference between the actual
process values and their forecasts). A Shewhart individual chart of the
residuals is a time-ordered plot of the residuals with co control limits, and
will be referred to as residuals chart, X-chart of the residuals. Since the
residuals which are the data used for the Special Cause chart are i.i.d. random

variables all supplemental guidelines, such as run rules, are applicable.
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5.3 Control Charts based on the residuals

5.3.2 Approximate EWMA procedures

In practice, the time series modeling needed to implement the above
procedure might be awkward. To tackle this difficulty Montgomery and
Mastrangelo(1991) suggested the modeling of every process with an
ARIMA(0,1,1) time series model. They suggested the use of a X-chart for the
residuals, for simplicity called here M-M chart, which assumes an
ARIMA(0,1,1) time series model for all the process and uses the prediction
errors. They utilized the fact that by replacing A with /-6 the EWMA statistic
is equivalent to the ARIMA(0,1,1). As shown by Box and Luceno (1997) the
EWMA with A=]-8 is the optimal one-step-ahead prediction for the
ARIMA(0,1,1). The parameter of the EWMA can be determined by minimizing
the sum of squares of the EWMA one-step-ahead prediction errors.

The EWMA is defined by

Zt=A.Xt+ (]-A,)Zt-] b t=1,2,...

IEPY] 1 (?) is the forecast for the observation in period 7+ / made at the end of

period ¢, then the optimal forecast is the value of the EWMA4 calculated in
period ¢, and the one step ahead residuals are:

X)) =2,

e, =X,-Xt-1)

If the underlying process is really an ARIMA(0, 1, 1) the one step ahead
prediction errors given above are i.i.d. with mean zero and standard deviation
o, which can be estimated based on some historical data. Therefore, control
charts can be applied to the residuals.

The EWMA chart can also be used as the basis of a statistical process
monitoring procedure that is an approximation of the exact time-series
approach. The procedure consists of a control chart where the one-step-ahead
prediction errors, is plotted, and a run chart of the original observations on
which the EWMA forecast is superimposed.

The residuals chart detects unusual random shocks but is not as
sensitive to slow trending shifts in the mean. Therefore, Montgomery and

Mastrangelo (1991) provided a modification of the above procedure that
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5.3 Control Charts based on the residuals

combines information about the state of statistical control and process
dynamics on a single control chart. The modified procedure actually monitors
simultaneously the forecast and the forecast errors. Since the EWMA statistic
is a suitable one step ahead predictor, Z; could be used as the centerline on a

control chart for period ¢+ with control limits at

CL =Zt:§:30'

and the observation X;.; will be compared to these limits to test for statistical
control. This procedure is called moving centerline EWMA control chart or for
simplicity MCEWMA.

The MCEWMA is an exact procedure for the ARIMA(0,1,1) process,
but is a good approximation as well for many other time series, provided that
that the value of 4 is selected appropriately. It is a good approximation,
especially for a process in which the mean exhibits slow drifting behavior
and the observations at low lags appear to be positively autocorrelated.

The MCEWMA accounts for the autocorrelative structure of the data
and does not indicate any unnecessary out-of-control conditions. When the
process does change it rather tends to track a trend instead of indicating an
out-of-control process. Since the MCEWMA chart plots the actual
autocorrelated observations, run rules and other supplemental guidelines can
not be used to capture any out-of-control conditions. To overcome this
limitation and provide trend detection and enhance other types of shift
detection, Mastrangelo and Montgomery (1995) have supplemented the
MCEWMA chart with tracking signals. They introduced the cumulative error
tracking signal 7.(?), and the smoothed error tracking signal 7y(z).

The cumulative error tracking signal is

Y(t)

A

Te(t) = At)

1
where Y(t¢ )=Zej i1s the sum of the forecast errors up to time ¢ and the
J=1

quantity A(t)=ale(t)|+(1-a)A(t-1) is the mean absolute deviation with a

being a smoothing constant, typically selected between 0,05 and 0,15. At each
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5.3 Control Charts based on the residuals

sampling point ¢ the statistic 7.(z) is compared to a critical value K., where
4< K. <6, and if the tracking signal exceeds K, there is indication that an out
of control signal has occurred.

Similarly, the smoothed error tracking signal is
ort)
A(t)
where Q(t)=2ae,+(1-a)Q(t-1) with a still being a smoothing constant selected

Ty(t) =

between 0,05 and 0,15 . The statistic T(?) is now compared to a constant K,
where typically 0,2< K; <0,5, resulting to an out of control indication if it
exceeds it. ‘

To analyze monthly series of survey quality data Hapuarachchi et
al.(1997) proposed a modification of the Alwan and Roberts’s procedure that
resembles the MCEWMA chart.

Hapuarachchi et al.(1997) superimposed residuals charts on the time
series plots of the original observations and their forecast values to enable
easier detection of process level changes. They used data up to a predefined
date to fit an appropriate AR/IMA time series model and they used this model
to calculate control limits based on its confidence interval and to make
forecasts of its subsequent values. On the same graph they plotted the original
data, the control and warning limits, the forecasts and the trend. They draw a
vertical line to divide the original series and the forecasts and they compared
the original values after the predefined date with the forecasts and the control
and warning limits. Hapuarachchi et al.(1997) used this method to analyze
several series of quality data and in many cases they found assignable causes

for processes behavior.

5.3.3 The Common Cause chart with control limits

Wardell et al.(1992) considered an extension of the Alwan and
Roberts’ Common Cause chart for a process {X,;}, which can be fitted by a
first order autoregressive moving average process (ARMA (1,1)) time series

model.

g0



5.3 Control Charts based on the residuals

As stated before, the Common Cause chart is the chart of the fitted
values or forecasts obtained when the process is modeled by some time series
model, and has no limits. Sometimes forecasts signal when an out of control
condition arise, before the residuals indicate the change. Therefore, it might
be useful to provide the Common Cause chart with limits.

To construct the limits for the Common Cause chart, Wardell et
al.(1992) derived the mean and the variance of the forecasts. The one step
ahead forecast which minimizes the mean squared error for the ARMA(I,1)

model is given by

X =(1-4)u+($-6)X,+6%,
where X’ .. 1s the forecast made at time ¢ for period ¢+, and x is the mean of
the process which is assumed to be constant while ¢ is the autoregressive
parameter, and 6 is the moving average parameter.

The forecast can be expressed as a weighted sum of series of

independent error terms generating the process by
“ -1 © [
Xy =p4($=0) Le'ar, ++(#' =0') 3¢
=() =t

This equation shows that the mean of )?,H 1s u since the error terms

{a,} are independent with mean 0. The variance of the forecasts o° r1s given by
()2
ot =Var(X,, )= M{-{J -24'0" + 6% )5}
(1-¢°)
where o7, is the variance of the error terms for the appropriate ARMA(1,1)
model. When ¢ is sufficiently large the steady state variance of the forecasts,

which is given by

can be used.
The control limits for the Common Cause chart can now be
constructed and be
U+ coy
where ¢ is a constant usually equal to 3. When the steady state variance is

used for the above limits, they do not vary with time.
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5.3 Control Charts based on the residuals

5.3.4 A CUSUM chart for the residuals from an AR(p) process

Runger et al. (1995) applied an one sided CUSUM chart on the
residuals of an autoregressive process of order p (AR(p)).
They considered that the observations {X;, t=1,2,...,} follow an AR(p)

time series model with constant mean u

Xe=(1- @1~...-pp) p + 01X 17+ ... +PpXiptay,

where {a,} is the random error (noise) at time 7 which is assumed to be i.i.d.
with mean zero and variance ¢°, while p; are the autoregressive coefficients.
The residual e, at time ¢ is the difference between X; and the prediction of X;
based on the previous data.

The one-sided CUSUM accumulates upward derivations from uy with

the statistic C , which is developed as follows:
Cr=[Cr1 + er( po+tK)] =max{0, [Cr; + er(uo+K)]}

where the starting values are Cp= 0 and K>0 is a parameter of the chart.

The value of K is usually chosen close to the midway point between
4o and the out of control value of the mean ;.

When the shift in the process mean is a single step change of size ¢
(where J is measured in terms of the standard deviation of the process), for
the special case of an AR(1) process, the mean of the first residual after the
shift is J, and the mean of subsequent residuals is 6(/-¢).

Therefore, since every residual but the first has expected value 6(1-¢)
Runger et al. (1995) proposed the modified guideline K= o(-¢) /2 which
takes explicit account of the autocorrelation.

The chart signals if C, exceedsthe decision interval H which usually

has a value five times the process standard deviation o.

5.3.5 An application

The data set of application 4.3./ is used to show how the modeling of

the autocorrelation of the process by time series works.
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5.3 Control Charts based on the residuals

As previously, for the first 80 observations the process is in control
but after the 80 observation a shift in the mean occurs. The first 80
observations are used to calculate the parameters. The standard deviation of
the process is calculated to be ox=1,71145. A shift in the mean of magnitude
6=10x occurs after the 80" observation by adding a constant of /,7145 to the
last 20 observations.

The method of A/wan and Roberts (1988) is applied to the data. A
time series model is fitted. The Special Cause chart is constructed which is
actually a X-chart of the residuals, along with the Common Cause chart i.e.,
the fitted values charted without control limits (Figure 5.5). The fitted values
that are charted without limits, come from the 4RMA(I,1) model using the
estimated autoregressive and moving range parameters

Fitted X,=0,7081X,.;+a,-0,1613a;.;

The standard deviation used for the 3-sigma limits of the X-chart of
the residuals, is the standard deviation of the residuals 0,=0,88/2 and the
limits are +2,644. The shift at the mean is detected quickly at observation 89

but there is also a false alarm at observation 76.

Common Cause Chart Special Cause Chart
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Figure 5.5: Implementation of the Alwan and Roberts’ method to a
simulated ARMA(1,1) process.

The Common Cause chart takes advantage of the fact that the process

is correlated to make forecasts of future quality. Each point is an estimate of
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5.3 Control Charts based on the residuals

the local level of the process and can be used as a signal that a corrective
action is needed. To be more specific, suppose that the desired level of the
above process is zero and that upwards or downwards deviations from this
level lead to economic loss from not acceptable product. Suppose that
recentering the process at any time is possible at some known cost. Economic
calculations can then be made to balance the expected loss of bad product
over some period of time, against the cost of recentering and consequently to
define action limits for both bellow and above zero.

The Common Cause chart provided with control limits as suggested
from Wardell et al. (1992) is implemented to the data (Figure 5.6). The
standard deviation of the fitted values calculated as described above is

or=0,6824 and the control limits using c=3 are +2,805.
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Figure 5.6 : A X-Chart of the fitted values for an ARMA(1,1) process .

This chart doesn’t seem to be more helpful than the simple Common
Cause chart without control limits of A/wan and Roberts (1988). It does give
useful information about the level of the process, but it doesn’t indicate the
shift in the process mean before the residuals chart. Further more this chart
doesn’t signal at all, since no observation falls outside the control limits.
After observation 80 though, it is obvious that the process shows an upwards
drift.

63



5.3 Control Charts based on the residuals

The same data set is used to apply the M-M chart (Figure 5.7), i.e.,
the control chart introduced by Montgomery and Mastrangelo (1991). The
EWMA parameter 1 was selected to be 0,65 by minimizing the sum of squares
of the EWMA one step ahead prediction errors using the set of data 1-80. The
standard deviation of the prediction errors is 0,95 and the 3-sigma control
limits are +2,805. This chart does not signal any false alarm, but it doesn’t
signal either any out of control situations after the shift of the mean at the 80™
observation. The modification of the M-M chart, the MCEWMA chart (Figure

5.8) seems to perform better.
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Figure 5.7: EWMA prediction errors with 1=0,65 and Shewhart limits.
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Figure 5.8: Moving centerline EWMA chart with 1=0,65.
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5.4 Control Charts for the AR(1) plus a random error

model

The AR(1) plus a random error model is a natural way to view the
autocorrelation as an inherent characteristic of the process. In the first
paragraph of this section this model is described. In the following two
paragraphs some control charts especially designed and evaluated for this
model are discussed. Last, an implementation of these charts to autocorrelated

data is presented.

5.4.1 The AR(]1) plus a random error model

VanBrackle and Reynolds (1997) and Lu and Reynolds (1999a)
modeled the correlative structure of a given process by representing the
observations as a first order autoregressive process AR(7) with an additional
random error.

They considered that an observation X; is taken from the process at

sampling point ¢, which can be written as

Xi=urte;,

where the ¢,’s are independent normal random errors with mean 0 and
variance o’,. The time wandering mean g, is random, and can be interpreted as
the random process mean at time ¢ following an 4AR(!) process with mean ¢,
namely pu,=(1-¢)&+pu.+y,, t=1,2,..., where y, are independent and normally
distributed random errors with mean 0 and variance ¢’, while ¢ is the
autoregressive parameter satisfying || </.

The objective of the statistical control in this case is to detect a
change in the overall mean &=F (u,).

If it is assumed that the starting value o follows a normal distribution
with mean ¢ and variance 02,,—-027 /(I-qoz), then this implies that the
distribution of X; is constant with mean ¢ and variance a2x —azﬂ+aze for all

t=1,2,...,.
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5.4 Control Charts for the AR(1) plus a random error model

Besides, y can be defined as the proportion of the process variance

that is due to the 4R(1) process:
2 2
o S = Sp
V="7""7 2
o, 0,+t0;

The covariance between X,; and X, is (p"a" x for £>i, and the correlation
between X,.; and X, is gy.

The above model is a possible model for processes in which the
variability of observations has both short and long term components. One can
think of az,, as representing long term variability and ¢’ as representing a
combination of short term variability and measurement error. If ¢°,=0 the
model reduces to the simple AR(/) model.

Although the AR(I) plus a random error model is a natural way to
represent the autocorrelation as an inherent characteristic of the process,
sometimes for technical reasons, it is convenient to express it in terms of an
ARMA(1,1) time series model.

The AR(1) process with additional random error is equivalent to an
ARMA(1,1) process. The ARMA(1,1) process can be written as

Xe-oXi.1=(1-9)¢ +o,-0a,;

where the a,’s are independent normal random variables with mean 0 and
variance o°,, 6 is the moving average parameter, and ¢ is the same
autoregressive parameter as in the AR(/) model used before to describe the
wandering of the mean.

There are equations for expressing the parameters ¢, 6, o°; in the
ARMA(1,1) model in terms of the parameters ¢, azy in the AR(1) plus random
error model and vice versa as shown in Box et al. (1994). In particular, if >0
and o°, >0, then the ARMA(1,1) model parameters can be derived from the
AR(1) plus random error parameters by

:0';’+(]+¢2)0'j_i‘/0'72+(1+¢2)0'52_4
2¢0; 2 go’

£

6
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5.4 Control Charts for the AR(1) plus a random error model

Alternately, if ¢>0 then the AR(1) plus error model parameters can be
obtained from the ARMA(I, 1) model parameters using the following equations

2 _ON($-6)(1-¢6)

i ¢
2

o2 = 6o,

¢

One extension of the above model is to the case where more than one
observations (n>1) are taken at each sample point. In this case, if X}, is the i
observation at time #, then

Xi=pite's

where the ¢';’s are i.i.d. following N(0,0°:) and g, is the mean at time ¢
following as previously an AR(]) process.
The sample means are now used to construct control charts for

monitoring the mean of the process. Let

be the sample mean for the sample at time 7. Then

X, =p +¢&,
n
% .

2
where ¢, =-— and the variance of X, , say a%, is 0')2—( = ﬁ
n =

4 follows as previously an 4R(1) time series model.

Lu and Reynolds (1999a,2000) studied using simulation, the effects of
estimating the parameters of the process and found that the charts perform
much better when the parameters are precisely estimated. They proposed that
a large data set (>700) should be used in the process of fitting a model for

the process observations and estimating the parameters.

5.4.2 Control Charts based on the observations

For the problem of detecting shifts in the overall mean, traditional
control charts are frequently applied whether or not the observations are

independent.
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5.4 Control Charts for the AR(1) plus a random error model

The individuals X, the EWMA and the CUSUM charts based on the
original observations can be used in a modified form for monitoring the mean
of autocorrelated processes.

Reynolds et al.(1996) following the ideas of Stamboulis and
Vassilopoulos(1978) modified the X-chart to account for the autocorrelation
present in the AR(1) plus a random error model. They considered the case
where only one observation is available at each sample, and the mean of the
process is at its target value &.

The individuals X-chart for monitoring the process mean using the

original observations has control limits at

&o £ cox

where oy is the standard deviation of the observations calculated as previously
taking into consideration the correlative structure of the process, and cisa
constant. Reynolds et al.(1996) gives values for c¢ to achieve an in-control
ARL of 370.4. For low to moderate level of autocorrelation these values are
very close to 3, which is the value which gives in—control ARL of 370,4 for
the case of independent observations.

VanBrackle and Reynolds (1997) introduced the modification of the
EWMA control chart when only one observation is available at each sample,
and the mean of the process is at its target value &.

The EWMA control chart based on the original observations is defined
by

Zy=AX+(1-4) 2., t=1,2,...,

and the control limits are

’ A
St e 2_/10'X

where o’y A/(2-) is the asymptotic variance of Z; under the assumption that
the observations(or for n>1 the successive sample means) are independent but
ox is the standard deviation of the observations, calculated taking into

consideration the correlative structure of the process.

68



5.4 Control Charts for the AR(1) plus a random error model

The above limits are based on the assumption that the observations (or
the successive sample means) in the EWAMA are independent, although the
correct standard deviation of the observations (or sample means) is used.

VanBrackle and Reynolds (1997) proved that the true asymptotic variance of

the EWMA statistic is
2
A I1+¢(1-1) ey S
2-Al{1-¢(1-2)] * n

but as they stated expressing the control limits in terms of the above variance

does not seem to help in making ¢ independent of the level of autocorrelation.

VanBrackle and Reynolds(1997) provided a table for the design of the
EWMA chart of the observations, taking into consideration the autocorrelation
of the process. This table is appearing as TABLE A.1 at Appendix A and
gives the in control ARL and steady-state ARL for several shifts 6=0,5, 1,0,
2,0, 4,0 (where 6 1s measured in terms of the standard deviation of the
process), for various choices of control limits for some combinations of ¢, ¥
and A. It gives the ARL of the EWMA for A=0,1 and 0,2.

TABLE A.1 can be used in conjunction with FIGURE 1 in Lu and
Reynolds(1999a) which gives values of ¢ for achieving an ARL, of 370,4 for
various values of ¢, ¥ and A for the EWAMA chart of the observations.

The optimal values of A are also considered for detecting specific
shifts in the mean. These values are presented at TABLE A.3 for
combinations of ¥=0,5, 0,9 ¢=0,4, 0,8 and 6=0,5, 1,0, 2,0. Of course these
values are useful for designing a chart when the shift to be detected is known.
In real applications though, the a-priori knowledge of the magnitude of the
shifts is rarely possible. Therefore, the selection of A should aim to ensuring a
good performance over a large range of shifts. When the level of
autocorrelation is low, choosing A=0,2 would provide a satisfying overall
performance. The value of A should be increased as the level of
autocorrelation increases especially when detecting large shifts is important.
Increasing A in the EWMA chart of observations improves performance for

large shifts, but does not hurt that much for small shifts.
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5.4 Control Charts for the AR(1) plus a random error model

VanBrackle and Reynolds (1997) and Lu and Reynolds(2001)
discussed the modification of the CUSUM control chart based on the
observations for detecting a shift in the mean from its target value &. A
CUSUM chart is usually obtained by using two one-sided charts
simultaneously.

The one-sided upper CUSUM chart based on the original observations

uses at its ” observation (or sample for n>1) the control statistic
C; =max{0,C; +(X,-& - K}}

where the starting value C*p is a constant usually taken to be zero.
The one-sided lower CUSUM chart based on the original observations

uses at its * observation (or sample for n>1) the control statistic
Cr =min{0,C; +(X, -5, - KJ}

where the starting value C7y is a constant usually taken to be zero unless a
head starter is defined. .

The constant K>0 is the reference value and is a parameter of the
chart. In Lu and Reynolds(2001) is expressed as roy. A signal is given for the
upper CUSUM if C,” falls above an upper control limit coy and for the lower
CUSUM if C,; falls bellow a lower control limit - cox where c is a constant.

The two-sided CUSUM chart uses both the C*, and the C7, statistics
simultaneously and signals if either statistic signals.

If it is desirable to detect a shift from & to &; then choosing r=6/2
will minimize the 4ARL, where

,51 ‘fol ‘

Oy

o=

Designing a CUSUM chart requires the specification of the parameters
of the chart. VanBrackle and Reynolds(1997) provided a table for the design
of the CUSUM chart of the observations, taking into consideration the
autocorrelation of the process. This table is appearing as TABLE A.2 at
Appendix A and gives the in-control ARL and steady-state ARL for several

shifts 6=0,5, 1,0, 2,0, 4,0 for various choices of control limits for some
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5.4 Control Charts for the AR(1) plus a random error model

combinations of ¢, y and K. It gives the ARL of the CUSUM chart for K=0,25
and 0,5.

TABLE A.2 can be used in conjunction with FIGURE 1 in Lu and
Reynolds (2001) which gives values of ¢ for an A4ARL, of 370,4 for various
values of ¢, y and r for the CUSUM chart of the observations.

When the observations used in the chart are correlated, the optimal
choice of the reference value r is not always the same as in the case of
independent observations. Lu and Reynolds (2001) discussed the choice of r
over a range of shifts in the mean that may occur. These optimal values of r
are summarized in TABLE A.3 for 6=0,5, 1,0 and 2,0 for some combinations
of ¢ and y. From the table it is obvious that for shifts of small magnitude i.e.,
0=0,5 and 1,0 the optimal choice for r is close to 6/2. For bigger shifts in the
mean i.e., 0=2,0 the optimal values for r are larger than /2.

Since the amount of the shift to be detected is not known a priori, it is
reasonable before deciding on the value of r, to consider the performance of a
chart over a range of shifts of interest. Lu and Reynolds (2001) found that for
relatively low levels of autocorrelation a good choice for r is 0,5 while for
relatively high levels of autocorrelations a choice of r such as 1,0 is

advisable.

5.4.3 Control charts based on the residuals

Lu and Reynolds (1999) used the AR(I) model with an additional
random error presented in section 5.8.7 to describe the autocorrelation of the
process. They developed an individuals Shewhart and an EWMA control chart
based on the residuals from the forecast values of the model for monitoring
the mean of the process. They assumed that each sample contains only one
observation and that the mean of the process is at its target value &. Lu and
Reynolds (2001) on the other hand developed a CUSUM chart for the
residuals.

When the process is in control the minimum mean square error
forecast made at time ¢-/ for time ¢ is for the AR(1) model plus a random

error, or the equivalent ARMA(1,1) model
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5.4 Control Charts for the AR(1) plus a random error model

X, =&+o(X, ,-&)-be,

where e, =X;-&o-0(X;.;-Eg)+0Oe,.; 1s the residual at time ¢. The mean of the
residuals is constant and thus to achieve an in-control ARL of 370,4 the
methods for independent observations can be used.

When there is a shift in the mean of the process the mean of the
residuals varies with time. Suppose that there is a step change from & to &, in
the process mean between time t=7-/ and 7. The expectations of the residuals

for various times are

Eey 0 t=T-1,T-2,...,
e -
&-&e =T
and for t=T+[, 1=1,2,...,
1 ! _ -
E(e;)=[91 +(1—¢)§9H:|(§1 _"fo)= 2 (¢ 19_)0 ¢+1(§1 _‘fo)

The residual immediately after the shift has its largest mean which

decreases afterwards and asymptotically gets to
=
Ele.)==205,-¢,)

The residuals are uncorrelated and normally distributed with variance s
A Shewhart individuals chart based on the residuals plots the
residuals e, and uses their standard deviation o, as appearing in the

ARMA(1,1) model for constructing the control limits:

where ¢ is a constant. When the process is in control the residuals are
independent and have constant mean and thus using c=3 gives an in-control
ARL of 370,4.

An EWMA chart of the residuals for monitoring the process mean uses

the control statistic
Z,=ie,+(]-/1)Z,_1, t—'1,2,...,

and the control limits are of the form
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5.4 Control Charts for the AR(1) plus a random error model

101,—&_0}
=

where ¢ 1s a constant and o, is the standard deviation of the residuals from the

ARMA(1,1) model. The residuals are independent when the process is in
control and have constant mean, thus the control limits of the EWAMA statistic
can be determined using methods for independent observations. In particular,
using ¢=2,859 will give ARLy=370,4 when A=0,2.

Lu and Reynolds(1999a) investigated the optimal choice of the
smoothing parameter A of the EWMA and concluded as expected that small
values of A are better for detecting small shifts while large values of A are
better for detecting large shifts. When the autocorrelation is at its lowest level
a relatively small value of A, such as 1=0,2, would work well across a wide
range of shifts. When the level of autocorrelation becomes higher very small
values of A are optimal for detecting small shifts, but these values of 4
perform poorly for large shifts.

The optimal values of A1 are presented at TABLE A.3 for
combinations of y=0,5, 0,9 ¢=0,4, 0,8 for detecting shifts of magnitude
0=0,5, 1,0, 2,0.

Lu and Reynolds (2001) presented the CUSUM chart based on the
residuals from the AR(I) plus a random error model. The two-sided CUSUM

chart of the residuals plots simultaneously the
C; =max{0,C], + (e, ~ro, )},
C; =min{0,C,, + (e, —ro, )}

where o, is the standard deviation of the residuals of the equivalent
ARMA(1,1) model and r is the reference value. The chart signals if either of
the statistics exceeds the decision interval H=ca,.

The statistics are the same as those of the two-sided CUSUM chart of
the observations, except that they are based on the residuals e, instead of the
observations X;. The mean of the residuals is zero so the in-control mean & is

omitted from the above equations.
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5.4 Control Charts for the AR(1) plus a random error model

Lu and Reynolds (2001) discussed the choice of the parameters for the
CUSUM chart of the residuals. The residuals are independent thus the optimal
value of r should depend on the expected values of the residuals after the
shift. After the shift though, the mean of the residuals is not constant and
although the residuals are independent, the values of the parameters of the
chart can not be determined using the methods for independent observations.

For the case of a small shift the optimal value of » is close to half the
standardized asymptotic mean of the residuals. This is reasonable because a
small shift is not easily detected and thus many residuals will be plotted
before the chart signals. This way the mean of the residuals will be close to its
asymptotic mean E(e,).

At TABLE A.3 the optimal values of r are presented for various
combinations of ¢, ¥ and J. A reasonable compromise for good overall
performance of a CUSUM chart of the residuals is a moderate value of » such
as 0.5.

5.4.4 An application

Using the MINITAB statistical software an ARMA(1,1) time series
model has been fitted to the first 80 in-control observations of application
5.3.2 resulting to ¢=0,7081, 6=0,1613 and 0,=0,8812. The true variance of
the process has been o’x=1,242 and the standard deviation oy=1,1145.

This model is equivalent with an AR(1) plus a random error model
with ¢=0,7081, ¢,=0,729, 0%.=0,1769 and w=0,86. This implies that 86% of
the variability of this process is due to its correlation structure, and that the
correlation between adjacent observations is p=py=0,61.

An EWMA chart is constructed, as shown at figure 5.9, following the
methods of Lu and Reynolds (1999a) with the EWMA parameter being A=0,2.
Using ¢=0,7081 and y=0,86 at FIGURE 1 of Lu and Reynolds(1999a)
results to c=4,5. The 4,5 sigma control limits using the true standard deviation
ox=1,1145 are +=1,672. There is no point out of the control limits but there is

an obvious shift after observation 80.
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JI/ 4,551~1,672
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Figure 5.9: The EWMA of the observations for an AR(1) plus a random

error process with 4=0.2 and 4.5 sigma limits.
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Figure 5.10: The EWMA of the residuals from an AR(1) plus a random

error process with 1=0.2.

An EWMA chart of the residuals (figure 5.10) is also applied. The
EWMA parameter is selected to be A=0,2 and the 2,859 control limits are
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5.4 Control Charts for the AR(]) plus a random error mode!

+0,8398. This chart shows an increase in the mean immediately after the 80
observations and signals at observation &8.

A CUSUM chart is applied to the observations ignoring the
autocorrelation of the process and using parameters suitable for independent
observations (figure 5.11). It is obvious that this chart doesn’t work well since
it indicates that the process is totally out-of-control. The control limits are

much too tight, resulting in frequent false alarms before the actual shift.
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Figure 5.11: The CUSUM of the observations of an AR(1) plus a random

error process with r=0.5 and c=4.775.

If the autocorrelation is considered the CUSUM chart behaves much
better (figure 5.12). Using ¢=0,7081 and w=0,86 at FIGURE 1 of Lu and
Reynolds (2001) results to c=13. The control limits using the true standard
deviation ox=1,1145 are =14,4855. The process shift is detected at
observation 98

At figure 5.13 the CUSUM chart of the residuals is plotted. The
parameters for designing a chart of independent observations is used. The
control limits using r=0,5 , c=4,775 and ox=1,1145 are +4,20773. This chart

performs well. The shift is detected at observation 88.
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Figure 5.12: The CUSUM of the observations of an AR(1) plus a random

error process with r=0.5 and c=13 .
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Figure 5.13: The CUSUM of the residuals of an AR(I) plus a random

error process with r=0.5 and c=4.775.
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CHAPTER 6

Control Charts for Monitoring the

Variance

6.1 Introduction

In traditional chart methodology, a chart for monitoring the mean is
usually used in conjunction with a chart for monitoring the process variance.
The observations are often assumed to be independent and normal, and the
objective of process monitoring is to detect special causes which can produce
a change in the process mean and variance. In this case, there are two process
parameters: the mean and the variance. However, in the case of autocorrelated
observations, the monitoring problem is more complicated since the model
used for the process observations contains more parameters.

There are three models for describing the type of correlation existing
in the data:

a) a model for correlation within samples (model 1),
b) a model for correlation between samples (model I1)
¢) a model for correlation both within and between samples (model I11).

In section 6.2 correlation within samples is discussed and R, S° charts
are designed for data from an AR(1) process. The following sections deal with
correlation between samples and control charts for data modelled by the AR(1)

plus a random error process.

79



6.2 The R and S’ charts for the AR(] ) process

6.2 The R and S° Charts for the AR(1) process

Amin et al. (1997) considered the effects on control charts of
autocorrelation within samples, because as they stated, the effect of
correlation within samples appears to be more important in charts when the
objective is to monitor the variability of the process. They constructed R and
S? Shewhart type charts based on estimating the variance correctly, but using
constants for independent data.

An AR(l) time series model has been considered to describe the

correlation structure within samples (Model 1)

Xij= pu(l-0)+ ¢Xi )1+ o,

where X;; denotes the jth observation in the ith sample, |¢|</ and the errors
a’s are i.i.d. N(0,0°).

The autocovariance function of a stationary AR(1) process at lag & is
given by

2
Oo Al

Y =C0v(XtaXt+h)=I:¢l_2' 1

forh € Z
The variance o’y of the AR(1) process is the autocovariance y, at lag
0, thus
]
I1-¢}

The S?-chart is based on the sample variances

2
OCx =% =

n ——

Z(Xi,j _Xi)2

n-1

where X, is the sample mean within sample i.

1
In the case of the one-sided chart, assuming independence but using

the correct variance, the S° —chart signals if:

S’ >0%x P am-1/n-1
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6.2 The R and S° charts for the AR(1) process

where y’w2..; denote the upper a/2 percentage points of the chi-square
distribution with n-1 degrees of freedom and o’y denotes the true variance of
the process.

Similarly, in the one-sided R-chart for the AR(I) process the average
range is a function of the autocovariance function at lag 0, yy, and the chart
signals if

Ri>0xCR.a

where the constant Cg , is the upper a-quantile of the relative range.

Amin et al. (1997) showed that the in-control ARL of the S*-chart with
an upper control limit, based on estimating the variance correctly but using
constants for independent data, is quite robust for certain values of » and
relative small levels of autocorrelation. When it is not possible to use those
samples sizes and when autocorrelation is strong, the use of modified control
limits, such as those in Vasilopoulos and Stamboulis(1978) is necessary.

Amin et al. (1997) presented modified control limits for both S’ and R
charts for different sample sizes n, different values of the autoregressive
parameter ¢ and different in-control ARL values. These limits are presented
correspondingly at TABLE A.4, TABLE A.5 and can be used to design
effective control charts, which correspond to the specific level of

autocorrelation of the process.

6.3 The MacGregor and Harris’s Approach

MacGregor and Harris (1993) considered two control charts for
monitoring the process variance: one based on an exponentially weighted
mean squared deviation from the target, the £WAMS, and another based on an
exponentially weighted moving variance in which the current process mean is
estimated using an EWMA chart of the observations, the EWMV.

To monitor the variance of autocorrelated processes, they considered
the situation in which only one observation X, is taken from t];%s at

~OMIKD
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6.3 The MacGregor and Harris’s approach

sampling point ¢ and the correlative nature of the process is described by the
AR(1) plus a random error model and its equivalent ARMA(1,1) form which
were presented here in paragraph 5.4.7 of the previous chapter.
The ratio of the variance aze of the random errors to the total variance
of the process o’y will be needed later and is expressed by
o 1-¢6)(¢-6
G%i e ;(erf(—qﬁzqwj

where p; is the first lag autocorrelation of the X; process and ¢, 6 the

autoregressive and the moving average parameters correspondingly of the
ARMA(1,1) model.

It should be noted that as the ¢ parameter approaches unity, the time
varying mean y, becomes non stationary, and behaves as a random walk, and
the observed X; behaves as an integrated moving average process
ARIMA(0,1,1).

6.3.1 The Exponentially Weighted Mean Square chart
The exponentially weighted mean square chart, or briefly the EWMS

chart, plots the statistic

S; =2 r(=r)™"X, ~ 4 +(A~r)'Sg =(A-r)SZ, +r[X, - uF’

:
k=1
where X; is an individual observation of the process taken at sample time ¢, N
is an initial estimate of the mean squared error (usually taken to be the
historical in-control value), r is a weight (0<r<I) that controls the rate of

exponential discounting of past data. The sum of weights is given by
!
> r(l-r)* +(1-r) =1
k=1

A modification of the EWMS control chart is the exponentially
weighted root mean square chart, or briefly the EWRMS chart, which is
actually the square root of the EWMS and plots the statistic S;.

When the process mean is on target and the in-control variance is oo’
(where oy” is obtained from historical data) the control limits for the EWRMS

arc

(00- X’ 1-a/2(v) G0, o+ X as2(v)00)
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6.3 The MacGregor and Harris’s approach

where x%1a/2(v) and y’u2(v) are the (1-a/2)100% and (a/2)100% percentiles
correspondingly, of the chi-square distribution with v degrees of freedom. The
degrees of freedom v for an autocorrelated process which can be described by
the above model, are given at Table 6.1 for various values of the parameters

¢ and aze/az x when the weight r=0,05.

videorees of freedom
[/}

/6’y  0.10 0.25 0.50 0.75 0.90
1.00 39.0 39.0 39.0 39.0 39.0
0.90 39.0 39.0 388 381 366
0.50 38.8 37.8 337 24.8 14.6
0.10 38.4 353 259 3.6 6.10

Table 6.1: Degrees of freedom for the EWRMS chart for various values of
the autoregressive parameter ¢ and various shifts of the
process variance.

6.3.2 The Exponentially Weighted Moving Variance chart
The exponentially weighted moving variance chart, briefly the EWMV
chart, is obtained by replacing the overall mean of the process u with the time
varying y, and thus plots the statistic
[=A=-rSE +rlX, - T
The control limits for the EWMV control chart when the process follows the
model described by MacGregor and Harris (1993) are given by

(60-C7 00, 09+ Csog)

where the constants C; and Cg are given at Table 6.2 for the case when
r=0,05 , p=0,9 and o’./o°x=0,5.

0.05 C; 0.68
Cs 1.08
a
0.01 C; 0.63
Cs 114

Table 6.2: Constants for the EWMV chart for r=0,05, ¢=0,9 and
0'2/0'2X=0,5.
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6.4 The Lu and Reynolds’s method

Lu and Reynolds (1999b) investigated the problem of monitoring the
process variance when there is correlation between samples, and the sample
size i1s n=1. They also considered the problem of simultaneously monitoring
the process mean and variance. Similarly to MacGregor and Harris (1993),
they used the 4R(1) plus a random error and the equivalent ARMA(1, 1) models
to describe the correlation structure of the process, for the case of positive

autocorrelation.

6.4.1 The variance of the residuals
Lu and Reynolds (1999b) used the AR(1) with an additional random

process to model the correlation structure of the process. This model is
described in 5.4.1.
The variance of the time wandering mean using the equations in Box

and Luceno (1997) is 02,, = azy /(1-¢°) and the variance of the process is

2

2 2 2 0.7 2

cx =0,+0; =1_¢2 +0;

A change in the process variance o’y could be caused by an increase in
ozﬂ and/or o°;. When the autoregressive parameter ¢ in the 4AR(l) plus a
random error model is considered fixed, the increase in ¢°, is caused by an
increase in 02,. Equivalently, when both the autoregressive and the moving
average parameter in the ARMA(1,1) model are considered constant a change
in 6%, would change both o7, and a’,, through the parameter relationships given
in section 5.4.1.
Lu and Reynolds(1999b) supposed that between samples 7-/ and 7,
o’, increases from the in-control value 0%, to o°,; and ¢°, increases from the
in-control value a‘?eo to 0., .

The residuals after the shift are correlated normal random variables

with mean zero and variance at =T

2 2 2 2 2
Var(eT)= O a0 +(0' el = O go)'*’(O' 91— O },g)
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6.4 The Lu and Reynolds’s method

and at =7T+1
Var(er,;) =02 [1+(¢ 6) ze’”"‘“]

«(o2, 50)+z 200(52, — 52 1=123,.

where 8y is the value of the § parameter when the process is in-control.

After the shift, the smallest variance, at 7, is

2 v 2 2 2
a0 +(0%61- o)+ (0°y1- 0°50)
but then the variances continually increase to the limit

ol +¢2L¢620+1( = ezo)"'i_izjo—
1-6, 1-6,

It is interesting to note that the effect of an increase in o°, and/or o7,
is to increase the variances of the residuals, while the means of the residuals
remain constant at zero. On the other hand, a shift in the overall mean of the
process changes the means but not the variances of the residuals with the

largest change occurring at =7 immediately after the shift.

6.4.2 The EWMA of the Logs of the Squared Residuals chart

An EWMA chart of the residuals for monitoring the process variance

uses a control statistic based on the logs of the squared residuals

Zi=max((1-A) Zi.;+4 In(e’), In(6?y))

where the starting value Zy=In(o%g) and 1 is a smoothing parameter satisfying
0<A<I. This EWMA statistic is one-sided, and resets to the target /n(c’,y) at
the next sample whenever the statistic drops below this target. As Reyrolds
and Lu (1999b) stated, a two-sided version of this control chart could be used,
but in most applications, the primary interest is in detecting an increase in the
process variance. The sequence of the residuals e, is normally distributed with
mean zero, thus e, follows gamma distribution with shape parameter equal to
% and a scale parameter equal to 1/(2Var(e,). If W= In(e’,) then W has a log-

gamma distribution with density of
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6.4 The Lu and Reynolds’s method

0

It is obvious that the scale parameter in the gamma distribution

¥ wy = exp[—é—(w ~In(2Var(e, )))—exp{w—In(2Var(e, ))}:I,

-0<Ww<a0,

becomes the location parameter in the log-gamma distribution. Because the
EWMA is primarily designed for detecting location shifts in a process, it is
reasonable to use the logs of squared residuals in the EWMA chart to monitor
shifts in the process variance. When the process is in-control Var(ez) =azao and
using the mean and the variance of the log-gamma distribution the in-control
mean and variance of W are E(W)=In(o’g)-6/5 and Var(W) =64/15
respectively. The variance of the one-sided EWAMA statistic based on the logs
of the squared residuals, does not equal the variance of the two-sided EWMA,
but the control limits are expressed in this form for convenience. Thus, the
control limit of the EWAMA chart of the logs of the squared residuals is

In(c?,)+c Wit
152-2)

where ¢ is a smoothing constant. The integral equation approach can be used
to obtain the in-control ARL, and simulation to obtain the ARL when azy or 025

shifts.

6.4.3 Simultaneously monitoring the Mean and the Variance of
correlated processes
When the objective is to simultaneously monitor the mean and the
variance of a process Lu and Reynolds (1999b) considered six monitoring
schemes.
a. A Shewhart chart of residuals and an EWMA chart for residuals.
b. A Shewhart chart of residuals and an EWMA chart of observations
c. A Shewhart chart of residuals alone

d. An EWMA chart of logs of squared residuals and an EWMA chart of

observations.
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6.4 The Lu and Reynolds’s method

e. An EWMA chart of logs of squared residuals and an EWMA chart of
residuals.

f- A Shewhart chart of forecasts and a Shewhart chart of residuals.

To decide which control scheme performs better for a specific type
and magnitude of process change Lu and Reynolds (1999b) derived the ARL of
the above schemes.

The process shifts considered were the combinations of (&-&y)/ox
=0,1,2,3 and of e X/az x0=1,2,3,10, where o’ xo 18 the in-control variance of the
observations. The values of wp=0°,0/0"xs were 0,1 and 0,9 and those of the
autoregressive parameter ¢ 0,4 and 0,8. All charts or combinations of charts
were adjusted to give in- control ARL of approximately 370,4. The above 4RL
results are presented in TABLE A.6 and TABLE A.7 where the increase in o’ ¥
is caused by azy and ¢°, correspondingly.

Obviously, schemes a and b perform well across most situations while
scheme ¢ does not detect efficiently shifts in the mean alone, and scheme d
performs well except for large shifts in the mean alone. Schemes d, e and f
have similar performance.

Lu and Reynolds(1999b) recommend the use of scheme b in practice,
since it runs simultaneously a Shewhart chart of the residuals and an EWMA
chart of the observations, is relatively easy to interpret and is reasonably
effective in detecting shifts in the mean and/or the variance for most cases,
especially for the case of low to moderate autocorrelation. They recommend
though that 1 should be appropriately chosen, to provide fast detection when

there is a change in the process.

6.5 An application

A data set of /00 observations was generated from an AR(7) time
series model plus a random error by simulating the sequence of the random
errors y,’s and g’s. The process parameters used for this simulation were
9=0,9, 0,=0,5 and o, = 0,5.

Using the MINITAB statistical software an 4R(1) time series model is
fitted to the observations resulting to ¢=0,825 and 02y=0,26. According to the
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checking plots of the residuals at Figure B.3 the AR(/) model describes the
data satisfactorily as expected. Using the equations presented at 5.4.1, vy is
calculated to be 0,8. This model is equivalent to an 4RMA(1,]1) model with
0=0,825, 8=0,347 and aza=0,6. The true variance of the data is 02X=].

Two types of changes in the process variance are investigated on the
same basic sequence of y,’s and &;’s.

For the first process change to be investigated, consider an increase in
the process variance caused by an increase in 02,,‘ Suppose that due to special
cause immediately after observation 60, o¢°, increases from 0,26 to 0,9

resulting to an increase of o’y from / to 3. This is accomplished by
multiplying the last 40 observations by ,/0,9/0,26 =1,85.

The performance of six different control charts is examined. These
charts are shown at the first column of Figure 6.1. The first four charts are
charts that are designed to monitor changes in the process mean. The last two
are the EWMA chart of the Logs of Squared Residuals and the EWRMS, which
are especially designed for monitoring the variance of correlated processes.

First a X-chart of the observations is applied to the data. The true
variance of the process is used resulting to 3 sigma control limits of +3. This
chart captures a change at observation 97.

Then an EWMA of the observations with modified control limits is
applied. Using y=0,8 and ¢=0,825 at FIGURE 1 of Lu and Reynolds (199%9a)
results to c=5,2. The 5,2 sigma control limits using the true standard deviation
ox=1 are +1,73. This chart signals that the process is out-of-control only at
observation /00.

A residuals X-chart is also applied to the data. The 3-sigma limits
are +2,335 and the first signal comes at observation 70.

The next chart applied is an EWMA of the residuals with 2,859 control
limits at + 0,7414. This chart does not perform as well as the previous one
since it only detects a change at observation 99.

The fifth chart that is applied to the data is the £WMA of the Logs of
the Squared Residuals with ¢=0,944. The lower control limit is LCL=0,51 and

the upper control limit UCL=0, 14. This chart shows increased variability after
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the increase in ¢°, and signals at observation 91. It also indicates a false alarm
at observation 6.

The last chart is the EWRMS chart. Using r=0,05 and ox=/ the
constants Cs and Cs are 0,55 and 1,45 correspondingly at significance level
a=0,001. At this chart the increase in the variability is obvious after
observation 60 but a signal is available only at observation 99.

The next process change to be investigated is a change in o°,. After
observation 60, azs increases from 0,25 to 1,28, while crzy remains constant,

resulting to an increase of o’x from I to 2. This is accomplished by
multiplying the last 40 observations by /1,28/0,25 = 2,283.

The observations corresponding to the increase in o, were applied to
the six control charts under investigation. These charts are shown at the
second column of Figure 6.3.

Neither the X-chart nor the EWMA chart of the observations signal a
state of lack of statistical control. The residuals X-chart signals immediately
after the change occurs, at observation 65, while the EWMA chart of the
residuals signals at observation 8§0. The EWMA of the Logs of the Squared
Residuals performs much better for this type of change in the process
variability since it signals sooner at observation 65. The EWRMS chart also
seems to perform better for this type of change since it shows increased
variability immediately after the increase in o’,. It signals though again only

at value 99.
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CHAPTER 7

Measuring the Performance of Control

Charts

7.1 Introduction

There is always the need to evaluate the performance of control charts
and to measure their statistical properties.

One of the most important properties associated with any SPC chart is
its run length distribution and eventually the average (4RL) and the standard
deviation (SRL) of the run length.

The ARL can in some cases be exactly calculated mathematically or
can be approximated by the integral equation method or by simulation.
Knowledge of the ARL for a particular assignable cause is a useful tool for
measuring the capability of detecting a process shift. Therefore, it helps
designing more effective control charts and comparing their relative
performance.

However, the large out-of-control 4ARL values of a control chart
doesn’t necessarily mean that it loses its competitiveness. It might just mean
that the probability mass function (pmf) of its run length distribution is highly
concentrated at low run length but with a very long tail. In other words, the
control chart has high probability of detecting a shift immediately after it

occurs which decays afterwards.
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Early detection makes the cause of the signal easier to identify and
thus results in the fastest rate of continuous quality improvement. Therefore,
besides the actual ARL values of a control chart, an attentive look at its run-
length distribution as well as the development of any other measures of its
detection capability and of the way it reacts to the shifts, are very helpful to
actually understand its potential.

In section 7.2 some measures of performance of Shewhart type charts
are presented while in section 7.3 a method for approximating the ARL of the
EWMA and CUSUM charts and for deriving the run length distribution of one
sided CUSUM charts is given. A useful tool to compare the effectiveness of
various control charts designed to monitor autocorrelated processes the

Dynamic Step Response Function is presented in section 7.4.

7.2 Measures of Performance for Shewhart control

charts

For the special case of the residuals X-chart the run length distribution
is determined mathematically as shown in 7.2.7 and some detection capability

indices are developed in section 7.2.2.

7.2.1 The Run Length distribution of the X-chart for the
residuals

Wardell et al.(1994) determined mathematically the run length
distribution of the Shewhart X-chart of residuals proposed by Alwan and
Roberts(1998) for a particular assignable cause attributable to a single shift in
the mean of a process {X;, r=0,1,2,...,} which can be represented by the mixed
autoregressive moving average processes of order p and g (ARMA(p,q)) time
series model.

The ARMA(p,q) model is given by

Xi= p(l-94- .. '¢p)+ 01X+ +¢p/Yt-p+at'61a t-1= .- ~UqOrq ,



7.2 Measures of Performance for Shewhart control charts

where 4 is the mean of the process, {a;.;} is the random error at time #-/ which
is assumed to be i.i.d. with mean zero and variance o°, while ¢; and 6; are the
autoregressive and the moving average coefficients.

The one-step-ahead forecast equation for the ARMA(p,q) model that
minimizes the mean squared error, assuming with out loss of generality, that

the mean of the process is zero is according to Box and Luceno(1997)

Fr=@Xpj+...+@pxip-01€ 11-...-0ge4

where F,.;=one-step-ahead forecast of the process at time ¢-i and e, ;= the

one-step-ahead forecast errors or residuals of the process at time #-i that is,

eri=xpi-Fy.

Combining the definition of the 4RMA(p,q) process and the above

equations, gives the general recursive expression for the residuals e; at time ¢:

€=U — Q1 Py-1 = - - ¢pﬂt.P + oy - 01(1 -1~ e = eqat_q+ 613 5000 eqet_q

The recursive nature of the above equation can be removed by
expressing e, in terms of only past values of ¢ and a; using the z transform
(Drake 1967), thus

[+ o]
€ =D Crlhy @,
k=0

where ¢ is a constant defined by
0 k<0
Cr= 1 k=0
Oici1+ ..t OgCrq-or k>0
where @i 1s 0, if k>p.

As mentioned before the run length is the number of observations
required to obtain an observation outside of the control limits for a given shift
in the mean. Since the residuals calculated as previously depend only on the
most recent error term, the probability that the most recent observation will

exceed the control limits can be independently determined, thus:

Pr( R, |>30,)=Pr, = I—F(Saa —kZ;)ck,u,_k)+F(— 30, —-kzg}ck,u,_kj
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where F' is the cumulative distribution function (cdf) of the random error a,,
which is usually assumed to be the cumulative normal distribution. When the
shift in the process mean is a single step change of size 6 (where ¢ is
measured in terms of the standard deviation of the process) it can be
expressed as

0, i<0

o, i>0

and Pr, can be expressed as
Pr(R 1> 30,)=Pr, =1—F(3aa—5§c,,)+1:(—3aa —5§ckj
k=0 k=0

Defining now Y as a discrete random variable representing the run
length of the residuals chart, the distribution of Y is defined by the above

probabilities, and its probability mass function (pmf) is given by

y-1
Pr{Y=y}=Pr,TI(I-Pr), z=12..,
i=0

where Pryp=0. If there is no shift in the mean, Pr, is constant in ¢ and its pmf
follows the geometric distribution, which is the run length distribution of the
standard Shewhart control chart.

The run length distribution for the special case of an ARMA(I, 1)

process is given by
Pr, = I_F{‘?O-a —5[1+%—(1—9"1)}}+F{—30'a —5[1+—§_g(1—9"1)}}

where ¢ and 6 are the parameters of the model, F is the cumulative
distribution function (cdf) of the random error a, and o, is its standard
deviation.

After having derived the pmf of the run-length of the residual chart
for a process which follows an ARMA(p,q) time series model, any of its
moments can be determined, including the first and second moments, which
can be used to find the ARL and SRL.
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7.2.2 Detection Capability Indices and the ARL of the X-chart
for the residuals

Zhang(1997) developed a measure for the detection capability of the
residuals chart for the general stationary process AR(p). He also established
the relationship between the detection capability and the ARL of the residuals
X-chart and provided the conditions under which the latter performs better
than an individuals chart of the observations.

Suppose that the process {X;, t=1,2,...,} follows an AR(p) time series
model

Xe=u(l-@1-...-0p)+ 91 X0 1+ .. +@pXiptay,

where p is the mean of the process, {a,} is the random error (noise) at time ¢
which is assumed to be i.i.d. with mean zero and variance o’ and ¢; are the
autoregressive coefficients.

Suppose now that a mean shift of size doy, where oy is the standard

deviation of the process, occurred at time =7, namely

E[X,]=u, when t<T
E[X,]=u+éox, when t>T

the residuals at time 7 can be given by

Vi D
e =X, _Z¢iXt—i _(1_§¢i

i=]

Efer]=dox
Zhang(1997) showed that at r=T+j(1<j<p):

Efe,]= [1— $4, )50')(
i=]
and that at ¢=T+j(j>p):
Efe]= (1—§¢,- )50')(
i=1

The variance of the residual is the same as the variance of the process

white noise a;thus

)
Vo &l e (z- £ ¢,.p,)a;
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where p; (i=1,...,p) is the autocorrelation at lag i. The detection capability
indices are defined for t=T as
1

172
@—é@a]

(Y=

for t=T+j(1<<p) as

P—é@
fl)z=57,

172
(1_§¢ipij

and for t=T+j(j>p) as

&)
ft)= =

172
[]_g¢ipij

When f(t)>1, the detection capability of the residuals chart at time ¢

is greater than that of the traditional X-chart in other words the residual chart
increases the detection capability of a mean shift of size doy at . Conversely,
when f(1)<I the residuals chart reduces the detection capability at . When the
process is an independent sequence which is the case of ¢; =0, i=1,...,p, then
fH)=1.

For a given process when r>T, the comparison can be made between
the denominator and the numerator in the above equations to determine
whether f(t)>1 or f(t)<I.

Zhang(1997) related the ARL of the residuals X-chart with koy limits
to detect shift of size dox of an AR(p) process with the above detection

capability indices with
P—I . . j .
ARL =1+ Y4 jl1- BT+ PUT BT +i-1)t +
j=1 1=]

£ - llp=(p-1)BT+p)
[Eﬂ”+’”] 1- BT+ p)]
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with B(t)=P(-k-6f(t)<Z<k-O6f(t), t>T and Z is a standard normal random

variable.

When {X;} follows an AR(I) stationary process the detection
capability index of the residuals chart at the time 7 when the shift occurs is
given by

f(D)=1/(1-p)""
and for >T

fW)=(1-p)/(1-9*)"*
The ARL of the residuals X-chart for r>7 is

ARL=1+B(T)/[1-B(T+1)]

When {X,} follows a stationary AR(2) process, the detection capability

of an individuals chart applied to the residuals of the process for I"and 7+ is

F(D)=1/(1-p1p1-p2p2)"?
F(T+1)=|1-p\/(1-p1p1-02p2)"*

and for t>7T+2
f)=(1-p1-02)/ (1-91p1-92p2)""

The ARL of the residuals X-chart for r>7 is

ARL=1+B(T){ 1+B(T +1)}/[1-p(T+2)]

Zhang(1997) proved that for a stationary AR(p) process, f(7)>1,
which means that the detection capability of the residuals chart at the time of
the occurrence of the mean shift is larger than that of the X-chart of the
observations.

He also proved that for a stationary AR(I) process
(@) f(1)>1
(b) For t>T, f(t)>1 if and only if p<0

The condition in (a) stands for every stationary autoregressive

process, the condition in (b) states that the residuals chart detects the shift in
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the mean after the time it first occurred, faster than the X-chart of
observations only for negatively autocorrelated AR(I) processes. Besides,
when an AR(1) process is near non-stationarity the detection capability of the
residuals chart becomes very large.

For a stationary AR(2) process Zhang(1997) proved that
a) fT)>1
b) f(T+1)<l1 if and only if
©) @1<{I-p2+[(1-9°2)(1-292)]"*}/2 and ¢ 1> {1-ps-[(1-9*2)(1-293)]'*}/2

f(T+2)>1 if and only if

d) pr+pr-9p’2<0

He also proved that assuming that the AR(2) process has normally
distributed white noise when
a) ¢;<0 and or (p1+¢2-q)22<0 or
b) 0<@;<I and ¢;+¢,-¢°2<0 and @;<{1-p,-[(1-9°2)(1-292)]"?}/2 or
c) 1<,<2 and ¢1+¢-¢°2<0 and ¢;>{1-p;+[(1-9*))(1-205)]"*}/2
the out-of-control ARL of the residuals chart is uniformly smaller than that of
the X-chart.

7.3 Measures of performance for the EWMA and the
CUSUM charts

To examine the properties of the EWMA and CUSUM charts when
observations come from the AR(/) model with an additional random error
described at the previous section, VanBrackle and Reynolds(1997) developed
an integral equation to evaluate their ARL when the process is in control and
when there has been a step shift in the overall mean of the process.

Assuming without loss of generality that the target value of the
overall mean of the process & is zero, VanBrackle and Reynolds(1997)
derived an equation N(zy,ug) for the ARL of the EWMA conditional on zy, uy
where zy is the EWMA statistic at time =0 and gy is the value of the process

mcan
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H o
N(zg,py)=1+ I ,[N(Zp/lz)f(zpﬂl | 2o, 19 )14z,
—H —o0
where f(z, 41| zo,0) is the joint density of (Z;,u;) conditional (Zy,ug). Under
the assumption that the error terms in the 4R(/) model with an additional
random error, ¢ and a, ,are normal it follows that this conditional density is

bivariate normal with parameters

E(Z)\zo.u0)=(1-A)z0 +AE(u;+e |zo,p0)= (1-4)zo +A((1-9){+ppo)
E(uilzo.po)=(1-0)S+opo

Var(Zi|zo,ue) =A° Var(us+e|zopo)= A°(6%a+(0’e/n))
Var(ui|zo,u0) =0’

and Cov(Z;|zo,uo)=Cov(1-A)zo +A(u1+er),p1=4 o’q

The solution of this integral equation has been approximated using
Gauss-Legendre quadrature. Since gy is assumed to be a random variable the
ARL conditional only on zy can be obtained by taking expectation with respect

to the distribution of yy, thus
N(zy,)= ,[N(Zar#o)f(ﬂo)dﬂo

where f(ug) is a normal density function with mean ¢ and variance 02,,. This
integral can be approximated using Gause-Hermite quadrature.

The same approach was used to develop an integral equation for the
one-sided CUSUM chart.

Yashchin (1993) approximated the run length distribution of an one
sided upper CUSUM scheme applied to a given serially correlated stationary
process provided that the variability explained by the presence of correlation
is no more than 25% of the total variability of the process. He showed that for
moderate correlated processes one can replace the sequence of observations
by an i.i.d. sequence for which the run length distribution is approximately the

same. The results of this replacement are exact for non correlated processes
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and approximations of good quality when the level of correlation is not too

high especially for Gaussian processes.

7.4 Measures for the Relative Performance of Control

Charts

When someone wants to explain why one chart is preferred to another
he usually compares their ARL values and study their run length distribution if
it is available. Wardell et al.(1992) developed another useful tool to
determine the relative performance of different charts when the process is
autocorrelated, the Dynamic Step Response Function (DSRF). The DSRF
describes how the chart would dynamically react to a shift in the process
mean if there were no noise in the process.

They formed the DSRF for the X-chart and the EWMA of the
observations with control limits calculated taking into consideration the true
variance of the process, the residuals X-chart or Special Cause chart (SCC),
and the Common Cause chart (CCC) with additional control limits when the
process follows an ARMA(1,1) time series model. Since the EWMA and ARMA
forecasts depend on past data and on the values of the autoregressive and the
moving average parameters ¢, @ as well as on the smoothing parameter A of
the EWMA chart, they do not step up immediately to a new value when there
is a shift in the process mean. Instead, they react dynamically to the shift and
gradually converge to a new steady state value. Assuming that the process is
completely deterministic and that the shift in the mean can be expressed by
doox the DSRF for each of the above charts when ; is the number of

observations since the step change occurs, is

= for the Shewhart chart

DSRF.=6/c,
s  for the EWMA chart
. o ;
DSREggua( 1) =—Z—[1-(1-2)']
CEwMA
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7.4 Measures for the Relative Performance of Control Charts

=  for the CCC chart

{1-6/
DSRFsge(j) =2 (¢—6{ ]

s for the residuals chart SCC

] 1-67
DSRFSCC(])=C_|:5"6(¢_0{ H

In all cases, the DSRF has been normalized by the value of the upper
control limit, so a normalized response of / or larger indicates that the mean
of the statistic has exceeded its upper limit.

Knowing the dynamic response of each chart to a shift in the process
mean, the difference in the ARLs of the control charts under investigation can
be explained. Wardell et al. (1992) mention that this function is relatively
easy determined for any ARMA model and for different types of shifts in the
process mean. A spreadsheet can be used to chart the DSRF and to view the
effect of changing parameters such as the smoothing constant in the EWMA

model.
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CHAPTER 8

Performance of Control Charts for
Monitoring the Mean

8.1 Introduction

Many researchers have investigated the preperties of the proposed
charts for autocorrelated processes, determine their relative performance, and
compare their performance to the performance of the traditional charts.

Although the use of traditional control charts to autocorrelated
processes seems to be disastrous, some insist on preferring them to the
residuals charts under some circumstances, stating that the residuals charts
do not have the same properties as the traditional charts.

In section 8.2 a discussion about the performance of the residuals X-
chart and the X-chart of the observations is stated. In section 8.3 the
performance of CUSUM and EWMA schemes for autocorrelated processes
charts is presented while in section 8.4 the relative performance of control

charts dealing with autocorrelation.

8.2 The performance of the Shewhart X-chart

Following the methods discussed in section 7.3, Wardell et al.(1994)
derived the run length distribution of the residuals X-chart for a particular
assignable cause attributable to a single shift in the process mean for the
general ARMA(p,q) model. In addition, they calculated theoretically the ARL
and SRL of the ARMA(1,1) process. The ARL and SRL results, verified by the
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8.2 The Performance of the Shewhart X-chart

authors via simulation, along with the first lag autocorrelations are shown at
TABLE A.8 for various combinations of the autoregressive and moving
average parameters (factors ¢ and € ) of the ARAMA(1,1) model.

A general inference that can be drawn from the ARL and SRL results
is that the in-control SRL and ARL are the same for all the combinations of the
parameters ¢ and 6.

This is expected because when there is no shift in the mean, there is
no dynamic response and hence the residuals do not depend on the two model
parameters. The probability that the residuals exceed the limits is constant,
and thus the pmf of the run length distribution of the residuals X- chart is a
geometric distribution, equivalently to the traditional X-chart of the
observations.

When a shift occurs and the process is negatively autocorrelated the
SRL is smaller than the ARL, but when the process is positively autocorrelated
the SRL is usually greater that the ARL. The large values of the SRL mean
that the time at which the signal will actually be detected is not precise.

Another remark is that when the first lag autocorrelation is positive,
the residuals chart has larger 4RL than when its first lag autocorrelation is
negative.

This doesn’t necessarily imply that the residuals chart performs
poorly for positive autocorrelated processes. In fact, even though the residuals
X-chart doesn’t detect shifts quickly on the average, the probability of
detecting shifts early is high but the ARL’s are affected by the long tails of the
run length pmf.

An example of this bebavior is illustrated in Figure 8.1, where the
pmf of the run length distribution of a residuals X-chart truncated at run length
10, for ¢=0,95, 6=0,45 and 0,=0,7 and a mean shift of one standard deviation
is plotted. From TABLE A.8 it is obvious that the X-chart of the residuals
performs poorly for this particular combination of parameters (ARL=274.69),
but in Figure 8.1 it is shown that there is a probability of /3% to detect the
shift at run length 7. This probability decays very quickly and thus inflates the
average run length.

Wardell et al. (1994) stated that the residuals chart has high

probability of detecting a mean shift as soon as it occurs, but if it fails.to
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8.2 The Performance of the Shewhart X-chart

detect the shift immediately, there is low probability to detect it later. This
can be explained by the fact that when a shift first occurs there is a large
discrepancy between the forecasted and the actual value, but in the next
instance the forecasted values adjust to the shift. In particular, when the
process is negatively autocorrelated and the process mean shifts, the one-step-
ahead forecast moves in the opposite direction of the shift and consequently

the residual becomes very large and the shift is detected earlier.
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Figure 8.1: A portion of the pmf of the Run Length of the residuals X-
chart for an ARMA(1,1) Process with ¢=0,95, 0=0,45, 6,=0,7 and
a shift of one Standard Deviation

The above results are consistent with the findings of Zhang(1997)
who mathematically proved, as shown in section 7.4, that for every stationary
autoregressive process AR(p) the residuals X-chart has a great likelihood of
detecting the change of the mean at the time it occurs. The probability of
detecting the change of the mean at some future time depends on the
parameters of the process.

For the stationary region of the AR(1) process the residuals X-chart
detects the shift in the mean after the time it first occurred, faster than the X-

chart of observations only when the process is negatively autocorrelated.
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8.2 The Performance of the Shewhart X-chart

When the process is near non-stationarity, the detection capability of the
residuals chart becomes very large.

Assuming that the error term in the AR(I) process is normally
distributed, Zhang(1997) concluded that when the process is negatively
autocorrelated, the in-control ARL of the residuals X-chart is uniformly
smaller than that of the X-chart of the observations. When 0<¢<0,8 , 3o limits
are used and the magnitude of the shift-é (in terms of standard deviation) is
less or equal to 3, the in-control ARL of the residuals X-chart is also uniformly
smaller than that of the X-chart of the observations.

Kramer and Schmid (1997) also investigated the Shewhart charts of
the residuals and observations for an AR(1) process. Similarly to Zhang(1997)
they also concluded that for positive correlation the chart based on the
observations performs better.

It should be mentioned here, that the combinations with positive
autocorrelation seem more likely to occur in actual manufacturing
environments than combinations with negative autocorrelation.

For processes that can be represented by the AR(/) plus a random
model Lu and Reynolds (1999a) stated that the probability of a signal by a X-
chart of the residuals is the highest for the sample immediately after the shift,
and that afterwards it continually decreases over time, as the forecast adapts
to the shift. They derived the above conclusion after observing that the
expectation of the residual after the shift is a decreasing function of the time
after the shift.

Zhang(1997) also investigated the performance of the X-charts of the
residuals and the observations for the 4R(2) process. When the process is near
non stationarity the detection capability of the residuals chart becomes very
large, while for ¢,;>0 and ¢,<0,5 the residuals X-chart has smaller probability
to detect the shift at run length 7, than the X-chart of the observations.

When ¢,<-0,25, the in-control ARL of the residuals chart is uniformly
smaller than that of the traditional X-chart. When a small shift occurs (i.e., a
shift of magnitude 6<0,5), ¢,+¢2<0,92 , and the residuals chart has smaller
probability than the X-chart to detect the shift at run length / and 2, the out-
of-control ARL of the residuals chart is larger than that of the X-chart of the
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8.3 The Performance of the EWMA and the CUSUM charts

observations. Besides, when ¢;>0, ¢*; +4¢,>0, @1 +9:<0,8 and 653 , the ARL

of the residuals chart is uniformly larger than that of the X-chart.

8.3 The performance of the EWMA and CUSUM charts

Lu and Reynolds (1999a) compared the adjusted EWMA charts of the
observations to the EWMA chart of the residuals for a positively correlated
process described by an 4R(/) model with additional error. Various values of
the autoregressive parameter ¢ and of the proportion of the process variance
due to the AR(1) model y were considered.

To make the comparisons easier the control limits were adjusted to
have in-control ARL of 370,4 and the shifts were expressed in units of the
process standard deviation.

The two EWMA charts perform similarly when ¢ is small and/or y is
close to 0. For moderate or large values of ¢ and ¥ the EWMA chart of the
residuals is better for large shifts while the EWAA chart of the observations is
better for small shifts. For higher levels of autocorrelation neither chart would
detect very small shifts in a reasonable amount of time.

The ARL of both control charts was evaluated using the integral
equation method, which applies numerical integration to approximate the
integral. The Markov chain method which replaces the continuous control
statistic by a discretized version which is a Markov chain was also
implemented. To provide a check on the accuracy of the individual methods
and to provide results for those combinations of parameter values for which
the other two methods doesn’t work, simulations were performed.

The steady state ARL results for both charts, when both charts use
A=0,2 are presented in TABLE A.9.

In addition to the ARL , they obtained using integral equation methods
the cumulative distribution function (cdf) of the run length. The £XWMA chart
of the residuals usually has higher probabilities of detecting a shift in the first
few sample points after the shift and can detect large shifts faster than the

EWMA chart of the observations when correlation is high.
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8.3 The Performance of the EWAA and the CIJSUM charts

Runger et al. (1995) evaluated the one sided CUSUM chart of the
residuals for AR(p) processes. They developed approximate analytical models
for the evaluation of the ARL, when the shift in the process mean is a single
step change of size J (where J is measured in terms of the standard deviation
of the process).

For the special case of an AR(]) process, numerical results for several
levels of autocorrelation ¢ and shift § and several choices of the reference
value K of the CUSUM chart were developed. To have results more
comparable with the two sided control charts the decision interval 4 must be
selected to provide in control ARL of 740,8.

The main result from the above studies is that the CUSUM chart for
the residuals is much more sensitive to process shifts than Shewhart charts of

the residuals especially when the reference value is chosen to be K=(/-¢)/2.

8.4 The Relative Performance of Control Charts

This section deals with the relative performance of the X and EWMA
charts of the observations with control limits constructed taking into
consideration the true variance of the process, the residuals X-chart and other
charts designed for application to correlated processes.

Wardell et al. (1992) compared the X-chart of the residuals chart to
the adjusted X-chart and EWMA of the observations as well as to the Common
Cause chart (CCC) with additional control limits. They considered processes
that follow ARMA(1,1) and consequently AR(1) or MA(1) models.

Wardell et al. (1992) used the Dynamic Step Response Function
(DSRF) described in section 7.2 to see how every chart reacts dynamically to
a shift in the process mean and determined the relative performance of the
different charts when the process is autocorrelated. They derived the AR/ of
the charts via simulation, and designed an experiment over the entire
stationary region of the ARMA(I,1) model and over two values of the
parameter A of the EWMA statistic to derive the location of regions in the

(9.6) plane, in which a particular chart is superior to the other charts.

110



8.4 The Relative Performance of Control Charts

A general conclusion that can be drawn from their studies is that
certain charts are equivalent under specific circumstances. Namely, the X-
chart of the observations and the CCC have similar ARL performancefor the
AR(1) process while the residuals and the Common Cause charts for the
MA(1) process.

It is also clear that for a shift of one standard deviation the EWMA
chart has a smaller 4RL than the other three charts over most of the stationary
region. When the shift in the mean is larger i.e., three standard deviations, the
Common Cause chart dominates most of the region, with the FWMA still
being superior when the autoregressive parameter is negative and the moving
average parameter positive. Further, the X-chart of the observations rarely
achieves an ARL lower than those obtained by other charts.

The relative ARL performance of the adjusted X and I/WMA charts of
the observations and the residuals X-chart was also considered by Wardell et
al. (1994). From this study can be concluded that for positively autocorrelated
processes, the residuals X-chart performs relative poorly in terms of the ARL,
when compared to traditional charts.

The ARL of the residuals chart was determined through its run length
distribution while the ARL of the EWMA and the X-chart of the observations
through simulation. The control limits were adjusted, sometimes substantially,
to have in-control ARL of around 370,4.

Zhang(1998) considered the ARL performance of the residuals X-
chart as did Wardell et al. (1994). He additionally implemented the EWMAST
chart to AR(1), AR(2) and ARMA(1,1) processes and made comparisons of its
ARL performance with the X-chart of observations, and the X-chart of
residuals. When he made comparisons for various AR(/) processes, he also
considered the performance of the chart of Montgomery and Mastrangelo
(1991)(M-M).

For the AR(1) processes, it appears that when the autocorrelations
vary from weak to medium levels (9<0,75), the EWMAST chart performs
better since it has larger in-control and smaller out-of control ARL's than
both the residuals and the individuals X-chart. This is more obvious for mean

shifts from small to medium.
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8.4 The Relative Performance of Control Charts

When there are very strong positive autocorrelations (i.e., 9=0,95) the
residuals chart has smaller out-of control ARL’s especially when the mean
shifts are large. Neither chart performs well for detecting small shifts.

For the M-M chart when ¢=0,5 and 0,75 the in-control ARL and the
out-of-control ARL’s are almost the same for small mean shifts. Even when
the mean shifts are medium or large, the out-of-control ARL’s of the M-M
chart are much larger than those of the other charts. When ¢=0,95 the M-M
chart performs better than the EWMAST chart but not better than the residuals
chart.

For the ARMA(1,1) model the EWMAST chart performs better than, or
equal to the residuals chart except for the cases in which the processes have
strong positive autocorrelations. For the other cases, the EWMAST has larger
in-control ARL than that of the residuals chart and moreover when the mean
shifts are small the EWMAST chart has smaller ARL’s than those of the
residuals chart but when the shifts are large, the EWMAST chart performs
better than or equal to the residuals chart. Except from the case where the
process has strong positive autocorrelations or the mean shift is large the
EWMAST perform better than the individuals X- chart.

When the process follows an AR(2) time series model and the process
is not nearly non-stationary , with ¢;+¢, not near to /, the EWMAST chart
performs better than the residuals chart, especially when the mean shift is not
large. When the processes are near non-stationarity and have very strong
positive autocorrelation the residuals chart has smaller out-of-control ARL s
than those of the EWMAST chart. For the near non-stationary processes but
not with strong positive autocorrelation the EWMAST chart has much larger
in-control ARL’s than those of the residuals chart, much smaller out-of-control
ARL’s than those of the X- chart and comparable with those of the residuals
chart. Concluding, the residuals chart performs better than the EWMAST chart
only when the process is nearly non-stationary with strong positive
autocorrelations.

The ARL’s of the residuals chart for step mean shifts were calculated
using the formulas developed by Zhang(1997). To obtain the ARL’s of the
EWMAST chart for A=0,1, 0,2 simulation was conducted. The above ARL

results are shown at TABLE A.10 for various shifts of the mean and various
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8.4 The Relative Performance of Control Charts

values of the autoregressive parameter and the moving average parameters
for the ARMA(1,1), AR(1) and MA(1) time series models along with the results
presented by Wardell et ai. (1994).

Schmid (1997a) compared the performance of several control schemes
for process assumed to be represented by the 4R(/) time series model by their
ARL values. He concluded that the LWAMA and CUSUM charts are more
suitable to detect small changes while the Shewhart chart is more appropriate
for large shifts. He also found that for positively correlated processes it is
preferable to use modified control charts of the observations but elsewhere the
residuals charts should be preferred.

For processes modelled by the AR(1) plus a random error Lu and
Reynolds(2001) compared the ARL performance of the CUSUM Chart of the
observations, the CUSUM chart of the residuals, the EWMA chart of the
observations, and the EWMA chart of the residuals. The steady state ARL
values of the Shewhart chart of the observations, and the Shewhart chart of
the residuals were also considered.

In general it is concluded that the performance of the EWAMA and the
CUSUM charts are very similar. The Shewhart chart of the observations
performs better than the one of the residuals when the shift to be detected is
small but when the shift is large the two charts have similar behaviour. For
low to moderate levels of correlation though, a Shewhart chart of the
observations performs much better than a Shewhart chart of the residuals
When the level of the autocorrelation is moderate to low, the EWMA and the
CUSUM charts perform much better than the X-chart but when the
autocorrelation is high, all charts perform similarly.

The above ARL results are presented at TABLE A.11 for 6=0,5, 1,0,
2,0, for y=0,5, 0,9 and ¢=0,4, 0,8. The parameters of the charts were chosen

to ensure their optimal performance.
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CHAPTER 9

Performance of Control Charts for

Monitoring the Variance

9.1 Introduction

At this chapter the performance of the control charts designed for
monitoring the variance of autocorrelated processes is investigated. In section
9.2 the R and S’ charts are evaluated in terms of their ARL, while in section
9.3 the EWMA of the Logs of Sqrt Residuals.

9.2 The ARL performance of the R and S? Charts

Amin et al.(1997), evaluated the effects of autocorrelation on the in
control average run length of the R and S° Shewhart type charts for the case
when the variance is correctly estimated but constants for independent data
are used, and for the case when modified control limits which account for
autocorrelation are used. The implementation of the R and S° charts for these
cases is presented in section 6.2.

An AR(l) time series model has been considered to describe the
correlation structure, while Laguarre polynomials and simulation were used to
derive numerical results for the in control average run length.

The graphs in Figure 9.1 show the effect of correlation of an AR(])
model for different levels of correlation, for correlation within samples
of length n~35 (model I) and between samples of length n=35 (model 1) to $°

and R charts as discussed in 6.2.
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9.2 The ARL performance of the R and S? charts

The main conclusion could be, that for both charts the effect of the
autoregressive parameter ¢ on the values of the in-control ARL is less
dramatic in the case of correlation between samples than its effect in the case

of correlation within samples.
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Figure 9.1: The effect of autocorrelation on the in control ARL for models
I and Il

Specifically, for both charts the ARL values for model I reveal an
increase (from ARL=200) for ¢>0 and a decrease for p<0, whereas model 1]
results in increased values for the ARL as |¢| increases.

When there is a strong correlation such as -0.5 < ¢ < 0.5 the ARL
values for the S°~chart range between 44.25 and 720.98 for model I and fall
from 271.38 to 209.93 for model Il . For the R-chart, they range between
60.95 and 1114.23 for model I and fall from 272.23 to 209.48 for model II.

Amin et al. (1997) further investigated the effect of correlation within
samples and evaluated the ARL of the S° and R charts for different sample
sizes and levels of autocorrelation. A graphical representation of their studies
is shown in Figure 9.2 for the case of positive autocorrelation (p>0) and in
Figure 9.3 for the case of negative autocorrelation (p<0).

It is obvious that for »n fixed the ARL decreases in ¢<0 from 200
monotonically, and the amount of decrease gets larger as n increases. For any

fixed value of ¢p>0, the ARL decreases as » increases.
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Figure 9.2: The in-control ARL of the S and R charts for different values
of n and ¢>0.

For 3<n <7 fixed, the ARL increases when ¢>0 from 200 monotically
and ARL values can reach very large numbers for big values of the
autoregressive parameter. For n >8 the ARL first increases and then decreases
for small ¢ values, but then increases again as ¢ gets larger. Besides the 4RL

is relative stable for 0 < ¢ < 0.4 when the sample size n=20.
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Figure 9.3: The ARL of the $? and R charts for different values of n and
0<0.
Amin et al.(1997) also compared the R-chart and S’-chart by their

ARL’s, in the case when modified control limits are used. The ARL of the R-

chart was computed by simulation and that of the S?-chart was computed
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9.2 The ARL performance of the R and S charts

numerically. The in-control 4RL equals around 200 and the out-of-control
ARL’s are calculated for shifts of magnitude 8’=(01/0¢)°=1.0, 1.5,..., 5.0
where oy and o; are the in-control and the out-of-control values of o,
respectively. The results of their work are shown at the 3-D graphs of Figure
9.4 for the S°-Chart and of Figure 9.5 for the R-Chart.

The ARL of the Modified $°~Chart
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Figure 9.4: The ARL of the Modified $° chart for different shifts of the
variance 6°=(6,/64)’ and levels of the autoregressive parameter ¢ of the
AR(1) model when the sample size n=2,5,10.

It is clear that the S°-chart as well as the R-chart become less
sensitive to increases in the process variability as |¢| increases. Besides, the
out-of-control 4RL values for both charts get smaller as the sample size n
increases. For large values of ¢/, the R-chart has smaller values for the ARL,

than the corresponding S?-chart. Both modified charts are slightly more
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9.2 The ARL performance of the R and S charts

sensitive in detecting increases in the process variability when there is

positive autocorrelation compared to negative autocorrelation .

The ARL of the Modified R—Chart
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Figure 9.5: The ARL of the Modified R chart for different shifts of the
variance 6°=(6,/64)° and levels of the autoregressive parameter ¢ of the
AR(1) model when the sample size n=2,5,10.

9.3 The Relative Performance of Control Charts

Lu and Reynolds(1999b) compared the effectiveness in monitoring

T
the process variance of four control charts for various parameter combmatlon{ Jox

of the AR(1) model plus a random error. The EWMA chart of the logs of/tﬁ,e \\-
e 7
squared residuals, a Shewhart chart of the squared residuals Whlﬁh _/1s K N \'
1':'%._2-\ | &*s
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9.3 The Relative Performance of Control Charts

equivalent to a X-chart of the residuals, the traditional moving range R-chart,
and the EWMA chart of the residuals were considered.

None of the four charts seem to perform well for all shifts and
parameter combinations. The EWMA chart of logs of squared residuals and the
Shewhart chart of residuals though, show a satisfying performance in almost
all cases. Moreover, the Shewhart chart of residuals is good for detecting
large shifts while the EWMA of logs of squared residuals for detecting small
shifts. Both charts are more sensitive in an increase in the process variance
caused by ¢°; , than to the same increase caused by azy (see section 6.3).

The R-chart performs poorly for small shifts when the variance is
increased through o7, This is more intense when the levels of autocorrelation
are high and the percentage of the in-control variance of the process due to
the variance of the mean is small.

Finally, the EWMA chart of residuals is, in most cases, not as good as
the charts designed specifically for monitoring the variance, especially for
detecting small shifts when the increase is caused by 027.

The steady-state ARL results for the four charts under consideration
are shown at TABLE A.12 for shifts in 0'2}, and TABLE A.13 for shifts in a‘?e )

The control limits for all charts were adjusted so that the in-control
ARL equals to 370.4 and the out-of-control ARL’s are calculated for shifts of
magnitude (crx/axo)2 1.5, 2, 3,5, 7, 9 and 11, where oxy and oy are the in-
control and the out-of-control values of o, respectively. The percentage of the
in-control variance of the process due to the variance of the mean,
l//a;dz,',o/dzxo, considered at both tables was 0,/ or 0,9, and the levels of the
autoregressive parameter ¢ were taken to be 0, 0,2, 0,4, 0,6 and 0,8. The
EWMA smoothing parameter A was chosen to be 0,2 in both tables. The in-
control ARL results were obtained by the integral equation approach for the

two EWMA charts, while the out-of-control ARL’s by simulation.
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CHAPTER 10

Miscellaneous Topics for Autocorrelated
Processes

10.1 Introduction

This chapter is about other techniques and issues concerning data for
which correlation is an inherent part of its generation’s mechanism. In such
situations several issues involved with classical SPC procedures are
differentiated.

Section /0.2 considers a different aspect of estimating the parameters
of the model that describes the correlated structure of the process. In section
10.3 and in section /0.4 the probiem of short-run data and the economic
design of the Shewhart X control chart in the presence of autocorrelation are
discussed. In section /0.5 some policies of the integrated process control that
integrates the engineering and the statistical process control are applied and
evaluated. Section /0.6 considers a variable sampling interval methodology
and its contribution to the performance of the averages chart in the presence
of correlation. The use of neural networks to recognize shifts in correlated
processes parameters is discussed in section /0.7, while in section /0.8

another model free approach.

10.2 Phase I Analysis

A common representation of the correlation structure of a process is

by the AR(l) time series model and in particular the cases of positive
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10.2 Pre Control Analysis

autocorrelation (¢>0). Usually, the parameters of the model i.e., the
autoregressive parameter ¢ and the standard deviation of the process o, are
estimated from some in-control baseline data or are considered to be known.
In real applications though, these parameters are estimated from data which
contains trends, level shifts or outliers due to assignable causes. Under these
circumstances, the standard maximum likelihood estimators of the parameters
can be severely biased.

Kramer and Schmid (1997), Adams and Tseng(1998), Lu and Reynolds
(1999a) and others, have shown that even small errors in parameter estimates
can significantly hurt the performance of control charts.

Boyles (1997) designed, compared and contrasted several estimators
suitable for data with assignable causes for processes that are independent
and identically distributed .

Boyles (2000) presented a new estimation method for processes
whose system of common causes produces autocorrelated data. This method
referred to as Phase I analysis, tries to overcome the problem of estimating
parameters from baseline data that may be corrupted by assignable causes. He
assumed the stationary 4R(1) model for the common cause variation, implying
variation about a fixed level g within fixed limits.

For autocorrelated processes, assignable causes not only tend to
increase the variation, but may also change process dynamics. In particular,
trends or level shifts will produce non stationary behavior in observations
from an otherwise stationary process. When assignable causes are present, a
non stationary model which allow the process level to wander freely,
represents better the baseline data.

The choice though, between a stationary and a non stationary model
in terms of goodness of fit is difficult. For- example the AR(1) and the
ARIMA(0,1,1) model are empirically indistinguishable. In such cases, the
choice should rest on the purpose for which the model is being used. Thus
when the objective is to establish control limits it is preferable to represent
the data by a stationary model which has some sense of statistical control.

Boyles(2000) addressed situations where it makes sense to assume a
stationary common cause model even though the baseline data may look non

stationary due to assignable causes. He established a method which fits an
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10.3 Short-Run SPC

ARIMA(1,1,1) model and then derives AR(i) as a stationary submodel. This
method gives smaller estimates for ¢ and o, and hence smaller estimate for the
standard deviation of the process oy. The new method filters out the effects of
the mean shift and does not require prior knowledge of the shift. He showed
through simulation that the new method offers substantial improvements in
mean squared error (MSE) over the standard method for small to moderate ¢ ,
but not for large ¢.

Boyles(2000) recommends the use of the phase I analysis when
process owners do not want to accept the baseline data as the reference or
template for future data because they suspect that it is corrupted by assignable
causes. When on the other hand the baseline data reflect a high level of
process capability and the assignable causes are not likely to occur the

standard method should be preferred.

10.3 Short-Run SPC

Traditional SPC techniques are based on the assumption that the
process data are i.i.d. and that there is sufficient historical data for proper
analysis. Some or all of these assumptions are often violated in real
applications. In chapter 4 there are some examples of autocorrelated
processes. The short-run data can be result of situations that do not allow for
frequent data measurements such as short production runs, process start ups,
new equipment, major tool changes, different raw materials, and different
production processes. A review of SPC techniques suitable for short-run data
can be found in Del Castillo et al. (1996).

Throughout this thesis, methods for dealing with situations where
only the problem of autocorrelation is present in the data are discussed.
Sometimes though, a situation where both the independent and the long run
data assumption are violated simultaneously arises.

Wright et al. (2001) investigated the use of the joint estimation (J/I)
outlier detection method of Chen and Liu (1993a,1993b) as an SPC technique

for short run autocorrelated data for time series with length ranging from
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10.3 Short-Run SPC

n=9 to n=25. An outlier is considered equivalent with an out of control
observation.

There are four types of outliers. The first is the additive outlier (AO)
which is a one-time event in the series and its only effect is at the time when
it occurs. The second type is the level shift (LS) which occurs through a step
function and permanently changes the series altering the observations. The
third is the innovational outlier (I0) which occurs through a pulse function
and affects the time series by altering the random shock. The last outlier, the
temporary change (TC), also occurs through a pulse function but has an initial
impact that decays exponentially according to some dampening factor.

All the outliers are not equivalently significant and false alarms are
very costly, therefore in SPC monitoring one would like to now both the type
and the time of an out of control observation. Joint Estimation (JE) is able to
detect process shifts (i.e., an L.S) which are the most significant in terms of
statistical process control. Wright et al.(2001) presented a brief description of
the JFE method and investigated its effectiveness for short run autocorrelated
data.

The JE method is conducted in three stages. At the first stage the
maximum likelihood estimates of the parameters for the proper ARMA model
are derived and the outliers are detected. At stage two the procedure jointly
estimates the outliers effect using multiple regression, computes the estimated
t-values of the estimated weights and compares their absolute value with a
critical value. For any outlier detected, if the absolute value of its s-value is
less than the critical value, the outlier is determined to be not significant and
is removed from the set of identified outliers. Then the procedure obtains the
adjusted series by removing significant outliers effects and derives new
maximum likelihood estimates of the model parameters based
on the adjusted series. At stage three the procedures seeks to detect outliers
based on final parameter estimates.

The implementation of the joint estimation method includes the
selection of the appropriate time series model to describe the available data
and the determination of the critical value. The time series model can be
selected using the methods described in chapter 3. Wright et al. (2001)

provided tables for choosing the critical value taking into consideration the
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10.4 The Economic design of Averages Control Charts

acceptable levels of outlier location detection, the type of the outlier to be
identified and the false alarm rates. They recommended though a choice of a

critical value at least equal to 2.

10.4 The Economic Design of Averages Control Charts

The economic design of a control chart is a way of making decisions
concerning the sample size n, the frequency of sampling A, and the
coefficient £ of the control limits of a chart by minimizing the average overali
cost.

In /956, Duncan presented the first cost model to determine the three
parameters for the X -charts. Later many other models were developed.

Chou et al. (2001) used Duncan’s cost model as the objective function
to be minimized for the economic design application of average control
charts for correlated data.

The components of Duncan’s model include:

» The cost of an out of control condition

= The cost of false alarms

» The cost of finding an assignable cause

= The cost of sampling, inspection, evaluation and plotting.

Duncan(1956) assumes that the process starts in an in-control
situation, shifts to an out-of-control condition, has the out of control condition
detected, and results in the assignable cause being identified. The total time
for these four states of monitoring a process via SPC to happen, defines the
cycle length.

Considering the time parameters and the associated cost as given, the
optimal values for the three decision factors of the average chart can be
determined by using optimization techniques.

The expected length of a cycle E(7) is

1 h
E(T)=—+
(Limgity

-7+gn+D

where

A: reciprocal of the average process in control time
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10.4 The Economic design of Averages Control Charts

B Type Il error probability of the chart
g: the average sampling, inspecting, evaluating, and plotting time per sample
D: the time required to find the assignable cause

Besides, 7 is the average time the process goes out of control within

an interval between the jth and the (j+1)th samples and equals to

(j+1)h -~ .
G et M- gh)dt - (1eqn)e bR

fiiihedian, o | aMIset) a2 12

T

The expected cost per hour , denoted by E(C) is

aj+an  a,[E(T)=(1/2)] +as +aase™ /(1-e*)

Hlss E(T)

where
a;: the fixed sampling cost
az : variable sampling cost
az: cost of finding an assignable cause,
ay: hourly penalty cost for operating out-of —control
as: cost of investigating a false alarm
It is obvious from the above equations that the Type I error
probability of the chart namely the a risk, and the Type II error probability of
the chart # must be determined to obtain the value of the expected cost.
Chou et al. (2001) provided these probabilities for correlated
observations after assuming that each sample is a realization of a random
vector X={X,,..,X,} which has a multivariate normal distribution N(u,V)
where u is the mean vector and V is the covariance matrix which equals to
o’R, where R={r;;} with ij=1,. ,nis the correlation matrix. Based on these

assumptions the sample mean is normally distributed with mean E(X)= x4 and

2
variance V(X)= a—[l +(n- l)p]
n

)

i#j

where = .
2 n(n-1)

The error probabilities for correlated samples are
a=2P|Z> e
,/1+(n—1)p
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10.5 The Integrated Process Control

" —k-6vn k—o5n
=P <l < m———
d [\/1+(n—1)p< <\/1+(n—1)p}

where Z is the standard normal distribution and & is the amount of the shift in
the mean in terms of standard deviation.

Chou et al. (2001) impiemented the economical design of the averages
chart to correlated samples and concluded that highly positive correlated
data result in a smaller sample size, a frequent sampling interval and narrower
control limits. They also mentioned that the power of the chart becomes worse
as the correlation coefficient increases. Highly negatively correlated data on
the other side, yields a smaller sample size and narrower control limits, not
significantly affecting the sampling interval (this model could be questioned
see Woodall(1986)).

10.S The Integrated Process Control

The Integrated Process Control (/PC) is a procedure which
simultaneously applies techniques of the Engineering Process Control (EPC)
and the Statistical Process Control (SPC) aiming to the reduction of the
variation of the process.

EPC techniques can be applied to processes where there is a
maniputable variable that affects their output. During the ZPC procedure the
process whose level wanders about, is manipuiated by some compensators to
bring the proces‘s level back to target. The adjustment is usually employed to
the maniputable variable of the process using information about its current
level or deviation from a desired target. This procedure is called feedback
control. For issues involving the EPC procedures see Ogata(1990) or Box and
Luceno(1997) and Montgomery(2001) .

A simple adjustment scheme is the Integral Control . To see how this
procedure is applied suppose that the process output characteristic of interest
at time ¢ is X, and also that the level of the process which we want to maintain
is 7. This process presents a drifting behavior away from the target level
caused by unknown and uncontrollable disturbances but it can be compensated

by making adjustments to the set point of a maniputable variable v,. The

127



10.5 The Integrated Process Control

output of such a process which is usually autocorrelated might be the
molecular weight of a polymer and the maniputable variable the catalyst feed
rate (see Montgomery(2001)). Considering the constant g as a regression
coefficient that relates the magnitude of a change in v, to a change in X;
within one period , the process can be described by

Xi+1-T = gv,
and if no adjustment is made the process drifts away from the target according
to

Xev1-T = Ny
where N,.; is a disturbance which is unknown but can be predicted using an
EWMA with parameter A

N, =N,+A(N,=N,)=N,+ e,
where e, is the prediction error at time period ¢. As shown in 3.5.2 this is
equivalent with the prediction for an ARIMA(0,1,1) with 6=1-A.
Under these assumptions the adjustment to be made to the

maniputable variable at time ¢ can be shown equal to

A/, A
Vi~V = "_()‘t -T)= ~=5€
g g
by summing up this equation the actual setpoint of the maniputable variable at
time ¢ is
Ad
v, =—2¢
8 i=1

The integral control is a feedback control scheme that sets the level of
the maniputable variable equal to a weighted sum of all current and previous
deviations from the target. When there is a reason to consider the last two
errors ¢, and e,.; the adjustment equation can be written in terms of two
constants as g(v,v..;)=cjetce,.; and by summing up this expression the

setpoint becomes
t
v, =kpe +kY ¢
i=1

where k,=-(cy/g) and k;=(c;+cy)/g. This adjustment procedure is called
Proportional Integral (PI).
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10.5 The Integrated Process Control

When a process level has a wandering behavior as well as level shift
which is the case of correlated data, an /PC procedure which along with the
EPC control applies also an SPC activity is to detect the occurrence of a shift
in the process level due to a special cause might be used. For details in the
IPC techniques see Nembhard and Mastrangelo(1998) .

Nembhard(1998) investigated the use and the effectiveness of /PC
policies in noisy dynamic systems which resemble the dynamics that can
produce correlated data. The output of noisy dynamic systems is the result of
combining a dynamic plant process and a noise process which can be
represented by an ARMA(p,q) model.

Nembhard(1998) considered a proportional-integral (P/) controller as
the EPC policy and a Shewhart X-chart as the SPC policy. He evaluated the
control policies based on the average squared error of the output from target,
the number of adjustments, the average magnitude of adjustments and the
number of alarms. He concluded that for simple noisy dynamic systems i.e.,
first order processes with ARMA(1,1) noise it is preferable to use only P/
control. For complex noisy dynamic systems i.e., second order processes with
ARMA(2,2) noise he reccommended the implementation of a Shewhart chart to
indicate a special cause and only when the special cause is detected the use of
the P/ controller.

Park(2001) developed an IPC procedure to adjust the process level
close to target and in the meantime to monitor the occurrence of special
causes. This procedure can be applied when correlation is present in the data.
He considered a process noise which follows an ARIMA(0,1,1) model in the
absence of a special cause, and an ARIMA(0,1,1) with a step shift in its level
under the presence of a special cause. The EPC part of the /PC scheme
performs an adjustment procedure to the process whenever the predicted
deviation exceeds some bounds. The monitoring part of the scheme is
performed by using the EFWMA chart with forecast errors .

The optimal control procedures and the effectiveness of the /°C
policy are derived through the economic design of the charts. Park(2001)
concluded that the /PC procedure is more efficient than the EPC procedure

alone.
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10.6 Variable Sample Interval

10.6 Variable Sample Interval

Through all this thesis we have assumed that the samples or the
individual observations for use with all the charts, were taken from the
various processes at evenly spaced or fixed sampling intervals (£S7). For
data that exhibits some serial dependence though, it is natural to consider that
shorter sample intervals will increase the autocorrelation. It is useful to
consider sampling intervals whose length of time between samples varies as
long as this is done with caution.

Reynolds et al. (1988) proposed a sampling technique for use with the
averages Shewhart chart. Later, Reynolds (1995) studied the properties of
such charts and Reynolds et al.(1996) used these techniques with correlated
data.

The variable sampling interval (VSI) technique introduced by
Reynolds et al (1988) determines the sampling rate according to whether a
sample point approaches the control limits. If a sample point falls well
within the control limits, the next sample is delayed but if it falls within but
close to the control limits, the sampling rate is increased.

Reynolds et al. (1988) showed that the ATS (average time to signal)
for the VSI chart is lowest when two sampling intervals are chosen as 0./ and
1.9 times the sampling interval used for the FSI case. To determine how
much the current sample mean varies from the target mean two pairs of
guidelines I; and I, each centered at the sample mean po , defined as [, =( u,-
koyx, uo+koy) and I1=( up-3ox, po+kox) U ( po-kox, up+30x). The value of k
should fall within I, and I, with equal probability when the process is in
control.

When taking into consideration autocorrelation, oy is calculated
following the methods of Box and Luceno (1997) for the time series model
that is used to describe the process.

If the current measurement falls relatively far from the target mean
i.e., falls in I, the shorter sampling interval is used; whereas, if it falls in I’
the longer interval is used. The structure of the averages control chart with

variable control limits is shown in Figure 10.1.
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10.6 Variable Sample Interval

Prybutok et al. (1997) investigated the differences in terms of
simulated A7S performance for VS/ and FS/ sampling when the data is
positively autocorrelated. They used fixed sampling interval length of
L=10,20,50 and consequently variable sampling interval at d;,=0./L and
d;=1.9L. They compared two VSI and two FSI charts. One VSI and one IS/
chart were assigned preset control limits at +3oy and the other charts were
assigned limits calculated from estimates ob'tained from the process
observations using 25 initial samples. To model the correlation structure of

the process they used the AR(]) stationary time series model.

I I

1 283 45 6 789
sample number
Figure 10.1: Shewhart averages control chart with variable sampling

interval

They compared via simulation the rate of response for VS/ control
charts with that for FS/ charts after adjusting them for the amount of
autocorrelation and false alarms. They found that for all variable
combinations the ATS was smaller for the VS/ than for the corresponding F'S/
and that this difference was more pronounced for moderate levels of
correlation. They also compared the performance of charts with preset and
calculated limits and found that for moderately correlated processes preset

limits are more effective than calculated limits in detecting shifts in the mean
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10.7 Neural Networks

but tend to increase the false alarm rate. For highly correlated processes
though, the preset limits are not causing more false alarms than the calculated

but are not detecting more effectively the shifts either.

10.7 Neural Networks

A neural network consists of a number of simple, highly
interconnected processing elements or nodes and is a computational algorithm
that processes information by a dynamic response of its processing elements
and their connections to external inputs. Neural networks have the ability to
learn or to be trained which can be viewed as the development of the function
that maps the in put vectors to the output vectors. In Caudill (/989) one can
find the fundamentals of the neural network theory.

The radial basis function (RBF) is a learning algorithm which needs
reduced training time. It can be used for both classification and function
approximation and theoretically can form an arbitrarily close approximation
to any continuous non linear mapping. It consists of a hidden layer composed
of nodes with radial activation functions which produce a localized response
to input stimulus, and an output layer. This way training can be done one
layer at a time, resulting in reduced training times. When the input pattern is
close to its center the output of a hidden node produces a greater output. The
RBF neural network architecture is shown in Figure 10.2. Detailed
descriptions of the RBF network can be found in Moody and Darken(1989)
and Renals and Rohwer(1989) .

The most common radial basis function is a Gaussian kernel function
and for every kernel function the center and the width must be determined.

The Gaussian kernel function is defined as follows

b, =espl-n,(x,-wY(x,-w,)j=12..N
where b; is the output of the jth node in the hidden layer, X, is the input
pattern, WW; is the center of the Gaussian function for node j, 4; is the inverse

of the width associated with the kernel function of node j, and N is the number

of nodes in the hidden layer.
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Output Pattern

input Pattern

Figure 10.2: Radial basis function neural network architecture

The h; parameters are obtained after the termination of the clustering
algorithm by equalizing the average distance between the cluster centers and

the training patterns, thus

hy = inverse[{—}é—JZ (x-w,) (x-w, )]

J
where 6 is the set of training parameters grouped with cluster center ¥}, and
M; is the number of parameters in 6;.

The appropriate center for the kernel function can be determined
through the conscience function described by .Desien0(1988) which is added
to the RBF clustering algorithm to eliminate the problems caused by the
absence of equal probability and ordered cluster centers. The number of
hidden nodes N is determined by experimentation and rules of thumb.

After the learning in the hidden layer, a supervised learning
algorithm is applied to train the weights between the hidden and output nodes.
The learning in the output layer is conducted after the hidden layer training is
complete.

The values of the output layer nodes can be calculated as
N
Cp =2 wub;
=1

where c; is the output of the kth node in the output layer, wj; is the weight
from, the jth hidden layer neuron to the kth output layer neuron, and b; is the

output of the jth node in the hidden layer.
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Neural networks are advocated to be used in many different areas, one
of those is instead of or along with SPC techniques. Neural networks are a
potential tool for recognizing shifts in correlated process parameters as data
independence is not an assumption of neural network theory. Nieckula and
Hryniewicz(1997) used neural networks in conjunction with averages
Shewhart charts. Hambourg et al.(1996) described the use of neural networks
for monitoring autocorrelated data from nuclear material balances.

Cook and Chiu (1998) utilized neural network theory to develop a
method for identifying process shifts and compared that method to SPC
techniques suggested for use with correlated data. It should be mentioned that
no modeling effort is needed to implement the method of neural networks.

The viscosity data set from Box and Luceno (1997) and the
papermaking data set from Pandit and Wu(1983) were used for network
development and training. They compared the performance of the neural
network model with the performance of the residuais chart. They concluded
that the capability of the RBF neural network to identify shifts in process
mean is a substantial improvement over the SPC control charts for correlated
data.

Although the use of neural networks has become very popular because
of their model free and non parametric nature Ryan(2000) points out that their
superiority over other techniques has not yet been clearly established. He also
claims that they have many negative features, one of those being that when
neural networks are repeatedly run on the same data set, different answers are
produced . Therefore, he suggests that they should be applied with caution at

least until more research is conducted and all such matters are resolved.

10.8 The Batch Means Control Chart

Another approach for monitoring correlated data could be breaking
successive groups of sequential observations into batches. Runger and
Willemain (1996) proposed a control chart based on unweighted batch means
(UBM) for monitoring autocorrelated process data. The UBM chart assigns
weights to every point in the batch letting the jth unweighted batch mean be
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10.8 The Batch Means Control Chart

X’_j = EZ’X(J'—I)“"']': 1,2,...

S|~

where b is the batch size. The batch means can be plotted and analyzed on a
Shewhart JX-chart, and the important issue in implementing the UBM
procedure 1s the determination of the appropriate batch size.
Montgomery(2001) mentioned that some procedures for determining the
appropriate batch size have been developed. These procedures are empirical
and do not depend on the time series model that could possibly describe the
correlative structure of the process. The time series model though can be used
as a guidance. For the AR(I) models Runger and Willemain (1996)
recommended the use of a batch size that reduces the lag / autocorrelation of
the batch means to approximately 0./0. This can be done experimentally by
starting with b=/ and doubling b until the lag / autocorrelation of the batch
means approaches 0./.

The UBM control chart is used to break up the autocorrelation of the
data without any time series modeling retaining the basic simplicity of just
averaging observations to form a point in a control chart. This method is
suitable for highly autocorrelated process data such as the output from

computer simulation models.
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A=0,1 A=02

9 y - 5=0 0,5 1,0 2,0 4,0 0 05 1,0 26 40

3,00 8386 368 11,2 46 23 5595 435 106 37 1.8

325 1787,1 482 128 50 25 12282 645 129 4 2,0

0 -~ 3,50 40716 650 147 55 27 28804 1006 IS8 46 2,1
3,75 9864,5 906 168 6 2.8 72233 1664 198 50 23

400 252733 1357 194 65 30 19361,6 2937 254 56 2,4

3.00 712 366 11,5 49 26 481,5 425 109 40 2.1

3,25 14652 474 13 5.4 28 10246 621 13,1 44 2,2

2 A 3,50 32097 632 149 59 29 23233 954 160 48 24
3,75 74747 877 17,1 6,3 3,1 56154 1549 199 53 2.5

400 184781 1284 197 61 3,3 14456,6 2676 254 58 26

3,00 4138 348 11,5 49 26 2926 38,4 109 4.1 2.1

3.25 7615 443 13) 53 27 5636 54,1 13,0 45 22

2 5 3,50 14980 576 14,9 58 2,9 11459 792 158 49 2.4
3,75 30790 776 170 63 3,1 24619 1214 194 54 2,5

4,00 66524 110,1 195 6.8 3,3 55896 1957 243 59 26

3,00 2765 334 116 49 26 2004 355 109 40 21

3,25 4748 420 132 54 2,7 3582 486 130 44 22

2 9 3,50 8504 538 150 58 29 6703 686 156 50 24
3,75 15907 70,1 172 63 3,1 13157 1004 190 54 25

4,00 31083 933 197 68 3,3 27096 1534 235 60 2,6

3,00 5663 364 119 54 3,0 3955 41,5 114 45 24

32 1148 467 136 58 3,1 8079 596 136 49 2,5

4 A 3,50 23235 61,5 154 63 33 17527 895 165 54 2,7
3,75 51297 840 176 68 3,5 ' 40393 1416 203 59 28

400 119852 1216 202 7.3 3,7 98856 2373 256 64 3,0

3,00 2091 330 12,1 54 30 1582 34,5 11,5 46 24

3,25 340,1 409 137 58 3,1 2689 462 13,5 50 2,6

A 5 3,50 5735 516 155 63 33 4758 637 1601 55 2,7
3,75 10051 665 176 68 35 8791 907 194 60 2,9

4,00 18332 886 199 13 3,7 1697,3 1339 238 65 3,0

3,00 1202 30,7 12,2 53 3.0 93,9 30,5 1.5 47 2.4

3,25 1773 375 138 59 3.1 1432 394 135 51 2.5

4 9 3,50 2679 461 156 64 3,3 2257 517 158 55 2.7
3,75 4158 570 177 69 35 3593 694 188 6,1 30

4,00 6642 715 20, 74 37 6219 957 226 66 3.1

3,00 407,1 365 13,0 62 36 3027 408 12,5 54 3,0

3,25 7486 462 146 66 38 5838 570 148 59 3.2

6 A 3,50 14474 598 16,5 7.1 40 11888 830 176 64 34
3,75 29467 798 187 16 42 25598 1265 214 70 36

4,00 63172 1123 212 8,1 44 5827,2 2031 265 76 3,7

3.00 1090 31,7 133 6.3 36 899 318 127 55 3.0

3,25 1568 383 149 67 38 1356 407 148 60 32

6 5 3,50 2304 467 167 73 40 2102 53,1 173 65 34
3,75 3466 580 183 78 42 - 3355 706 203 70 3.6

4,00 5350 749 212 8,4 44 5522 960 242 16 3,7

3,00 629 284 13,5 64 3.6 528 271 128 56 30

3,25 830 339 151 6,9 38 724 338 147 61 3,1

6 9 3,50 1107 404 169 74 40 1006 421 170 65 34
3,75 1496 480 188 79 42 1405 531 196 7,1 36

- 4,00 2051 573 210 85 44 1932 679 230 77 3,7
3,00 2445 390 158 8.2 5.0 2088 438 157 75 4.4

3,25 4015 486 177 8.8 5.3 3740 594 182 81 46

8 A 3,50 6843 610 197 93 55 6996 837 214 88 49
3,75 12133 791 22,1 100 57 13928 1237 253 95 5.1

4,00 22403 1000 250 106 60 30263 1948 306 102 53

3,00 608 323 165 8.4 5.0 56,6 321 163 1.8 44

3,25 782 380 184 91 52 767 398 186 85 46

8 6 3,50 10,4 455 204 97 55 1053 498 214 92 49
3,75 1328 554 221 103 58 1469 623 247 99 52

4,00 1759 619 245 110 6,1 2086 802 287 107 54

3,00 389 264 164 87 50 365 261 162 19 44

3,25 47,1 309 183 9.4 53 46,1 318 185 86 46

8 9 3,50 572 359 202 100 56 583 382 210 93 50
3,75 697 412 221 107 58 738 457 237 101 53

4,00 854 47,1 242 114 6.1 939 552 269 109 5.5

TABLE A.1: ARL for the EWMA chart of the observations for the 4AR(1) plus a
random error model where ¢ is the autoregressive parameter, y/=az,/a‘7x and ¢ is the
magnitude of the shift.
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9 n=2 n=3 n= n= h= n=7 n=8 n=9 n=10 n=20
-0,9 12,61 16,59 23,79 28,04 33,86 37,96 4298 46,86 51,31 84,67
-0,8 11,94 15,53 21,37 24,82 29,16 32,28 3580 38,62 41,64 64,72
-0,7 11,28 14,51 19,24 22,13 25,47 28,02 37,71 33,02 3536 54,61
-0,6 10,62 13,55 17,39 19,92 22,61 24,85 27,09 29,13 3,14 4847
-0,5 09,95 12,66 15,83 18,13 20,43 22,47 24,45 26,33 28,15 4434
-0,4 09,29 11,85 14,53 16,69 18,74 20,65 22,48 24,24 25,95 41,40
-0,3 08,63 11,12 13,48 15,52 17,44 19,25 20,99 22,67 24,31 39,28
-0,2 07,96 10,45 12,64 14,60 16,43 18,18 19,87 21,50 23,10 37,77 =
-0,1 07,30 09,82 11,94 13,86 15,67 17,39 19,05 20,66 22,23 16,76 E
0,0 06,63 09,21 11,34 13,28 15,09 16,81 18,48 20,09 21,67 36,19 L
0,1 05,97 08,59 10,79 12,78 14,64 16,41 18,11 19,75 21,35 36,02 S
0,2 05,31 07,94 10,23 12,32 14,27 16,12 17,88 19,58 21,24 36,23
0,3 04,64 07,24 09,62 11,83 13,90 15,86 17,73 19,52 21,26 36,77
0,4 03,98 06,49 08,91 11,23 13,44 15,54 17,54 19,46 21,32 37,62
0,5 03,32 05,65 08,05 10,44 12,74 15,01 17,17 19,25 21,26 38,73
0,6 02,65 04,73 07,00 09,36 11,74 14,09 16,40 18,65 20,84 39,96
0,7 01,99 03,71 05,72 07,91 10,20 12,55 14,92 17,28 19,61 40,86
08 0133 0259 04,15 0595 0792 10,03 1223 1450 1682 40,00
0,9 00,66 01,35 02,26 03,36 04,63 06,06 07,62 09,30 11,09 32,42
-0,9 14,67 19,66 28,18 33,17 40,02 44,82 50,70 55,20 60,40 98,60
-0,8 14,18 18,36 25,23 29,22 34,26 37,82 41,87 45,04 48,46 73,62
-0,7 13,40 17,12 2262 2590 29,70 32,53 35,52 38,03 40,59 61,00
-0,6 12,61 15,93 20,35 23,13 26,13 28,54 30,96 33,14 35,27 53,42
-0,5 11,82 14,83 18,40 20,87 23,37 25,54 27,64 29,62 31,53 48,37
-0.4 11,03 13,81 16,77 19,05 21,24 23,25 25,17 27,01 28,80 44,80
-0,3 10,24 12,89 15,44 17,59 19,60 21,50 23,31 25,07 26,77 42,24
-0,2 09,46 12,07 14,38 16,43 18,35 20,17 21,93 23,62 25,28 40,42 o
-0,1 08,67 11,31 13,53 15,54 17,42 19,21 20,93 22,61 24,24 39,23 E
00 07,88 10,60 12,84 14,86 16,75 18,55 20,28 21,96 23,59 38,58 I
0,1 07,09 09,89 12,23 14,33 16,28 18,13 19,90 21,61 23,28 38,44 53
0.2 06,30 09,16 11,63 13,86 15,93 17,88 19,73 21,52 23,24 38,78 &
0,3 05,52 08,38 10,98 13,38 15,61 17,70 19,68 21,58 23,41 39,55
04 04,73 07,53 10,22 12,78 15,19 17,46 19,62 21,68 23,65 40,73
0,5 03,94 06,58 09,28 11,95 14,53 17,00 19,36 21,63 23,80 42,28
0,6 03,15 05,52 08,11 10,79 13,46 16,09 18,65 21,14 23,54 44,06
0,7 02,36 04,34 06,65 09,15 11,77 14,44 17,11 19,76 2237 45,62
0,8 01,58 03,03 04,84 06,92 09,19 11,62 14,14 16,74 19,37 45,32
0,9 00,79 01,59 02,64 03,92 05,40 07,06 08,87 10,82 12,88 37,36
-0,9 18,14 23,79 34,07 40,05 48,29 54,01 61,06 66,41 72,60 11732
-0,8 17,19 22,17 30,41 35,12 41,11 4527 50,01 53,67 57,62 85,55
0,7 1623 2062 27,17 30,96 3539 3858 4200 4477 4762 69,48
-0,6 15,28 19,14 2433 27,46 30,87 33,50 36,17 38,50 40,81 59,94
-0,5 14,32 17,74 21,86 24,57 27,32 29,64 31,91 34,00 36,03 53,63
-0,4 13,37 16,44 19,77 22,21 24,58 26,70 28,74 30,67 32,55 49,21
-0,3 12,41 15,26 18,05 20,33 22,46 24,46 26,36 28,20 29,98 46,04
-0,2 11,46 14,21 16,68 18,85 20,87 22,78 24,61 26,38 28,10 43,81 N
-0,1 10,50 13,28 15,62 17,73 19,70 21,57 23,38 25,12 26,82 42,36 ﬁ
0,0 09,55 12,43 14,80 16,92 18,91 20,79 22,60 2435 26,06 41,61 i
0,1 08,59 11,61 14,11 16,35 18,41 20,36 22,22 24,02 25,76 41,51 by
0,2 07,64 10,78 13,47 15,89 18,11 20,18 22,15 24,03 25,85 42,03 .
0,3 06,68 09,89 12,79 15,43 17,87 20,13 2226 2428 26,22 43,12
0,4 05,73 08,92 11,97 14,84 17,52 20,03 22,38 24,61 26,73 44,76
0,5 04,77 07,82 10,93 13,98 16,90 19,67 22,30 24,79 27,17 46,92
0,6 03,82 06,58 09,60 12,70 15,77 18,78 21,68 24,47 27,16 49,48
0,7 02,86 05,19 07,90 10,84 13,89 16,98 20,06 23,10 26,08 51,95
0,8 01,91 03,63 05,77 08,22 10,91 13,75 16,71 19,74 22,81 52,46
0,9 00,95 01,90 03,16 04,68 06,44 08,40 10,55 12,85 15,29 44,00

TABLE A.4: Modified Control Limits for the $° —chart with n: the sample size p:the
autoregressive parameter for the AR(1) model.
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@ n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=20
-0,9 5,02 5,23 5,39 5,51 5,62 5,71 5,79 5,84 5,91 6,32
-0,8 4,88 5,15 5,35 5,50 5,61 5,72 5,79 5,87 5,93 6,33
-0,7 475 5,04 5,26 5,40 5,53 5,62 572 5,78 5,85 6,26
-0,6 4,61 4,92 5,14 5,31 5,42 5,52 5,60 5,76 5,74 6,30
-0,5 4,46 4,79 5,01 5,80 5,29 5,40 5,47 5,55 5,601 6,01
-0,4 431 4,65 4,89 5,04 5,60 5,27 5,35 5,42 5,49 5,89 Y
-0,3 4,60 4,52 4,75 4,92 5,04 5,50 5,24 5,32 5,38 5,80 E
-0,2 3,99 438 4,62 4,80 4,93 5,04 5,14 5,22 5,28 5,72 J
-0,1 3,82 4,25 4,51 4,70 4,84 4,96 5,05 5,14 5,21 5,68 2
0,0 3,64 4,12 4,40 461 4,76 4,88 4,98 5,08 5,16 5,65 =
0,1 3,46 3,98 429 451 4,68 4,82 4,93 5,02 5,11 5,62 3
0,2 3,25 3,83 4,17 442 4,60 4,74 4,87 4,97 5,06 5,60 ‘:
0,3 3,05 3,65 4,04 4,30 4,51 4,66 4,79 491 5,00 5,56 %
0,4 2,83 3,46 3,88 4,17 4,39 4,55 4,69 4,82 4,92 5,52
0,5 2,58 324 3,67 3,99 4,23 4,42 457 4,70 481 5,45
0,6 2,30 2,96 3,42 3,75 401 422 438 453 4,65 5,36
0,7 1,99 2,63 3,08 3,43 3,70 3,91 4,11 4,26 4,40 4,19
0,8 1,63 2,20 2,63 2,95 3,23 3,46 3,66 3,83 3,98 4.87
0,9 1,15 1,59 1,94 2,22 2,46 2,66 2,85 3,02 3,17 4,16
-0,9 5,47 5,67 5,83 5,95 6,06 6,14 6,21 6,27 6,33 6,72
-0,8 533 5,58 5,77 591 6,02 6,11 6,19 6,26 6,32 6,70
-0,7 5,18 5,47 5,67 5,81 5,92 6,02 6,09 6,16 6,23 6,60
-0,6 5,02 5,33 5,54 5,68 5,80 5,89 5,96 6,04 6,08 6,47
-0,5 4,86 5,18 5,39 5,53 5,65 5,74 5,82 5,88 5,95 6,33
-0,4 4,70 5,02 5,24 5,38 5,50 5,59 5,68 5,74 5,81 6,18
-0,3 4,53 4,87 5,08 5,24 5,36 5,45 5,53 5,60 5,67 6,07
-0,2 435 4,72 4,94 5,10 5,23 5,33 5,41 5,50 5,56 5,98 5
-0,1 4,16 457 481 499 5,13 5,23 5,33 541 5,48 5,93 E
0,0 3,97 443 4,69 4,88 5,03 5,15 5,26 5,34 5,42 5,89 I
0,1 3,77 428 4,58 4,79 4,96 5,09 5,19 5,29 5,37 5,86 g
0,2 3,55 4,12 4,46 4,69 4,88 5,01 5,13 5,24 5,32 5,84 =
0,3 3,32 3,94 4,31 4,59 4,78 4,94 5,06 5,17 5,26 5,81
0,4 3,08 3,74 4,16 4,44 4,66 4,83 497 5,09 5,19 5,77
0,5 2,81 3,50 3,95 4,26 4,50 4,69 4,84 4,96 5,08 5,71
0,6 2,51 3,20 3,68 4,02 4,28 4,49 4,66 4,80 4,92 5,61
0,7 2,18 2,85 333 3,68 3,95 4,18 4,38 4,53 4,67 5,45
0,8 1,78 2,39 2,84 3,19 3,47 3,70 391 4,08 424 5,15
0,9 1,26 1,73 2,10 2,40 2,65 2,87 3,07 3,24 3,39 4,42
-0,9 6,03 6,21 6,39 6,50 6,60 6,67 6,74 6,81 6,85 7,22
-0,8 5,87 6,12 6,29 6,42 6,53 6,61 6,69 6,76 6,81 7,17
-0,7 5,70 5,97 6,17 6,31 6,41 6,49 6,57 6,63 6,69 7,05
-0,6 5,53 5,82 6,01 6,15 6,26 6,34 6,42 6,48 6,53 6,88
-0,5 5,35 5,65 5,85 5,98 6,09 6,18 6,25 6,31 6,37 6,71
-0,4 5,17 5,48 5,67 5,81 5,92 6,01 6,07 6,14 6,19 6,54
-0,3 4,98 5,30 5,49 5,63 575 5,84 591 598 6,04 6,40
-0,2 4,78 5,13 5,33 5,48 5,60 5,69 5,78 585 591 6,30 n
-0,1 4,58 4,96 5,19 5,36 5,48 5,58 5,67 5,74 5.81 6,24 E
0,0 437 4,80 5,05 5,23 5,38 5,49 5,59 5,67 5,74 5,20 I
0,1 4,15 4,64 4,93 5,13 5,29 5,42 5,53 5,62 5,69 6,17 2
0,2 391 4,47 4,80 5,04 5,21 5,35 5,46 5,56 5,65 6,14 F
0,3 3,66 4,29 4,67 4,93 5,12 5,27 5,40 5,50 5,59 6,12
0,4 3,39 4,08 4,50 4,79 5,00 5,17 5,31 5,42 5,52 6,08
0,5 3,09 3,83 4,28 4,60 4,84 5,03 5,18 5,30 5,42 6,02
0,6 2,76 3,52 4,01 4,35 4,61 4,82 499 5,13 5,26 5,92
0,7 2,39 3,13 3,63 3,99 4,28 4,51 4,70 4,86 5,00 5,77
0,8 1,96 2,63 3,10 3,47 3,77 4,01 4,22 4,40 4,56 547
0,9 1,38 1,91 2,30 2,62 2,88 3,12 3,32 3,51 3,67 474

TABLE A.5: Modified Control Limits for the R—chart with n: the sample size, ¢:the
autoregressive parameter for the AR(/) model
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sz/O’ZXO 10
E-&oxe | Wo @

4 365,8 370,3 2582 26,07 12,00 11,96 3,34 3,32
i 370,0 363,3 32,17 25,03 13,02 12,03 3,14 3,91
1 8 367,0 370,6 24,90 26,28 13,91 14,80 5,00 5,09
0,0 3695 3773 44,58 2584 20,06 14,64 5,17 5,39
4 370,9 363,4 31,16 31,88 12,87 12,62 3,15 3,19
9 3699 371,3 30,55 2940 12,40 13,09 2,99 3,84
g ,8 375,5 366,0 38,51 42,88 16,12 18,33 3,66 3,88
370,4 3678 4064 3873 16,56 1697 3,54 4,57
4 12,08 11,81 9,31 9,44 7,36 7,35 3,09 3,12
1 50,09 1235 14,40 9,46 8,86 7,52 3,03 3,47
’ ,8 16,87 15,63 13,28 13,42 10,38 10,78 4,60 4,64
1,0 78,30 1589 2509 1340 1519 10,39 4,86 4,84
4 22,78 21,63 12,47 12,64 8,32 8,66 2,96 2,97
9 96,58 2241 18,01 12,77 9,42 8,79 2,82 3,44
’ ,8 83,40 59,03 22,40 24,69 12,08 13,49 3,36 3,55
2075 6263 3035 2357 13,66 13,07 3,26 4,03
4 3,75 3,74 3,77 3,77 3,68 3,70 2,64 2,69
1 7,31 3,98 5,11 3,95 4,34 4,01 2,54 2,95
’ .8 4,11 4,08 4,87 4,96 5,03 5,23 3,72 3,79
2,0 11,76 4,18 8,58 5,07 7.16 5,33 3,93 4,07
4 5,43 5,37 4,78 4,81 4,23 4,31 2,58 2,58
9 17,38 5,94 7,22 5,16 4,95 4,90 2,50 3,04
¥ .8 12,05 9,62 7,55 8,23 5,83 6,39 2,71 2,88
5048 1323 1264 9,43 7,05 7,33 2,64 3,48
4 1,95 1,96 2,08 2,07 2,18 2,17 2,15 2,14
1 2,14 2,43 2,26 2,36 2,27 2,50 2,12 2,47
’ ,8 2,18 2,03 2,22 2,29 2,45 2,54 2,73 2,75
30 2,79 2,50 2,86 2,57 3,04 2,81 2,82 3,16
4 2,25 2,34 2,32 2,38 2,30 2,38 2,11 2,08
9 3,44 3,07 2,79 2,88 2,59 2,93 2,06 2,55
i .8 1,75 1,83 2,13 2,26 2,28 2,48 2,06 2,17
4,49 455 2,98 3,90 2,70 3,75 2,01 2,66

Upper le ft entries are the steady state ARL for shceme a
Upper right entries are the steady state ARL for shceme b
Lower left entries are the steady state ARL for shceme ¢
LLower right entries are the steady state’ AR/, for shceme d

TABLE A.6: Steady —State ARL of Four Charts for Monitoring the Process Mean
and Variance when the increase in o’y is caused by an increase in g y Where ¢ is the

autoregressive parameter for the AR(1) plus a random error model and y/o=a},,o/azxo
(A=0,2 for both EWMA Charts).
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/0 xo 1 2 3 10

¢-éo/oxo | wo @

4 367,9 3658 30,06 30,72 12,61 12,53 3,08 3,05

1 317,7 3655 29,14 27,76 12,01 1231 294 3,65
) 8 | 3644 3663 3073 31,75 12,26 12,61 2,99 297

0,0 370,2 3750 2808 27,12 11,28 12,16 282 36l
4 | 3689 371,8 2596 27,24 10,57 11,09 2,82 2,82

9 370,3 3642 21,90 21,77 923 10,13 2,62 347

,8 3744 376,2 10,09 10,29 5,03 524 2,07 2,10
3699 3715 833 934 4,51 5,50 1,97 2,60

4 11,97 11,88 8,65 8,63 6,57 6,77 2,79 2,82

1 49,57 1239 1327 880 762 694 2,72 3,18
? .8 16,78 15,49 10,18 10,27 7,24 721 2,84 2,83
1,0 78,52 16,06 15,13 10,42 808 7,51 2,71 3,25

4 23,25 21,31 11,16 11,16 6,97 7,17 2,60 2,61
96,46 2249 13,69 11,10 7,23 79 22T 3,03

2 ,8 82,07 59,02 7,56 808 419 443 1,95 1,99
2170 63,50 7,08 769 396 4,80 1,89 237

4 33747, 1357471 3,42 07 3,48 " 320 3327 S8230) § 2334

1 7,16 397 449 3,69 366 3,58 235 2,71

.8 436 4,03 368 3,81 3,37 3,47 2,38 2,41
2,0 11,56 4,18 5,245 8 w509, | 13194 3,86 2,31 2,77

4 544 15,460 | 4,22:; 074,274 13563 103,70 41 2425 2,31
17,24 5,93 5,67 0014,82 AN4107 454506 Ww23230 11 02%67]

,8 12,071 ‘9,50" 4" 3,74 %11 4,17 13267 52191 1,79 1,82
51,14 13,21 3,91 5,02 5%:12.72 _TEA3863 1,74 2,16

4 1,97 1,98 1,95 1,9¢ 1,99 1,99 1,95 1,93
2,16 243 206 229 205 2.35 1,80 2,25

8 | 219 2,04 1,99 203 202 207 193 1,9
3,0 280 248 224 240 2,13 244 191 229

4 2,25 233" - 2,147 122,23=0 02,12 216 1,89 1,92
3,41 3,12 244 278 224 2,71 1,84 2728

; ,8 1,76 1,83 1,71 1,86 1,65 1,79 1,54 1,60
4,53 4,48 1,78 2,72 167 242 1,54 1,90

Upper le ft entries are the steady state AR/ for shceme a
Upper right entries are the steady state ARL for shceme b
Lower left entries are the steady state AR/ for shceme ¢
Lower right entries are the steady state ARL for shceme d

TABLE A.7: Steady —State ARL of Four Charts for Monitoring the Process Mean
and Variance when the increase in o’y is caused by an increase in e ¢ where ¢ is the

autoregressive parameter for the AR(1) plus a random error model and y/o:az,,,y’azm
(A=0,2 for both EWMA Charts).
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ARL | SRL | ARL | SRL | ARL | SRL | ARL | SRL | ARL | SRL
5| o 0=,950 0=,475 0=,000 9=,450 ¢=,450
0,0 | ,900, 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88
0,5 272,90 27858 10,53 4,43 5,00 1,55 3,06 0,80 1,50 0,50
1,0 135,35 150,34 4,74 1,77 2,76 0,80 1,94 0,44 1,00 0,04
1,5 54,98 72,95 3,01 1,13 2,01 0,58 1,59 0,49 1,00 0,00
2,0 18,53 31,26 2,18 0,83 1,63 0,50 1,24 0,43 1,00 0,00
2,5 5,76 10,77 1,69 0,65 1,36 0,48 1,05 0,22 1,00 0,00
3,0 2,38 3,12 1,39 0,52 1,15 0,36 1,01 0,07 1,00 0,00
0,0 ,450 | 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88
0,5 349,69 356,77 164,40 164,00 45,64 43,74 8,95 6,49 1,76 0,44
1,0 274,69 318,63 48,67 4836 8,04 6,00 2,74 0,98 1,06 0,23
1,5 147,60 244,01 16,85 16,57 3,45 1,78 1,89 0,54 1,00 0,01
2,0 4351 132,79 7,01 6,69 2,24 0,94 1,54 0,50 1,00 0,00
2,5 6,61 45,22 3,49 3,09 1,71 0,66 1,27 0,44 1,00 0,00
3,0 1,30 9,44 2,08 1,58 1,40 0,52 1,09 0,28 1,00 0,00
0,0 ,000 | 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88
0,5 330,95 357,37 253,13 253,58 155,22 154,72 65,54 64,54 2,67 1,27
1,0 138,84 267,19 117,96 120,19 43,89 43,39 11,44 10,28 1,42 0,49
1,5 11,21 75,75 52,01 55,80 14,90 14,46 3,88 2,68 1,04 0,19
2,0 1,08 6,21 22,64 27,06 6,30 5,78 2,20 1,06 1,00 0,02
2,5 1,00 0,15 9,57 13,37 3,24 2,70 1,64 0,63 1,00 0,00
3,0 1,00 0,00 4,02 6,42 2,00 1,41 1,35 0,49 1,00 0,00
0,0 [ -,450 ] 370,38 0,999 370,38 369,88 370,38 369,88 370,38 369,88 370,38 369,88
0,5 268,11 1,080 271,96* 273,55 210,64 210,58 151,73 151,22 24,19 23,43
1,0 16,69 1,924 137,62 144,63 78,83 73,41 4213 41,60 3,44 2,51
1,5 1,01 6,757 59,61 71,77 30,57 31,62 14,26 13,71 1,65 0,66
2,0 1,00 5,755 21,92 34,22 12,74 13,91 6,01 5,45 1,22 0,42
2,5 1,00 0,154 6,70 14,49 5,67 6,60 3,12 2,54 1,04 0,20
3,0 1,00 0,00 2,11 5,11 2,77 3,23 1,95 1,34 1,00 0,06
0,0 | -,900 370,38 0,999 370,38 369,8 370,38 369,88 370,38 369,88 370,38 369,88
0,5 4275 3,878 265,34 276,67 221,02 223,09 184,67 184,64 147,52 147,00
1,0 1,00 0,038 108,52 142,84 82,95 89,30 60,11 60,70 40,04 39,51
1,5 1,00 0,00 22,85 57,79 27,42 34,99 21,19 22,00 13,40 12,86
2,0 1,00 0,00 2,79 9,56 8,11 12,59 8,37 8,91 5,64 5,08
2,5 1,00 0,00 1,13 0,89 2,71 3,91 3,82 3,94 2,95 2,35
3,0 1,00 0,00 1,01 0,14 1,42 1,26 2,10 1,91 1,87 1,23

TABLE A.8:

The ARL and SRL Values for the Residuals X-chart for the
ARMA(1,1) model where ¢ is the autoregressive parameter, 6 is the moving average

parameter and 9 is the magnitude of the shift.
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I/} 0,0 0,5 1,0 1,5 2,0 2.5 3,0 4,0 5,0
4 ¢
=01
2,859 0,0 3704 35,56 9,60 5,13 3,54 2,75 2,27 1,75 1,45
2,859 370,4 35,51 9,52 5,15 35 ARAR2, 72007 0] 1,75 1,45
2,859 0,2 3704 3726 997 528 3,61 2,78 230 1,76 1,45
2,904 370,7 37,59 991 526 3,63 280 231 1,77 1,47
2,859 0,4 3704 40,06 10,57 549 3,71 2,83 2,32 1,76 1,45
2,973 370,2 39,37 1044 547 3,74 28 236 1,80 1,50
2,859 0,6 370,4 4548 11,67 5,83 384 289 235 1,77 1,44
3,094 370,2 4455 11,55 5,81 394 3,00 247 1,88 1,56
2,859 0,8 3704 60,41 1447 | 648 402 295 237 1,77 1,44
3,297 369,6 5596 14,04 | 6,73 437 327 264 1,98 1,63
r=0,5
2,859 0,0 3704 35,56 9,60 5,13 3,54 2,74 227 1,75 1,45
2,859 370,7 3544 957 510 354 277 226 1,74 1,45
2,859 0,2 3704 4402 11,50 587 | 3,91 2,95 2,39 1,78 1,45
3,095 368,8 4296 1148 587 | 3,92 3,01 2,46 1,87 1,55
2,859 0,4 370,4 57,49 1469 7,02 444 322 253 1,81 1,44
3,391 370,2 53,68 14,09 6,91 449 3,35 2,70 2,02 1,67
2,859 0,6 3704 81,78 21,12 921 5,33 3,61 2,69 1,81 1,40
3,797 369,5 73,43 19,10 8,75 548 394 310 228 1,84
2,859 0,8 370,4 136,30 39,72 15,31 7,33 4,18 279 1,73 1,32
4,375 370,1 10741 30,77 13,18] 739 502 380 264 211
w=0,9
2,859 0,0 3704 3556 960 513 3,54 274 227 1,75 1,45
2,859 369,0 35,58 964 512 354 274 227 1,75 1,45
2,859 0,2 370,4 50,63 13,07 | 647 421 3,12 249 1,81 1,44
3,266 370,4 4987 1278 % 650 426 3,19 263 1,96 1,62
2,859 0,4 3704 73,66 19,05 8,68 524 365 ' 2,77 1,84 1,39
3,750 369,9 6842 1804 840| 528 388 3,07 225 1,83
2,859 0,6 3704 111,62 31,20 13,15 7,15 4,51 3,12 1,80 1,28
4,375 370,2 97,39 2746 1223 7,21 492 376 264 210
2,859 0,8 370,4 182,82 6443 2628 1220 | 6,20 3,42 1,49 1,08
5,203 370,9 14830 48,13 21,54 1141 7,25 5,12 3229 2,52
Upper entries are the ARL for the EWMA Chart of the residuals
Lower entries are the ARL for the EWMA Chart of the observations

TABLE A.9: Steady -State ARL for the EWMA Chart of Residuals and of Observations for
the AR(1) plus a random error model where ¢ is the autoregressive parameter, y= 0_2‘”/0,2“’
and J is the magnitude of the shift (A=0,2 for both EWMA Charts)
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| | SCC  Xsp EWMA  EWMAST X
s | o . p 1=0.1 i=0.1 =02
0=0,950

0,0 ,900 ,073 | 370,38 370,82 366,37 1379,47 763,08 368,62
0,5 272,90 163,31 32,81 111,81 102,78 169,99
1,0 135,35 48,53 15,94 22,40 22,19 50,19
2,0 18,53 6,91 5,54 6,82 5,01 7,36
3,0 238 2,02 3,49 416 2.89 2,05
0,0 ,450 ,824 | 370,38 392,89 362,87 322738 242448 877,87
0,5 349,69 262,72 232,22 1460,09 1133,17 488,69
1,0 274,69 108,71 93,81 413,09 354,05 184,66
2,0 43,51 20,79 23,61 63,65 55,94 31,56
3.0 1,30 2,23 8,79 19,28 14,55

0,0 ,000 ,950 | 370,38 369,15 365,16

0,5 330,95 259,73 245,67

1,0 138,84 118,92 107,83

2,0 1,08 22,44 27,79

3,0 1,00 1,43 10,01

0,0 | -,450 ,971 | 370,38 390,33 366,87 3383,52 2691,28 1575,05
0,5 268,11 268,04 24744 1701,00 1433,31 850,97
1,0 16,69 121,17 109,73 508,81 45938 32397
2,0 1,00 24,82 28,71 84,73 76,85 51,95
3,0 1,00 1,01 1005 2366 1928 10,49
0,0 | -,900 ,975 | 370,38 385,13 366,44 3390,75 2708,74 1623,09
0,5 42,75 267,86 248,74 1703,72 144028  877.18
1,0 1,00 123,08 11,62 511,32 464,28 332,13
2,0 1,00 25,68 29,13 85,18 77,67 53,25

30 1,00 1,00 10,28 23,78 19,49 10,58
0=0,475

0,0 ,900 -,255 37038 39429 377,50 388,06 368,41 395,04
0,5 10,53 166,97 7,33 7,50 937 163,57
1,0 474 4731 3,79 3,82 4,00 43,06
2,0 2,18 5,83 2,06 2,07 2,08 5,44
3.0 1,39 1,80 1,55 1,52 1,45 ,176
0,0 ,450 ,025 37038 390,05 383,78 873,56 593,67 362,37
0,5 164,40 169,16 31,42 40,13 48,16 157,14
1,0 48,67 43,76 10,52 12,25 11,69 45,99
2,0 7,01 6,71 4,40 4,74 3,86 6,20
3.0 2,08 2,05 2,87 3,07 2,43 1,98
0,0 ,000 ,475 370,38 365,34 376,53

0,5 253,13 166,77 70,05

1,0 117,96 51,05 20,69

2,0 22,64 8,69 7,16

3,0 4,02 2,50 428

0,0 | -,450 689 370,38 38321 370,17 1301,46  898.88 44113
0,5 271,96 188,41 81,10 160,00 187,33 196,45
1,0 137,62 59,99 25,06 36,53 41,98 63,40
2,0 21,92 11,19 839 10,03 9,19 10,83
3,0 2,11 2,83 4,80 5,67 4,40 2,77
0,0 | -,900 ,737 370,38 382,60 362,78 129824 944 76 455,18
0,5 265,34 190,65 85,90 166,81 198,65 211,91
1,0 108,52 60,64 25,49 38,62 44 86 66,35
2,0 2,79 11,26 8,56 10,48 9,65 11,56
3,0 1,01 3,01 4,97 5,85 4,56 2,93

TABLE A.10 : The ARL Values for the Residuals X-chart (SCC), the X-chart and
the £WAMA chart of the observations using the correct vanance , the EWMAST and the
X-chart of the observations for the ARMA(],1) model
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SCC Xsp EWMA EWMAST X

o 0 p A=0.1 A=0.1 A=0.2

@a=0,0¢0
0,0 | ,900 -,497 370,38 377,69 372,92 35486 359,61 397,40
0,5 5,00 143,98 5,01 5,04 6,60 151,91
1,0 2,76 44,20 2,76 2,76 2,96 43,73
2,0 1,63 5,64 1,60 1,63 1,67 5,51
3,0 1,15 1,64 1,15 1,14 1,15 1,69
0,0 | ,450 -,374 370,38 375,04 390,56 426,22 426,22 400,45
0,5 45,64 161,72 11,15 12,79 12,79 153,56
1,0 8,04 44 85 4,89 4,65 4,65 44,09
2,0 2,24 5,82 2,54 2,19 2,19 5,72
3,0 __m 1,40 1,72 1,81 1,55 1,55 1,71
0,0 | ,000 ,000 370,38 370,38 369,00
0,5 152,22 152,22 28,19
1,0 43,89 43,89 9,73
2,0 6,30 6,30 4,18
3,0 2,00 2,00 2,76 ¥
0,0 | -,450 ,374 370,38 381,31 383,02 1013,49 890,53 384,01
0,5 210,64 170,85 45,67 67,49 84,55 161,19
1,0 18,83 49,01 14,53 18,15 18,85 49,07
2,0 12,74 8,12 5,59 6,21 5,13 7,70
3,0 et 2,77 2,26 3,58 3,85 301 2,20 1
0,0 | -,900 ,497 370,38 381,94 382,09 1037,22 720,56 404,17
0,5 221,02 171,01 51,95 78,36 100,21 169,85
1,0 82,95 52,82 16,04 20,38 21,82 51,47
2,0 8,11 8,38 5,97 6,76 5,72 8,49
3,0 1,42 2,58 3,78 4,15 3,23 2,32

9=-0,475
0,0 | ,900 -,737 370,38 378,60 378,17 411,85 399,53 44584
0,5 3,06 144,60 4,11 4,07 486 160,80
1,0 1,94 41,85 2,36 2,30 2,45 47,36
2,0 1,24 6,63 1,39 1,42 1,47 6,03
3,0 1,01 1,55 1,01 1,03 1,05 1,63
0,0 ,450 -,689 370,38 39245 392,76 438,43 383,62 435,71
0,5 8,95 153,45 5,96 6,03 6,47 158,76
1,0 2,74 44,14 3,10 3,13 3,00 46,25
2,0 1,54 6,53 1,76 1,78 1,65 6,06
3,0 1,09 1,61 1,22 1,24 1,15 1,64
0,0 | ,000 -,475 3703 389,84 399,42
0,5 65,54 159,86 13,71
1,0 11,44 45,72 5,56
2,0 2,20 5,94 2,70
3,0 1,35 1,79 1,97
0,0 | -,450 -,025 370,38 365,65 375,57 840,61 576,52z 357,41
0,5 151,73 154,38 26,75 35,18 4199 152,73
1,0 42,13 44,18 9,89 11,29 10,56 43,13
2,0 6,01 6,16 4,16 4,46 3,65 7,01
3,0 | 1,95 1,91 2,70 2,92 2,33 2,95
0,0 | -900 255 370,38 373,96 392,93 905,32 629,58 375,37
0,5 184,67 164,29 36,54 50,32 64,04 159,42
1,0 60,11 45,92 12,036 14,61 14,36 46,26
2,0 8,37 7,00 4,83 5,35 4,41 6,90
3,0 2,10 2,13 3,13 3,41 2,71 2,11

TABLE A.10 continued: The ARL Values for the Residuals X-chart (SCC), the X-
chart and the EWAMA chart of the observations using the correct variance , the
EWMAST and the X-chart of the observations for the 4RMA(1,1) model .
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SCC X EWMA, EWMAST X
5 0 p A=0.1 A=0.1 - 1=0.2
9=0.950

00| ,900] -975 370,38 366,86 369,74 1330,82 1301,31 1582,92
0,5 1,50 138,59 3,36 3,56 423 517,36
1,0 1,00 53,16 1,98 2,04 2,17 14527
2,0 1,00 6,58 1,00 1,24 131 15,12
3,0 1,00 1,00 1,00 1,00 1,00 1,53
0,0 | ,450| -971 370,38 382,39 387,92 1005,58 1065,87 1537,97
0,5 1,76 141,13 3,59 3,71 437 497,90
1,0 1,06 53,50 2,01 2,11 222 146,76
2,0 1,00 6,83 1,00 1,28 1,33 15,20
3,0 1,00 1,00 1,00 1,00 1,00 1,53
0,0 | ,000| -,950 370,38 365,38 361,76

0,5 2,67 141,76 4,42

1,0 1,42 53,97 2,32

2,0 1,00 6,11 1,24

3,0 1,00 1,03 1,00

00| -450 | -,824 37038 388,63 390,63 649,75 521,67 821,18
0,5 24,19 170,76 8,34 8,60 9,05 326,87
1,0 344 5852 3,81 3,98 343 101,01
2,0 1,22 7,68 2,04 2,06 1,80 9,99
3,0 1,00 1,34 1,44 1,50 1,27 1,65
0,0 | 900 | 073 37038 38256 364,04 833,08 56925 360,31
0,5 147,52 158,10 2590 3421 3998 158,18
1,0 40,04 47,00 915 10,95 10,22 44,95
2,0 5,64 6,50 4,03 4,35 3,55 6,32
3,0 1,87 2,02 2,66 2,88 2,28 1,94

TABLE A.10 continued: The ARL Values for the Residuals X-chart (SCC), the X-
chart and the [FIWMA chart of the observations using the correct variance , the
EWMAST and the X-chart of the observations for the 4ARMA(1,1) model with ¢: the
autoregressive parameter, &: the moving average parameter ¢: magnitude of the shift

p: the first lag autocorrelation
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& | w=0.5 i w=0.9 '
()p;(:lrnal Chart o !
[65 10 20 05  10. 20 |
CUSUM-Obs 36,05 1468 676 4314 1771 8,01
o EWMA-Obs 36,98 1406 621 4490 16,48 7,16
CUSUM-Res 36,44 13,76 592 43,58 18,74 2,43
EWMA-Res 36,60 13,97 602 4492 16,55 6,85
CUSUM-Obs 40,33 12,90 521 4515 15095 6,38
- EWMA-Obs 40,48 13,27 518 51,63 16,16 6,00
74 CUSUM-Res 4048 13,01 511 5133 1580 5,81
EWMA-Res 42,08 1327 506 53,17 16728 5,82
CUSUM-Obs 77,63 17,13 407 101,10 2510 4,95
a0 EWMA-Obs 75,72 17,59 424 89,75 2231 5,06
CUSUM-Res 86,45 18,78 4,05 9672 22,57 4,83
EWMA-Res 74,69 17,70 433 8424 2122 5,21
Shewhart-Obs | 160,89 4695 722 162,47 48,17 7,75
Shwehart-Res | 205,36 7435 1195 23220 9891 17,21
CUSUM-Obs 7131 29,44 13,00 96,28 41,30 18,36
Bis EWMA-Obs 78,13 27,06 10,09 108,40 38,58 13,55
CUSUM-Res 71,39 28,02 10,87 97,68 3822 14,35
EWMA-Res 80,28 2686 884 11320 3920 12,22
CUSUM-Obs 83,30 26,77 827 103,44 37,96 14,57
" EWMA-Obs 78,13 27,06 10,09 10840 38,58 13,55
0.4 CUSUM-Res 81,47 26,16 839 9768 3822 14,35
EWMA-Res 8028 26,86 834 113,20 3920 2,22
CUSUM-Obs | 13528 3863 677 15225 49,48 10,90
20 EWMA-Obs 127,23 3624 731 14830 48,13 11,41
CUSUM-Res 135,76 37,07 635 161,97 51,87 9,82
EWMA-Res 119,09 3421 7,27 140.61 46,23 11,28
Shewhart-Obs | 17627 5635 949 187,08 65,77 12,26
Shwehart-Res | 291,82 17391 46,60 317,17 209,41 50,37

TABLE A.11: Steady State ARL values for the CUSUM and the LWAMA 1charts for
specific shifts and for various values of the autoregressive parameter ¢, y. a"‘_,/azx and
d : the magnitude of the shift
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v 1,5 3 11
o 4

'//0=011 .
0934 2859 00 62,60 91,68 26,05 4477 1141 21,12 593 1046 433 723 358 536 3,15 479
3,000 4219 70,75 © 7521 29,57 3324 11,87 14,53 553 698 394 500 3,14 414 272 3,62
0944 2859 0.2 60,50 7250 26,02 3542 1145 1733 5,98 912 435 656 364 520 318 449
3,000 4,181 71,56 9247 2931 4207 1224 1781 5,63 830 397 569 319 449 282 3,79
0,944 2859 04 5979 §932 26,03 2936 12,03 1484 634 830 466 616 38 521 338 453
3,000 4,135 7239 1150 3161 ST,11 1334 2398 611 1033 431 691 346 527 30 4,39
0,944 23859 06 62,51 4888 27,32 2498 12,76 1382 7,12 834 520 642 439 536 381 472
3000 4,085 77,97 1530 35,12 8337 1527 3445 136 1565 516 993 404 714 345 570
0,944 2,859 08 69,31 44,04 32,73 2464 1621 1441 914 929 680 723 563 619 492 5,55
3.000 4,047 9432 229,1 4570 1538 20,71 8236 1037 3669 706 2141 573 1489 4,79 11,28

: = _ ¥ 0=0’9

0944 25859 00 60,12 9257 2570 4542 11,27 2122 584 1033 , 431 712 353 567 314 4,70
3,000 4219 71,06 76,35 29,62 3329 12,06 1478 554 711 388 509 3,17 407 2,71 3,58
0944 23859 0.2 60,89 91,00 2576 4479 11,53 2062 587 10,18 434 7,00 3,59 558 310 475
3,000 3,833 70,76 7835 29,52 3363 12,10 1420 552 696 387 491 3,18 400 2,76 3,45
0944 23859 04 6183 8903 2684 4404 11,85 2094 593 1026 443 714 365 560 320 467
3,000 3,388 72,84 7760 3095 3437 1162 1449 578 682 404 480 321 383 277 336
0944 2859 06 68,04 9045 2884 4476 1255 2127 638 1063 460 743 38 582 333 4,89
3,000 2,872 7683 8221 32,89 3699 1336 . 1517 6,11 705 422 49 339 390 287 335
0944 2859 08 78,80 92,74 35,18 4722 1486 2252 739 11,13 518 802 423 625 370 538
3,000 2,242 90,93  102,1 40,66 1625 1666 189 721 835 493 552 383 436 323 3,64
Upper le ft entries are the ARL for the EWMA Chart of Logs of Squared rssiduals
Upper right entries are the ARL for the EWMA Chart of Residuals
Lower left entries are the ARL for the Shewhart Chart of Residuals
Lower right entries are the ARL for the Moving Range Chart

TABLE A.12: Steady —State ARL of Four Charts for Monitoring the Process Variance when
the increase in ¢’y is caused by an increase in
the AR(1) plus a random error model, y/0=02,,

control ARL=370,4 for all Charts)

fzywhere ¢ is autoregressive parameter for
X

o (A=0,2 for both EWMA Charts ; the In-
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o’V w 1,5 2 3 5 7 9 11
(4 '
'I/0=091
0944 2859 00 61,57 92,40 2597 4512 11,29 2093 589 1043 436 717 360 566 3,17 476
3,000 4219 69,92 7507 29,09 3380 12,15 1449 554 706 388 503 3,15 4,13 273 359
0944 2859 02 5932 9523 2579 4635 11,54 2120 574 1064 433 731 3,58 568 3,17 474
3000 4,172 70,12 7370 2946 3171 1214 1397 556 691 389 500 3,18 405 272 349
0944 2859 04 60,77 99,48 2533 4855 1143 22,11 573 1074 430 741 361 577 3,13 483
3000 4,137 7063 7221 2972 31,72 11,74 1385 554 684 391 49 320 401 273 345
0944 2859 06 60,85 1043 2573 51,47 11,33 2327 576 1097 428 7,55 3,58 580 312 48]
3000 4,086 69,67 68,74 2897 308 1181 1230 557 677 388 482 315 394 272 343
0944 2859 08 5986 1089 2469 5443 1107 2439 580 1134 430 756 351 585 312 482
3000 4,044 67,99 68,60 2855 2975 1165 1321 548 654 382 474 3,10 38 271 341
4 0=0’9
0944 2859 00 60,84 93,63 2623 4530 1141 21,12 587 1024 430 717 362 559 319 476
3,000 4213 70,79 76,09 2935 33,16 1198 1446 555 700 388 500 3,13 409 274 3,54
0,944 2,85 02 5470 112, 2359 5669 10,63 2575 560 11,70 421 781 350 580 307 49
3000 3,828 6536 59,69 2682 2601 1125 1148 539 595 3,76 433 305 361 267 320
0944 2859 04 4396 1242 1865 63,70 882 2834 495 12,10 38 785 3,26 591 28 484
3000 3388 52,18 43,59 2149 1873 9,17 879 471 487 346 367 285 3,13 251 282
0544 2859 06 2869 1193 1290 60,10 683 2565 420 1066 328 672 28 502 263 4,18
3,000 2,859 3483 29,29 1455 1272 684 655 385 385 288 302 252 261 222 340
0,944 2859 08 1544 86,83 791 3993 472 1545 684 684 267 452 240 3,57 219 308
3000 4,047 1838 15,98 850 7,62 451 438 290 29 228 240 205 212 187 197
Upper le fi entries are the ARL for the EWMA Chart of Logs of Squared residuals
Upper right entries are the ARL for the EWMA Chart of Residuals
Lower left entries are the ARL for the Shewhart Chart of Residuals
Lower right entries are the ARL for the Moving Range Chart

TABLE A.13: Steady —State ARL of Four Charts for Monitoring the Process Variance when
the increase in ¢’y is caused by an increase in 025 where ¢ is autoregressive parameter for

the AR(1) plus a random error model, y/o=o;,,0/a'zxo {A=0,2 for both ,WMA Charts ; the In-
control ARL.=370,4 for all Charts)
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Figure B.1 : Checking Plots for the ARMA(1,1) time series fit for 100 simulated
observations .
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Figure B.2 : Checking Plots.for the ARMA(l,1) time series fit for 80 simulated

observations.
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Figure B.3 : Checking Plots for the AR(1) time series fit for 100 simulated

observations.
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