3T
HNQ
OHK
STALR
579.9
il A7 35

ATHENS UNIVERSITY
OF ECONOMICS AND BUSINESS

DEPARTMENT OF STATISTICS
POSTGRADUATE PROGRAM

STOCHASTIC VOLATILITY MODELS
A BAYESIAN APPROACH

By

Stefanos G. Giakoumatos

A THESIS
Submitted to the Department of Statistics
of the Athens University of Economics and Business
in partial fulfillment of the requirements for

the degree of Master of Science in Statistics

Athens, Greece
1997



Wl
10,0y
NUNHGY OLNLZIU3NYL OXIKONOXI0

0
)




ATHENS UNIVERSITY
OF ECONOMICS AND BUSINESS

DEPARTMENT OF STATISTICS

BAYESIAN STOCHASTIC VOLATILITY
MODELS

By

Stefanos G. Giakoumatos

A THESIS
Submitted to the Department of Statistics
of the Athens University of Economics and Business
in partial fulfilment of the requirements for

the degree of Master of Science in Statistics

Athens, Greece
May 1997



OIKONOMIKO MANEMIZTHMIO
AOHNQN

TMHMA 2TATIZTIKH2

MMEYZIANA MONTEAA
2TOXAZTIKHZ AIAKYMANZHZ

21é@avog [ [akouparog

AIATPIBH
Mou uTTORARBNKE OTO TUNMG ZTATICTIKAG
Tou OiKovouikou MavemmaoTnuiou A@nvwv
WG MEPOC TWV ATTAITACEWY YIQ TNV ATTOKTNON

MeTaTrTuxiakou AimAwpatog Eidikeuong o1 Z1aTIOTIKA

ABnva
Mdang 1997

S
599.9
14|



ATHENS UNIVERSITY
OF ECONOMICS AND BUSINESS

DEPARTMENT OF STATISTICS

A Thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

BAYESIAN STOCHASTIC VOLATILITY MODELS

Stefanos G. Giakoumatos

Supervisor : External examiner :

Dr. P. Dellaportas Professor Peter Mueller
Institute of Statistics and
Decision Sciences,
Duke University, USA

Ap_}:))ro q;l by the Graduate Committee

Profeésor E-Kekalaki~
Director of the Graduate Program
September 1997



DEDICATION

To ever memorable Ioannis Koklas,

my grandfather.



ACKNOWLEDGEMENTS

| would like to thank my supervisor Dr. Petros Dellaportas for
his endless support and care; he taught me so much in so little
time. Moreover, | would like to express my thanks to Dr. Kostas
Christopoulos because he provided many data from the Athens
Exchange Stock Market.

My mother and my sister know that they have a special part of my
heart and | will never stop loving and thanking them for their love
and endless support.



VITA

| was born in Athens in 22 of July in 1972. | graduated from
the 3° Highschool of Koridalos in 1990, and at the same vyear |
succeeded in the Athens University of Economics. In 1994, | took
my degree in Statistics (9.2/10, excellent).
| should also mention that during all my academic years | was
proficient enough so as to gain scholarships from the State
Scholarships Foundation and also from the George Xalkiopoulou

Foundation. | have also attended courses of the MSc in Statistics at
the same University.

11



ABSTRACT

Stefanos G. Giakoumatos

BAYESIAN STOCHASTIC VOLATILITY
MODELS February 1997

The phenomenon of changing variance and covariance is
often encountered in financial time series. As a result, the last ten
years researchers move their interests from the homoscedastic
time series models to conditional heteroscedastic time series
models.

In general, the models of changing variance and covariance
are called Volatility models. The main representatives of this class
of models are the Autoregressive Conditional
Heteroscedasticity (ARCH) models (Engle, 1982), the
Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) models (Bollerslev, 1986), and the Stochastic Volatility
models (SV) (Taylor, 1986).

The SV model is a very promising alternative of the ARCH
and GARCH models and has been the focus of considerable
attention in the recent years. From the classical view of the
Statistics the SV models have been investigated by Taylor (1986)
and Vetzal (1992). On the other hand, from the Bayesian approach
little work has been done. A recent paper of Jacquier et al (1994)
was the first step to this direction.

In this dissertation we focus our interest on the Stochastic
Volatility models using the Bayesian framework. We develop an
MCMC algorithm that converges to the joint posterior distribution of
the parameters of the SV model. The MCMC algorithm that has
been proposed by Jacquier et al (1994) has been studied and we
have evidence that it is not very efficient.

[11



In our proposed MCMC algorithm, we use some techniques
so that the algorithm achieves better convergence characteristics.
Our experience show that the random-scan MCMC algorithm
converges faster than the general MCMC algorithm. In addition to
that a reparameterisation is used which gives better performance
than the random-scan MCMC algorithm.

Finally, we illustrate our methodology by modeling the weekly
rate of return of the General Index of the Athens Stock Exchange
Market.
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2TIC XPOVOAOYIKEG CEIPEC TWV OIKOVOUIKWY OeDONEVWY - KAl
KUPIWG OE XPNMATIOTNPIAKEG CEIPEG - Exel TTapartnenéei om n
dlakupavon kalr n  ouvdlokupavon Oev  gival OTOBEPEC AAAG
HETABAANOVTOI KATA TNV OIGPKEIQ TOU XPOVOU. Zav QTTOTEAECUQ
QUTOU TOU YEYOVOTOG, Ol EPEUVNTEG EXOUV  UETAKIVAOEN T
evOIOQEPOVTA TOUG Ta TEAEUTAIQ XpOvVIA amd Ta OPOCKEDACTIKA
HOVTEAQ XPOVOOEIPWY GTA ETEPOTKEDATTIKA UOVTEAQ

Ta povréAa autd, TTou emmTpETTOUV OTnv dlakuuavan Tng
OeIpa¢g va peTaBaAAeTal, ovoualovtal Volatility models. O kUpiol
QumITTPOCWTTOI  QUTAC  TNG  KATNyopiag MpOVTIEAWV  €ival 1O
AuTtotraAivopopa Egaptwpevng EtepookedaoTikotnrag (AEE)
povtéAa' (Engle, 1982), 10 Tlevikeupéva AutoTraAivdpopa
ESapTwpevng ETepookedaoTiKOTNTAG (TAEE) povtéAd?
(Bollerslev, 1986) kal 1a  ZTOXOOTIKAG Ailakupavong (ZA)

HovTéAa’® (Taylor, 1986).

' Autoregressive Conditional Heteroscedasticity (ARCH) models
* Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models
* Stochastic Volatility (SV) models



Ta 2A  pOVTEAQ eival Wia TTOAAG UTTOOXOMHEVN E€VAAAQKTIKNA
TpdéTacn w¢ Tpog 1a AEE kar TAEE povtéAa kai €xouv €AEEl TO
evOIOQEPOV TWV EPEUVNTWV TG TEAEUTAIO XpoOvia. H exTiunon twv
TTAPAUETPWY TOU ZA POVTEAOU PECW TNG KAQOTIKNC ZTATIOTIKAC £XEI
gpeuvnBei amd Ttoug Taylor (1986) kai Vetzal (1992). Ao Tnv
aroyn 1ng Bayesian ZTtamioTiknNG Aiyn €peuva €xel yivel ZTnv
diebvng BIBAIOypagia éva povo paper atmd toug Jacquier et al
(1994) utrapxel Kal Autod NTav 10 TTPWTO PBrua PO auTth TNV
KATEUBUVON

2€ QuTA TNV O1aTPIRN ETTIKEVTPWYOUNE TO EVOIAQEPOV HaC OTA
2 poOvTEAQ xpnolpotroiwvtag Tnv  Bayesian avaAuon yia va
KAVOUUE CUUTTEQOCUATOAOYIQ OXETIKA HE TIC TTAPAPETPOUC TOU
vovTéAou. Mpoteivoupe éva MCMC® aAyopiBuo TTou GuykAivel aTnv
EK TWV UCTEPWYV KATAVOMN TWV TTAPAUETPWY TOU 2ZA MOVTEAOU.
@ewpoUPE TTWES aUTOC O QAYOPIBUOC €ival TTIO ATTOTEAECUATIKOC
a1rd TOV QVTIoTOIXO aAyOpIBuo Twv Jacquier et al (1994). EmiTAéov
XPNOIMOTTOIOUME OIPOPEC TEXVIKEG £TC1 WOTE va ETTITAXUVOET n
ouyKAION.

Ta Teipdapatd pag degixvouv Twg o random-scan MCMC
OAYOPIBUOC  CuykAivel  ypnyopotepa  ammd  Ttov  amAo MCMC
QAYOPIBuO. ETITTAEOV N GAAQYT) TFTAPAUETPWY TOU 2A HOVTEAOU Oivel
QKOUO KAAUTEQO ATTOTEAECUATA.

TéNog, epapudoaue 10 ZA POVTEAO OTOV YeVIKO OgikTn TOU

Xpnuatigrnpiou AZiwv ABnvwv.

* Markov Chain Monte Carlo (MCMC)

VI
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Chapter 1
Introduction

Time varying volatility (variance) is a main characteristic of many financial
time series. Engle (1982) modelled this phenomenon introducing a new class
of models which called Autoregressive Conditional Heteroscedasticity models
(ARCH) and Bollerslev (1986) extended this class of models with Generalized
Autoregressive Conditional Heteroscedasticity models (GARCH).

The basic alternative to these models is the Stochastic Volatility model
(SV) which allows both the conditional mean and variance to be driven by
separate stochastic processes. The stochastic conditional variance of the SV
is the main advantage of this model with respect to ARCH & GARCH class
of models.
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The general form of the Stochastic volatility model is

v = ecexp(hy/2)

he = a+dhey+7,

iid

M ~ (0, 0,2,)

&t %N(O, 1)

where one interpretation of the latent variable h, is that it represents the
random and uneven flow of a new information, which is very difficult to

model directly into financial markets.

The main disadvantage of the SV model is that, unlike the ARCH and
GARCH models, has a very large number of parameters which are very dif-
ficult to be estimated.

Many methods have been proposed in order to solve the problem of es-
timating the parameters of the SV model. Some of these use the Maximum
Likelihood theory (Taylor, 1986), some the Generalized Methods of Moments
(Chesney and Scott, 1989), and some others the Quasi-Maximum likelihood
(Harvey, Ruiz and Shephard, 1994). On the other hand, there is little work
which adopts the Bayesian framework for the estimation of the parameters
of the SV model.

In this dissertation we focus our analysis in the Bayesian approach of the

SV model. It must be noted that it is more logical to view the SV model
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with a hierarchical structure, therefore the Bayesian framework is the most

natural choice.

In the literature, only one paper has appeared (Jacquier et al, 1994) which
uses this approach. In this paper an MCMC algorithm is introduced which
converges to the distribution of the parameter of the SV model. We study
this algorithm and we provide some evidence that its performance is not
very efficient. Moreover following the steps of Jacquier et al, we introduce
a somewhat similar MCMC algorithm that works more efficient. In this
algorithm we use the well known MCMC techniques such that the Gibbs
sampler and the Metropolis-Hasting algorithm.

This algorithm is more efficient than Jacquier et al algorithm but the
burn-in sample that is needed to converge to the equilibrium distribution
is somehow big. This problem appears due to high autocorrelation of the
Markov chain and the high correlation of the parameters of the SV model.

To handle this problem we use some techniques so that the algorithm

converges to the desired posterior distribution more quickly. Firstly, we use

a non-sequential MCMC algorithm but the outcomes are the same as the
sequential MCMC algorithm. Secondly, we use the random scan MCMC al-
gorithm in which we update the latent parameters (log-volatilities) not in the
usual sequential order, but randomly. This technique reduces the necessary
burn-in sample. Finally, we try to reparameterise the latent parameters h so
that each of them is independent from the others. Our experiments provided
evidence that this transformation decrease the time to convergence of the
Markov chain.

The final conclusions are, that the reparameterisation of the latent pa-
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rameters h (log-volatilities) seems better than random scan MCMC and the
latter seems better than sequential MCMC.

All these algorithms are applied to the weekly rate of return of the General
Index of Athens Stock Exchange Market. It must be noted that such analysis
is used for first time for the Greek General Index.



Chapter 2

The Basic aspects of Bayesian

Statistics

2.1 Introduction

The Bayesian Statistics is a dynamic branch of the Statistics science which
is based on the Bayes’s Theorem (Bayes, 1763). In the next sections we will
give the main points of this theory. For more information about the Bayesian

Statistics see Bernardo and Smith (1995), Magdalinos (1992), Robert (1994).

2.2 Bayes’s Theorem

Theorem 1 Bayes (discrete r.v.)

For a given probability space (2, 4, P[-]), if By, Ba, ..., Bn is a collection
of mutually disjoint events in A satisfying Q = G B; and P[B;] > 0 for
1=1

8
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j =1,...,n, then for every A € A for which P[A4] > 0

P[A| By P(B|
3, PIAIB;|P(B)

P[B|A] =

Theorem 2 Bayes (continuous r.v.)

Let x and y continuous random variables, then

)
1) = i) fa)da

2.3 Interpretation

Let D the set of the data which we have at hand. The data comes from a
distribution f(:|@) where 8 € @ is the parameter vector. Now we want to
investigate the distribution of 8|D. Let m(8) the a priori information or
subjective opinion that we have about 8. According to the Bayes theorem

we have

_ Dome)
f6D) = T D) (6)d6

or
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f(6ID) « f(D|6)x(6)

where o means equal up to a constant.

From a different side of view, f(D|@) can be thought as the likelihood of
the data so L(8|D) = f(D|9)

f(8ID) « L(6D)n(8).

The final result f(@|D) is the a posteriori probability or distribution of 8

conditioned on D.

This magnitude is the challenging part of all the analysis and based on
this, we can take the right decision.

2.4 DMarginal & Conditional Distributions
Let 8 = (6,,0;) € R2. The marginal distribution of 6, is

f®iD) = [ f(6D)ds,

and the conditional distribution of 8, is f(6,|6,, D).
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2.5 Predictions

Many times, we want to know the behavior of an observation z, which has
not turned up. Let f(6|D) to be the a posteriori distribution of 8, then the

posterior distribution of 8 and zq given the data, is the following
f(z0,8|D) = f(x0|6,D)f(6|D)
and the predictive distribution is

flzo|D) = /---/f(a:o,OID)dO.

2.6 Informative and non-informative priors

Many times we have no prior information about the parameters of interest. In
such cases, it is common to use as a priori distributions for these parameters,

the distributions which are called non informative. A commonly used non-
informative prior based on Jeffreys prior for location and scale is: if § € R
then 7(f) 1 and if § € R* then () 3.

On the other hand, if we have some information from previous surveys

about the parameters or we want to include our subjective opinion in the
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survey scheme, then we define the prior distributions of the parameters of
interest according to this (subjective) information. These distributions are

called informative distributions, e.g. 8 ~ N(u,0?).

2.7 Example

Let X = (X1, X2, -, Xn)T comes from the Normal distribution N(y, 0%) where

the two parameters are unknown.

The likelihood of the data is

o o) o (1) Fexp{ iz Yo - ).

If the a priori distributions of these parameters are considered as non infor-

mative distributions, then the full prior distribution takes the form

m(p,0?) « 1/

Finally the a posteriori distribution is

flp,o?x) « (o0?)"F*'exp {—L (Z(x, - 2)? +n(p - 3—?)2)} :

202

The marginal distributions are
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fulx)

f(o®|x)

x (Z(z, -z +n(u- :17:)2) e

A, L)

x (%)™ ?exp (_2(2?21‘0'; 5)2)
_ n Y(z; — x)z

13

where IG denotes the inverse Gamma distribution. The conditional distrib-

utions are

flulo?, %) o exp{—%m—f)}

f@l%) o (6 2exp (—

il
b
D)
N
| 3
5
B
|
8
e
N—



Chapter 3

Markov Chain Monte Carlo
(MCMC)

3.1 Introduction

From the form of Bayes’s theorem it is obvious that technical difficulties arise
in the calculation of the posterior and marginal posterior densities which are
needed for the Bayesian inference. See, for example, the integrals in sections
2.2, 2.3, 2.4, 2.,5. These integrals, many times, are intractable so analytic
calculations are not possible. In order to solve this problem -main problem
for the Bayesian inference- it has been proposed the use of numerical inte-
gration or analytic approximation techniques. The most popular technique

is Markov Chain Monte Carlo .

14
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3.2 Monte Carlo Methods

The key of this idea is very simple. Suppose that we want an approximation

of the integral
1= [ 9(6)/(6)d0
where f(6) is proportional to a distribution from which we can easily take

a sample. A straightforward way to do this is to generate random variables
6!, 6%, ...,6™ from f(6) and then according to the law of large numbers

T (% 3 g(6) f(0‘)) -1

n—+00
- i=1

See, for example, Hammersley and Handscomb (1964).

3.3 Markov Chain Monte Carlo

The Markov chain Monte Carlo method is a more general Monte Carlo
method which approximates the generation of random variables from a pos-
terior density, when this density cannot be directly simulated (Gilks et al,
1996 & Tierney, 1994) .

The idea is the following. Suppose that we want to sample from a poste-
rior distribution f(8|D) where @ € ® C R* denotes the unknown parameters
and D denotes the data, but we cannot do this directly. On the other hand,
we can construct a Markov chain with state space @, which is straightfor-
ward to sample from and whose equilibrium distribution is f(@|D). If then
we run this chain for a long time, we would take a sample from its equilibrium

distribution therefore we would take a sample from f(8|D).
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For example if we want to integrate

| 9(6)7(6|D)de

where the f(8|D) is not one of the known form distributions and we cannot

simulate from it. So we construct a Markov chain with equilibrium distribu-
tion the f(@|D). If now the 6*,8?, ..., 0", ... is a realization from this chain,

then as n — +00
6" — 6 ~ f(8|D),
in distribution and

~ 3 9(6)(6'D)

is the approximate solution of the above integral.

Of course, successively 8™ will be highly correlated, so that, if the first of
these asymptotic results are to be exploited to mimic a random sample from
f(6|D), suitable spacings will be required between realizations, or parallel

independent runs of the chain might be considered.

In the following sections we will describe the most popular forms of

Markov chain scheme, the Gibbs sampler and the Metropolis sampler.
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3.4 The Gibbs sampler

Suppose that we want to sample from an a posteriori density f(8|D) which
is, probably, known up to a constant, and let 8 a vector of dimension k. Also,

let

f(6:16-,,D)
f(92|0—2a D)

f(6:l6-:, D)

f(6k|0_k, D)

be the so called full conditional distributions for the individual compo-
nents given the data and specified values of all the other components of 6.
In the above, 8_, means a vector, that includes all the components, apart
from the 6;, i.e. 0_, = (64, ...,0i-1,0:41, ..., Ok).

Suppose then, that given an arbitrary set of starting values, 69, ..., 6%, for

the unknown quantities, we implement the following iterative algorithm

First iteration

draw 6] from f(6,|D, 9,63, ...,6%)
draw 6} from f(6,|D, 8},63, ...,6%)

draw 6. from f(6,|D, 6,61, ...,65_,)
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Second iteration

draw 62 from f(6,|D, 62,6, ...,6%)
draw 62 from f(6,|D, 62,63, ...,0%)

draw 6% from f(6,|D, 62,63, ...,6%_))
i-th iteration

draw 6} from f(6,|D, 857,657, ..., 657")
draw 6}, from f(6,|D,6},657", e 0

draw 6} from f(6«|D,6%,6%, ..., 05_1)-

Having repeated the above iterative algorithm ¢ times, the transition proba-

bility of going from 6* = (0‘1, ...,0;) to @' = (0‘1“, -~-,9f¢+l) is

k
m(6,6"Y) = T] f(6:116%, 5 > 4,65, 5 <4, D).

=1

Then as t — +oo0 , 6° = (9’1, ...,0:6) ~ f(@|D). Moreover, 6 tends in distri-
bution to a random quantity that is drawn from the marginal distribution
f(6:|D).

This scheme is very pleasing to the statisticians because of the easiness
of its implementation and many examples are available in the literature. For

more information about the Gibbs Sampler and its applications see Casela

and George (1992), Dellaportas (1993), Gelfand and Smith (1990), Gelfand



CHAPTER 3. MARKOV CHAIN MONTE CARLO (MCMC) 19

et al (1990), Geman and Geman (1984), Roberts and Sahu (1996), Tai-Ming
Lee (1992).

3.5 The Metropolis-Hastings sampler

3.5.1 General points

As we have, already said, in Monte Carlo Markov Chains we want to con-
struct a Markov chain in which its equilibrium distribution is the posterior
distribution. Assume that a candidate-generating density in order to con-
struct the Markov chain is the q(x,y) where [q(z,y)dy = 1 (Metropolis
et al, 1953 & Hastings, 1970). This density can be interpreted as saying
that when a process is at the point z, the density generates values y from
g(z,y) . Of course this candidate must follow some conditions, such as the
reversibility condition for all (z,y) . Many times -we can say all the times-

this condition is not satisfied. So for some pairs (z,y) we might find that

m(z)g(z,y) > 7(y)q(y, ).

In these cases, the process moves from z to y too often and from y to z
too rarely. Thus in order to repair this mistake we introduce a probability
a(z,y) < 1, which is called probability of move, that corrects the condition

of reversibility and reduces the number of moves from z to y.

Therefore if p(z,y) is the transition matrix of the chain (when the states

are discrete) or the transition kernel (when the states are continuous)
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m(x)p(z,y) m(y)p(y, T)

m(z)g(z, y)a(z,y) = w(y)q(y, z)al(y, z).

As we have said, the movement from y to r is not made often enough, so
we must define a(y, z) to be as large as possible and since it is a probability

we set a(y,z) = 1; therefore

n(z)q(z,y)a(z,y) = =(y)q(y,z)

and we conclude that the probability of move is produced by the form

m(y)q(y, z) 1}

olfyy) 5 [w(mq(x, 5’

if m(z)q(z,y) > 0 or 1 otherwise.

Therefore, the Metropolis-Hasting Algorithm is:
e Step 1: Generate y from ¢(z*,.) and U from U(0, 1).
e Step 2: Let r**! = y if U < a(z?, y); otherwise let zt+! = z*.

e Repeat the steps 1 and 2 n times in order to take a sample of size n.

The full algorithm is described in Chib and Greenberg (1995).
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3.5.2 Choices of ¢(z,y)

There are many options of candidate (proposal) densities and in summary
they will be mentioned in this subsection

a) 9(z,y) = aly — z)

This choice is called the random walk chain because the candidate value
y is drawn according to the process y = z + z where the increment random
variable z ~ ¢q;. Possible choices for ¢; include the multivariate normal or the

multivariate-t distribution.

B) a(z,y) = ¢2(y)
This choice is called independent chain . Possible choices is the multivari-
ate normal distribution or some other densities and it is required to specify

the location of the generating density in addition to the spread.
v) Other choices

There is a wide set of possible candidate densities. For more information

see, Chib and Greenberg (1993), Tierney (1994) and Hastings (1970).

3.6 Remarks

First of all, in order to apply the two algorithms described above, it is needed
the equilibrium density to be known up to a constant, something very useful
for the Bayesian analysis. Secondly, in the Metropolis-Hastings algorithm if
the candidate distribution is a symmetric! distribution such as Normal then

the probability of move is

!Symmetric with respect to it’s arguments, g(z,y) = q(v, z)
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a(z,y) = min [%%,1].

Finally, the two algorithms can be combined, so in the Gibbs sampler if the

full conditional densities are not one of the known forms then we can use
the Metropolis-Hastings in order to sample from them. This last remark is
very important because this combination of the two algorithms construct a
powerful tool in order to exploit the properties of the posterior distribution
(Chib and Greenberg, 1993).

3.7 Convergence issue

The main problem in the MCMC algorithms is the specification of the con-
vergence to the equilibrium distribution. The theory says that when the
number of iterations is large then the theory assures convergence of ergodic
averages to the desired state space averages. Of course this number is not
known and many authors have proposed many criteria in order to detect
the convergence (Brooks and Roberts, 1995, Brooks et al, 1996, Raftery and
Lewis, 1992).

Here in order to detect the convergence we use the CODA software (Best
& Cowles, 1995) which contains the most popular convergence tests. These

tests are represented in the next table.For more details see Best and Cowles

(1995).
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| 1| Geweke |

‘ 2 || Gelman & R;bin
" 3 || Raftery & Lewis

[4 Heidelberger & Welch
{0

3.8 Examples

In this section we present two examples of the application of the Gibbs

sampler. These two examples present the application of the Gibbs sampler

in the theory of linear regression model and in the theory of autoregressive

time series model (AR(1)).

3.8.1 Linear regression

Let y = (y1,-.- yT)T be a T x 1 vector of observations and y; = a + Bz, + u,
where u = (uy, ..., ur)T ~ N(0,I0?) and x = (z1, ... zr)T be a T x 1 vector
of constants. We are interested for the posterior distribution of the three

parameters a, 3,0° .

The likelihood of the data is

fiylen .07 ) o (0%) Fexp -0 5 - o - o).
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Non informative case

The non-informative a priori distribution of the three parameters is
fla,8,0%) « o7?,

the full posterior distribution follows

r T
fap. oty ) & @) E el S - a - g}
t=1

The full condition distributions take the forms

T
falfatyx) o exp{-gh 3w —a- puf|

Zyt—ﬂzxz a?
N(—T ’?)

T
FOlonhyx) o exp{ =5tz Yo - a = B}
t=1
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2 _ 2
o exp{—z;;’t (5_211:2&2;2::) }

N [Ty —aT o?
>z} 'Y zf

T
flafy) o« @ E Ve { -5 - a - par)
t=1

( %z:j Ca- ﬁzt),

where IG denotes the inverse Gamma distribution.
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Informative case

The informative prior distributions of the three parameters are

@~ N (a102). f(6) o3t exp {53 (o=

a

,3 ~ N(Na,ff?;), f(ﬂ)oca?exp{—

% (ﬁ—ug)z}

B

So ~(vp+1) 3
o2 ~ IG (Vo, 7), flo?) x o exp{—2—005}.

The posterior distribution follows

T
fl@,B,0%y,%) o (a?)-GFord exp{ e o~ 820 }
1 1
exp{ 507 (@~ ua)2} x exp {—27% (8- #5)2} '

SQ
exp {—ﬁ} 5
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The full condition distributions are

f(alB,0?,y,x) o« exp

ye—B) Te -1
= N t” +§§ (£+i)
Grd) 7

1
f(ﬁ|a7U2,y,X) X exp _5

Il
Z

—(§+Uo+2)
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Let
1(& 2, a2
S=§ Sty —a-Pz)*+ S5,
t=1

then
2 T
g ~IG(('§+V0+1),S),

where IG denotes the inverse Gamma distribution.
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3.8.2 Autoregressive model

Let y be a (T'+1) x 1 vector of observations and y; = pu+y;—, +u, (Hamilton,
1994 & Marriott et al, 1994) , where u = (uy,..ur)” ~ N(0,I¢?). In this
case we consider yp as known constant. We are interested in the distribution

of the three parameters u, p, 02 .

The likelihood of the data given yo is
2 2y-L 1 & 2
f(yle @, 0% y0) o< (0%) T exp{ — =5 3 (v = 1 = pye1)
t=1

Non informative case

The non-informative a priori distribution of the three parameters is

flu,9,0%) x o2

and the full posterior is
2 2—(L+1) 1 & 2
flup, 0%y, 90) o (0%)7 7 exp{—5— Sy —p—oy1)? ;.
t=1

The full condition distributions take the forms
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f(»ul‘p’ ‘72’ Y, yO)

flelu, 0%y, 90) o«

f(02|#, Y, yO) &

1 T
X €xp {-5;2' ;(yt — U= <Pyt-1)2}

_ 2
o e {_2752 (“__Ey: ;Zy:_l)}
= TY P Y1 O
- N( T ’T)

T
exp L (e — o — @y1)?
202 t=1

S yi

N (E YY1 — B Y1 O° )
2 ’ =
> Yi1 2.%-1

2
_ T YY1 — #:yt—l)
Zy3_1

T
~(T 1
(o)~ (7t exp {—27,—2 S (ye—p— <py:_1)2}
t=1

T1Z .
IG( =, 23 (e — p—ww)?),
22,5

where IG denotes the inverse Gamma distribution.

30
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Informative case

The informative prior distributions of the three parameters are

N (s 03) s fls) o exp {—'2% O "#)2}
m

0~ N(pp0p), flo) x ot exp {—2_‘% . #¢)2}

o ~ IG (uo, %) , f0®) ox e exp {—i} :

202

The posterior distribution follows

T
—(Tu 1
flu, 0,02y, 10) o« (%)~ (F+o+2 exp {_ﬁ S (ye—p— <Pyt—1)2} :
t=1

exp {—% (b- uy)z} - exp {—-2%— = N‘p)z} .

2
b ®

The full condition distributions are

31
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11 & 1 2
flulp, 0% y,30) o eXp{—§ (—22 — b= ew) +— (u - u“))}

m

1 T 1 Z:yt :z y:—1+I;l§_
x exp{—=|=+—=]|u-
2\02 o2 T 1
© ;,-+;§-
( 3 \
03 Y1 “ 4
_ o ai T 1
= 2t 52
Ge3) @3

T 2
f((p“‘v 0,2,y, yO) X €exp {—';' (;1'2‘ Z(yt A <Pyt—1) —12‘ (90 #w) )}

t=1

,
S ve1ye—p D v 4 B

b) i
ol (B 2 (o~ S
t—1
(5 +3)
Zyt 1Yt — szt 1+

@
-1
N (Zyt 1+—?)
( y, 1 1) UV,
+z

(T
f(02|li7907y7y0) o (02) (L+vo+2)
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Let -
S= (Z(yt —p = pye-1)’ + 53) )
t=1

then
2 T
o? ~ IG ((-2—+1/0+ 1),5) .

where IG denotes the inverse Gamma distribution.



Chapter 4

Volatility Time Series models

4.1 Introduction

Uncertainty is central to much of modern finance theory. According to most
asset pricing theories the risk premium is determined by the covariance be-
tween the future return on the asset and one or more benchmark portfolios;
e.g. the market portfolio or the growth rate in consumption. In option pric-
ing the uncertainty associated with the future price of the underlying asset
is the most important determinant in the pricing function. The construction
of hedge portfolios is another example where the conditional future variances
and covariances among the different assets involved play an important role
(Bollerslev, Chou and Kroner, 1992).

It has been recognized that, the uncertainty of prices, as measured by the
variances and covariances, is changing through time. In order to model such
changes in the variance a category of models has been proposed, such as Au-

toregressive Conditional Heteroskedasticity model (ARCH), Generalized Au-

34
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toregressive Conditional Heteroskedasticity model (GARCH) and Stochastic
Volatility model (SV). These models have been studied via the classical sta-
tistical approach.

In this dissertation we will study the Stochastic Volatility Model via
the Bayesian approach.

4.2 Classifying models of changing volatility

All these models can be classified in two categories. These two categories

are: Observation-driven models and Parameter-driven model.

In order to discuss these two categories we will assume

Yelze ~ N(0, %)

where the z, contains all the past information up to time ¢.

4.2.1 Parameter-driven model

Parameter-driven or state space models allow z; to be a function of some
unobserved or ”latent” component. The main representative of this class
of models is the Stochastic Volatility model (SV). The general form of SV

model is the follow
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Yelse ~ N(0,exp(he))
hg = G+d'ht_1+nt

N, UN (0, 0,2,) )

Here the latent parameters h,/s are unobserved but they can be estimated

using the observations.

4.2.2 Observation-driven model

In this class of models we put z; as a function of lagged values of y;. The sim-
plest example is the Autoregressive Conditional Heteroscedasticity (ARCH)

model.

yt|2¢ ~ N(0,0’?)

0‘? = ag+ alyf_l ol a,,yf_p.
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4.3 ARCH, GARCH and others observation-

driven models

The simplest ARCH(1) model puts:

Y = &0y

ap + alyt2—1

2
g,

&t %N(O, 1)

and it had been proposed by the Engle (1982). The GARCH model is an

extension of the ARCH model and it had been proposed by the Bollerslev
(1986). The simple GARCH(1,1) model puts

Y = Ei0¢
2 2 2
g, = ao+a1y;_, +05y0i_,
.
Et "L (0) 1)

and in order to be the time series covariance stationary, the parameters must

follow the condition

al +ﬂ1 <1.
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In cases where

a]_+ﬂ1=1

the model is called Integrated GARCH (IGARCH). Other types of these
models are: Weak GARCH, Unobserved ARCH, Log GARCH, Exponential
GARCH. etc. For more information see Shephard (1994).

4.4 Stochastic Volatility Model

The basic alternative to ARCH class of models is the Stochastic Volatility
model which belongs to the parameter-driven models. In this class of models
the variance conditional o2 depends, not on past observation such as ARCH

and GARCH, but on some unobserved component or latent structure.

The general form of Stochastic Volatility Model is

ye = erexp(h/2)
ht = a+ dht_]_ +n,
iid
e ~ (0’ U?,)

Et %N(O,l)
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This model has been proposed by Taylor (1986). We can interpret the la-
tent variable h; as a random and uneven flow of new information (which is
difficult to model directly) into financial markets. The parameter d can be
interpreted as the persistent of the volatility. The 03 is the volatility of the

latent parameters h (log-volatilities).

4.4.1 Basic properties

In the above formula of the SV model the ¢, and 7, are assumed to be
independent of one another Gaussian white noise. As 7, is gaussian then h,
is a standard Gaussian autoregressive model (AR(1)). In order the series of
log-volatilities to be covariance stationary we must impose that |d| < 1. If

d = 1 then the series is random walk.

The mean and the variance of the latent parameter h, are

a
1-d

pr = E(h) =

0.2

O'i = Va”‘(hg)=1_nd2

The odds moments of the time series are zero and the even moments can be

found from the formula

E}) = E|)]E [exp(%ht)] _

!
= W exp (g,uh + rzaﬁ/8) :
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Moreover, the coefficient of kyrtosis can be found if we apply the next formula

E (y} :

—gg‘—)! = Jexp (aﬁ)'> 3.

(Uyz)

From the above formulas, it is obvious that the distribution of the time series
y: is leptokyrtic and symmetric. The dynamic properties of the SV model

appear most clearly if we square y; and take it in the log-scale. Then

log (yf) = h; +log (ef) :

The log(y?) is the sum of an AR(1) component and a white noise, so its

autocorrelation function (ACF) is equivalent to the ACF of an ARMA(1,1) .

4.4.2 Estimation of the parameters of the SV model

The main disadvantage of the SV models is that, unlike with the ARCH
models, it is not immediately clear how to evaluate the likelihood. Like
most non-Gaussian parameter-driven models, there many ways to perform
estimation.

The main methods that are used is:

1) Generalized method-of-moments (GMM)

2) Quasi-likelihood

3) MCMC

The last years there are a huge interest about the MCMC estimation and
in this dissertation we focus our interest in this philosophy of estimating the

parameters of the SV model.



Chapter 5

Bayesian approach of the SV

model

5.1 Introduction

The Stochastic Volatility model views the observed data y, as a vector gen-
erated from a probability model p(y|h), where h is the vector of the latent
parameters (log-volatilities). Each data point y, has conditional variance
exp (h:), which is dependent on time. The latent parameters h are unob-
served and they are produced from a probability mechanism p(h|6), where
0 = (a,d,o?). The likelihood of the data is a mixture over the probabilistic

space of the log-volatilities, therefore
p(v16) = [p(yib)p(nl6)dh.

41
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The main problem of the above formula is that a T-dimensional integra-
tion is needed. In order to handle this problem we use the MCMC algorithm

via a Bayesian framework.

5.2 Hierarchical structure of SV.

As it is shown in the previous section, we can view the SV model via a
hierarchical structure of the conditional distributions. This hierarchy can be
specified by the sequence of three conditional distributions, p(y|h), p(h|8)
and the prior distribution p(8).

In the Bayesian approach the subjective information is included in the
prior distribution of the parameters, @ = (a,d,o?). This prior distribution
of the hyperparameters a,d and o2 could be non-informative or informative.

The posterior density of the latent parameters and the hyperparameters

can be found by applying the Bayes’s theorem

p(6,h) xp(y|h)p(h|8)p(6).

5.2.1 Non-informative case

In this case, the prior distributions of the model’s parameters are

p(a) = p(d) x1
p(ol) o %
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so the full prior distribution is

p(@) = p (a, d, af,) [oq -1—

The distribution of interest takes the form

p(@) = p (a, d, 0'?,) x ;112’-

and applying the Bayes’s theorem we take the posterior distribution
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5.2.2 Informative case

In this case, the prior distributions of the model’s parameters are

-

[ 1 2| _ 2
pla) o exp |~z (a~u,)’| = Normal (tar 52)
. ;
pld) o« exp|—c—s-(d — ug)*| = Normal (g, s3)
| <S4 |
2 1 S§ ] S8
p(o;) « a_%vo-exp —2.0_?’ =IG vo—-l,? .

The full prior distribution is

1 1/1 1 S
0) = do?) = — . = a=u )+ = (d—u)?+221].
p( ) P (a7 ’ Ur]) a_%vo €xXp [ 2 (32_ (a‘ l‘a) + 3(21 (d /‘l‘d) + 0_%)

The distribution of interest takes the form

2 he T
p(ylh) o exp|—=—|exp l—--ny-exp(—ht)]
t=1
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so applying the Bayes’s theorem we take the posterior distribution

T
> he
p(bh,8ly) o exp |~ | . exp [—
2 2
1 exp
%:+'vo+1 ' -
(o2)
1
=P 173 s?

—-ZT:y? -exp(—ht)} :

t=1

T
t=

(hs —a—d- h,_l)z] :

TN

1

(i'(a-#a)2+lz'(d‘“d)2+%)]'

S84 n

5.3 The MCMUC algorithm

5.3.1 The conditional distributions

In order to apply the Gibbs sampler we need the full conditional distributions.

In the next sections we represent the full conditional distribution for each

parameter of the SV model.

Conditional distribution of parameter a

Non-Informative case

p(a|) o« exp

= exp

(hy—a—d- h,_1)2]

L _Zh-d Tha)
T
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——— . 2
= Normal (Zh‘ (;, th_l,%) .

Informative case

1 T 2 1 2
2_0%'Z(ht—a—d'h¢—l) _2.32 '(a—#a)

a

plal-) o exp|-—

r 2
he—d-S" he
T-sﬁ+a2 Z_'_G}Z_u.*.eg
= exp|-————= |a— i 2
2,02,32 T'Sg'*'az
n e 0352
2 2 2
2 (hi—d-Th_)+02-p, T-s2+a2
= Normal | = 12 1,
( 52 —a? o3 - s3

Conditional distribution of parameter d

Non-Informative case

r 1 T
p(dl) x exp|—5—" > (ht—a—-d- hy_1)?
| 2003 3

= exp

-_Zh?—l Nd = Yhi-hii—a -3 he 2
2-02 T hi

= Normal(zht'h'—l-_a.zht'1 U’z’ )

X hi "L
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Informative case

1 £ 1
P o o[~y (b o doher) - g A= ]

L '0',7 t=1 2'Sd

[ th'ht—l-a'zht—l 2
= exp _sﬁ-Zh?_l-i—af’,. d— o +’f§

2-02- 52 DI

| 9934
_ 33'(Eht'ht-l‘a'zht—l)'*‘a'?;’“d 33’2"?—1‘*'0'3,
= Normal 2 S h 1o , 77 52 .

d t—-1 7 n °d

Conditional distribution of parameter o2

Non-Informative case

1 T
plogl) o T P [—2 o2 > (he—a—d- ht—l)z]

]
oy
)
S
Sl
(SN
B
|
=]
|
o
s
LN
e
~—

where IG is the inverse gamma distribution.

Informative case

2), 1 _ 1 -ZT:(h—a—d-h )? - 52
(02)%'*"04-1 P72 02 ‘ o 207
n

n t=1 n
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T 1 & 2 2
= IG 54—’00,5 Z(h,—a—d~h¢_1) + 5
t=1

where IG is the inverse gamma distribution.

Conditional distribution of latent parameters h

p(hl) x exp|—=—/| - exp

M=
s
| paamsm—|

exp |—

p(holh1,?) o« exp [—

1]
Z
@]
"
2]
=
TN
=
I
)
qQ
3 N
SN’

5.3.2 The algorithm

1 T
3Lt (-

48

The algorithm of the Gibbs sampler has been described in a previous chapter

and this algorithm is applied here but some difficulties appear.

The full conditional distribution of the latent parameters is not one of

the known forms so we must use Metropolis sampler in order to have sample
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from it. Moreover this density has T-dimension, so it is well understood that,
in order to sample from it requires huge computational effort. On the other

hand, this distribution can be seen as the product of the distribution of each

latent parameter

T
phl) = [Ip(helhe-s, ).

t=1

The univariate conditional densities have the form

[ 1
P(helhey, hetr, ) o exp 3 (ht +y; - exp (‘ht))] '

1
2-03,

exp |— . ((ht—a—d'ht—1)2+(ht+l -a—d'ht)z)J

[ 1
X exp -3 (ht -!-yt2 . exp(—h,))] .

[ 1
eXp | ~5 3

- (hy — mt)z] )

where
m, = a-(1—-d)+4d- (hesr + he—1)]
‘ (1+ d2)
and
2 af,
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The above density has not a trivial form. It is consisted of a Normal term
and another part that is very unusual.

In order to sample from it, we use the Metropolis-Hasting algorithm. In
detail, we use the dependent Metropolis-Hastings algorithm and as proposal
we use a Normal density. So the ¢ — th value of the h; is sampled from

hgi) ~ Normal (hg‘_l),c-a,";)

and the probability of acceptance is
exp [~ - (" + 9 -exp (=17))|
exp [=} - (W77 + 4 e (-177))]

exp[ o (h - m,)z]

exp[ _2_1_7 (h(%—l) mt)z].

a (A7 = hY)

Chib and Greenberg (1994) tell us that the constant ¢ must chosen such
that the acceptance probability is 50% or more, but there is a debate in sci-
entific community about this issue. For this situation we choose the constant
c equal to (1_4}4‘2') which gives very good acceptance probability, approximately

65%.
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Finally, the algorithm takes the form:

1) Give initial values to: h©®,a©®, d© 52 |

2) Sample a) ~ p(a|-).

3) Sample dV) ~ p(d|").

4) Sample g2V ~ p(a3|-).

5) Sample A5’ ~ p(hol-).

6) Sample hgl) ~ p(he|heyr, by, -) for t=1,...,T.

7) Repeat steps 2 - 6 n times with n — +o0.

The sample we finally collect comes from the posterior distribution of

interest.

5.3.3 Convergence issues

The main problem of the SV models is that the MCMC sampler converges
slowly to the equilibrium distribution. This slowness is caused because of
the high autocorrelation of the parameters and the correlation between the
parameters of the SV models. The following figures show the first 1000 points
of the MCMC algorithm.

Histogram of the 1000 points of the parameter a vs time

05

-2.5 — I L

-3.5

45 = ——

5.5 =

-100 100 300 500 700 900 1100
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Histogram of the first 1000 points of the parameter d vs time

Histogram of the first 1000 points of the parameter
sigma-square vs time

In order to handle this problem we follow three different strategies. The
first is based on a reparameterisation of the latent parameters, in the second
we use the random scan MCMC and finally the non-sequential MCMC is

used.

Reparameteterisation

In order to speed up the convergence of the MCMC we use a reparameter-

isation of the latent parameters . A proper reparameterisation is usually a
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good way to speed up the MCMC algorithm (Phillips and Smith, 1993 &
Dellaportas, 1995). The general sketch of this reparameterisation follows.

For hy = 0 we have

wsy

w3

wr

so we have that

he =

dlc
d—

hl—a

hy—a-d-hy

ha—a—d'hz

hT—a—d-hT_1

-1 k ‘
+ Z dlc—l s W,
1 i=1
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0 0 0 - 0]
d 1 0 0 0
O(hy,..hr) | & 4 1 0 -0
9 (wy, ..., wr) d3 & d 1 0

dT-1 dT-% 473 g% ... 1

and

0 ('U)l, ey wT)

The full posterior distribution after the reparameterisation is

pwla,d, o2, wly) = pun(a,d, o2, wly)-J
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L2
~ 1 e __l_.tglwt
ORI
1 a (d-d !
P _5'(d—1'(d—1—T)+,;w" d—1 )]
T _ e
exp —-I--ny-exp(—a-dt I—Zd’"-w,)].
] 2 = d-1 i=1

The above reparameterisation gives enough evidence that it speeds up the
convergence and that reduces the autocorrelation between the parameters of

interest.

Other strategies

The second strategy was the random scan MCMC. The main difference from
the usual MCMC algorithm that we present in the section 5.3.2, is that
the latent parameters are updated not in a sequential order but randomly.
This strategy has an advantage to the convergence with respect to the usual

MCMC algorithm but it is not as good as the reparameterisation strategy.

Another approach of the MCMC is the non-sequential MCMC, which
does not update the latent parameters in a sequential order but with a step
each time. For example, for step 5 we update h,, hg, h11, ... -

The outcomes of this strategy show that the non-sequential MCMC does

not affect on the convergence of the parameters of the SV model.



Chapter 6

Implementation

6.1 Introduction

In this study we try to investigate the weekly return of the General Index of
the Athens Stock Exchange Market (composite Index) over the period 1986
- 1996. The dataset consists of 491 observations of weekly return.

We define the weekly rate of return of the General index as follow
= In G
b = Gt

where the G, is the value of the General Index at the Thursday of a week ¢.

We try to model y; with the Stochastic Volatility model.

56
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6.2 Data

The present study investigates the weekly rate of return of the General Index
of the Athens Stock Exchange over the period 1986-1996. The data are

represented in the next figure
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| —— GENERAL INDEX |

From the above figure it is obvious that the data have volatility clustering.
In consequence to that, this time series cannot be modeled by the usual

homoscedastic models such ARMA or ARIMA and ARCH or SV models

must be used.
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6.3 Methodology

Because of the volatility clustering we use the Stochastic Volatility model in
order to analyze the dataset. The methodology we adopt is the Markov Chain
Monte Carlo (MCMC) sampling approach. Particularly, we use Metropolis-
Hasting within Gibbs. In order to apply this methodology, we calculate the
posterior distribution for the model and then the full conditional posterior
distributions for each parameter of the model.

We use the criteria that included in the CODA software (Best & Cowles,
1995) in order to examine the convergence and especially the criterion of
Raftery & Lewis (1992) in order to infer about the speed of the convergence
between the different MCMC samplers that we use.

6.4 Results

6.4.1 Diagnosing the Convergence

We fit the Stochastic Volatility model to the above data using the algorithm
of the MCMC . As a burn-in we take 150,000 points in order to converge to
the distribution of interest and then we take a sample of 15,000 points with
lag 100. We take such a big lag so that to eliminate the high autocorrelation
that turns up.

Using the CODA software we find that all the criteria of convergence
are satisfied. In the next paragraphs we provide the outcomes of the main

criteria that we use.
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Geweke test

The Geweke test (Geweke, 1992) divides the chain of each parameter
in two parts which contain the first 10% and the last 50% of the iterates.
If the whole chain is stationary then the means of the iterates early and
late in the chain should be similar. The sample mean and the asymptotic
variance -using spectral density estimation- in each part are calculated. The
convergence diagnostic Z is the difference between these two means divided
by the asymptotic standard error of their difference. As the chain’s length
— 00, the sampling distribution of Z — N (0, 1), if the chain has converged
(Best and Cowles, 1995) . Therefore, the results from the following table

provide no evidence against convergence for each parameter of the SV model.

Geweke

variable || Z

a -1,33

d -1,17

a2 0,738
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Heidelberger & Welch
Applying this test (Heidelberger & Welch, 1983) we take the following

outcomes

variable || Test || # to keep || # to discard | C-vonM

a passedJ] 15000 0 0,336

d passed ” 15000 | o 0,280
ot |

This test based on Brownian Bridge theory and uses the Cramer-von-

Mises statistic to test the null hypothesis that the sampled values for each

parameter comes from a stationary process (Best and Cowles, 1995). The

above table contains the outcomes of this test. The last column contains
the result of the Cramer-von-Mises statistic for each parameter, the second
column informs us if our chain passes this test, the third column contains
the number of the iterations which can be considered that come from the
distribution of interest (here all the iterations) and the fourth column gives
us the number of the initial iterations that must discard. Therefore based
on this test, we can conclude that our chain has converged to the posterior
distribution.

Moreover, a halfwidth test is considered which examines the precision of
the posterior means. The outcomes are included in the following table. Here

the precision is considered ¢ = 0.1, and our chain passes this test.
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variable {| Halfwidth test || Mean || Halfwidth
a passed I -0,276 || 0,0024
d passed 0,960 || 0,0004
a'g passed 0,110 { 0,0008

61

From the above results we can assume that the chain has converged to

the equilibrium distribution so the sample that we have taken can be used

for inferences about the parameters of the SV model.

The following histograms are the results of the analysis. From the his-

togram of d, we can see that the Greek Stock Market appears high persistent

volatility and the conditional variance (02) of the latent parameters is small.

Moreover the contour graph of a and d shows the high correlation between

these two parameters.



CHAPTER 6. IMPLEMENTATION

6.4.2

1000 1500 2000 2500 3000

500
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Histogram and summary statistics of parameter

a
Posterior density of a
l T 1 ¥

0.8 06 -0.4 02
Mean Median Q: Qs
-0,275681 | -0,258661 -0,355484 || -0,176068
Variance | Stand. Dev. | Skewness || Kyrtosis
0,01991 0,141104 -0,78195 1,149566
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6.4.3

2000

1500

1000

500
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Histogram and summary statistics of parameter

d
Posterior density of d

i T T T [
0.85 0.90 0.95 1.00 1.05
Mean Median Q Qs
0,959821 0,962220 0,947869 0,974557
Variance || Stand. Dev. Skewness || Kyrtosis
0,000435 | 0,020865 -0,772202 f 1,10809
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6.4.4

2000

1500

1000
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Histogram of and summary statistics parameter

2
T
Posterior density
of sigma-square
[ | 1 LI { T 1
0.0 0.05 0.10 0.15 0.20 0.25 0.30
Mean Median Q: Qs
0,109865 || 0,102206 0,078397 0,132544
Variance || Stand. Dev. Skewness | Kyrtosis
0,001907 || 0,043675 1,153098 2,180811
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6.4.5 Posterior distribution of the mean and variance

of the ht

The mean and variance of the latent parameter h; are produced from the

following forms

Using our sample from the MCMC algorithm we can obtain the posterior
distributions of these characteristics

The summary statistics of these distribution are

2
Hn | o

ﬂ mean " -6,868 || 1,389
| median | -7,161 || 1,097

The histograms of these distributions follow
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Posterior density of the mean of log-volatilities

4000
f

3000
|

A +
=
IS
JE
.
&
I ] i

9 -8 7 6 -5

2000

1000
|




CHAPTER 6. IMPLEMENTATION 67

Posterior density of the variance of log-volatilities
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6.4.6 Image plot of a and d

Image plot of a and d

T
!
i

6.5 Predictions

Using the samples that we have already produced from the equilibrium dis-
tribution we can calculate the predictive density of the yT+! = y*! and the
predictive distribution of the latent parameter h*%! and the variance of this
prediction Var (y*°!) = exp (h**!). The histograms of the future values y**,
y*92 the variance of these predictions Var (y*!), Var (y*?) and the latent

parameters h*%!, h4%? follow.
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6.5.2 Histograms of Var (y*), Var (y*?)
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6.5.3 Histograms of h%%!, h%%?

Predictive density Predictive density
of volatility h(491) of volatility h(492)
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6.6 Testing results the other strategies

In order to test which of the proposed strategies is better with respect to
the speed of the convergence, we run all the algorithms and we take samples
of 10,000 points and we use the Raftery & Lewis (1992) criterion that
is included in CODA software. This test examines the convergence of the
chain and provides us the total number of iterations that we must run our
chain in order to have sample from the posterior distribution with a specific
accuracy for a specific percentile of the distribution. Here, we choose the
2.5th percentile and the desired accuracy is chosen +0.005. The results of

this test follow.

The sequential MCMC

variable || Thin (k) || Burn-in || Total Lower Bound | factor (I)
a 8 312 206936 || 3746 55,277

d 4 140 139056 | 3746 | 37,1

0’% 7 91 114247 || 3746 30,5

so using this algorithm we must take 206,936 points in order to make

inference about the parameters

Random scan MCMC

variable || Thin (k) : Burn-in || Total Lower Bound || factor (I)
a 10 150 136000 | 3746 36,3
d 8 ‘{ 152 132456 || 3746 35,4
o? 7 175 182616 || 3746 48,7
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so with this algorithm we must take 182,616 points

Non-sequential MCMC

variable || Thin (k) || Burn-in || Total Lower Bound || factor (I)
a 8 312 206936 || 3746 55,2
d 4 140 139056 || 3746 37,1
0,27 7 91 114247 || 3746 30,5

so using this algorithm we must take 206,936 points in order to make

inference about the parameters.

MCMC with transformation on the latent parameters

variable || Thin (k) || Burn-in || Total Ewer?und f:tor (I)
a 10 140 123860 || 3746 33,1
d 10 110 115930 || 3746 30,9
o2 5 | 50 56895 || 3746 [ 15,2

so this algorithm forces us a run the MCMC 124,000 times, therefore
seems better than the other three. In addition to that, this algorithm re-
duces the autocorrelation and therefore we propose it as the more appropriate

MCMC strategy for the Stochastic Volatility model.
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Future Research

The class of Stochastic Volatility models is a very promising area for research
if we have in mind that it is only few years since Taylor (1986) introduced
this class and only recently Jacquier et al (1994) investigated this model via
the Bayesian framework.

Many extension of the stochastic model can be studied in univariate case.
Moreover the Multivariate Stochastic Volatility models (Jacquier et al,
1995) is a totally new and hopeful area of research.

A very natural extensions of the SV could be the above

Yeln, ~ N(0,exp(h:)) (7.1)
he = a+d-hei+n—0-my

2N (0.03)
and
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Ytln, ~ N (0,exp(h))
he = a+d-hy+g-ln(y7,) +mn (7.2)

7, UN (O,Uf,) X

The first model is a SV model but in this form the variance equation has
an ARMA(1,1) pattern than the usual AR(1). The second model is like the
GARCH(1,1) and allows the previous value of the time series to affect the
conditional variance.

Another topic for research, is the model selection. In this case, an algo-
rithm can be constructed - following, probably the Reversible Jump (Green
1995) - in order to select a time series model from a set of models, where this
set can be contained ARCH, GARCH and SV model and the above extension
of SV.
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