e 16
*oce +° ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
POSTGRADUATE PROGRAM
IN COMPUTER SCIENCE
M.Sc. Thesis

“Implementing and evaluating the RLC/AM protocol
of the 3GPP specification”

Michael Makidis

Supervisor: George Xylomenos

l OKONONIKD RANEIETHIO ASKNON
ATAAOOF

l 0 ||(|J(|J(|Jl(|30“59J4l1“

e e . maae . SV g Sl

ATHENS, FEBRUARY 2007

Table of Contents

Table Of CONEENLS.......c.ocoerericiirireerec ettt ettt s st e st sensane 2
ADSETACE ...ttt ettt ettt sttt setets e een et et nneneeneneneen 3
ACKNOWIEAGEMENLS........co.iuiiiiiirii sttt s s e 3
1 INETOUCHION. ..c..ciiiriiiiitecccietee ettt st s et senee e eeeasesesaenne 4
L1 ODBJECHVES....ciciiieirieciniriirie et s 4
L2 Document OULHNE........cocueeiieiicc et e et e e e e e aeean 4
2 Overview of the RLC Protocol.......cccoevueeieieieieeereccce st 5
2.1 Protocol Data Units (PDUS)cciiiivoriieieniiierieeeeeersieeseeeeeeeeeesssssessnens 77
2.2 Protocol Statesc.ccccecvviivniineniicnce e 13
2.3 State Variables........coooviivie it 14
2.4 WINAOWS ..ottt vt ettt s s et st st 16
2.5 THMETS..ooiiiiiiiiiecct ettt st e e esae e e ene e eseenb s one 17
3 Data transfer, polling & status reporting............eceeceevervevieresneenriereseereseennnes 20
3.1 Data transfer.... ..ot 20
32 POING...ciiiiii s 22
3.3 Status Report TransSmiSSion........cccccccccvvevreniiininieenieee e 24
4 Limited Reliability of the RLC/AMccocoriviniennrineiie et 27
4.1 SDU Discard Operation Modes............cceeeereeeenrirereneiineecireseeesiesaeseeennes 27
4.2 SDU discard with explicit signaling procedurecccccocevvevvnreecrrvennnene. 28
5 Other ProCedUres..........cccceirieireerrieiieieeteieeeee e e s et e s ressens et esesseas 31
5.1 RLC Reset procedureccceeviririerenieneinieneennniessessesseessesnessessessensenes 31
5.2 Local Suspend fUnCtionc.cocouiveeiveniisierinineee et erevenenen 33
5.3 Stop & Continue fUunCtioNnScccoveiveveeenenieecerereeee e e 34
5.4 Re-establishment functionc.cceeeeveinieiiicience e 34
5.5 Reconfiguration of RLC parameters by upper layers............ccccceereennenen 34
6 RESUILS ..ottt ne e 35
6.1 SIMUlation SELUP.......ccooreeviririeiieeisetrt ettt aeseese e 35
6.2 Comparison with other protocolscccccevverneerniirevnenineseseeeseen 38
6.3 SDU discard policies.........cccooerrrriiininncnenninie e 45
6.4 CONCIUSIONSeovviriiciictiiectiee ettt e e eae e s ebessssesssesbasneenses 48
APPENAIX ...ecviiiiiiiiniiciterre et s bbb e bbbt eee 50
RLC/AM features implemented...........ccoceceeierrereneneinenneeninresesessesessesessasens 50
RLC/AM Parameterscccevuirurnritieriiriseirieeesieteseesesssesesmeeeniesseesessessessessensons 52
WAN topology diagrams...........ccccoeerieveniiinnenieinenie e seessee e seaens 56
SDU Discard policies comparison diagrams..........c.ccccvvevveririceressuniesiersernnenens 60
REfETEIICES ..ottt ettt b e st see s e tens 62
ADDIEVIAtIONSueiiveeiiieiticiestectereeee sttt e st ae e rene e ensnaesssaessnestseenesseens 64
2

S o SN OGNS GEm NS GNN Gun SO Gum NN GNS SN (NS GND NN GBG GN M mm |

Abstract

We implemented the RLC/AM protocol from the 3GPP specification in a simu-
lated environment and we compared its performance over wireless links for web
browsing, file transfer and continuous media distribution. We used a Uniform error
model and a Two State error model to compare the protocol performance to the raw
link, a simple Selective Repeat protocol and a Selective Repeat protocol with adaptive
timers. We examine the behavior of the protocol and determine its applicability on
each application.

Acknowledgements

I would like to thank my supervisor, Dr. George Xylomenos, for his valuable ad-
vice and never-ending patience during this project, not to mention letting me use his
code infrastructure for building my extension. I would also like to thank Prof. George
Polyzos for accepting the role of second supervisor.

Special thanks go to my family and friends for their support during this project.

1 Introduction

1.1 Objectives

Several of the most widely used Internet applications, like Web Browsing and
File Transfer, use the TCP protocol as the transport layer protocol. With wireless net-
works becoming a commodity, a number of issues have been identified with TCP per-
formance over wireless links and several solutions have been suggested [15]. One of
those is the usage of a reliable link-layer protocol without TCP awareness, like the
RLC.

The Radio Link Control (RLC) [1] protocol is the data link layer protocol for the
Universal Mobile Telecommunications System (UMTS), the proposed successor of the
popular GSM mobile networks and one of the third-generation mobile phone technol-
ogies. UMTS was designed to be a packet switching network, where data transfer and
digital media (other than simple voice calls) are considered first-class citizens. As such,
it supports much greater data rates compared to second-generation technologies like
GSM, of up to 384 Kbps for Rgg terminals or 3.6 Mbps for HSDPA terminals. This is a
vast imprevement compared to GSM'’s 9,6 Kbps.

Since the air interface is critical for a mobile network’s performance, the purpose
of this project was to implement and study the RLC/AM protocol used in the UMTS
system in a simulated environment and compare its performance to the raw link and
two Selective Repeat protocol variants, a simple and an adaptive one, which have been
found to offer excellent performance for TCP applications [12]. The tests were per-
formed using two error models and we measured the performance of web browsing,
file transfer and continuous media distribution.

1.2 Document outline

In the following section we provide an overview of the acknowledged mode (AM)
of the RLC protocol and we describe its PDU types, states, variables, timers and other
components. In the third section we describe the data transfer procedure, the polling
procedure and the status reporting procedure for positively and negatively acknowl-
edged PDUs. In the fourth section we outline the limited reliability feature of the
RLC/AM, describing the SDU Discard function and the explicit signaling procedure
used to inform the Receiver of the discarded SDUs. In the fifth section we briefly dis-
cuss the remaining functions of the RLC/AM protocol, including the RLC Reset proce-
dure. Finally, in the sixth section we discuss our results and conclude this report. An
appendix at the end of the document explains the RLC features implemented and the
RLC parameters used in our implementation. It also includes some performance dia-
grams from the sixth section for reference. At the end of this document there is a list of
references and a list of abbreviations used in this report.

2 Overview of the RLC protocol

The RLC protocol is part of the data link layer of the UMTS stack. The RLC pro-
tocol has three modes: transparent mode, unacknowledged mode and acknowledged
mode. The transparent mode (TM) is used when no services are required from this
layer (for example, when using the UMTS channel for a voice call). The unacknow-
ledged mode (UM) is used when the application requires a low delay channel but with
better reliability than the raw link (for example, video streaming using UDP at the
transport layer). This mode can perform duplicate avoidance and reordering but it
does not perform retransmissions. Finally, the acknowledged mode (AM) is used when
a reliable channel is required (for example, for file transfer). This mode can perform
retransmissions (i.e. the RLC is an Automatic Repeat Request protocol in this mode)
and it uses a sliding window like the Selective Repeat and Go-Back-N protocols. This is
the mode studied in this project.

Upper layer
e AM RLC entity i
/ -/ \
| Segmentation/Concatenation G izl talks Ll \
) R—
| Reassembly
Add RLC header |
1 |Received
l I ACKs
Retransmission buf-) R
s emove RLC header &
/| fer & management ; extract piggybacked info.
i Pig. Status
i L " PDU info -
Transmission buffer : | {
I Receive buffer &
, : ACKs retransm. mgmt
Set fields in header (e.g. Polling 4 LA - !
bit, piggybacked Status PDU) ___..F-*"“’ Deciphering
¥] = |
|
Ciphering (for data PDUs) : :
\ I Demux/Routing _|
I W
Transmitting side 1 . Receiving side /’
———— 1
Lower layer

Fig. 1 Model of an acknowledged mode RLC entity

The RLC sublayer assumes that there are two AM RLC entities wishing to ex-
change data. Each AM RLC entity has a transmitting side (the “Sender”) and a receiv-
ing side (the “Receiver”) and it acts as either the Sender or the Receiver, depending on

5

the procedure. An AM RLC entity can be configured to use one or two logical channels
to send or receive data and control PDUs. In case two logical channels are configured,
data PDUs are transmitted on the first channel and control PDUs on the second chan-
nel in the uplink. Any PDU can be transmitted on any channel in the downlink. Each
channel has a number of acceptable sizes for PDUs.

The RLC/AM protocol performs the following functions:

o Transfer of user data: The protocol supports (mostly) reliable data
transfer. It can discard data that have not been successfully transmitted
in a period of time or number of retransmissions. This is because it ex-
pects upper layer protocols (like TCP) to perform their own, end-to-end
retransmissions as well.

o Error correction: The protocol detects erroneous PDUs and either asks
for a retransmission or discards them altogether.

¢ Sequence number check, duplicate detection and in-sequence deli-
very of upper layer PDUs: The protocol detects duplicate PDUs by us-
ing sequence numbers and a PDU window. It also delivers the PDUs in-
sequence. Out-of-sequence delivery is also supported.

e Protocol error detection and recovery: The protocol detects a number
of abnormal conditions and can request retransmissions or even reset it-
self if all other measures fail.

¢ Flow control: The Receiver can optionally change the Sender’s window
size to control the flow (this function was not implemented in our simu-
lation).

e Segmentation and reassembly, concatenation and padding: The
SDUs received from upper layers are segmented into smaller parts (if
they are larger than the available space in a PDU) and are concatenated
to form PDUs of fixed size. Padding is added at the end of the PDUs if
they are smaller than the indented size. These functions have not been
implemented in our simulation because we needed it to be comparable to
pre-existing implementations of other protocols that do not perform
those functions either.

o Ciphering: The protocol encrypts and decrypts the data exchanged (this
function was not implemented in our simulation).

The Sender uses data (AMD) PDUs to transfer the SDUs from upper layers to the
Receiver (see Data transfer, pg. 20). Every PDU has a sequence number (in the interval
[0,2%-1]) and the Sender and the Receiver keep buffered PDUs in a PDU window. The
Receiver’s PDU window is advanced upon reception of a new data PDU and the Send-
er's PDU window is advanced upon reception a positive acknowledgement for a data
PDU. The Sender can also poll the Receiver (see Polling, pg 22). When the Receiver is
polled, it transmits a status report to the Sender, indicating the successfully and erro-
neously received data PDUs (see Status Report Transmission, pg. 24). The Sender can

6

retransmit the erroneously received data PDUs or discard them (by informing the Re-
ceiver). In the latter case, their windows are advanced without retransmitting the
PDUs (see SDU discard with explicit signaling procedure, pg. 28). Finally, the RLC pro-
tocol defines a few more functions, like RLC Reset (pg. 31), Suspend (pg. 33) and oth-
ers.

The RLC/AM protocol can be configured via a number of parameters (see
RLC/AM parameters, pg. 52). The behavior of the protocol can vary significantly de-
pending on the parameters used. It is left up to the UMTS operator to determine the
appropriate values of these parameters. A (very) general guideline is that performance
is improved and radio resources are used more efficiently with larger window sizes and
buffers, as the buffer usage follows the TCP congestion control algorithms [3] [4] [9]
[16].

2.1 Protocol Data Units (PDUs)

The RLC/AM protocol uses Data PDUs (AMD PDUs) for transmitting the user’s
data and Control PDUs (Status, RESET and RESET ACK PDUs) for the protocol’s con-
trol messages. The Status PDUs can be independent PDUs or piggybacked on an AMD
PDU (in its padding space). The RLC/AM PDUs are bit strings with a multiple of 8 bits
in length.

211 Data (AMD) PDU

The AMD PDU is used to convey

. L. D/C Sequence number Byte 1

sequentially numbered PDUs containing 3 ;
RLC SDU data from the Sender to the Seguence number Eal HE g el
Receiver (see Data transfer, pg. 20) Length Indicator (L) _E; Byte3(opt)
along with the Polling bit and optionally
piggybacked status information. Length Indicator (LI) E

The AMD PDU header consists of
the first two bytes, which contain the DATA
sequence number (SN), the polling bit
(P), and a Header Extension (HE) type
field (used by the segmentation and Padding or
reassembly function). The RLC header Piggybacked Status PDU Byte N

consists of the AMD PDU header and all Fig_; Layout of an AMD PDU
the bytes that contain Length Indicators
(LIs). AMD PDUs have a fixed size, defined by upper layers.

The RLC header for the AMD PDU has the following fields:

e D/C: This bit indicates whether this is a Data or Control PDU. It is set for
Data PDUs.

SES SN OGN GEN GEN OGNS OGS OGN OGNS GG GBS OO8 OGNS (NN GNN ONN OGNS GBS e Bem omw

e Sequence number: The sequence number of the AMD PDU. Its length is
12 bits.

e Polling bit (P): This bit is set to request a status report from the Receiv-
er. If it is not set then a status report is not requested.

o Extension bit (E): This bit indicates whether the next field is da-
ta/piggybacked Status PDU/padding or a LI field and E bit.

¢ Header Extension (HE) type: This two-bit field indicates whether the
next byte is data or a LI and E bit.

¢ Length Indicator (LI): This field is used for retransmission and reas-
sembly. It indicates the last byte of each SDU ending in this PDU. The
size of this field is 7 bits if the AMD PDU size is equal to or less than 125
bytes; otherwise the size of this field is 15 bits. This means that, barring
any other restrictions, an AMD PDU can have a maximum payload of 32
KB.

e Data: SDUs or segments of SDUs are mapped to this field. The last seg-
ment of an SDU is concatenated with the first segment of the next SDU
so that the data field is filled completely and padding is minimized. Seg-
mentation and reassembly is not implemented in our simulation.

e Padding: Unused space at the end of the PDU which is ignored by the
Sender and the Receiver. Padding has a length such that the PDU as a
whole has one of the predefined length totals. Padding is not imple-
mented in our simulation.

Piggybacked Status PDU

A Status PDU can be optionally piggybacked on an AMD PDU, if it fits in the
padding space of the AMD PDU. The piggybacked Status PDU’s format is the same as
an ordinary Status PDU’s format. Our implementation includes this feature for the
sake of completeness but it deviates from the specification in an important way. Since
our PDUs do not have padding space (since no SaR or concatenation is performed and
no padding is added), the Status PDU is piggybacked at the very end of the AMD PDU.
This means that AMD PDUs with piggybacked Status PDUs do not have a fixed size,
which is against the specification. The piggybacked Status PDU usually adds approx-
imately 3 to 8 bytes in each AMD PDU, depending on the SUFIs and SUFI sizes of the
Status PDU.

The RLC protocol does not specify when a Status PDU should be piggybacked (in
order to promote competition among implementations). Our piggybacking feature is
based on a delayed Status PDU function. When a Status PDU is triggered, a timer is
started. If an AMD PDU is sent while the timer is active, the Status PDU is piggy-
backed on it. If the timer expires and no AMD PDU is sent during that time then an
ordinary Status PDU is send instead.

Predictably, the RLC protocol with this kind of piggybacking has a lower perfor-
mance compared to the RLC without any piggybacking. This is because AMD PDUs

8

with piggybacked Status PDUs are larger than ordinary AMD PDUs (in our implemen-
tation) and there is a higher probability of an error to occur to such an AMD PDU dur-
ing transmission over the air. As a result, the piggybacking feature was not used in our
simulations. Piggybacking in our implementation can be enabled or disabled by setting
a parameter (see RLC/AM parameters, pg. 52).

RLC
Specification

Wéﬁl'if“i'inslementa-
tion with piggy-
backing disabled

Our implementa-
tion with piggy-
backing enabled

AMD PDU without piggy-

backed Status PDU

Fixed size

AMD PDU fields
& data

Fixed size

AMD PDU fields |
& data

The AMD PDU has
no padding space. Its size is
fixed (because SDUs from the
upper layer have a fixed size).

Fixed size

AMD PDU fields

& data

Same as above.

AMD PDU with piggy-
backed Status PDU
Fixed size
|' o
AMD PDU Status | :
fields & data PDU ;PADE
R
The AMD PDU with a piggy-

backed Status PDU has the
same size as an ordinary AMD |
PDU.

Fixed size

AMD PDU fields 1 Status
& data lt PDU

The AMD PDU has
no padding space. The Status
PDU is not piggybacked. Two
separate PDUs are sent.

Fixed size

AMD PDU fields Status
& data PDU
The AMD PDU with piggy-

backed Status PDU is larger
than ordinary AMD PDUs. Its .
size is also variable (as there is
no padding space).

21.2

ACK

Status PDU

A Status PDU is used

By the Receiver to inform the

Sender about missing and re- O/ GRS SURIL erte 1
ceived AMD PDUs (see Sta- SO Byte 2
tus Report Transmission, pg.

24). SUFI k

By the Sender to request the

Receiver to move the recep- Padding Byte N

tion window (see SDU dis-
card with explicit signaling Fig-3Layout of aStatus PDU

procedure, pg. 28).

By the Receiver to acknowledge the Sender about the reception of the re-
quest to move the window (see SDU discard with explicit signaling proce-
dure, pg. 28).

By the Receiver to inform the Sender of the size of the transmission win-
dow whenever the Receiver needs to update the Sender’s window.

The Status PDU has the following fields:

D/C: This bit indicates whether this is a Data or Control PDU. It is set for
Data PDUs.

PDU type: This field indicates the type of Control PDU (Status, RESET or
RESET ACK).

SUFI(s): The Status PDU is essentially a sequence of Super Fields (SU-
Fls). SUFIs are fields that have variable size and it is implementation de-
pendent which SUFIs to use. A SUFI has three sub-fields, Type, Length
and Value, of which only the first is mandatory. The Type and Length
fields have fixed size.

Status PDU SUFis

Acknowledgment & Negative acknowledgement SUFIs

SUFI Description

Acknowledgement

This super-field consists of a Type field and a sequence number (value)
field. This SUFI is also indicating the end of the data part of a Status
PDU and it must always be the last SUFI. This means that a NO_MORE

10

LIST

BITMAP

RLIST

edges the reception of all AMD PDUs with sequence number less than
the value of the SUFI.
List

This SUFI consists of a Type, a Length and a Value sub-field. In its Value
sub-field there is a list of sequence number/length pairs. Each pair indi-
cates the sequence number of an AMD PDU that has not been correctly
received (in the sequence number part) and the number of consecutive
AMD PDUs not correctly received following that AMD PDU (in the
length part).

Bitmap

This SUFI consists of a Type, a Length and a Value sub-field. In its Value
sub-field there is a first sequence number (FSN) and a bitmap. The FSN
indicates the sequence number of the first bit in the bitmap. Each bit in

the bitmap indicates the status of the AMD PDUs with the correspond-

ing sequence number. If the value of a bit is 1, then the AMD PDU with
the corresponding sequence number has been correctly received by the
Receiver; otherwise it has not been correctly received.

Relative List

This SUFI consists of a Type, a Length and a Value sub-field. In its Value
sub-field there is a first sequence number (FSN) and a list of codewords.
The FSN indicates the first erroneous AMD PDU received by the Receiv-
er. The codewords (when decoded) indicate a list with the distance be-
tween the previous indicated erroneous AMD PDU up to the next one.

Other SUFIs

SUFI Description

| NO MORE No More Data

MRW

|

This super-field indicates the end of the data part of a Status PDU and it '

does not have Length or Value sub-fields. It must always be placed as the
last SUFI in a Status PDU. All data after this SUFI is regarded as pad-
ding.

Move Receiving Window

This SUFI is used by the Sender to request the Receiver to move its re-
ception window and optionally to indicate the set of discarded RLC

SDUs as a result of an RLC SDU discard in the Sender. Among others, it

1n

' MRW_ACK

 WINDOW

with sequence number less than the indicated SN must be discarded.
Move Receiving WmdowAcknowledgement |

This SUFI acknowledges the reception of a MRW SUFI by the Receiver.
Its value (in an SN_ACK subfield) indicates the new value of the VR(R)
state variable (see Receiver variables, pg. 16).

Window Size

This SUFI consists of a Type field and a window size number (value).
The Receiver is always allowed to change the transmission window size
of the Sender during a connection. The reception window of the Receiv-
er is not changed. The value of this SUFI indicates the value of the
VT(WS) parameter to be used by the Sender (see Sender variables, pg.
14).

Our implementation uses only the NO_MORE, ACK, BITMAP, MRW and
MRW_ACK SUFIs.

21.3 RESET & RESET ACK PDU

A RESET PDU is used to transmit a

reset command and it is sent by the Send- ks PS8 B e
er to the Receiver, while a RESET ACK Al

PDU is used to transmit an acknowled- ikl

gement to a RESET PDU and it is send by HFNI

the Receiver to the Sender (see RLC Reset .*Agdding

procedure, pg. 31). Byte N

These
fields:

PDUs have the following
Fig. 4 Layout of the RESET and RESET ACK PDUs

D/C: This bit indicates whether this is a Data or Control PDU. It is set for
Data PDUs.

PDU type: This field indicates the type of Control PDU (Status, RESET or
RESET ACK).

Reset Sequence Number: This bit indicates the sequence number of the
transmitted RESET PDU. If this RESET PDU is a retransmission of the
original RESET PDU then the retransmitted PDU will have the same se-
quence number as the original; otherwise it will have the next RSN value.
The value of this field is not reinitialized when the RLC entity is reset.
Reserved 1 (R1): This field is not used.

Hyper Frame Number Indicator (HFNI): This field is used to syn-

12

chronize the hyper frame numbers (used for ciphering) in the peer enti-
ties.

2.2 Protocol States

The RLC protocol has five distinct states in AM. These are the NULL, DA-
TA_TRANSFER_READY, RESET_PENDING, LOCAL_SUSPEND and RE-
SET_AND_SUSPEND states, as shown in Fig. 5.

The NULL state is the initial state of the RLC entity. In this state, the RLC entity
does not exist (and cannot send or receive data). Upon request from upper layers, the
entity is created and enters the DATA_TRANSFER_READY state.

In the DATA_TRANSFER_READY state, the entity can exchange data with its
peer entity. Upon request from upper layers, it can be terminated (and enter the NULL
state) or be suspended (and enter the LOCAL_SUSPEND state). It can initiate the RLC
Reset procedure by sending a RESET PDU (and enter the RESET_PENDING state) if a
reset condition is triggered. If the entity receives a RESET ACK PDU, it does nothing
but if it receives a RESET PDU, it resets itself, responds with a RESET ACK PDU and
continues normal data transmission (see RLC Reset procedure, pg. 31).

In the RESET_PENDING state, the entity waits for a response from its peer enti-
ty. No data can be exchanged between the entities. Upon request from upper layers,
the entity can be terminated (and enter the NULL state) or be suspended (and enter
the RESET_AND_SUSPEND state). If the entity receives a proper RESET ACK PDU, it
resets itself and enters the DATA_TRANSFER_READY state, and if receives a RESET
PDU, it responds with a REST ACK PDU and stays in this state, according to the RLC

Rq. from
upper layers
RESET RESET ACK
Rq. from RESET ACK .-
upper layers : Rq. from upper layers
DATA_ Conf. to upper layers ..
ML) o= TRANSFER_) LOCAL_
P Rq. from . SUSPEND
= upper layers READY .~ Ra.from upperlayers . """ =
- Sp— Conf. to upper layers
Reset trigger RESET ACK
RESET _—
Rq. from
' upper layers RESET r;.nffrtir: LL:pp:;errllaay:;errss —Eserd RESET ACK
PENDING /om0 PPeray
. Rq. from upper layers RESET=AND,
R from ™ ~“RESET q. ; pper lay SUSPEND /
g. “RESETACk Conf. to upper layers .

e ——

upper layers

Fig. 5 The state model for AM RLC entities

13

1

Reset procedure.

In the LOCAL_SUSPEND state, the entity is suspended, i.e. it does not send
AMD PDUs with sequence number greater than a specified value. Upon request from
upper layers, it can be terminated (and enter the NULL state) or resume normal data
transmission (and enter the DATA_TRANSFER_READY state). It can initiate the RLC
Reset procedure by sending a RESET PDU (and enter the RESET_AND_SUSPEND
state) if a reset condition is triggered.

Finally, in the RESET_AND_SUSPEND state, the entity waits for a response from
the peer entity or a request from upper layers and no data can be exchanged between
the entities. Upon request from upper layers, the entity can be terminated (and enter
the NULL state) or resumed (and enter the RESET_PENDING state). If the entity rece-
ives a proper RESET ACK PDU, it resets itself (according to the RLC Reset procedure)
and enters the LOCAL_SUSPEND state.

In our simulation the LOCAL_SUSPEND and RESET_AND_SUSPEND states are
not implemented because we do not implement the Local Suspend function (see pg.
33)-

2.3 State Variables

All state variables for the RLC protocol are nonnegative integers. AMD PDUs are
numbered by modulo sequence numbers (SN) cycling through the fieldo to 2"
(=4095), therefore all arithmetic operations in variables containing sequence numbers'
are affected by this modulus. When performing arithmetic operations, the modulus
base is subtracted (within the appropriate field) from all the values involved and then
an absolute comparison is performed. At the Sender the modulus base is VT(A) and at
the Receiver it is VR(R). L

2.31 Sender variables

Variable Description
VT(S) Send state variable P

This variable contains the sequence number of the next AMD PDU to be
transmitted for the first time (i.e. excluding retransmissions) by the
Sender. It is update when an AMD PDU is transmitted for the first time.
Its initial value is o.

VT(A) Aglznowledge state variable

This variable contains the sequence number following the sequence
number of the last in-sequence acknowledged AMD PDU. This forms the

'i.e. for the variables VT (S), VT(A), VT(MS), VR(R), VR(H) and VR(MR).

14

| VI(DAT)

VT(MS)

lower edge of the transmission window of acceptabié acl{n“c;\‘vledgements.
This variable is updated when a Status PDU with an ACK and/or
MRW_ACK SUFl is received. Its initial value is o.

" This variable counts the number of times an AMD PDU has been sche-

duled to be transmitted (or retransmitted). There is one VT (DAT) varia-
ble for each PDU and each is incremented every time the corresponding
PDU is transmitted (or retransmitted). The initial value of this variable is
0.

Maximum Send state variable

This variable contains the sequence number of the first AMD PDU that
can be rejected by the Receiver. This variable represents the upper edge
of the transmission window. This means that VT(MS) = VT(A) +
VT(WS). The Sender cannot transmit PDUs with sequence number equal
to or greater than this variable. It is updated when VT(A) or VT(WS) is
updated. Is initial value is the value of the Configured_Tx_Window_Size
parameter.

VT(PDU)

VI(SDU)

VI(RST)

This state variable is used when “Every x PDU” polling i:;onﬁgured (see
Polling, pg. 22). It is incremented every time an AMD PDU is transmitted
(including both new and retransmitted PDUs). When it becomes equal to
the value of the Poll_PDU parameter, a poll is triggered and the variable
is reset to o. The initial value of this variable is o.

“This state variable is used when “Every x SDU” i;blling is configured (see
Polling, pg. 22). It is incremented every time a SDU is transmitted for the
first time, or more specifically, when the AMD PDU containing the first
segment of the SDU is transmitted for the first time. When it becomes
equal to the value of the Pol1_SDU parameter, a poll is triggered and the
variable is reset to o. The initial value of this variable is o.

In our simulation, since segmentation and reassembly are not imple-
mented, this variable simply counts the PDUs received from the upper
layers. The only difference with VT(PDU) is that VT(SDU) does not count
retransmitted PDUs.

Reset state variable

This variable counts the number of times a RESET PDU is transmitted
before the reset procedure is completed. It is only reset when a RESET
ACK PDU is received, i.e. it is not reset when an RLC reset initiated by
the peer entity occurs. The initial value of the variable is 0. See RLC Reset
procedure, pg. 31.

—{"-T(I_VIRW) MRW command send state variable

15

This variable counts the number of times a MRW command is transmit-
ted. It is reset when the SDU discard with explicit signaling procedure is
terminated. Is initial value is o. See SDU discard with explicit signaling
procedure, pg. 28.

' VT(WS) Transmission window size state variable
This variable contains the size of the transmission window. It is updated

by a WINDOW SUFI in a Status PDU by the Receiver. Its initial value is
the value of the Configured_Tx_Window_Size parameter.

2.3.2 Receiver variables

Variable Description

VR(R) Receive state variable

This variable contains the sequence number following that of the last in-
sequence AMD PDU received. It is updated then an AMD PDU with sequence
number equal to its value is received. Its initial value is o.

VR(H) Highest Zgiﬂ);cted state variable -

This variable contains the sequence number following the highest sequence
number of any received AMD PDU. When an AMD PDU is received with se-
quence number x such that VR(H) < x < VR(MR), this variable is set to x + 1.
Its initial value is o.

.VR(M?) Maximum accepfal)_le Receive state variable

This state variable contains the sequence number of the first AMD PDU that

will be rejected by the Receiver. This means that
VR(MR) = VR(R) + Configured_Rx_Window_Size

2.4 Windows

The following figures show the transmission window (at the Sender) and the re-
ceive window (at the Receiver). Note that the transmission and receive windows do not
necessarily have the same size; the Receiver can enlarge (up to a maximum size) or
shrink the Sender’s window as part of the flow control it performs. The flow control
function of the Receiver uses the WINDOW SUFI of a Status PDU to inform the Send-
er of the new size of the transmission window. The RLC protocol does not specify the
flow control algorithm (leaving that up to the implementation). It specifies only the
means (signaling) to control the flow. Apparently, this is done in order to promote
competition among potential implementations.

16

241 Transmission window

Transmission window [VT(WS)}]

~

NN AR/ AV
SWEEEELLLLEL
N AV

VT(A) VT(S) VT(MS)

N I
§ Acknowledged PDU ;% Usable slot, PDU
& i not sent
— | Send but unack- % PDU outside the win-
- nowledged PDU é dow (will be rejected)
il

24.2 Receive window
Receive window

NN AR
NUEEUELEEL)
NN Wit Nz z)z

¢
VR(R) VR(H) VR(MR)

§ Received PDU : Acceptable (not
§ (in-sequence) l received) PDU
AN LY
= - v/,
= AEEEEe ALY é PDU outside the win-

(out-of-sequence) é dow (will be rejected)
= a

2.5 Timers

The RLC/AM protocol uses a number of timers for its operation. The timers are
considered active from the moment they are started until they expire or are stopped.

17

251 Polling timers

Timer Description

Timer_Poll This timer is started (or restarted) upon a transmission of
an AMD PDU containing a poll. If x is the value of the
VT(S) variable after the poll was submitted to the lower
layer then the Poll Timer is stopped upon receiving posi-
tive acknowledgements for all the AMD PDUs with se-
quence number up to and including x — 1 or a negative
acknowledgement for ADM PDU with sequence number
x — 1. If the timer expires and no Status PDU fulfilling the
above criteria is received then a poll is triggered, the new
value of VT(S) is saved and the timer restarts.

This timer is used only if configured so by upper layers.
See Polling, pg. 22.

Timer_Poll_Prohibit This timer is used to prohibit transmission of po'lls within
a certain time period. It is started (or restarted) when an
AMD PDU with a poll is transmitted. Polling is prohibited
while this timer is active. Any polls triggered while they
are prohibited must be delayed and sent when the timer
expires. Only one poll is sent in such a case (despite the
fact that many polls may have been triggered while polling
was prohibited).

This timer is used only if configured so by upper layers.
See Polling, pg. 22.

Timer_Poll_Periodic This timer is used only if “timer-based” polling is confi-
gured by upper layers. This timer is started when the RLC
entity is created. When it expires, a poll is triggered and

the timer is restarted. See Polling, pg. 22.

2.5.2 Status reporting timers

Timer Description

| Timer_Status_Prohibit This timer is used to prohibit the Receiver from sending
consecutive status reports. The timer is started upon
transmission of a status report in a Status PDU (piggy-
backed or ordinary). While this timer is active, the Receiv-
er cannot send any status reports (i.e. Status PDUs with a
LIST, BITMAP, RLIST or an ACK SUFI). Other SUFIs are

not prohibited. Any status reports triggered during the

18

Timer_Status_Periodic

25.3 Other timers

Timer

{ Timer_RST

Timer MRW

Timer Discard

lower layers) must be delayed and sent when the timer
expires. The status reports can be updated while they are
delayed.

This timer is used only if configured so by upper layers.
See Status Report Transmission, pg. 24. ‘

This timer triggers a status report transmission in the Re-
ceiver periodically. It is started when the RLC entity is
created and when it expires, it triggers a status report and
it is restarted.

This timer is used only if configured so by upper layers. ;
See Status Report Transmission, pg. 24.

Description

This timer is used to handle the loss of a RESET or RESET
ACK PDU. It is started (or restarted) upon transmission of
a RESET PDU and it is stopped when the Reset procedure
terminates. If it expires, the RESET PDU is retransmitted
and the reset counter (VT(RST) variable) is incremented.

See RLC Reset procedure, pg. 31.

This timer is used to retransmit a Status PDU containing a
MRW SUFI. It is started when a Status PDU with a MRW
SUFI is sent for the first time. It is stopped if the MRW
procedure is acknowledged. If it expires, the MRW SUFI is
retransmitted and a counter for the MRW command

(VT(MRW) variable) is incremented.

See SDU discard with explicit signaling procedure, pg. 28. |

This timer is used only when the Timer-based discard va-
riant for SDU discard is configured (see Limited Reliability |
of the RLC/AM, pg. 27). An instance of this timer is started |
for each SDU sent for the first time. If the timer expires
and the SDU has not been acknowledged, it is discarded ‘
with the SDU discard function.

19

3 Data transfer, polling & status reporting

3.1 Data transfer

The (acknowledged mode) data e —

transfer procedure is obviously the most [Sender

important procedure of the RLC proto-
col, as it is the one used for transferring

S
the user’s data between two peer RLC AMD PDU
entities. The data is transferred from the — =

—

Sender to the Receiver. This procedure is
used only when the RLC entity is in the
DATA_TRASNFER_READY state of LO-
CAL_SUSPEND state. The procedure is
initiated upon a request for data transfer from the upper layers or upon retransmission
of AMD PDUs.

If the procedure is initiated from the upper layers then the Sender must:

Fig. 6 Data transfer procedure

e Perform segmentation of the RLC SDU(s) received from the upper layer
and, if possible, concatenation of the SDU(s) into AMD PDUs. The PDU
size is fixed and configured by upper layers and a Length Indicator (LI)
field is set for each SDU that ends in an AMD PDU. In our simulation,
segmentation and reassembly is not implemented; we expect the upper
layers to have dealt with that, delivering fixed-size packets to the RLC.
This is so that the RLC implementation can be comparable with other
pre-existing protocols, such as several Selective Repeat implementations.

e For each PDU, set the PDU’s sequence number equal to the VT(S) varia-
ble, increment the variable and set the PDU’s polling bit if a poll has been
triggered and is not prohibited (see Polling, pg. 22).

e Start a timer Timer_Discard for each SDU received from upper layer, if
the “Timer based discard with explicit signaling” variant of the SDU Dis-
card function is used (see Timer based discard with explicit signaling, pg.
27).

e Schedule the PDU(s) for transmission.

If the PDU is a retransmission, the Sender must:

e Set the PDU’s sequence number as in the original transmission of the
AMD PDU.

e Update the PDU'’s LI field(s) (for example, if a piggyback Status PDU was
transmitted originally, it is not retransmitted).

20

o Set the PDU’s polling bit if a poll has been triggered and is not prohi-
bited.

e Schedule the PDU for transmission.
Each time a PDU is scheduled for transmission or retransmission, the Sender

¢ Increments the value of the corresponding VT(DAT) variable (counting
the number of transmissions for this PDU) and initiates the SDU Discard
function or the Reset procedure if the “SDU discard after x number of
transmissions” or “No_discard after x number of transmissions” variant is
used (see Limited Reliability of the RLC/AM, pg. 27) and the value of the
VT(DAT) variable is equal to or greater than the value of the MaxDAT pa-
rameter.

e Optionally attaches a piggybacked Status PDU to the padding space of
the AMD PDU by updating the AMD PDU’s LI fields, if a Status PDU has
been scheduled.

e Makes sure that it is not prohibited to schedule the PDU for transmission
(for example, in case the Local Suspend function is initiated).

e Makes sure that the sequence number of the transmitted PDU is less
than the value of the VT (MS) variable or equal to VT(S) - 1.

o Treats retransmissions with higher priority than AMD PDUs transmitted
for the first time.

e Starts the timer Timer_Poll if the polling bit of the PDU has been set
(see Polling, pg. 22).

o Buffers the PDUs according to the SDU Discard configuration.

Upon reception of an AMD PDU, the Receiver:

e Updates its VR(R), VR(H) and VR(MR) state variables, i.e. it moves its
window bounds.

o If the received AMD PDU has its polling bit set or the Receiver detects a
missing PDU and is configured to initiate a status report, then it assem-
bles a status report and initiates the Status PDU transfer procedure.

e Reassembles the received AMD PDUs into RLC SDUs (not implemented
in our simulation).

e Delivers the SDUs in-sequence, if configured to do so, otherwise it deliv-
ers them arbitrarily. Our implementation supports in-sequence delivery
only.

Abnormal cases

The protocol specifies a number of abnormal cases.

21

¢ Receiving an AMD PDU outsize the reception window: Upon recep-
tion of an AMD PDU with sequence number SN outside the interval
VR(R) < SN < VR(MR), the Receiver discards the AMD PDU. Still, if the
AMD PDU had its polling bit set, then the receiver prepares a status
report and initiated the Status PDU transfer procedure.

¢ Receiving an AMD PDU within the reception window more than
once (Handling of Duplicates): Upon reception of an AMD PDU with
sequence number SN within the interval VR(R) < SN < VR(MR), for
which and AMD PDU has already been received, the Receiver discards
the AMD PDU and considers the AMD PDU with this sequence number
as having been correctly received in the next status report. However, be-
fore discarding the duplicate PDU, the Receiver processes its polling bit
(and sends a status report if the polling bit is set) and processes its piggy-
backed Status PDU, if there is any.

e Timer_Discard timeout: Upon expiry of a timer Timer_Discard, the
Sender initiated the SDU discard with explicit signaling procedure (see
pg- 28).

o Invalid LI field value: If the value of the LI field of a received AMD PDU
is larger than the PDU size or if its value is one of the reserved values
then the Receiver ignores that AMD PDU.

e Invalid PDU size: If the PDU size of a received PDU is different than the
configured AMD PDU size then the Receiver ignores that AMD PDU.

o Full Buffer Behavior (for the UE): The UE may have memory limita-
tions. When the buffer memory is full, the UE is not required to segment
the SDUs into PDUs. It should be able to process incoming AMD PDUs
(especially the AMD PDU with sequence number equal to VR(R), i.e. the
next expected AMD PDU) and operate according to the normal protocol
(e.g. process status reports and perform retransmissions). However, it
may discard received AMD PDUs within the receive window and consid-
er the discarded AMD PDUs as not having been received.

3.2 Polling

The polling function is used by the Sender to request a status report from the
Receiver. This is done by setting the polling bit in an AMD PDU. Upon reception of an
AMD PDU with the polling bit set, the receiver must transmit a Status PDU (or piggy-
backed Status PDU) with positive and/or negative acknowledgements of AMD PDUs,
according to the Status PDU transfer procedure.

There are several triggers for the polling function in the receiver; any combina-
tion of which may be active, as configured by upper layers. These triggers are:

22

Every last PDU in buf-
fer: When an AMD PDU l Sender I
is to be transmitted for
the first time and it is the

last PDU scheduled or al-
lowed to be transmitted

Receiver |

AMD PDU

with Polling Bit set
then a poll is triggered for : e
that AMD PDU. This trig-
ger was not implemented Status PDU with |
in our simulation because ! status report

- 'A.-_.‘
the Suspend function of

the RLC protocol was not

st s
&

implemented and a sche-
duling buffer was not Fig. 7 Polling & status report transmission procedure
used in this layer.

Every last PDU in Retransmission buffer: When a retransmitted AMD
PDU is submitted to the lower layer and it is the last PDU scheduled for
retransmission or the last PDU allowed to be retransmitted, then a poll is
triggered for that AMD PDU.

Poll Timer: A poll is triggered when the Poll Timer (Timer_Poll) ex-

pires. The Poll Timer is started (or restarted) when an AMD PDU con-

‘taining a poll is submitted to the lower layer. If x is the value of the VT(S)

variable after the poll was submitted to the lower layer then the Poll Ti-
mer is stopped upon receiving positive acknowledgements for all the
AMD PDUs with sequence number up to and including x — 1 or a nega-
tive acknowledgement for ADM PDU with sequence number x — 1. If the
timer expires and no Status PDU fulfilling the above criteria is received
then a poll is triggered, the new value of VT(S) is saved and the timer is
restarted.

Every x PDU: A poll is triggered by the Sender for every x PDUs, where x
equals the Poll_PDU parameter. Both new and retransmitted AMD PDUs
are counted.

Every x SDU: A poll is triggered by the Sender for every x SDUs, where x
equals the Poll_SDU parameter. The poll is triggered for the last PDU
that contains the x™ SDU. In our implementation segmentation, reas-
sembly and padding are not implemented. Therefore, the only difference
compared to the “Every x PDU” trigger is that no retransmissions are
counted this time.

Window Based: A poll is triggered by the Sender when a percentage of
the Sender’s window is used. The portion is defined by the Pol1_Window
parameter. If the percentage] used is at least as much as the
Poll_Window parameter, i.e. if] = Poll_Window, then a poll is triggered.

23

(4096 + VT(S) + 1 — VT(A)) mod 4096
/= VT(WS) '
e Timer Based: A poll is triggered periodically by the Sender by using the
Timer_Poll_Periodic.

100

It shall be noted that misconfiguration can lead to deadlock situations [7]. It has
been shown that good performance results can be achieved when using the “every last
PDU in buffer” and “every last PDU in retransmission buffer” triggers [17].

The specification suggests that when the polling function is triggered and there
are no PDUs scheduled to be transmitted and there are unacknowledged PDUs, then
the last unacknowledged PDU shall be retransmitted with its polling bit set. This fea-
ture was not implemented in our simulation because we do not use a scheduling buffer
in this layer.

The Poll Prohibit function can be used by the Sender to delay the initiation of
the Polling function, if so configured by upper layers. When the Poll Prohibit function
is used, polling is prohibited (delayed) when the Timer_Poll_Prohibit is active. The
polling procedure is changed so that:

e If a poll is triggered and polling is not prohibited then the polling bit is
set (as before) and the Timer_Poll Prohibit is started.

e Ifa poll is triggered and polling is prohibited then the polling function is
not initiated.

e When the Timer_Poll_Prohibit expires, if the polling function was
triggered at least once (and was delayed) then the polling function is in-
itiated.

It has been observed that there is a tradeoff between protocol throughput and
delay when setting the Timer_Poll and Timer_Poll_Prohibit. Throughput is in-
creased for low values of these timers, as it is suggested that small polling periods
should improve performance [4], but in practice a UMTS operator might not be able to
identify an optimal configuration [10].

3.3 Status Report Transmission

The Receiver transmits status reports to the Sender in order to inform the Send-
er about which AMD PDUs have been successfully received (positive acknowledge-
ment) and which have not been received (negative acknowledgement). The Status
Transmission procedure triggers are:

e Polling: If an AMD PDU with the polling bit set is received by the Re-

ceiver then the Status Transmission procedure is triggered.
e Detection of Missing PDU(s): The Receiver can trigger a Status report

24

transmission if it detects one or more missing PDUs and is so configured
by upper layers.

e Timer based status report transfer: The Receiver triggers a Status re-
port transmission to the Sender periodically, if so configured by upper
layers. This is accomplished by using the Timer_Status_Periodic. It
has been found that best performance is achieved for timeout values
slightly higher than the round trip time [2].

¢ Request from lower layers: The lower layers can request the generation
of a status report following a MAC-hs reset. This trigger was not imple-
mented in our simulation since there is no support for such a function
from the lower layers in our simulated environment.

A status report transmission consists of one or more Status PDUs. The Status
PDUs must have complete SUFIs. The Receiver can use the LIST, BITMAP, RLIST and
ACK SUFIs of a Status PDU in order to inform the Sender about the received and not
received PDUs. It is not specified which SUFIs exactly to use (other than ACK), appar-
ently in order to promote competition among potential implementations. In our im-
plementation, we use the BITMAP and ACK SUFIs.

There is a Status Prohibit Function that prohibits the transmission of Status
PDUs with the above SUFIs. Status PDUs with other SUFIs are not prohibited by this
function. This function can be used if so configured by upper layers. If a Status PDU
containing a status report (and using one or more of the above SUFIs) is triggered and
is prohibited then it must be delayed. The Status Prohibit Function uses the Ti-
mer_Status_Prohibit so that if this timer is active then status reporting is prohi-
bited and it does not prohibit status reports that were triggered by lower layers.

If the Status Prohibit Function is used then the Status Transmission procedure is
changed so that:

e The Timer_Status_Prohibit is started upon submission of a Status
PDU with one or more of the status reporting SUFIs (LIST, BITMAP,
RLIST and ACK) to the lower layers.

e If another such status report is triggered and this timer is active then the
status reporting is prohibited and delayed until the timer expires (unless
it was triggered by lower layers). The status report can be updated during
this time. The transmission of SUFIs MRW, MRW_ACK, WINDOW or
NO_MORE is not restricted. If a Status PDU containing one or more of
those SUFIs and one or more of the status reporting SUFIs is triggered,
then it is transmitted excluding the status reporting SUFIs.

e When the timer expires, if a status transmission with the status reporting
SUFIs has been triggered and is no longer prohibited, then it is transmit-
ted.

Upon reception of a Status PDU with a status report, the Sender must inform the

25

upper layers of any positively acknowledged PDUs, if requested to do so, and update
its state variables VT(A) and VT(MS) (i.e. move its window bounds) according to the
information in the received Status PDU. The Sender also stops any Timer_Discard
timers, if the corresponding AMD PDUs have been acknowledged (see Timer based
discard with explicit signaling, pg. 27). If the Status PDU includes negatively acknowl-
edged AMD PDUs then the Sender must retransmit them. Retransmitted AMD PDUs
have higher priority than AMD PDUs to be transmitted for the first time. If an AMD
PDU is negatively acknowledged more than once in a Status PDU (for example, in mul-
tiple SUFIs) then it shall be retransmitted once only. If a Status PDU has an inconsis-
tent status indication then it is considered erroneous and it must be discarded.

26

-----------(

4 Limited Reliability of the RLC/AM

The RLC/AM offers limited reliability on the delivery of SDUs from upper layers.
SDUs that have not been correctly received within a certain time period or number of
retransmissions are discarded by the Sender and the Sender and Receiver windows are
advanced (moved). This is done in order to minimize retransmission conflicts with the
retransmissions at the TCP layer and it also helps prevent buffer overflows. The SDU
discard function is used for this purpose.

The SDU Discard function is used by the Sender in order to discard one or more
PDUs from its buffers and (in the AM) inform the Receiver of the discarded PDUs.
There are three alternative operation modes of the Discard function for the AM.

It shall be noted that in our implementation the discard function discards PDUs,
not SDUs, as we do not perform segmentation and reassembly.

4.1 SDU Discard Operation Modes

4.1.1 Timer based discard with explicit signaling

This alternative uses a timer (Timer_Discard) for triggering the discard func-
tion. This makes the SDU discard function insensitive to variations in the channel rate
and provides means for exact definition of maximum delay.

For every SDU received from upper layers the Sender starts a Timer_Discard.
When such a timer expires, the SDU is discarded. Explicit signaling is used by the
Sender to inform the Receiver of the discarded SDU, so that the Receiver can move its
window.

A variant of this mode but without explicit signaling is used in the UM or TM
modes.

4.1.2 SDU discard after x number of transmissions

This alternative uses the number of transmissions as a trigger for the discard
function. This makes the discard function dependent on the channel rate. This variant
also strives to keep the SDU loss rate constant for the connection, on the cost of varia-
ble delay.

In this alternative, if the number of times an AMD PDU is scheduled for trans-
mission' (stored in a VT(DAT) variable) reaches or exceeds the value of the MaxDAT
parameter then all the SDUs it contains are discarded. Explicit signaling is used by the
Sender to inform the Receiver of the discarded SDU, so that the Receiver can move its
window.

' This includes the first transmission and all the subsequent retransmissions.

27

413 No_discard after x number of transmissions

This alternative is similar to the previous one. The difference is that the SDUs
are not discarded if the maximum number of transmissions is reached but the RLC
Reset procedure is initiated instead (so all buffers at the Sender and Receiver are emp-
tied and all variables reset).

4.2 SDU discard with explicit signaling procedure

formation between two peer RLC enti-

ties. This is used if the SDU Discard " Status PDU with
function uses the “Timer based discard MRW SUFI
with explicit signaling” or “SDU discard St

The SDU discard with explicit sig-
naling procedure is used for discarding
SDUs and transferring the discard in-

after x number of transmissions” va- ST
. . atus wi §
riants. The Sender discards an SDU that MRW_ACK SUFI

has not been successfully transmitted for . i

%
5

a period of time or a number of trans-

missions and sends a Move Receiving

Window (MRW) SUFI to the Receiver. Fig. 8 SDU discard with explicit signaling
According to the MRW SUFI, the Re-

ceiver must discard AMD PDUs carrying that SDU and update (move) the reception
window accordingly. The Receiver acknowledges the update by responding with a
MRW_ACK SUFI.

The procedure is initiated if one or more SDUs must be discarded when using
the “Timer based discard with explicit signaling” or “SDU discard after x number of
transmissions” variants. Upon initiation, the Sender discards the appropriate SDUs and
PDUs. In the “Timer based discard with explicit signaling” variant, the Sender discards
all SDUs up to and including the SDU for which the discard function was initiated.
Then, the AMD PDUs that contain segments of these SDUs are discarded (as long as
they do not contain segments of other SDUs). In the “SDU discard after x number of
transmissions” variant, the Sender discards all AMD PDUs with sequence number SN
in the interval VT(4) < SN < X, where X is the sequence number of the AMD PDU
with VT(DAT) = MaxDAT, and all SDUs with segments in these PDUs. If requested,
the Sender can inform the upper layers of the discarded SDUs.

Once the appropriate SDUs and PDUs have been discarded, the Sender assem-
bles one or more MRW SUFIs with the discard information, schedules them to be sent
by the lower layers in a Status PDU (ordinary or piggybacked) and starts the Ti-
mer_MRW.

Upon reception of a Status PDU with an MRW SUF], the Receiver delivers to the
upper layers all AMD PDUs (as SDUs) that have successfully received up to the se-

28

quence number mentioned in the MRW SUFI and discards all the ones that have been
unsuccessfully received. Then, it updates its VR(R), VR(H) and VR(MR) variables ac-
cording to the received MRW SUFI (i.e. it moves its window), it assembles a
MRW_ACK SUFI with the new value of VR(R) and it schedules the MRW_ACK SUFI to
be sent to the Receiver.

————— -
- -
- -

Rad RESET_PENDING or N
. RESET_AND_SUSPEND
MRW trigger R I -
Send MRW SUFI.
Start TIMER_MRW.

MRW procedure Timer_MRW timeout &
active VT(MRW) > MaxMRW
T Initiate RLC Reset procedure.

Timer_MRW timeout &

MRW acknowledged VT(MRW) < MaxMRW
Update window. Resend MRW SUFI.
Stop TIMER_MRW. Increment VT (MRW) counter.

Fig. 9 The MRW procedure for the Sender

The procedure is terminated when the Sender receives a Status PDU (piggy-
backed or ordinary) that contains one of the following:

e An MRW_ACK SUFI and its SN_ACK field is greater than the sequence
number in the transmitted MRW SUF], i.e. it indicates that all PDUs up
to that point have been discarded.

e An ACK SUFI and the Status PDU indicates that all AMD PDUs up to and
including the AMD PDU with sequence number equal to that in the
transmitted MRW SUFI have been received or discarded by the peer enti-

ty.

Upon termination, the Sender stops the timer Timer_MRW and updates its VT(A)
and VT (MS) variables according to the received Status PDU (i.e. it moves its window).

The protocol addresses a number of abnormal cases. If the Timer_MRW expires,
then the Sender must increment its VT (MRW) variable by one. If its value is now equal
to or greater than the value of the MaxMRW parameter, then the MRW procedure is
terminated and the RLC Reset procedure must be initiated. Otherwise, the Sender re-
transmits the MRW SUFI as previously transmitted (even if additional SDUs were dis-
carded in the mean time) and it restarts the Timer_MRW. Another abnormal case is
when the Receiver receives an obsolete or corrupted MRW SUFI, in which case it dis-
cards the MRW SUFI and schedules an MRW_ACK SUFI for transmission with the
current value of the VR(R) parameter. Finally, if the Sender receives an obsolete or
corrupted MRW_ACK SUFI (for example, if there is no ongoing SDU discard proce-

29

T

dure) then it must discard the SUFI.

Only one MRW procedure can be active at any time. If another MRW procedure
is triggered while the first one is still active, then the second one must be delayed and
re-initiated when the first one finishes.

30

5 Other procedures

5.1 RLC Reset procedure

The Reset procedure is used to reset
the two RLC entities. It uses the RESET and l Sender ! ’
RESET ACK PDUs, as shown in the figure. == ———

These PDUs have a higher priority than
AMD PDUs. During the Reset procedure the e
hyper frame numbers (HFN) used for ci- RESET PDU
phering in UTRAN and UE are synchro-
nized'.
The Reset procedure can be triggered

RESET ACK PDU
by a number of events:

il

I e The Discard function is using
the “No_Discard after x num- Fig. 10 The RLC Reset procedure
I ber of transmissions” variant
and the VT (DAT) variable for an AMD PDU equals the value of the Max-
DAT parameter.
l e The variable VT (MRW), which counts the number of attempts for success-
fully sending a Status PDU with a MRW SUFI, equals the value of the
' MaxMRW parameter.
e A Status PDU (or piggybacked Status PDU) with erroneous sequence
numbers in the status report (LIST, BITMAP, RLIST or ACK SUFIs) is re-
l ceived.

When the Reset procedure is triggered, the Sender enters the RESET_PENDING
state (or the RESET_AND_SUSPEND state, if its previous state was LOCAL_SUSPEND)
and it stops transmitting any AMD PDUs or Status PDUs and ignores any incoming
AMD PDUs and Status PDUs (piggybacked or ordinary). The Sender increments the
value of the VT (RST) variable (this variable counts the number of times a Reset PDU is
sent). If the value of this variable is lower than the value of the MaxRST parameter then
the Sender submits a RESET PDU to the lower layer and starts the Timer_RST. Other-
wise, it terminates the Reset procedure and signals an unrecoverable error to the upper
layers.

The RESET PDU has a RSN (Reset Sequence Number) field and its size is one bit
only. The value of this filed is o for the first RESET PDU sent (since the RLC entity is
established or re-established) and it is incremented (flipped) every time a new RESET
PDU is transmitted, but not when a RESET PDU is retransmitted. This is used in order

' This was not implemented in our simulation, as we did not implement ciphering.

31

U - ot

to detect new reset attempts from older ones that may still have PDUs pending.

When a RESET PDU is received by the Receiver, the Receiver checks its RSN
field to determine whether a new Reset procedure has been triggered again or the PDU
was sent during the previous (and now complete) Reset procedure. In the latter case,
the RSN field of this PDU will have the same value as the one of the last received RE-
SET PDU. If this is the case, the Receiver simply submits a RESET ACK PDU to the
lower layer with its contents set exactly as the last transmitted RESET ACK PDU and
the entity is not reset.

If the RESET PDU received by the Receiver has an RSN value that is different
than the last RESET PDU, and consequently is part of a new Reset procedure, (or if it is
the first one the Receiver receives since its establishment or re-establishment) then the

-————
- -~

el Connection s
. terminated !
. (NULL) S
Reset trigger R “7 Timer_RST timeout &
Send RESET PDU. VT(RST) =2 MaxRST
Start Timer_RST. Signal unrecoverable error.
RESET_PENDING or Stop.

RESET _AND_SUSPEND
Receive RESETACK -
Perform Reset. Timer_RST timeout &

Stop TIMER_RST. VT(RST) < MaxRST
Resend RESET PDU.
Increment VT (RST) counter.

Fig. 1 The Reset procedure for the Sender

Receiver must reset itself. This includes the following:

e Resetting all its state variables (except VT (RST)) to their initial values.

e Stopping all timers except Timer_RST, Timer_Discard, Ti-
mer_Poll Periodic and Timer_Status_Periodic.

e Resetting all configurable parameters to their configured values.

o Discarding all RLC PDUs in the receiving side of the AM RLC entity.

e Discarding all RLC PDUs that were transmitted before the reset in the
transmitting side of the AM RLC entity.

e Synchronizing its HFN numbers with the ones in the RESET PDU.

¢ Informing the upper layers of the reset, if configured to do so.

e Submitting a RESET ACK PDU to the lower layer with its RSN field set to
the same value as the corresponding received RESET PDU.

When the Sender receives the RESET ACK PDU, it checks its RSN to determine if
it corresponds to the last RESET PDU it sent. If it does not, then the PDU is discarded.
Otherwise, the Sender resets itself similarly to the Receiver. This includes the follow-

32

ing:

e Resetting all its state variables to their initial values.

e Stopping all timers except Timer_Discard, Timer_Poll_Periodic and
Timer_Status_Periodic.

e Resetting all configurable parameters to their configured values.

e Discarding all RLC PDUs in the receiving side of the AM RLC entity.

¢ Discarding all RLC PDUs that were transmitted before the reset in the
transmitting side of the AM RLC entity.

¢ Synchronizing its HFN numbers with the ones in the RESET ACK PDU.

¢ Informing the upper layers of the reset, if configured to do so.

By this time, the Reset function is completed and the Sender returns to its pre-
vious state (DATA_TRANSFER_READY or LOCAL_SUSPEND). However, there are
some abnormal cases that are addressed. If the Timer_RST expires, indicating that a
RESET ACK PDU has not been received since the initiation of the Reset procedure,
then the Sender increments the value of the VT(RST) variable. If it is lower than the
MaxRST parameter, then the RESET PDU is retransmitted and the timer is restarted.
Otherwise, the Reset procedure is terminated and an unrecoverable error is indicated
to the upper layers. Another abnormal case is when a RESET PDU is receiver by the
Sender. In this case, the Sender behaves as if it was the Receiver (by resetting itself as a
Receiver and submitting a RESET ACK PDU).

In our simulation we have implemented an option to disable the Reset proce-
dure. When this option is enabled, the reset procedure never initializes. As a result,

e If the Discard function is using the “No_Discard after x number of trans-
missions” variant, the VT(DAT) variable for an AMD PDU can have a val-
ue much greater than the MaxDAT parameter.

e The variable VT(MRW) can have a value much greater than the MaxMRW
parameter. In this case, the MRW function terminates only upon success-
ful completion (i.e. the acknowledgement of the MRW by the Receiver),
as the MRW SUFI is sent indefinitely until it is acknowledged.

e Status PDUs with erroneous sequence numbers are simply dropped.

5.2 Local Suspend function

When this function with parameter N is initiated by the upper layers, the RLC
entity does not send AMD PDUs with sequence number greater than or equal to
VT(S) + N.

The RLC entity can be resumed by upper layers. If the RLC Reset procedure was
not ongoing then the entity resumes the data transfer procedure. Otherwise, it re-
moves the suspend constraint and resumes the RLC Reset procedure.

33

This function was not implemented or used in our simulation since there is no
support for such a function from the upper layers in our simulated environment.

5.3 Stop & Continue functions

The RLC entity can be stopped by upper layers. This does not affect its timers.
When an RLC entity is stopped, is does not submit any PDUs to lower layers or receive
any PDUs and it delays triggered polling functions and status transmissions until it is
continued.

This function was not implemented or used in our simulation since there is no
support for such a function from the upper layers in our simulated environment.

5.4 Re-establishment function

The RLC entity can be re-established by upper layers. In this function, it resets
state variables and configurable parameters and discards the AMD PDUs in the receiv-
ing side, among other things.

This function was not implemented or used in our simulation since there is no
support for such a function from the upper layers in our simulated environment.

5.5 Reconfiguration of RLC parameters by upper layers

The RLC parameters for an RLC entity can be modified by upper layers. The pa-
rameters that can be reconfigured include the Configured_Rx_Window_Size parame-
ter (which affects the VR(MR) variable) and Configured_Tx_Window_Size parameter
(which affects the VT (WS) and VT(MS) variables). This function can cause a number of
PDUs to be discarded at the UE due to limited memory.

This function was not implemented or used in our simulation since there is no
support for such a function from the upper layers in our simulated environment.

34

6 Results

6.1 Simulation Setup

We used the ns-2 [8] simulator augmented with additional wireless links, link
layer protocols and applications [u] for our experiments. We tested HTTP and FTP
traffic over wireless links with and without contention. Each test was performed 30
times to compensate for statistical fluctuations, so all results shown are average values
and their 99% confidence intervals. We compared the RLC/AM protocol with two va-
riants of SR. We also evaluated the SDU discard policy impact.

We used two error models for the wireless link, a Uniform error model (“Cellu-
lar” link) and a Two State error model (“PCS” link), representing the error models on
the wireless link of a cellular mobile network. For each error model, we simulated the
client-server topology shown in Fig. 12.

o
TCP/UDP TCP/UDP TCP/UDP

LL LL
o ———]
B e PHY ————
\——-——.—-—"‘j
Wired server Wired host Wireless client

Fig. 12 The simulation topology

The wireless client connects to a wired server via a wired host. The wired chan-
nel can be either a LAN connection (with 10 Mb data rate and 1 ms delay) or a WAN
connection (with a 2 Mb data rate and 50 ms delay). The wireless link supports a 64
Kbps data rate with a 50 ms delay and a 250 byte frame plus a header. In the Uniform
error model for the wireless link there is independent frame loss at rates 1.5%, 2.5%,
5.4% and 9.8%. In the Two State error model, the channel can be in a good state, with
a bit error rate of 10®, or a bad state, with a bit error rate of 10, Both states have expo-
nential durations, with the average duration of the good state being 10 s and the aver-
age duration of the bad state being 100 ms, 200 ms, 500 ms or 1000 ms. It has been
found experimentally that with these parameters the average frame loss rate of the
two-state model is 1.5%, 2.5%, 5.4% and 9.8%, matching the Uniform model. The TCP
flavor used has the Reno variant, the most widely used variant in the Internet.

The RLC/AM parameters used in our experiments are summarized in the follow-
ing table. These parameters were found with direct experimentation to provide good
results in most applications and error models. The main difference between the two
error models was the addition of the “Every last PDU in retransmission buffer” polling

35

trigger and the Status Prohibit function in the Two State model. It was found experi-
mentally that that delaying the Status reporting and making sure a status request was
send at the end of every retransmission phase during bad channel states apparently
increases the throughput of the TCP applications tested. For an explanation of these
parameters, see RLC/AM parameters, pg. 52.

Parameter Uniform model Two State model
(“Cellular” link) (*PCS” link)

Window size 128 frames 128 frames

(Sender & Receiver)

Poll triggers Timer:lﬁ, Window Based Timer_Poll, Window

Based, Every last PDU in
retransmission buffer

Status report triggers Detection of missing PDU, Detection of missing PDU,

(other than polling) Periodic status reporting Periodic status reporting

Poll Prohibit enabled Yes Yes o

Status Prohibit enabled No Yes

RESET enabled ~ No No kil

Poll Window 70% 80%

SDU Discard Mode SDU discard after x num- SDU discard after x num-
ber of transmissions ber of transmissions

MaxDAT 3 2 EED

Timer_Status_Prohibit - 90 ms T

timeout

Timer_Status_Periodic 400 ms 500 mS

timeout

Timer_Poll timeout 200 ms 200 ms

Timer_Poll_Prohibit 100 ms 100 mSs

timeout

Timer_MRW timeout 500 ms 110 ms

Status report piggyback- No No

ing enabled

To evaluate the RLC/AM protocol, we used Web Browsing (HTTP) and FTP file
transfer, two of the most popular applications on the Internet, both with and without
contention. In Web Browsing, the client accesses pages containing text, embedded
objects and links to other pages, stored on the server. The client-server interaction
consists of transactions (i.e. the request from the client and the response, with the web
page and embedded objects, from the server). Only one transaction is in progress at
any time, with no pauses between transactions. The performance metric used was the
throughput for the server-to-client data, defined as the amount of all application data
transferred from the server to the client divided by the time required for the transfer.

36

All results shown reflect the state at the end of the last completed transaction during
the simulated period, which was 2000 s.

The file transfer (FTP) application simulated a file transfer from the server to the
client. This application is unidirectional, with only TCP ACKs in the reverse direction,
and it sends data as fast as possible. A 10 MB file was transferred and we measured ap-
plication throughput, defined as the amount of application data transferred divided by
time required for the transfer.

Contention was simulated with a UDP real-time Media Distribution application,
in which a speaker sends audio or video and alternates between talking and silent
states with exponential durations, averaging 1 s and 1.35 s respectively. Media is trans-
mitted only in the talking state, at a constant bit rate of 56 Kbps. On average, this ap-
plication consumes 37.5% of the available bandwidth. Since it is delay sensitive, it does
not use the reliable link layer protocol used by the other two applications.

The RLC/AM protocol is evaluated by comparison to two variants of the well-
known Selective Repeat protocol, which has been found to offer excellent performance
for TCP applications [12], without requiring TCP awareness. In Selective Repeat, the
Sender transmits frames in sequence within a transmission window of N frames and
buffers them in case they need to be retransmitted. The peer entity receives the frames
sent by the Sender and forwards them to the upper layers if they are received in-
sequence. The Receiver uses ACKs to inform the Sender that all frames up to (and in-
cluding) the one being acknowledged have been successfully received and the Sender
deletes the acknowledged frames from its buffers and advances its window (this is sim-
ilar to how RLC/AM operates as well). If the Receiver receives a frame out of sequence
(and a gap in the sequence is detected), this frame is buffered and, in our implementa-
tion, a negative acknowledgement is transmitted to the sender for each missing frame.
The Sender retransmits each NACKed frame. ACKs are delayed for a short interval in
order to be piggybacked into a data frame, to reduce protocol overhead. The Sender
uses a timer for each data frame sent and if the timer expires and the frame has not
been acknowledged, it is retransmitted. This is so that the Sender shall not exhaust its
window waiting for ACKs or NACKS that may have been lost. Our variant also sup-
ports multireject, allowing each missing frame to be NACKed multiple times.

The first variant of SR we tested uses a fixed retransmission timer with timeout
value of 1.1s. However, variants with adaptive timers have been found to perform bet-
ter [13]. Adaptive timers are based on the same principle used in TCP’s congestion con-
trol algorithm. An adaptive (self-clocking) SR protocol monitors the average round-
trip time and its variation and dynamically changes the timeout value of its retrans-
mission timer. A number of policies exist for predicting the round trip time [14]. Based
on previous research, the second variant of SR that we tested is an adaptive SR and it
uses the 3 x srtt + 2 X srttvar policy for the Uniform error model and 4 x srtt + 0 X
srttvar for the Two State error model.

37

6.2 Comparison with other protocols

The RLC/AM protocol clearly improves throughput in all cases when compared
to the raw link. We shall examine more closely its behavior for every application and
link. Note that the diagrams for the WAN topology are in the appendix (pg. 56).

6.2.1

In this section, we
examine the performance
of Web Browsing and FTP
applications without con-
tention. For Web brows-
ing, it is clear that the
RLC/AM protocol is not as
efficient as the SR va-
riants. When using the
Uniform error model
(“Cellular” link), we notice
a significant drop in
throughput compared to
the SR variants,

when the frame loss rate is

even

only 1.5%. As the frame
loss rate is increased, the
difference between fixed
and adaptive SR is in-
creased as well and by the
time the error rate reaches
9.8% the RLC/AM tends
to have similar perfor-
mance with the fixed SR.
Of course, the adaptive SR
protocol has higher
throughput compared to
the other two for all error
rates.

The situation is
more dramatic when using
the Two State error model

Throughput (Kbps)

Fig.

Throughput (Kbps)

Applications without contention

50 I

HTTP w/o contention, LAN/Cellular links

T T T T T T T
Raw Link ———
. Selective Repeat ------
45 I T Adapt. Selective Repeat —-—-— 7
N TR TN RLC/AM —---—
40 L . - .
35 |-
30 |-
25 |-
20 |-
15 |-
10 |-
5 I] 1 1 i 1 1] 1
0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

13 Web browsing throughput without cont., Uniform error model, LAN topology

HTTP w/o contention, LAN/PCS links

50 1 I 1 T T T T I
Raw Link
Selective Repeat ------

E Adapt. Selective Repeat —-—-—
N\ RLCIAM —---—
45 |- % "-. R

N
40 |-
35 |-
30 |-
25 1 1 1 1 1 i | . ,
0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

(“PCS” link). The RLC/AM Fig. 14 Web browsing throughput without cont., Two State error model, LAN topology

38

has a slightly lower
throughput even with no
frame loss because of its
significantly higher
When the
frame loss rate reaches
the 1.5%
RLC/AM

takes a steep dive and it

overhead.

point, the
throughput

loosely follows the per-
formance of the raw link,
while the SR throughput
(both variants) has a
simple, almost linear
drop in performance as
the frame loss rate in-
creases for both variants.

In fact, the RLC/AM

Throughput (Kbps)

70

60

50

40

30

20

10

FTP w/o contention, LAN/Cellular links

T T T T T - T .
Raw Link
Selective Repeat ------
— Adapt. Selective Repeat —-—-—
- B RLC/AM —---—]
1 1 L L | i | " |
0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

Fig. 15 File transfer throughput without cont., Uniform error model, LAN topology

throughput when using a LAN wired link tends to drop to as low as the raw link, as the

frame error rate increases, and it is almost half the throughput of the SR protocols. It is

obvious that, although the RLC/AM slightly improves the situation when compared to

the raw link (especially
when using a WAN con-
nection for the wired
link), it is no match for
the SR variants, at least
in HTTP traffic.

This impression is
visibly improved when
evaluating the RLC/AM
in the file transfer (FTP)
application. In the Uni-
form error model, while
the RLC/AM performs
about the same as the SR
variants for 15% and
2.5% frame error rates, it

Throughput (Kbps)

60

55

50

45

40

35

FTP w/o contention, LAN/PCS links

7 T T T T T T T
Raw Link
ST~ - Selective Repeat ------
R Adapt. Selective Repeat —-—-—
= R RLC/AM —---—
'~
I L]]] i ! i i

0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

sports better throughput Fig. 16 File transfer throughput without cont., Two State error model, LAN topology

than both SRs as the

error rate reaches 5.4% and 9.8%. In this case, the SRs seem to have a higher drop rate
as the frame loss rate increases. This behavior applies to both LAN and WAN wired

links.

39

With the
State error model, the
RLC/AM
was noticeably worse.
Both SR protocols had
an

Two

throughput

almost identical
throughput as the error
rate increased, with a
seemingly linear drop.
The RLC/AM had a
slightly lower through-
put in 1.5% and 2.5%
frame error rates. The
difference with the oth-
er two protocols in-
creased considerably in
higher
with

error

the

rates,
RLC/AM

6.2.2

We also tested
the two SR variants and
the RLC/AM protocol
with the same applica-
tions contenting with a
CBR source.

The protocols be-
haved as before when
the Web

simulation

running
Browsing
with the Uniform error
model. Apparently, the
CBR source effect was
minimal on through-
One
noted was
RLC/AM
was closer to that of

put. thing we
that the

throughput

HTTP with contention, LAN/Cellular links
35] 1 1 1 1 I 1 1
Raw Link
Selective Repeat ------
FaTi- ~Sk Adapt. Selective Repeat —-—-—
30 |- el T~y RLC/AM —---— _
e 25 |-
Q
o
3
3 20}
£
=]
3
e
= 15|
10 |-
5 i 1 I i 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

Frame loss rate (%)

10

Fig. 17 Web browsing throughput with contention, Uniform error model, LAN topology

throughput tending to fall to the raw channel throughput. Again, this behavior applies
to both LAN and WAN wired links.

A final observation for all TCP applications tested was that throughput is better
in the Uniform error model than in the Two State error model, as expected [6].

Applications with contention

HTTP with contention, LAN/PCS links

34 T T T T T T j I ;
Raw Link
: Selective Repeat ------
325~ Adapt. Selective Repeat —-—-— -
o™ RLCIAM —---—
30 |-
_§' 28 |-
!‘.
§. 26 |-
£
o
3
£ 24
[
22 |-
20 |-
18 - : 1 1 1 ! 1] 1

Frame loss rate (%)

Fig. 18 Web browsing throughput with cont., Two State error model, LAN topology

40

the fixed SR protocol this time. Although the RLC/AM is obviously an improvement
compared to the raw link, its throughput is still much lower than the SR variants
throughput. Once again, the RLC/AM protocol throughput takes a steeper dive (than
the SR protocols) while the frame error rate increases up to 5.4%, after which point it

tends to recover and
perform almost as good

FTP with contention, LAN/Cellular links

1 1 | 1 | 1 i

T T

Raw Link ———
Selective Repeat ------
Adapt. Selective Repeat —-—-—
RLC/AM —---—

as the fixed SR variant. = I '
When using the 40 _

Two State error model <3

for the wireless channel 35 |

and a LAN connection, ;ﬁ

both the RLC/AM and ¥ 30|

the fixed Selective Re- %

peat take a sharp dive 3 2°[

while the frame error * e

rate increases, but the

fixed SR seems to recov- 15 -

er after the FER reaches

5.4%. When using a 10 5 '1 '2

WAN connection, the

fixed SR performed
much better than the

3 4 5 6 7 8 9
Frame loss rate (%)

Fig. 19 File transfer throughput with contention, Uniform error model, LAN topology

10

RLC/AM.
File transfer FTP with contention, LAN/PCS links
throughput behavior 42] T s ™ - T .
. .] Raw Link
with the Uniform error 40k Selective Repeat - ----- .
A . P s Adapt. Selective Repeat —-—-—

model remains relative- 38 AT B S . RLC/AM —--—
ly unchanged for the el I |
RLC/AM when com- = Tl TRl

. Q 34 = \ e \'\.\. -
pared to the behavior £ ¢ \-ﬁ-\... e~

N I .. T~ -
without contention. g 32 |- %
Again, the RLC/AM & 30 Ly .
- [=] v .
protocol starts slightly £ 28f i -
lower than the SR va- 26 |- a
riants because of its L - i
high overhead, but it » T freesonoom e x
appears to have better !
20 1 1 i 1 1 1 1 1 1

performance than both 0 1 2 3 4 5 6 7 8 9

of them as the frame

Frame loss rate (%)

error rate INCreases. Fig o File transfer throughput with contention, Two State error model, LAN topology

This is for both WAN

and LAN wired connections. We also note the lower throughput of the SR protocol this

time.

4

When we used the Two State error model for the wireless connection, one thing
that stood out was the very poor throughput performance of the fixed SR protocol,

which was even lower
than the raw channel in
the LAN topology.
Again, the adaptive SR
has the highest
throughput, in both
WAN and LAN links.
The RLC/AM has an
acceptable throughput
as long as the frame
error rate is up to 5.4%,
but its throughput falls
close to that of the raw
channel in higher
frame error rates.

The application
for Continuous Media
Distribution we simu-
lated uses UDP for deli-
vering the media. As a
result, it bypasses the
reliable link layer pro-
tocol (RLC/AM or a SR
variant) and uses the
raw channel directly. In
this case, we measure
the average delay of
each packet to see how
well the media applica-
tion would perform
while the user is surf-
ing the web or down-
loading a file from the
server using FTP at the
same time.

Packet delay (seconds)

3.5

CBR with FTP contention, LAN/Cellular links

I T
Raw Link
Selective Repeat ------:-

ke :
PP L LA : Adapt. Séfective Repeat - - — = |
¥ ' RLC/IAM —--— :

| | 1 1 1 |)

2 3 4 5 6 7 8 9 10
Frame loss rate (%)

Fig. 21 CBR delay with FTP contention, Uniform error model, LAN topology

Packet delay (seconds)

55

4.5

3.5

2.5

1.5

CBR with FTP contention, LAN/PCS links

T T T T T T T

.. Raw Link

_; Selective Repeat ------

" Adapt- Selqctive Repeat —-—-— -
TTRLGAM. —:— ¥

1 1 L | 1 1

2 3 4 5 6 7 8 9 10
Frame loss rate (%)

In all cases, none Fig. 22 CBR delay with FTP contention, Two State error model, LAN topology

of the protocols achieve

as little delay as the raw link. However, there seems to be a relative scale, in which the
RLC/AM has the lowest delay, followed closely by the adaptive SR protocol while the
fixed SR protocol has the highest delay of them all. When using the Uniform error

model on the wireless link with the FTP application, the fixed SR protocol clearly has

42

the highest delay, which increases as the frame loss rate increases. Meanwhile, the

RLC/AM and adaptive SR have an almost constant delay, which is significantly lower

than the fixed SR and
the delay of the
RLC/AM appears to be
slowly decreasing as
the frame error rate
increases.

When using the
Two State error model
with the FTP applica-
tion, the previous con-
clusions are far more
pronounced. The in-
crease of the fixed SR
delay is steeper and
the maximum delay is
almost double as be-
fore. This time, the
adaptive SR delay is
also increasing as the
frame error rate in-

creases when the
frame error rate
reaches 2.5%, albeit
much more slowly

compared to the fixed
variant. Its delay ap-
pears to be the same
as the delay of the
RLC/AM protocol for
frame error rate up to
the 2.5%. Interesting-
ly, the RLC/AM delay
seems to be decreas-
ing again as the frame
increases

error rate

(especially from the Fig. 24 CBR delay with HTTP contention, Two State error model, LAN topology

5.4% onwards). The

Packet delay (seconds)

Fig. 23 CBR delay with HTTP contention, Uniform error model, LAN topology

Packet delay (seconds)

25

0

3.5

CBR with HTTP contention, LAN/Cellular links

v

x

7 T T T T
Raw Link

. Selective Repeat
: Adapt. Selective Repeat

0P oemmsseonuosn- ARREEEEEEEERRE RECIAM. ==

1 1 1 1 !

-

0

1

2

3 4 5 6 7 8
Frame loss rate (%)

CBR with HTTP contention, LAN/PCS links

1 T] I 1

Selective Repeat
: Adapt. Selective Repeat

RLC/AM

T T
Raw Link ———

1

3 4 5 6 7 8
Frame loss rate (%)

results are similar for the LAN and WAN topologies (apart from the fact that the fixed
SR protocol delay increases a bit more slowly in the WAN topology).

When testing the HTTP application with the Uniform model, the RLC/AM still
causes the lowest delay to the CBR stream. The delay is slowly decreasing as the frame

413

error rate increases. The adaptive SR protocol appears to have very slowly decreasing

delay, while the fixed
SR is the only one that
has a higher delay than
the others, which ap-
pears to be relatively
constant after the 2,5%
FER point. This is for
both WAN and LAN
topologies.

The delay for the
HTTP application with
the Two State model on
the wireless link is (rel-
atively) similar to the
Uniform model. The

main difference is that

and adaptive SR va-
riants has a steeper
increase as the frame
loss rate increases, with
the adaptive SR delay
tending to be as high as
the fixed SR delay,
when the FER increas-
es. The RLC/AM delay
is decreasing again
(more sharply this
time) as the error rate
increases.

One final obser-
RLC/AM

concerning both TCP

vation for

applications and all

error models and to-
pologies is that the

Throughput (Kbps)

Throughput (Kbps)

70

60

50

40

30

20

10

65

60

55

50

45

40

35

FTP w/o contention, LAN/Cellular links

[T 7 T T T
Raw Link ——

RLC/AM MaxDAT=2

RLC/AM MaxDAT=3

RLC/AM MaxDAT=4 —---—

RLC/AM MaxDAT=5 ——---

. RLC/AM MaxDAT=6
Sl T~ e JRLG/AM MaxDAT=7

——.
.-

1 1] 1 ! | 1

3 4 5 6 7 8 9 10
Frame loss rate (%)

the delay of the fixed Fig. 25 File transfer throughput without cont., Uniform error model, LAN topology

FTP w/o contention, LAN/PCS links

RS RLC/AM MaxDAT=4 —---—

% RLC/AM MaxDAT=5 ——---
RN RLC/AM MaxDAT=6 ———-
NN RLC/AM MaxDAT=7 -
N

T T T i
: : Raw Link

RLC/AM MaxDAT=2 ------
RLC/AM MaxDAT=3 —-—-—

1 1 1 1 1 L i

w

4 5 6 7 8 9 10
Frame loss rate (%)

Fig. 26 File transfer throughput without cont., Two State error model, LAN topology

media stream delay is lower when the throughput for the TCP application is low too.

When the TCP application has a high throughput, the media stream packet delay is

(slightly) increased as well.

44

6.3 SDU discard policies

We tested another
aspect of the RLC/AM
protocol, namely the
behavior of two of the
SDU discard variants:
the timer-based discard
and the SDU discard

based on number of

transmissions. We used
only the LAN topology
without contention to
the TCP applications.
We tried several values
of the MaxDAT parame-

ter and several values of

the Timer_Discard
timeout value
RLC/AM parameters,
pg- 52). We keeped all
other parameters the
same. When using the
“SDU discard after x
transmissions” variant,
the highest throughput
was achieved for Max-
DAT=3 in the case of
the Uniform error mod-
el and MaxDAT=2 for
the Two State error
model. This means that
only one retransmission
is allowed in the Uni-
form model, and no
retransmissions in the
Two State model. In

Throughput (Kbps)

Throughput (Kbps)

50

45

40

35

30

25

20

15

10

45

40

35

30

25

HTTP w/o contention, LAN/Cellular links

[] Ll 1 1 ¥ 1

I T
Raw Link
RLC/AM MaxDAT=2 ------
B RLC/AM MaxDAT=3 —-—-—
RLC/AM MaxDAT=4 —---—
RLC/AM MaxDAT=5 ——---
RLC/AM MaxDAT=6 ———-
S RLC/AM MaxDAT=7 --------

| 1 1 i 1 1 1 1 !

0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

(see Fig. 27 Web browsing throughput without contention, Uniform model, LAN topology

HTTP w/o contention, LAN/PCS links

] [] [] T 5 T I i

RawLink ———
RLC/AM MaxDAT=2 ------
RLC/AM MaxDAT=3 —-—-—
I RLC/AM MaxDAT=4 —---—
A RLC/AM MaxDAT=5 ——--- -
RLC/AM MaxDAT=6 =—-—-
RLC/AM MaxDAT=7 ---------

1] 1 1 1 1 1

0 1 2 3 4 5 6 7
Frame loss rate (%)

o b

9 10

general, as the number Fig. 28 Web browsing throughput without contention, Two State model, LAN topology

of retransmissions

increased, throughput decreased as it conflicts with TCP retransmissions. In the Uni-

form model, it is interesting to note that for MaxDAT=2 we get marginally higher

throughput (than the value MaxDAT=3) for up to 5,8% frame error rate, and the

throughput drops significantly for higher error rates.

45

The results are
similar for the Web
Browsing application
as well. For the Uni-
form error model we
get the maximum
throughput for Max-
DAT=3 once more. The
value MaxDAT=2 has a
lower throughput and
for values greater than
3, throughput drops as
the number of re-
transmissions increas-
es. For the Two State
model we get the max-

FTP w/o contention, LAN/Cellutar links

70

Throughput (Kbps)

10 -

T I 1 I

T T
Raw Link
RLC/AM disc. to=0.18 ------
RLC/AM disc. to=0.28 —-—-—
RLC/AM disc. to=0.38 —---—
RLC/AM disc. to=0.48 ——---
RLC/AM disc. to=0.58 ———-
RLC/AM disc. to=0.6s ---------
RLC/AM disc. to=0.78 —--—--

.~
- C————

3 4 5 6 7 8 9 10
Frame loss rate (%)

imum throughput for Fig. 29 File transfer throughput without cont., Uniform error model, LAN topology

MaxDAT=2 and the
throughput drops as
the number of re-
transmissions increas-
es.

We also note
that, at least for the
Uniform model, the
throughput increases
as the number of re-
transmissions increases
in the link layer, then it
reaches a maximum
(MaxDAT=3) and then
decreases, as it con-
flicts with the TCP re-
transmissions.

When using the

timer-based discard

FTP w/o contention, LAN/PCS links

T T T T T T
RawLink ———

RLC/AM disc. to=0.18 ------
RLC/AM disc. to=0.2s —-—-—
RLC/AM disc. to=0.3s —---—
RLC/AM disc. to=0.4s ——---
RLC/AM disc. to=0.5s ——-—-
RLC/AM disc. to=0.6s ---------
RLC/AM disc. t0=0.7s

* 55 ‘\'\
_§ 3
X
2 50
L
=]
3
e
- 45}
40 N
x
35 | 1 1 [l 1 1] 1
0 1 3 4 5 6 7 8 9 10

Frame loss rate (%)

Fig. 30 File transfer throughput without cont., Two State error model, LAN topology

variant, the first thing we notice is that throughput is significantly worse than the pre-

vious variant for both TCP applications. When testing the FTP application with the

Uniform error model, we notice that for all values of the timeout parameter tested,

throughput is worse than even the raw link, at least for up to 5.4% frame error rate.
After the 5.4% point, RLC/AM throughput is higher than the throughput of the raw
link for almost all values of the timeout parameter (except the lowest value tested,

1ooms). In general, performance is improved when using larger values for the Ti-

mer_Discard timeout,
although the improve-
ment is quite small and
in fact almost any time-
out value between 300
ms and 700 ms has sim-
ilar throughput.

For the FTP ap-
plication with the Two
State
throughput is almost

error model,
the same as the raw
link. Lower values of
the timeout parameter

(up to 300 ms) have
slightly worse
throughput than the
raw link while higher
values (up to 600 ms)
seem to improve the
throughput. The value
of 700 ms appears to
have the highest
throughput up to the
5,8% point of the FER,
an its throughput is
lower than the 600 ms
value for higher frame
loss rates.

HTTP throughput
on the Uniform model
is quite similar to FTP
throughput. For
values tested, perfor-

Throughput (Kbps)

50

45

40

35

30

25

20

15

10

HTTP w/o contention, LAN/Cellular links

I 1 I

T

T T
Raw Link
RLC/AM disc. to=0.18 ------
RLC/AM disc. to=0.2s —-—-—
RLC/AM disc. to=0.3s —---—
RLC/AM disc. to=0.4s ——---
RLC/AM disc. to=0.5s ——-—-
RLC/AM disc. to=0.6s ---------
RLC/AM disc. to=0.7s —--—--

4

5

6 7 8 9

Frame loss rate (%)

Fig. 31 Web browsing throughput without cont., Uniform model, LAN topology

Throughput (Kbps)

50

45

40

35

30

25

HTTP w/o contention, LAN/PCS links

| I 1

1

T T T
Raw Link —

RLC/AM disc. to=0.1s ------
RLC/AM disc. to=0.28 —-—-—
RLC/AM disc. to=0.38 —---—
RLC/AM disc. to=0.48 ——---
RLC/AM disc. to=0.5¢ ———-
RLC/AM disc. to=0.6s ---------
RLC/AM disc. to=0.78 —--—--

4
Frame loss rate (%)

6 7 8 9

all Fig. 32 Web browsing throughput without cont., Two State model, LAN topology

mance is worse than the raw link for up to 5.4% frame loss rate. From that point on-

wards, timeout values greater than 200 ms seem to have better throughput than the

raw link, with throughput increasing as the timeout value increases.

Web browsing throughput with the Two State error model is again similar to the
FTP throughput. Once more, RLC/AM throughput follows very closely the throughput
of the raw channel, with timeout values up to 300 ms having lower throughput than

the raw link and higher values having throughput higher than the raw link. In general,

performance is improving for higher timeout values; yet high timeout values have

47

worse performance in high frame loss rates (9.8%).

To conclude, as expected [2] [5] the timer-based discard variant performs signifi-
cantly worse in all error models and TCP applications we tested when compared to the
“discard after x transmissions” variant. The difference is higher in the Uniform model.
In the appendix (at pg. 60) you can the diagrams comparing the two discard policies.
These diagrams are the same ones presented in this section but each diagram shows
the throughput from both policies.

6.4 Conclusions

From the previous results, we can conclude that the RLC/AM protocol is well
suited for applications with contention. Although the TCP application will have a low-
er throughput, as the channel is not overloaded, the media application using UDP will
experience the lowest packet delay when compared to the other protocols as the frame
error rate increases. Still, the adaptive Selective Repeat protocol is preferred if we fac-
tor in the TCP application throughput. We also noticed that the RLC/AM throughput
for the Web Browsing application is significantly lower than the two SR variants. The
RLC/AM performs better than SR when transferring large files over a link with Uni-
form error model and its performance is acceptable when transferring files over a link
with the Two State error model, as long as the frame error rate does not get too high.

As a result, the RLC/AM protocol is dependent on the application used. It sports
much better performance when using FTP than Web Browsing. Contention from the
CBR stream seemed to have minimal impact on the RLC/AM throughput in all applica-
tions and it causes the lowest delay on the CBR stream when compared with the SR
variants.

There seem to be no significant differences between the LAN and WAN topolo-
gies for all protocols, when using TCP applications without contention. Web browsing
throughput is lower in the WAN topology due to the higher delay of the interactive
application but the relative performance of all protocols remains the same. In applica-
tions with contention, the only substantial difference between LAN and WAN topolo-
gies is that the fixed SR protocol is performing worse in the LAN topology compared to
the other two protocols (especially when using the Two State error model).

Compared to the raw link, the RLC/AM protocol improves the situation in every
case tested when evaluating TCP applications. Naturally, the RLC/AM delay on the
CBR stream is not as low as the raw link, but it is the lowest compared to the other
protocols. The fixed SR protocol has a higher throughput than RLC/AM in HTTP (all
cases) and FTP with the Two State model and lower throughput in FTP with the Uni-
form model or with contention. The fixed SR also causes the highest delay on the CBR
link compared to all the other protocols. The adaptive SR protocol has the highest
throughput in all applications, with or without contention, compared to the other two
protocols. The only exception is the FTP application with the Uniform error model.
The adaptive SR delay on the CBR stream is generally low, but not as low as the
RLC/AM.

48

The “SDU discard after x transmissions” variant of the RLC/AM protocol clearly
offers much better throughput when compared to the timer-based discard mode. In
general, throughput is increased as the number of retransmissions is increased (when
using the “SDU discard after x transmissions” variant), until it reaches a maximum
(which, incidentally, in the case of the Two State model is the value MaxDAT=2 - the
very first value of the MaxDAT variable). Then throughput drops as retransmissions
are increased, as there is conflict with the retransmissions at the transport layer. As far
as the timer-based discard variant is concerned, throughput was lower or (at best)
equal to the raw link with the parameters we used. Still, a different setup for the timer-
based discard policy is not expected to provide a significant increase in performance
for TCP applications.

49

Appendix

RLC/AM features implemented

The following features of the RLC/AM protocol have been implemented in our

simulation:

OO ORAEOOO

OOCOO0DRNRRAAE

BRARRAEAO

Functions
Segmentation and reassembly
Concatenation
Padding
Transfer of user data
Error correction
In-sequence delivery of upper layer PDUs
Out-of-sequence delivery of upper layer PDUs
Duplicate detection
Flow control (using the WINDOW SUFI)
Sequence number check
Protocol error detection and recovery
Ciphering

Procedures
Data Transfer
Poll & Poll Prohibit
Status Report (ACKs & NACKs) & Status Prohibit
SDU Discard
Reset
Local Suspend
Stop & Continue
Re-establishment
Reconfiguration of RLC parameters by upper layers

Poll triggers
Every last PDU in buffer
Every last PDU in retransmission buffer
Poll Timer
Every x PDU
Every x SDU
Window Based
Timer Based

50

Status Report Triggers
Polling
Detection of Missing PDU(s)
Timer based status report transfer

O 8 &

Request from lower layers

SDU Discard Operation Modes
Timer based discard with explicit signaling
STU discard after x number of transmissions

HEA

No_discard after x number of transmissions

Status PDU SUFIs
NO_MORE
ACK
LIST
BITMAP
RLIST
MRW
MRW_ACK
WINDOW

ORORORA

Protocol States
NULL
DATA_TRANSFER_READY
RESET_PENDING
LOCAL_SUSPEND
RESET_AND_SUSPEND

OO0 AA

Other features
(%] Piggybacked Status PDUs

51

RLC/AM parameters

Name in spec. Impl. Name

MaxDAT max_dat_
Poll_PDU poll_pdu_
Poll_SDU poll_sdu_

Poll_Window poll_window_

The behavior of the RLC protocol can be controlled via a set of parameters. The
following table summarizes the most important parameters of the RLC/AM protocol
and gives the name of the parameter in our implementation.

Description
The maximum number of transmissions of an |
AMD PDU is equal to MaxDAT-1. This parame-
ter represents the upper limit of a VT(DAT)
state variable. When a VT (DAT) variable reach-
es the value of MaxDAT, the Discard function
or Reset procedure is initiated. See Limited Re-
liability of the RLC/AM, pg. 27.

This protocol parameter indicates how often a

poll is triggered by the Sender, when “Polling
every x PDUs” is configured (see Polling, pg. 22).
It represents the upper limit for the state varia-
ble VT(PDU). When VT(PDU) equals Poll_PDU
a poll is triggered.

This protocol parameter indicatives how often a |
poll is triggered by the Sender, when “Polling
every x SDUs” is configured (see Polling, pg. 22).
It represents the upper limit for the state varia-
ble VT(SDU). When VT (SDU) equals Poll_SDU a
poll is triggered.

This parameter indicates when a poll is trig-
gered by the Sender when “window-based pol-
ling” is configured (see Polling, pg. 22). A poll is
triggered if the transmission window percen-
tage is greater than the Poll Window parame-
ter.

MaxRST max_rst_

g
.\.__\;}

-

Configured- rlcamsw (in skele- This parameter indicates the maximum allowed

This parameter indicates the maximum number
of transmissions for a RESET PDU. More specif-
ically, the maximum number of transmissions
for a reset PDU is equal to MaxRST-1 and the
parameter represents the upper limit of the
VT(RST) state variable. When the value of the
VT(RST) variable is equal to or greater than the
MaxRST value, an unrecoverable error is indi-
cated to the upper layers.

52

| _Tx_Window- ton.tcl), c_txrw

_Size

Rx_Window- ton.tcl), c_rxrw
_Size

- sduDiscardMode_

MaxMRW max_mrw_

- pTrg_lasthuIanx-
Buf_

Configured - rlcamrw (in skele- This parameter indicates the reception window

This parameter indicates the variant used for

transmission window size and the value for the |
state variable VT (WS).

size.

the SDU Discard function. The possible values
are: |

Mode

Timer based discard with explicit
signaling.

Timer based discard without expli-
cit signaling. This variant is not
applicable for AM and thus not im-
plemented. If this value is set, SDU
discard is disabled. This value
should not be used.

SDU discard after x number of
transmissions.

No_discard after x number of

transmissions.

See Limited Reliability of the RLC/AM, pg. 27.

The maximum number of transmissions of an
MRW SUFI is equal to MaxMRW. This parame-
ter prepresents the upper limit for the state ;
variable VT(MRW). When VT(MRW) equals the
value of MaxMRW the RLC Reset procedure is

initiated. |

This Boolean parameter indicates whether
“Every last PDU in Retransmission buffer” pol- -
ling is configured. See Polling, pg. 22.

- pTrg_pollTimer_

- - pTrg_everyPPPdu_

[z pTrg_everyPSSdu_

This Boolean parameter indicates whether “Poll
Timer” polling is configured. See Polling, pg. 22.

This Boolean parameter indicates whether

“Every x PDU” polling is configured. See Polling,
pg. 22.

This Boolean parameter indicates whether |
“Every x SDU” polling is configured. See Polling,
Pg- 22. |

[- _ pTrg_windowBased_

This Boolean parameter indicates whether |

53

pTrg_timerBased

sTrg_missPdu_

sTrg_tmr_

use_poll_proh_

use_st_proh_

enable reset_

y én;bfe_pgbck_

tm_poll_to_

“window-based” polling is configured. See Pol- |

ling, pg. 22.
This Boolean parameter indicates whether “ti-
mer-based” polling is configured. See Polling,

pPg. 22.

This Boolean parameter indicates whether a
status report transmission is triggered by detec-
tion of missing PDU(s). See Status Report
Transmission, pg. 24.

This Boolean parameter indicates whether a

status report transmission is triggered periodi-
cally. See Status Report Transmission, pg. 24.

This Boolean parameter indicates whether poll I

prohibiting is configured. See Polling, pg. 22.

This Boolean parameter indicates whether sta- |

tus report prohibiting is configured. See Status
Report Transmission, pg. 24.

This Boolean parameter indicates whether the

RLC Reset procedure is enabled. This is not
specified in the protocol specification. See RLC
Reset procedure pg. 31

This Boolean parameter indicates whether Sta-
tus PDU piggybacking is enabled. This is not
specified in the protocol specification. See Pro-
tocol Data Units (PDUs), Pg- 7-

Timeout value for the timer Timer_Poll. See
Polling, pg. 22.

tm_pl_proh_to_

tm_pl_per_to_

tm_st_proh_to_

tm_st_per_to_

Timeout value for the timer Ti- |

mer_Poll_Prohibit. See Polling, pg. 22.

Timeout value for the timer Ti-
mer_Poll_Periodic. See Polling, pg. 22.

Timeout value for the timer Ti-
mer_Status_Prohibit. See Status Report
Transmission, pg. 24.

Timeout value for the timer Ti-
mer_Status_Periodic. See Status Report

Transmission, pg. 24.

tm_rst_to_

tm_mrw_to_

‘Timeout value for the timer Timer RST. See |
RLC Reset procedure, pg. 3t

Timeout value for the timer Timer_ MRW. See
SDU discard with explicit signaling procedure,

pg. 28.

54

delack_

rexto_

rlcdebug _

Timeout value for the timer used when sending
delayed Status PDUs. This is not specified in the
protocol specification. See Protocol Data Units
(PDUs), pg. 7.

Timeout value for the tirr;“e_;wfimer‘_Discar‘d.
See Limited Reliability of the RLC/AM, pg. 27.

This Boolean parametéﬂr' indicates whether the |

debug mode is enabled for this simulation. This
is not specified in the protocol specification. In

this mode, a file in the /tmp directory is created |

for each node in the simulation each time the
simulation is run. The file contains debugging

information (triggering of events, values of va-

riables etc.).

55

|

WAN topology diagrams

This section contains all the diagrams of section 6.2 using the WAN connection

for the wired link.

HTTP w/o contention, WAN/Cellular links

40] T ; T I . :
Raw Link
TN Selective Repoat ------
SRS S Adapt. Selective Repeat —-—-—
*rX. J!:‘:l‘i-\ RLCIAM —--—]
\'.-- ‘**, .\.\’\.
3 E.\; \\\.\\\\"L.\ |
@ T~ el 4 "~
L0 =~ *~ .
£ 25} K
E oy
a s
£
2 20}
e
£
e
15 |-
10 |-
5 |]] i 1 |) | .
0 1 2 3 4 5 6 7 o o 10

Frame loss rate (%)

Fig. 33 Web browsing throughput without contention, Uniform model, WAN topology

40

HTTP w/o contention, WAN/PCS links

38
36 |-

30 |-

28 |-

Throughput (Kbps)

24 |-

20 |-

T T T I I

Selective Repeat
Adapt. Selective Repeat
RLC/AM

T T
Raw Link

-

H 1 1

18

4

6 7 8

Frame loss rate (%)

Fig. 34 Web browsing throughput without contention, Two State error model, WAN top.

56

l FTP w/o contention, WAN/Celular links
70 . .
' ' ! ! T ! T Raw Link Fig. 35 File transfer
Selective Repeat ------ throughput without conten-
i TON Adapt. Selective Repeat —-—:=))
60 Lt D RLC/AM —:--— _{ tion, Uniform error model,
WAN topology
l - 50]
s -0
X
=1 *
l 2 40 o
L
[s)
3
(S
l c 30 4
20 .
l 10 1 i i 1] 1 i 1 1
1 2 3 4 5 6 7 8 9 10
I Frame loss rate (%)
FTP w/o contention, WAN/PCS links
65
' | ! I ' ' ' ' ! Raw Link Fig. 36 File transfer
—_— e Selective Repeat =====- : _
= _.:g..\\\ Adapt. Selective Repeat —-—-— throughput without conten
60 \-..\:\\ RLC/AM —---—] tion, Two State error model,
l ™~ WAN topology
w 55
o
r)
=
l 2 50
£
o
3
[
l 45
l 40
15 |] 1 1 I 1 I 1 I
l 0 1 2 3 4 5 6 7 8 9 10
Frame loss rate (%)
HTTP with contention, WAN/Cellular links
30
l : ' ! ' ' ' ' L Raw Link — Fig. 37 Web browsing
" Selective Repeat ------ ; ;
-_t-?:_; Adapt. Selective Repeat —+—-— throughput with contention,
NN Tt~ RLC/AM —:o— Uniform error model, WAN
l 25 topology
N
s
l 4 20 |-
5
a
£
g
l s 15
L
.—
l 10 |-
' 5] 1 i i 1)]]]
0 1 2 3 4 5 6 7 8 9 10
Frame loss rate (%)
l 57

A ——— e T————————

Throughput (Kbps)

Throughput (Kbps)

Throughput (Kbps)

HTTP with contention, WAN/PCS links

30 T T 7 7 T T T T .)
Raw Link ——— Fig. 38 Web browsing
* Selective Repeat ------ : .
28 Adapt. Selective Ropeat ——-— - throughput with contention,
EAIT RLC/AM —---— Two State error model,
\ WAN topology
14 1 1 1 i 1] 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Frame loss rate (%)
FTP with contention, WAN/Cellular links
45
' ' ' ' ' ! Raw Link Fig. 39 File transfer
Selective Repeat ------ ; :
0f Adapt. Selective Repeat ——-— i throughput with contention,
¥ -.‘.Er_;zs_\ RLC/IAM —---— Uniform error model, WAN
35 |- topology
30 |-
25 |-
20 -
15 |-
10
5]) L 1] i 1 1]
0 1 2 3 4 5 6 7 8 9 10
Frame loss rate (%)
FTP with contention, WAN/PCS links
42 T T T T T T T T
Rawlink —— | Fig. 40 File transfer
01 Selective Repeat ------ _ . ;

K Adapt. Selective Repeat —-—-— throughput with contention,
& e ..:g,_‘;_. ~% RLCIAM —---— | Two State error model,
g WAN topology

36 |-
34 =
32 |-
30 |-
28 |-
26 |-
24 |-
22)| 1 1] 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

Packet delay (seconds)

Packet delay (seconds)

Packet delay (seconds)

CBR with FTP contention, WAN/Cellular links

3 . T T T T T T T
! Raw Link .
e - Selective Repeat ------;
_.---""% Adapt. Selective Repeat — — ="
25+ - RLC/AM —:-—

] 1 1 | 1 | l

Fig. 41 CBR delay with FTP

contention, Uniform error

| model, WAN topology

4.5

2 3 4 5 6 7 8
Frame loss rate (%)

CBR with FTP contention, WAN/PCS links

10

| 1 | | | 1

[T T T T T T
Raw Link
Selective Repeat

% -Adapt. Seleg

f—

-

Fig. 42 CBR delay with FTP
contention, Two State error
model, WAN topology

2 3 4 5 6 7 8

Frame loss rate (%)

CBR with HTTP contention, WAN/Cellular links

25

T i [T T T

T

Raw Link
Selective Repeat

Adapt. Selective Repeat

RLC/AM

1 1 1 1 1 1

Fig. 43 CBR delay with
HTTP contention, Uniform

:{ error model, WAN topology

2 3 4 5 6 7 8
Frame loss rate (%)

59

CBR with HTTP contention, WAN/PCS links

]] 1 1

3.2 ; ,

T
Raw Link

3 W Selective Repeat ------
Adapt. Selective Repeat —-—-— -
RLC/AM —---—:

Packet delay (seconds)

1.2 1] 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Frame loss rate (%)

Fig. 44 CBR delay with HTTP contention, Two State error model, WAN topology

SDU Discard policies comparison diagrams

This section includes diagrams from section 6.3 that show the performance of
both SDU discard policies tested.

HTTP w/o contention, LAN/Cellular links

50] 1 T T T T T T
Raw Link ————
RLC/AM disc. to=0.5¢ ------
45 RLC/AM disc. to=0.6s —-—-— -1
N, RLC/AM MaxDAT=2 —---—
40 |- R RLC/AM MaxDAT=3 ——---
v 35
2
X
- 30
5
2
S 25|
o
£
- 20 |-
15 |-
10 |-
5 1] 1 [l 1 1 1 1 i
0 U 2 3 4 5 6 7 8 s 10

Frame loss rate (%)
Fig. 45 Web browsing throughput without cont., Uniform error model, LAN topology

60

Throughput (Kbps)

Throughput (Kbps)

Throughput (Kbps)

50

HTTP w/o contention, LAN/PCS links

1 T T T

Raw Link Fig. 46 Web browsing
RLC/AM disc. to=0.5¢ =~--=-=--- i ten-
R AT throughput without conten
RLC/AM MaxDAT=2 —-:-=— tion, Two State error model,
45 RLC/AM MaxDAT=3 === =
LAN topology
40 |-
35 -
30 |-
25]] 1])\ I I 1
0 2 3 4 5 6 7 8 9 10
Frame loss rate (%)
FTP w/o contention, LAN/Cellular links
70
' ' ' ' ' Raw Link Fig. 47 File transfer
RLC/AM disc. to=0.58 =====- ; -
o RICIAMIdisc Tocolss throughput without conten
60 R ST RLC/AM MaxDAT=2 —---— _{ tion, Uniform error model,
5 TRuml RLCIAM MaxDAT=3 ——=:= | | s\ nilogy
50 |-
40 |-
30 |-
20 |-
10 i i i i L i 1 i
0 2 3 4 5 6 7 8 9 10
Frame loss rate (%)
FTP wio contention, LAN/PCS links
5 ' ; ! : ' ' Raw Link Fig. 48 File transfer
e, RLC/AM disc. to=0.5s = -=--- throughput without conten-
. ~a.. RLC/AM disc. to=0.6s —-—-— .
60 T~ \'“\\\0 RLC/AM MaxDAT=2 —--— - tion, Two State error model,
X S~ RLC/AM MaxDAT=3 ==—-:=
*\\ - LAN topology
55 |-
50 -
45 -
40 |
35 i] 1 | | i 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Frame loss rate (%)

61

References

[1] 3™ Generation Partnership Project (3GPP). Radio Link Control (RLC) protocol
specification (Release 7). Technical Specification 25.322, V7.0.0. Available at
http://www.3gpp.org [accessed January 4“‘, 2007]

[2] J. J. Alcaraz, F. Cerdan and J. Garcia-Haro. Optimizing TCP and RLC Interac-
tion in the UMTS Radio Access Network. IEEE Network, vol 20, no. 2, Mar.
2006, pp. 56-64.

[3] R. Bestak, P. Godlewski and P. Martins. RLC Buffer Occupancy when Using a
TCP Connection over UMTS. Proc. IEEE PIMRC, Sep. 2002, vol. 3, pp 1161-1165.

[4] Yi-Chiun Chen, Xiao Xu, Hua Xu, Eren Gonen, Peijuan Liu. Simulation analysis
of RLC for packet data services in UMTS systems. Proc. IEEE PIMRC 2003, vol.
1, pp. 926- 930.

[5s] P. Karn. The Qualcomm CDMA digital cellular system. Proc. Of the USENIX
Mobile and Location-Independent Computing Symposium, 1993, pp. 35-39.

[6] F. Lefevre and G. Vivier. Optimizing UMTS link layer parameters for a TCP
connection. Proc. IEEE Vehicular Technology Conference, 2001, vol. 4, pp. 2318-
2321.

[7] M. Rossi, L. Scaranari and M. Zorzi. On the UMTS RLC Parameters Setting and
Their Impact on Higher Layers Performance. Proc. IEEE VTC 2003, vol. 3, pp.
1827-32.

[8] UCB/LBNL/VINT. Network Simulator - ns (version 2). Available at
http://www.isi.edu/nsnam/ [accessed January 4", 2007]

[9] Hua Xu, Yi-Chiun Chen, Xiao Xu, Eren Gonen, and Peijuan Liu. Performance
analysis on the radio link control protocol of UMTS system. In Proc. IEEE 56th
Vehicular Technology Conference, September 2002, volume 4, pages 2026-
2030.

[10]Xiao Xu, Hua Xu, Yi-Chiun Chen, Eren Gonen, and Peijuan Liu. Simulation
analysis of RLC timers in UMTS systems. In Proc. of the 2002 Winter Simula-
tion Conference, December 2002, vol. 1, pp. 506-512.

[u] G. Xylomenos. Multi service link layers for ns-2. Available at
http://mm.aueb.gr/~xgeorge/codes/codephen.htm [accessed January
4™, 2007]

[12] G. Xylomenos and G. C. Polyzos. A multi-service link layer architecture for the
wireless internet. International Journal of Communication Systems, 17(6):553-
574, 2004

[13] G. Xylomenos. Limitations of Fixed Timers for Wireless Links. Proc. ISPA 2006,
PP- 159-170.

[14] G. Xylomenos. Adaptive Timeout Policies for Wireless Links. Proc. IEEE AINA
2006, vol 1, pp. 497-502.

(15] G. Xylomenos, G.C. Polyzos, P. Mahonen, M. Saaranen. TCP performance is-
sues over wireless links. IEEE Communications Magazine, vol. 39, no. 4, 2001,

pp- 52-58.

62

[16]U. Yoon, S. Park and P. Min. Performance analysis of multiple rejects ARQ at
RLC (Radio Link Control) for packet data service in W-CDMA system. Proc.
IEEE Global Communications Conference, 2000, pp. 48-52.

[17] Q. Zhang and H.-J. Su. Performance of UMTS Radio Link Control. Proc. IEEE
International Conference on Communications, 2002, pp. 3346-3350.

63

Abbreviations

The following abbreviations are used in this document:

Term Stands for

ACK Acknowledgement
AM Acknowledged Mode
AMD Acknowledged Mode Data

GSM Global System for Mobile communications
HSDPA High Speed Downlink Packet Access

LI Leﬁﬁgtmflwlndicatorw

| MAC Medium Access Control

' MRW Move Receiving Window

. NACK Negative Acknb(&rledg"éﬁlwé;f
| PDU Protocol Data Unit

| RLC Radio Link Control
SDU Service Data Unit

I SN "Sequence Number
SUFI Super Field
'T™M Transparent Mode

l 'UE User Equipment

UM Unacknowledgmed Mode

UMTS Universal Mobile Telecommunications Syste?n i

UTRAN UMTS Terrestrial Radio Access Network

64

